

Atmel AVR2025: IEEE 802.15.4 MAC Software
Package - User Guide

Features

• Portable and highly configurable MAC stack based on IEEE® 802.15.4

• Atmel® MAC architecture and implementation introduction

• Support of several microcontroller families includes ATxmega, AT32UC3A , SAM4L,

SAMD20 and ATMEGARF

• Support of Atmel IEEE 802.15.4 transceivers and single chips, includes Atmel’s

AT86RF212, AT86RF212B, AT86RF231, AT86RF233 and ATmega256RFR2 SOC.

• Example applications description

Atmel
MCU Wireless
Solutions

Application Note

Rev. 8412A-AVR-02/13

 2

8412A-AVR-02/13

Table of contents

Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User Guide 1

Features .. 1

Application Note ... 1

Table of contents .. 2

Table of figures... 6

1 Introduction .. 7

2 General architecture .. 8

2.1 Main stack layers .. 8
2.1.1 Platform abstraction layer (PAL) .. 9
2.1.2 Transceiver abstraction layer (TAL) ... 9
2.1.3 MAC core layer (MCL) ... 10
2.1.4 Usage of the stack ... 12

2.2 Other stack components ... 13
2.2.1 Resource management ... 13
2.2.2 Security abstraction layer .. 14
2.2.3 Security toolbox ... 14
2.2.4 Transceiver feature access .. 14

3 Understanding the software package ... 16

3.1 MAC package directory structure ... 16

3.2 Header file naming convention ... 21

4 Brief about ASF .. 23

4.1 ASF directory structure ... 23

5 Understanding the stack ... 23

5.1 Frame handling procedures .. 23
5.1.1 Frame transmission procedure .. 23
5.1.2 Frame reception procedure ... 27

5.2 Frame buffer handling ... 29
5.2.1 Application on top of MAC-API .. 29
5.2.2 Application on top of TAL ... 34

5.3 Configuration files ... 39
5.3.1 Application resource configuration – app_config.h .. 41
5.3.2 Stack resources configuration – stack_config.h ... 41
5.3.3 TAL resource configuration – tal_config.h ... 41
5.3.4 MAC resource configuration – mac_config.h ... 42
5.3.5 NWK resource configuration – nwk_config.h ... 42
5.3.6 Build configuration file – mac_build_config.h ... 42
5.3.7 User build configuration file – mac_user_build_config.h .. 42

5.4 MAC components ... 42
5.4.1 MAC_INDIRECT_DATA_BASIC.. 43
5.4.2 MAC_INDIRECT_DATA_FFD ... 44
5.4.3 MAC_PURGE_REQUEST_CONFIRM .. 45
5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE .. 45

file:///D:/Projects/AVR2025/Userguide/AVR2025_User_Guide.doc%23_Toc380058937

 3

8412A-AVR-02/13

5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM .. 45
5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT .. 46
5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT .. 47
5.4.8 MAC scan components .. 47
5.4.9 MAC_ORPHAN_INDICATION_RESPONSE ... 47
5.4.10 MAC_START_REQUEST_CONFIRM ... 48
5.4.11 MAC_RX_ENABLE_SUPPORT .. 49
5.4.12 MAC_SYNC_REQUEST ... 50
5.4.13 MAC_SYNC_LOSS_INDICATION... 50
5.4.14 MAC_BEACON_NOTIFY_INDICATION .. 51
5.4.15 MAC_GET_SUPPORT .. 51
5.4.16 MAC_PAN_ID_CONFLICT_AS_PC .. 52
5.4.17 MAC_PAN_ID_CONFLICT_NON_PC ... 52

5.5 High-density network configuration ... 52

5.6 High data rate support .. 53

6 MAC power management .. 56

6.1 Understanding MAC power management .. 56

6.2 Reception of data at nodes applying power management ... 57
6.2.1 Setting of macRxOnWhenIdle to true .. 57
6.2.2 Enabling the receiver ... 57
6.2.3 Handshake between end device and coordinator .. 58
6.2.4 Indirect transmission from coordinator to end device ... 58

6.3 Application control of MAC power management .. 59
6.3.1 MAC PIB attribute macRxOnWhenIdle .. 59
6.3.2 Handling the receiver with wpan_rx_enable_req() ... 59
6.3.3 Handling Controller Sleep in Inactive Region .. 60
6.3.4 Mac_wakeup ... 61
Void mac_wakeup (uint32_t res_time); ... 61

6.4 TAL power management API .. 61

7 Application and stack configuration .. 62

7.1 Build switches ... 62
7.1.1 Global stack switches .. 64
7.1.2 Standard and user build configuration switches .. 67
7.1.3 Platform switches... 67
7.1.4 Transceiver specific switches .. 67
7.1.5 Test and debug switches ... 71

7.2 Build configurations ... 72
7.2.1 Standard build configurations .. 72
7.2.2 User build configurations – MAC_USER_BUILD_CONFIG ... 75

8 Migration History .. 79

8.1 Guide from version 3.0.x to 3.1.x .. 79

8.2 Guide from version 2.8.x to 3.0.x .. 79

8.3 Guide from version 2.7.x to 2.8.x .. 79

8.4 Guide from version 2.6.x to 2.7.x .. 79

9 Toolchain .. 80

 4

8412A-AVR-02/13

9.1 General prerequisites.. 80

9.2 Building the applications ... 80
9.2.1 Using GCC makefiles .. 80
9.2.2 Using IAR Embedded Workbench ... 80
9.2.3 Using IAR AVR32 Embedded Workbench ... 81
9.2.4 Using IAR ARM Embedded Workbench .. 82

10 Example applications .. 82

10.1 Walking through a basic application.. 82

10.2 Provided examples applications .. 83
10.2.1 MAC examples .. 83
10.2.2 TAL examples .. 87

10.3 Common SIO handler (Serial I/O Handler) ... 96

10.4 Handling of callback stubs .. 97
10.4.1 MAC callbacks ... 97
10.4.2 TAL callbacks .. 98
10.4.3 Example for MAC callbacks ... 98

10.5 Bootloader ... 98

11 Supported platforms ... 99

11.1 Supported MCU families ... 100

11.2 Supported transceivers ... 100

11.3 Supported boards .. 100

12 Platform porting .. 100

13 Protocol implementation conformance statement (PICS) ... 101

13.1 Major roles for devices compliant with IEEE Std 802.15.4-2006 .. 101

13.2 Major capabilities for the PHY ... 101

13.3 Major capabilities for the MAC sub-layer .. 102
13.3.1 MAC sub-layer functions .. 102
13.3.2 MAC frames ... 103

14 Abbreviations .. 104

15 References ... 105

16 User guide revision history .. 105

16.1 Rev. 2025M-MCU Wireless-03/13 .. 105

16.2 Rev. 2025M-MCU Wireless-06/12 .. 105

16.3 Rev. 2025M-MCU Wireless-10/11 .. 106

16.4 Rev. 2025L-MCU Wireless-07/11 ... 106

16.5 Rev. 2025K-MCU Wireless-08/11 ... 106

16.6 Rev. 2025J-MCU Wireless-03/11.. 106

16.7 Rev. 2025I-MCU Wireless-10/10 .. 106

16.8 Rev. 2025H-MCU Wireless-08/10 ... 106

 5

8412A-AVR-02/13

16.9 Rev. 2025G-MCU Wireless-08/10 ... 107

16.10 Rev. 2025F-MCU Wireless-02/10 ... 107

16.11 Rev. 2025E-MCU Wireless-01/10 ... 107

16.12 Rev. 2025B-MCU Wireless-09/09 ... 107

16.13 Rev. 2025-AVR-04/09 ... 108

 6

8412A-AVR-02/13

Table of figures

Figure 2-1. MAC architecture. ... 8
Figure 2-2. Stack usage. ... 13
Figure 3-1. Avr2025_mac package directory Structure .. 16
Figure 3-2. Host NCP approach .. 19
Figure 5-1-. Data frame transmission procedure – Part 2. .. 26
Figure 5-2. Data frame reception procedure. .. 27
Figure 5-3. Frame buffer handling during data frame transmission – part 1. .. 29
Figure 5-4. Frame buffer handling during data frame transmission – part 2. .. 31
Figure 5-5. Frame buffer handling during data frame reception. .. 33
Figure 5-6. Frame buffer handling during frame transmission using TAL-API. ... 36
Figure 5-7. Frame buffer handling during frame reception using TAL-API. .. 38
Figure 5-8. Configuration file #include-hierarchy. ... 40
Figure 5-9. Essential and supplementary MAC components. ... 43
Figure 5-10. Example of provided functionality for MAC_INDIRECT_DATA_BASIC and

MAC_INDIRECT_DATA_FFD. .. 45
Figure 5-11. Provided functionality for MAC_ASSOCIATION_INDICATION_ RESPONSE and

MAC_ASSOCIATION_REQUEST_CONFIRM. ... 46
Figure 5-12. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE and

MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure). .. 48
Figure 5-13. Start of non-beacon network and active scan. ... 49
Figure 5-14. Enabling of receiver and proper data reception. ... 50
Figure 5-15. Synchronization and loss of synchronization. ... 51
Figure 7-1. Build configuration example. ... 63
Figure 7-2. Handling of promiscuous mode. ... 66
Figure 11-1. Performance Analyzer Application State Diagram ... 89
Figure 11-2. Sequence diagram of Range measurement ... 90
Figure 11-3. Initializing Range measurement - transmitter (TX) ... 91
Figure 11-4. Initializing Range measurement - receiver (RX) ... 91
Figure 11-5. Statistics of Range measurement ... 91
Figure 11-6. REB Rx path ... 93
Figure 11-7. Sequence Diagram for Peer Search process ... 94
Figure11-8. General approach for using bootloader to program a NCP in 2p approach .. 99

 7

8412A-AVR-02/13

1 Introduction

This document is the user guide for the Atmel MAC software for IEEE 802.15.4 transceivers. The mechanisms and

functionality of the IEEE 802.15.4 standard is the basis for the entire MAC software stack implementation. Therefore

it is highly recommended to use it as a reference. Basic concepts that are introduced by the IEEE standard are

assumed to be known within this document.

The user guide describes about:

 The Atmel AVR®2025 MAC software package release contains the IEEE 802.15.4 MAC, which:

 Allows a highly flexible firmware configuration to adapt to the application requirements

 Supports different microcontrollers and platforms/boards

 Supports different IEEE 802.15.4 based transceivers and single chips

 Allows easy and quick platform porting

 Provides project files for two supported IDEs (IAR Embedded Workbench®, Atmel Studio®) and gcc support as

well.

 Supports star networks and peer-to-peer communication

 Supports non-beacon and beacon-enabled networks

The MAC software package is a reference implementation demonstrating the use of the Atmel IEEE 802.15.4

transceivers. It follows a generic approach and is not optimized to any specific application requirement. The user

needs can be adapted to its specific application requirements.

 The general software architecture followed, package directory structure, understanding the stack, MAC power

management and stack configuration.

 Example applications provided in the release, supported platforms, supported tool chains, integrated development

environments and references for help.

 Atmel AVR2025

 8

8412A-AVR-02/13

2 General architecture

The MAC software package follows a layered approach based on several stack
modules and applications. Figure 2-1 shows the stack’s architecture. The stack
modules are from the bottom up:

 Platform Abstraction Layer (PAL) (see Section 2.1.1)

 Transceiver Abstraction Layer (TAL) (see Section 2.1.2) and Transceiver Feature

Access (TFA) (see Section 2.2.4)

 MAC including MAC Core Layer and MAC-API (see Section 2.1.3)

 Resource Management including Buffer and Queue Management (BMM and

QMM) (see Section 2.2.1)

Figure 2-1. MAC architecture.

TPSTFATAL

MAC

(MCL incl.

MAC API)

Resource

Management

(BMM, QMM)

Application

PAL Wrapper

SAL

STB

Hardware Platform (i.e. Microcontroller, Board, Configuration)

TRx Access - SPI, GPIO and IRQ

Services/Drivers

Timers ASF

Complete description of each layer and component are provided in the succeeding

section of this document.

2.1 Main stack layers

The main MAC stack software consists of three layers starting from the bottom up:

 Platform Abstraction Layer - PAL

 Transceiver Abstraction Layer - TAL

 MAC Core layer – MCL

For other stack layers please refer to Section 2.2.

 Atmel AVR2025

 9

8412A-AVR-02/13

2.1.1 Platform abstraction layer (PAL)

The Platform Abstraction Layer (PAL) contains wrapper functions, which provides a

seamless interface between the MAC software and ASF-PAL modules.

PAL provides interface to the following components:

1. Base timer for running software timer.

2. GPIO interrupt for External transceiver access.

3. SPI access for External transceiver access.

4. Access to persistent storage (for example, Flash or NVM or EEPROM).

Services such as Timer, SPI, and persistent storage are mapped to common\services

of ASF directory to the extent possible to reduce the porting efforts. All the GPIO

related configurations has to be available in corresponding <board>.h or conf_pal.h.

For each microcontroller a separate implementation exists within the ASF modules.

The board and application needs are adapted via a board configuration file

(conf_board.h). This board configuration file exists exactly once for each supported

hardware platform.

These components are implemented as software blocks and are ported based on the

target microcontroller. The timer module implements software timer functionality used

by the MAC, TAL, and Application layer. The function prototypes for all PAL API

functions we use are included in file PAL/Inc/pal.h.

2.1.2 Transceiver abstraction layer (TAL)

The Transceiver Abstraction Layer (TAL) contains the transceiver specific

functionality used for the 802.15.4 MAC support and provides interfaces to the MAC

Core Layer which is independent from the underlying transceiver. Besides that, the

TAL API can be used to interface from a basic application. There exists exactly one

implementation for each transceiver using transceiver-embedded hardware

acceleration features. The TAL (on top of PAL) can be used for basic applications

without adding the MCL.

The following components are implemented inside the TAL:

 Frame transmission unit (including automatic frame retries)

 Frame reception unit (including automatic acknowledgement handling)

 State machine

 TAL PIB storage

 CSMA module

 Energy detect scan

 Power management

 Interrupt handling

 Initialization and reset

The Transceiver Abstraction Layer uses the services of the Platform Abstraction

Layer for its operation. The Frame Transmission Unit generates and transmits the

frames using PAL functionality. The Frame Reception Unit reads/uploads the

incoming frames and pushes them into the TAL-Incoming-Frame-Queue. The TAL

handles the Incoming-Frame-Queue and invokes the receive callback function of the

MCL. The operation of the TAL is controlled by the TAL state machine. The CSMA-

 Atmel AVR2025

 10

8412A-AVR-02/13

CA module is used for channel access. The PIB attributes related to the TAL are

stored in the TAL PIB storage.

The function prototypes for the TAL features are provided in file TAL/Inc/tal.h. The

implementation of a TAL is located in a separate subdirectory for each transceiver.

2.1.3 MAC core layer (MCL)

The MAC Core Layer (MCL) abstracts and implements IEEE 802.15.4-2006

compliant behavior for non-beacon enabled and beacon-enabled network support.

The implemented building blocks are:

 MAC Dispatcher

 MAC Data Service

 MAC Management Service (like start, association, scan, poll, etc.)

 MAC Beacon Manager

 MAC GTS Manager

 MAC Security Module

 MAC Incoming Frame Processor

 MAC PIB Module

 MAC-API

 MAC stack task functions

The MAC Core layer provides an API that reflects the IEEE 802.15.4 standard (4).

2.1.3.1 Stack task functionality

The stack (consisting of PAL, TAL, and MCL) task functionality consists of the

following API:

 Initialization

The function wpan_init() initializes all stack resources including the microcontroller

and transceiver using functions provided by the TAL and the PAL.

 Task handling

The function wpan_task () is the stack task function and is called by the

application. It invokes the corresponding task functions of the MCL, TAL, and PAL.

Using the MAC software package it is required to call this function frequently

supporting a round robin approach. This ensures that the different layers’ state

machines are served and their queues are processed.

2.1.3.2 MAC-API

The application interfaces the MAC stack via the MAC-API (see file mac_api.h in

directory MAC/Inc).

It sends requests and responses to the stack by calling the functions provided by the

MAC-API. The MAC-API places these requests and responses in the NHLE-MAC-

Queue. It also invokes the confirmation and indication callback functions implemented

by the user.

2.1.3.3 MAC core layer functionality

The MAC Dispatcher reads the NHLE-MAC-Queue and passes the requests or

responses to the MAC Data Service or the MAC Management Service. The MAC

Dispatcher also reads the internal event queue (TAL-MAC-Queue) and calls the

corresponding event handler.

 Atmel AVR2025

 11

8412A-AVR-02/13

The MAC Data Service transmits data using the frame transmission services of the

Transceiver Abstraction Layer and invokes the confirmation function

mcps_data_conf(), which is implemented in the MAC-API. This function in turn calls

the usr_mcps_data_conf() callback function implemented by the application. The

indirect data requests are queued into the Indirect-Data-Queue, where the frames are

re-fetched from when a corresponding data request (poll request) is received from a

device.

Receiving a data frame from the TAL through MAC Incoming Frame Processor, the

MAC Data Service invokes the indication function mcps_data_ind(), which is

implemented by the MAC-API. This function calls the usr_mcps_data_ind() callback

function implemented by the application.

The MAC Management Service processes the management requests and responses

through TAL and PAL and if applicable invokes the respective confirm function

implemented by the MAC-API. This function in turn calls the usr_mlme_xyz_conf()

callback function implemented by the application.

Receiving a command frame from the TAL through the MAC incoming frame

processor, the MAC Management Service invokes the indication function

mlme_xyz_ind(), which is implemented by the MAC-API if required. The

mlme_xyz_ind() function calls the usr_mlme_xyz_ind() callback function implemented

by the application.

The MAC Incoming Frame Processor receives frames from the TAL and depending

on the type of the frame, passes it to the MAC Data Service or the MAC Management

Service for further processing.

The MAC PIB attributes are stored in the MAC PIB and are accessed by the MAC

Data Service, the MAC Management Service and the Beacon Manager. PIB attributes

that are used by the TAL module are stored within the TAL.

The Beacon Manager generates the beacon frames which are transmitted using the

TAL. The beacon manager is also responsible for beacon reception at the start of a

superframe and its synchronization. The received beacons are processed based on

the current state of the MAC and if required indications or notifications are given to

the MAC-API.

AVR2025 Security module is responsible for providing the security services on
specified incoming and outgoing frames when requested to do by the higher layers.
Security module is used to protect the MAC Data, MAC Beacon Frames for incoming
and outgoing frames. The security module will covers the all the security level from
security level-0 to security level-7. Security Level-0 is not used for any frame
protection. So security level-0 frames will not have Integrity and Encryption.
The Security Module Provides the Data Confidentiality, Data authenticity and Replay
protection.

MAC Security transmitting frame

 Atmel AVR2025

 12

8412A-AVR-02/13

mac_secure api will be used to

secure the incoming frame based

on the security level and FCS

Security Enable bit. Based on the

outgoing frame addressing mode

and frame type, key id, key source,

the security module will retrieve the

key to encrypt and add MIC to the

frame.

 MAC Higher Layer

 Plain Text + Security Enabled

 Cipher Text + MIC(If MAC_SUCCESS)

 MAC Security Module

MAC Security receiving frame

mac_unsecure api will be used to

unsecure the incoming frame based

on the security level and FCS

Security Enable bit. Based on the

incoming frame addressing mode

and frame type, key id, keyIndex,

key source, the security module will

retrieve the key to decrypt and

authenticate the frame.

 MAC Higher Layer

 MAC Security Module

 Cipher Text + MIC

 Plain Text (If MAC_SUCCESS)

2.1.4 Usage of the stack

An application can use any layer as desired depending on the required functionality.

An application that is based on a standard IEEE 802.15.4 MAC uses the MAC-API

based on the stack built by PAL, TAL, and MCL. Another application (for example, a

simple data pump) may want to use only the basic channel access mechanism,

automatic handling of Acknowledgments, etc. In this case potentially only the TAL API

based on a stack consisting of PAL and TAL will be used. What kind of stack is

actually being used by the application is always depending on the end user needs

and the available resources.

In order to specify which layer of the stack the application is actually based on (that is,

which API it is using), the build switch HIGHEST_STACK_LAYER needs to be set

properly. Depending on this switch only the required resources from the stack are

used for the entire application. For further information about the usage of

HIGHEST_STACK_LAYER please see Section 7.1.1.1 HIGHEST_STACK_LAYER.

 Atmel AVR2025

 13

8412A-AVR-02/13

The following picture shows which layers of the stack are available for the application

depending on the build switch HIGHEST_STACK_LAYER. Obviously a trade-off

needs to be found between required functionality on one hand and the footprint on the

other hand.

Figure 2-2. Stack usage.

2.2 Other stack components

2.2.1 Resource management

The Resource Management provides access to resources to the stack or the

application. These resources are:

1. Buffer Management (large and small buffers): provides services for dynamically
allocating and freeing memory buffers.

2. Queue Management: provides services for creating and maintaining the queues.

The following queues are used by the software:

3. Queue used by MAC Core Layer:
a. NHLE-MAC-Queue
b. TAL-MAC-Queue
c. Indirect-Data-Queue
d. Broadcast-Queue

4. Queue used by TAL:
a. TAL-Incoming-Frame-Queue

5. Additional queues and buffers can be used by higher layers, like application such
as the MAC-NHLE-Queue.

 Atmel AVR2025

 14

8412A-AVR-02/13

2.2.2 Security abstraction layer

The SAL (Security Abstraction Layer) provides an API that allows access to low level

AES engine functions abstraction to encrypt and decrypt frames. These functions are

actually implemented dependent on the underlying hardware, for example, the AES

engine of the transceiver. The API provides functions to set up the proper security

key, security scheme (ECB or CBC), and direction (encryption or decryption).

For more information about the SAL-API see file sal/inc/sal.h.

2.2.3 Security toolbox

The STB (Security Toolbox) is a high level security abstraction layer providing an

easy-to-use crypto API for direct application access. It is placed on top of the SAL

and abstracts and implements transceiver or MCU independent security functionality

that encrypts or decrypts frames using CCM* according to 802.15.4 / ZigBee®.

For more information about the STB-API see file stb/inc/stb.h.

2.2.4 Transceiver feature access

2.2.4.1 Introduction

The current 802.15.4 stack is designed to be fully standard compliant. On the other

hand Atmel transceivers provide a variety of additional hardware features that are not

reflected in the standard. In order to have a clear design separation between the

standard features and additional features, a new software block has been introduced

– TFA (Transceiver Feature Access).

If the TFA shall be used within the application a special build switch needs to be set in

order to get access to these specific features (see Section 7.1.4.2).

2.2.4.2 Features

The following features have been implemented within the TFA:

 Additional PIB attribute handling

o Function for reading or writing special PIB attributes (not defined

within 4) are provided

o Example: Transceiver Rx Sensitivity (see the Data Sheets of the

transceivers for more information about the Transceiver Rx

Sensitivity)

 Single CCA

o Based on 4 a function is implemented to initiate a CCA request to

check for the current state of the channel

o The result is either PHY_IDLE or PHY_BUSY

o Allows for CCA measurements independent from the MAC-based

CSMA-CA algorithm

 Single ED measurement

o Based on 4 a function is implemented to initiate a single ED

measurement separate from the cycle of a full ED scanning

 Reading transceiver's supply voltage

 Atmel AVR2025

 15

8412A-AVR-02/13

o The battery or supply voltage reading can be enabled separately

without enabling the entire TFA. If only the reading (function

tfa_get_batmon_voltage()) of the supply voltage is needed, the build

switch TFA_BAT_MON needs to be set. See also Section 7.1.4.2 for

further information about build switches for the TFA

 Continuous transmission

o For specific measurements a continuous transmission on a specific is

required

o In order to support this feature functions are implemented to initiate

or stop a continuous transmission

 Temperature Measurement (Single Chip transceivers only)

o A function is implemented to read the temperature value from the

integrated temperature sensor in degree Celsius

For more information about the TFA implementation see file TFA/Inc/tfa.h and the

source code for the various transceivers (tfa/tal_type/src/tfa.c).

For further explanation of applications and the included example applications please

refer Chapter 10.

 Atmel AVR2025

 16

8412A-AVR-02/13

3 Understanding the software package

The following chapter describes the content of the AVR2025_MAC software package,

common asf modules and drivers which are required for this MAC software to work

and explains some general guidelines how the various software layers are structured.

3.1 MAC package directory structure

The AVR2025_MAC package directory structure looks as shown in Figure 3-1. This

software package strategically placed under the thirdparty/wireless folder in the ASF

directory.

