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Abstract—Energy-efficient computation is critical if we are going to continue to scale performance in power-limited systems. For

floating-point applications that have large amounts of data parallelism, one should optimize the throughput=mm2 given a power density

constraint. We present a method for creating a trade-off curve that can be used to estimate the maximum floating-point performance

given a set of area and power constraints. Looking at FP multiply-add units and ignoring register and memory overheads, we find that

in a 90 nm CMOS technology at 1 W=mm2, one can achieve a performance of 27 GFlops=mm2 single precision, and 7:5 GFlops=mm2

double precision. Adding register file overheads reduces the throughput by less than 50 percent if the compute intensity is high. Since

the energy of the basic gates is no longer scaling rapidly, to maintain constant power density with scaling requires moving the overall

FP architecture to a lower energy/performance point. A 1 W=mm2 design at 90 nm is a “high-energy” design, so scaling it to a lower

energy design in 45 nm still yields a 7� performance gain, while a more balanced 0:1 W=mm2 design only speeds up by 3:5� when

scaled to 45 nm. Performance scaling below 45 nm rapidly decreases, with a projected improvement of only � 3� for both power

densities when scaling to a 22 nm technology.

Index Terms—Arithmetic and logic structures, high-speed arithmetic, floating point, fused multiply-add, throughput/mm2 optimization.

Ç

1 INTRODUCTION

COMPUTER performance has been increasing exponen-
tially in the last half century, driven by improvements

in architecture, circuit design, and technology. While the
power per function has been dropping exponentially, for
the past 25 years it has been falling at a slower rate than the
performance growth. The net result was a growth in power
that computing systems consumed, and the associated
issues with power distribution and heat removal. This
decade, high-performance designs transitioned from being
transistor/complexity-limited to being power-limited.
Power constraints are only going to become more severe
in the future, since Dennard scaling [1]—scaling of voltages
with feature size—has ended. Historically, we scaled Vdd
and Vth of our CMOS technology with feature size, which
decreased the energy/op by the scaling factor cubed.
Lowering Vth now exponentially increases leakage power,
so it has stopped scaling. If Vth does not scale, scaling Vdd
will make the gates slower, so its scaling has dramatically
slowed. The net result is that the energy/op now only scales
roughly proportional to the scaling factor, so the energy/op
of the underlying design limits our peak performance.

Interestingly, the energy per operation depends on the
performance (ops/sec): as the required performance in-
creases, the energy to perform each operation also increases.
This energy-performance relationship is one of the factors
driving chip multiprocessors. By reducing the peak perfor-
mance of each processor, we can decrease its energy/
instruction. Thus, for the same power, we can execute more
instructions/sec. Of course, to make it more energy-
efficient, each processor has lower peak performance than

before; so to achieve the power-limited instruction issue
rate, we need to integrate more processors on to the die. The
resulting machine, for parallel applications, can deliver
more performance at the same power than the previous
uniprocessor designs.

This paper explores how to optimize FP functional units
in this energy-constrained, parallel design space. We choose
floating-point computation for a number of reasons. First,
most FP applications can be parallelized, and a large number
of these applications already run on parallel machines like
GPUs. This gives us useful data to work with, including
assurances that many applications have enough parallelism
for the hardware to exploit. Second, since FP operation rates
have been growing rapidly, especially on GPUs; we can use
this analysis to estimate how we should expect their
performance to scale in the future. Third, and finally, FP
design has been well studied, so we have a wide variety of
architectures, pipeline structures, and logical implementa-
tions we can explore.

