
Automatic Application Specific Floating­point Unit
Generation

Yee Jern Chong, Sri Parameswaran
School of Computer Science & Engineering

University of New South Wales
Sydney, Australia

{yeejernc,sridevan}@cse.unsw.edu.au

ABSTRACT

This paper describes the creation of custom floating point units (FPUs)

for Application Specific Instruction Set Processors (ASIPs). ASIPs
allow the customization of processors for use in embedded systems

by extending the instruction set, which enhances the performance of
an application or a class of applications. These extended instructions

are manifested as separate hardware blocks, making the creation of
any necessary floating point instructions quite unwieldy. On the other

hand, using a predefined FPU includes a large monolithic hardware

block with considerable number of unused instructions. A customized
FPU will overcome these drawbacks, yet the manual creation of one is

a time consuming, error prone process. This paper presents a method-
ology for automatically generating floating-point units (FPUs) that

are customized for specific applications at the instruction level. Gen-
erated FPUs comply with the IEEE754 standard, which is an advan-

tage over FP format customization. Custom FPUs were generated for
several Mediabench applications. Area savings over a fully-featured

FPU without resource sharing of 26%-80% without resource sharing

and 33%-87% with resource sharing, were obtained. Clock period
increased in some cases by up to 9.5% due to resource sharing.

1. INTRODUCTION
The race to improve productivity and lifestyle has led to the pro-

liferation of embedded microprocessors into many common everyday

devices. The increasing performance demands, while still satisfying
cost, area and power constraints, have led to an interest in application

specific processor customizations. Especially demanding are portable
devices, which are becoming increasingly popular, continuously re-

ducing in size, and burgeoning in functionality. The demand for such
portable devices presents the challenge of creating evermore powerful

devices, while keeping within tighter contraints.

Floating-point (FP) operations are crucial for many scientific appli-
cations, such as processing experimental data, mathematical compu-

tations and physical simulations, as well as multimedia applications,
such as audio, video and graphics processing. While floating point

instructions can be emulated in software, the emulated performance
leaves a lot to be desired. Therefore, dedicated floating-point hard-

ware is highly sought after for floating-point intensive applications.
However, high performance floating-point units (FPUs) are large and

complex, and therefore, costly and power-hungry. They are also time-

consuming to design.
To optimize the size and performance of an FPU, it is desirable

to customize the FPU for the specific application that is to be exe-
cuted on it. This is possible for most embedded systems because they

execute a single application or a class of applications which are well-
known a priori.

Following the Application Specific Instruction Set Processor (ASIP)
philosophy, the operations supported by the FPU can be reduced to

the minimum needed to execute the desired application. This reduces

redundant resources and results in area and power savings.

To reduce cost, area and power, it is desirable for the FPU to have

as few hardware blocks and interconnections as possible. This can be
achieved by reusing as much of the hardware and interconnects be-

tween the datapaths of different operations as possible. This resource

sharing creates a shared datapath for all of the operations and reduces
the amount of redundant resources.

This paper presents for the first time, a methodology for the au-
tomatic generation of FPUs customized at the instruction-level, with

integrated resource sharing to minimize the area of the FPU. In this
methodology, the application to be executed on the system is profiled

and the required floating-point instructions are extracted. The netlist
describing the datapath for each of the necessary instructions are ob-

tained from a library and passed to a resource sharing process, where

the datapaths are merged. The resulting datapath description is then
used to generate the HDL for the custom FPU.

An interesting prospect of this methodology is that it would be
possible to generate FPUs that contain a mix of single- and double-

precision hardware, depending on the requirements of the application.
The rest of this paper is organized as follows: Section 2 discusses

previous research in the area of automatic FPU customization and re-
source sharing. In section 3, we present the FPU generation method-

ology, including the resource sharing algorithm and bit-alignment.

Section 4 describes the VHDL generation stage. The experimental
setup is described in Section 5. Section 6 presents and discusses the

results from its use in generating application specific FPUs for differ-
ent media applications. The final section gives the conclusion.

2. RELATED WORK
Previous research into FPU generation and customization, has fo-

cussed upon issues such as bit-width customization and choice of FP
algorithm.

Liang et. al. [1] presents a FPU generation tool for FPGAs that

chooses an appropriate implementation algorithm and architecture
based on user specified requirements. They focus only on choosing

the most appropriate FP addition implementation, but omit other op-
erations.

