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Abstract

In this paper we propose an architecture for the
computation of the double—precision floating—point
multiply—add fused (MAF) operation + ( × ) that
permits to compute the floating—point addition with
lower latency than floating—point multiplication and
MAF. While previous MAF architectures compute the
three operations with the same latency, the proposed ar-
chitecture permits to skip the first pipeline stages, those
related with the multiplication × , in case of an ad-
dition. For instance, for a MAF unit pipelined into
three or five stages, the latency of the floating—point
addition is reduced to two or three cycles, respectively.
To achieve the latency reduction for floating-point

addition, the alignment shifter, which in previous or-
ganizations is in parallel with the multiplication, is
moved so that the multiplication can be bypassed. To
avoid that this modification increases the critical path,
a double-datapath organization is used, in which the
alignment and normalization are in separate paths.
Moreover, we use the techniques developed previously
of combining the addition and the rounding and of per-
forming the normalization before the addition.

1 INTRODUCTION

The floating—point unit of several recent commercial
general—purpose processors include as a key feature a
unified floating—point multiply—add fused (MAF) unit
[5, 6, 12, 14]. This unit executes the single or double—
precision multiply—add, +( × ), as a single instruc-
tion, with no intermediate rounding. The standard op-
erations floating-point add and floating-point multiply
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are performed using this unit by making = 1 or
= 0. Moreover, floating-point division might also be

implemented using the MAF unit.

The implementation of multiply-add-fused has two
advantages [7]: (1) the operation + ( × ) is per-
formed with only one rounding instead of two and (2)
by sharing several components, there is reduction in the
delay and hardware required for multiply—add opera-
tions, with respect to the traditional implementation
performing first a multiplication and then an addition.
On the other hand, the latency of the floating—point ad-
dition and multiplication is larger when implemented
in a MAF unit than in a floating—point adder and a
floating—point multiplier. Moreover, if only one MAF
unit is provided, it is not possible to perform concur-
rently additions and multiplications which is possible
for the case in which there is one floating-point adder
and one floating-point multiplier.

The main characteristic of the previous implementa-
tions of MAF units [2, 5, 7, 13, 15] is that the alignment
is done in parallel with the multiplier, by placing the
significand of all the way to the left of the binary
point of × . In this way, the alignment is imple-
mented always by right shifting . After that, the
carry-save representation of × and the aligned
are added, normalized and rounded. Several modifica-
tions have been proposed to reduce the delay. In [8],
the delay is reduced by anticipating the normalization
before the final addition and by combining the final
addition and the rounding using a dual adder. In [15],
the delay is reduced by considering multiple exclusive
parallel computation paths in the implementation, de-
pending on the alignment shift required, and by using
an integrated addition and rounding implementation
with variable position rounding. Additional reduction
can be achieved by considering a variable latency im-
plementation. Note that, in all these implementations,
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the latencies of all the three operations, floating—point
addition, multiplication and MAF, are the same.
In this paper we propose a MAF architecture that

reduces the latency of the floating-point addition with
respect to that of the floating—point multiplication and
floating—point MAF. The key point to reduce the la-
tency of the addition is not to perform the alignment
in parallel with the multiplier, but later; in this way,
the multiplication step is bypassed in addition.
Since the alignment is delayed, to avoid having two

shifters in the critical path, the alignment and nor-
malization shifters, the architecture uses a double—
datapath organization with combined addition and
rounding. This organization, which defines two parallel
paths in the unit according to the e ective operation
being performed and the exponent di erence, has been
previously employed in floating—point adders [11], to
take advantage of the fact that the full—length align-
ment shift and the full—length normalization shift are
mutually exclusive, and only one of such shifts needs
ever appear on the critical path. Moreover, combin-
ing the addition and rounding, using a dual adder that
computes simultaneously the sum and the sum plus 1,
permits to reduce the latency, by eliminating the ad-
dition due to the rounding. In floating—point addition
this has been achieved by interchanging the order of
normalization and rounding, in such a way that the
result of the addition is first rounded and then it is
normalized.
However, in the MAF unit the interchange of the

rounding and the normalization, and consequently the
utilization of the combined addition and rounding, is
not straightforward, since the rounding position is not
known before the normalization. Therefore, we per-
form the normalization before the addition1. This has
been used previously in [8], and requires a careful de-
sign of the LZA and the normalization shifter to avoid
additional delays. In the MAF unit we propose this
approach is implemented in both datapaths.
In summary, the proposed MAF architecture uses

some techniques previously used in floating—point
adders and floating—point MAF units; but there are
important di erences with respect to both units. In
floating-point addition and in the multiple path MAF,
the normalization is not performed before the addition.
Moreover, in all the previous MAF implementations,
the alignment of is done in parallel with the multi-
plier; whereas in the proposed MAF, it is done after
it. On the other hand, one of the two paths of the