To examine the design of energy-efficient FP units, we
create an optimization framework that includes both circuit
and system-level issues. For parallel systems, the latency or
even the throughput rate per processor is not the critical
optimization parameter, since changing the design changes
the number of units we can fit on the die. Instead, we
optimize the number of results=sec=mm2—remembering that
very small, slower units might be the best solution. Thus, for
parallel systems, the main trade-off is between energy/op
and ops=s=mm2, so power density becomes a critical design
constraint. As we will show later, for our 90 nm technology,
tiling a chip with just FPUs (no register or memory)
designed to be optimal for power density of 1 W=mm2 will
yield 27 GFlops=mm2 single precision and 7.5 GFlops/mm2

double precision. However, the poor energy scaling of
modern technologies means that to maintain this power
density as we scale technology, we need to move the FP
design to what was a lower power density design point.
Thus, the improvements we get with scaling depend on the
shape of the throughput/mm2 versus energy curve, and
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decline as we are forced to move to lower and lower power
density architecture and circuits.

The next section will briefly review FPU design, focusing
on multiply-add units, since we use that structure for the
examples in the paper. Section 3 then presents the design
problems for throughput-based systems, and introduces the
flow used to generate trade-off curves for floating-point
multiply-add units which are used to solve these design
problems. In Section 4, we look at the effect of technology
scaling on floating-point performance. The effects of
register and memory overhead are described in Section 5,
and Section 6 concludes our paper.

2 FLOATING-POINT BACKGROUND

Floating-point (FP) numbers have their origins back in the
earliest computers. They allow the machine to cover a wide
range of results using a limited number of bits by represent-
ing each number by a mantissa, often between one and two,
and an exponent. While initially each manufacturer had their
own standard for floating-point number representation, in
the 1980s, the IEEE standardized the floating-point format
and operations in the IEEE 754 standard. This standard
included a number of different rounding modes to enable
one to bound round-off errors, and also defined denormal
numbers (denorms), representations for numbers that are
smaller in magnitude than what would otherwise be the
smallest valid FP number (2minExponent).

There has been an extensive research to improve the
performance of floating-point calculations [3], [4], though
most were done without considering energy efficiency.
Even when energy was considered, the work focused on
energy versus latency, and not throughput [2]. In contrast,
this work focuses on optimizing floating-point throughput
per mm2 for applications that have abundant parallelism.
While latency is not the most critical parameter, as we will
explain in Section 5, it is still an issue because it affects
minimum memory/registers requirements of the system.

Traditionally, FPU designs have used separate floating-
point adders and multipliers. However, recent designs
incorporate combined floating-point multiply-add instruc-
tions that implement the Aþ B� C operation; these units
offer better accuracy and improved performance. We present
the two most common multiply-add implementations since
we used both to explore the energy/performance space of
these units. The fused multiply-add (FMA) design performs
operand alignment in parallel with the multiplication, which
leads to the shortest overall latency, but to accomplish this
parallelism, it requires a very large variable shifter and large
intermediate result datapath width. The cascade multiply-
add (CMA), on the other hand, performs the multiply first,
and then aligns the operands for the FP adder. While the
overall latency of this structure is longer, it requires a less
wide datapath, so it might be better for throughput
applications. While these architectures are by no means
exhaustive of all the possible multiply-accumulate (FPMAC)
architectures, these were the “best” architectures we tested
when energy becomes a first-order issue. The reason is that
they don’t incorporate any speculative hardware for im-
proving latency, and no energy is wasted on precomputed
results that get discarded. In addition to these designs, we
implemented many other designs that claimed some

performance advantage. All of these were much worse when
area and energy were considered. We also compared designs
that conformed to the IEEE standard, supporting all round-
ing modes and denorms, and those without this support.

2.1 Fused Multiply-Add

Since its introduction in IBM’s RS/6000 FPU in 1990 [6], the
FMA unit has become a common implementation in recent
FP multiply-add designs [7], [8]. This design has the shortest
latency compared to any other design, with aggressive
designs such as the Cell Processor achieving a single-
precision latency of around 60 FO4. Since this base design
offers the shortest latency, many innovations have been
proposed to shorten its latency further, however, they have
large area and power overheads that would not be appro-
priate when trying to optimize FLOPs=mm2 or FLOPs/W.

