638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

Custom Floating-Point Unit Generation for
Embedded Systems

Yee Jern Chong, Student Member, IEEE, and Sri Parameswaran, Member, IEEE

Abstract—While application-specific instruction-set processors
(ASIPs) have allowed designers to create processors with custom
instructions to target specific applications, floating-point (FP)
units (FPUs) are still instantiated as noncustomizable general-
purpose units, which, if underutilized, wastes area and perfor-
mance. Therefore, there is a need for custom FPUs for embedded
systems. To create a custom FPU, the subset of FP instructions that
should be implemented in hardware has to be determined. Imple-
menting more instructions in hardware reduces the cycle count of
the application but may lead to increased latency if the critical
delay of the FPU increases. Therefore, a balance between the
hardware-implemented and the software-emulated instructions,
which produces the best performance, must be found. In order to
find this balance, a rapid design space exploration was performed
to explore the tradeoffs between the area and the performance. In
order to reduce the area of the custom FPU, it is desirable to merge
the datapaths for each of the FP operations so that redundant
hardware is minimized. However, FP datapaths are complex and
contain components with varying bit widths; hence, sharing com-
ponents of different bit widths is necessary. This introduces the
problem of bit alignment, which involves determining how smaller
resources should be aligned within larger resources when merged.
A novel algorithm for solving the bit-alignment problem during
datapath merging was developed. Our results show that adding
more FP hardware does not necessarily equate to lower runtime if
the delays associated with the additional hardware overcomes the
cycle count reductions. We found that, with the Mediabench ap-
plications, datapath merging with bit alignment reduced area by
an average of 22.5%, compared with an average of 14.1% without
bit alignment. With the Standard Performance Evaluation Cor-
poration (SPEC) CPU2000 FP (CFP2000) applications, datapath
merging with bit alignment reduced area by an average of 7.6%,
compared with an average of 3.9% without bit alignment. The less
pronounced improvement with the SPEC CFP2000 benchmarks
occurs because the SPEC CFP2000 applications predominantly
use double-precision operations only. Therefore, there are fewer
resources with different bit widths, which benefit less from bit
alignment.

Index Terms—Bit alignment, floating-point (FP) arithmetic,
merging, resource sharing.

I. INTRODUCTION

HE RACE to improve productivity and lifestyle has led
to the proliferation of embedded microprocessors into
many common everyday devices. The increasing performance

Manuscript received August 1, 2008; revised November 3, 2008. Current
version published April 22, 2009. This paper was recommended by Associate
Editor P. Eles.

The authors are with the School of Computer Science and Engineering,
The University of New South Wales, Sydney, NSW 2052, Australia (e-mail:
yeejernc @cse.unsw.edu.au; sridevan @cse.unsw.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2013999

demands, while still satisfying cost, area, and power con-
straints, have led to an interest in application-specific processor
customizations. Particularly demanding are portable devices,
which are becoming increasingly popular, continuously re-
ducing in size, and burgeoning in functionality. The demand
for such portable devices presents the challenge of creat-
ing ever more powerful devices, while keeping within tight
constraints.

Floating-point (FP) operations are crucial for many scien-
tific applications, such as processing experimental data, math-
ematical computations, and physical simulations, as well as
multimedia applications, such as audio, video, and graphics
processing. While FP instructions can be emulated in software,
the emulated performance leaves a lot to be desired. Therefore,
dedicated FP hardware is highly sought after for FP intensive
applications. In FP intensive applications, emulated FP oper-
ations can consume over 90% of the application’s total clock
cycles [based on Mediabench and Standard Performance Eval-
uation Corporation (SPEC) CFP2000], which is unacceptable
in most situations. However, high-performance FP units (FPUs)
are large and complex and, therefore, costly and power hungry.
They are also time consuming to design.

Application-specific instruction-set processors (ASIPs) have
recently burst onto the system-on-a-chip design stage as an
alternative for designers who only used ASICs and general-
purpose processors. A number of vendors, such as Tensilica
[1], ARC [2], ASIP Solutions [3], etc., have all produced
systems which are capable of creating processors with custom
instructions.

However, to support FP operations, a noncustomizable
general-purpose FPU is often instantiated, e.g., in Tensilica
[1]. This is often less than ideal, particularly in the embedded
systems domain, where specific applications are executed and
not all FP instructions may be necessary for the application,
therefore resulting in redundant hardware occupying valuable
real estate. To optimize the size and performance of an FPU, it
is desirable to customize the FPU for the specific application
that is to be executed on it. This is possible for most embedded
systems because they execute a single application or a class of
applications which are well-known a priori.

Following the ASIP philosophy, the operations supported by
the FPU can be reduced to the minimum needed to execute
the desired application. This reduces redundant resources and
results in area and power savings.

In creating a custom FPU, we implement a subset of the
FP instructions necessary for the application in the hardware
FPU, and the FP instructions that are not implemented in
the hardware FPU are emulated in software. Therefore, as FP

0278-0070/$25.00 © 2009 IEEE

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS

639

24

B+ ’ﬂ;
32

24

2 | 24D
)+ 1A
24 Aq
/
24
Dy o ||
32 32b
]+ Bs B,
32
B>
32

32

Fig. 1. Merging of 24- and 32-b adders.

instructions are off loaded onto the dedicated FP hardware,
there are several tradeoffs to consider. In general, the more
operations that are implemented in hardware, the greater the
area consumed but the lower the cycle count needed to complete
the execution of the application. However, more hardware could
cause the clock period to increase. This is particularly true in
the case of datapath merging, where multiplexors added to the
critical path can increase delay. Therefore, in this paper, we use
a rapid design space exploration to investigate these tradeoffs
in our FPU-generation methodology.

To further reduce cost, area, and power, it is advantageous for
the FPU to have as few hardware blocks and interconnections
as possible. Each operation often has its own discrete datapath.
Area can be reduced by sharing resources between datapaths
to reduce replication of similar resources. This reuses as much
of the hardware and interconnects between the datapaths of
different operations as possible. This resource sharing creates a
shared datapath for all of the operations and reduces the amount
of redundant resources.

There are various datapath-merging techniques that have
been proposed. However, resource sharing has traditionally
been restricted to components and interconnects of identical bit
widths. While this provides some area savings, it does not allow
all available sharing to be exploited. Sharing of components
consisting of differing bit widths is an important point in
merging FP datapaths, since their complex datapaths contain
components of varying bit widths.

To maximize the utilization of resources, sharing compo-
nents with different bit widths is necessary. For example,
given the datapaths of two different operations, one containing
a 24-b adder and the other containing a 32-b one, the two
adders should be replaced with a single shared 32-b adder, as
shown in Fig. 1, when the datapaths are merged. However,
the merging of different-sized components can result in a
problem referred to as the bit-alignment problem. The bit-
alignment problem involves finding how a smaller component
or interconnect should be aligned within the larger component
or interconnect when merged. Some types of components have
to follow a strict alignment in order to operate correctly [e.g.,
leading-one detector (LOD), rounding unit], while others can
function properly independent of alignment (e.g., bitwise log-
ical operations, adders). The problem is complicated further
when a chain of successive components and interconnects are
shared and need to be aligned correctly in relation to each
other.