Figure 3-1. Avr2025_mac package directory Structure

wireless

├──addons

├───avr2025_mac

├───addons

│ ├───api_parser

│ ├───serial_bridge

│ │ ├───sam4lc4c_sam4l_xplained_pro

├───apps

│ ├───MAC

│ │ ├───beacon

│ │ │ ├───coord (Coordinator)

│ │ │ │ ├───host

│ │ │ │ │ ├───sam4lc4c_sam4l_xplained_pro

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Config files

│ │ │ │ ├───ncp

│ │ │ │ │ ├───at32uc3a3256s_rz600_at86rf212

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Include files

│ │ │ │ └───main.c – source file

│ │ │ └───dev (Device)

│ │ │ │ ├───host

│ │ │ │ │ ├───sam4lc4c_sam4l_xplained_pro

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Config files

│ │ │ │ ├───ncp

│ │ │ │ │ ├───at32uc3a3256s_rz600_at86rf212

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Include files

│ │ │ │ └───main.c – source file

│ │ ├───no_beacon

│ │ │ ├───coord (Coordinator)

│ │ │ │ ├───host

 Atmel AVR2025

 17

8412A-AVR-02/13

│ │ │ │ │ ├───sam4lc4c_sam4l_xplained_pro

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Config files

│ │ │ │ ├───ncp

│ │ │ │ │ ├───at32uc3a3256s_rz600_at86rf212

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Include files

│ │ │ │ └───main.c – source file

│ │ │ └───dev (Device)

│ │ │ │ ├───host

│ │ │ │ │ ├───sam4lc4c_sam4l_xplained_pro

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Config files

│ │ │ │ ├───ncp

│ │ │ │ │ ├───at32uc3a3256s_rz600_at86rf212

│ │ │ │ │ ├───. . .

│ │ │ │ │ ├───Include files

│ │ │ │ └───main.c – source file

│ │ ├───no_beacon_sleep

│ │ │ ├───. . .

│ │ │ ├───Include files

│ │ │ └───main.c – source file

│ │ ├───serial_if

│ │ │ ├───bcn_ffd

│ │ │ ├───bcn_rfd

│ │ │ ├───no_bcn_ffd

│ │ │ └───no_bcn_rfd

│ │ │

│ ├───sio_helper

│ │ ├───module_config

│ │ ├───uart

│ │ ├───usb

│ ├───TAL

│ │ ├───Performance_analyzer

│ │ ├───at32uc3a3256s_rz600_at86rf212

│ │ ├───. . .

│ │ ├───inc

│ │ └───src

├───Doc

│ └───User_Guide

├───Include

├───Source

│ ├───mac

│ │ ├───inc

│ │ ├───src

│ │ ├───unit_tests

│ │ │ ├──at32uc3a3256s_rz600_at86rf212

 Atmel AVR2025

 18

8412A-AVR-02/13

│ │ │ ├──...

│ ├───pal

│ │ ├───common_hw_timer

│ │ │ ├──example

│ │ │ ├──mega

│ │ │ ├──module_config

│ │ │ ├──sam

│ │ │ ├──uc3

│ │ │ ├──xmega

│ │ ├───common_sw_timer

│ │ │ ├──example

│ │ │ ├──module_config

│ ├───resources

│ │ ├───buffer

│ │ │ ├──inc

│ │ │ ├──src

│ │ ├───queue

│ │ │ ├──inc

│ │ │ ├──src

│ ├───sal

│ │ ├───at86rf2xx

│ │ │ ├──src

│ │ ├─── ...

│ │ ├───inc

│ ├───stb

│ │ ├───src

│ │ ├───inc

│ ├───tal

│ │ ├───at86rf212

│ │ │ ├──inc

│ │ │ ├──src

│ │ ├───atmegarf...

│ │ │ ├──...

│ │ │ ├──...

│ │ ├───inc

│ │ ├───src

│ │ ├───unit_tests

│ │ │ ├──at32uc3a3256s_rz600_at86rf212

│ │ │ ├──...

│ ├───tfa

│ │ ├───at86rf212

│ │ │ ├──inc

│ │ │ ├──src

│ │ ├───atmegarf...

│ │ │ ├──...

│ │ │ ├──...

│ │ ├───inc

 Atmel AVR2025

 19

8412A-AVR-02/13

│ │ ├───src

│ │ ├───unit_tests

These directories contain the following items (in alphabetical order):

 Addons (wireless\addons):

 This addons directory placed under the wireless directory (wireless\addons)

contains Serial I/O functionalities for sio2host and sio2ncp (serial I/O to Network

Co-Processor) for combinations shown in below picture.

Figure 3-2. Host NCP approach

1. Driver to encode and decode serial interface for NCP.
2. Stand alone sample application to drive NCP from Host controller.
3. API to Serial Bridge - convert API calls to serial command and vice versa.
4. Firmware for Wireless Software Package (MAC or ZRC).

Addons (avr2025_mac):

 Atmel AVR2025

 20

8412A-AVR-02/13

 This addons directory place under the wireless directory (avr2025_mac/addons)

contains the source files for following addons supported by avr2025_mac.

o api_parser : This module is responsible for encoding and

decoding the serial bytes from NCP into APIs to provide seamless

working for application similar to stack running in same processor or

on NCP.

o bootloader : Consists of hex file for UART based bootloader

along with PC utility for upgrading the firmware. Also supports NCP

firmware upgrade and the steps are explained in

\thirdparty\wireless\avr2025_mac\bootloader\ readme.txt.

o serial_if : This module is responsible for serial interface to the

host.

 The above modules can co-exist in same application as described in the

below architecture with proper handling in the application main.c for individual

tasks.

 Examples:

o The MAC package comes with a variety of examples applications

which comprise MAC examples (using the MAC-API on top of the

MAC Core Layer), TAL examples (using the TAL API)

o The provided makefiles and project files can be used as quick start

 Doc:

o This directory contains the AVR2025_MAC software package user

guide.

 Include:

o This directory contains header files that are of general interest both

for example-applications and for all layers of the stack, such as IEEE

constants, data types, return values, etc.

 Source :

o This directory holds the source sub-directories for MAC, PAL, TAL,

SAL, STB layers and other resources required.

o MAC: This directory contains the MAC Core Layer (MCL) and the

MAC-API

o PAL: This directory contains only wrapper functions which

communicate with ASF-PAL drivers (located outside this

AVR2025_MAC software package) for each microcontroller family.

o Resources: This directory contains the buffer and queue

management implementation used internally inside MCL and TAL.

Also hooks for application usage are provided

o SAL: This directory contains the Security Abstraction Layer providing

specific security implementations based on available hardware

support

o STB: This directory contains the Security Toolbox implementing an

independent crypto API

o TAL: This directory contains the Transceiver Abstraction Layer with

subdirectories for each supported transceiver providing specific

implementations addressing the specific needs of each transceiver

 Atmel AVR2025

 21

8412A-AVR-02/13

o TFA: This directory contains the Transceiver Feature Access with

sub-directories for each supported transceiver providing access to

unique transceiver features, like receiver sensitivity configuration, etc.

3.2 Header file naming convention

The different modules or building blocks of the stack are structured very similar. Once

the reader is familiar with the provided file structure, it becomes very easy to find any

required information.

Each stack layer directory or building block has a directory named Inc:

 mac/inc

 pal/inc

 sal/inc

 stb/inc

 tal/inc

 tfa/inc

These directories contain basic header files that are generic for the entire block

(independent from the specific implementation) or required for the upper layer.

Additionally there are further Inc subdirectories designated to specific

implementations. Each transceiver implementation inside the TAL has its own Inc

directories (for example, tal/at86rf231/inc).

Generally the following header file naming conventions are followed:

6. layer.h:

o This file contains global information that forms the layer or building

block API such as function prototypes, global variables, global

macros, defines, type definitions, etc.

o Each upper layer that wants to use services from a lower layer needs

to include this file

o Examples: mac.h, tal.h, pal.h, stb.h, sal.h, tfa.h

7. layer_internal.h:

o This file contains stack internal information only. No other layer or

building block shall include such a file

o Examples:

MAC/Inc/mac_internal.h, TAL/AT86RF212/Inc/tal_internal.h

8. layer_types.h:

o This file contains the definitions for the supported types of each

category that can be used with Makefiles or project files to

differentiate between the various implementations and make sure

that the proper code is included

o Whenever a new type of this category is introduced (for example a

new hardware board type), the corresponding file needs to be

updated

o Examples: tal_types.h, sal_types.h, vendor_boardtypes.h

9. layer_config.h:

o This file contains definitions of layer specific stack resources such as

timers or buffers.

o For further information see Section 5.3

 Atmel AVR2025

 22

8412A-AVR-02/13

o Examples: mac_config.h, tal_config.h, pal_config.h

 Atmel AVR2025

 23

8412A-AVR-02/13

4 Brief about ASF

The following chapter gives a brief explanation about the Atmel Software Framework.

The Atmel Software Framework (ASF) is a MCU software library providing a large

collection of embedded software for Atmel flash MCUs: megaAVR, AVR XMEGA,

AVR UC3 and SAM devices.

4.1 ASF directory structure

For more details on ASF directory structure please refer to Atmel Software
Framework documentation [9]

5 Understanding the stack

The following chapter explains how an end user application is configured. Generally

the stack is formed by every software portion logically below the application.

The stack can comprise:

 The TAL based on PAL, or

 The MAC based on TAL and PAL, or

 A network layer (NWK) based on MAC, TAL, and PAL

 Any other layer residing below the application

For configuring the stack appropriately please refer to Chapter 7.

5.1 Frame handling procedures

5.1.1 Frame transmission procedure

This section shall explain the stack layer interworking for the transmission of a MAC

data frame. The payload of such a frame requires special treatment, since it is

handed over from the higher layer or application, whereas other MAC frames are

generated inside the MAC layer itself.

The stack is always separated into a stack domain and an application domain. The

application resides on the stack layer called Highest Stack Layer (see Section 2.1.4).

The AVR2025 software package can be utilized in the following two different

architectures:

(1) An Application residing on top of the MAC layer: The application interacts with the
MAC Layer by means of functions call (residing in file mac_api.c) and callbacks
(residing in files usr_*.c). The MAC-API in return interacts with the MAC Core
Layer (MCL) by means of messages handled with an internal queue.

(2) An application residing on top of another layer (above the MAC layer): The

application interacts with the “Highest Stack Layer” by means of function calls

and callback to be implemented within the highest stack layer and/or the

application. The stack layer above the MAC (that is, the Network Layer – NWK)

interacts with the MAC by means of messages handled with an internal queue

(similar to (1)).

 Atmel AVR2025

 24

8412A-AVR-02/13

5.1.1.1 Part 1 – Data frame creation and transmission

Figure 4-1. Data frame transmission procedure – Part 1.

MCL

NWKmac_api.c

App
(based on

MAC)

wpan_mcps_data_req()

mcps_data_ request() mcps_data_ request()

TAL

PAL /

HW

Highest

Stack Layer

App
(based on

Highest Stack

Layer)

1 2

A

A’

B

B’

B’’

C C

E

F

tal_tx_ frame()

D

NHLE- MAC-

Queue

How is the procedure for a MAC Data frame which shall be transmitted?

(A) In case the MAC application wants to initiate a frame transmission, it call the
MAC-API function wpan_mcps_data_req() function with the corresponding
parameters (see file MAC/Inc/mac_api.h). As part of the parameter list the
application needs to specify the proper MAC addressing information and the
actual application payload.

In case the application resides on another higher layer than the MAC, the Highest
Stack Layer needs to provide a similar API than the MAC and should handle the
request of the application for a frame transmission similarly (A’).

(B) Within file mac_api.c the corresponding MAC message is generated and queued
into the NHLE-MAC-Queue (which handles all MAC layer request and response
messages). During this process the actual application payload is copied once into
the proper position of the MCPS message. This is actually the only the data
payload is copied during the entire frame transmission process. During the further
processing of the frame, the payload is not copied further (except for the
utilization of MAC security).

 Atmel AVR2025

 25

8412A-AVR-02/13

In case the application resides on another higher layer than the MAC, the Highest
Stack Layer needs to generate the corresponding message accordingly and queued
this into the proper queue. Here the application payload is also copied only once at
the interface of the Highest Stack Layer (B’). If the application is already at the right
position, is it not necessary to copy the application payload again during the further
process of the frame in all lower layers down to the MAC layer (B’’).

The subsequent handling of the frame transmission attempt is identical independent
from the stack layer the application is actually residing on.

(C) Within the MAC Core Layer (MCL) the dispatcher reads the message form the
NHLE-MAC-Queue and call the corresponding function mcps_data_request() (see file
MAC/Src/mac_mcps_data.c). The following functions are performed:

 Parsing of MAC address information

 Creation of the actual MAC frame by filling the information structure (structure

frame_info_t – see file TAL/Inc/tal.h)

 The frame_info_t structure for the data frame contains a fully formatted MAC frame

including the MAC Header information and the MSDU (that is, the MAC payload of

the frame); the MSDU is not copied again during this process of the MAC frame

creation

(D) Once the MAC frame is properly formatted, the corresponding TAL-API function is
called in order to initiate the actual frame transmission (see function
tal_tx_frame(); declaration in TAL/Inc/tal.h). The TAL functions required the
frame_info_t structure as input.

(E) Inside the TAL no further formatting of the MAC frame is done. The frame is

transmitted using the requested CSMA-CA scheme and retry mechanism. This is

done by means of using PAL functions and the provided hardware (F). For further

information, check function tal_tx_frame() in file TAL/tal_type/tal_tx.c.

 Atmel AVR2025

 26

8412A-AVR-02/13

5.1.1.2 Part 2 – Data frame clean-up and confirmation

Figure 5-1-. Data frame transmission procedure – Part 2.

MCL

NWKmac_ callback_

wrapper.c

App
(based on

MAC)

mcps_ data_ conf ()

TAL

PAL /

HW

Highest

Stack Layer

App
(based on

Highest Stack

Layer)

1 2

f

f’

e

e’’

b

a

tal_ rx_ frame_ cb()tal_ tx_ frame_ done_ cb()

c

MAC- NHLE-

Queue

usr_ mcps_ data_ conf()

d

e’

(a)(b) Once the MAC frame has been transmitted (either successfully or

unsuccessfully) by means of using PAL functions and the provided hardware,

the TAL calls the frame transmission callback function tal_tx_frame_done_cb()

residing inside the MAC (see MAC/Src/mac_process_tal_tx_frame_status.c)

(c).

(d) Inside the MCL the corresponding callback message is generated including the

frame transmission status code for the MAC DATA frame and queued into the

MAC-NHLE-Queue (which handles all MAC layer confirmation and indication

messages).

(e) The dispatcher extracts the confirmation message and calls the corresponding

callback function (mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c)

if the application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback

functions are implemented inside the higher stack layers (e’)(e’’).

 Atmel AVR2025

 27

8412A-AVR-02/13

(f)(f’) Finally the application is notified about the status of the attempt to transmit a

data frame by means of the callback function (usr_mcps_data_conf() if the

application resides on top of the MAC layer) to be implemented inside the

application itself.

5.1.2 Frame reception procedure

This section shall explain the stack layer interworking by for the reception of a MAC

data frame.

As already explained in Section 5.1.1 the stack is always separated into a stack

domain and an application domain.

Figure 5-2. Data frame reception procedure.

 TAL

 MCL

NWKmac_ callback_ wrapper.c

App (based on

MAC)

mcps_data_ind()

PAL /

HW

Highest Stack

Layer

App
(based on Highest

Stack Layer)

1

2

H

H’

G’’

tal_rx_ frame_cb()

TAL- MAC-

Queue

usr_mcps_data_ind()

E

G’

process_ incoming_

frame()

D

MAC- NHLE-

Queue

F

G

TAL-

Incoming-

Frame-

Queue

A

handle_ received_ frame_irq()

ISR

tal_task() C
B

mac_task()

How is the procedure for a MAC Data frame which is received?

(A) Once the frame has been received by the hardware the ISR is invoked and

function handle_received_frame_irq() (located in file TAL/tal_type/Src/tal_rx.c) is

called within the ISR contect. In this function the following tasks are performed:

 Reading of the ED value of the current frame

 Atmel AVR2025

 28

8412A-AVR-02/13

 Reading of the frame length

 Uploading of the actual frame including the LQI octet appended at the end of the

frame

 Constructing the “mdpu” array of the frame_info_t structure for the received frame

by additionally appending the ED value after the LQI value (for more information

about the structure of the received frame see Section 5.2.1.2)

 Reading of the timestamp of received frame if required

 Queuing the received frame into the TAL-Incoming-Frame-Queue for further

processing in the main context

(B) During the subsequent call to tal_task() (see file TAL/tal_type/Src/tal.c) the frame
is extracted from the TAL-Incoming-Frame-Queue and function
process_incoming_frame() (see file TAL/tal_type/Src/tal_rx.c) is called

(C) Within function process_incoming_frame() further handling of the frame is
performed (such as calculation of the normalized LQI value based on the
selected algorithm for LQI handling) and the callback function tal_rx_frame_cb()
residing inside the MAC (see file MAC/Src/mac_data_ind.c) is called

(D) The callback function tal_rx_frame_cb() pushes the TAL frame indication
message into the TAL-MAC-Queue for further processing inside the MCL

(E) During the subsequent call to mac_task() (see file MAC/Src/mac.c) the TAL
indication message is extracted from the TAL-MAC-Queue and function
mac_process_tal_data_ind() (see file MAC/Src/mac_data_ind.c) is called

(F) Within MCL the following task are performed once function
mac_process_tal_data_ind() is executed

 Depending on the current state of the MCL the frame type is derived and the

function handling the specific frame type is invoked

 In case of a received MAC Data Frame received during regular state of operation

(that is, no scanning is ongoing, etc.) the corresponding function is

mac_process_data_frame() residing in MAC/Src/mac_mcps_data.c

 Within function mac_process_data_frame() the MAC Header information is

extracted from the received frame and the corresponding MCPS-DATA.indication

primitive message is assembled

 The formatted MCPS-DATA.indication message is pushed into the MAC-NHLE-

Queue

(G) The dispatcher extracts the indication message and calls the corresponding

callback function (mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c) if

the application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback

functions are implemented inside the higher stack layers (G’)(G’’).

(H)(H’) Finally the application is notified about the reception of a Data frame data by

means of the callback function (usr_mcps_data_ind() if the application

resides on top of the MAC layer) to be implemented inside the application

itself.

Once the received frame content is uploaded from the hardware into software, during

the further process of the reception of a MAC Data frame, the actual payload of the

Data frame only needs to be copied once within the receiving application on top of the

MAC layer (or on top of another Highest Stack Layer). Within the stack itself the

payload handling is very efficient and the content never needs to be copied.

 Atmel AVR2025

 29

8412A-AVR-02/13

5.2 Frame buffer handling

5.2.1 Application on top of MAC-API

This section explains the buffer handling for applications residing on top of the MAC-

API (HIGHEST_STACK_LAYER = MAC).

5.2.1.1 Frame transmission buffer handling

The following section describes how the buffers are used inside the stack during the

procedure of the transmission of a MAC Data Frame.

Figure 5-3. Frame buffer handling during data frame transmission – part 1.

Free Area

cmd_code
(=MCPS_DATA_REQUEST)

SrcAddrMode

DstAddrMode

DstAddr

DstPANId

msduHandle

TxOptions

msduLength

*msdu

MSDU (= Data payload)

Space for FCS

m
s
d

u
L

e
n

g
th

 o
c

te
ts

m
c

p
s

_
d

a
ta

_
re

q
_

t *m
c

p
s

_
d

a
ta

_
re

q

wpan_mcps_data_req()

in mac_api.c

Free Area

msg_type
(=MCPS_MESSAGE)

MPDU

(= MAC Header

+ Data Payload)

Space for FCS

fra
m

e
_

in
fo

_
t *tra

n
s
m

it_
fra

m
e

mcps_data_request()

in mac_mcps_data.c

*buffer_header

to

buf_header

array

msduHandle

indirect_in_transit
(only for indirect transmission)

time_stamp
(Only filled after Tx)

*mpdu

Length of MPDU

MAC-API

(Step 1)

MCL

(Step 2)

TAL

(Step 3)

tal_tx_frame() in tal_tx.c

Free Area

msg_type
(=MCPS_MESSAGE)

MPDU

Space for FCS

fra
m

e
_

in
fo

_
t *tx

_
fra

m
e

*buffer_header

msduHandle

indirect_in_transit
(only for indirect transmission)

time_stamp
(Only filled after Tx)

*mpdu

Length of MPDU

uint8_t

*tal_frame_to_tx

T
x

 F
ra

m
e

persistence_time
(only for indirect transmission)

persistence_time
(only for indirect transmission)

Step 1:

If an application based on the MAC layer as Highest Stack Layer shall transmit a

frame to another node, the MAC needs to generate a MAC Data frame. Initially the

application calls function wpan_mcps_data_req() (located in file mac_apic.). In this

function a new (large) buffer is requested from the Buffer Management Module

(BMM) by means of the function bmm_buffer_alloc(). After the successful allocation of

 Atmel AVR2025

 30

8412A-AVR-02/13

the buffer the structure of type mcps_data_req_t is overlaid over the actual buffer

body:

mcps_data_req =

 (mcps_data_req_t *)BMM_BUFFER_POINTER(buffer_header);

For more information about the mcps_data_req_t structure see file

MAC/Inc/mac_msg_types.h.

The mcps_data_req_t structure is filled according to the parameters passed to

function wpan_mcps_data_req() and the Data frame payload (MSDU) is copied to the

proper place within this buffer. This is the only time the actual payload is copied

during frame transmission inside the entire stack. The MSDU will reside right at the

end of the buffer (with additional space for the FCS). The size of such a buffer fits the

maximum possible payload (according to 4). Also the parameter msdu is updated to

point right at the beginning of the MSDU content.

The entire frame buffer is then queued as an MCPS_DATA_REQUEST message into

the NHLE-MAC-Queue.

Step 2:

Once the MCPS_DATA_REQUEST message has been de-queued and the

dispatcher has called the corresponding function mcps_data_request() (see file

MAC/Src/mac_mcps_data.c), the structure of type frame_info_t is overlaid over the

actual buffer body:

frame_info_t *transmit_frame =

(frame_info_t *)BMM_BUFFER_POINTER((buffer_t *)msg);

For more information about the frame_info_t structure see file

MAC/Inc/mac_msg_types.h.

Afterwards the corresponding elements of the frame_info_t structure are filled

accordingly:

 The message_type parameter is set to MCPS_MESSAGE

 The MSDU handle is copied to the proper place

 The parameter in_transit (only utilized during indirect transmission) is set to the

default value

 The buffer_header parameter is set to point to the actual buffer header; this is

required once the transmission has finished to free the buffer properly

As the last step the complete frame (that is, the MPDU) is formatted. This is done by

simply adding the required MAC Header information fields at the correct location in

front of the MSDU (that is, the Data payload). The first element of the MPDU fill then

contain the length of the entire MPDU to be transmitted, and the mpdu pointer within

the frame_info_t structure is updated to point to the beginning of the frame.

This step within the MCL is finalized by initiating the actual frame transmission by

calling the TAL function tal_tx_frame().

Step 3:

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer

is set to the location of the actual MPDU inside the frame buffer (member mpdu of

structure frame_info_t). This pointer is used for initiating the frame transmission (by

means of function send_frame() with the appropriate parameters for CSMA-CA and

frame retry.

 Atmel AVR2025

 31

8412A-AVR-02/13

Figure 5-4. Frame buffer handling during data frame transmission – part 2.

TAL

(Step 4)

handle_tx_end_irq()

and tx_done_handling()

in tal_tx.c

Free Area

msg_type
(=MCPS_MESSAGE)

fra
m

e
_
in

fo
_

t *m
a
c
_

fra
m

e
_
p

tr

*buffer_header

msduHandle

time_stamp
(Filled after Tx)

*mpdu

mac_gen_mcps_data_conf()

in mac_mcps_data.c

msduHandle

status

MCL

(Step 5)

time_stamp

Free Area

cmd_code
(=MCPS_DATA_CONFIRM)

m
c

p
s
_

d
a

ta
_
c
o

n
f_

t

*m
d

c

mcps_data_conf() in

mac_callback_wrapper.c

msduHandle

status

MAC-API

(Step 6)

time_stamp

Free Area

cmd_code
(=MCPS_DATA_CONFIRM)

m
c

p
s
_

d
a

ta
_
c
o

n
f_

t

*p
m

s
g

indirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

Step 4:

Once the transmission of the frame has been finished (either successfully or

unsuccessfully), the transceiver generates an interrupt indicating the end of the

transmission. This interrupt is handled in function handle_tx_end_irq() located in file

TAL/tal_type/Src/tal_tx.c. In case timestamping is enabled, the time_stamp parameter

is written into the proper location of the frame_into_f structure of the frame buffer.

This happens in the context of the Interrupt Service Routine.

Afterwards function tx_done_handling() (located in TAL/tal_type/Src/tal_tx.c) is called

in the main execution context. Here the timestamp is updated and the corresponding

callback function tal_tx_frame_done_cb() inside the MCL is called.

Step 5:

Function tal_tx_frame_done_cb() (residing in file MAC/Src/

mac_process_tal_tx_frame_status.c) calls a number of other functions inside the

MCL, which (in the case of a processed Data frame) finally will end up in function

mac_gen_mcps_data_conf() in file mac_mcps_data.c.

 Atmel AVR2025

 32

8412A-AVR-02/13

Here the structure of type mcps_data_conf_t is overlaid over the actual buffer body:

mcps_data_conf_t *mdc =

 (mcps_data_conf_t *)BMM_BUFFER_POINTER(buf);

For more information about the mcps_data_conf_t structure see file

MAC/Inc/mac_msg_types.h.

