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Abstract—Hardware support for floating-point (FP) arithmetic 
is a mandatory feature of modern microprocessor design. 
There are many alternatives in floating-point unit (FPU) 
design, and overall performance can be greatly affected by the 
organization of a floating-point unit. In this paper, design 
considerations and trade-off factors are evaluated for two 
types of floating-point unit architecture and implementation 
optimized under different design goals. The implementation 
results of the proposed FPUs based on standard cell 
methodology in TSMC 0.18µm technology exhibit that both 
designs are well optimized for their target applications. A 
single-instruction issue design is implemented in very small 
area; however, a design capable of concurrently executing FP 
add and multiply instructions is achievable with only a modest 
24% area increase. 

I. INTRODUCTION 
 Due to the constant advances in VLSI technology and 

the prevalence of business, technical, and recreational 
applications that use floating-point operations, floating-point 
computational logic has long been an essential component of 
high-performance computer systems as well as embedded 
systems and mobile applications. Floating-point units (FPU) 
can be implemented in various ways, and the architecture of 
an FPU has a great affect on its overall performance, area, 
and power dissipation. This paper explores the trade-off 
space with respect to two FPU architectures that are 
optimized for different design goals. These two architectures 
were driven by the differing requirements of the Data-
Intensive Architecture (DIVA) and Morphable Networked 
Micro-Architecture (MONARCH) projects. Although the 
cornerstone of both projects is a high-density VLSI device 
including FPU capability, the two projects differ in area and 
performance goals. 

DIVA [1][2] uses embedded memory technology as 
processing-in-memory (PIM) to replace the memory system 
of a conventional workstation with “smart memories” 
capable of very large amounts of processing. DIVA targets 

applications that are not aided by caches in conventional 
systems due to little spatial or temporal data locality and are 
thus severely impacted by the processor-memory bottleneck. 
Based on our first PIM implementation, a PIM system 
incorporating these devices is projected to achieve speedups 
ranging from 8.8 to 38.3 over conventional workstations for 
a number of applications [2]. Since DIVA PIM chips serve 
primarily as memory components, it is important to preserve 
a large majority of the die area for memory, so the 
processing logic for such PIM chips should be compacted as 
much as possible. Hence, the FPU architecture design for 
DIVA should occupy minimal area when implemented, 
perhaps even at the expense of performance and power. 

MONARCH [3] targets real-time embedded applications 
that involve both high-speed signal processing and also data-
dependent decision-oriented computing. At an architectural 
level, the MONARCH chip contains functional units that 
may serve as the central elements in a dataflow architecture 
for highly efficient stream computing or through morphing 
they may become the basis of vector extension units 
controlled by embedded threaded processors, such as a 
simple RISC design. In the latter mode, the configuration of 
the computational elements strongly resembles the 
WideWord operation of DIVA [4]. To achieve high-
performance stream processing capability in MONARCH, 
FPU throughput should be maximized, even at the expense 
of area. 

The remainder of the paper explores trade-offs in FPU 
design as motivated by the DIVA and the MONARCH 
projects. Section 2 presents the description of basic FPU 
blocks followed by a detailed description of two types of 
FPU architectures. Implementation details are presented in 
Section 3. Section 4 presents the simulation and comparison 
results followed by a brief summary and conclusion in 
Section 5. 
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II. DIVA FPU AND MONARCH FPU 

A.  Basic Blocks: ALU and Multiplier/Divider Fused Unit 
Both the DIVA and the MONARCH FPUs implement a 

subset of the IEEE-754 floating-point standard [5]. Since 
target applications of both architectures are mostly from the 
multimedia realm, only single-precision numbers are 
supported. A multiplicative division algorithm is carefully 
chosen and implemented to minimize the area overhead 
while achieving high throughput. To achieve a better area-
performance solution, operations on denormalized numbers 
are not supported, and such operations cause exceptions 
when attempted. In addition, whenever a result is a 
denormalized number, an underflow exception is raised and 
the minimum normalized number is produced for output. The 
inexact exception flag on division operations is not IEEE-

754 compliant, which is common for multiplicative division 
algorithms. Additional operations are necessary to correct 
this. Other exception flags – Invalid, Divide by Zero, 
Overflow, Underflow and Inexact (except divide) – are 
accurately generated as specified by the IEEE-754 standard. 
All four rounding modes are implemented. 