This paper presents a methodology for the automatic genera-
tion of FPUs customized at the instruction level, with integrated
resource sharing to minimize the area of the FPU.

This paper also presents a novel method for bit alignment
during the resource-sharing process to allow the merging of
nonmatching bit widths, thus maximizing area reduction and
opening up resource sharing to more complex applications.

Thus, this paper attempts to achieve the following. Given
an application that requires the set of FP operations O, =
{01,0s4,...,0,}, determine the subset Oy, C O,, that should
be implemented in a hardware FPU such that the runtime
of the application is minimized (assuming that the remaining
operations Oy = O,, — Oy, are emulated in software), while
using datapath merging and bit alignment to minimize the area
of the FPU by merging the datapaths necessary to execute
operations in Op,. The subproblem of datapath merging with bit
alignment is as follows. Given a set of datapaths implemented
in hardware Gy, = {G1, G2, ..., G, }, which correspond to the
set of operations Oy, = {O1, 02, ...,0,}, merge components
and connections between datapaths in G to form a single
shared datapath G that can perform all operations in Oy, such
that the area of G is minimal.

Note that we use a rapid design space exploration to explore
how the selection of the subset O, affects runtime and area
so that the subset Oy, that meets any given area—runtime con-
straints can be selected. In this paper, we select the configura-
tion with the lowest runtime.

The rest of this paper is organized as follows. Section II
discusses previous research in the area of FPU generation,
datapath merging, and bit alignment. Section III provides an
overview of our FPU-generation methodology. Section IV
details the datapath-merging algorithm used in the FPU-
generation scheme. Section V explains the concepts and back-
ground behind bit alignment before the detailed explanation
of the bit-alignment algorithm in Section VI. Section VII
describes our rapid design space exploration methodology.
The experimental setup is described in Section VIII, and the
results are discussed in Section IX. The final section gives the
conclusion.

II. RELATED WORK

Previous research into FPU generation and customization has
focused upon issues such as bit-width customization and choice
of FP algorithm.

640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

e

Compiler

@2}’

Instruction
profiling

Instruction
datapath library

v

e

Assembly file

\/\

Minimized
floating-point
instruction set

Datapath
merging &
bit-alignment

—>

Custom FPU
description

Fig. 2. Custom FPU-generation methodology.

Liang et al. [4] present an FPU-generation tool for field-
programmable gate arrays, which chooses an appropriate
implementation algorithm and architecture based on user-
specified requirements. They focus only on choosing the
most appropriate FP addition implementation and omit other
operations.

There have been various works that customize FP designs by
customizing the representation (bit width) of the FP operations
based on user-specified accuracy requirements [5]-[9]. They
minimize the bit width while keeping the loss of precision to
an acceptable level. The downside is that their system produces
a nonstandard FP format with arbitrary mantissa and exponent
sizes. Nonstandard formats are less desirable, in general, be-
cause software is developed and verified on IEEE754 compliant
machines, making the system more difficult to validate. Reduc-
ing the bit width of the FP format also reduces the accuracy
and/or dynamic range.

Baidas et al. [10] synthesize FP modules from high-level
behavioral descriptions. The technique of Baidas et al. selects
between three techniques to implement each function — table
lookup, iterative series, or CORDIC algorithm — depending on
the specified parameters and constraints.

Instead of varying the implementation of FP operations as
in [4] or by customizing the FP format as in [5]-[9], our FP-
generation methodology customizes the FPU by selecting the
necessary FP operations to be implemented and merging the
hardware datapaths of these operations to reduce area. Our
technique operates at the hardware datapath level, while that of
Baidas et al. operates at a high-level functional description level.

Central to our FPU-generation methodology is the resource-
sharing algorithm for merging the hardware datapaths of each
instruction. While some degree of resource sharing in FPUs is
common practice, such as sharing the rounding unit or the large
multiplier between multiple instructions, these sharings have
only been explored manually by FPU designers. As the size of
the design increases, it becomes more difficult to manually find
the best sharing candidates.

Resource sharing is an important problem in high-level
synthesis (HLS) and register transfer level synthesis. Various
solutions to the resource-sharing problem have been proposed
[11]-[17]. In addition, datapath-merging techniques have been
used to reduce the reconfiguration overhead in reconfigurable
architectures [18] and to merge customized instructions into a
single datapath [19].

The approaches of Moreano et al. [18] and Brisk e al
[19] exclude support for certain features that are necessary
for merging very complex architectures (such as FP architec-

tures). These features that need to be supported include bit
vectors, multiple output ports, merging of different bit-width
components, and alignment. Our work is based on the technique
presented by Moreano et al. [18] but adapted to support the
required features.

Unfortunately, previous merging techniques neglect to con-
sider the bit-alignment problem. They generally assume that
the components in the datapaths to be merged are of uniform
bit width. In many cases (e.g., in HLS), this would be a fair
assumption; however, in more complex architectures, such as
FP designs, such an assumption would be very restrictive in
terms of the hardware that could be shared.

Schoofs et al. [20] investigated the bit-alignment problem
in multiplexed digital-signal-processor (DSP) architectures. In
DSP systems, it is often necessary to execute data words with
different bit widths on the same execution units; therefore, it is
necessary to align the data words entering an execution unit. To
overcome this problem, Schoofs et al. placed routers at the input
ports of execution units, where each router contained several
different interconnection patterns connected to a multiplexor.
They presented an algorithm to determine the interconnection
patterns required in each of the routers. They consider bit
alignment as a postallocation task in HLS. This paper differs
from [20] in that we consider bit alignment during the merging
of complex hardware datapaths. We aim to determine a con-
figuration that is properly aligned with minimal realignment
multiplexors while reducing area.

III. METHODOLOGY

The methodology for the FPU generation is shown in Fig. 2.
The input is the source code for the application that is to be
executed on the processor. It is compiled into an assembly file,
which is profiled using an instruction profiling tool to determine
the subset of the FP instruction set that is required to execute the
program.

The subset of instructions that the FPU needs to support
is then passed to the instruction-merging stage. In this stage,
the datapath descriptions (in the form of netlists) for each
instruction is obtained from a library of predesigned datapaths
and passed through the datapath-merging and bit-alignment
stage. The instruction-merging algorithm merges the datapaths
of each instruction into a single shared datapath and outputs
a new datapath description for the custom FPU. The custom
FPU description can then be used to generate very high speed
integrated circuit hardware description language (VHDL) and
then synthesized.

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS 641

B output port
O input port

s

sigr‘f_' out |

exp':'out
I |

Fig. 3. Structure of datapath to convert 32-b integer to single-precision
FP format.