The mcps_data_conf_t structure is filled accordingly and the entire buffer is then

queued as an MCPS_DATA_CONFIRM message into the MAC-NHLE-Queue.

Step 6:

Once the MCPS_DATA_ CONFIRM message has been de-queued and the

dispatcher has called the corresponding function mcps_data_conf() (see file

MAC/Src/mac_callbcak_wrapper.c), the structure of type mcps_data_conf_t is again

overlaid over the message (which is the actual buffer body):

pmsg =

 (mcps_data_conf_t *)BMM_BUFFER_POINTER(((buffer_t

*)m));

Finally the corresponding parameters of the callback function inside the application

(function usr_mcps_data_conf()) are filled by the corresponding members of the

mcps_data_conf_t structure and the buffer is freed again by calling function

bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (6) the same buffer is used.

 Atmel AVR2025

 33

8412A-AVR-02/13

5.2.1.2 Frame reception buffer handling

Figure 5-5. Frame buffer handling during data frame reception.

TAL

(Step 1)

handle_received_frame_irq()

and

process_incoming_frame()

in tal_rx /

tal_rx_frame_cb()

in mac_data_ind.c

Free Area

*buffer_header

msduHandle

(not used for Rx)

time_stamp

*mpdu

mac_process_tal_data_ind()

in mac_data_ind.c /

mac_process_data_frame()

in mac_mcps_data.c

MCL

(Step 2)

mcps_data_ind() in

mac_callback_wrapper.c

MAC-API

(Step 3)

Free Area

cmd_code
(=MCPS_DATA_IND.)m

c
p

s
_
d

a
ta

_
in

d
_
t *p

m
s

g

fra
m

e
_

in
fo

_
t

*re
c

e
iv

e
_
fra

m
e

ED value

(read from TRX register)

LQI

(uploaded from TRX)

FCS

(uploaded from TRX)

MPDU

(PHY frame)

(uploaded from TRX)

Frame length

(uploaded from TRX)

to

buf_header

array

Free Area

cmdcode
(=MCPS_DATA_IND.)

Src Addr Info

Dst Addr Info

ED value

LQI

FCS

MPDU

Length of MPDU

msg_type
(=TAL_DATA_INDICATION)

m
c
p

s
_

d
a

ta
_

in
d

_
t *m

d
i

mpduLinkQuality

DSN

Timestamp

msduLength

*msdu

Src Addr Info

Dst Addr Info

mpduLinkQuality

DSN

Timestamp

msduLength

*msdu

MPDU

Length of MPDU

indirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

Step 1:

Once the transceivers raises an interrupt indicating the reception of a frame, function

handle_received_frame_irq() (located in file TAL/tyl_type/Src/tal_rx.c) is called in the

context of an ISR. Here a structure of type frame_info_t is overlaid over the current

receive buffer body:

frame_info_t *receive_frame;

…

receive_frame =

 (frame_info_t*)BMM_BUFFER_POINTER(tal_rx_buffer);

After reading the ED value of the current frame and the frame length, the entire frame

is uploaded from the transceiver and the ED value is stored at the location after the

LQI (which automatically was uploaded from the transceiver). The mpdu pointer of the

frame_info_t structure points to the proper location where the actual frame starts

 Atmel AVR2025

 34

8412A-AVR-02/13

within the buffer. Afterwards the entire buffer is pushed into the TAL-

Incoming_Frame-Queue for further processing outside the ISR context.

After removing the buffer from the TAL-Incoming-Frame-Queue function

process_incoming_frame() (also located in file TAL/tal_type/Srctal_rx.c) is called.

Here again a structure of type frame_info_t is overlaid over the receive buffer body:

frame_info_t *receive_frame =

 (frame_info_t*)BMM_BUFFER_POINTER(buf_ptr);

Before the callback function inside the MAC is called, the proper buffer header is

stored inside the buffer_header element of structure frame_info_t:

receive_frame->buffer_header = buf_ptr;

The processing inside the TAL is done once tal_rx_frame_cb() is called. Although this

function resides inside the MCL (see file MAC/Src/mac_data_ind.c), the functionality

is considered here being logically part of the TAL. Here the msg_type of the frame

residing in the current buffer is specified as TAL_DATA_INDICATION and the buffer

is pushed into the TAL-MAC-Queue.

Step 2:

Once the TAL_DATA_INDICATION message has been de-queued from the queue

the dispatcher calls the corresponding function mac_process_tal_data_ind() (see file

MAC/Src/mac_data_ind.c). In this function the received frame is parsed and

eventually the dedicated function handling the particular frame type is invoked, which

is mac_process_data_frame() in file MAC/Srcmac_mcps_data.c.

Here a structure of type mcps_data_ind_t is overlaid over the receive buffer body:

mcps_data_ind_t *mdi =

 (mcps_data_ind_t *)BMM_BUFFER_POINTER(buf_ptr);

For more information about the mcps_data_ind_t structure see file

MAC/Inc/mac_msg_types.h.

The members of the mcps_data_ind_t structure are filled based on the information

within the received MAC Data frame. The message is identified as a

MCPS_DATA_INDICATION message and is queued into the MAC-NHLE-Queue.

Step 3:

Once the dispatcher removes the MCPS_DATA_INDICATION from the queue, the

corresponding function for handling this message is called - mcps_data_ind() in file

MAC/Src/mac_callback_wrapper.c. Here the structure of type mcps_data_ind_t is

overlaid again over the actual buffer body:

pmsg =

 (mcps_data_ind_t *)BMM_BUFFER_POINTER(((buffer_t *)m));

Finally the corresponding parameters of the callback function inside the application

(function usr_mcps_data_ind()) are filled by the corresponding members of the

mcps_data_ind_t structure and the buffer is freed again by calling function

bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (3) the same buffer is used.

5.2.2 Application on top of TAL

While an application on top of the MAC-API is logically decoupled from the actual

buffer handling inside the entire stack (such an application does neither need to

allocate nor free a buffer), an application on top of the TAL requires more interworking

 Atmel AVR2025

 35

8412A-AVR-02/13

with the stack in regards of buffer handling and internal frame handling structures.

This is explained in the subsequent section.

As an example for an application residing on top of the TAL

(HIGHEST_STACK_LAYER = TAL) is described in Section 10.2.2.1.

5.2.2.1 Frame transmission buffer handling using TAL-API

The following section describes how buffers are used inside the stack during the

procedure of the transmission of a Frame using the TAL-API.

While the application on top of the TAL needs to free buffers received by the frame

reception callback function (since these buffers are always allocated inside the TAL

automatically), for frame transmission two different approaches are available:

10. Application uses buffer management module provided by stack including
allocation and freeing of buffers for frame transmission, or

11. Application uses static frame transmission buffer without the need for allocating
or freeing buffers dynamically.

Approach (2) will be used subsequently (similar to the source code based on example

application in Section 10.2.2.1).

IMPORTANT Independent from the selected approach regarding the buffer management, it
is important that the frame finally presented to the TAL for transmission
follows the scheme in Figure 5-6. The frame needs to be stored at the end of
the buffer (right in front of the space for the FCS). This is required in order to
fit a frame using the maximum frame length according to 4 into a buffer of size
LARGE_BUFFER_SIZE. If this scheme is not proper applied, memory
corruption may occur.

 Atmel AVR2025

 36

8412A-AVR-02/13

Figure 5-6. Frame buffer handling during frame transmission using TAL-API.

static frame buffer for

Tx

m
a
c
_

fra
m

e
_

le
n

g
th

u
in

t8
_
t s

to
ra

g
e
_

b
u

ffe
r[L

A
R

G
E

_
B

U
F

F
E

R
_
S

IZ
E

]

Appl.

(Step 1)

TAL

(Step 2)

tal_tx_frame() in tal_tx.c

Free Area

msg_type

MPDU

Space for FCS

fra
m

e
_
in

fo
_
t *tx

_
fra

m
e

*buffer_header

msduHandle

time_stamp

*mpdu

Length of MPDU

uint8_t

*tal_frame_to_tx

T
x
 F

ra
m

e

fra
m

e
_
in

fo
_
t *tx

_
fra

m
e

Space for FCS

MSDU

MAC Header

Length of MPDU

uint8_t *frame_ptr

Free Area

*mpdu

msg_type

*buffer_header

msduHandle

time_stamp

N
o

t u
s

e
d

 in
 c

a
s

e
 o

f

s
ta

tic
 T

x
 b

u
ffe

r

N
o

t u
s
e

d
 in

 c
a
s

e
 o

f

s
ta

tic
 T

x
 b

u
ffe

rindirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

indirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

Step 1:

The application (not using dynamic buffer management for frame transmission)

requires a static buffer for frame to be transmitted, such as:

static uint8_t storage_buffer[LARGE_BUFFER_SIZE];

A large buffer is big enough to incorporate the longest potential frame to be

transmitted based on 4.

Later a structure of type frame_info_t is overlaid over the static transmit buffer:

tx_frame_info = (frame_info_t *)storage_buffer;

For more information about the frame_info_t structure see file TAL/Inc/tal.h.

The static frame buffer is filled with the MSDU (that is, the actual application payload)

and the MAC Header information as required by this frame. Note that also a free

format frame not compliant with 4 can be created within the application. The octet in

front of the MAC header needs to store the actual length of the frame.

Afterwards the mpdu pointer (member of the frame_info_t structure) is updated to

point at the start of the MPDU (that is, the octet containing the length of the actual

frame). Since dynamic buffer management is not used for frame transmission, the

other members of the frame_info_t structure are not used in this frame transmission

approach.

Once the frame formatting is completed, the frame is handed over to the TAL for

transmission by calling function tal_tx_frame().

 Atmel AVR2025

 37

8412A-AVR-02/13

Step 2:

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer

is set to the location of the actual MPDU inside the frame buffer (member mpdu of

structure frame_info_t). This pointer is used for initiating the frame transmission (by

means of function send_frame() with the appropriate parameters for CSMA-CA and

frame retry.

Step 3:

After the frame has been transmitted the TAL acts as similar at described in Section

5.2.1.1. Once the TAL frame transmission callback function tal_tx_frame_done_cb()

(residing inside the application) is called, no further handling is required in case of the

usage of a static frame transmission approach. The static frame buffer can

immediately be re-used for further transmission attempts. In case of dynamic buffer

handling the Tx frame buffer needed to be freed additionally by calling function

bmm_buffer_free().

5.2.2.2 Frame reception buffer handling using TAL-API

The following section describes how buffers are used inside the stack during the

procedure of the reception of a Frame using the TAL-API.

 Atmel AVR2025

 38

8412A-AVR-02/13

Figure 5-7. Frame buffer handling during frame reception using TAL-API.

TAL

(Step 1)

handle_received_frame_irq()

and

process_incoming_frame()

in tal_rx

Free Area

*buffer_header

msduHandle

time_stamp

*mpdu

Appl.

(Step 2)

fra
m

e
_

in
fo

_
t

*re
c
e

iv
e

_
fra

m
e

ED value

(read from TRX register)

LQI

(uploaded from TRX)

FCS

(uploaded from TRX)

MPDU

(PHY frame)

(uploaded from TRX)

Frame length

(uploaded from TRX)

to

buf_header

array

msg_type

Free Area

*buffer_header

msduHandle

time_stamp

*mpdu

fra
m

e
_

in
fo

_
t *fra

m
e

LQI

FCS

MPDU

Frame length

to

buf_header

array

msg_type

 tal_rx_frame_cb()

indirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

indirect_in_transit
(only for indirect transmission)

persistence_time
(only for indirect transmission)

ED value

Step 1:

 Atmel AVR2025

 39

8412A-AVR-02/13

The processing of a received frame in side the TAL is independent from the layer

residing on top of the TAL. The same mechanisms as described in Section 5.2.1.2

apply within in the TAL layer.

Step 2:

Once the TAL frame reception callback function tal_rx_frame_cb() (implemented

inside the application) is called, the application can access the frame buffer via a

frame_inof_t structure. At the end it is necessary to free the receive buffer by calling

the function bmm_buffer_free(). A new buffer for frame reception is automatically

allocated inside the TAL itself, so the application does not need to take for Rx buffer

allocation.

5.3 Configuration files

The stack contains a variety of configuration files, which allow:

 The stack to configure the required stack resources according to the application

needs based on the required functionality, and

 The application to configure its own resources

Throughout the various layers and thus directories within the software package the

following configuration files are available:

 app_config.h

 stack_config.h

 tal_config.h

 mac_config.h

 mac_build_config.h

 mac_user_build_config.h

The meaning of these configuration files are described in more detail in the following

sections.

The following picture shows the “#include”-hierarchy (#include “file_name.h”) for

these configuration files.

 Atmel AVR2025

 40

8412A-AVR-02/13

Figure 5-8. Configuration file #include-hierarchy.

app_config.h mac_user_build_config.h

stack_config.h

nwk_config.h

mac_config.h

tal_config.h

+

mac_build_config.h

Application Domain

Stack Domain

 Atmel AVR2025

 41

8412A-AVR-02/13

5.3.1 Application resource configuration – app_config.h

Each application is required to provide its own configuration file app_config.h usually

located in Inc directory of the application.

This configuration file defines the following items:

 Timers required only within the application domain (independent from the timers

used within the stack): Here the number of application timers are defined.

 Large and small buffers required only within the application domain (independent

from the buffers used within the stack)

 Additional settings regarding the buffer size of USB or UART buffers

 Any other resources as required

In order to allow for proper resource configuration (for example, to calculate the

overall number of timers) app_config.h includes the file stack_config.h which contains

resource definitions from the stack domain (without the application).

This file can be adjusted by the end user according to its own needs.

5.3.2 Stack resources configuration – stack_config.h

The stack uses its own configuration file stack_config.h located in directory Include.

This configuration file defines the following items:

 IDs of the currently known stack layers (PAL up to NWK)

 Size of large and small buffers

 Total number of buffers and timers

Depending on the setting of the build switch HIGHEST_STACK_LAYER the

configuration file of the highest layer of the stack (tal_config.h, mac_config.h, etc.) is

included in order to calculate the resource requirements at compile time.

IMPORTANT This file must not be changed by the end user.

5.3.3 TAL resource configuration – tal_config.h

The TAL layer uses its own configuration file tal_config.h located in directory

TAL/trx_name/Inc, that is, each transceiver (and thus each TAL implementing code

for a specific transceiver) has its own TAL configuration file:

 tal/ atmegarfr2/inc

 tal/at86rf212/inc

 tal/at86rf231/inc

 tal/at86rf233/inc

 Etc.

These configuration files define the following items:

 Transceiver dependent values required by any upper layer (radio wake-up time)

 No. of timers used within this particular TAL implementation

 The capacity of the TAL-Incoming-Frame-Queue

If the build switch HIGHEST_STACK_LAYER is set to TAL, the proper tal_config.h

file (depending on build switch TAL_TYPE) is directly included into file stack_config.h

since there are no further stack layers defined.

IMPORTANT These files must not be changed by the end user.

 Atmel AVR2025

 42

8412A-AVR-02/13

5.3.4 MAC resource configuration – mac_config.h

The MAC layer uses its own configuration file mac_config.h located in directory

MAC/Inc.

This configuration file defines the following items:

 Timers used within the MAC layer based on the current build configuration

 The capacity of certain MAC specific queues

If the build switch HIGHEST_STACK_LAYER is set to MAC, mac_config.h is directly

included into file stack_config.h since there is no upper stack layer defined.

IMPORTANT This file must not be changed by the end user.

5.3.5 NWK resource configuration – nwk_config.h

Once a network layer (NWK) is provided as part of the stack on top to the MAC, the

network layer uses its own configuration file nwk_config.h located in directory

NWK/Inc.

If the build switch HIGHEST_STACK_LAYER is set to NWK, nwk_config.h is directly

included into file stack_config.h since there is no upper stack layer defined.

IMPORTANT This file must not be changed by the end user.

5.3.6 Build configuration file – mac_build_config.h

File mac_build_config.h located in directory /Include defines the MAC features

required for specific build configurations. See Section 7.2.1 for more information

about mac_build_config.h.

IMPORTANT This file must not be changed by the end user.

5.3.7 User build configuration file – mac_user_build_config.h

Each application may provide its own user build configuration file

mac_user_build_config.h usually located in Inc directory of the application, although

this is not required. This configuration file defines the actual MAC components used

for the end user application and can actually reduce resource requirements

drastically.

If the application wants to use its own user build configuration the build switch

MAC_USER_BUILD_CONFIG needs to be set. See Section 7.2.2 for more

information about mac_user_build_config.h.

This file can be adjusted by the end user according to its own needs.

For more information about user build configurations and its utilization please refer to

Section 5.4 and Section 7.2.2.

5.4 MAC components

The MAC is implemented to be fully compliant to the IEEE 802.15.4-2006 standard.

The MAC components are clustered in essential components and supplementary

components.

Essential components are required for a minimum reasonable application based on

the MAC and are thus always included in a build. These components are:

 MAC reset

 Atmel AVR2025

 43

8412A-AVR-02/13

 Direct data transmission and reception

 Writing MAC PIB attributes

Supplementary components are components that provide standard MAC functionality

that might not be required for some applications. This is example association, indirect

data transmission, scanning, etc. These components are also included in the

standard build and can be used by any applications, so the end application does not

have to worry about the inclusion of any functionality.

On the other hand all supplementary components can be removed from the build in

order to drastically reduce footprint. For more information about how to add or remove

components from the build please see Section 7.2 (using build switch

MAC_USER_BUILD_CONFIG).

Figure 5-9. Essential and supplementary MAC components.

Essential components

(always included)

Supplementary components

(can be excluded by using

MAC_USER_BUILD_CONFIG)

Rx / Tx of

direct

frames

MAC

Reset

MAC PIB

Attr.

setting

Indirect

frame

handling

(Tx, Rx,

polling,

…)

Scanning

(ED,

active,

passive,

orphan)

Associa-

tion

Disasso-

ciation

Purging of

indirect

data

. . .

MAC compliant to 802.15.4

The following sections describe some of these supplementary components

(especially the more complex ones) in more detail.

5.4.1 MAC_INDIRECT_DATA_BASIC

This feature is usually required for any node (both RFD and FFD) that wants to

receive indirect data. This is for instance helpful, if a node is usually in power save

mode and thus cannot receive direct frames from its parent. The node could then

periodically wake-up and poll its parent for pending data.

This feature includes the following functionality:

 Initiation of explicit polling for pending of indirect data (usage of

wpan_mlme_poll_req() / usr_mlme_poll_conf())

 Transmission of data request frames to its parent

 Reception of indirect data frames

 Initiation of implicit polling for indirect data (that is, transmission of data request

frame without an explicit call of function wpan_mlme_poll_req()):

o Polling for an association response frame during the association

procedure

o Polling for more pending data once a received frame from its parent

has indicated more pending data at the parent

 Atmel AVR2025

 44

8412A-AVR-02/13

o Polling for pending data in case a received beacon frame from its

parent has indicated pending data at the parent

5.4.2 MAC_INDIRECT_DATA_FFD

This feature is a further extension of the feature MAC_INDIRECT_DATA_BASIC (that

is, in order to use MAC_INDIRECT_DATA_FFD also MAC_INDIRECT_DATA_BASIC

is required). It is designed for FFDs (PAN Coordinators or Coordinators) to allow the

handling of transmitting indirect data frames.

This feature includes the following functionality:

 Initiation of indirect data transmission (usage of wpan_mcps_data_req() with

TxOption = Indirect Transmission)

 Handling of the Indirect-Data-Queue

o Adding and removing of indirect frames

o Handling of a persistence timer in order to check for expired

transactions

 Transmission of association response frame or indirect disassociation notification

frames

 Handling of received data request frames and the proper responses (either with

pending frames or a data frame with zero length payload)

 Setting of Frame Pending bit in the Frame Control field

 Adding of address of nodes with pending frames in the beacon frame payload

 Atmel AVR2025

 45

8412A-AVR-02/13

Figure 5-10. Example of provided functionality for MAC_INDIRECT_DATA_BASIC
and MAC_INDIRECT_DATA_FFD.

wpan_mlme_poll_req()

usr_mlme_poll_conf()

Node (FFD) using

MAC_INDIRECT_DATA_FFD

S
ta

n
d

a
rd

 P
o

ll
 P

ro
c
e

d
u

re

Node using

MAC_INDIRECT_DATA_BASIC

Data Request Frame

Data Frame

wpan_mcps_data_req

(Indirect)

MAC App

Add indirect

frame to

indirect queue

Check for

pending

indirect frames

for the polling

node

usr_mcps_data_ind()
Remove

indirect frame

from indirect

queue

usr_mcps_data_conf()

MACApp

5.4.3 MAC_PURGE_REQUEST_CONFIRM

This feature is a typical FFD feature allows a node to purge pending indirect frames

from its Indirect_Data_queue by means of using functions wpan_mcps_purge_req() /

usr_mcps_purge_conf().

Since purging of pending data requires handling of transmitting indirect frames, the

feature MAC_INDIRECT_DATA_FFD is also required.

5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE

This feature is a typical FFD feature that allows a node to receive and process

association request frames and handle them properly. In case the network uses short

addresses, a short address may be selected and returned to the initiating device by

means of association response frame.

Since the association procedure is perform using indirect traffic and the node using

MAC_ASSOCIATION_INDICATION_RESPONSE has to transmit the association

response frame indirectly also the components MAC_INDIRECT_DATA_BASIC and

MAC_INDIRECT_DATA_FFD are required.

5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM

This feature allows a node (both RFD and FFD) to associate to a parent (PAN

Coordinator or Coordinator) to initiate an association procedure (by transmitting an

 Atmel AVR2025

 46

8412A-AVR-02/13

association request frame) and handle the reception of an association response

frame.

In case a short address is desired this will be requested by the parent if allowed. All

required timer for the association process are handled as well.

Since the association response frame is received indirectly, also the feature

MAC_INDIRECT_DATA_BASIC is required.

The node is able accept and process a request from its upper layer (for example, the

network layer) to associate itself to another node (that is, its parent).

Figure 5-11. Provided functionality for MAC_ASSOCIATION_INDICATION_
RESPONSE and MAC_ASSOCIATION_REQUEST_CONFIRM.

wpan_mlme_associate_req()

Node (FFD) using

MAC_ASSOCIATION_

INDICATION_RESPONSE

S
ta

n
d

a
rd

 A
s

s
o

c
ia

to
n

 P
ro

c
e
d

u
re

Node using

MAC_ASSOCIATION_

REQUEST_CONFIRM

Association

Request Frame

Association

Response Frame

MAC App

usr_mlme_associate_conf()

Add

association

response frame

to indirect

queue

usr_mlme_comm_status_ind()

MACApp

usr_mlme_associate_ind()

Assign short

address if

desired and

allowed

wpan_mlme_associate_resp()

Data Request

Frame

c

c

c

c

Timer

Timer

5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT

This components allows

 A node (both RFD and FFD) to initiate a disassociation procedure from its parent

(PAN Coordinator or Coordinator),

 a node (both RFD and FFD) to handle a received disassociation notification frame

from its parent,

 a node (both RFD and FFD) to poll for a pending indirect disassociation notification

frame,

 Atmel AVR2025

 47

8412A-AVR-02/13

 a node (FFD only) to initiate a disassociation procedure to its child

Since the disassociation notification frame may be received indirectly, also the feature

MAC_INDIRECT_DATA_BASIC is required.

5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT

This feature is a typical FFD feature that allows a node to transmit an indirect

disassociation notification frame to one of its children.

The following components are required as well:

 MAC_DISASSOCIATION_BASIC_SUPPORT

 MAC_INDIRECT_DATA_BASIC

 MAC_INDIRECT_DATA_FFD

5.4.8 MAC scan components

These components allow a node to perform a specific type of scanning.

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM

The node is able to perform an active scan to search for existing networks

 MAC_SCAN_ED_REQUEST_CONFIRM

The node is able to perform an energy detect scan

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM

The node is able to perform an orphan scan in case it has lost its parent

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM

The node is able to perform a passive scan to search for existing networks. This

feature is only available if beacon-enabled networks are supported

5.4.9 MAC_ORPHAN_INDICATION_RESPONSE

This feature is a typical FFD feature that allows a node to process a received orphan

notification frame from any of its children (initiated via an orphan scan request at the

children) and process them properly. In response a realignment frame may be

returned.

 Atmel AVR2025

 48

8412A-AVR-02/13

Figure 5-12. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE
and MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure).

wpan_mlme_scan_req

(Orphan scan)

Node (FFD) using

MAC_ORPHAN_

INDICATION_RESPONSE

S
ta

n
d

a
rd

 O
rp

h
a
n

 S
c

a
n

 P
ro

c
e

d
u

re

Node using

MAC_SCAN_ORPHAN_

REQUEST_CONFIRM

Orphan Notification

Frame

Coordinator

Realignment Frame

MAC AppMACApp

usr_mlme_orphan_ind()

Process orphan

indication

wpan_mlme_orphan_resp()

Node has lost

ist parent

usr_mlme_scan_conf()

5.4.10 MAC_START_REQUEST_CONFIRM

This feature is a typical FFD feature that allows a node to start a new PAN (network)

by means of using functions wpan_mlme_start_req() / usr_mlme_start_conf().