Block diagrams of the ALU block and the Mul/Div block 
are shown in Fig. 1 and Fig. 2. Addition (which subsumes 
subtraction) and multiplication are not only the most 
frequently occurring floating-point arithmetic operations, but 
together they can support all other operations required by the 
IEEE 754 floating-point standard. We can regard all other 
functions, including division, as additions to or 
enhancements of these basic blocks. For these reasons, the 
implementation of addition and multiplication largely 
determines the overall performance of an FPU. Six 
operations (Add, Subtract, Fp2Int, Int2Fp, Absolute, Negate) 
are executed by the ALU block while Multiply and Divide 
operations are executed by the Mul/Div block.  

To meet performance requirements of modern scientific 
applications such as 3D graphics rendering, high 
performance is crucial for division as well as multiplication. 
Since eight copies of an FPU are to be implemented in the 
case of DIVA, a good area-performance solution was one of 
the primary design goals. To achieve this, we adapted the 
multiplicative division algorithm proposed by Liddicoat and 
Flynn [6][7], which computes the quotient significantly 
faster than other division algorithms with a relatively small 
hardware overhead. The multiplier in the Mu/lDiv fraction 
datapath is shared between multiply and divide operations 
and several multiply operations in the division algorithm are 
executed by this multiplier to reduce area. 

B. MONARCH FPU (Add-Multiply Configuration) 
The organization of the MONARCH FPU is shown in 

Fig. 3. MONARCH targets real-time embedded dataflow 
applications that require highly efficient stream processing 
capability. Therefore, the overall FPU architecture should be 
optimized to achieve higher performance, such as low 
latency and high throughput. To maximize the throughput of 
floating-point operations, a high issue rate is also an essential 

 
Figure 1. Block diagram of the ALU block 

 
Figure 2. Block diagram of the Mul/Div block 

 
Figure 3. MONARCH FPU organization 
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point of design consideration, especially the ability to 
concurrently execute FP add and multiply operations. 

To achieve such requirements, we adapted the Add-
Multiply configuration, which is a commonly used FPU 
architecture found in most modern microprocessors. This 
configuration consists of separate ALU and MulDiv blocks, 
and there is no common datapath component shared between 
these two blocks. Both blocks have separate inputs and 
outputs and they operate independently. Therefore, a high 
throughput can be achieved by issuing up to two floating-
point instructions at the same clock cycle, assuming one 
instruction is an ALU type and the other is a Mul/Div type. 
Since both basic FPU blocks do not share any component, 
each block can be optimized separately to have a reduced 
number of stages to achieve low instruction latency. As a 
result, the ALU block has a 3-stage pipelined architecture, 
and the MulDiv block has a 4-stage pipelined architecture. 
The latency of all ALU operations and multiply operation is 
3 clock cycles while the latency of division operation is 9 
clock cycles. (Note that the actual implementation of the 
MONARCH FPU for the streaming processing component 
does not support division operations.  The floating-point 
divider was included for the purpose of a fair comparison for 
this paper). 

C. DIVA FPU (Fused Configuration) 
Fig. 4 depicts the organization of the DIVA FPU. Since 

we need to preserve as much area as possible for memory in 
DIVA, several design considerations have been made. The 
exponent computation functions for both blocks are 
combined in one datapath to reduce area. Similarly, logic for 
converting to/from the internal number format and rounding 
logic are shared between both datapaths. DIVA execution 
control is a simple in-order single-issue instruction pipeline 
[4][8], therefore combining common datapaths does not 
suffer any performance penalty. The pipeline registers for the 
ALU and the Mul/Div blocks are controlled by separate 
enable signals so that only one of the datapaths is active for 
each instruction. A 2-stage pipelined fraction multiplier is 
used for better synthesis results and stage balance between 
the ALU and Mul/Div blocks. As a result, the proposed FPU 

for DIVA has a 5-stage pipelined architecture. The latency of 
all operations is 5 clock cycles except division, for which the 
latency is 12 clock cycles. For a more detailed description of 
the DIVA FPU, refer to [9][10]. 