1In [15], a unit is used that determines the position of round-
ing and performs a combined addition with rounding in a variable
position; however, this special implementation is not described
and no reference is provided. Consequently, we are not able to
estimate the impact of this unit on the overall delay.

double datapath MAF, the path we call CLOSE data-
path, is quite similar to the single datapath MAF, with
some significant di erences: the 2—bit alignment shifter
and the calculation of the alignment shift amount. The
other path, which we call FAR datapath, has been com-
pletely designed for this organization. The main di er-
ences with respect to the FAR datapath of a floating—
point adder are that there are two alignment shifters
to align the carry—save representation of the product,
the normalization is performed before the addition,
and the calculation of the alignment and normalization
shift amounts is overlapped with the shifts themselves.
Moreover, some modules in the architecture have been
redesigned to be tailored to the requirements of the
proposed MAF organization.
In the resulting architecture, is used later than

and , which permits to bypass the first stages of the
MAF unit when evaluating a floating—point addition
and to reduce its latency. Moreover, it maintains the
same performance as previous implementations when
executing multiplications or MAF operations. For in-
stance, for a MAF unit pipelined into three stages
[7, 12], the latency for the floating—point addition is re-
duced from 3 to 2 cycles. If the MAF unit is pipelined
into a larger number of stages, say five stages [5, 14],
the latency is reduced from 5 to 3 cycles. Note that, the
reduced latency for the addition will a ect the schedul-
ing of the operations in the floating-point unit, since an
addition can collide in the pipeline with a MAF oper-
ation or multiplication issued earlier. This restriction
has to be taken into account in the instructions issue
policy to avoid a degradation of the performance.

2 FLOATING—POINT MAF

Before describing the MAF we propose, we outline
the main features of the MAF architecture previously
proposed in [8], which we use as a starting point to
explain the modifications introduced to reduce the la-
tency of the floating—point addition. To be more spe-
cific in the descriptions, we consider the IEEE double-
precision format, but we do not discuss neither special
nor denormalized numbers. The necessary steps in the
traditional implementation of the MAF unit [7], used
in some recent floating—point units of general—purpose
processors [5, 6, 12], are:

1. Multiplication of and , to produce a carry—
save product, in parallel with inversion and align-
ment of . The alignment is implemented as a
right shift by placing to the left of the MSB
of × . The shift amount is 56 , being
= ( ) ( ( ) + ( )).
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Figure 1. MAF with normalization before ad-

dition

2. Addition of the 106—bit × and the 161—bit
aligned . This requires a 106—bit 3:2 CSA plus a
161—bit adder. In parallel, the normalization shift
amount is determined.

3. Normalization and rounding2. A massive normal-
ization is not only needed during subtraction with
cancellation, but also because of the way the align-
ment is performed.

An alternative MAF architecture, shown in Figure 1,
has been recently proposed [8]. The goal of this archi-
tecture is to reduce the overall delay and the latency of
the MAF operation. As done in floating—point addition
and multiplication, the basic idea is to combine addi-
tion and rounding and, in consequence, to interchange
the order of normalization and rounding[4, 11, 16].
Since in the MAF the rounding position is not known
before the normalization3, we perform the normaliza-
tion before the addition. This requires to overlap the

2In [9], a variation is proposed in which the rounding is de-
layed to the next dependent operation.

3Although this is also true for addition, in that case the bits
introduced by the left shift normalization are all zeros, so no
round up is required when massive normalization is performed

operation of the LZA and the normalization shift, in
such a way that the shift amount is obtained starting
from the most—significant bit. The main di erences
with respect to the traditional implementation are:

• The sum and carry vectors of the 3:2 CSA are nor-
malized before the addition. In this way, the result
(after the addition) is always normalized and the
rounding is simpler.