Depending on the setting of BEACON_SUPPORT this can be either only a non-

beacon enabled network or also a beacon-enabled network.

Consequently this also enables the ability of the node to:

 Transmitting beacon frames (in case beacon-enabled networks are supported)

 Respond to beacon request frames (active scan by another node) with proper

beacon frames

 Perform network realignment and transmit coordinator realignment frames (initiated

by calling function wpan_mlme_start_req() with parameter CoordinatorRealignment

= true)

 Atmel AVR2025

 49

8412A-AVR-02/13

Figure 5-13. Start of non-beacon network and active scan.

wpan_mlme_scan_req

(Active scan)

Node (FFD) using

MAC_START_

REQUEST_CONFIRM

N
e

tw
o

rk
 S

ta
rt

Node using

MAC_SCAN_ACTIVE_

REQUEST_CONFIRM

Beacon Request Frame

MAC AppMACApp

usr_mlme_start_conf()

Nonbeacon

network

established

wpan_mlme_start_req

(Nonbeacon network)

usr_mlme_scan_conf()

Beacon Frame

A
c
ti

v
e
 S

c
a
n

 P
ro

c
e

d
u

re

5.4.11 MAC_RX_ENABLE_SUPPORT

This feature is usually required for any node (both RFD and FFD) that wants to

enable its receiver for a certain amount of time or disable its receiver. Most commonly

it is utilized at an RFD that goes to sleep mode during idle periods to save as much

power as possible. In order to periodically listen to the channel or frames to be

received, the application can initiate a wpan_mlme_rx_enable_req() with proper

parameters (see MAC Example Basic_Sensor_Network in Section 10.2.1.1).

 Atmel AVR2025

 50

8412A-AVR-02/13

Figure 5-14. Enabling of receiver and proper data reception.

wpan_mlme_rx_enable_req()

usr_mlme_rx_enable_conf()

Other Node

(e.g. PAN Coordinator)

U
n

s
u

c
c
e

s
s

fu
l

D
a
ta

 T
ra

n
s
m

is
s

io
n

Node using

MAC_RX_ENABLE_SUPPORT

Data Frame

Data Frame (last retry)

wpan_mcps_data_req

(Direct)

MAC App

Data frame is

retried since no

Acknowledge-

ment is

received

usr_mcps_data_ind()

Wake up radio

an enable

receiver

usr_mcps_data_conf

(No Ack)

MACApp

Node is in

power safe

mode

Data Frame

wpan_mcps_data_req

(Direct)

Ack Frame
usr_mcps_data_conf

(Success)S
u

c
c
e
s

s
fu

l
D

a
ta

T
ra

n
s

m
is

s
io

n

E
n

a
b

li
n

g
 o

f

R
e

c
e

iv
e
r

5.4.12 MAC_SYNC_REQUEST

This feature is usually required for any node (both RFD and FFD) that wants to

synchronize with its beacon-enabled network tracking beacon frames from its parent

by means of using function wpan_mlme_sync_req().

5.4.13 MAC_SYNC_LOSS_INDICATION

This feature is usually required for any node (both RFD and FFD) that needs to be

able to report a sync loss condition to its upper layer. This can be either the reception

of a coordinator realignment frame from its parent, or caused by the fact that a

synchronized node has not received beacon frames from its parent for a certain

amount of time.

 Atmel AVR2025

 51

8412A-AVR-02/13

Figure 5-15. Synchronization and loss of synchronization.

wpan_mlme_sync_req()

PAN Coordinator

using

MAC_START_REQUEST_

CONFIRM

S
ta

rt
 o

f
B

e
a

c
o

n
-e

n
a

b
le

d
 N

e
tw

o
rk

Node using

MAC_SYNC_REQUEST and

MAC_SYNC_LOSS_INDICATION

Beacon Frame

wpan_mlme_start_req

(Beacon Network)

MAC App

Beacon-

enabled

network

running

usr_mlme_sync_loss_ind()

Process

received

beacon frames

usr_mlme_start_conf()

MACApp

Node is in

power safe

mode

L
o

s
s

 o
f

S
y
n

c
h

ro
n

iz
a
ti

o
S

y
n

c
h

ro
n

iz
a
ti

o
n

 w
it

h
 P

a
re

n
t

Beacon Frame

Beacon Frame

Beacon Frame

Node does not

receive beacon

frames

anymore

Beacon

Frame

Beacon

Frame

Beacon

Frame

5.4.14 MAC_BEACON_NOTIFY_INDICATION

This feature is usually required for any node (both RFD and FFD) that may need to

present received beacon frame to its upper layer. This could be caused by the fact

that the received beacon frame contains a beacon payload or the MAC PIB attribute

macAutoRequest within the node is set to false.

5.4.15 MAC_GET_SUPPORT

This feature allows reading the current values of MAC PIB attributes by means of

using function wpan_mlme_get_req().

 Atmel AVR2025

 52

8412A-AVR-02/13

5.4.16 MAC_PAN_ID_CONFLICT_AS_PC

This feature is a typical FFD feature that allows a PAN Coordinator node to detect a

PAN-Id conflict situation and report this to its higher layer, allowing the higher layer or

application to initiate the proper PAN-Id conflict resolution. The node is able to detect

a PAN-Id conflict situation while acting as a PAN Coordinator by checking received

beacon frames from other PAN Coordinators and being able to act upon the reception

of PAN-Id Conflict Notification Command frames from its children.

The following components are required as well:

 MAC_START_REQUEST_CONFIRM

 MAC_SYNC_LOSS_INDICATION

5.4.17 MAC_PAN_ID_CONFLICT_NON_PC

This feature is usually required for any node (both RFD and FFD) that may need to

detect a PAN-Id conflict situation while acting not as a PAN Coordinator node. The

node is able to detect a PAN-Id conflict situation while NOT acting as a PAN

Coordinator by checking received beacon frames from other PAN Coordinators and

being able to initiate the transmission of PAN-Id Conflict Notification Command

frames from its parents if required.

The following components are required as well:

 MAC_SYNC_LOSS_INDICATION

 Either MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

5.5 High-density network configuration

The IEEE standard 4 provides knobs to adjust the MAC layer to the application

needs. These knobs are the PIB attributes that allow configuring the behavior of the

MAC. In particular, in high-density networks where many nodes access the network at

the same time it might be necessary to tweak the MAC to achieve better

performance. This applies to non-beacon enabled and beacon-enabled networks. The

following PIB attributes can be used to tweak the MAC in this regard:

 Back off exponent: The PIB attributes macMinBE and macMaxBE determine the

potential length of the back off exponent used for the CSMA algorithm. By default

macMinBE = 3 and macMaxBE = 5. In order to reduce the probability that different

nodes use the same back off period, it is recommend changing the PIB attribute

values from the default values. Example: macMinBE = 6 and macMaxBE = 8. The

macMaxBE value needs to be increased before the macMinBE is increase.

 Frame retries: The PIB attribute macMaxFrameRetries defines the maximum

number of re-transmissions if a requested ACK is not received. The default value

(defined by the IEEE standard and used by the MAC implementation) is three. The

IEEE standard allows increasing the number of retries up to seven.

 Maximum CSMA back offs: The PIB attribute macMaxCSMABackoffs defines the

number of back offs that are allowed before the channel is finally determined as

busy and no transmission happens. The MAC implementation uses the default

value of four. Increasing the value to five also increases the probability of

successful transmission of a big number of nodes trying to access the channel at

the same time.

 Atmel AVR2025

 53

8412A-AVR-02/13

5.6 High data rate support

The Atmel transceivers are capable of transmitting frames at higher data rates than

the standard data rates within the given band. The supported data rates are currently

up to 2Mbit/s. These higher data rates are rates not defined within the IEEE standard

(see 4). For more information about high data rate support please refer to the data

sheet for the corresponding transceiver.

In order to enable higher data rates than the standard rates, the following two items

needs to be done:

12. Enable the build switch HIGH_DATA_RATE_SUPPORT within the corresponding
Makefile or project file (see Section 7.1.4.3).

13. Set the PIB attribute phyCurrentPage to the corresponding value (for example,
phyCurrentPage = 17 for 2Mbit/s support); after setting the correct channel page
all frames will be transmitted using the corresponding data rate belonging to this
channel page.

Table 5-1 shows which data rate can be selected (by setting a specific channel page)

using a particular transceiver. The table entries with yellow background refer to Atmel

proprietary channel pages for non-standard high rates. Please note that the standard

channel page is always channel page 0.

 Atmel AVR2025

 54

8412A-AVR-02/13

Table 5-1. Channel pages vs. data rates.

Frequency band/

transceiver

MAC-2003

compliant

channel page 0

MAC-2006

compliant

High data

rate mode 1

High data

rate mode 2

Sub-1 GHz

Channel 0

Channel 1-10

AT86RF212

20kb/s @ -110dBm

40kb/s @ -108dBm

(2)

Channel

Page 2

100kb/s

250kb/s

Channel

Page 16

200kb/s

500kb/s

(1)(3)(4)(5)(6)

Channel

Page 17

400kb/s

1000kb/s

(1)(3)(4)(5)(6)

Chinese Band

Channel 0-3

AT86RF212

N/A Channel

Page 5

250kb/s

Channel

Page 18

500kb/s

(1)(3)(4)(5)(6)

Channel

Page 19

1000kb/s

(1)(3)(4)(5)(6)

 Atmel AVR2025

 55

8412A-AVR-02/13

Frequency band/

transceiver

MAC-2003

compliant

channel page 0

MAC-2006

compliant

High data

rate mode 1

High data

rate mode 2

2.4GHz

Channel 11-26

AT86RF231,

ATmega256RFR2,

AT86RF233

250kb/s @ -101dBm Channel

Page 2

500kb/s

(1)(3)(5)

Channel

Page 16

1000kb/s

(1)(3)(5)

Channel

Page 17

2000kb/s

(1)(3)(5

Notes: 1. PSDU data rate.

2. BPSK.

3. Reserved channel pages are used to address the appropriate mode (non-

compliant).

Marked w/ yellow background color. The Atmel AT86RF212’s sensitivity

values for the proprietary modes are based on PSDU length of 127 bytes.

4. Scrambler enabled.

5. Reduced ACK timing. Proprietary channel pages can be enabled using build

configuration switch HIGH_DATA_RATE_SUPPORT.

6. Proprietary channel pages 18 and 19 used for Chinese frequency band. Pages

18 and 19 support channels 0-3.

For a TAL example using a high data rate of 2Mbit/s please refer to Section 10.2.2.1.

 Atmel AVR2025

 56

8412A-AVR-02/13

6 MAC power management

The MAC stack provide built-in power management that allows to put the transceiver

into power save state as often as possible in order to save as much energy as

possible. This allows for example End Devices, which are usually battery powered, to

use a sleeping state of the transceiver as default state. The entire power

management is inherent in the MAC itself and works without any required interaction

from the application. On the other hand there exist means for the application to

control the power management scheme in general as desired.

6.1 Understanding MAC power management

The following section is only valid for MAC applications (or applications on higher

layers), but not for TAL applications. For TAL applications please refer to Section 6.4.

Once a node (running an application on top of the MAC stack) has finished its

initialization procedure, the MAC layer decides whether the node stays awake or

enters SLEEP state. This is controlled by the MAC PIB attribute macRxOnWhenIdle.

Whenever this PIB attribute is set to True, the MAC keeps the radio always in a state

where the default state of the receiver is on, that is, the transceiver is able to receive

incoming frames whenever there is nothing else to do for the stack. Since this is a

non-sleeping state for the transceiver and requires much more energy than a power

save state, this behavior is usually applied for all mains powered nodes, such as PAN

Coordinators or Coordinators/Routers (nodes built using build switch FFD, see

Section 7.2.1.1).

As mentioned MAC power management works automatically within the stack. Once a

node is started, it is automatically in power save mode. This is handled by the MAC

PIB attribute macRxOnWhenIdle. The default value for macRxOnWhenIdle is False,

that is, the radio shall be off in case the node is idle, meaning that the radio will be in

sleep mode. This is valid for all nodes including End Devices, Coordinators and PAN

Coordinators.

Any node that shall not be in sleep as the default mode of operation needs to be put

in listening mode by setting the PIB attribute macRxOnWhenIdle to True. Usually this

is only done for mains powered nodes, such as Coordinator or PAN Coordinators.

This will be explained more in detail in the subsequent sections.

For battery powered nodes (usually End Devices) the default state shall be sleeping,

since otherwise the battery would be emptied too fast. Since the PIB attribute

macRxOnWhenIdle is per default set to False by default, such nodes will

automatically enter SLEEP state when there is nothing to be done for the

transceivers.

The transceiver of such nodes will be woken up automatically whenever a new

request from the upper layer (for example, the application on top of the MAC or the

Network layer), which requires the cooperation of the transceiver, is received. This

could be the request to transmit a new frame (wpan_mcps_data_req()), the request to

set a PIB attribute that is mirrored in transceiver registers, the request to poll for

pending data at the node’s parent, etc.

Once such a request has been received at the MAC-API, the MAC performs a check

whether the radio is currently in SLEEP state and wakes up the transceiver if

required. Afterwards the MAC can us the transceiver to perform whichever action is

required. After the ongoing transaction is finished, the MAC will put the transceiver

back to SLEEP if allowed.

 Atmel AVR2025

 57

8412A-AVR-02/13

This complete MAC controlled power management implies that a node being in

SLEEP state will be not able to receive any frame during, that is, a PAN Coordinator

would not be able to send a direct frame to its sleeping child being an End Device.

This can be reproduced using the provided MAC example applications nobeacon (see

Section 10.2.1.1). In both of these applications all directed traffic goes from the End

Device to the PAN Coordinator. If these applications where changed so that the PAN

Coordinator sent traffic to the End Device, the End Device would not accept these

frames, since it is in SLEEP most of the time.

Of course there is variety of means defined within IEEE 802.15.4 to allow a

reasonable communication between mains powered nodes and battery powered

nodes (applying power management) in both directions. This is explained in more

detail in the following section. One way to allow communication from the PAN

Coordinator to the End Device is to use a timer which wakes up the End Device

periodically, allowing this device to receive frames during this time period from other

nodes. This is implemented in MAC example nobeacon_sleep (see Section

10.2.1.3).`

6.2 Reception of data at nodes applying power management

When data shall be received by an End Device (that is, a node applying MAC power

management as default), we have several options as described in the subsequent

sections.

6.2.1 Setting of macRxOnWhenIdle to true

One option is to leave the receiver of the node always on, so the device is able to

always receive frames. This can be done be setting the MAC PIB Attribute

macRxOnWhenIdle to True (1) (by using the API function wpan_mlme_set_req()) at

any time. This will immediately wake up the radio and enable the receiver of the node.

If this scheme is applied, the node will not enter SLEEP state anymore and thus uses

it’s battery power very extensively. So for battery powered End Devices this is not

recommended, although it might be an easy solution for mains powered End Devices.

6.2.2 Enabling the receiver

If a PAN Coordinator wants to send data to an End Device periodically, the

application of the Device can be implemented as such, that the Device maintains a

timer with the same time interval that the Coordinator wants to transmit its data to the

Device.

Upon expiration of this timer the application of the Device can then enable its receiver

for a certain amount of time or until it receives data from the Coordinator, and turn off

the receiver again. The receiver can be enabled or disabled by using the MAC-API

function “wpan_mlme_rx_enable_req”.

The parameter RxOnDuration contains the value (number of symbols, for example,

one symbols is 16µs for 2.4GHz networks) that the receiver shall be enabled. If this

parameter is zero (0), the receiver of the node will be disabled.

The parameters DeferPermit and RxOnTime shall be set to 0 for a nonbeacon-

enabled network, since these parameters are obsolete for nonbeacon-enabled

networks.

If this scheme is used, handling of power management is done by the device itself.

When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC will

 Atmel AVR2025

 58

8412A-AVR-02/13

initiate its standard power management scheme and put the transceiver again into

SLEEP if allowed (that is, in case macRxOnWhenIdle is False).

6.2.3 Handshake between end device and coordinator

Another scheme is based on a combination of enabling the receiver in conjunction

with a handshake scheme between End Device and the PAN Coordinator.

The End Device enables its receiver periodically (as in Section 6.2.2), and sends a

data frame to the Coordinator indicating it is alive for a certain amount of time. The

Coordinator in return either answers with direct data to the Device directly (in case it

has something to deliver) to the Device, or simply does nothing.

After the device has received a frame from the PAN Coordinator the End Device

disables its receiver again. This can be done by simply letting the RxEnable timer

expire (depending on the original value of RxOnDuration” at the first call of

wpan_mlme_rx_enable_req”) by directly calling wpan_mlme_rx_enable_req” with

parameter RxOnDuration” set to zero.

If the End Device does not receive a frame from its Coordinator, the device

automatically goes to sleep depending on the original value of RxOnDuration” at the

first call of wpan_mlme_rx_enable_req”.

If this scheme is used, handling of power management is done by the device itself.

When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC will

initiate its standard power management scheme and put the transceiver again into

SLEEP if allowed (that is, in case macRxOnWhenIdle is False).

6.2.4 Indirect transmission from coordinator to end device

Another option is to use indirect data transmission from the Coordinator to the End

Device and let the Device poll the Coordinator periodically for pending data. When

this scheme is applied the Coordinator sets the parameter TxOptions of the API

function:

bool wpan_mcps_data_req(uint8_t SrcAddrMode,

 wpan_addr_spec_t *DstAddrSpec,

 uint8_t msduLength,

 uint8_t *msdu,

 uint8_t msduHandle,

 uint8_t TxOptions)

to WPAN_TXOPT_INIDIRECT_ACK (indirect, but acknowledged Transmission; value

5), instead of WPAN_TXOPT_ACK (direct, acknowledged Transmission value 1) as it

is currently (see file mac_api.h in directory MAC/Inc).

NOTE This requires an additional check which device type the node is currently, since
data from the Device to the Coordinator is still only transmitted directly.

Additionally the Device needs to implement a polling scheme in its application, during

which it periodically calls function wpan_mlme_poll_req(). This will initiate a data

request frame to the Coordinator. In case the Coordinator does have pending data for

the Device, it initiates the direct transmission of those frames. Otherwise Coordinator

sends a null data frame (data frame with empty payload). The Device both receives

the response from the Coordinator and, if there is no further action to be done, returns

to standard power management procedures. For more information see Sections 5.4.1

and 5.4.2.

If this scheme is used, handling of power management is done by the device itself.

 Atmel AVR2025

 59

8412A-AVR-02/13

6.3 Application control of MAC power management

As indicated throughout the previous sections there are several means for the

application to control the general power management scheme applied by the MAC.

These are setting the MAC PIB attribute macRxOnWhenIdle and the MAC primitive

MLME_RX_ENABLE.request.

6.3.1 MAC PIB attribute macRxOnWhenIdle

Setting the MAC PIB attribute to a specific value controls the handling of MAC power

management. Whenever a transaction within the MAC has finished (for example,

transmitting a frame, setting of PIB attributes residing within the transceiver, etc.) the

MAC checks this PIB attribute. If the corresponding value is False, the radio enters

SLEEP mode again, otherwise the transceiver stays awake.

Any node will always enter SLEEP mode after each finished transition, since the PIB

attribute macRxOnWhenIdle is False as default.

If this behavior shall be altered (especially for Coordinators or PAN Coordinators), the

application needs to change the value of macRxOnWhenIdle to True after whenever

this shall be applied.

The current value of the MAC PIB attribute macRxOnWhenIdle can be altered by

calling function wpan_mlme_set_req() with the appropriate value (see file main.c of

example in Section 10.2.1.2):

/* Switch receiver on to receive frame. */

wpan_mlme_set_req(macRxOnWhenIdle, true);

or

/* Switch receiver off. */

wpan_mlme_set_req(macRxOnWhenIdle, false);

Please note that the receiver will be immediately enabled or disabled.

6.3.2 Handling the receiver with wpan_rx_enable_req()

While setting of the PIB attribute macRxOnWhenIdle is a more “globally” or “statically”

applied means to change the standard MAC power management scheme, the MAC

primitive MLME_RX_ENABLE.request can be used to change the behavior more

temporarily.

The receiver can be enabled by calling function wpan_mlme_rx_enable_req() with

(the 3
rd

 parameter) RxOnDuration larger than zero:

/* Switch receiver on for 10000 symbols. */

wpan_mlme_rx_enable_req(false, 0, 10000);

This wakes up the transceiver (independent from the current value of the PIB attribute

macRxOnWhenIdle) if required and switches the receiver on.

After the timer with the specified time (RxOnDuration symbols) expires, the receiver is

disabled automatically if the current value of macRxOnWhenIdle is false, or remains

in receive mode if macRxOnWhenIdle is true.

The receiver can be disabled explicitly by calling wpan_mlme_rx_enable_req() with

(the 3
rd

 parameter) RxOnDuration equal to zero:

/* Disable receiver now. */

 Atmel AVR2025

 60

8412A-AVR-02/13

wpan_mlme_rx_enable_req(false, 0, 0);

This disables the receiver if the current value of the PIB attribute macRxOnWhenIdle

is false and puts the transceiver to SLEEP mode.

For more information about function wpan_mlme_rx_enable_req() see files mac_api.c

and mac_rx_enable.c in directory mac/src.

For more information about the interaction of MLME_RX_ENABLE and
macRxOnWhenIdle see file mac_misc.c in directory mac/src and check the following
function mac_sleep_trans().

6.3.3 Handling Controller Sleep in Inactive Region

Transceiver will enter into sleep in the inactive region of the super frame. Apart from
the inherent power management in MAC, An API from MAC is provided to the
Application to decide on to put the Controller in power down mode during the inactive
region.ENABLE_SLEEP Symbol needs to be enabled in the application to handle
Sleep functionality.

x us – from the Point application called mac_ready_to_sleep to the end of inactive

region.

y us – guard time to synchronize with beacon timing (beacon prep time + TRX

wakeup time)

6.3.3.1 mac_ready_to_sleep

6.3.3.1 Syntax

uint32_t mac_ready_to_sleep(void)

6.3.3.2 Description

API to be called by application to check whether mac is ready to sleep(in inactive
region)

6.3.3.3 Parameters

 void

6.3.3.4 Return

uint32_t - the time duration in microseconds for which the device can enter sleep.

 0-When the Superframe is in active state.

 Atmel AVR2025

 61

8412A-AVR-02/13

6.3.4 Mac_wakeup

6.3.4.1 Syntax

Void mac_wakeup (uint32_t res_time);

6.3.4.2 Description

Callback from application after wakeup from sleep to sync up with beacon timing in
MAC.

6.3.4.3 Parameters

 uint32_t res_time – Residual time to sync up with superframe timing.

6.3.4.4 Return

Void

6.4 TAL power management API

The MAC power management mechanisms as described in this chapter are only valid

if the application is residing on top of the MAC layer (or a higher layer on top of the

MAC). In case the application is residing on top of the TAL layer, the application

needs to take care for transceiver power management itself.

Therefore the TAL provides a Power Management API which is generally used by the

MAC layer but can also be used by an application residing on top of the TAL.

Nevertheless an application residing on top of any higher layer than the TAL must not

use this TAL API explicitly, otherwise this may lead to undefined behavior.

The TAL Power Management API consists of two functions:

 tal_trx_sleep()

 tal_trx_wakeup()

For more information see file tal.h in directory tal/inc and the various implementations

for each transceiver in file tal_pwr_mgmt.c in directories tal/TAL_TYPE_NAME/src.

 Atmel AVR2025

 62

8412A-AVR-02/13

7 Application and stack configuration

The MAC and its modules are highly configurable to adapt to the application

requirements. The utilized resources can be configured and adjusted according to the

application needs. This allows a drastic footprint reduction.

During build process the required features are included depending on the used build

switches and basic configuration type.

Qualitative configuration includes:

 Features or modules can be included to or excluded from the firmware using build

switches

 The build configuration is controlled by switches within Makefiles or the project files

 Primitives as defined within IEEE 802.15.4 (and thus features within the MAC) can

be included or excluded depending on the required degree of standard compliance

or application needs

 Two generic profiles are provided: RFD and FFD primitive configuration

Quantitative configuration includes:

 Resources can be adjusted to the application needs

 The file app_config.h (usually located in the inc path of the applications) provides

hooks for the application configuration to configure its own resources

 Each demonstration application comes with its own configuration file

(app_config.h) that can be re-used for own application design

7.1 Build switches

The stack and application based on the stack can be highly configured according to

the end user application needs. This requires a variety of build switches to be set

appropriately. The following section describes that build switches may be used during

the build process.