III. IMPLEMENTATION 
Both FPU designs have been described in Verilog with 

the exception of the two-stage multiplier, where the netlist 
was generated using Synopsys synthesis tools. These netlists 
along with the ROM needed for the divider were combined 
together. For balanced pipeline stages and generating a 2-
stage multiplier, register retiming techniques have been 
generally applied in the logic synthesis step. The FPUs were 
synthesized to 0.18µm technology under the timing 
constraint of a 266MHz clock frequency, and the resulting 
netlists were then placed and routed to generate a layout 
using Cadence Silicon Ensemble. The layouts and features of 
both FPUs are presented in Fig. 5 and Table I, respectively. 

IV. COMPARISON RESULTS 

A. DIVA FPU vs. MONARCH FPU 
The implementation results show that the area of the 

DIVA FPU is 19.7% smaller than the area of the 
MONARCH FPU. The area overhead of the DIVA FPU to 
the overall PIM design is also very small as 8 FPUs occupy 
only 3.6% of the total area of the existing DIVA PIM chip, 
preserving the majority of the die area for memory. This area 
optimization has been achieved through sub-block sharing 
among different functions. Another factor of area reduction 
results from the architectural difference between the two 
designs. Since the DIVA FPU is a 5-stage pipelined 
architecture and the MONARCH FPU is a 3-stage pipelined 
architecture, a smaller design is generated in the case of the 
DIVA FPU in the synthesis step, when the same timing 
constraint is applied, as less logic per stage and overall is 

 
Figure 4. DIVA FPU organization 

Figure 5. DIVA FPU layout and MONARCH FPU layout

TABLE I. Summary of prototype FPUs 
 

 DIVA FPU MONARCH FPU
Technology TSMC 0.18µm CMOS 
Supply Voltage 1.8V 
Dimension 695µm x 693µm 750µm x 800µm 
Gate Count 9,467 12,539 
Transistor Count 105,539 119,777 
Speed 266MHz @1.8V 
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needed to meet the timing requirement. This architectural 
difference also shows that the MONARCH FPU exhibits 
superior performance to the DIVA FPU. In addition to 
supporting concurrent add/multiply operations, the latency of 
the MONARCH FPU is 3 clock cycles, while the latency of 
the DIVA FPU is 5 clock cycles (for all operations except 
division in both cases, as noted earlier). 

B. 1-stage multiplier vs. 2-stage multiplier 
A 2-stage pipelined multiplier was used in the DIVA 

FPU fraction datapath after several design considerations. By 
using a 2-stage multiplier, the number of stages is larger, 
therefore increasing the latency. However, the area of the 
overall synthesized design is smaller than one using a 1-stage 
multiplier because of the smaller size of the synthesized 
fraction multiplier, which occupies a substantial area in an 
FPU design. Since there are several multiply operations in 
the division algorithm used for both FPU designs, the 
multiplier architecture also affects the overall performance of 
division operations. When a 2-stage multiplier is used, the 
latency of the division operation increases from 9 clock 
cycles to 12 clock cycles. However, there is a slight 
throughput advantage of using a 2-stage multiplier since 
consecutive division instructions can be issued at every 5 
clock cycles, while 6 clock cycles of instruction issue delay 
are required to ensure in-order completion when a 1-stage 
multiplier is used. 