IV. DATAPATH-MERGING ALGORITHM

The technique used for merging the instruction datapaths is
based on the maximum weight clique approach presented in
[18]. However, rather than merging simple graphs, the tech-
nique from [18] was modified to support the merging of more
detailed structures with multiple output ports with different bit
widths, bit vectors, and alignment data. A datapath structure
would look similar to Fig. 3, which shows the structure of a
datapath for the convert integer to single-precision FP opera-
tion. The merging algorithm was also modified to handle the
merging of different bit-width components and bit alignments.

The netlists that describe the structures contain both compo-
nents and connections. Components are characterized by:

1) function of the component;

2) bit width;

3) number of input ports and their bit widths;

4) number of output ports and their bit widths;

5) area of the component;

6) alignment information.

Connections in the netlist are characterized by:

1) bit width;

2) source component;

3) source port number;

4) destination component;

5) destination port number;

6) bit-vector range of source port;

7) bit-vector range of destination port.

A component can represent a functional unit, source (e.g.,
input operand, constant), or sink (e.g., output result). The area
of each component is estimated using synthesis tools (in our
case, Synopsys Design Compiler). A connection represents an

interconnect between a range of bits on a component’s port with
a range of bits of another component’s port.

A netlist describing the hardware datapaths required to ex-
ecute each FP instruction is created and added into a library.
The inputs to the merging algorithm are the netlists for the
instructions that are needed for the application. These are
selected from the predesigned library of netlists.

The merging of two datapaths is shown in Fig. 4, where
the dotted lines represent possible hardware mappings and the
thick interconnects represent possible interconnect mappings.
As shown in Fig. 4, Datapath 1 represents a simplified version
of Fig. 3, and Datapath 2 represents a simplified version of
the datapath for the fractional part of an FP addition. The
merged datapath in Fig. 4 shows how the two datapaths could be
merged. Some components may have more than one potential
mapping, such as As with either By or By and A4 with Bj
or By. In this example, A; and A, should be merged with By
and By to allow more interconnects to be shared. The merged
datapath is more compact than the two discrete datapaths, with
a multiplexor to select the operation to be executed.

For simplicity, the netlists for the datapaths to be merged
can be modeled by data-flow graphs (DFGs). A DFG is a
directed graph G = (V, E), where a vertex v € V represents
a component and an edge e € E represents an interconnect
between two vertices. Each vertex v has:

1) aset of input ports Py, = {p1,...,0n};

2) aset of output ports Qout = {q1,---,qn};

3) attributes specifying its type/function, bit width, area, bit

width of each port, and alignment info.
Anedge e = (u, qu,v,py) € E represents an interconnect from
the output port ¢,, of vertex u to the input port p,, of vertex v.

Instruction datapaths to be merged are represented by DFGs
G, for i =1,...,n. Each of the graphs G, are iteratively
merged, two at a time, into a shared datapath represented by G.

The instruction-merging algorithm is shown in Fig. 5 and de-
scribed in the following sections. Fig. 5(a) shows the two graphs
to be merged; Fig. 5(b) shows the hardware and interconnect
mappings, where the dotted lines indicate which components
and interconnects can be shared. Fig. 5(c) shows the compat-
ibility graph, and Fig. 5(d) shows the resulting merged graph.
Each of these steps are explained in detail, as follows.

A. Hardware and Interconnect Mapping

The first step of the merging algorithm is to find all possible
mappings between the two graphs to be merged, for example,
Gy = (V4,Eq) and Gy = (V3, Es). The example in Fig. 5(b)
shows (dotted lines) possible mappings between two graphs.
A vertex v; € V; can be merged with a vertex v; € V5 into
a mapping v;/v; if they are of the same type (e.g., both are
adders) or if they are of compatible types (e.g., adder and
subtractor can be replaced with a combined adder/subtractor).
If v; and v; do not have identical bit widths, the mapping v; /v;
will take on the wider bit width when merged, i.e.,
bit_width(v;/v;) =max{bit_width(v;), bit_width(v;)}. The
estimated area saved by a mapping is calculated based on the
area of each vertex to be merged. A mapping of two vertices
results in an area saving equal to the combined area of the two

642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

Datapath 2

Merged Datapath

O input port
Il output port

Datapath 1

Fig. 4. Datapath-merging example.

Aq Ao

(b)

G2

(d) b4 G

Fig. 5.
(d) Merged DFG.

vertices minus the area of the resulting combined component
Area_saved(v; v;) = Area(v;)+ Area(v;) — Area(v; /vj).
Two edges e; = (ui, qi, Ui7pi) € F; and ej= (Uj7 qj, Uj,pj) S
E; can be mapped if they satisfy these conditions:
1) source vertex u; can be mapped to source vertex u;;
2) destination vertex v; can be mapped to destination vertex v;;
3) source port g; matches source port q;;
4) destination port p; matches destination port p;.
A port matches another port if they are the same type of port.
For example, if u; and us are adders, the carry-in port of uy

DFG merging process. (a) DFGs G1, G2. (b) Hardware and interconnect mapping. (c¢) Compatibility graph and maximum weight clique solution.

matches the carry-in port of us but does not match the operand
port of us. The area saved by mapping two connections is equal
to the area of a multiplexor, which would be required if the
connection is not shared Area_saved(e;/e;) = Area(muz).

B. Nonbeneficial Mapping Removal

The second step checks the mappings to find which of
the vertex mappings require a multiplexor at one or more of
its input ports. If a vertex mapping v;/v; has an input edge

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS 643

Couts
Couta < Couta <
[l Data []Padding [l Don’tcare

Fig. 6. Adder with different alignments. (Left to right) ali = (LSB 0); ali = (LSB 1); ali = (MSB 0).

that cannot be shared (i.e., it has more than one arc going
into an input port), it will require a multiplexor at that input
port. The area savings calculated earlier are then adjusted to
account for the need for multiplexors. All mappings that end up
with zero or negative area savings are removed. This ensures
that mappings that do not contribute to area savings due to
additional multiplexors are not considered.

C. Compatibility Graph

The third step involves constructing the compatibility graph
using the mappings determined in the earlier steps. The compat-
ibility graph is an undirected weighted graph, which represents
which mappings are compatible with each other. Fig. 5(c)
shows an example of a compatibility graph.

Let G.=(V,, E.) be the compatibility graph for a pair of
DFGs G; and G;. A vertex v, €V, represents either a compo-
nent v;/v; or a connection e;/e; mapping. Each vertex in the
compatibility graph v. € G has a weight w,. that corresponds to
the area reduction achieved by that mapping (see Section IV-A).
Anedge e. = (uc,v.) € G, between two vertices indicates that
the two mappings represented by the vertices u. and v, are
compatible. If there exists a conflict between two mappings,
they are incompatible with each other, i.e., two vertices in G,
are incompatible if they map the same component to different
components.