This design achieves its short latency by aligning the
addend significand (SA) in parallel with multiplication of
SB and SC. This removes the conventional alignment step
from the critical path of the FMA. However, since the
exponent of the addend might be smaller or larger than the
sum of multiplicands exponent, the addend significand can
be shifted from all the way to the left of the multiplier result
to all the way to the right, resulting in a wide 72-bit shifting
operation in the case of single-precision operation. There-
fore, the datapath width for the adder and normalize stages
are around 72 bits for single precision. Fig. 1 shows the data
flow of traditional FMA, with the dashed lines showing the
forwarding paths. For more detailed information on FMA
design and implementation issues, please see the paper by
Schwarz [11].

2.2 Cascade Multiply-Add

Some recent designs still prefer a cascaded design of an
FP multiplier followed by an FP adder over the FMA design,

914 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011

Fig. 1. Block diagram for a single-precision fused multiply-add unit. A is

shifted to align it to the result of the multiply.



especially in embedded graphics application [9], [10]. In a
cascade design, the partial products coming from the
multipliers are combined using an adder before being fed
to the aligner. The aligner then swaps its two inputs based
on which significand has a smaller exponent and then shifts
it to align the numbers. Finally, the aligned results are
added and normalized. The datapath width for single-
precision CMA is around 48 bit for the aligner, adder, and
normalizer. Fig. 2 illustrates the datapath of a CMA design
with the dashed lines showing the forwarding path for a
dependent accumulate operation which is shorter than the
forwarding path for an operation that is using the multiplier
(the dotted lines). The latency of the forwarding path for
dependent accumulation is, in fact, even smaller than in the
FMA design. For certain operations such as dot products,
the total latency of the operation might be shorter in a
CMA design than an FMA design. This is another argument
in favor of CMA for these types of calculations.

3 OPTIMIZING THROUGHPUT-BASED DESIGNS

For applications that have abundant parallelism (e.g.,
visual computing, Internet routing, and web search), the
key performance metric is the aggregate number of
operations performed by the entire machine. Whether we
have 5 or 20 processors does not matter; all we care about
are the overall throughput, power, and area. For a given
throughput/sec, the true costs we are trying to optimize,
whether it is a chip or a server room, are chip area (or

floor space for a bigger machine) and power. We can
characterize a throughput system by its hard constraints.
Some systems have hard resource constraints, while others
have hard performance constraints. As we will see, they
both reduce to similar problems.

. Resource-constrained throughput systems: These
systems are trying to maximize throughput given
fixed power, area, and thermal constraints. These are
often single-chip systems such as GPU or mobile
devices. In these systems the goal is to:

. Performance-constrained throughput systems:
These have hard performance constraints, and gen-
erally use many individual processing units to achieve
their throughput requirement. In this type of applica-
tion, both system energy and total “chips” area are
flexible, so one can meet the throughput performance
target. Minimizing the total cost of ownership (TCO) is
the optimization goal of such a system [17]. This cost
includes both capital expenses and operational
expenses and is a function of the area and energy
per op of the system.

The key insight to find the optimal solution to these
systems is to realize that power efficiency and area efficiency
are usually conflicting goals. The easiest example is to
consider what happens when you lower supply voltage:
gates go slower, so the area/ops/s will increase, but the
energy/op decreases, since it is proportional to supply
voltage squared. Other knobs have similar effects; e.g.,
deeply pipelining a function unit usually decreases area/
ops/s, but increases the energy/op since each result must
flow through more flops. By utilizing circuit parameters such
as sizing, supply voltage, and threshold voltage as well as
microarchitectural parameters such as pipeline depth, we
can generate many designs and then explore the trade-off
between the power efficiency (power/throughput "P) and
area efficiency (area/throughput "A) of the overall system.
The next section describes the specific method we used to
generate these trade-offs.

