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Abstract—Performance of field-programmable gate arrays
(FPGAs) used for floating-point applications is poor due
to the complexity of floating-point arithmetic. Implementing
floating-point units (FPUs) on FPGAs consume a large amount
of resources. This makes FPGAs less attractive for use in
floating-point intensive applications. Therefore, there is a need
for embedded FPUs in FPGAs. However, if unutilized, embedded
FPUs waste space on the FPGA die. To overcome this issue, we
propose a flexible multimode embedded FPU for FPGAs that
can be configured to perform a wide range of operations. The
floating-point adder and multiplier in our embedded FPU can
each be configured to perform one double-precision operation or
two single-precision operations in parallel. To increase flexibility
further, access to the large integer multiplier, adder and shifters
in the FPU is provided. Benchmark circuits were implemented on
both a standard Xilinx Virtex-II FPGA and on our FPGA with
embedded FPU blocks. The results using our embedded FPUs
showed a mean area improvement of 5.5 times and a mean delay
improvement of 5.8 times for the double-precision benchmarks,
and a mean area improvement of 3.8 times and a mean delay
improvement of 4.2 times for the single-precision benchmarks.
The embedded FPUs were also shown to provide significant area
and delay benefits for fixed-point and integer circuits.

Index Terms—Dual-precision, embedded block, field-pro-
grammable gate array (FPGA), floating-point, floating-point unit
(FPU), FPGA architecture.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) allow
designers to build virtually any logic device in hardware

quickly and easily. The programmability and flexibility of
FPGAs make them ideal for prototyping, quick time-to-market
applications, one-off implementations, and customized hard-
ware. They are especially valuable in applications where a
custom circuit is required, but the production volume does
not justify the costs and time of fabricating them on applica-
tion-specific integrated circuits (ASICs).

While the flexibility of FPGAs is highly valued, the perfor-
mance of FPGAs significantly lags that of ASICs. Advances
in process technology and FPGA architectures have allowed
FPGAs to close the gap to a certain extent. For example, an in-
creasing amount of hard logic has been embedded into FPGAs
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in an effort to improve performance. These include embedded
block RAMs, fast carry-chains, embedded multipliers, digital
signal processing (DSP) cores and even whole microproces-
sors (e.g., PowerPC cores in Xilinx Virtex-II Pro). One area
where FPGA performance is still lacking is in floating-point
applications.

FPGAs are widely used for scientific computation because
of the ease of customizing the hardware for the application.
Floating-point is also important for scientific computations for
their numerical stability. Despite the poor floating-point perfor-
mance of FPGAs, there has been significant interest in using
FPGAs for scientific applications [1]–[5]. While FPGAs excel
at integer and fixed-point applications, floating-point applica-
tions occupy a large and often impractical amount of resources
when implemented on FPGAs. The limited size and architecture
of FPGAs are not well-suited for floating-point applications. On
the other hand, ASICs can be very efficient at floating-point op-
erations, but lack the programmability and flexibility that is de-
sired in many situations, and the cost of an ASIC can be pro-
hibitively high. General purpose processors with floating-point
units (FPUs) are programmable and can be capable of high clock
rates, but performance is limited by the lack of customizable
hardware [6]. Thus, FPGAs are a very attractive platform for
floating-point applications if their limitations can be overcome.

Currently available commercial FPGAs still have not
addressed the problems associated with implementing
floating-point applications on FPGAs. There has been research
work investigating the use of embedded floating-point units
(FPUs) in FPGAs, such as [7]–[9], but despite demonstrating
the significant benefits of embedded FPUs, commercial vendors
have yet to include them. One argument for this non-inclusion
is that the demand for embedded FPUs is still not high enough
to warrant the addition of embedded FPUs. Another is that if the
embedded FPUs are not utilized, the area is wasted. Therefore,
to make it a more attractive proposition for vendors to include
embedded FPUs, this paper presents a more flexible FPU that
may be utilized in multiple different ways. The multimode
embedded FPU presented in this paper may be configured to
perform one double-precision operation, two single-precision
operations in parallel, or a variety of integer operations. Such
an FPU increases the number of ways in which the designer
may utilize these embedded blocks, and therefore reduces the
likelihood that the area is wasted. A single FPGA can contain
a number of these multimode embedded FPUs, where each can
be configured to perform a different task or they can be used to
build massively parallel circuits.