D. Maximum Weight Clique Solution

To find the set of compatible mappings that provide the
greatest area reduction, the maximum weight clique for the
compatibility graph is solved. The maximum weight clique of
the graph G. = (V, E,) is a subgraph Gywe € G, where all
vertices in Gywe are pairwise adjacent and the total weight
of all the vertices in Gywc is maximum. The thick lines in
Fig. 5(c) shows the maximum weight clique for the example.

Maximum weight clique determination is known to be
an NP-complete problem and is solved using a heuristic
polynomial-time algorithm. The Cliquer tool [21], which is
based on a branch-and-bound technique, was used to solve the
problem.

The resulting graph Gywe is then used to reconstruct the
netlist describing the new merged datapath.

V. BIT ALIGNMENT

The datapath-merging process described in Section IV would
be sufficient if only components of identical bit width are
allowed to be merged. However, if components with different

bit widths are allowed to be shared in order to minimize
area, the datapath merging needs to consider how the merged
components are aligned. For example, FP arithmetic datapaths
have paths for computing the exponent and mantissa parts of
the FP number. For single precision, the exponent and mantissa
components would mostly be 8 and 24 b, respectively. For
double precision, the exponent and mantissa components would
mostly be 11 and 53 b, respectively. Conversion operations
to convert between integer and single- and double-precision
formats would contain a mix of 8-, 24-, 11-, 53-, and 32-b
components. This creates a considerable mix of different bit-
width components that could possibly be shared and requires a
bit-alignment technique to allow sharing between them.

Our bit-alignment technique introduces an additional
processing step on the compatibility graph G, prior to solv-
ing the maximum weight clique. Before presenting our bit-
alignment algorithm in the next section, some basic definitions
and concepts are described.

When two components of different bit widths are mapped to
each other, we call the larger component, which would be the
component that is actually synthesized, the carrier. The smaller
component, whose function will be executed on the carrier’s
hardware, is called the passenger. One can imagine the pas-
senger as being aligned within the carrier. Bit alignment is the
process of determining how the signals for a narrower operation
should pass through the larger than necessary component but
can also be thought of as the process of aligning the passenger
within the carrier.

We classify components as either having flexible or fixed
alignments. A component that has flexible alignment is not
dependent on the alignment of its incoming data to generate a
correct result (e.g., adders, subtractors, or logical operations). A
component that has fixed alignment requires that the incoming
data are aligned in a specified way in order to operate correctly
[e.g., a LOD or an FP rounding unit].

The alignment of the passenger is defined as an offset
from either the MSB or LSB side. In this paper, we will
use the following notation to represent the alignments: ali =
IMSB/LSB n| for fixed-alignment components and ali =
(MSB/LSB n) for flexible-alignment components or connec-
tions, where n is the offset from either the MSB or LSB
side. For example, ali = [MSB 0| represents a fixed alignment
with zero offset from the MSB side. Similarly, ali = (LSB 2)
represents a 2-b offset from the LSB side assigned to a flexible-
alignment component or connection. Note that connections
always have flexible alignments.

Fig. 6 shows an example of different alignments possible for
data passing through an adder. In this case, the carrier is 6 b
wide, while the passenger is 4 b wide. As can be seen, the

644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

I Data :,l
Mo '
't .
ont care Leading-one detector
MSB § LSB
Position of leading ‘1’ bit
Fig. 7. LOD circuit with ali = [MSB 0.

alignment of the passenger does not matter for correct operation
as long as both inputs have the same offset and the result is
read using the same offset as the inputs. The position of the
passenger’s carry out changes with alignment; thus, if the carry
out is required, the carry out has to be read from the correct
position. Care must be taken also not to contaminate the data
with carry ins; hence, zero padding the adjacent bit on the LSB
side of each input may be necessary. Likewise, if the carry out
is needed, zero padding the adjacent bit on the MSB side of
each input may be necessary. Padding would not be necessary
for operations where there are no dependences between bits,
such as in bitwise logical operations. If certain special bits are
required, such as an overflow bit from an adder, internal logic
may be added or modified to produce the special bits for the
different alignments.

Fig. 7 shows an example of a fixed-alignment component—
a LOD circuit, which outputs the position of the leading-one
bit of the input word (e.g., an input of 001011115 produces
an output of 0102, indicating that the leading-one bit is in
the second bit position, assuming that the MSB is in position
zero). In this case, the output would be erroneous if the MSB
of the passenger was not aligned to the MSB of the carrier.
The rounding unit found in many FP operations is another
example of a fixed-alignment component. The LSB of the input
data is necessary to make rounding decisions; therefore, the
passenger’s LSB must be aligned to the LSB of the carrier.

When a component is aligned, it will affect the alignments
of interconnects and other components around it. For example,
given two shared components vy /vy and vs/v4 connected to
each other with a shared connection ej 3/es ., if v1/vs is
aligned with a particular offset ali = (MSB 0), the shared
connection e; 3/e3 4 must be aligned to ali = (MSB 0) since it
is attached to vy /ve. Subsequently, vs /v, must also be aligned
to ali = (MSB 0) since it is attached to ej 3/e2 4, and so
on. We define this chain of events as alignment propagation.
However, it is important to note that not all components or ports
should propagate an alignment. For example, the alignment
of the output from the LOD does not change because the bit
position output would not make sense if realigned. Similarly,
the shift amount input of a shifter should not be realigned
or else the amount shifted would be erroneous. Therefore,
we define a port as alignment sensitive if it propagates an
alignment.

Each shared interconnect must fit the alignment of the shared
components on each end, as shown in Fig. 8(a). If a shared
interconnect cannot fit with the required alignments of both
components, then the interconnect cannot be shared. In this
case, a multiplexor must be added to select between the carrier
and the passenger data lines, as shown in Fig. 8(b).

TITITRE ®)

IR [
riabolob !
[

I:l Carrier

Fig. 8. (a) Shared interconnect between two shared components. (b) Intercon-
nect cannot be shared due to incompatible alignments of shared components at
each end.

]
| Passenger
_

VI. BIT-ALIGNMENT ALGORITHM

This section describes the bit-alignment algorithm, which
is presented in Algorithm 1. In order to integrate bit align-
ment into the resource-sharing process, each component in the
datapaths is tagged with the following additional information:
its alignment class (flexible or fixed); input and output ports
that are alignment sensitive; and its alignment offset. The bit-
alignment problem occurs only with shared components and
connections. Since the compatibility graph contains all the
potential mappings, only the compatibility graph needs to be
analyzed. The compatibility graph is traversed to determine
necessary alignments. The traversal path and alignment data
are stored as an alignment tree. The alignment tree is then used
to prune and annotate the compatibility graph. This process is
described in detail in this section.