• The add/round module consists of a 53-bits dual
adder which computes the sum and the sum+1.
The least—significant part at the output of the nor-
malization shifter is used to select the correct out-
put of the dual adder.

• To avoid a negative result, the sign of the output
of the 3:2 CSA is detected and, if negative, the
sum and carry words at the output of the CSA
are complemented. In parallel, a 3—input Leading
Zero Anticipator (LZA)4 determines the normal-
ization shift amount from the carry—save product
× and the aligned . This LZA has been

modified to obtain the shift amount starting from
the most—significant digit, to overlap with the op-
eration of the shifter.

• Since the sign detection as well as the part of the
LZA that cannot be overlapped have a significant
delay, it is convenient to place the HA and some
parts of the dual adder before the normalization.

The delay reduction achieved with this organization
has been estimated in about 15% to 20% [8]. Both
architectures can be divided into three steps,

1. Alignment shift and multiplication.

2. In the basic architecture, 3—2 CSA, 161—bits adder
and LZA, and complementer. In the architecture
with normalization before addition, the three par-
allel paths (sign detection, 3:2 CSA plus HA plus
first levels of the dual adder, and LZA) and the
normalization, which overlaps with the LZA.

3. Normalization and rounding for the basic architec-
ture, and rest of the dual adder for the architecture
with normalization before addition.

Two alternatives have been used for the pipelining of
the basic architecture: (1) a pipelining into three stages
[7, 12], where each steps corresponds to one pipeline
stage, and (2) a pipelining into five stages [5], where
steps 1 and 3 are divided into two pipeline stages each.
Similarly, the architecture with normalization before

4In [3] the implementation of a 5—input LZA is presented
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addition can be also pipelined into three or five stages.
However, because of the delay reduction achieved with
respect to the basic architecture, it could be pipelined
into four stages while maintaining the same cycle time.
In any case, the latency is the same for the floating—
point addition, multiplication and MAF: three, four or
five cycles depending on the particular implementation.

3 GENERAL STRUCTURE OF THE PRO-
POSED MAF

The objective of the proposed MAF architecture is
to reduce the latency of the floating—point addition
while maintaining the critical path delay of the single—
datapath MAF. The latency reduction is achieved by
performing the alignment of after the multiplier in-
stead of in parallel with it, as in previous implementa-
tions. In this way, the multiplier can be bypassed in
case of an addition. However, placing the alignment
shifter after the multiplier would have the alignment
and the normalization shifters in the critical path and,
consequently, a larger delay. To avoid this, we use a
double—datapath organization with combined addition
and rounding, previously used to reduce the latency of
the floating—point addition [11], that permits to take
advantage of the fact that the full—length alignment
shift and the full—length normalization shift are mutu-
ally exclusive, and only one shift need ever appear in
the critical path5.

In floating—point addition, the datapath is split into
two paths: the CLOSE datapath that computes the ef-
fective subtractions for an exponent di erence | | 1,
and the FAR datapath that computes all the e ective
additions and the e ective subtractions for an expo-
nent di erence | | 1. In this way, the FAR datapath
requires a full alignment shift and the normalization
shift is, at most, of 1 bit; whereas the CLOSE datap-
ath requires a full normalization shift and only a 1—bit
alignment shift. Although slightly di erent partition-
ing criteria have been recently proposed to avoid the
rounding step in the CLOSE datapath [10, 16], be-
cause of the type of alignment performed in the MAF
operation, rounding is always required in e ective sub-
traction. Then, the criterion we used for partitioning
the MAF datapath into CLOSE and FAR has been
adapted from the scheme in [11].