3.1 Optimization Flow

Since both metrics we are studying, energy/op and
ops=s=mm2, are dependent on circuit and architecture
parameters, we consider both issues by constructing
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Fig. 2. Block diagram for a single-precision cascade multiply-add. In

this design, the multiply is performed first, and then the smaller of the

accumulator or the product is shifted and added to generate the result.



different designs on circuit level for the datapath portion,

and use a memory simulator for estimating the register file

energy and area costs.
For datapath optimization, we start by synthesizing a

design using standard cell libraries. The standard flow

minimizes power and area for a certain delay target. The

results of such latency-optimized designs are not usually the

throughput optimal designs. This difference requires us to

iterate over a wide range of frequencies, pipeline depths, and

supply and threshold voltages to measure many different

solutions. We can guide our exploration by understanding

how each of our basic knobs affects the area, power, and

throughput of the design.

. Supply and threshold voltages: these knobs trade
off throughput against energy/op without affecting
area which leads to a straightforward trade-off
between energy/op and area/throughput.

. Pipelining: adding a pipeline stage (without circuits
resizing) leads to an interplay of several effects on
performance, energy, and area, as it:

- Increases throughput (i.e., decreases cycle time).
- Increases area by pipeline stage overhead. For

an efficient design, the relative increase in area
should be less than relative increase in through-
put, otherwise duplicating the design would
achieve the required throughput with less total
area. This puts an upper limit on the number of
pipeline stages to put in the design.

- “Increases” energy/op: while dynamic energy/
op always increases, leakage energy/op is both
increased by pipelining overhead and de-
creased by amortizing the leakage power over
multiple operations in the pipeline. This ex-
plains why even the lowest energy designs still
use three or four pipeline stages: the pipelined
design turns out to be more energy-efficient
than an unpipelined design which will be
dominated by leakage power.

. Circuit sizing: the sizing of the circuits is controlled
indirectly by setting the frequency and the pipeline
depth of the design. Increasing sizing increases all
throughput, area, and energy/op of the design. The
ability to change the energy/throughput trade-off by
circuit sizing is usually smaller than in the latency-
optimized designs, since the relative increase in
throughput due to aggressive sizing is partially
offset by the increase in area the larger transistors
require. This area increase reduces the improvement
in ops=s=mm2.

The datapath optimization flow starts by synthesizing a
design for a certain timing constraint, inserting pipeline
registers and doing register retiming to pipeline the design.
Then, the resulting design is placed and routed and the
required clock network is generated. After the design is
routed, the design is reoptimized and parasitics are extracted
and annotated to the netlist. Activity Factors for dynamic
power calculations are calculated for random input vectors
and assuming full utilization of the FPU. The timing and
power of the design are then reported using Primetime
timing tool. This procedure is repeated over a wide range of
supply voltages, threshold voltages, clock periods, and
pipeline depths. After generating the data, the points on
the efficient frontier are extracted from data points shown in
Fig. 4 to generate trade-offs as shown in Fig. 3.

As intuitively expected, deeply pipelined high-voltage
high-frequency designs maximize computational density
(ops=s=mm2), while shallow-pipelined low-frequency low-
voltage designs maximize energy efficiency (ops/s/W).
Designs which mixed these traits, for example high Vdd
and shallow pipelines were never efficient choices, since
we could decrease the voltage and increase the pipelining
to maintain the same performance, while reducing the
energy. We have used this flow with 90 nm standard cell
libraries operating at Vdd values of between 1-1.2 V and
45 nm libraries with 0.8-1 V operating points. We have
experimented with a larger voltage range as well, but
found that it is only helpful for extreme power densities
that are not practical for most applications; therefore, we
think that these voltage ranges satisfy most of the desired
power density ranges.
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Fig. 3. Power/throughput versus area/throughput trade-off for 90 nm
single-precision floating-point fused multiply-add unit using supply
voltage, threshold voltage, circuit sizing, and pipeline depth as optimizing
parameters. Energy per Flop, ranges from 10 to 100 pJ, and the silicon
area needed to achieve 1 GFlops ranges from 0.035 to 0:15 mm2.

Fig. 4. Result of design space exploration of different supply voltages,

threshold voltages, cycle time, and pipelining stages for 90 nm single-

precision fused multiply-add unit.