Algorithm 1 Bit-alignment algorithm

G. = (V., E.) is the compatibility graph.
Let V = {v1,...,v,}, where V C V., is a set of vertices
with fixed-alignment component mappings.
for all v; € V do
Build alignment tree 7’; rooted with v;:
Propagate alignment starting at v; throughout G..
Add each vertex along traversal path to 7; along with
alignment offsets.
Combine alignment trees {77, . .
Apply T'to G, — G..
return The new compatibility graph G...

LTy —T.

Fig. 9 shows how the alignments are propagated through
the compatibility graph and how an alignment tree is formed.
The components with fixed alignments need to be aligned with
specific alignments for correct functionality. Therefore, the bit-
alignment algorithm first starts by selecting a fixed-alignment
component (v7). Since the compatibility graph shows the po-
tential mappings that can coexist, alignments only need to prop-
agate along the edges of the compatibility graph. The algorithm
searches each vertex that is connected to v; by an edge for
another vertex that it can propagate its alignment to. An aligned
component can only propagate its alignment to an interconnect,
and vice versa. For example, if the current aligned vertex is

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS 645

(LSB0) @ @ (LSBO)

(a)

Fig. 9.

a shared component, it will search for vertices with shared
interconnects, and vice versa. In addition, alignments are only
propagated through alignment-sensitive ports. For example, in
Fig. 9, the component vertex v; can propagate its alignment
to interconnect vertices vs and vg, which are assumed, in this
example, to be attached to the alignment-sensitive ports of v .
Similarly, in the second step in Fig. 9, vs can only propagate its
alignment to vy if vy is attached to an alignment-sensitive port
of vy. In this example, we assume that it is not; however, we
assume that vs is attached to an alignment-sensitive port of vg
and, therefore, v5 can propagate its alignment to vg.

The alignment propagation process occurs as a traversal of
the compatibility graph. Each traversal path continues until one
of the following occurs: alignment propagation is no longer
possible; the path intersects with another path (i.e., reaches
an already aligned vertex); the path reaches a fixed-alignment
component; or alignment fails.

An alignment may fail if the alignment offset pushes the
passenger beyond the bounds of the carrier. For example, given
a mapping between a 10-b passenger and a 16-b carrier, an
alignment of (LSB 7) or greater will fail. If the vertex with the
failed alignment was an interconnect mapping, the mapping is
marked for deletion. If the vertex with the failed alignment was
a component mapping, the interconnect mapping immediately
preceding it, which propagated the alignment, is marked for
deletion. This is the case in Fig. 9(d), where v7 is unable
to propagate its alignment to v3 because the alignment ali =
(LSB 0) conflicts with the fixed alignment of v3 of ali =
[MSB 0|. Therefore, the shared interconnect v; connecting
ve and vz is invalid and is marked for deletion. The reason
it is marked for deletion is because when alignment fails,
the interconnect can no longer be shared and a multiplexor
must be inserted to allow for the misaligned connections to
be multiplexed into the functional unit, such as in Fig. 8.
Deleting the interconnect mapping results in two unshared
interconnects connected to the same input port of a component,
and a multiplexor will be automatically placed at that input
when the merged datapath is reconstructed.

The traversal path and alignment propagation information is
stored as an alignment tree 7;, where each node in the tree

Illustration of alignment propagation and alignment tree formation. (Squares) Component mappings. (Circles) Connection mappings.

corresponds to a vertex in the compatibility graph and contains
the alignment information for that vertex and the root of the tree
corresponds to the fixed-alignment vertex, where the alignment
propagation originated from. Fig. 9 shows the formation of an
alignment tree during alignment propagation. The process is
repeated starting at other fixed-alignment vertices, which will
create more alignment trees. Thus, in the example shown in
Fig. 9, a new alignment tree would be formed starting from v
next (not demonstrated in Fig. 9).

All of the alignment trees 7;,...,7T, are then combined.
Alignment trees that do not overlap can be combined directly.
Alignment trees that overlap can be combined directly if the
overlapping leaves are not in conflict, i.e., the alignment offsets
of the overlapping leaves are the same. If the overlapping
leaf/leaves have conflicting alignments, one tree will have prior-
ity over the other, allowing its leaves to override the overlapping
leaves. Larger trees are given priority over smaller ones. The
resulting alignment tree 7" is then applied to the compatibility
graph G.. This is done by traversing the alignment tree and
copying the alignment offsets at each node to the correspond-
ing vertex in the compatibility graph G.. Vertices that are
marked for deletion are removed from the compatibility graph
to give the bit-aligned compatibility graph G.. This is shown
in Fig. 10.

The bit-aligned compatibility graph G, is solved for the
maximum weight clique as in Section IV, and the resulting
Guwec is then used to reconstruct the new merged datapath G.

VII. RAPID DESIGN SPACE EXPLORATION

To investigate the tradeoff between the performance and
the operations implemented in hardware, a rapid design space
exploration was performed. Instead of exploring every single
configuration in the design space, which is time consuming, we
strategically select the most likely configurations.

The rapid design space exploration methodology is shown in
Fig. 11. The application is compiled and profiled to determine
the necessary FP instructions. Without an FPU, the processor
would have to emulate all of these FP instructions in software;
hence, we determine how many cycles it would require for

646

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

— LSB 0
T = Gc S G =
V4 | |LSBO| Vi —1 V2 V4 Vo
(LSB0)
(LSB 0) LSB 0 5
- E Vg V3 Vg V3
(LSBO)| V4 | (LSBO) Vg g Ifl> X
V7 V4 Vg4
(LSB0)
Ve Vs Ve Vs
(LSB0) (LSB0)
Fig. 10. Applying alignment tree to compatibility graph.
Rapid design space exploration
C program
e
/r\ Instruction N VHDL
datapath library generation
Compiler
‘ \ 4 I ‘
Floating-point Datapath
Assembly file instruction | merging & Synggsys
selection bit-alignment
~— - ! ! ’
Instruction (:iustm"n :PU | | timi Area, ti i<n? N | select fastest
profiling escription iming, runtime <n? contiguration

\/\ \/\

Fig. 11. Rapid design space exploration methodology.

the application to execute on the base processor with purely
software emulation. Then, we estimate the number of cycles
saved by hardware implementation of each operation. The
operations are ranked by the number of cycles saved. During
the rapid design space exploration, the highest ranked operation
is first implemented in the custom FPU. Operations are added
to the FPU, one at a time, on the order of their rank until we
reach a configuration that contains all necessary FP operations.
With each configuration, datapath merging with bit alignment
is used to minimize area. The FPU is synthesized to obtain the
area and critical path delay. If the critical path delay exceeds the
minimum clock period of the base processor, the critical path
delay of the FPU is used as the minimum clock period. The total
runtime of the application is then determined. When the design
space exploration is complete, we select the configuration that
produced the fastest application runtime. The rapid design
space exploration algorithm, with datapath merging and bit
alignment, is presented in Algorithm 2.