Gaffar et. al. [2] automatically customizes floating-point designs
by customizing the representation (bit-width) of the FP operations

based on user-specified accuracy requirements. They minimize the
bit-width while keeping the error/loss of precision to an acceptable

level. The downside is that it produces a non-standard FP format with

arbitrary mantissa and exponent sizes. Non-standard formats are less
desirable because in general, software is developed and verified on

IEEE754 compliant machines.
Central to our FPU generation methodology is the resource sharing

algorithm for merging the hardware datapaths of each instruction. Re-
source sharing is an important problem in high level synthesis (HLS).

Various solutions to the resource sharing problem have been proposed
[3, 4, 5, 6, 7, 8, 9, 10, 11].

Recently, Brisk et. al. [3] proposed an algorithm for merging a set

of custom instructions into a single datapath. Another approach was

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



C program

Compiler

Assembly file

Instruction 

profiling

Minimized 

coprocessor 

instruction set

Instruction 

merging

VHDL 

generation

Merged Datapath 

Description

Synthesizable 

FPU

(Area, Freq)

Instruction Netlist 

Library

Synopsys DC

Figure 1: Methodology

presented by Moreano et. al. [4]. The approaches of [3] and [4] ex-
clude many low-level details, which make them unsuitable for merg-

ing very complex architectures (such as floating-point architectures).

Floating-point architectures have many low-level details to consider,
such as input bit vectors made up of several smaller bit vectors. Our

work is based on the technique presented by [4], but adapted to sup-
port the required low-level information required.

While some degree of resource sharing in FPUs is common prac-
tice, such as sharing the rounding unit or the large multiplier between

multiple instructions, these have only been explored manually by FPU
designers. As the size of the design increases, it becomes more diffi-

cult to manually find the best sharing candidates.

Previous merging techniques do not consider the bit-alignment prob-
lem. This is a problem related to sharing hardware components and

interconnects of differing bit-widths. When a wider component (e.g.
11-bit adder) is shared with a smaller component (e.g. 8-bit adder),

the issue arises as to how the smaller component should be aligned
within the larger one. Schoofs et. al. [12] investigated a similar issue

when different bit length data is executed on the same DSP hard-
ware. They placed re-alignment muxes, which they called ’routers’,

at the inputs to functional units align the input signals. This approach

would be too costly in terms of area and delay for our FPU generation
scheme.

In this paper, we describe how a customized FPU is generated, and
show how the bit alignment problem can be solved. In particular our

contributions are:

• a constructive methodology to create a customized FPU; and
• a novel algorithm which solves the bit alignment problem.

3. METHODOLOGY
The methodology for the FPU generation is outlined in Figure 1.

The input is the source code for the application that is to be executed

on the processor. It is compiled into an assembly file, which is profiled
using an instruction profiling tool to determine the subset of the FP

instruction set that is required to execute the program. The FP instruc-
tions from that subset are extracted and further reduced by omitting

rarely used instructions that contribute a sizeable area cost. These are
emulated in software with an acceptable sacrifice of performance for

area (the design space exploration is beyond the scope of this paper).

The subset of instructions that the FPU needs to support is then
passed to the instruction merging stage. In this stage, the netlist for

each instruction is obtained from a library of instructions and passed
through the instruction merging algorithm. The instruction merging

algorithm merges the datapaths of each instruction into a single shared
datapath and outputs a new netlist. In addition to the netlist, auxiliary

data for placement and control of multiplexors are also generated.
The netlist is passed to the hardware generation stage, which gen-

erates the VHDL describing the shared datapath using a library of

VHDL components. The auxiliary data from the previous stage is

2compl

round
frac

or

int32

<<

24

[31:8]

[23:0]

LOD

5

[4:0]

[4:0]

32

[31:0]
[31:0]

[31:0]

32

[31:0]

[31:0]

32

[31:0]

[31]

[0]

1

[6:0]

[6:0]

7

1

[0]

[7]

1

[0]

[0]
+

[4:0]

[4:0]

5

[7:0]

[7:0]

8

constinv

[4:0]

111

[2:0]

[7:5]

3

[4:0]

5

frac_outexp_out

8
[7:0]

[7:0] [23:0]

[23:0]

24

sign_out

1

[0]

[31]

output port

input port

1

[0][0]

Figure 2: Structure of datapath to convert 32b integer to single

precision FP format

used to generate the multiplexors and the control signals for each of

the multiplexors.
The generated VHDL is then ready to be packaged as a co-processor

or a functional unit.