3.2 Exploring Multiply-Add Architectures

We started exploring the multiply-add unit by trying to
determine the most efficient architecture considering the
two most common approaches that were described in
Section 2: the fused multiply-add, and the cascade multiply-
add. Initially, we started with designs that left out IEEE
denormals and supported only truncation rounding as done
in many designs used for multimedia processing. Building
these two designs, it turned out that both have very similar
power area trade-offs as shown in Fig. 5.

While both designs achieve the same performance
metrics in terms of W/GFlops and mm2=GFlops, the cascade
design has longer latency. For example, 3.2 GFlops
throughput can be achieved by both designs at
0:036 mm2=GFlops and 0.046 W/GFlops, but the cascade
design will have a latency of 12 cycles while the fused
design will take only 10 cycles. Since lower latency is a
desirable and a “free” feature of fused design, we present
the rest of study based on fused design. Fig. 5 also shows the
cost of the IEEE compliance. An IEEE compliant implemen-
tation has an overhead of 5-10 percent over the range of
different power densities.

Examining the effect of precision on performance, we
found that double precision required approximately 3�more
resources than single precision as illustrated later in the paper
in Fig. 9; the area and power of the multiplier trees grow
quadratically in the size of the operands (a 4� increase) while
the rest of the datapath grows linearly (a 2� increase). This
results in the multiplier share of area and power growing
from 31 percent in single-precision design to 45 percent in the
double-precision design.

Using the trade-off data, we generated for FMA designs
between the power efficiency, "P , in W/GFlops, and the
area efficiency, "A, in mm2=GFlops, we can proceed to find
maximum throughput solution to the resource-constrained
systems and minimum cost solution for the performance-
constrained systems we posed earlier in this section.

3.3 Resource-Constrained System

We can easily find the optimal maximum throughput that
conforms to area, power, and power density constraints by

substituting P ¼ "P T and A ¼ "A T. The solution to this
problem is the point("A; "P) such that

"P ¼ minðPmax=Amax;DmaxÞ"A

with a maximum throughput achieved T ¼ minðAmax;
Pmax=DmaxÞ="A. Fig. 6a illustrates graphically how to find
the optimal design using an existing "P � "A trade-off curve
for an example constraints of Amax ¼ 2 cm2, Pmax ¼ 60 W,
and Dmax ¼ 50 W=cm2. The intersection of the Pmax=Amax

constant power density line with the tradeoff curve is the
optimal design since Pmax=Amax in this example is a tighter
constraint than Dmax. The optimal FPU design is a 1.67 GFlops
design with an area of 0:09 mm2 and power of 27 mW.1

Integrating �2;222 such FPUs on a chip we achieve a total
throughput of 3.7 TFlops at 60 W and 2 cm2.

Fig. 6b views the data in a slightly different way. First, we
take the "P � "A trade-off and multiply the curve by several
values of throughput (say 1, 2, 3, 4 TFlops) generating the
required chip area and chip power required for such
throughputs. Drawing these curves together in Chip Power
versus Chip Area space gives us a contour map of efficient
throughput designs for any value of chip power and area.
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Fig. 5. Comparison between two different FP single-precision multiply-

add designs, fused and cascade multiply-add. As the graph shows there

is little difference between the two different designs. Also shown is an

IEEE compliant unit as well. The overhead is small.

1. The throughput, area, and the power of the building blocks can’t be
deducted using only the trade-off curve. It only says the optimal design has
figures of merit of "A of 0:054 mm2=GFlops and "P of 0.016 W/GFlops. The
throughput information is retrieved from the stored design information for
such a design point.

Fig. 6. (a) Determining optimal design point from throughput-energy
trade-off curve and constraints, (b) Contour map of achievable
throughputs versus area and power. Constraints of Amax ¼ 2 cm2,
Pmax ¼ 60 W, and Dmax ¼ 50 W=cm2 are indicated.