The datapath-merging algorithm merges only two datapaths
at a time; therefore, the merging of multiple datapaths may be
influenced by the order in which the datapaths are merged. An
exhaustive search of all permutations of the datapath ordering is
performed, and the best solution is chosen based on the lowest
total area. Since the number of permutations is n!, where n
is the number of datapaths to be merged, the runtime of the
algorithm is O(n!) for large n. However, as n is generally
small for FP applications (< 10) and it only needs to be run at
design time, the runtime is not critical. The algorithm took 3.5 h
to complete the merging and bit alignment of seven datapaths
when running on a 2.2-GHz dual-core Advanced Micro Devices

Opteron machine. To expand this algorithm to applications with
large n, a heuristic algorithm may need to be used.

Algorithm 2 Rapid design space exploration with datapath
merging and bit alignment

Let Oy = {01, ..
by the application.
for all O, € Oy, do
Compute cycles saved by implementing Oy, in hardware
Rank each Oy, € Oy, according to cycles saved.
Let R = {Ry,..., R,} be the list of ranked operations.
Let G; be the datapath that implements the operation R;.
Let G be the set of datapaths to be merged.
Let G be the set of merged datapaths.
fori =1— ndo
Add datapath G; to G
if i = 1 then
émin = Gl
else
for all permutations of datapaths in Gys do
G, =G
forGy, =G;,j=2—ndo
Build hardware mappings between the compo-
nents and the connections in G, with G,.
Remove mappings that do not contribute to area
reductions.
Construct compatibility graph G..
Perform bit alignment on G .. Returns Ge.
Find maximum weight clique for G, — Garwe

., Oy} be the set of operations needed

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS 647

Reconstruct merged datapath G using G yrywc.
G, =G.
Calculate total area of G
Save G to G.
Gumin «— Select from G the merged datapath with
lowest total area.
Package G nin into FPU and synthesize — area and
timing.
Compute runtime for the application.
return Configuration with fastest runtime.

VIII. EXPERIMENTAL SETUP

The Simplescalar platform [22] was chosen for our experi-
ments. The base processor is a six-stage pipelined processor,
based on the portable instruction set architecture (PISA) in-
struction set architecture (ISA) [23], and has a clock period
of 8 ns (125 MHz). While the PISA ISA is used more in
the academic community than in commercial microprocessors,
the PISA ISA is a very similar to the MIPS ISA, which is a
widely used ISA in embedded microprocessors. The architec-
ture is similar to many reduced-instruction-set-computer-based
architectures. The FP instructions in the PISA ISA include
single and double-precision FP arithmetic instructions (add,
subtract, multiply, divide, square root, absolute value, and
negate); conversion instructions to convert between integer,
single, and double-precision formats; comparison instructions;
load and store instructions; data-transfer instructions (move);
and control instructions (branch and jump). Refer to [24] for the
full list of PISA instructions and detailed descriptions of each.
Datapaths for each of the arithmetic and conversion instructions
were designed and placed in the instruction datapath library
in Fig. 11. Only the datapaths for the arithmetic (except for
absolute value and negate) and conversion instructions are
included for datapath merging because the other instructions
are trivial to implement.

The FP datapaths were designed to be IEEE754 [25] compli-
ant. The FP adder was based on the standard single-path design
[26]. The FP multiplier used a fast and area-efficient Wallace-
tree design with radix-4 modified Booth encoding [27] and a
carry—select adder for the final addition. The FP divider and
square root were based on iterative radix-2 SRT designs [28].

Benchmark applications from the Mediabench suite [29] and
the FP benchmarks from the SPEC CPU2000 suite (SPEC
CFP2000) [30] were selected and compiled using the Simple-
scalar [22] compiler. Simplescalar’s profiler was used to pro-
file the compiled binaries and determine the subset of FP
instructions required. The datapath for each instruction was
loaded from the library into the datapath-merging algorithm.
The merged datapath was then synthesized using Synopsys
Design Compiler [31], and area and timing information was
obtained. The 0.18-um Tower library, available from Synopsys,
was used for synthesis.

The rapid design space exploration was performed for
each of the several Mediabench applications (epic, unepic,
mpeg2dec, mpeg2enc, cjpeg, and djpeg) and SPEC CFP2000
applications (art, equake, wupwise, and swim). The “-dct
float” switch was used to force the JPEG applications to use

the FP discrete cosine transform (DCT) instead of the in-
teger DCT.

The generated custom FPUs are not pipelined internally and
complete all operations in one cycle, except for the FP divide
and square root, which take 28 and 27 cycles, respectively, for
single precision and 57 and 56 cycles, respectively, for double
precision. Each custom FPU is closely coupled into the execu-
tion stage of the base processor. Therefore, the minimum clock
period of the processor + FPU combination is constrained by
the critical path delay of the FPU if this delay exceeds the
longest pipeline stage delay of the base processor.

A publicly available IEEE754 compliant FP emulation pack-
age [32] was profiled to determine the average number of cycles
needed to emulate each FP operation. This was used to estimate
the number of cycles, which would be saved by implementing
each operation in hardware.

To evaluate the impact of datapath merging and bit alignment
on the area and delay, for each of the benchmark applications,
two additional FPUs were created based on the configuration
with the lowest runtime.

1) One where datapath merging was performed without bit
alignment (i.e., only components of identical bit widths
could be shared). This FPU was generated using the same
methodology as in Section III, except that the datapath
merging was restricted to components of identical bit
widths and that the bit-alignment step was bypassed.

2) One where no datapath merging was performed at all
(i.e., each operation has a discrete datapath). This FPU
contained discrete handcrafted FP datapaths for each of
the FP operations required for the specific application.
This FPU served as the reference FPU with which to
compare against.

IX. RESULTS AND DISCUSSION

The results of the rapid design space exploration are shown in
Fig. 12. The graphs show the runtime against the area. Circles
indicate each of the configurations that produced the fastest
runtimes. As expected, the more operations implemented in
hardware, the greater the area and the lower the runtime. Most
of the graphs show diminishing returns after a certain point.
This is because the clock period increases as more datapaths
are merged into the FPU and the number of cycles saved
using hardware (instead of software emulation) diminish as we
implement lower ranked operations in hardware. In all of the
cases, except for epic and mpeg2enc, the runtime eventually
starts increasing slightly. In these cases, the cycles saved by
using hardware cannot overcome the added delay.