C. Power Dissipation 
Fig. 6 presents simulation results of the power dissipation 

of each FPU design for each instruction, where the same 
instruction was repeated on a random input data stream at the 
highest throughput rate. The results show that the DIVA 
FPU consumes approximately 41% more power than 
MONARCH FPU as the average power dissipation of the 
DIVA FPU is 100.5mW and the average power dissipation 
of the MONARCH FPU is 71.2mW with a clock frequency 
of 266MHz at 1.8v. This difference results mainly from the 
difference between the organizations of the two FPU designs. 
Even though one of either the ALU or Mul/Div fraction 
datapath is active by controlling the enable signals of the 
pipeline registers in the DIVA FPU, there are several 
components shared between the ALU and the Mul/Div 
blocks that operate continuously. On the other hand, since 

the ALU block and the Mul/Div block inside the 
MONARCH FPU are completely separated, exactly only one 
of them is active at all times for single-instruction issue. If 
the MONARCH ALU and Mul/Div blocks are operated 
concurrently, then obviously the power dissipation of the 
MONARCH FPU is larger than that of the DIVA FPU. The 
average power dissipation for multiply and divide 
instructions is more than other ALU type instructions, 
mainly resulting from the larger datapath of the Mul/Div 
block. 

V. CONCLUSION 
This paper presented two types of FPU architectures 

optimized for different design goals, their design trade-offs, 
implementation details and comparison results. Standard cell 
implementations based on TSMC 0.18µm CMOS technology 
have shown that each FPU design is well optimized to satisfy 
the requirements of its applications. A single-instruction 
issue design is implemented in very small area; however, a 
design capable of concurrently executing FP add and 
multiply instructions is achievable with roughly a 24% area 
increase. The DIVA FPU has been implemented in a PIM 
chip, and it is fully functional [10]. The MONARCH chip 
incorporating the other described FPU will tape out in 2005. 

ACKNOWLEDGMENT 
This research was supported by DARPA contract 

F33615-03-C-4105. 

REFERENCES 
[1] M. Hall and C. Steele, “Memory Management in PIM-based 

Systems”, in Proc. of the workshop on intelligent memory systems, 
Boston, MA, 2000 

[2] Jeff Draper, et al, “The Architecture of the DIVA Processing-In-
Memory Chip”, in Proc. of the International Conference on 
Supercomputing, June 2002 

[3] J. Granacki and M. Vahey, “MONARCH: A Morphable Networked 
micro-ARCHitecture”, presentation to High Performance Embedded 
Computing Workshop, October 2002 

[4] Jeffrey Draper, Jeff Sondeen, Chang Woo Kang, “Implementation of 
a 256-bit WideWord Processor for the Data-Intensive Architecture 
(DIVA) Processing-In-Memory (PIM) Chip”, in Proc. of the 28th 
European Solid-State Circuit Conference, Sep. 2002 

[5] “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE 
Standard 754, Aug. 1985 

[6] A. Liddicoat, “High-Performance Arithmetic for Division and the 
Elementary Function”, Ph.D. dissertation, Stanford University, Feb. 
2002 

[7] A. Liddicoat and M.J. Flynn, “High-Performance Floating-Point 
Divide”, Euromicro Symposium on Digital System Design, Sep. 2001 

[8] Jeffrey Draper, et al, “Implementation of a 32-bit RISC Processor for 
the Data-Intensive Architecture Processing-In-Memory Chip”, in 
Proc. of the IEEE International Conference on Application-Specific 
Systems, Architectures, and Processors, July 2002 

[9] Joong-Seok Moon, Taek-Jun Kwon, Jeff Sondeen, Jeff Draper, “An 
Area-Efficient Standard-Cell Floating-Point Unit Design for a 
Processing-In-Memory System”, in Proc. of the 29th European Solid-
State Circuit Conference, Sep. 2003 

[10] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen, Jeff Draper, 
“0.18µm Implementation of a Floating-Point Unit for a Processing-
In-Memory System”, in Proc. of the IEEE Internation Symposium on 
Circuits and Systems, May 2004 Figure 6. Power dissipation profile of each FPU 

3334