3.1 Instruction Merging Algorithm
The technique used for merging the instruction datapaths is based

on the maximum weight clique approach presented in [4]. However,
rather than merging simple graphs as shown in [4], more detailed

structures are merged. Due to the complex architectures associated

with floating-point and DSP hardware, extra lower-level detail is nec-
essary to ensure correct operation. The merging algorithm has to

handle different bit-width components, bit-alignment issues, multiple
output ports, and different bit-width ports on the same component.

A datapath structure would look similar to Figure 2, which depicts
the structure of a datapath for the Convert integer to single-precision

FP operation. It is a visual representation of a netlist describing the
datapath.

The netlists describing the structures contain both components and

connections. Components are characterized by:

• Type of function of the component

• Bit-width

• No. of input ports and their bit-widths

• No. of output ports and their bit-widths

• Area of component

Connections in the netlist are characterized by:

• Bit-width

• Source component

• Source port no.

• Destination component

• Destination port no.

• Bit-range of source port

• Bit-range of destination port

A component can represent a functional unit, source (e.g. input
operand, constant) or sink (e.g. output result). The area of each

component is estimated using synthesis tools (in our case - Synop-
sys Design Compiler). Components in the netlist can be written as

large functional units (coarse grained), such as a multiplier or round-
ing unit, or discrete gates (fine grained). The level of granularity that

the netlists are written in will determine the granularity of the in-

struction merging. A connection represents an interconnect between



2compl

<<LOD LOD <<

round

frac

int32

frac_out

2compl

round

frac

fracA

frac_out

2compl

>>

fracB

swap

+

LOD <<

int32

2compl

round

frac

fracA

frac_out

2compl

>>

fracB

swap

+

mux
A1

A2

A3 A4

A5

A6

B1 B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

output port

input port

Datapath 1

Datapath 2

Merged Datapath

Figure 3: Datapath Merging Example

a range of bits on a component’s port with a range of bits of another

component’s port.
A netlist for each instruction to be supported is created and added

into a library. The inputs to the merging algorithm are the netlists
for the instructions to be merged. These are selected from the pre-

designed library of netlists.
The merging of two datapaths is illustrated in Figure 3, where the

dotted lines represent possible hardware mappings and the thick in-

terconnects represent possible interconnect mappings. Datapath 1 in
Figure 3 represents a simplified version of Figure 2 and Datapath 2

represents a simplified version of the datapath for the fractional part
of a floating point addition. The merged datapath in Figure 3 illus-

trates how the two datapaths could be merged.
For simplicity, the netlists for the datapaths to be merged can be

modelled by Data-Flow Graphs (DFGs). A DFG is a directed graph
G = (V, E), where a vertex v ∈ V represents a component and an

edge e ∈ E represents an interconnect between two vertices. Each

vertex v has:

• a set of input ports pin = 1...Nin(v), if Nin(v) > 0.

• a set of output ports pout = 1...Nout(v), if Nout(v) > 0.

• attributes specifying its type, bit-width, estimated area and bit-

width of each port.

An edge e = (u, pout, v, pin) ∈ E represents an interconnect from
output port pout of vertex u to input port pin of vertex v.

Instruction datapaths to be merged are represented by DFGs Gi for

i = 1...n. Each of the graphs Gi are iteratively merged two at a time
into a shared datapath represented by G.

The instruction merging algorithm is illustrated in Figure 4 and
described in the following sub-sections. Figure 4(I) shows the two

graphs to be merged. Figure 4(II) shows the hardware and intercon-
nect mappings, where the dotted lines indicate which components and

interconnects can be shared. Figure 4(III) shows the compatibility
graph and Figure 4(IV) shows the resulting merged graph.