The switches may be categorized as follows:

1. Global stack switches

o HIGHEST_STACK_LAYER

o REDUCED_PARAM_CHECK

o PROMISCUOUS_MODE

o ENABLE_TSTAMP

o MAC_SECURITY_ZIP

o MAC_SECURITY_2006

o MAC_SECURITY_BEACON

2. Standard or user build configuration switches

o BEACON_SUPPORT

o FFD

o MAC_USER_BUILD_CONFIG

3. GTS_SUPPORTPlatform switches

o BOARD (Values provided in ASF common sources)

o ENABLE_TRX_SRAM

 Atmel AVR2025

 63

8412A-AVR-02/13

o NON_BLOCKING_SPI

o VENDOR_STACK_CONFIG

4. Transceiver specific switches

o TAL_TYPE

o ENABLE_TFA

o TFA_BAT_MON

o HIGH_DATA_RATE_SUPPORT

o CHINESE_BAND

o RSSI_TO_LQI_MAPPING

o ENABLE_FTN_PLL_CALIBRATION

o DISABLE_IEEE_ADDR_CHECK

5. Test and Debug switches

o _DEBUG_

o TEST_HARNESS

The following picture shows an example how the various build switches lead to a

particular configuration. For simplicity reasons only the basic building blocks are

included. More advance blocks (for example, TFA or STB have been omitted). The

used build switches are explained in the subsequent sections.

Figure 7-1. Build configuration example.

AVR32 SAM

PAL Wrapper

ATMEGARFR2 AT86RF231 AT86RF212. . .

mac_start.c mac_scan.c mac_data.c mac_ associate.c.

application.c

mac_api.c

TAL

MCL

PAL

TAL_ TYPE=

AT86RF231

HIGHEST_ STACK_ LAYER=

MAC

Application

(FFD is not set)

ASF XMEGA MEGARFSAM0

 Atmel AVR2025

 64

8412A-AVR-02/13

7.1.1 Global stack switches

7.1.1.1 HIGHEST_STACK_LAYER

This build switch defines the layer that the end user application is actually based on.

The MAC software package comprises of three real layers (from bottom: PAL, TAL,

and MAC Core Layer). All these layers forms the stack, although not necessarily all

layers are always part of the actual binary. Depending upon the required functionality

(full blown MAC versus simple data pump), the user application needs to define which

layer it shall be based on (that is, which API it is using). If an application for instance

only uses the PAL and TAL layers (that is, MAC is not used), all resources required

for MAC are not part of the final application. This reduces code size and SRAM

utilization drastically.

Also, if a Network Layer (NWK) will be part of the stack and residing on top of the

MAC layer, a number of resources are used differently compared to an application on

top of the MAC.

Example: Reading of PIB attributes residing in TAL layer.

If the HIGHEST_STACK_LAYER is MAC (HIGHEST_STACK_LAYER = MAC), the

function tal_pib_get() in file tal_pib.c is not included in the binary, because the MAC

reads all PIB attributes residing in TAL directly by accessing the global variables. On

the other hand, if the HIGHEST_STACK_LAYER is TAL (HIGHEST_STACK_LAYER

= TAL) this function is available, because an application (being not part of the stack)

shall not access global variables of the stack directly.

Conclusion:

If the application sits on top of the MAC layer, this build switch shall be set to

„HIGHEST_STACK_LAYER = MAC“.

If the application sits on top of the TAL layer, this build switch shall be set to

„HIGHEST_STACK_LAYER = TAL“.

Usage in Makefiles:

CFLAGS += -DHIGHEST_STACK_LAYER=MAC

or

CFLAGS += -DHIGHEST_STACK_LAYER=TAL

Usage in IAR ewp-files:

HIGHEST_STACK_LAYER=MAC

or

HIGHEST_STACK_LAYER=TAL

For more information check file include/stack_config.h. This shows how the resources

are used and included in the end application depending upon the highest stack used.

7.1.1.2 REDUCED_PARAM_CHECK

Whenever an application or a higher layer accesses an API function of a lower layer

usually a variety of parameter checks are done in order to ensure proper usage of the

 Atmel AVR2025

 65

8412A-AVR-02/13

desired functionality. This leads to a more robust application. On the other hand, if the

higher layer is designed to always call an API function with reasonable parameter

values, this build switch might be omitted. This will reduce the code size.

Please refer the file mac\src\mac_mcps_data.c how a build switch is used. In function

mcps_data_request() a number of additional checks are performed if this switch is not

set.

It is strongly recommended to disable the following build switch at least during the

development cycle of the application.

Usage in Makefiles:

CFLAGS += -DREDUCED_PARAM_CHECK

disables the additional parameter checking.

Usage in IAR ewp-files:

REDUCED_PARAM_CHECK

reduces the additional parameter checking.

7.1.1.3 PROMISCUOUS_MODE

This build switch allows for the creation of a special node that can be put into

promiscuous mode thus allowing it to act as a very simple frame sniffer. It can be

used as a very simple network diagnostic tool.

When this switch is enabled the node is not supposed to act as a standard node

being part of network, that is, the node will never acknowledge any received frame,

etc. Instead the node will be able to receive any proper IEEE 802.15.4 frame on its

channel within range and present it to the application. The application can reside on

top of the MAC layer (using MAC-API callback function usr_mcps_data_ind()) or on

top of the TAL layer (using TAL callbacks).

Switching promiscuous mode on or off is controlled by the standard MAC PIB

macPromiscuousMode (see IEEE 802.15.4-2006, Section 7.5.6.5 Promiscuous

Mode). The payload contained in the usr_mcps_data_ind() callback function is the

MAC Header (MHR) of the received frame concatenated with the original payload of

the received frame.

Promiscuous mode can be switched on or off by setting or resetting the PIB attribute

macPromiscuousMode. If the radio is awake and in receive mode on the current

channel, the node will present all received frames to the upper layer. In order to work

properly, the receiver needs to be enabled. This can be done, for example, by setting

MAC PIB attribute macRxOnWhenIdle to 1 before turning promiscuous mode on.

Generally the transceiver state can be controlled similar to normal operation (see

Chapter 6).

Once the PIB attribute macPromiscuousMode is reset, the node switches back to

normal operation. It will be in the same state as before switching to promiscuous

mode, for example, a node that was associated will still be connected to the same

network.

The following picture indicates the proper handling of promiscuous mode.

 Atmel AVR2025

 66

8412A-AVR-02/13

Figure 7-2. Handling of promiscuous mode.

Application

(main.c)
Stack

wpan_mlme_reset_req()

usr_mlme_reset_conf()

wpan_mlme_set_req

(phyCurrentChannel)

usr_mlme_set_conf(Success)

wpan_mlme_set_req

(phyCurrentPage)

usr_mlme_set_conf(Success)

wpan_mlme_set_req

(macPromiscuouMode, True)

usr_mlme_set_conf(Success)

Other Node on

same Channel

Wake up receiver and

switch to RX_ON

usr_mcps_data_ind

(Frame 1 content)

Process received

frame

Promiscuous Mode

wpan_mlme_set_req

(macPromiscuouMode, False)

usr_mlme_set_conf(Success)

Receiver still enabled in

RX_AACK_ON

Standard Mode

Standard Mode

S
e
tt

in
g

-u
p

 o
f

P
ro

m
is

c
u

o
u

s
 M

o
d

e
P

ro
m

is
c

u
o

u
s

 M
o

d
e

 U
s
e

d
S

w
it

c
h

te
d

 b
a
c
k

to
 N

o
rm

a
l
M

o
d

e

Node built with

PROMISCUOUS_MODE

Frame 1

Frame 2

wpan_mlme_set_req

(macRxOnWhenIdle, True)

usr_mlme_set_conf(Success)

7.1.1.4 ENABLE_TSTAMP

This build switch allows creation of timestamping information throughout the entire

MAC stack. This includes two different angles:

 Generation of timestamping information within the TAL

 Atmel AVR2025

 67

8412A-AVR-02/13

 Inclusion of timestamp information in the MAC-API primitives (see function

usr_mcps_data_conf() and usr_mcps_data_ind() in file mac/inc/mac_api.h)

In case timestamping information shall be generated and included in the MAC-API for

further utilization within the application, the compile switch needs to be set.

Usage in Makefiles:

CFLAGS += -DENABLE_TSTAMP

enables the timestamping.

Usage in IAR ewp-files:

ENABLE_TSTAMP

enables the timestamping.

7.1.2 Standard and user build configuration switches

The standard and user build configuration switches are described in detail in Sections

7.2.1 and 7.2.2.

7.1.3 Platform switches

Since the PAL layer is part of ASF, please refer [9] for more details on Platform
switches.

7.1.4 Transceiver specific switches

7.1.4.1 TAL_TYPE

The TAL (Transceiver Abstraction Layer) contains all transceiver based functionality

and provides an API to the MAC which is independent from the underlying

transceiver. Certain functionality that for instance the MAC or an application may

require is dependent from the actual used transceiver chip. Examples are the

utilization of antenna diversity, time stamping mechanisms, or the automatic CRC

calculation in hardware.

Examples of currently supported transceivers are:

 Atmel Atmega256RFR2

 Atmel AT86RF231

 Atmel AT86RF212

 Atmel AT86RF212B

 Atmel AT86RF233

For more information please check the tal\inc\tal_types.h file.

Usage in Makefiles:

CFLAGS += -DTAL_TYPE=AT86RF212

Selects the AT86RF212 transceiver.

Usage in IAR ewp-files:

TAL_TYPE=AT86RF231

selects the AT86RF231 transceiver.

 Atmel AVR2025

 68

8412A-AVR-02/13

7.1.4.2 ENABLE_TFA

This build switch enables the usage of non-standard compliant features of the

transceiver based on the block Transceiver Feature Access (TFA).

Currently the following features are implemented in the TFA:

 Changing of Receiver Sensitivity

 Perform CCA

 Perform ED (Energy Detect) measurement

 Reading the current transceiver supply voltage (transceiver battery monitor).

Reading the current transceiver supply voltage (transceiver battery monitor). The

reading of the supply voltage can also be enabled separately by setting the build

switch TFA_BAT_MON

 Reading of current temperature (only Atmel ATmega256RFR2 only)

CCA and ED measurement are an inherent part of the MAC/TAL, so there is no need

for a standard application to use this. On the other hand there could be special test

applications which might use such functionality.

If only standard defined behavior is required or code size is important this switch

should not be set.

Usage in Makefiles:

CFLAGS += -DENABLE_TFA

enables the usage of the TFA.

Usage in IAR ew-files:

ENABLE_TFA

enables the usage of the TFA.

7.1.4.3 HIGH_DATA_RATE_SUPPORT

All 802.15.4 Atmel transceivers supported with this software package beyond

AT86RF230 provide high data modes not defined within the IEEE 802.15.4 standard.

In order to enable these high speed transmission modes, the build switch

HIGH_DATA_RATE_SUPPORT needs to be set. An example application where this

switch is used to gain a significantly higher data throughput is the Performance

Analyzer application (see avr2025_mac\apps\tal\performance_analyzer). If only

standard rates are used or code size is important this switch should not be set.

Usage in Makefiles:

CFLAGS += -DHIGH_DATA_RATE_SUPPORT

enables support of high speed data rates.

Usage in IAR ewp-files:

HIGH_DATA_RATE_SUPPORT

enables support of high speed data rates.

7.1.4.4 CHINESE_BAND

This build switch is used in conjunction with a Sub-GHz transceiver chip that is

capable of working properly within the Chinese 780MHz radio band (for example, the

Atmel AT86RF212). Within the stack this switch is solely used to set the proper

 Atmel AVR2025

 69

8412A-AVR-02/13

default value for the channel page. So any application that per default is required to

operate within this particular band (and uses the proper TAL type) may use this build

switch to set the channel page to a proper default value. This switch currently not

used in any example application.

Usage in Makefiles:

CFLAGS += -DCHINESE_BAND

enables the channel page for the Chinese band as default.

Usage in IAR ewp-files:

CHINESE_BAND

enables the channel page for the Chinese band as default.

7.1.4.5 RSSI_TO_LQI_MAPPING

This build switch is used to control the mechanism for calculation of the normalized

LQI value of received frames. The normalized LQI value (that is provided to the

higher layer of the MAC as parameter ppduLinkQuality) is

 based on the RSSI/ED value (switch RSSI_TO_LQI_MAPPING is used) where

only the ED value (signal strength) is mapped to a LQI value, or is

 based on the ED (signal strength) and the measured LQI value (quality of received

packet) (switch RSSI_TO_LQI_MAPPING is not used)

For further information about the LQI value, see IEEE 802.15.4-2006 Section 6.9.8.

The build switch RSSI_TO_LQI_MAPPING reflects the “and/or” relation described in

the first paragraph of the mentioned section. If RSSI_TO_LQI_MAPPING is set,

signal strength is only used for LQI measurement.

Usage in Makefiles:

CFLAGS += -DRSSI_TO_LQI_MAPPING

enables the calculation of the normalized LQI value based on RSSI/ED value.

Usage in IAR ewp-files:

RSSI_TO_LQI_MAPPING

enables the calculation of the normalized LQI value based on RSSI/ED value.

For more information please check the implementation in the files

tal/tal_type/Src/tal_rx.c.

7.1.4.6 ENABLE_FTN_PLL_CALIBRATION

This build switch is used to enable the filter tuning and PLL calibration for the

transceiver. Once this feature is enabled in an application, a period timer is started,

which ensures that the proper filter tuning and PLL calibration is executed after a

certain amount of time.

This feature might be required in case the environment conditions (that is,

temperature) vary over time.

The filter tuning and PLL calibration is done automatically when a node periodically

enters sleep state, or when other specific state changes are performed within the

transceiver periodically. For more information please check the corresponding

transceiver data sheets.

 Atmel AVR2025

 70

8412A-AVR-02/13

The current timer interval is five minutes, that is, whenever the node does not enter

sleep state within this timer interval, the filter tuning and PLL calibration mechanism

will be invoked.

This switch is currently not enabled in any example application.

7.1.4.7 DISABLE_IEEE_ADDR_CHECK

This build switch is used to disable the check whether the node has a valid IEEE

address (that is, the IEEE address is different from 0 or 0xFFFFFFFFFFFFFFFF).

Currently all TAL and MAC based applications require a valid and unique IEEE

address being present on each node. Since some board may not necessarily have a

valid IEEE address stored in (either internal or external) EEPROM (for example Atmel

AT91SAM7X-EK boards), the applications cannot run properly. For the purpose of

proper example demonstration a check for this IEEE address is implemented. If the

IEEE address is not correct (that is, it is 0 or 0xFFFFFFFFFFFFFFFF), a random

IEEE address is assigned to this node.

Some applications do not require this specific IEEE check. In this case the code can

be significantly smaller by setting the build switch DISABLE_IEEE_ADDR_CHECK.

Also this build switch gives a very good indication which portions or the TAL need to

be changed or removed for smaller code size by simply searching for build switch

DISABLE_IEEE_ADDR_CHECK.

This switch is currently not enabled in any example application, since all example

applications require a valid IEEE address.

Boards providing a valid IEEE address always use their original unique IEEE address

during operation.

7.1.4.8 DISABLE_TSTAMP_IRQ

This build switch is used to disable the Timestamp interrupt (that is, the second

transceiver interrupt for Atmel AT86RF231, Atmel AT86RF233 and Atmel

AT86RF212) on systems which do not utilize this transceiver interrupt. This is for

example valid for boards based on Atmel Xmega MCUs in conjunction with

AT86RF231.

The TAL for AT86RF231, AT86RF233 and AT86RF212 is designed to utilize the

Timestamp interrupt as default for generating timestamp information..

7.1.4.9 TRX_REG_RAW_VALUE

This build switch is used to disable the scaling of ED value.By default ED value read

from the RG_PHY_ED_LEVEL register shall be scaled using CLIP_VALUE REG

value.By using this build switch, this can be avoided and raw value of ED sall be

used.

7.1.4.10 SW_CONTROLLED_CSMA

This build switch SW_CONTROLLED_CSMA includes functions to the build process

that control the CSMA-CA algorithm by software. CCA, backoffs and re-transmissions

are controlled by software while the transceiver handles frame validation (e.g. CRC

and frame filtering) and ACK transmission using its automatic (extended) modes.

 Atmel AVR2025

 71

8412A-AVR-02/13

7.1.4.11 TX_OCTET_COUNTER

This build switch TX_OCTET_COUNTER includes functions to the build process that

count the number of actually sent bytes over-the-air. The numbers of bytes are

accumulated in the variable tal_tx_octet_cnt. This includes data frames that are sent

“actively” and ACK frames that are sent due to received frames including preamble,

SFD and length field.

The application can reset and read the tal_tx_octect_cnt variable. It can be used to

calculate an actual duty-cycle. In order to use the TX_OCTET_COUNTER switch the

build switch SW_CONTROLLED_CSMA needs to be set as well

7.1.4.12 TX RX_WHILE_BACKOFF

The build switch RX_WHILE_BACKOFF enables switching the receiver on during

backoff periods of the CSMA algorithm. If the build switch RX_WHILE_BACKOFF is

not defined for the build, the receiver remains off during backoff periods.

In order to use the RX_WHILE_BACKOFF switch the build switch

SW_CONTROLLED_CSMA needs to be set as well.

If the receiver is switched on during backoff periods and a frame is received (including

automatic ACK transmission), the received frames get queue into the receive frame

queue. After frame reception the CSMA algorithm is continued with the next CSMA

attempt.

Impacts with RX_WHILE_BACKOFF

 In a “normal” scenario (low traffic) the maximum data throughput is reduced

by about 2 percent (at 250kb/s and about 1 percent at 100kb/s) due to the

software-controlled CSMA using a SPI-based transceiver.

 In high density networks the outgoing data throughput highly varies based on

the number of received frames during the backoff periods.

 The implementation of the software-controlled CSMA algorithm requires

about 0.5 kB (0.5kB for Xmega; 0.8kB for SAM4L) program code.

 An additional (software) timer is required and the MCU utilization is higher

during the actual CSMA procedure.

7.1.5 Test and debug switches

7.1.5.1 DEBUG

This build switch enables further debug functionality and additional sanity checks

within the software package, but also increased code size or changes run time

behavior since the optimization level is changed.

If the GCC compiler is used, this switch also enables printout functionality for debug

purposes (ASSERT).

7.1.5.2 TEST_HARNESS

This build switch is used for serial-if application in the case of NCP approach and for

Atmel internal regression testing.

This switch is not adviced to be used by other applications.

 Atmel AVR2025

 72

8412A-AVR-02/13

NOTE Although the code in file mac_pib.c may lead to the conclusion, that this switch
needs to be set in order to be allowed to set the IEEE address of this node via
software, this is not supposed to be used this way.

Each device has its own IEEE address that is fixed for this device and usually it is

located in any type of persistent storage. This is actually not a PIB attribute but rather

a MAC constant (see IEEE 802.15.4-2006 Section 7.4.1, Table 85

(aExtendedAddress)). So the value is only READ_ONLY and in normal mode not

supposed to be written by the application or stack. Therefore this attribute can be

read using API functions (wpan_mlme_get_req()) but not written

(wpan_mlme_set_req()).

7.2 Build configurations

7.2.1 Standard build configurations

Based on the IEEE 802.15.4 standard there are four basic standard configurations

available which provide different functionality to the user application. This implies

different APIs for each of these configurations and also different footprints (codes

size, SRAM utilization).

These standard configurations can be classified in two categories:

 Support of beacon enabled networks

 Reduced Functional Devices - RFD (for example, End Devices) vs. Full Functional

Devices – FFD (PAN Coordinators, Coordinators)

The Atmel MAC provides two build switches that can be used in Makefiles or IAR

Embedded Workbench project files to enable or disable these configurations.

Depending on the usage of these switches in the project, the MAC provides certain

functionality to the user application.

1. FFD

 Setting of this build switch additionally enables functionality required for a

FFD node

 Omission of this build switch only enables functionality required for a simple

RFD node

2. BEACON_SUPPORT

 Setting of this build switch additionally enables functionality required for a

network using a superframe structure, that is, beacon-enabled networks

 Omission of this build switch only enables functionality required for a

networks without using a superframe structure, that is, non-beacon enabled

networks

Example 1: A node that shall start its own network always has to be an FFD, because

starting of networks is only supported for an FFD configuration.

Example 2: A node that shall be able to join both non-beacon and beacon-enabled

networks has to use an application built with BEACON_SUPPORT.

Please refer to file “/include/mac_build_config.h” for more information about the

supported functionality.

7.2.1.1 FFD feature set

The following features are enabled if FFD is set during the build process:

 Atmel AVR2025

 73

8412A-AVR-02/13

 MAC_ASSOCIATION_INDICATION_RESPONSE

The node is able to accept and process association attempts from other nodes.

Also this node can provide Short Addresses to other nodes if desired

 MAC_ASSOCIATION_REQUEST_CONFIRM

The node is able accept and process a request from its upper layer (for example,

the network layer) to associate itself to another node (that is, its parent)

 MAC_BEACON_NOTIFY_INDICATION

The node is able to present received beacon frame to its upper layer in case the

beacon frame contains a beacon payload or the MAC PIB attribute

macAutoRequest is set to false

 MAC_DISASSOCIATION_BASIC_SUPPORT

The node is able to accept and process a request from its upper layer to

disassociate itself from its network or disassociate one of its children, or to process

a received disassociation frame from another node

 MAC_DISASSOCIATION_FFD_SUPPORT

The node is able to transmit an indirect disassociation notification frame. This

requires that the switch MAC_DISASSOCIATION_BASIC_SUPPORT is also set

 MAC_INDIRECT_DATA_BASIC

The node is able to poll its own parent for indirect data

 MAC_INDIRECT_DATA_FFD

The node is able to handle requests to transmit data frames to its children indirectly

once being polled by those nodes. This requires that the switch

MAC_INDIRECT_DATA_BASIC is also set

 MAC_ORPHAN_INDICATION_RESPONSE

The node is able to accept and process a received orphan indication frame by one

of its children and respond appropriately

 MAC_PAN_ID_CONFLICT_AS_PC

The node is able to detect a PAN-Id conflict situation while acting as a PAN

Coordinator by checking received beacon frames from other PAN Coordinators

and being able to act upon the reception of PAN-Id Conflict Notification Command

frames from its children

 MAC_PAN_ID_CONFLICT_NON_PC

The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN

Coordinator by checking received beacon frames from other PAN Coordinators

and being able to initiate the transmission of PAN-Id Conflict Notification Command

frames from its parents if required

 MAC_PURGE_REQUEST_CONFIRM

The node is able to purge indirect data frames from its Indirect-Data-Queue upon

request by its upper layer

 MAC_RX_ENABLE_SUPPORT

The node is able to switch on or off its receiver for a certain amount of time upon

request by its upper layer. This is required in order to allow for the upper layer to

receive frames in case the node is generally in a power safe state

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM

The node is able to perform an active scan to search for existing networks

 MAC_SCAN_ED_REQUEST_CONFIRM

The node is able to perform an energy detect scan

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM

The node is able to perform an orphan scan in case it has lost its parent

 Atmel AVR2025

 74

8412A-AVR-02/13

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM

The node is able to perform a passive scan to search for existing networks. This

feature is only enabled if also BEACON_SUPPORT is enabled

 MAC_START_REQUEST_CONFIRM

The node is able to start its own network. Depending on the setting of

BEACON_SUPPORT this can be either only a non-beacon enabled network or

also a beacon-enabled network

 MAC_SYNC_LOSS_INDICATION

The node is able to report a sync loss condition to its upper layer. This can be

either the reception of a coordinator realignment frame from its parent, or (if

BEACON_SUPPORT is enabled and the node is synchronized with its parent)

caused by the fact that the node has not received beacon frames from its parent

for a certain amount of time

Please check IEEE 802.15.4-2006 for further information about the MAC primitives

and the implementation of their corresponding features in the MAC.

7.2.1.2 RFD feature set

The following features are enabled if FFD is NOT set during the build process:

 MAC_ASSOCIATION_REQUEST_CONFIRM

The node is able accept and process a request from its upper layer (for example,

the network layer) to associate itself to another node (that is, its parent)

 MAC_BEACON_NOTIFY_INDICATION

The node is able to present received beacon frame to its upper layer in case the

beacon frame contains a beacon payload or the MAC PIB attribute

macAutoRequest is set to false

 MAC_DISASSOCIATION_BASIC_SUPPORT

The node is able to accept and process a request from its upper layer to

disassociate itself from its network, or to process a received disassociation frame

from its parent

 MAC_INDIRECT_DATA_BASIC

The node is able to poll its own parent for indirect data

 MAC_PAN_ID_CONFLICT_NON_PC

The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN

Coordinator by checking received beacon frames from other PAN Coordinators

and being able to initiate the transmission of PAN-Id Conflict Notification Command

frames from its parents if required

 MAC_RX_ENABLE_SUPPORT

The node is able to switch on or off its receiver for a certain amount of time upon

request by its upper layer. This is required in order to allow for the upper layer to

receive frames in case the node is generally in a power safe state

 MAC_SCAN_ACTIVE_REQUEST_CONFIRM

The node is able to perform an active scan to search for existing networks

 MAC_SCAN_ORPHAN_REQUEST_CONFIRM

The node is able to perform an orphan scan in case it has lost its parent

 MAC_SYNC_LOSS_INDICATION

The node is able to report a sync loss condition to its upper layer. This can be

either the reception of a coordinator realignment frame from its parent, or (if

BEACON_SUPPORT is enabled and the node is synchronized with its parent)

caused by the fact that the node has not received beacon frames from its parent

for a certain amount of time

 Atmel AVR2025

 75

8412A-AVR-02/13

The following features are disabled if FFD is NOT set during the build process:

 MAC_ASSOCIATION_INDICATION_RESPONSE

The node is not able to handle association attempts from other nodes

 MAC_DISASSOCIATION_FFD_SUPPORT

The node is not able to transmit an indirect disassociation notification frame

 MAC_INDIRECT_DATA_FFD

The node is not able to handle requests to transmit data frames indirectly

 MAC_ORPHAN_INDICATION_RESPONSE

The node is not able to handle orphan indication frames by other nodes

 MAC_PAN_ID_CONFLICT_AS_PC

The node is not able to act upon the reception of PAN-Id Conflict Notification

Command frames

 MAC_PURGE_REQUEST_CONFIRM

The node is not able to purge indirect data

 MAC_SCAN_ED_REQUEST_CONFIRM

The node is not able to perform an energy detect scan

 MAC_SCAN_PASSIVE_REQUEST_CONFIRM

The node is not able to perform a passive scan

 MAC_START_REQUEST_CONFIRM

The node is not able to start its own network

Please check IEEE 802.15.4-2006 for further information about the MAC primitives

and the implementation of their corresponding features in the MAC.