The effects of the FPU’s critical path delay on the minimum
clock period of the overall system can be reduced by pipelining
the FPUs internally, which would increase area but should result
in considerably better performance. In Fig. 12, some of the
benchmarks show only a moderate improvement in runtime ini-
tially, considering that the clock frequency of the system drops
after adding an unpipelined double-precision FPU, offsetting
some of the gains from the lower cycle count. By pipelining the
FPUs, we could avoid the drop in clock frequency and expect to
see faster runtimes. The effect on the graphs shown in Fig. 12

648 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

Runtime (s)
N w S (4] [«2] ~

o -

Runtime (ms)

- - N N
- 8 8 83 8 8 8

o
(&)

10 15 20 25 30 6 8 10 12 14
Area(Kgates) Area(Kgates)

w
&
=}
N
IS
N
>

ES

Runtime (s)
c o 2 @ 8 & 8

Runtime (s)
w

N

o
=
o

20

w
o
3
o
-
o

40 50 20 30 40 50 60
Area(Kgates) Area(Kgates)

~
o

E,untirge(ms)
- 8 8 8 §8 8 8

o

10 20 30 40 20
Area(Kgates) Area(Kgates)

3
o
3
8
8
3

Runtime (s)
o N S o (e 8 I_\;
Runtime (s)

o

20 40 60

80| 0 10 20 30 40 50 60 70|
Area (Kgates) Area (Kgates)
12
10
z 8 0
[} Q
E 6 £
E £
X 4 ['4
2
0
0 20 40 60 80| 0 10 20 30 40 50 60 70|
Area (Kgates) Area (Kgates)

Fig. 12. Rapid design space exploration results—runtime versus area.

CHONG AND PARAMESWARAN: CUSTOM FLOATING-POINT UNIT GENERATION FOR EMBEDDED SYSTEMS 649

Area reduction

% reduction

no BA

= with BA

Fig. 13. Percentage area improvement for FPUs with bit alignment enabled
(with BA) and disabled (no BA).

Critical Path Delay Increase
25

N
o

-
3
L

% increase

N
S)
s

5© 5 D O & &
o @Q Qe’ R (4 O
& 1) 3 0& 0& 00\} @9
@Q N
noBA mwith BA

Fig. 14. Percentage increase in critical path delay for FPUs with bit alignment
enabled (with BA) and disabled (no BA).

would be lower runtimes for each point, a slight increase in
area for each point (due to overheads of the pipeline registers),
and curves shaped more like the cjpeg and djpeg graphs, with
large initial improvements before flattening off, instead of the
kinked curves such as the mpeg2enc, mpeg2dec, art, equake,
and swim graphs. A simple way to pipeline the FPUs would be
to use the automatic pipelining and retiming features available
in synthesis tools. This would reduce or eliminate the penalty
on clock frequency caused by the FPU. Pipelining would also
allow the FPUs to be coupled to faster base processors than the
one used in our experiments.

The results of the bit-alignment evaluation are shown in
Figs. 13 and 14. Fig. 13 shows the percentage reduction in area,
and Fig. 14 shows the percentage increase in critical path delay
caused by (light bars) datapath merging without bit alignment
and (dark bars) datapath merging with bit alignment, compared
with when no datapath merging is performed.

Datapath merging without bit alignment reduced area by an
average of 10.1%; however, bit alignment provided even greater
area reductions with an average of 16.5% compared with the
FPU that was generated without any datapath merging. The
Mediabench benchmarks showed significant area reductions
(average of 14.1% without bit alignment versus 22.5% with
bit alignment), while the SPEC CFP2000 benchmarks showed
less pronounced improvement (average of 3.9% without bit

alignment versus 7.6% with bit alignment). Most of the SPEC
CFP2000 benchmarks used, predominantly, double-precision
FP instructions. Therefore, there would be more resources
with similar bit widths, resulting in only minor gains from
nonidentical bit-width merging. The benchmarks that show the
best results tend to have a more diverse mix of bit widths, which
would be where the non-bit-aligned algorithm would struggle.
The results indicate that the performance of the bit-alignment
algorithm is highly dependent on the type of instructions being
merged and the bit widths of the resources used by each
instruction.

The results show that datapath merging increased the critical
path delay in all cases, which is caused by the insertion of
multiplexors into the critical path during resource sharing.
This is most evident in the unepic benchmark, where the area
reduction was greatest, as well as the increase in delay.

Intuitively, we should see the bit alignment increasing the
critical path delay over the non-bit-aligned datapath merging
due to increased resource sharing. However, the results show
that, in some cases (epic, cjpeg, djpeg, mpeg2dec, and swim),
the delay was lower with bit alignment. In these cases, bit
alignment opened up additional resource-sharing opportunities
that did not contribute to the critical path delay.

Apart from its use in merging FP datapaths, the bit-alignment
technique may also be useful in other applications where
components of different bit widths have to be merged, for ex-
ample, complex custom datapaths, multiword-length DSP data-
paths, custom bit-width FP datapaths, and variable bit-width
datapaths. It may be useful for merging datapaths generated
by variable bit-width synthesizers, such as variable-length C
(Valen-C) [33], [34] and Hewlett Packard Lab’s Program In,
Chip Out (PICO) [35]. Valen-C allows programmers to specify
variables of arbitrary bit widths, instead of being limited to the
standard bit widths available in C, to better match the needs of
the application and to reduce redundancy. PICO performs bit-
width analysis on the C program before synthesis to determine
the bit widths needed for each functional unit.

X. CONCLUSION

The bit-alignment problem has been largely ignored in
resource sharing, thus limiting resource sharing to simple
datapaths. This paper has presented a novel solution to the
bit-alignment problem during datapath merging. The results
show that significant area reductions are possible with bit
alignment during resource sharing. The performance of the bit-
alignment algorithm is dependent on the types of instructions
being merged and the bit widths of the hardware resources
being used by each instruction. The greater the mix of bit widths
in the datapaths to be merged, the greater the potential benefit
resource sharing with bit alignment will provide.

A design space exploration was performed to investigate
the tradeoffs between the area and the performance when
generating custom FPUs. The results showed that adding more
hardware to the custom FPU does not necessarily improve per-
formance if the additional hardware introduces excessive delay.

To expand the design space exploration to a suite of ap-
plications instead of a single application, the entire suite of

650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

applications could be run and profiled. In Section VII, the op-
erations were ranked on the order of the number of cycle saved
by implementing each operation in hardware when executing
that application. For a suite of applications, the operations
would be ranked on the order of the number of cycles saved
when executing all the applications in the suite. If the designer
knows that certain applications will be executed more often
than others in the suite, the rankings could be biased toward
those applications.

Future work may include investigation of pipelining in the
custom FPU generation and how it affects the design space
exploration. A heuristic could also be developed to handle a
larger number of instructions than the current algorithm.

REFERENCES

[1] Xtensa Processor, Tensilica Inc., ASIP Solutions, Santa Clara, CA.
[Online]. Available: http://www.tensilica.com

[2] ARCtangent, ARC Int., San Jose, CA. [Online]. Available: http://www.

arc.com

[3] ASIP Meister, ASIP Solutions, Osaka, Japan. [Online]. Available: http://

www.asip-solutions.com

[4] J. Liang, R. Tessier, and O. Mencer, “Floating point unit generation and

evaluation for FPGAs,” in Proc. FCCM, Apr. 2003, p. 185.

A. Gaffar, W. Luk, P. Cheung, and N. Shirazi, “Customising floating-point

designs,” in Proc. FCCM, Apr. 2002, pp. 315-317.