3.1.1 Hardware and interconnect mapping

The first step of the merging algorithm is to find all possible map-
pings between the two netlists to be merged, say Gi = (Vi, Ei) and

Gj = (Vj , Ej). The example in Figure 4(II) shows possible map-

pings between two graphs (dotted lines). A vertex vi ∈ Vi can be

in1

x

in2 in3

+

in1

+

in2 in3

-

in1

x

in2 in3

+/-

+

mux

A1 A2 A3

A4

A5

B1 B2 B3

B4

B5

A1/B1 A2/B2 A3/B3

A5/B5

A4 B4

A3:A5/
B3:B5

in1

x

in2

+

in1

+

in2

-

A1 A2 A3

A4

A5

B1 B2 B3

B4

B5

in3in3

A1/B1 A5/B5

A3:A5/

B3:B5

A2/B2

A3/B3

A5/B4

w1=5 

w6=10 w3=5

w4=100 

w5=100 w2=5 

I

II

III

IV

G1 G2

G1 G2
_

G

Gc

Figure 4: DFG merging process: I - DFG G1, G2; II - Hardware

and Interconnect mapping; III - Compatibility graph and maxi-

mum weight clique solution; IV - Merged DFG

merged with a vertex vj ∈ Vj into a mapping vi/vj if they are of
the same type (e.g. both are adders) or if they are of compatible

types (e.g. adder and subtractor can be replaced with a combined

adder/subtractor). If vi and vj do not have identical bit-widths, the
mapping vi/vj will take on the wider bit-width when merged, i.e.

bit width(vi/vj) = max{bit width(vi), bit width(vj)}. The es-
timated area savings by a mapping are calculated based on the area

of each vertex to be merged. A mapping of two vertices results in an
area saving equal to the combined area of the two vertices minus the

area of the resulting combined component: Area saved(vi/vj) =
Area(vi) + Area(vj) − Area(vi/vj).

Two edges ei = (ui, pouti
, vi, pini

) ∈ Ei and ej = (uj , poutj
,

vj , pinj
) ∈ Ej can be mapped if they satisfy these conditions:

• source vertex ui can be mapped to source vertex uj .

• destination vertex vi can be mapped to destination vertex vj .

• source port pouti
matches source port poutj

.

• destination port pini
matches destination port pinj

.

The area saved by mapping two connections is equal to the area of a
multiplexor, which would be required if the connection is not shared:

Area saved(ei/ej) = Area(mux).

3.1.2 Non­beneficial mapping removal

The second step checks the mappings to find which of the vertex

mappings require a multiplexor at one or more of its input ports. If
a vertex mapping vi/vj has an input edge that cannot be shared (i.e.

it has more than one arc going into an input port), it will require a

multiplexor at that input port. The area savings calculated earlier are
then adjusted to account for the need for multiplexors. All mappings

that end up with zero or negative area savings are removed. This
ensures that mappings that do not contribute to area savings due to

additional multiplexors are not considered. For example, if a small
component like a 2-input AND gate can be shared, but the intercon-

nects at its inputs cannot be shared, then it requires multiplexors at its
inputs (Figure 5). In this case, the area of two unshared AND gates

would be less than a shared AND gate with multiplexors.

3.1.3 Compatibility graph

The third step involves constructing the compatibility graph using

the mappings determined in the earlier steps. The compatibility graph

is an undirected weighted graph that represents which mappings are



A B

Y

C D

Z

B

Z

D

mux

G1 G2

_

G

CA

mux

Y

Figure 5: Case where merging results in larger area

compatible with each other. Figure 4(III) shows an example of a com-

patibility graph.

Let Gc = (Vc, Ec) be the compatibility graph for a pair of DFGs
Gi and Gj . A vertex vc ∈ Vc represents either a component map-

ping vi/vj between vi ∈ Gi and vj ∈ Gj or a connection mapping
ei/ej between ei ∈ Gi and ej ∈ Gj . Each vertex in the compat-

ibility graph vc ∈ Gc has a weight wc that corresponds to the area
reduction achieved by that mapping (see Section 3.1.1). An edge

ec = (uc, vc) ∈ Gc between two vertices indicates that the two map-
pings represented by the vertices uc and vc are compatible. If there

exists a conflict between two mappings, they are incompatible with

each other, i.e. two vertices in Gc are incompatible if they map the
same component to different components.

3.1.4 Maximum weight clique solution

To find the set of compatible mappings that provide the greatest

area reduction, the maximum weight clique for the compatibility graph
is solved. The maximum weight clique of the graph Gc = (Vc, Ec) is

a subgraph GMWC ⊆ Gc, where all vertices in GMWC are pairwise
adjacent and the total weight of all the vertices in GMWC is max-

imum. The thick lines in Figure 4(III) shows the maximum weight

clique for the example.
This is known to be an NP-complete problem and is solved using a

heuristic polynomial-time algorithm. The Cliquer tool [13], which is
based on a branch-and-bound technique, was used to solve the prob-

lem.
The resulting graph GMWC is then used to reconstruct the netlist

describing the new merged datapath.