7.2.1.3 BEACON_SUPPORT feature set

If BEACON_SUPPORT is set during the build process all functionality required to

support beacon-enabled networks are enabled. The actually enabled functionality

differs depending on the internal requirements for FFDs or RFDs.

Additionally the following feature is enabled:

 MAC_SYNC_REQUEST

The node is able to sync itself with its parent by tracking the corresponding beacon

frames

Please check IEEE 802.15.4-2006 for further information about the MAC primitives

and the implementation of their corresponding features in the MAC.

7.2.2 User build configurations – MAC_USER_BUILD_CONFIG

7.2.2.1 Introduction

Since a number of applications do not necessarily need the functionality provided by

any of the standard build configurations, or may even have more rigid requirements

concerning FLASH or RAM utilization, the concept of user build configuration has

been introduced. The usage of the build MAC_USER_BUILD_CONFIG in the

Makefiles or IAR Embedded Workbench project files allows the end user to tailor its

MAC completely according to its own needs.

The following MAC features can be separately selected or removed from the build:

 Association

 Atmel AVR2025

 76

8412A-AVR-02/13

 Disassociation

 Support of scanning (energy detect, active, passive, or/and orphan scanning)

 Starting of networks

 Support of transmitting or receiving indirect data including polling of data

 Purging of indirect data

 Enabling of the receiver

 Synchronization in beacon-enabled networks

 Presentation of loss of synchronization

 Handling of orphan notifications

 Handling of beacon notifications

Each feature can be used independently from each other. It is also possible to

deselect all of the above features, which leads to a minimum application in terms of

resource utilization. In this case only the following basic MAC features are available:

 Direct data transmission and reception

 Initiation of a MAC reset

 Reading and writing of PIB attributes

An example application implementing the proper utilization of this feature can be

found in avr2025_mac/examples/mac/no_beacon. In this example only RX-ENABLE

is used in addition to the standard features. For more information about this example

application please refer to Section 10.2.1.1.

7.2.2.2 File mac_user_build_config.h

If the switch MAC_USER_BUILD_CONFIG is activated, the C-pre-processor looks for

a file mac_user_build_config.h in the current include path (usually in the Inc directory

of the application). See file /Include/mac_build_config.h:

#ifdef MAC_USER_BUILD_CONFIG

#include "mac_user_build_config.h"

#else

...

The standard feature definitions for an FFD or RFD configuration are by-passed, and

instead the user defined feature set from mac_user_build_config.h is used. This

features set needs to be defined entirely, that is, each feature needs to be either

enabled or disabled.

7.2.2.2.1 Examples

Example 1: An end device that does neither use association nor disassociation

functionality, but still wants to poll indirect data from its parent, may set

the following the build switches in file mac_user_build_config.h:

#define MAC_ASSOCIATION_INDICATION_RESPONSE (0)

#define MAC_ASSOCIATION_REQUEST_CONFIRM (0)

#define MAC_DISASSOCIATION_BASIC_SUPPORT (0)

#define MAC_DISASSOCIATION_FFD_SUPPORT (0)

#define MAC_INDIRECT_DATA_BASIC (1)

#define MAC_INDIRECT_DATA_FFD (0)

 Atmel AVR2025

 77

8412A-AVR-02/13

Example 2: A network whose nodes read their fixed network parameters from a

persistent store, and thus never perform scanning or start a network, may

set the following build switches in file mac_user_build_config.h:

#define MAC_SCAN_ACTIVE_REQUEST_CONFIRM (0)

#define MAC_SCAN_ED_REQUEST_CONFIRM (0)

#define MAC_SCAN_ORPHAN_REQUEST_CONFIRM (0)

#define MAC_SCAN_PASSIVE_REQUEST_CONFIRM (0)

#define MAC_START_REQUEST_CONFIRM (0)

The other features are omitted in the examples, but have to be set according to the

application need.

7.2.2.3 Implications and Internal Checks

There are a number of dependencies between several of the features mentioned

above. In order to keep the burden for the end user low, certain required internal

checks or further implicit settings are done while configuring the build. These checks

and implications can be seen in file /Include/mac_build_config.h.

7.2.2.3.1 MAC_COMM_STATUS_INDICATION

Communication systems usually follow the approach to implement primitives in pairs.

This is (1) Request / Confirm (for example, MLME_ASSOCIATE-request and

MLME_ASSOCIATE.confirm, or (2) Indication / Response (for example,

MLME_ASSOCIATE.indication and MLME_ASSOCIATE.response). Whenever such

an Indication / Response scheme is applied, the corresponding node needs a

confirmation that its last transaction has finished successfully (for example, the last

transmitted frame has been acknowledged by its receiver). This confirmation is done

within IEEE 802.15.4 by creating an MLME_COMMUNICATION_STATUS.indication

message to the upper layer.

This implies that whenever MAC_ASSOCIATION_INDICATION_RESPONSE or

MAC_ORPHAN_INDICATION_RESPONSE is used (both is valid for an FFD only),

the feature MAC_COMM_STATUS_INDICATION is enabled automatically.

7.2.2.3.2 MAC_SYNC_REQUEST vs.

MAC_SYNC_LOSS_INDICATION

Whenever the feature MAC_SYNC_REQUEST is used, also the feature

MAC_SYNC_LOSS_INDICATION is required to be included in the build. If the

requirement is not met, the C-pre-processor will indicate an error.

7.2.2.3.3 Dependency from

MAC_INDIRECT_DATA_BASIC

Whenever one of the subsequently listed features is used, also the feature

MAC_INDIRECT_DATA_BASIC is required to be included in the build:

 MAC_ASSOCIATION_INDICATION_RESPONSE

 MAC_ASSOCIATION_REQUEST_CONFIRM

 MAC_DISASSOCIATION_BASIC_SUPPORT

 MAC_DISASSOCIATION_FFD_SUPPORT

 Atmel AVR2025

 78

8412A-AVR-02/13

 MAC_INDIRECT_DATA_FFD

 MAC_PURGE_REQUEST_CONFIRM

If this requirement is not met, the C-pre-processor will indicate an error.

7.2.2.3.4 Dependency from

MAC_INDIRECT_DATA_FFD

Whenever one of the subsequently listed features is used, also the switch

MAC_INDIRECT_DATA_FFD is required to be included in the build:

 MAC_ASSOCIATION_INDICATION_RESPONSE

 MAC_DISASSOCIATION_FFD_SUPPORT

 MAC_PURGE_REQUEST_CONFIRM

7.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC

Whenever the feature MAC_PAN_ID_CONFLICT_AS_PC is used, also the following

features are required to be included in the build:

 MAC_START_REQUEST_CONFIRM

 MAC_SYNC_LOSS_INDICATION

7.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC

Whenever the feature MAC_PAN_ID_CONFLICT_ NON _PC is used, also the

following features are required to be included in the build:

 MAC_SYNC_LOSS_INDICATION

 MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

7.2.2.3.7 Dependency from BEACON_SUPPORT

Whenever the feature MAC_SYNC_REQUEST is used, also the switch

BEACON_SUPPRT is required to be included in the build. If the requirement is not

met, the C-pre-processor will indicate an error.

 Atmel AVR2025

 79

8412A-AVR-02/13

8 Migration History

8.1 Guide from version 3.0.x to 3.1.x

Following are the major updates on this release,

1. GTS feature implementation.
2. Data security error correction.
3. Beacon Security implementation.
4. RF4Control library updation.
5. Fixes for Motorola delivery.
6. High data rate support for MAC.
7. Beacon application changes for Security, GTS and Sleep.
8. Alignment and RAM optimization for SAM platforms.

8.2 Guide from version 2.8.x to 3.0.x

With the release of Atmel AVR2025 version 3.0.x a number of significant

improvements have been achieved by introducing design changes, enhancements,

changes in mac package structure and release approach.

The complete MAC software is integrated into the Atmel Software Framework (ASF)

in this release version.

The design changes do not affect the MAC and TAL layers. This release version

contains significant changes in the PAL layer; the PAL drivers no more exists in the

AVR2025 MAC software package, only the PAL wrapper functions will be available.

The Stack will be using the ASF-PAL drivers with the help of PAL wrapper functions.

Atmel Studio 6® support (with Wireless composer integrated) is added for all the

Atmel AVR 8bit and 32bit families supported in this version. MAC examples are

provided for Beacon and No-beacon applications. Performance Analyzer application

is added in TAL.

8.3 Guide from version 2.7.x to 2.8.x

Atmel AVR2025 version 2.8.x contains Mac application Power Management

enhancement, Performance Test Evk application redesign, Watchdog support for

SAM3S and a significant number of new hardware platforms and boards are added.

New transceiver’s AT86RF233, ATMEGARFR2 support added to this release. AVR

Studio 5.1® support got added for all the Atmel AVR 8bit and 32bit families. Mesh

bean support added for ATmega1281 MCU’s.

8.4 Guide from version 2.6.x to 2.7.x

Atmel AVR2025 version 2.7.x contains mac security and example applications to

demonstrate the mac security feature. AVR Studio 5® support got added for all the

Atmel AVR 8bit and 32bit families. Two new MAC applications got added which

covers most of the features of Beacon and No-beacon MAC.

 Atmel AVR2025

 80

8412A-AVR-02/13

9 Toolchain

The following sections describe the required tools and toolchain for the development

and build process and how the provided example applications can be built.

9.1 General prerequisites

The following tools and tool-chains are used for building the applications from this

MAC package:

 Atmel Studio 6

(see http://www.atmel.com/tools/ATMELSTUDIO.aspx)

 Atmel AVR and AVR32 GNU Toolchain for Windows

(see http://www.atmel.com/tools/atmelavrtoolchainforwindows.aspx)

 ARM Code Sorcery GCC Toolchain for Windows(IA32 Windows Installer)

(see http://www.codesourcery.com/sgpp/lite/arm/portal/release642)

 IAR Embedded Workbench for Atmel AVR V6.11

(see http://www.iar.com/)

 IAR Embedded Workbench for Atmel AVR32 V4.10

(see http://www.iar.com/)

 IAR Embedded Workbench for Atmel ARM V6.40

(see http://www.iar.com/)

9.2 Building the applications

9.2.1 Using GCC makefiles

Each application should be built using the provided Makefiles. Please follow the

procedure as described:

 Change to the directory where the Makefile for the desired platform of the

corresponding application is located, for example:

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp

cd xmega_a3bu_xplained_rz600rf212\gcc

 Run the desired Makefile, for example:

make –f Makefile

NOTE Makefile builds a binary optimized for code size without Serial I/O support, whereas
Makefile_Debug builds a version for better debug support without optimization but
with additional Serial I/O support

 After running one of the Makefiles the same directory contains both a hex-file and

an elf-file which can be downloaded onto the hardware (see Section Error!

Reference source not found.)

 The above procedure for building the Makefiles is common for Atmel AVR8, Atmel

AVR32, and ARM Platforms

9.2.2 Using IAR Embedded Workbench

Each application can be rebuilt using the IAR Embedded Workbench directly. Please

follow the procedure as described:

http://www.atmel.com/tools/ATMELSTUDIO.aspx
http://www.atmel.com/tools/atmelavrtoolchainforwindows.aspx
http://www.codesourcery.com/sgpp/lite/arm/portal/release642
http://www.iar.com/
http://www.iar.com/
http://www.iar.com/

 Atmel AVR2025

 81

8412A-AVR-02/13

 Change to the directory where the IAR Embedded Workbench workspace file

(eww-file) for the desired platform of the corresponding application is located, for

example:

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp

cd xmega_a3bu_xplained_rz600rf231\iar

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for

example beacon_coord.eww

 Select the desired workspace (Release or Debug) and Rebuild the entire

application in IAR Embedded Workbench

 After building the application the subdirectory IAR/Exe contains either an a90-file

(in case the Release configuration was selected) or a d90-file (in case a Debug

configuration was selected). Both binaries can be downloaded onto the hardware

(see Section Error! Reference source not found.)

 The Release configuration binary (a90-file) can be downloaded using IAR

Embedded Workbench directly or AVR Studio

 The Debug configuration binary (d90-file) can only be downloaded using IAR

Workbench and can be debugged using IAR C-Spy®

 In case is it desired to create a binary with IAR Embedded Workbench, which

contains AVR Studio Debug information and can thus directly be downloaded and

debugged using AVR Studio, the following changes need to be done with IAR

Embedded Workbench:

o Select the Debug configuration

o Open the “Options” dialog

o Select “Category” “Linker”

o Select tab “Output”

o Change “Format” from “Debug information for C-Spy” to “Other”

o Select “ubrof 8 (forced)” as “Output format”

o Select “None” as “Format variant”

o Rebuild the application

o The generated binary can now contains debug information that can

be used directly within AVR Studio

9.2.3 Using IAR AVR32 Embedded Workbench

Each application can be rebuilt using the IAR AVR32 Embedded Workbench directly.

Please follow the procedure as described:

 Change to the directory where the IAR Embedded Workbench workspace file

(eww-file) for the desired platform of the corresponding application is located, for

example:

cd D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\ncp

cd at32uc3a3256s_rz600_at86rf212\iar

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for

example beacon_coord.eww

 Select the desired workspace (Release or Debug) and Rebuild the entire

application in IAR Embedded Workbench

 After building the application the subdirectory IAR/Exe contains either an elf-file (in

case the Release or Debug configuration was selected).The binaries can be

downloaded onto the hardware (see Section Error! Reference source not found.)

 Atmel AVR2025

 82

8412A-AVR-02/13

 The Release configuration binary (elf-file) can both be downloaded using IAR

AVR32 Embedded Workbench directly or AVR Studio

 The Debug configuration binary (elf-file) can only be downloaded using IAR AVR32

Workbench and can be debugged using IAR AVR32 C-Spy®

9.2.4 Using IAR ARM Embedded Workbench

Each application can be rebuilt using the IAR ARM Embedded Workbench directly.

Please follow the procedure as describe:

 Change to the directory where the IAR Embedded Workbench workspace file

(eww-file) for the desired platform of the corresponding application is located, for

example:

cd

D:\ASF\thirdparty\wireless\avr2025_mac\apps\mac\beacon\coord\host

cd sam4lc4c_sam4l_xplained_pro\iar

 Double click on the corresponding IAR Embedded Workbench file (eww-file), for

example beacon_coord.eww

 Select the desired workspace (Release or Debug) and Rebuild the entire

application in IAR Embedded Workbench

 After building the application the subdirectory IAR/Exe contains either a binary file

or an elf-file (in case the Release or Debug configuration was selected). The

binaries can be downloaded onto the hardware (see Section Error! Reference

source not found.)

 The Release and Debug configuration binary or elf-file can both be downloaded

using IAR ARM Embedded Workbench directly

10 Example applications

The MAC package includes a variety of example applications which can be flashed

on the supported hardware platforms and be executed immediately. On the other

hand the complete source code is provided to help the application developer to more

easily understand the proper utilization of the stack and to be able to build its own

applications as fast as possible.

The provided example applications are categorized into two groups as MAC and TAL.

These applications are located under the apps subdirectory of avr2025_mac

directory.

These applications will be explained in more detail in the subsequent sections. If the

example application makes use of the UART interface, the UART is set to 9600

(8,N,1).

10.1 Walking through a basic application

This section describes a basic example application provided with this MAC release

(see Section 10.2.1.1) more thoroughly to allow better understanding of all other

examples. The example serves as a first introduction on how to control the MAC-API

and how to start an 802.15.4 compliant network. It can be used by a developer as a

starting point for further designs. The example implements a network with star

topology.

 Atmel AVR2025

 83

8412A-AVR-02/13

There are two types of nodes in the network: PAN Coordinator and device. A PAN

Coordinator can be understood as the central hub of a network. It handles association

requests from devices and assigns a short address if appropriate.

In this example, the PAN Coordinator does not initiate any data transmissions; it

receives data from the associated devices. The usr_mcps_data_ind() callback

function is provided only as stub and can be extended by user.

The Devices scan all channels for the PAN Coordinator. Once the coordinator is

found, the Device will initiate the association procedure. If the association is also

successful, the Device periodically (that is, every two seconds) sends out a data

packet to the Coordinator. The data packets contain a random payload. As already

mentioned earlier, this example can be extended by the user.

Details of application APIs can be viewed from doxygen documents.

10.2 Provided examples applications

10.2.1 MAC examples

10.2.1.1 Nobeacon_Application

10.2.1.1.1 Introduction

The basic MAC Example Nobeacon Application deploys a non-beacon enabled

network consisting of PAN Coordinator and Device utilizing the mechanism of indirect

data transfer between Coordinator and Device.

In this example the Coordinator wants to send data to the Device and since a Device

in a non-beacon enabled network is in sleep mode as default, direct transmission to

the Device is not possible.

In order to enable communication with the Device, indirect data transmission using

polling by the device is applied. For further explanation of indirect transmission see

section 5.4.1/5.4.2. For power management and indirect transmission see Section

6.2.4.

After the Device receives the data from the Indirect_Data_Queue from the

Coordinator, the Device sends back the data received from the Coordinator to the

Coordinator itself by direct data transmission

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory

avr2025_mac\apps\mac\no_beacon\. The source code of the application can be

found in the subdirectories coord or dev. The common source code for handling

Serial I/O can be found in the subdirectory wireless\addons\sio2ncp.

10.2.1.1.2 Requirements

The application requires (up to three) LEDs on the board in order to indicate the

proper working status. A sniffer is suggested in order to check frame transmission

between the nodes.

For further status information this application requires a serial connection. Depending

on the available Serial I/O interface for each board this can be either UART or USB.

In order to start the application and to see the output of the application please start a

 Atmel AVR2025

 84

8412A-AVR-02/13

terminal application on your host system and press any key for the application to

begin.

10.2.1.1.3 Implementation

The PAN Coordinator starts a PAN at first channel(Channel 11 for 2.4GHz) with the

PAN ID DEFAULT_PAN_ID. The Device scans for this network and associates to the

PAN Coordinator.

Once the device is associated, it uses a timer that fires every 5 seconds to poll for

pending data at the coordinator by means of transmitting a data request frame to the

coordinator. On the other hand the coordinator every 5 seconds queues a dummy

data frame for each associated device into its Indirect-Data-Queue. If the coordinator

receives a data request frame from a particular device, it transmits the pending data

frame to the device. Device after receiving the data from the Coordinator sends back

the data to the Coordinator itself by direct data transmission. While the device is idle

(when the timer is running) the transceiver enters sleep in order to save as much

power as possible.

10.2.1.1.4 Limitations

 The current channel is coded within the application. In order to run the application

on another channel, change the default channel in file main.c and re-built the

application.

 Currently only six devices are allowed to associate to the PAN Coordinator. This

can be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

10.2.1.2 Beacon_Application

10.2.1.2.1 Introduction

The basic MAC Example Beacon Application deploys a beacon enabled network

consisting of PAN Coordinator and (up to 100 associated) Devices. The application

shows how basic MAC features can be utilized within an application using beacon-

enabled devices, such as announcement of pending broadcast data at the

coordinator within beacon frames (that is, whenever the coordinator has pending

broadcast data to be delivered in a beacon-enabled network it sets the Frame

Pending Bit in the transmitted beacon frame) and synchronization with the coordinator

and utilization of beacon payload by the coordinator. Also the Coordinator in this

example wants to send data to the Device using indirect transmission. In order to

enable communication with the Device, indirect data transmission using polling by the

device is applied. For further explanation of indirect transmission see Section 5.4.1

/5.4.2. For power management and indirect transmission see Section 6.2.4.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory

avr2025_mac\apps\mac\beacon. The source code of the application can be found in

the subdirectories Coord or Dev.

 Atmel AVR2025

 85

8412A-AVR-02/13

10.2.1.2.2 Requirements

The application requires (up to three) LEDs on the board in order to indicate the

proper working status. A sniffer is suggested in order to check frame transmission

between the nodes.

For further status information this application requires a serial connection. Depending

on the available serial I/O interface for each board this can be either UART or USB. In

order to start the application and to see the output of the application please start a

terminal application on your host system and press any key for the application to

begin.

10.2.1.2.3 Implementation

The coordinator in this application creates a beacon-enabled network and periodically

transmits beacon frames with a specific beacon payload. The beacon payload

changes after a certain time period.

Each device of this application joins the beacon-enabled network by first attempting to

synchronize with the coordinator to be able to receive each beacon frame. Once it

has successfully synchronized with the coordinator, the device associates with the

coordinator.

The connected devices wake-up whenever a new beacon frame is expected, extract

the received payload of each beacon frame from its coordinator. This received

payload is printed on the terminal and sent back to the coordinator by means of a

direct data frame transmission to the coordinator. After successful beacon reception

and data transmission, the devices enter sleep mode until the next beacon is

expected.

The coordinator indicates each received data frame from each device on its terminal.

Whenever a device looses synchronization with its parent, it initiates a new

synchronization attempt.

Also in this application the coordinator periodically tries to transmit broadcast data

frames to all children nodes in its network. Whenever broadcast frames are pending

at the coordinator, it sets the Frame Pending Bit of the next beacon frame.

The connected devices wake-up whenever a new beacon frame is expected. Once it

receives a beacon frame that has the Frame Pending Bit set, it remains awake until a

broadcast data frame is received. After successful reception of the expected

broadcast data frame the devices enter sleep mode until the next beacon is expected.

Once the device is associated, when it receives a beacon frame that has the data

Frame Pending Bit set, the device sends a data request frame to the coordinator. On

the other hand the coordinator every 5 seconds queues a dummy data frame for each

associated device into its Indirect-Data-Queue. If the coordinator receives a data

request frame from a particular device, it transmits the pending data frame to the

device. While the device is idle (when the timer is running) the transceiver enters

sleep in order to save as much power as possible.

 Atmel AVR2025

 86

8412A-AVR-02/13

10.2.1.2.4 Limitations

 The current channel is coded within the application. In order to run the application

on another channel, change the default channel in file main.c and re-built the

application.

 Currently 100 devices are allowed to associate to the PAN Coordinator. This can

be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

10.2.1.3 No_beacon_sleep

10.2.1.3.1 Introduction

The application No_beacon_sleep provides a simple start network application based

on IEEE 802.15.4-2006.The application uses two nodes: a PAN Coordinator (1) and

an End Device (2). The firmware is implemented as such that a node can either act

as a PAN Coordinator or an End Device.

This application demonstrates how MCU sleep modes can be utilized in the wireless

networks in order to save more power. By default, End Device MCU is full sleep mode

wakes for every 2 seconds and sends a data to the coordinator before going to sleep

again.

This example application uses MAC-API as interface to the stack.

The application is located in directory avr2025_mac\apps\mac\no_beacon_sleep.

10.2.1.3.2 Requirements

The application requires (up to three) LEDs on the board in order to indicate the

proper working status. A sniffer is suggested in order to check the proper association

and the data transfer between the devices.

10.2.1.3.3 Implementation

The application works as described subsequently.

Node one:

 Switch on node one.

 LED 0 indicates that the node has started properly.

 Flashing of LED 1 indicates that the node is scanning its environment. Scanning is

done three times on each available channel depending on the radio type.

 If no other network with the pre-defined channel and PAN Id is found, the node

establishes a new network at the pre-defined channel (channel 20 for 2.4GHz

radio). This node now becomes the PAN Coordinator of this network. The

successful start of a new network is indicated by switching LED 1 on.

Node two:

 Switch on the other node.

 LED 0 indicates that the node has started properly. Flashing of LED 1 indicates

that the node is scanning its environment. Scanning is again done three times on

each available channel depending on the radio type.

 Atmel AVR2025

 87

8412A-AVR-02/13

 If a proper network is discovered, the node joins the existing network, indicates a

successful association by switching on LED 1 and goes both MCU and transceiver

to sleep.

 For every 2 seconds the end device wakes up and sends a data to the coordinator

before going to sleep again.

10.2.1.3.4 Limitations

 The current channel is coded within the application. In order to run the application

on another channel, change the default channel in file main.c and re-built the

application.