Consequently, considering that the exponent di er-
ence for the MAF operation is = ( ) ( ( )+

5Depending on the relative alignment of the product ×

with significand , the alignment shift is not necessary and can
be skipped. This reduces the latency for these cases, but at the
expense of having a variable latency implementation [15]

( ))6 and taking into account that the multiplica-
tion can produce an overflow, the CLOSE datapath is
used for e ective multiply—subtractions with (1) an ex-
ponent di erence = 0 1, (2) an exponent di erence
= 2 and ( × ) = 1, and (3) an exponent

di erence = 1 and ( × ) = 0. The FAR
datapath is used for the remaining cases. Note that
this partitioning is also valid for the floating—point ad-
dition, since in this case = ( ) ( ) and

( × ) = 0, and the CLOSE datapath is used
only for e ective subtractions with | | 1, as in [11].
Moreover, as said in section 2, the combined addi-

tion and rounding permits to reduce the latency by
eliminating the addition due to the rounding and per-
forming the normalization before the rounding. How-
ever, in a MAF operation, as the rounding position is
unknown until the normalization has been carried out,
the normalization is performed before the addition [8].
Then, the proposed MAF makes use of several tech-

niques already used in floating—point adders and MAF
units (double—datapath organization with combined
addition and rounding and anticipation of the nor-
malization before the addition), which together allow
to reduce the latency of the floating—point addition
when implemented in a MAF unit. Although these
techniques have been previously used, the proposed
MAF architecture presents significant di erences with
respect to the double—datapath adders and the single—
datapath and the multiple—datapath MAF units. The
resulting architecture is shown in Figure 2 and the dif-
ferences can be summarized in the following points,

1. With respect to the double–datapath adder and
the multiple—datapath MAF: (1) the normaliza-
tion is performed before the addition to make pos-
sible the use of the combined addition and round-
ing and, to avoid large delays, the calculation of
the normalization shift amount is overlapped with
the normalization shift. (2) There are two full
alignment shifters operating in parallel in the FAR
datapath, needed for the alignment of the carry-
save output of the multiplier. (3) The floating—
point adder and the multiple—datapath MAF use
two dual adders, whereas because of the antici-
pation of the normalization before the addition,
the proposed MAF requires only one dual adder.
Moreover, whereas the dual adder in our proposal
is 53-bit width, adders in the multiple—datapath
MAF are 53—bit and 160-bit width.

2. With respect to the single—datapath MAF: (1) the
architecture of the CLOSE datapath is similar to

6Note that the actual exponent di erence might be =
1, since the multiplication can produce an overflow
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the single—datapath MAF, but with a 2—bit align-
ment shifter and with di erences in the calculation
of the alignment shift amount. Moreover, the nor-
malization shift is of 108 bits instead of the 162—bit
normalization shifter of the single—datapath MAF.
(2) The FAR datapath does not exist in the previ-
ous MAFs, it has been been completely designed
for this organization.

Moreover, the calculation of the alignment shifts
amounts has been tailored to the requirements of de-
lay imposed by the proposed MAF architecture, over-
lapping these calculations with the operation of the
shifters.
In case of a floating—point addition, the multiplica-

tion stage is bypassed, operand inputs directly to
the alignment stage, inputs the alignment shifter in-
stead of the carry word of the output of the multi-
plier, and the sum word of the output of the multiplier
is forced to 0. This is equivalent to making = 1,

since the result of the multiplication is . However,
because of the hardware organization required for the
MAF operation, the floating—point addition is imple-
mented di erently than in a standard double—datapath
floating—point adder [11, 16]. Note that, as there are
two alignment shifters in the FAR datapath and
is always rigth—shifted in the CLOSE datapath, the
swap of the operands before the alignment, typical in
standard floating—point adders, is not needed now and,
therefore, the calculation of the exponent di erence is
not in the critical path. But, on the other hand, the
alignment shifters are larger, one more level than in an
adder, and there is an additional 3:2 CSA in the critical
path.

The description of the architecture can be split into
several parts: multiplication, alignment (including ex-
ponent processing), normalization, and combined ad-
dition and rounding. Some of these parts and com-
ponents, multiplication, normalization in the CLOSE
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path, LZA, and combined addition and rounding, are
already implemented in the single—datapath MAF with
normalization before rounding, and described in detail
in [8]. Then, they are not described here. Therefore,
in the next subsections, the main characteristics of the
remaining parts of the architecture are summarized.
However, we do not describe these parts in large de-
tail. A detailed description of the components of the
architecture can be found in [1].