3.1.5 Bit Alignment

Floating-point instructions require many components of varying

bit-widths, and therefore it is desirable to merge components of dif-
ferent bit-widths. This brings up the problem of bit-alignment where

datapaths with different bit widths share the same hardware and inter-
connects. The problem is how a narrower component or interconnect

should be aligned within a wider component or interconnect, while
maintaining correct operation, maximizing the sharing of wires and

minimizing re-alignment points. Another issue is how to integrate the

bit-alignment into the existing merging algorithm.
In the case of resource sharing, bit-alignment problems only ex-

ist in shared components or interconnects. Unshared resources have
their own separate hardware, so they do not suffer the same problem.

Therefore, we only need to examine the mappings in the compati-
bility graph when considering bit-alignment problems. Where there

exists an interconnect mapping that cannot be aligned, a mux must
be placed to ensure both interconnects align correctly to a component

input. This can be done by deleting from the compatibility graph the

interconnect mapping that cannot be aligned.
When a smaller component is mapped to a larger component, we

refer to the larger component as the ’carrier’ and the smaller compo-
nent as the ’passenger’. The ’passenger’ has to be aligned within the

’carrier’. We represent the alignment as an offset from either the LSB
side or the MSB side. In most cases, components have zero offset

from one of the sides.
Components are classed as either having flexible or fixed align-

ments. With a component having flexible alignment, the alignment

of the data word is not critical to its correct operation. For example,

adders, subtractors and bit-wise operations. The input data can be

freely aligned (with appropriate padding bits) without affecting the
result, though the alignment of the result at the output may change.

Note that there may be other considerations, like the location of the
carry-out bit changes with different alignments in adders.

With a component with fixed alignment, the alignment of data word

is critical to its correct operation. For example, a leading-one detector
(LOD) requires the MSB of the input to be aligned to the MSB of the

LOD.
Each component in the netlist is tagged with the following infor-

mation:

• its alignment (flexible or fixed).
• input and output ports that are affected by alignment.

• alignment offset (if fixed alignment).

In floating-point architectures, the majority of components have

flexible alignments with a few fixed alignment components. Our
method for bit-alignment is performed by analyzing the compatibil-

ity graph from Section 3.1.3. A breadth-first search traversal of the
compatibility graph is performed, starting at a mapping of two fixed

alignment components with different bit-widths. The alignment of the
passenger within the carrier is set according to the offset tag. Next, the

compatibility graph is traversed to all vertices affected by this align-
ment, propagating the alignment offset. Vertices affected by a compo-

nent alignment are connection mappings connected to the component,

and vice versa.
The connection mappings at the affected vertices are aligned based

on the propagated alignment offset. The traversal continues by prop-
agating the offset to all affected component mappings. The process

continues until a termination condition is met. A termination condi-
tion occurs:

• if there exists no more shared connection along a path; or,
• if a component mapping has no input or output port that is af-

fected by the alignment; or,
• an alignment is impossible (the passenger component extends

beyond the boundaries of the carrier due to the required align-
ment).

When a termination condition is met, the traversal along that path

is halted. If alignment is impossible, the connection mapping just be-
fore the termination point is marked for deletion. The traversal path

and alignment information for each vertex is stored as an alignment
tree T . The process is repeated starting at the next fixed alignment

component mapping on a copy of the original compatibility graph.
This continues until all vertices with a fixed alignment component

mapping has its own alignment tree. The resulting alignment trees are
then compared and merged. Any alignment trees that do not have ver-

tices that overlap can be merged directly. Alignment trees that have

overlapping nodes can be also be merged directly if the overlapping
nodes have the exact same alignment, otherwise they are incompat-

ible. To merge alignment trees that are incompatible, the alignment
of one one of the trees over-rides the overlapping parts of the other

incompatible trees. The final merged alignment tree is then applied to
the compatibility graph by applying the alignment data to each vertex

and deleting vertices that are marked for deletion.