[6] A. A. Gaffar, O. Mencer, W. Luk, and P. Y. K. Cheung, “Unifying bit-

width optimisation for fixed-point and floating-point designs,” in Proc.

12th Annu. IEEE FCCM, 2004, pp. 79-88.

A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi, “Floating-point

bitwidth analysis via automatic differentiation,” in Proc. EEE Int. Conf.

FPT, Dec. 2002, pp. 158-165.

F. Fang, T. Chen, and R. Rutenbar, “Floating-point bit-width optimization

for low-power signal processing applications,” in Proc. IEEE ICASSP,

2002, vol. 3, pp. [II-3208-111-3211.

[9] G. Leyva, G. Caffarena, C. Carreras, and O. Nieto-Taladriz, “A generator
of high-speed floating-point modules,” in Proc. 12th Annu. IEEE Symp.
FCCM, 2004, pp. 306-307.

[10] Z. Baidas, A. Brown, and A. Williams, “Floating-point behavioral syn-
thesis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20,
no. 7, pp. 828-839, Jul. 2001.

[11] W. Geurts, F. Catthoor, and H. D. Man, “Quadratic zero—one program-
ming based synthesis of application specific data paths,” in Proc. ICCAD,
Nov. 1993, pp. 522-525.

[12] J. Um, J. Kim, and T. Kim, “Layout-driven resource sharing in high-level
synthesis,” in Proc. ICCAD, Nov. 2002, pp. 614-618.

[13] C.-J. Tseng and D. Siewiorek, “Automated synthesis of data paths in dig-
ital systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 5, no. 3, pp. 379-395, Jul. 1986.

[14] C. Y. Hitchcock and D. E. Thomas, “A method of automatic data path
synthesis,” in Proc. Conf. Des. Autom., Jun. 1983, pp. 484-489.

[15] O. Bringmann and W. Rosenstiel, “Resource sharing in hierarchical syn-
thesis,” in Proc. Int. Conf. CAD, Nov. 1997, pp. 318-325.

[16] S.Raje and R. Bergamaschi, “Generalized resource sharing,” in Proc. Int.
Conf. CAD, Nov. 1997, pp. 326-332.

[17] E. Witte, A. Chattopadhyay, O. K. Schliebusch, R. Leupers, G. Ascheid,
and H. Meyr, “Applying resource sharing algorithms to ADL-driven auto-
matic ASIP implementation,” in Proc. Int. Conf. Comput. Des., Oct. 2005,
pp- 193-199.

[18] N. Moreano, E. Borin, C. Souza, and G. Araujo, “Efficient datapath
merging for partially reconfigurable architectures,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, no. 7, pp. 969-980, Jul. 2005.

[19] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-efficient instruction set
synthesis for reconfigurable system-on-chip designs,” in Proc. DAC,
2004, pp. 395-400.

[20] K. Schoofs, G. Goossens, and H. Man, “Bit-alignment in hardware alloca-
tion for multiplexed DSP architectures,” in Proc. Eur. Conf. Des. Autom.,
Feb. 1993, pp. 289-293.

[5

=

[7

—

[8

=

[21] Cliquer. [Online]. Available: http://users.tkk.fi/~pat/cliquer.html

[22] SimpleScalar Tool Set. [Online]. Available: http://www.simplescalar.com

[23] J. Peddersen, S. Shee, A. Janapsatya, and S. Parameswaran, ‘“Rapid em-
bedded hardware/software system generation,” in Proc. Int. Conf. VLSI
Des., 2005, pp. 111-116.

[24] D. Burger and T. Austin, “The Simplescalar Tool Set, Version 2.0,”
Madison Comput. Sci. Dept. Univ. Wisconsin, Madison, WI, Tech. Rep.
1342, Jun. 1997. [Online]. Available: http://www.cs.wisc.edu/~mscalar/
simplescalar.html

[25] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std.
754, Aug. 1985.

[26] D. Patterson and J. Hennessy, Computer Organization and Design.
San Mateo, CA: Morgan Kaufmann, 2005, ch. H.5.

[27] W.-C. Yeh and C.-W. Jen, “High-speed booth encoded parallel multiplier
design,” IEEE Trans. Comput., vol. 49, no. 7, pp. 692—701, Jul. 2000.

[28] P. Soderquist and M. Leeser, “Area and performance tradeoffs in floating-
point divide and square root implementations,” ACM Comput. Surv.,
vol. 28, no. 3, pp. 518-564, Sep. 1996.

[29] C.Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A tool for
evaluating and synthesizing multimedia and communicatons systems,” in
Proc. Int. Symp. Microarchitecture, 1997, pp. 330-335.

[30] The Standard Performance Evaluation Corporation (SPEC). [Online].
Available: http://www.spec.org/index.html

[31] Synopsys Tool Set. [Online]. Available: http://www.synopsys.com

[32] SoftFloat. [Online]. Available: http://www.jhauser.us/arithmetic/
SoftFloat.html

[33] A. Inoue, H. Tomiyama, E. F. Nurprasetyo, H. Yasuura, and H. Kanbara,
“A programming language for processor based embedded systems,” in
Proc. APCHDL, 1998, pp. 89-94.

[34] H. Yasuura, H. Tomiyama, A. Inoue, and E. F. Nurprasetyo, “Embedded
system design using soft-core processor and Valen-C,” IIS J. Inf. Sci. Eng.,
vol. 14, pp. 587-603, Sep. 1998.

[35] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood,
“Bitwidth cognizant architecture synthesis of custom hardware accelera-
tors,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20,
no. 11, pp. 1355-1371, Nov. 2001.

Yee Jern Chong (S°08) received the B.E. (with
first-class honors) degree in electrical and electronic
engineering from the University of Canterbury,
Christchurch, New Zealand, in 2002 and the
M.Eng.Sc. degree in electrical engineering from The
University of New South Wales, Sydney, Australia,
in 2004, where he is currently working toward the
Ph.D. degree in the School of Computer Science and
Engineering.

His research interests include design automa-
tion, embedded systems, computer architecture, and
floating-point arithmetic circuits.

Sri Parameswaran (M’92) received the B.E. degree
from Monash University, Australia, in 1986 and the
Ph.D. degree from the University of Queensland,
Australia, in 1991.

He is a Professor with the School of Com-
puter Science and Engineering, The University of
New South Wales, Sydney, Australia, where he also
serves as the Program Director for Computer Engi-
neering. His research interests include system level
synthesis, low-power systems, high-level systems,
and network on chips. He is also an Associate Editor
of the Association for Computing Machinery Transactions on Embedded Com-
puting Systems and the European Association for Signal Processing Journal on
Embedded Systems.

Prof. Parameswaran has served on the program committees of numerous
international conferences, such as the Design Automation Conference; Design
and Test in Europe; the International Conference on Computer Aided Design;
the International Conference on Hardware/Software Codesign and System
Synthesis (as the Technical Program Committee Chair); and the International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