Overlaying the resource constraints on the graph (the red
lines), we obtain the shaded allowed design space with
highest throughput design at the intersection of the area and
power constraints achieving 3.7 TFlops; the same as
obtained using Fig. 6a.

3.4 Performance-Constrained System

In these systems, we are trying to minimize the cost of the
resulting system. Clearly, two extreme cases are easy to see:

. System energy is free: In this case, all we care about
is a design that maximizes the throughput per chip
area. This is exactly how chips were designed in the
early days of scaling where area efficiency was the
overriding design goal.

. Chip area is free: In this case, all we care about
minimizing energy consumption. We then choose the
most power-efficient system, which generally leads
to systems with a large number of very slow units.
Numerous studies have shown that minimum
energy solutions generally operate at low Vdd,
which cause the units to operate in the subthreshold
region and have very low performance per unit area.

In real situations, however, neither energy nor area is
free so both need to be considered in the minimization
problem. Equation (1) shows an example cost function that
incorporates different possible cost components: a power
cost as function of energy efficiency, a hardware cost as
function of area efficiency, and a cooling cost as function of
power efficiency and power density.

’ð"A; "P Þ ¼ ’hardwareð"AÞ þ ’powerð"P Þ þ ’cooling "P ; "Að Þ: ð1Þ

At the optimal point, the marginal cost of incremental
energy and area will match, since if they were not the same,
we could lower cost by “selling” the expensive one, and
“buying” the cheaper one. If the hardware and power cost
are linear on area and energy, the ratio of the $=mm2 and
$=W sets the constant cost curves which are straight lines in
the W/GFlops versus mm2/GFlops space. If the costs are
nonlinear, the constant cost curves will still exist, but will
no longer be straight lines. The point where the trade-off
curve is tangent to the constant cost curve will minimize the
total cost of the system as illustrated in Fig. 8.

If we know the slope of the constant cost lines (i.e., when
the ratio of marginal energy and area costs are relatively
constant), we can convert this problem to finding the
optimal design at a given power density by relating the
slope of the trade-off curve at each point to the power
density at this point. Fig. 7 shows the result for the trade-off
curve shown in Fig. 3. As intuitively expected, higher
energy prices (low cA=cP ratio) results in low-energy
designs with low performance/mm2 and low-power den-
sity, while high hardware cost (high cA=cP ratio) results in
high-energy high-performance/mm2 designs with higher
power density and less energy efficiency.

4 EFFECTS OF TECHNOLOGY SCALING

This analysis can be used to explore the expected gains in
floating-point performance with scaling. We first compare
the results of first using 90 nm technology with the results
using a 45 nm library, and the detailed results of the
efficient frontier data points are shown in Table 1 and Fig. 9.
We assume that the system constraints remain the same and
therefore we see how the designs change for a fixed power
density. The combination of shrinking area/functional unit
and constant power density means that each functional unit
must dissipate less energy. Since the energy consumed by
logic gates does not naturally scale fast enough, we see that
the architectures move to simpler, less pipelined designs.
This means that the performance gain depends on the
performance cost for moving to more energy-efficient
designs. For example, 1 W=mm2 efficient designs achieve
7� improvement since the trade-off curve was steep at this
point in the 90 nm technology, so the required energy
savings did not cost much in performance. Scaling designs
at 0:1 W=mm2 improve only 3:5�, since they reside on a
flatter part of the trade-off curve. Unfortunately, in 45 nm
even the 1 W/mm2 designs are on a less steep part of the
curve, indicating that further technology scaling will yield
smaller performance gains.

We can also use the energy throughput curves to
estimate how performance will continue to scale with
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Fig. 7. Optimal Power density of system depends on the relative cost of
area and energy in a performance-constrained system. This relationship
was generated for the 90 nm data shown in Fig. 3 for the linear cost
function ’ð"A; "P Þ ¼ cA"A þ cP "P . Note that high-power densities are
only cost-effective when the area to power costs ratio is large.