Algorithm 1 Bit-alignment

Let T = {T1, ..., Tn} be a set of alignment trees
for all vi ∈ Gc do

if vi is a fixed alignment component mapping with bit-width mis-match
then

Ti ← Build alignment tree rooted at vi

T ← merge alignment trees(T)

Gc ← apply alignment tree(T , Gc)

return Gc

The bit-alignment algorithm is shown in Algorithm 1 and the over-

all algorithm for the instruction merging is shown in Algorithm 2.



Algorithm 2 Datapath merging of n instructions

//Merge instructions represented by Gi = (Vi, Ei) for i = 1...n
Let Ga = (Va, Ea) and Gb = (Vb, Eb) be the graphs to merge.
Ga ← G1

for i← 2 to n do
Gb ← Gi

//Hardware mapping
Let M = {m1, ...,mn} be a set of mappings,
where mk = (vi, vj , wk) or (ei, ej , wk), and vi/vj is a mapping be-
tween hardware components, ei/ej is a mapping between interconnects
and wk is the area saved by the mapping.
M ← build mappings(Ga, Gb)
//Non-beneficial mapping removal
for all mk ∈M do

if multiplexor(s) required then
Adjust wk to account for mux area

if wk ≤ 0 then
delete mk from M

Gc ← construct compatibility graph(M )

Gc ← bit alignment(Gc )

GMWC ← find max weight clique (Gc)

G← reconstruct DFG(GMWC , Ga, Gb)
//Merged graph fed back for next iteration

Ga ← G
return G

4. VHDL GENERATION
The VHDL generation stage generates a structural VHDL repre-

sentation of the netlist. The VHDL generation tool was written in C.
Its inputs are the netlist of the merged datapath from the instruction

merging stage and auxiliary information for multiplexor placement
and control. The netlist is converted into data structures describing

components and interconnections. The component data structures are
then used to generate the component declarations, and port mapping

using a library of VHDL descriptions for each component is used.
The input and output ports of each component is assigned a unique

identifiable signal name in the port mapping to ease signal assign-

ment. The connection data structures are used to generate the sig-
nal assignments. The auxiliary information passed from the instruc-

tion merging stage helps the VHDL generation tool with multiplexor
placement and control. Multiplexors are placed at input ports that

have more than one interconnect connected to it. The VHDL gener-
ation tool simply uses conditional signal assignments to create these

muxes (e.g. signal in <= signal in 1 when (instruction = fadd64)

else signal in 2;).

5. EXPERIMENTAL SETUP
To test the methodology, FPUs for a Simplescalar base processor

were generated targeting various applications. The FPUs were at-

tached to the base processor as a tightly coupled co-processor. The
processor is based on the SimpleScalar/PISA instruction set [14], which

includes the following FP instructions:

• single and double precision FP arithmetic instructions: addi-

tion, subtraction, multiplication, divide and square root.

• conversion instructions between integer, single and double pre-
cision formats.

• data movement or manipulation instructions: move, absolute,
negate.

• branch decision instructions.

The FPU has a separate register file and uses instructions such as,
move to co-processor1 (mtc1) and move from co-processor1 (mfc1) to

move data between the base processor and FPU. Of all the instruc-
tions, the arithmetic and conversion instructions would benefit most

from instruction merging, as other instructions do not require com-
plex hardware. The hardware to support these instructions were de-

signed and added to the instruction library as netlists. The floating

point architecture was designed to be IEEE754 [15] compliant.

Table 1: Simulation results
No resource sharing Resource sharingApp

Area %∆A T(ns) %∆T Area %∆A T(ns) %∆T

I 104331 NA 11.7 NA NA NA NA NA
II 83404 -20.0 11.8 0.09 59947 -42.5 13.6 15.5

Epic 43068 -58.7 11.6 -0.9 29039 -72.1 12.9 9.5
Unepic 20934 -79.9 9.4 -19.8 13684 -86.9 10.3 -12.6

mpeg2dec 69792 -33.1 11.7 -0.3 63156 -39.5 12.4 5.4
mpeg2enc 77062 -26.1 11.9 1.2 69725 -33.2 12.4 5.6
jpegdec 23459 -77.5 9.6 -18.1 17343 -83.4 10.3 -12.5

The FP addition/subtraction architecture is usually the most com-

plicated of the FP instructions. The FP addition algorithm is based on
the standard 5-stage design described in [16].