3.1 Alignment and exponent processing

The alignment is performed as follows:

• As done for the single datapath MAF architectures
[7, 8], the alignment in the CLOSE datapath is
implemented as a right shift of ; in this case,
and since the maximum alignment shift is 2,
is placed two bits to the left of the most signifi-
cant bits of × or of in case of floating—point
addition (Figure 3(a)). Then, the resulting align-
ment shift is = 2 , with 0 3;
that is, a 3-bits right shifter is required. Note that
in floating—point addition, as ( × ) = 0,
1 3. Since the maximum shift of
is 3 bits, only the 54 most—significant bits of the
× input the 3:2 CSA; the 52 least—significant

bits input directly into the HAs.

• To use this approach in the FAR path requires a
full normalization shift, since the number of lead-
ing zeros after the alignment is unknown. Then
or × (or in case of floating—point addition)
is aligned depending on the sign of the exponent
di erence and the shift amount is given by . An
example of the alignment × (or ) is shown
in Figure 3(b). During the alignment, the bits of
× , or shifted out can propagate 1 or 2

carries7 to the upper part. These carries are calcu-
lated during the alignment/normalization and are
added at the output of the 3:2 CSA and in the
add/round module [1].

Only two shifters are needed for the alignment.
This means that one shifter is shared for the align-
ment of and the sum word of × . In case
of a floating—point addition, and to avoid the use
of ( ) at the beginning, these two shifters are
used, in such a way that and are right shifted
and then, depending on ( ), a shifted operand
and a non-shifted operand are selected.

7Two carries can propagate to the upper part in case of e ec-
tive multiply—subtraction and 0, due to the 2’complement
of the aligned ×

The maximum alignment shift is 53 bits for ×
or 106 bits for (only for maf operations), since
shifts larger than these maxima place the shifted
operand to the right of the least—significant bit of
the non—shifted operand, a ecting only the calcu-
lation of the sticky bit.

In both paths, the three resulting vectors after the
alignment are added in a 3:2 CSA. To avoid a negative
result in the CLOSE datapath, which would complicate
the add/round stage, the sign of the 3:2 CSA output
is detected and, if negative, the outputs are inverted.
In both paths, an additional row of HAs is required to
correctly perform the rounding [4, 8].

Exponent processing

The exponents of the three operands are processed to
obtain the control signals and the shift amounts for the
alignment and normalization stage. However, in order
to reduce the latency of the floating—point addition,
the exponent processing logic is split into two parts in
such a way that, in case of a MAF operation, part of
the processing is done in parallel with the multiplier.
Special attention deserves the calculation of the sign of
the exponent di erence, ( ). This sign is needed
before the alignment shifters of the FAR datapath in
case of a multiplication or a multiply—add, and after
the shifters in case of an addition. Therefore, it is
computed in parallel with the multiplier for floating—
point MAF, and in parallel with the alignment shifters
in case of floating—point addition. This requires the
replication of the logic for obtaining ( ).
Moreover, the calculation of the shift amounts for

the alignment shifters in the CLOSE and FAR datap-
ath, 2 and respectively, are overlapped with the
operation of the shifters; in this way, no additional de-
lay is introduced.

Complementing in e ective subtraction

A two’s complement representation is used in both the
CLOSE and FAR datapaths, to avoid the end around
carry adjustment needed in a one’s complement adder
and to simplify the design of the combined addition and
rounding. However, there are some di erences on how
the bit—inversion and addition of the least—significant
one are carried out in both paths:

• In the CLOSE path, to avoid a slow comparison
when the exponent di erence is 0 or 1, is al-
ways inverted, and the 1 required to complete the
two’complement is added using an empty slot in
the 3:2 CSA.
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Then, the result of an e ective subtraction is neg-
ative when ( ) = 0; but if = 0 or = 1
the result can be also positive and the magnitudes
have to be compared to determine the sign (mod-
ule sign detection). To avoid additional delays,
the calculation of the 2’s complement of the output
of the 3:2 CSA is performed after the row of HAs
and the bit-inversion of the carry and sum words is
carried out conditionally. The HAs are duplicated,
with and without inverted inputs, and the correct
output is selected according to the
signal. To complete the 2’s complement, the two
1’s required are introduced as the least—significant
bit of the carry word at the output of the HAs and
as an additional 1 in the add/round module.

• In the FAR path or × is inverted depend-
ing on the exponent di erence, and the result is
always positive. Then, one or two 1s are required
to complete 2’s complement of or × , re-
spectively. These additional 1s are added using an
empty slot in the 3:2 CSA and in the add/round
module.