 Currently only 2 devices are allowed to associate to the PAN Coordinator. This can

be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

10.2.2 TAL examples

10.2.2.1 Performance_Analyzer

10.2.2.1.1 Introduction

The TAL example Performance_Analyzer is a GUI-based application used to

demonstrate various features and capabilities of Atmel 802.15.4 Transceivers such as

 Range of the Transceiver for peer-to-peer communication (Range

Measurement)
 Robust Link Quality
 Antenna Diversity
 TX Power of Radio
 Rx Sensitivity
 CSMA-CA Transmission
 Read / Write Transceiver Registers
 Continuous transmit test modes
 Reduced Power Consumption mode
 Energy Detection
 Cyclic Redundancy Check
 Battery Monitor

The different states of the Performance Analyzer application are explained and also

the state diagram is shown in Figure 10-1.Each state is represented by a number in

the state diagram

1 INIT

 Initializes all underlying layers like TAL, PAL and Resource Management
(BMM/QMM).

 Initializes all board utilities like LEDs and buttons etc.

2 WAIT_FOR_EVENT

 Initializes the TAL PIB attributes PAN Id with 0xCAFE, physical channel with
0x0B on both the nodes, and their radios are kept in receive state.

 Atmel AVR2025

 88

8412A-AVR-02/13

 Continuously search for the user events like Initiating peer search from GUI
or key press on the board (Peer Request) received on air.

3 PEER_SEARCH_RANGE_TX

 Enters after key press event is detected from user. Peer Search process in
Range Measurement mode as Transmitter node starts here.

 Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT,
PEER _RSP_RCVD, PEER_SEARCH_SUCCESS.

4 PEER_SEARCH_PER_TX

 Enters after initiating peer search from Wireless Composer. Peer Search
process in PER mode as Transmitter node starts here.

 Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT,
PEER _RSP_RCVD, PEER_SEARCH_SUCCESS.

5 PEER_SEARCH_RANGE_RX

 Enters after receiving a valid frame (Peer Request) from Transmitter. Peer
Search process in Range Measurement mode as Reflector node starts here.

 Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT,
WAIT_FOR_ PEER_CONF, PEER_SEARCH_SUCCESS.

6 PEER_SEARCH_PER_RX

 Enters after receiving a valid frame (Peer Request) from Transmitter. Peer
Search process in PER Measurement mode as Reflector node starts here.

 Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT,
WAIT_FOR_ PEER_CONF, PEER_SEARCH_SUCCESS.

8 RANGE_TEST_TX_ON

 Starts Range Measurement mode as Transmitter.

 Enters after successful Peer Search on key press event.

 Continuous packet transmission with a period of 200 ms time interval.

 Enters from RANGE_TEST_TX_OFF(7) state on button press

7 RANGE_TEST_TX_OFF

 Starts Range Measurement mode as Reflector.

 Enters after successful Peer Search on a valid frame (Peer Request in Range
Measurement mode) received from Transmitter.

 Receives the packets from other node and acknowledges (by an 802.15.4
protocol ACK) each packet received

 Enters from RANGE_TEST_TX_ON(8) state on button press

10 PER_TEST_INITIATOR

 PER Measurement mode as Transmitter

 Enters after successful Peer Search on initiating from Wireless Composer.

 Node shall go into sub states like TX_PER, TEST_FRAMES_SENT,
WAIT_FOR_TEST_RES, SET_PARAMETER, IDENTIFY_PEER,
DIVERSITY_SET_REQ, DIVERSITY_STATUS_REQ,
CRC_SET_REQ_WAIT, CRC_STATUS_REQ_WAIT,
CONTINOUS_TX_MODE, RESULT_RSP, DIV_STAT_RSP etc.

11 PER_TEST_RECEPTOR

 PER Measurement mode as Reflector

 Enters after successful Peer Search on a valid frame (Peer Request)
received from Transmitter.

 Atmel AVR2025

 89

8412A-AVR-02/13

 Node shall respond back for the cmds sent from different states in
Transmitter node.

9 SINGLE_NODE_TESTS

 Transmitter node in single node operation.

 Enters on user abort or Peer Search time out, i.e. No Peer Response is
received during the Peer Search process.

 Node shall go into sub states similar (but applicable) states in
PER_TEST_INITIATOR (10) by considering the Peer Search status as failed.

Figure 10-1. Performance Analyzer Application State Diagram

Successful board initialization

POWER_ON

Peer Req received
on air in Range mode

Peer Req received
on air in PER mode

Peer Search successful Peer Search successful Peer Search successful

Peer Search
 unsucceessful

Key press detected

4
PEER_SEARCH_PER_TX

Character on UART

2
WAIT_FOR_EVENT

5
PEER_SEARCH_RANGE_RX

6
PEER_SEARCH_PER_RX

9
SINGLE_NODE_TESTS

 Peer Search
 unsucceessful

1
INIT

10
PER_TEST_INITIATOR

 Peer Search
 unsucceessful

Peer Search successful

3
PEER_SEARCH_RANGE_TX

11
PER_TEST_RECEPTOR

Button Press

Periodic timer
triggered packet

transmissionButton Press

7
RANGE_TEST_TX_OFF

8
RANGE_TEST_TX_ON

Peer Search
 unsucceessful

User Aborted/
 Peer Search
 timed out

10.2.2.1.2 Requirements

Some of the pre-requisites for using this application are the Wireless

Composer GUI for PER Mode of Operation which can be found from Atmel Studio

Extensions, Atmel Studio 6.0 and above.

10.2.2.1.3 Implementation

10.2.2.1.3.1 Range Measurement mode

During Range measurement, the transmitter node will initiate a sequence to find a

peer node. Once peer node is found, packet transmission is initiated by the

transmitter to the receiver. The Receiver node acknowledges each packet received.

The procedure used for finding the peer node is explained in detail in the Section

10.2.2.1.3.3

 Atmel AVR2025

 90

8412A-AVR-02/13

Figure 10-2. Sequence diagram of Range measurement

Node 1 Node 2

Peer Request

(Broadcast)

Peer Request

(Broadcast)

Peer Response

(Unicast)

Peer Confirm

(Unicast)

Key press

Unicast data packets

Blink TX LED

Blink RX LED
Unicast data packets

Blink TX LED

Blink RX LED
Unicast data packets

Blink TX LED

Blink RX LEDUnicast data packets

Blink TX LED

Blink RX LED

The LED on the receiver will blink sequentially and repeat at the rate at which the

packets are received. The LED on the transmitter will blink sequentially & repeat at

the rate at which the packets are transmitted. The LED will blink at a constant rate on

the transmitter as the packets are transmitted at a constant duration. The packet

format is described in the section Packet Format

10.2.2.1.3.1.1 Packet Format

The transmitted packet format and content for the operation mode is customized to

suite only the requirements of this application. The format is shown in Table 10-5:

Table 10-5. Packet payload format for Range measurement

Octets 1 1 8

Payload Command ID Sequence Number Packet Count

Field Description is as follows:

 Command-ID:

(0x00) the value of command ID (DATA FRAME)

 Atmel AVR2025

 91

8412A-AVR-02/13

 Sequence Number:

To have a sequence of packets transmitted from the transceiver to the receiver.

The range of sequence number is 0x00 ~ 0xFF, will roll-over respectively. This is

to track the packet loss for a continuous transmission of packets.

 Packet Count:

The packet format maintains a 32 bit packet counter to count the number of

packets at any instant, by using an external sniffer tool. Once the limit is reached

(4294967295) then the counter resets itself to start again from 0x00000000.

10.2.2.1.3.1.2 Debug message support for – Range
measurement

Debug prints can be viewed if the node is connected to a UART terminal

The node on which the key was pressed will display a print as shown in Figure 10-3.

This node initiates the transmission and calls itself the TX node

Figure 10-3. Initializing Range measurement - transmitter (TX)

The node connected to the TX node will display a print as shown in Figure 10-4. This

node receives the packets and calls itself the RX node.

Figure 10-4. Initializing Range measurement - receiver (RX)

On input of any character in the UART Terminal it prints the statistics of the

messages received and messages sent as shown in Figure 10-5. Two way

communications can be enabled if the button is pressed on both the nodes.

Figure 10-5. Statistics of Range measurement

10.2.2.1.3.2 PER Measurement mode

The primary intent of this application is PER measurement. One of the nodes should

be connected to the Wireless Composer GUI in studio and other node can be

connected to the Terminal Window or can be left alone. The node connected to the

Wireless Composer is referred as transmitter and other node is referred as receiver.

For Comprehensive information of using this application along with the Wireless

 Atmel AVR2025

 92

8412A-AVR-02/13

Composer please refer

http://www.atmel.no/webdoc/wirelesscomposer/wirelesscomposer.html

10.2.2.1.3.2.1 Sensitivity testing

In the IEEE 802.15.4 standard, the receiver sensitivity is defined as the lowest

received signal power that yields a packet error rate loss of less than 1%. IEEE

802.15.4 requires only -85 dBm of sensitivity for operations in the 2.4 GHz ISM band.

Using the PER test, sensitivity can be tested by configuring one of the nodes as a

transmitter and another as a receiver. The number of packets to be transferred is

configured using Wireless composer and all the packets received by the receiver are

acknowledged. The receiver keeps a count of the packets received. At end of the test

the transmitter asks the receiver for the test results. The test results are displayed on

the Wireless Composer GUI.

For this test, unicast with ACK is used. Since the boards are not factory connected

they are field connected by the method described in the Section 10.2.2.1.3.3. Please

refer the Atmel Transceiver datasheet for expected sensitivity.

10.2.2.1.3.2.2 TX Power handling

The Atmel AT86RF231 provides the programmable TX output power from -17dBm to
3dBm. The output power of the transmitter can be controlled over a range of 20 dB.
Default TX power is set to 3dBm. The PER measurement mode gives an option to
configure the TX out power in the form of absolute power in dBm or TX PWR register
value in the composer GUI. If the AT86RF231 is connected with front end module
(e.g.REB231FE2 –EK kit), TX power can be extended till 21dBm.

The control of an external RF front-end is done via digital control pins DIG3/DIG4.
The function of this pin pair is enabled with register bit PA_EXT_EN (register 0x04,
TRX_CTRL_1). While the transmitter is turned off pin 1 (DIG3) is set to low level and
pin 2 (DIG4) to high level. If the radio transceiver starts to transmit, the two pins
change the polarity. This differential pin pair can be used to control PA, LNA, and RF
switches.

If the AT86RF231 is not in a receive or transmit state, register bit PA_EXT_EN
(register 0x04, TRX_CTRL_1) is disabled to reduce the power consumption or avoid
leakage current of external RF switches and other building blocks, especially during
SLEEP state. If register bits PA_EXT_EN = 0, output pins DIG3/DIG4 are pulled-
down to analog ground.

If AT86RF231 is connected with RF front end module (i.e.REB231FE2 –EK kit),
default TX power is 20dBm.To ensure FCC compliance TX Power of CH26 has to be
limited to 13dBm (TX_PWR = 0x0d).So if user changes the channel to 26 and the
default TX power is more than 13dBm, it shall be automatically changed to
13dBm.For CH26 the allowed range of TX power is 4dbm to 13dBm, for other
channels it is 4dBm to 21dBm.

10.2.2.1.3.2.3 Diversity feature testing

In a multi-path environment, several versions of the same signal with different

phases, delays, and attenuations will be added together at the receiver location, so

there is always the possibility that at some locations, the signals could cancel each

other out almost entirely. One way to overcome the multi-path issue is to use the

receiver antenna diversity technique. In this method, two antennas are used instead

http://www.atmel.no/webdoc/wirelesscomposer/wirelesscomposer.html

 Atmel AVR2025

 93

8412A-AVR-02/13

of one in the receiver. This way if one antenna is in a multi-path null (also known as

deep-fading region), the other antenna has a good chance of being outside the deep-

fading region. The receiver can switch between these two antennas to escape from a

multi-path null.

Enable Diversity in the radio by Selecting the Antenna Diversity tab in the GUI.

Diversity can also be configured in the reflector node by using Antenna Diversity on

Peer. (By default diversity is enabled). AT86RF231 has a built-in antenna diversity

feature. Upon reception of a frame the AT86RF231 selects one antenna during

preamble field detection. The REB Rx path is shown in the Figure 10-6.

The antenna diversity feature can be tested by doing the PER measurement on

conductive medium.

Figure 10-6. REB Rx path

10.2.2.1.3.2.4 Read Write Radio Registers

The Atmel AT86RF231 provides a register space of 64, 8-bit registers, used to

configure, control and monitor the radio transceiver. The PER measurement mode

gives an option to write / read the content of range of these registers through Wireless

Composer. Please note that when writing to a register, any reserved bits shall be

overwritten only with their reset value.

NOTE If the nodes are connected to each other and registers
related to channel selection (0x08-PHY_CC_CCA) or channel page selection (0x0C-
TRX_CTRL_2) or transmission power setting (0x05-PHY_TX_PWR) are changed, the
changes will be reverted to the old setting to prevent loss of connection with remote
node. To test these registers use the PER measurement mode with Peer Search
aborted.

10.2.2.1.3.3 Peer Search Process

The Peer Search process is described in detail below and is illustrated by a sequence

diagram. Initially the nodes uses their 64-bit MAC address as source address during

the Peer Search Process to get connected each other. During the Peer search

process 16-bit random address shall be assigned to both the devices.

 Atmel AVR2025

 94

8412A-AVR-02/13

Figure 10-7. Sequence Diagram for Peer Search process

Transmitter Reflector

PEER_CONF (M3)
(Src = rand addr2,Dest = rand addr1,payload = rand addr2)

Ack

E1

PEER_RSP_WAIT_TIMER
 (T1)

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range))

 PEER_RSP (M2)
(Src = rand addr1, Dest = 64 bit MAC addr,
 payload:rand addr2,mode byte(PER/Range))

Ack

PEER_INIT

PEER_REQ_SENT

PEER_RSP_RCVD

PEER_SEARCH_SUCCESS

PEER_INIT

PEER_RSP_SENT

WAIT_FOR_PEER_CONF

PEER_SEARCH_SUCCESS

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range))

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = 0xffff,

payload: rand addr1,mode byte (PER/Range))

PEER_CONF_WAIT_TIMER
 (T2)

PEER_RSP_WAIT_TIMER
 (T1)

PEER_RSP_WAIT_TIMER
 (T1)

 1

 1

 1

 2

 3

 4

1. On pressing the button T1 or Initiating peer search through Wireless Composer,

which is shown as an event E1, the node becomes Transmitter and sends a Peer

Request (M1) as broadcast at a constant period. Then the node enters into

PEER_REQ_SENT state. A timer PEER_RSP_WAIT_TIMER (T1) is started to

send the Peer Requests with 50ms time interval. A counter is started to count the

no. of Peer Requests sent. On every expiry of the timer T1, count value is

incremented by one. The Transmitter stops sending the Peer Request if the count

reaches to 0xff and the node goes to the WAIT_FOR_EVENT state again. The

Peer Request packet payload consists of a 16 bit random number and used as

source address (rand addr1) of the receiving node and the mode byte to indicate in

which mode (PER/Range) this Peer Request has been sent.

2. If any other node is in power on state and it receives this Peer Request packet, it

becomes Reflector, assigns itself this address (rand addr1) as its source address

(IEEE 802.15.4 protocol) and sends a Peer Response (M2) which is a unicast to

Transmitter as destination address using extended MAC address. The Reflector

node then enters into PEER_RSP_SENT state. After receiving the

acknowledgement for Peer Response from Transmitter node, Reflector node

enters into WAIT_FOR_PEER_CONF state, and a timer called

PEER_CONF_WAIT_TIMER (T2) is started with a timeout value of 200ms. If the

Peer confirm is not received within this time, the node goes to the

WAIT_FOR_EVENT state again. Peer Response payload consists of a random

generated 16 bit number used as source address (rand addr2) of the receiving

 Atmel AVR2025

 95

8412A-AVR-02/13

node i.e. Transmitter and the mode byte to indicate in which mode (PER/Range)

this Peer Response has been sent.

3. On receipt of the Peer Response packet, the Transmitter node assigns itself the

address received in the frame(rand addr2) as its source address (IEEE 802.15.4

protocol) and the node sends a Peer Confirm (M3) which is a unicast to Reflector

(source address = rand addr2 and destination address = rand addr1). Peer Confirm

frame consists of the address (rand addr2) sent to the Transmitter node in the

payload of Peer Response. After receiving the acknowledgement for Peer confirm

from Reflector, Transmitter node enters into PEER_SEARCH_SUCCESS state.

4. On receipt of the Peer Confirm, Reflector node stops the timer T2, checks the

packet and verifies the address is the same as the address it sent to the

Transmitter node in the Peer Response (rand addr2). If it is the same, Reflector

node enters into PEER_SEARCH_SUCCESS, and the nodes are connected each

other. If Reflector node does not receive any Peer Confirm within timeout the node

goes into WAIT_FOR_EVENT state. This process is followed to connect only a pair

of nodes if two nodes are in the powered on state.

The boards are assigned random addresses and if the Peer Search process is
successful then the test commences and the nodes operate in the respective
operation modes.

10.2.2.1.3.4 Configuration mode

Configuration mode is the startup mode in which two nodes (i.e. Transmitter and

Reflector) can connect each other if they are only within in the vicinity of one meter

approximately. This is to restrict the distance range for connecting devices. This is

used generally in seminars where there are no. of participants may start the

Performance test at the same time. With configuration mode provided, each individual

participant can make sure that his/her two devices are only getting connected without

disturbing the other devices. Once the Peer Search is done successfully, the nodes

shall come to the normal mode where the nodes can be kept afar.

User can enter into configuration mode by pressing the button T1 while Power on
/reset. Then user can initiate Peer Search by Initiating Peer search in composer for
PER measurement or button press for Range measurement. Then the device
(transmitter) shall go to the low TX level (TX_PWR = 0x0F) and sends the peer
request with the config_mode bit set to true. On the other device (reflector), if the peer
request received with config_mode bit true, it checks the ED level and if it is above
defined threshold, it will connect with the transmitter device. This ED threshold is
defined to allow connecting with the devices which are approximately below one
meter range. In configuration mode Transmitter node works with lowest TX power and
the Reflector sends the received packets to the application layer if it is above ED
threshold.

After successful Peer Search, devices shall come to the normal mode, which means

Transmitter node work with default TX power and the receiver node shall not do any

filtering based on the ED threshold value

10.2.2.1.3.5 Application Contents

Using the PAL and TAL package for the corresponding controller and radio

transceiver, the entire implementation of the Performance Analyzer Application

requires an additional set of following files.

 Atmel AVR2025

 96

8412A-AVR-02/13

Table 10-10. File list for Performance Test application

File name Short description of contents

main.c Main application task ,TX-done handler & Rx callback

functions (represents entire state machine)

user_interface.c User interface related functions like LED, Serial prints,

buttons

init_state.c Board and startup application initialization functions

(represents INIT State)

wait_for_event.c Functions for waiting for events like character on UART,

Key press etc

(represents WAIT_FOR_EVENT state)

peer_search_initiator.c Proprietary Peer Search related functions as Initiator

(represents PEER_SEARCH_ PER_TX &

PEER_SEARCH_RANGE_TX states)

peer_search_receptor.c Proprietary Peer Search related functions as Receptor

(represents PEER_SEARCH_ PER_RX &

PEER_SEARCH_RANGE_RX states)

range_measure.c Range measurement related functions

(represents RANGE_TEST_TX_OFF &

RANGE_TET_TX_OFF states)

per_mode_initiator.c PER measurement related functions as Initiator

(represents PER_TEST_INITIATOR &

SINGLE_NODE_TESTS states)

per_mode_receptor.c PER measurement related functions as Receptor

(represents PER_TEST_RECEPTOR state)

per_mode_common_utils.c Common utility function related to all PER mode states

perf_api_serial_handler Performs serial i/o communication with the composer GUI

10.2.2.1.4 Limitations

Only two devices are allowed connecting each other and communicating.

A switch on the board is required to enter into Range Measurement mode and

configuration mode

In case of the ATREB231FE2-EK, two nodes should be kept at least 50cm apart to

avoid the distortion due to high TX Power levels.

10.3 Common SIO handler (Serial I/O Handler)

Applications that require Serial input or output Communication (via UART or USB)

can use the sio2host and sio2ncp addons in

avr2025_mac\addons

 Atmel AVR2025

 97

8412A-AVR-02/13

12.3.110.3.1 SIO2HOST

The sio2host addon is used for serial i/o communication between the host(PC) and

the device.The sio2host can be either configured as USB or UART.

This module can be configured in the file conf_sio2host.h

12.3.210.3.2 SIO2NCP

The sio2ncp addon is used for serial i/o communication between the host(ex.SAM4L

Xplained Pro) and the NCP(Network-Co Processor)(XmegaA3U Zigbit Carrier board

connected to Extension of the Xplained Pro board) for 2p approach.Only UART can

be used as a sio2ncp module.

This module can be configured in the file conf_sio2ncp.h

10.4 Handling of callback stubs

The MAC stack must support asynchronous operation by all layers, for instance to

allow for callbacks from lower layers back to higher layers without blocking the control

flow. This is required to implement the request/confirm or indication/response

primitive handling. A common way of implementing asynchrony operation by lower

layers is the installation of callback functions, which are called a lower layer, but

actually implemented in the higher layer. Callbacks are required by both the TAL and

the MAC layer.

10.4.1 MAC callbacks

The MAC Core layer (MCL) requires the following callback functions:

 usr_mcps_data_conf

 usr_mcps_data_ind

 usr_mcps_purge_conf

 usr_mlme_associate_conf

 usr_mlme_associate_ind

 usr_mlme_beacon_notify_ind

 usr_mlme_comm_status_ind

 usr_mlme_disassociate_conf

 usr_mlme_disassociate_ind

 usr_mlme_get_conf

 usr_mlme_orphan_ind

 usr_mlme_poll_conf

 usr_mlme_reset_conf

 usr_mlme_rx_enable_conf

 usr_mlme_scan_conf

 usr_mlme_set_conf

 usr_mlme_start_conf

 usr_mlme_sync_loss_ind

 usr_mlme_gts_conf

 usr_mlme_gts_ind

 Atmel AVR2025

 98

8412A-AVR-02/13

These callback functions are declared in file mac/inc/mac_api.h. Each MAC based

application (HIGHEST_STACK_LAYER = MAC) needs to implement these usr_...()

callback functions.

For example an application that uses data transmission mechanisms, will call a

function wpan_mcps_data_request, which in return requires the implementation of the

corresponding asynchronous callback function usr_mcps_data_conf() to indicate the

status of the requested data transmission.

But the same application might, for example, not want to use the MAC primitive

MLME-SYNC-LOSS.indication. Nevertheless the callback function

usr_mlme_sync_loss_ind() needs to be available or the linker generates a build error.

This can be solved by either implementing an empty stub function in the application,

or, more conveniently, use an already existing stub function in files eg.

usr_mcps_data_conf.c All required MAC stub functions are already implemented in

the application files.

10.4.2 TAL callbacks

The TAL requires the following callback functions:

 tal_ed_end_cb

 tal_rx_frame_cb

 tal_tx_frame_done_cb

These callback functions are declared in file tal/inc/tal.h. Each TAL based application

(HIGHEST_STACK_LAYER = TAL) needs to implement these tal_..._cb () callback

functions. The MAC layer (residing on top of the TAL) has also implemented these

callback functions.

In case these callbacks are not used within the TAL based application, the existing

stub functions can easily be used. All required TAL stub functions are already

implemented in the files tal_*_cb.c in directory tal/src.

10.4.3 Example for MAC callbacks

All mac callbacks are included directly inside the main.c file and necessary callbacks

are used and others are left blank. These callbacks can also be included by adding

the file in the name of the call back eg.usr_mlme_reset_conf.c where the callback is

added but left unused.

10.5 Bootloader

All mac and tal application images can be uploaded without the use of a JTAG .The

BootloaderPcTool available in avr2025_mac/addons/bootloader can be used for this

purpose when using two-processor approach as well. The Bootloder hex files for

atxmega256A3U_zigbit_ext and atmega256rfr2_Zigbit available in the same folder

.Refer Figure 10-16 for the general approach for flashing an application image to the

NCP and Figure 10-17 for Bootloade PC Tool. Following are the steps to flash a MAC

or TAL application image to the device (NCP).

Flash the bootloader hex file to the device (NCP)

Flash the serial bridge hex file to the Host.

Connect the NCP to the Host and connect the host to the PC.

Open the BootloaderPcTool and select the desired COM port and baud

rate as 9600.

 Atmel AVR2025

 99

8412A-AVR-02/13

Select the srec file generated from either AtmelStudio or IAR.

Press the reset button on the NCP and release it once upload is pressed in the tool.

The process is done once the tool shows ‘Upload Complete’

For more details refer readme.txt in the same folder.

Note: This bootloader is supported only for 2P boards.