The multiplier is usually the most critical single component in float-

ing point designs because of the size and delay. Double precision
floating point multiplication requires a large 54x54 bit multiplier. There-

fore, a fast Booth-encoded Wallace-tree multiplier was used. Radix-4
Modified Booth Encoding (MBE) was used to reduce the number of

partial products, a Wallace tree was used to reduce the partial products
and a fast carry-select adder was used for the final addition.

The floating point divide and square root were designed based on
an iterative Radix-2 SRT algorithm. This architecture was chosen

for its simplicity and small area. The downside is that the latency is

equal to the number of bits it has to compute. However, in most ap-
plications, divide and square root instructions are much less frequent

than additions and multiplications.
Rounding mode was set to the IEEE default round-to-nearest-even,

but the other rounding modes can be easily implemented. Excep-
tions arising from overflows, invalid operands, NaNs and infinity are

detected. Hardware support for denormals and underflow was not im-

plemented and is assumed to be handled in software.
Applications were selected from the Mediabench suite [17] and

compiled using the Simplescalar [14] compiler. The compiled bi-
naries were then profiled using the Simplescalar profiling tool. The

instruction profiles were analyzed to find the subset of floating point
instructions to support. The instructions were fed into the instruc-

tion merging tool to obtain the merged datapath. The VHDL for the
merged datapath was generated and synthesized using Synopsys De-

sign Compiler [18] to obtain area and timing information. Synthesis

was performed with the 0.18µm TOWER library available from Syn-
opsys.

Custom FPUs were generated for several Mediabench applications
- EPIC decoder and encoder, MPEG2 decoder and encoder and JPEG

decoder. The JPEG application was executed with the ”-dct float”

flag to force it to use a floating point DCT instead of the default inte-

ger DCT. If both single and double precision versions of the same op-
eration needs to be supported (e.g. single-precision FP add & double-

precision FP add), only the double-precision datapath is synthesized

because the single precision instruction can be executed on the double-
precision datapath, but not vice-versa. To gauge the effectiveness of

resource sharing, custom FPUs were generated with and without re-
source sharing.

6. RESULTS
Table 1 shows the area and timing results of the simulations. The

first column shows the application for which the FPU was customized
for. In this column, I is an FPU with all single- and double-precision

FP instructions in the PISA instruction set. II is an FPU with all
double-precision FP instructions. II is of interest because double-

precision hardware can execute single-precision operations without
loss of precision, but not vice-versa. Columns 2-5 show the area (no.

of gates), % change in area of each FPU (compared to I), minimum
clock period and % change in clock period (compared to I) without

resource sharing applied. The last four columns show the same as

columns 2-5 but with resource sharing applied.



FPU Area

0

20000

40000

60000

80000

100000

120000

I II Epic Unepic mpeg2 dec mpeg2 enc djpeg

Application

A
re

a
 (

g
a
te

s
)

w ithout resource sharing w ith resource sharing

Figure 6: FPU area comparison

Timing

0

2

4

6

8

10

12

14

16

I II Epic Unepic mpeg2 dec mpeg2 enc djpeg

Application

C
lk

 p
e
ri

o
d

(n
s
)

w ithout resource sharing w ith resource sharing

Figure 7: FPU timing

For all the clock period values for the FPUs with resource shar-

ing, Synopys Design Compiler’s static timing analysis was unable to
extract accurate timing numbers due to the formation of false loops

[19, 5]. False loops is a problem often associated with resource shar-

ing. It occurs when combinatorial loops in the datapath are formed
by merging datapaths, but never occur in actual operation because the

execution of the datapaths are mutually exclusive. The timing results
in Table 1 were adjusted manually to account for the false loops by

examining the output of the timing analysis.
Figure 6 compares the area of the FPUs with and without resource

sharing. I is used as the baseline for the comparisons. If single-
precision instructions are executed on double precision hardware, the

single-precision hardware can be removed, resulting in II. This re-

duces the size of the FPU by 20% without resource sharing, and
another 42.54% with resource sharing. The area savings that were

achieved for the custom FPUs ranged from 26% to 80% without re-
source sharing and 33% to 87% with resource sharing.

As shown in Figure 7, the clock periods for most of the generated
FPUs increased. This can be attributed to the insertion of muxes into

the critical path as a result of resource sharing. This is unavoidable
unless the resources on the critical path are excluded from the shar-

ing process. Assuming a new critical path is not formed, the clock

period would not increase. In some cases (unepic & djpeg), the clock
period reduced because the datapath that contributed most to the crit-

ical path delay in the other FPUs (double precision addition) was not
included in the merging. The increase in clock period due to resource

sharing can be reduced at the expense of increased area by excluding
resources on the datapath that contributes the most critical path delay

from the sharing. As long as this delay is not exceeded by the merg-

ing, the clock period will not increase. Pipelining could also be used

to reduce the effects of the muxes on the clock period.