Fig. 8. Power/throughput versus area/throughput trade-off overlaid on
example constant TCO contours in ¢/GFlops per year. The minimum
cost design achieves TCO of ¢/GFlops per year. The cooling costs of the
system are proportional to power density which accounts for the
nonlinearity of the constant cost contours.



technology. The key is to realize that the shape of the trade-

off curve remains roughly the same with scaling, so the

curves only shift as a result of technology scaling. Moving

from 45 to 22 nm should decrease the capacitance by 2�,

and thus should decrease the energy/op by 2� as well.

Since the devices get smaller, scaling should increase the

Flops=mm2 by 4�—four units will fit in the same area as

one unit today. If gate speed remains constant, then scaling

a 45 nm solution to 22 nm will increase performance by 4�,
but will also increase power density by 2�, since the energy
of each operation scaled down by only 2�. This means if we
want to end up at 1 W=mm2, we need to look at 0:5 W=mm2

in 45 nm. These solutions have about 1.5 times the area of
the 1 W=mm2 solutions today, so a 22 nm 1 W=mm2 solution
will only be 4/1.5 or 2.7 times faster than a 1 W=mm2

solution today.
If gate speed scales, then moving to a 22 nm solution

should increase performance by 8� (4� in density and 2�
in frequency), but will increase power density by 4�. Again,
if we are targeting 1 W=mm2, this means we need to start at
0:25 W=mm2 in 45 nm. These solutions have about a 2� area
overhead, so will yield a 4� overall performance improve-
ment moving to 22 nm. Notice that the trade-off curves get
pretty flat below around 0:25 W=mm2, so further scaling of
performance will yield even smaller gains in the future.

To help answer the question of how gates speed will
scale, we built a technology-independent Matlab model for
the FMA using the previous 90 and 45 nm results, and
combined it with predictive transistor models [18] to
estimate future scaling gains. This tool allowed us to
estimate trade-off curves down to a 16 nm generation, and
include new high-K technologies and technologies designed
for HP and LP. Fig. 10 illustrates the estimated scaling data,
giving the best curve for each technology node. As
expected, in the past, classic Dennard scaling gave us
�8� improvement when scaling from 180 to 90 nm. Scaling
from 90 to 45 nm, we still achieve around 7� only by
moving to lower energy designs. Going forward, a
1 W=mm2 design scales by only 3� from 45 to 22 nm.
Furthermore, for the power density range between 0.1 and
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TABLE 1
Summary of Scaling Results for FMA Unit

Fig. 9. Scaling of FMA single and double-precision designs from 90 to

45 nm. The performance gain depends on the power density allowed.



1 W=mm2, below 32 nm, low-power technologies employ-
ing higher effective oxide thickness (EOT) and longer
effective transistor length (Leff) become the optimal
technologies to use because of the need to continue to
move to effectively lower energy density circuits to keep the
actual energy density constant.

5 STORAGE OVERHEAD

To consider register file overhead effects on FMA perfor-
mance, we assume that there are enough parallel threads that
can be interleaved for execution to achieve full throughput,
and that the interleave factor is equal to the pipeline depth
so each thread does not see any data dependencies. For
example, a six stage datapath has to interleave at least six
threads to keep the FPU busy all the time. Therefore, the
minimum register file size is proportional to pipeline depth,
and the number of registers sufficient for applications that
have large arithmetic intensity—a large number of floating-
point operations per memory load or store. Applications
with higher memory demands require larger register files to
hide the latency of the memory fetch, and we explore these
situations as well.

The large number of required threads to hide the datapath
latency makes the size of the required register files much
larger than traditional CPU latency-optimized designs. This
can make a straightforward 3-read 1-write ported register file
required for FMA designs unwieldy both in terms of energy
and area. Fortunately, since every thread accesses only its
own subset of the register file, the multiported register file is
usually implemented as a multibanked memory made of
single ported or 1-read 1-write banks connected to the read
and write ports through a crossbar [12], [13], [14]. Many
memory parameters such as pipelining, hierarchical bitlines,
and the number of banks are part of the optimization setup.
For modeling a multibanked memory system, we use
CACTI, a timing, power and area cache and memory model
developed by HP Labs [15]. Using memory designs generated

by CACTI, we augment our datapath data to generate trade-
offs that include register file accesses as well.