3.2 Normalization

The normalization is performed before the addition
[8]. This requires two full—length shifters in the CLOSE
path (one for the sum word and another for the carry
word) and two 3—bit shifters in the FAR path. The
3—bit shifter in the FAR datapath is necessary since,

in an e ective multipliy—addition and due to a possible
overflow in the multiplication, the result could have
two overflow bits, requiring a 2—bit right shift; whereas
in an e ective multiply—subtraction the result can be
unnormalized, requiring a 1-bit left shift.
To reduce the delay in the CLOSE path, the oper-

ation of the LZA is overlapped with the normalization
shift. To achieve this overlap, the shift count is ob-
tained starting from the most—significant bit and the
normalization begins once the first bit (MSB) is ob-
tained. On the other hand, since the part of the LZA
that cannot be overlapped with the shifter has a sig-
nificant delay, the HA and part of the adder are placed
before the normalization [8].

4 DELAY COMPARISON AND LATENCY
REDUCTION

We evaluate the proposed MAF architecture by
comparing it with the single—datapath architecture
with normalization before addition, which has been es-
timated to be faster than the basic MAF [8]. We show
that the latency of the floating—point addition is re-
duced with a small e ect on the cycle time.
On the other hand, the architecture in [15] shares

some of the characteristics of the MAF proposed in this
paper: multiple—datapaths depending on the alignment
shift and combined addition and rounding. However,
whereas in our architecture we anticipate the normal-
ization before the addition to overcome the fact that in
the MAF operation the rounding position is not known
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before the normalization, the architecture in [15] uses
an integrated unit that (1) determines the position of
the rounding and (2) performs the addition and the
variable position rounding; however, this unit is not
described and no reference is provided. Therefore, we
cannot compare with this MAF while the structure of
this unit is unknown. In any case, the objective of our
architecture is to reduce the latency of the floating—
point addition with respect to MAF operation, and in
the MAF in [15], the latency of the addition is not re-
duced, since it is the same as the latency of the MAF
operation.
Then, to compare with the MAF with normalization

before addition, we consider three di erent steps,

• Single—datapath MAF : (1) alignment and multipli-
cation, (2) normalization, and (3) combined addi-
tion and rounding.

• Proposed MAF : (1) multiplication, (2) alignment
and normalization, and (3) combined addition and
rounding.

The delays of steps (1) and (3) are the same for both
architectures [8]; then, we concentrate on step 2.

4.1 Delay of the normalization step in the
single—datapath MAF

The delay of the normalization (Figure 1) is [8],
= + 162 being 162 the delay of the

162—bit normalization shift, and the largest de-
lay of the three parallel paths: (1) sign detection, (2)
3:2 CSA, HAs and part of the adder and (3) LZA. We
have estimated that the larger delay corresponds to the
3:2 CSA, HAs and part of the adder8. Then,

= + + + 2 + 162 (1)

4.2 Delay of the alignment/normalization step
in the proposed MAF

The estimates shown has been obtained according
to the detailed description of the architecture given in
[1]. In both paths, the selection between addition or
MAF operations in the exponent processing introduces
some additional delay [1]: one and—or gate and one
xor gate ( + ) in the CLOSE path and one
multiplexer in the FAR path ( ).

8Note that the delay of part of the adder depends on the
number of levels anticipated before the shifter; that is, the part
of the adder that is anticipated is such that the delay of this path
matches the delay of the longest of the other two paths.

• CLOSE. Three parallel paths:(1) sign detection,
(2) bit—invert, 3—b shifter, 3:2 CSA, HA and part
of the adder, and (3) bit—invert, 3—b shifter and
LZA. The slowest is the second path [1, 8]. Then

= ( + ) + ( 3 + 2 +

+ ) + 108 (2)

Note that part of the 3:2 CSA, one HA, is in par-
allel with the alignment shifter. Moreover, the
bit-invert is in parallel with the xor gate in the
exponent processing.