7. CONCLUSION
This paper presented a methodology for automatically generating

FPUs customized at the instruction level, incorporating resource shar-
ing to minimize area. FPUs were generated for different media appli-

cations and compared to typical general purpose FPUs. Area savings
of up to 87% were observed compared to the fully featured refer-

ence FPU (without resource sharing). Clock periods increased in most

cases due to insertion of muxes into the critical path. The increase in
clock period due to resource sharing can be reduced at the expense of

increased area by excluding resources on the datapath that contributes
the most critical path delay from the sharing. Pipelining can also be

used to reduce the effects of the mux delays and reduce clock period.
At this stage, the generated FPU is not pipelined. Pipeline stages can

be added manually if desired. We will explore integrating automatic
pipelining in future work. In the future, this methodology could be

expanded to generate DSP, or multimedia co-processors, or even one

with a mixture of floating-point, DSP and multimedia instructions.

8. REFERENCES
[1] J. Liang, R. Tessier, and O. Mencer. Floating point unit generation and evaluation

for FPGAs. In Proceedings of 11th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines, April 2003.

[2] A.A. Gaffar, W. Luk, P.Y.K. Cheung, and N. Shirazi. Customising floating-point
designs. In Proceedings of 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2002.

[3] P Brisk, A Kaplan, and M Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip designs. In Proceedings of Design Automation
Conference, pages 395 – 400, 2004.

[4] N Moreano, E Borin, C Souza, and G Araujo. Efficient Datapath Merging for
Partially Reconfigurable Architectures. In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, volume 24, pages 969–980, July 2005.

[5] W. Geurts, F. Catthoor, and H. De Man. Quadratic zero-one programming based
synthesis of application specific data paths. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD-93). Digest of Technical Papers,
Nov 1993.

[6] J. Um, J. Kim, and T. Kim. Layout-driven resource sharing in high-level synthesis.
In IEEE/ACM International Conference on Computer Aided Design (ICCAD), Nov
2002.

[7] Chia-Jeng Tseng and D.P. Siewiorek. Automated Synthesis of Data Paths in
Digital Systems. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 5, July 1986.

[8] C.Y. Hitchcock III and D.E. Thomas. A Method of Automatic Data Path Synthesis.
In 20th Conference on Design Automation, June 1983.

[9] O. Bringmann and W. Rosenstiel. Resource sharing in hierarchical synthesis. In
IEEE/ACM International Conference on Computer-Aided Design, Digest of
Technical Papers, Nov 1997.

[10] S. Raje and R.A. Bergamaschi. Generalized resource sharing. In IEEE/ACM

International Conference on Computer-Aided Design, Digest of Technical Papers,
Nov 1997.

[11] E.M. Witte, A. Chattopadhyay, O. SchliebuschKammler, R. Leupers, G. Ascheid,
and H. Meyr. Applying resource sharing algorithms to ADL-driven automatic
ASIP implementation. In International Conference on Computer Design, Oct
2005.

[12] K Schoofs, G Goossens, and HG Man. Bit-Alignment in Hardware Allocation for
Multiplexed DSP Architectures. In Proceedings of the 4th European Conference

on Design Automation with the European Event in ASIC Design, pages 289 – 293,
Feb 1993.

[13] Cliquer. http://users.tkk.fi/ pat/cliquer.html.

[14] SimpleScalar Tool Set. http://www.simplescalar.com.

[15] IEEE standard for binary floating-point arithmetic, 1985.

[16] D.A. Patterson and J.L. Hennessy. Computer Organization and Design, chapter
H.5. Morgan Kaufmann Publishers, 3rd edition, 2005.

[17] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: a Tool for
Evaluating and Synthesizing Multimedia and Communicatons Systems. In
Proceedings of the ACM/IEEE International Symposium on Microarchitecture,
1997.

[18] Synopsys Tool Set. http://www.synopsys.com.

[19] L. Stok. False loops through resource sharing. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD-92). Digest of Technical Papers,
Nov 1992.


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