The FMA unit requires a multiported register file that
holds enough register state for at least the number of
threads equal to the datapath latency. The number of ports
of the register file is equal to the product of the number of
datapath ports and the ratio of the register file cycle time to
the datapath cycle time. Unhooking the two clocks allows
the register file to trade parallelism versus pipelining of
register file access to achieve the least energy solution. In
building our multibank register files, we constrain the
number of banks to be at least equal to the number of ports
of the register file. Additionally, we explore the possibility
of single instruction multiple data (SIMD), which allows the
use of wider words in the construction of the register file
which can result in more compact register files. Using all
these design parameters, we generate design space of all
possible combinations using CACTI modeling tool. Once
the required number of threads and thread storage is
determined from application characterization, we search
the register and datapath design space to find the most
optimal designs in terms of energy/op and ops=s=mm2.

Regardless of the application characteristics, however, the
minimum storage needed for utilization of the FPU is
dictated by the latency of the datapath itself. Assuming a
minimum of 16 registers required per thread, the 45 nm
single and double-precision FMA with latencies of three to
six cycles is well served using 512 and 1,024 bytes register
files, respectively. Due to the relatively small size of the
register file, the access time is very small and therefore a
single-ported RAM operated at higher frequency than the
datapath are most efficient. Table 2 illustrates the parameters
of throughput-efficient designs for the double-precision
FMA. These designs are different from the efficient designs
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TABLE 2
Design Parameters for the Efficient Frontier of

45 nm Double-Precision FMA with Register File

Fig. 10. Estimated double-precision FMA trade-off curves for different

technology nodes from 180 nm bulk CMOS down to 16 nm high-K node.



identified when studying the FMA alone. Registers add an
energy and area overhead of around 25 percent for single
precision and 20 percent for double precision in 45 nm
design, as illustrated in Fig. 12. The overheads are larger for
90 nm design, since the number of pipeline stages is larger to
obtain the same power density.

Of course, this is the minimum overhead and assumes
that all references fit into the register file. We estimate the
effects of the memory system by looking at how the
performance of a FPMAC changes with the arithmetic
intensity of the application, using a very simple single-level
memory model. Assuming that the arithmetic intensity to
represent the average number of FP operations between
memory fetches, Fig. 11 shows how the size of the register
file—required to feed the floating-point unit with enough
work—changes with arithmetic intensity; at lower arith-
metic intensity levels, one needs more contexts to keep the
FMA units busy. Probably, more important is the energy
cost of a DRAM access. Current high-performance graphics
DRAM (GDDR5) run around 1 nJ per double-precision
word fetch [19]. Given our estimates of around 25 pJ/Flop in
45 nm, it means one needs a ratio of over 40 Flops/double
word load for the memory not to dominate the overall
system. This is in line with current graphic systems which
support over 500 GFlops of double-precision computation
with 150 GB/s (19 GW/s) of memory bandwidth [20], but is
likely to be an issue for future systems.

6 CONCLUSION

For throughput applications with abundant parallelism, the
correct trade-off to consider is energy/op, measured in
W/GFlops, and computational density, measured in
GFlops=mm2. Computing this trade-off curve provides
information about asymptotic performance that FP units
can achieve, and how this performance is likely to scale. Our
results show that current 45 nm double precision units can
achieve around 40 GFlops=mm2, at a 1W=mm2 power density.
While this performance will continue to scale, it is unlikely to
improve by more than 4� at the 22 nm node, and is likely to
only increase by 3� at constant power density. While these
give impressive numbers, the 25 pJ computing energy can be

easily dwarfed by the nJ required for DRAM access. Thus,
unless the application has very high arithmetic intensity,
or new low-power memory technology is created, floating-
point systems performance will be limited by memory
power.
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