Figure10-8. General approach for using bootloader to program a NCP in 2p approach

Bootloader PC Tool Window

11 Supported platforms

This chapter describes which hardware platforms are currently supported with the

Atmel AVR2025 MAC software package. A platform usually comprises of three major

components:

 An MCU,

 Host MCU

 NCP

Embedded

Bootloader

Application

Image

Serial Bridge

Application

 Bootloader PC Tool

.srec image

 Serial

Connection

 Serial

Connection

 Atmel AVR2025

 100

8412A-AVR-02/13

 A transceiver chip (this may be integrated into the MCU for Single Chips)

 A specific Board or even several boards that contain the MCU or the transceiver

chip

11.1 Supported MCU families

Currently the following generic MCU families are supported:

 AVR32: Atmel AVR32 platforms

 SAM: Atmel SAM platforms

 MEGA_RF: Atmel AVR 8-bit ATmega RF Single Chip platforms

 XMEGA: Atmel AVR 8-bit ATxmega platforms

The dedicated code for each platform family can be found in the corresponding

subdirectories.

11.2 Supported transceivers

For a complete list of all supported transceivers please refer to the AVR2025 release

notes.

11.3 Supported boards

Few of the currently supported boards and combinations are given below.

 RF Xplained Pro – AtmegaRFR2

 ZigBit-ATmega256RFR2 (extender board)

 ZigBit-AT86RF233 Xmega (extender board)

 ZigBit-AT86RF212B Xmega (extender board)

 USB stick with ZigBit Xmega-AT86RF233

 USB stick with ZigBit Xmega-AT86RF212B

 SAMD20 with ZigBit AT86RF233

 SAMD20 with ZigBit-AT86RF212B

 SAM4L with ZigBit-ATmega256RFR2

 SAM4L with ZigBit Xmega-AT86RF233

 SAM4L with ZigBit Xmega-AT86RF212B

 RZ600 kits

 Xmega-a3bu Xplained with RZ600 radio modules

The following sections describe the currently supported boards and platforms in more

detail.

12 Platform porting

For details and description about platform porting please refer to Atmel Software

Framework documentation [9] and Atmel Studio-help [10]

http://store.atmel.com/PartDetail.aspx?q=p:10500360
http://store.atmel.com/PartDetail.aspx?q=p:10500361
http://store.atmel.com/PartDetail.aspx?q=p:10500349#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500367
http://store.atmel.com/PartDetail.aspx?q=p:10500351#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500351#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500342
http://store.atmel.com/PartDetail.aspx?q=p:10500342
http://asf.atmel.com/docs/latest/search.html?board=SAM4L%20Xplained%20Pro
http://asf.atmel.com/docs/latest/search.html?board=RZ600
http://store.atmel.com/PartDetail.aspx?q=p:10500293

 Atmel AVR2025

 101

8412A-AVR-02/13

13 Protocol implementation conformance statement

(PICS)

This chapter lists the conformance of the Atmel AVR2025 MAC implementation with

the requirements and optional features as defined by the standard specified in 4 in

Section D.7.

13.1 Major roles for devices compliant with IEEE Std 802.15.4-
2006

Table 13-1. Functional device types.

Item number Item description Status
Support

N/A Yes No

FD1 Is this a full function device (FFD) O.1 X

FD2
Is this a reduced function device

(RFD)
O.1 X

FD3 Support of 64 bit IEEE address M X

FD4
Assignment of short network address

(16 bit)
FD1:M

X

(FFD only)

FD5
Support of short network address (16

bit)
M X

O1: At least one of these features shall be supported.

13.2 Major capabilities for the PHY

Table 13-2. PHY functions.

Item

number
Item description Status

Support

N/A Yes No

PLF1 Transmission of packets M X

PLF2 Reception of packets M X

PLF3 Activation of radio transceiver M X

PLF4 Deactivation of radio transceiver M X

PLF5 Energy detection (ED) FD1:MO
X

(FFD only)

PLF6 Link quality indication (LQI) M X

PLF7 Channel selection M X

PLF8 Clear channel assessment (CCA) M X

PLF8.1 Mode 1 O.2 X

PLF8.2 Mode 2 O.2 X

PLF8.3 Mode 3 O.2 X

O2: At least one of these features shall be supported.

 Atmel AVR2025

 102

8412A-AVR-02/13

13.3 Major capabilities for the MAC sub-layer

13.3.1 MAC sub-layer functions

Table 13-3. MAC sub-layer functions.

Item

number
Item description Status

Support

N/A Yes No

MLF1 Transmission of data M X

MLF1.1 Purge data
FD1: M

FD2: O

X

(FFD only)

MLF2 Reception of data M X

MLF2.1 Promiscuous mode
FD1: M

FD2: O

X

(FFD only)

MLF2.2 Control of PHY receiver O X

MLF2.3 Timestamp of incoming data O X

MLF3 Beacon management M X

MLF3.1 Transmit beacons
FD1: M

FD2: O

X

(FFD only)

MLF3.2 Receive beacons M X

MLF4 Channel access mechanism M X

MLF5
Guaranteed time slot (GTS)

management
O X

MLF5.1 GTS management (allocation) O X

MLF5.2 GTS management (request) O X

MLF6 Frame validation M X

MLF7 Acknowledged frame delivery M X

MLF8 Association and disassociation M X

MLF9 Security M

X

(data

frames)

MLF9.1 Unsecured mode M X

MLF9.2 Secured mode O X

MLF9.2.1 Data encryption O.4 X

MLF9.2.2 Frame integrity O.4 X

MLF10.1 ED
FD1: M

FD2: O

X

(FFD only)

MLF10.2 Active scanning
FD1: M

FD2: O
 X

MLF10.3 Passive scanning M X

MLF10.4 Orphan scanning M X

MLF11
Control/define/determine/declare

superframe structure
FD1: O

X

(FFD only)

MLF12 Follow/use superframe structure O X

MLF13 Store one transaction FD1: M
X

(FFD only)

O4: At least one of these features shall be supported.

 Atmel AVR2025

 103

8412A-AVR-02/13

13.3.2 MAC frames

Table 13-4. MAC frames.

Item

number
Item description

Transmitter Receiver

Status

Support

N/A

Yes/No

Status

Support

N/A

Yes/No

MF1 Beacon FD1: M
Yes

(FFD only)
M Yes

MF2 Data M Yes M Yes

MF3 Acknowledgment M Yes M Yes

MF4 Command M Yes M Yes

MF4.1 Association request M Yes FD1: M
Yes

(FFD only)

MF4.2 Association response FD1: M
Yes

(FFD only)
M Yes

MF4.3 Disassociation notification M Yes M Yes

MF4.4 Data request M Yes FD1: M Yes

MF4.5
PAN identifier conflict

notification
M Yes FD1: M Yes

MF4.6
Orphaned device

notification
M Yes FD1: M

Yes

(FFD only)

MF4.7 Beacon request FD1: M Yes FD1: M Yes

MF4.8 Coordinator realignment FD1: M
Yes

(FFD only)
M Yes

MF4.9 GTS request MLF5: O Yes MLF5: O Yes

 Atmel AVR2025

 104

8412A-AVR-02/13

14 Abbreviations

API Application Programming Interface

ASF Atmel Software Framework

BMM Buffer Management Module

GPIO General Purpose Input/Output

IRQ Interrupt Request

ISR Interrupt Service Routine

MAC Medium Access Control

MCL MAC Core Layer

MCPS MAC Common Part Sub-layer

MCU Microcontroller Unit

MHR MAC Header

MIC Message Integrity Code

MLME MAC Sub-layer Management Entity

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

NHLE Next Higher Layer Entity

NWK Network Layer

PAL Platform Abstraction Layer

PAN Personal Area Network

PIB PAN Information Base

QMM Queue Management

RCB Radio Controller Board

REB Radio Extender board

SAL Security Abstraction Layer

SIO Serial I/O

SPI Serial Peripheral Interface

STB Security Toolbox

TAL Transceiver Abstraction Layer

TFA Transceiver Feature Access

TPS Transceiver Programming Suite

TRX Transceiver

WPAN Wireless Personal Area Network

 Atmel AVR2025

 105

8412A-AVR-02/13

15 References

1. Atmel Wireless MCU Software Website

http://www.atmel.com/products/microcontrollers/wireless/default.aspx?tab=tools

2. Dresden Elektronik Wireless data transmission 802.15.4 Website

http://www.dresden-elektronik.de/shop/cat4.html?language=en

3. Atmel Wireless Support avr@atmel.com

4. IEEE Std 802.15.4™-2006 Part 15.4: Wireless Medium Access Control (MAC)

and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area

Networks (WPANs)

5. Atmel XMEGA-A3BU Xplained Kits

http://www.atmel.com/tools/xmega-a3buxplained.aspx

http://www.atmel.com/tools/xmega-a3buxplained.aspx?tab=documents

6. RZ600 Evaluation Kit Website

http://www.atmel.com/tools/rz600.aspx?tab=overview

http://www.atmel.com/tools/rz600.aspx?tab=documents

7. ATAVRXPLAIN Evaluation and Demonstration Kit Website

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_

page

8. ATZB ZigBit Module Website

http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676

9. Atmel Software Framework

http://www.atmel.com/tools/avrsoftwareframework.aspx

http://asf.atmel.com/docs/latest/

10. Atmel Studio - http://www.atmel.com/microsite/atmel_studio6/

11. Atmel documents for supported families and boards : asf.atmel.com/docs/latest

16 User guide revision history

Please note that the referring page numbers in this section are referring to this

document. The referring revisions in this section are referring to the document

revision.

16.1 Rev. 2025M-MCU Wireless-03/13

Released with AVR2025 MAC Version 3.0.0

1. This release version is a re-architecture of MAC and PAL layers.
2. The complete stack is ported into Atmel Software Framework [9]

16.2 Rev. 2025M-MCU Wireless-06/12

Released with AVR2025 MAC Version 2.8.0

3. AT86RF233 TAL support and demonstrated with TAL and MAC Examples
4. ATMEGARFR2 TAL support and demonstrated with TAL and MAC Examples
5. Platform support added for ATmega1281_REB_4_1_STK600 and

ATZB_24_MN2
6. MAC examples and TAL examples added for ATZB_24_MN2
7. Pal_nvm_multi_write functionality added for AVR32

http://www.atmel.com/products/microcontrollers/wireless/default.aspx?tab=tools
http://www.dresden-elektronik.de/shop/cat4.html?language=en
mailto:avr@atmel.com
http://www.atmel.com/tools/xmega-a3buxplained.aspx
http://www.atmel.com/tools/xmega-a3buxplained.aspx?tab=documents
http://www.atmel.com/tools/rz600.aspx?tab=overview
http://www.atmel.com/tools/rz600.aspx?tab=documents
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page
http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676
http://www.atmel.com/tools/avrsoftwareframework.aspx
http://asf.atmel.com/docs/latest/
http://www.atmel.com/microsite/atmel_studio6/
http://asf.atmel.com/docs/latest/

 Atmel AVR2025

 106

8412A-AVR-02/13

8. Watchdog support added for SAM3S
9. MAC Application Power Management Support – Star Push Button, a MAC

Example demonstrates the feature.
10. Accelerometer_Display_App added for KEY_RC platform as a part of TAL

Example to demonstrate the LCD and Motion Sensor on it

16.3 Rev. 2025M-MCU Wireless-10/11

Released with AVR2025 MAC Version 2.7.1

11. Performance_Test_EVK and Performance Test Application merged as a single
application

12. Serial_AT_Interface added as a MAC application
13. Atmel AT86RF232 Radio support added for Atmel ATXmega256A3 and Atmel

AT32UC3B1128 as a part of MAC & TAL applications

16.4 Rev. 2025L-MCU Wireless-07/11

Released with AVR2025 MAC Version 2.7.0

14. New applications added along with this release namely,
i. Beacon_Application
ii. Nobeacon_Applications

15. Added Security Example Application to demonstrate MAC security
16. Atmel AVRStudio 5 Support for all AVR 8bit & AVR 32bit
17. Filtered and removed some of the platforms & MCU families
18. Added Performance_Test_EVK application description

16.5 Rev. 2025K-MCU Wireless-08/11

Released with AVR2025 MAC Version 2.6.1

19. mac_security.c file contents are completely removed for the web release
20. UART software driver issue working on SAM3S-EK Platform got fixed

16.6 Rev. 2025J-MCU Wireless-03/11

Released with AVR2025 MAC Version 2.6.0

21. Platform description for AVR32, SAM3S, CBB boards added
22. Tool Chain section is updated for AVR32, SAM.
23. Build Switches WATCHDOG,SLEEPING_TIMER for AVR32, XMEGA Platforms

added

16.7 Rev. 2025I-MCU Wireless-10/10

Released with AVR2025 MAC Version 2.5.3

24. Build switch ENABLE_RC_OSC_CALIBRATION for Mega-RF platforms added

16.8 Rev. 2025H-MCU Wireless-08/10

Released with AVR2025 MAC Version 2.5.2

25. MAC Example Star_High_Rate added
26. High Data Rate support added
27. Platform description for RZ600 on top of Xplain board added
28. Platform description for ATZB ZigBit Modules on top of MeshBean2 board added

 Atmel AVR2025

 107

8412A-AVR-02/13

16.9 Rev. 2025G-MCU Wireless-08/10

Released with AVR2025 MAC Version 2.5.1

29. Description of new design of TAL and MCL added
30. Description of Tiny-TAL added
31. Support for ZigBit 212 added
32. New compiler switches added
33. Support for ATxmega256A3 added
34. Migration Guide from 2.4.x to 2.5.x added
35. High-density Network Configuration added
36. Frame transmission and reception procedure added
37. Buffer handling description added

16.10 Rev. 2025F-MCU Wireless-02/10

Released with AVR2025 MAC Version 2.4.2

38. Support of program code larger than 128KByte added
39. PAN-Id conflict detection handling added
40. Support for AT91SAM7XC added
41. Description of application security added
42. Description of security build switches updated

16.11 Rev. 2025E-MCU Wireless-01/10

Released with AVR2025 MAC Version 2.4.0

43. Support for AT86RF231 and AT86RF212 with AT91SAM7X256 added
44. Support for ATmega128RFA1-EK1 added
45. Build switch DISABLE_TSTAMP_IRQ added
46. Support for ATmega1284P removed
47. Support for ATxmega256A3
48. MAC Porting Guide using ATxmega256A3 as example added
49. MAC Examples App 3 (Beacon Payload) and App 4 (Beacon Broadcast Data)

added
50. Build switch SYSTEM_CLOCK_MHZ renamed to F_CPU
51. Updated handling of MAC PIB attribute macRxOnWhenIdle and MAC power

management
52. New build switch BAUD_RATE added
53. Support for AT86RF230A and related hardware platforms discontinued
54. Handling of callback stub functions added Handling of callback stub functions

added
55. PICS Table added

16.12 Rev. 2025B-MCU Wireless-09/09

Released with AVR2025 MAC Version 2.3.1

56. Name of Radio Controller Board (RCB) changed: transceiver number suffix is
replaced by board suffix

57. Support for ATmega128RFA1 added
58. Handling of Promiscuous Mode updated.
59. Migration Guide for previous MAC versions removed
60. Filter tuning section added
61. Description of Performance test application extended
62. Support for ATxmega MCU based AES within SAL
63. Handling of MAC components updated
64. Initial Support for AT91SAM7X256 added

 Atmel AVR2025

 108

8412A-AVR-02/13

65. DISABLE_IEEE_ADDR_CHECK added
66. Chapter Supported Platforms added
67. Chapter Topics on Platforms Porting added

16.13 Rev. 2025-AVR-04/09

Released with AVR2025 MAC Version 2.2.0

68. Initial Version

 Atmel AVR2025

 109

8412A-AVR-02/13

8412A-AVR-02/13

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
`www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved.

Atmel
®
, Atmel logo and combinations thereof, AVR

®
, AVR Studio

®
, XMEGA

®
, STK

®
, SAM-BA

®
, QTouch

®
, ZigBit

®
, and others are

registered trademarks of Atmel Corporation or its subsidiaries. Windows
®
 and others are registered trademarks or trademarks of

Microsoft Corporation in U.S. and or other countries. ARM
®
 is a registered trademark of ARM Ltd. Other terms and product names may

be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

	Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User Guide
	Features
	Table of contents
	Table of figures
	1 Introduction
	2 General architecture
	2.1 Main stack layers
	2.1.1 Platform abstraction layer (PAL)
	2.1.2 Transceiver abstraction layer (TAL)
	2.1.3 MAC core layer (MCL)
	2.1.3.1 Stack task functionality
	2.1.3.2 MAC-API
	2.1.3.3 MAC core layer functionality

	2.1.4 Usage of the stack

	2.2 Other stack components
	2.2.1 Resource management
	2.2.2 Security abstraction layer
	2.2.3 Security toolbox
	2.2.4 Transceiver feature access
	2.2.4.1 Introduction
	2.2.4.2 Features

	3 Understanding the software package
	3.1 MAC package directory structure
	3.2 Header file naming convention

	4 Brief about ASF
	4.1 ASF directory structure

	5 Understanding the stack
	5.1 Frame handling procedures
	5.1.1 Frame transmission procedure
	5.1.1.1 Part 1 – Data frame creation and transmission
	5.1.1.2 Part 2 – Data frame clean-up and confirmation

	5.1.2 Frame reception procedure

	5.2 Frame buffer handling
	5.2.1 Application on top of MAC-API
	5.2.1.1 Frame transmission buffer handling
	5.2.1.2 Frame reception buffer handling

	5.2.2 Application on top of TAL
	5.2.2.1 Frame transmission buffer handling using TAL-API
	5.2.2.2 Frame reception buffer handling using TAL-API

	5.3 Configuration files
	5.3.1 Application resource configuration – app_config.h
	5.3.2 Stack resources configuration – stack_config.h
	5.3.3 TAL resource configuration – tal_config.h
	5.3.4 MAC resource configuration – mac_config.h
	5.3.5 NWK resource configuration – nwk_config.h
	5.3.6 Build configuration file – mac_build_config.h
	5.3.7 User build configuration file – mac_user_build_config.h

	5.4 MAC components
	5.4.1 MAC_INDIRECT_DATA_BASIC
	5.4.2 MAC_INDIRECT_DATA_FFD
	5.4.3 MAC_PURGE_REQUEST_CONFIRM
	5.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE
	5.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM
	5.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT
	5.4.7 MAC_DISASSOCIATION_FFD_SUPPORT
	5.4.8 MAC scan components
	5.4.9 MAC_ORPHAN_INDICATION_RESPONSE
	5.4.10 MAC_START_REQUEST_CONFIRM
	5.4.11 MAC_RX_ENABLE_SUPPORT
	5.4.12 MAC_SYNC_REQUEST
	5.4.13 MAC_SYNC_LOSS_INDICATION
	5.4.14 MAC_BEACON_NOTIFY_INDICATION
	5.4.15 MAC_GET_SUPPORT
	5.4.16 MAC_PAN_ID_CONFLICT_AS_PC
	5.4.17 MAC_PAN_ID_CONFLICT_NON_PC

	5.5 High-density network configuration
	5.6 High data rate support

	6 MAC power management
	6.1 Understanding MAC power management
	6.2 Reception of data at nodes applying power management
	6.2.1 Setting of macRxOnWhenIdle to true
	6.2.2 Enabling the receiver
	6.2.3 Handshake between end device and coordinator
	6.2.4 Indirect transmission from coordinator to end device

	6.3 Application control of MAC power management
	6.3.1 MAC PIB attribute macRxOnWhenIdle
	6.3.2 Handling the receiver with wpan_rx_enable_req()
	6.3.3 Handling Controller Sleep in Inactive Region
	6.3.3.1 Syntax
	6.3.3.2 Description
	6.3.3.3 Parameters
	6.3.3.4 Return

	6.3.4 Mac_wakeup
	6.3.4.1 Syntax

	Void mac_wakeup (uint32_t res_time);
	6.3.4.2 Description
	6.3.4.3 Parameters
	6.3.4.4 Return

	6.4 TAL power management API

	7 Application and stack configuration
	7.1 Build switches
	7.1.1 Global stack switches
	7.1.1.1 HIGHEST_STACK_LAYER
	7.1.1.2 REDUCED_PARAM_CHECK
	7.1.1.3 PROMISCUOUS_MODE
	7.1.1.4 ENABLE_TSTAMP

	7.1.2 Standard and user build configuration switches
	7.1.3 Platform switches
	7.1.4 Transceiver specific switches
	7.1.4.1 TAL_TYPE
	7.1.4.2 ENABLE_TFA
	7.1.4.3 HIGH_DATA_RATE_SUPPORT
	7.1.4.4 CHINESE_BAND
	7.1.4.5 RSSI_TO_LQI_MAPPING
	7.1.4.6 ENABLE_FTN_PLL_CALIBRATION
	7.1.4.7 DISABLE_IEEE_ADDR_CHECK
	7.1.4.8 DISABLE_TSTAMP_IRQ
	7.1.4.9 TRX_REG_RAW_VALUE
	7.1.4.10 SW_CONTROLLED_CSMA
	7.1.4.11 TX_OCTET_COUNTER
	7.1.4.12 TX RX_WHILE_BACKOFF

	7.1.5 Test and debug switches
	7.1.5.1 DEBUG
	7.1.5.2 TEST_HARNESS

	7.2 Build configurations
	7.2.1 Standard build configurations
	7.2.1.1 FFD feature set
	7.2.1.2 RFD feature set
	7.2.1.3 BEACON_SUPPORT feature set

	7.2.2 User build configurations – MAC_USER_BUILD_CONFIG
	7.2.2.1 Introduction
	7.2.2.2 File mac_user_build_config.h
	7.2.2.2.1 Examples

	7.2.2.3 Implications and Internal Checks
	7.2.2.3.1 MAC_COMM_STATUS_INDICATION
	7.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION
	7.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC
	7.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD
	7.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC
	7.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC
	7.2.2.3.7 Dependency from BEACON_SUPPORT

	8 Migration History
	8.1 Guide from version 3.0.x to 3.1.x
	8.2 Guide from version 2.8.x to 3.0.x
	8.3 Guide from version 2.7.x to 2.8.x
	8.4 Guide from version 2.6.x to 2.7.x

	9 Toolchain
	9.1 General prerequisites
	9.2 Building the applications
	9.2.1 Using GCC makefiles
	9.2.2 Using IAR Embedded Workbench
	9.2.3 Using IAR AVR32 Embedded Workbench
	9.2.4 Using IAR ARM Embedded Workbench

	10 Example applications
	10.1 Walking through a basic application
	10.2 Provided examples applications
	10.2.1 MAC examples
	10.2.1.1 Nobeacon_Application
	10.2.1.1.1 Introduction
	10.2.1.1.2 Requirements
	10.2.1.1.3 Implementation
	10.2.1.1.4 Limitations

	10.2.1.2 Beacon_Application
	10.2.1.2.1 Introduction
	10.2.1.2.2 Requirements
	10.2.1.2.3 Implementation
	10.2.1.2.4 Limitations

	10.2.1.3 No_beacon_sleep
	10.2.1.3.1 Introduction
	10.2.1.3.2 Requirements
	10.2.1.3.3 Implementation
	10.2.1.3.4 Limitations

	10.2.2 TAL examples
	10.2.2.1 Performance_Analyzer
	10.2.2.1.1 Introduction
	10.2.2.1.2 Requirements
	10.2.2.1.3 Implementation
	10.2.2.1.3.1 Range Measurement mode
	10.2.2.1.3.1.1 Packet Format
	10.2.2.1.3.1.2 Debug message support for – Range measurement

	10.2.2.1.3.2 PER Measurement mode
	10.2.2.1.3.2.1 Sensitivity testing
	10.2.2.1.3.2.2 TX Power handling
	10.2.2.1.3.2.3 Diversity feature testing
	10.2.2.1.3.2.4 Read Write Radio Registers

	10.2.2.1.3.3 Peer Search Process
	10.2.2.1.3.4 Configuration mode
	10.2.2.1.3.5 Application Contents

	10.2.2.1.4 Limitations

	10.3 Common SIO handler (Serial I/O Handler)
	10.4 Handling of callback stubs
	10.4.1 MAC callbacks
	10.4.2 TAL callbacks
	10.4.3 Example for MAC callbacks

	10.5 Bootloader

	11 Supported platforms
	11.1 Supported MCU families
	11.2 Supported transceivers
	11.3 Supported boards

	12 Platform porting
	13 Protocol implementation conformance statement (PICS)
	13.1 Major roles for devices compliant with IEEE Std 802.15.4-2006
	13.2 Major capabilities for the PHY
	13.3 Major capabilities for the MAC sub-layer
	13.3.1 MAC sub-layer functions
	13.3.2 MAC frames

	14 Abbreviations
	15 References
	16 User guide revision history
	16.1 Rev. 2025M-MCU Wireless-03/13
	16.2 Rev. 2025M-MCU Wireless-06/12
	16.3 Rev. 2025M-MCU Wireless-10/11
	16.4 Rev. 2025L-MCU Wireless-07/11
	16.5 Rev. 2025K-MCU Wireless-08/11
	16.6 Rev. 2025J-MCU Wireless-03/11
	16.7 Rev. 2025I-MCU Wireless-10/10
	16.8 Rev. 2025H-MCU Wireless-08/10
	16.9 Rev. 2025G-MCU Wireless-08/10
	16.10 Rev. 2025F-MCU Wireless-02/10
	16.11 Rev. 2025E-MCU Wireless-01/10
	16.12 Rev. 2025B-MCU Wireless-09/09
	16.13 Rev. 2025-AVR-04/09