• FAR. The delay of this step is,

= 3 + 106 + +2 + + 1

(3)
We have made the following assumptions: (1)

106 = 55 + , (2) = , and (3) the
cancelation of the aligned operands when the max-
imum alignment shift has been exceeded is

Moreover, is the delay of the parallel paths:
(1) HA, part of the dual adder and 2—b right/1—
b left shifter, (2) 3—bit adder and shift amount
coding and (3) MSC detector. The larger delay
corresponds to the first path. Then,

= 3 + 106 + + 3 +

+ 3 + 1 (4)

By comparing equations (2) and (4), we obtain

= (5)

4.3 Comparison

We compare now equations (1) and (5). We use as
delay unit the delay of an inverter with load of 4, 4.
Although this model is used to be independent of the
technology, there are several modules which have alter-
native implementations; consequently, we provide only
an estimation of the critical path delay. We consider:
(1) = 2 , (2) 162 = 106 + and (3)

= 2 4
9, = 4 4 and 3 = 8 4 (two

levels of muxes). Then,

= + + 3 = 14 4 (6)

To put in perspective this increment, we have to
take into account that the estimated delay of the basic

9The set of AND gates in the far datapath can be replaced by
NAND gates if the control signals of the controlled bit inverters
after the AND gates are negated.
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Basic norm.bef.add. Proposed
maf,mul,add maf,mul,add maf,mul add

Delay 1 0.8 0.9 0.6
( 4)

Delays normalized to the delay of the basic architecture

Table 1. Delays of the MAF architectures

single—datapath MAF and the single—datapath MAF
with normalization before addition are 175 4 and
145 4, respectively [8].
The delay reduction with respect to the basic MAF

are shown in Table 1. Consequently, the delay incre-
ment for the computation of the MAF operation is
small, around 10%, with respect to the single—datapath
MAF with normalization before the addition; but, even
with this increment, the global delay is smaller than the
delay of the basic MAF [7]. Moreover, the delay of the
floating—point addition has been reduced significantly
both with respect to the basic MAF, around 40%, and
with respect to the single—datapath MAF with normal-
ization before the addition, around 30%.

4.4 Latency reduction in a pipelined unit

We consider three steps in the MAF architecture:
(1) Multiplication × and part of the exponent pro-
cessing, (2) Alignment and normalization shifts and
part of the dual addition, and (3) Rest of the dual
adder, in parallel with carry and sticky bit calculation.
This architecture can be pipelined in a way simi-

lar to previous implementations of the single—datapath
MAF, into three or five stages, by assigning each step
to a stage (three stages) or splitting steps 1 and 3 into
two pipeline stages (five stages), or into four stages, be-
cause of the delay reduction with respect to the basic
MAF while maintaining the same cycle time.
In this way, if the architecture is pipelined into three

stages, the number of cycles required is 3 cycles for fp—
mult and fp—MAF (stages 1 to 3), and 2 cycles for
fp—add (stages 2 and 3). On the other hand, if it is
pipelined into five stages, the fp—mult and MAF require
5 cycles, and the fp—add only 3 cycles. In case of a
pipelining into four stages, the latency of the fp—add
could be reduced to only 2 cycles.

5 CONCLUSIONS

An architecture for a floating-point Multiply—Add—
Fused (MAF) unit that reduces the latency of the
floating—point addition with respect to previous MAF
implementations is proposed. This architecture is

based on a previous MAF architecture, with combi-
nation of the final addition and the rounding, by using
a dual adder, and anticipation of the normalization be-
fore the addition. The proposed MAF architecture in-
corporates a double—datapath organization, previously
used in floating—point adders and MAF units, to take
advantage of the fact that the full—length alignment
shift and the full-length normalization shift are mutu-
ally exclusive, and only one of such shifts appears on
the critical path.
The proposed organization allows to carry out the

alignment of the addend after the multiplication, in-
stead of in parallel with it as done in previous archi-
tectures. This permits to bypass the first stages when a
floating—point addition is executed, resulting in a lower
latency for this operation. This reduction from three
to two cycles, when a pipelining into three stages is
implemented, or from five to three stages if the unit is
pipelined into five stages. Consequently, the floating—
point addition has been integrated into the floating—
point MAF unit with major benefits for the addition
at the expense of a minor delay increment for the MAF
operation.
Additionally, the delay of the proposed architecture

has been estimated and compared with the single—
datapath MAF architectures. The conclusion is that
there is a significant delay reduction in the computa-
tion of a floating—point addition, about 40% with re-
spect to the basic MAF, and around 30% with respect
to the single—datapath MAF with normalization before
the addition.
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