Existing commercial FPGAs already contain many dedicated
hardware blocks to accelerate arithmetic operations. Embedded
multipliers are common in many modern FPGAs, like the Xilinx
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Virtex-II. Multiply-accumulate (MAC) blocks are available in
Altera’s Stratix and Stratix II FPGAs. To make it more attrac-
tive for FPGA vendors to include embedded FPUs, the FPU
should be multifunctional, rather than a static single-function
block. Rose [10] explores the question of what hard, dedicated
circuits should be included on FPGAs. Rose suggests that when
determining what structures to include on an FPGA, the more
useful the hard structure is across a wider range of applications,
the better, even if they are less than perfectly efficient. This is
the philosophy we are employing in our design. Our goal is to
create a flexible, generic embedded FPU, which over a variety
of applications will improve performance and save a significant
amount of FPGA real estate when compared to implementations
on current FPGAs.

With this goal of flexibility in mind, our embedded FPU
was designed so that it can be configured to perform several
useful functions. Since multiplication and addition are two of
the most commonly used arithmetic operations, both in integer
and floating-point domains, each embedded FPU contains a
floating-point multiplier and adder. Both the floating-point
multiplier and adder can perform a double-precision operation,
or two single-precision operations in parallel, thus potentially
doubling the throughput in single-precision mode. To make
the embedded FPU useful for integer based applications, it
can be configured so that several of the FPU’s internal integer
components are made available. From the floating-point multi-
plier, the fast 53 53-bit multiplier (can be configured as two
24 24-bit multipliers) is accessible. From the floating-point
adder, the 53-bit carry-lookahead adder (can be configured as
two smaller 27- and 26-bit adders) and two large shifters are
accessible. Building large shifters in the fine-grained fabric of
the FPGA is expensive in terms of resources, therefore it would
be beneficial to allow access to the large shifters present in
the floating-point adder. The overheads associated with adding
this functionality to the embedded FPU is not excessive for
the amount of flexibility added. Another common arithmetic
operation is a fused multiply-add operation . To
avoid routing delays, we have also designed the embedded FPU
to allow the output of the multiplier to be linked to an input of
the adder, allowing it to perform any one of the following oper-
ations: one double-precision multiply-add, two single-precision
multiply-adds in parallel, one 53-bit integer multiply-add, or
two 24-bit integer multiply-adds in parallel.

There are many different possible configurations that could be
made, but we believe that the configurability of our embedded
FPU is sufficient for many common applications. It is beyond
the scope of this paper to explore the multitude of combinations
of different configurations possible and is left for possible future
work.

The rest of this paper is organized as follows. Section II
provides a review of related work. Section III provides some
background on floating-point numbers and conventional
floating-point adder and multipliers. Section IV describes the
architecture of our dual-precision FPU and the modifications
made to the floating-point adder and multiplier. Section V
describes the architecture of the FPGA with embedded FPU
blocks. Section VI describes the modelling methodology
chosen to model our FPGA with embedded FPU blocks.

Section VII details the experiments performed and Section VIII
discusses the results obtained. The conclusions are presented
in Section IX followed by a brief discussion on future work in
Section X.

II. RELATED WORK

A number of recent works have investigated the use of em-
bedded FPUs in FPGAs [7]–[9]. Beauchamp et al. [7] proposed
an island-style FPGA architecture with embedded FPUs. Ho et
al. [8] also modelled the use of embedded floating-point units
in FPGAs. Both works demonstrate that significant area and
delay improvements are gained by using an FPGA with em-
bedded FPUs over using a standard FPGA for implementing
floating-point applications.

Another work by Ho et al. presents a Hybrid FPGA ar-
chitecture [9], where coarse-grained units are embedded into
the FPGA. Each coarse-grained unit contains word blocks in
addition to floating-point multipliers and adders. The word
blocks can be configured to perform some simple operations,
such as integer additions and comparisons. The coarse-grained
units employ bus-based routing internally to improve speed and
density. The advantage of Ho’s architecture is that it moves
more of the circuit that would have been implemented in the
fine-grained fabric into the coarse-grained unit, which would
reduce routing delays.

Dual-precision floating-point adders and multipliers have
been presented in [11]–[13]. Akkaş presents a floating-point
adder [11] that can each be configured to perform either one
quad-precision addition, or two double-precision additions in
parallel. Even et al. [13] presents a floating-point multiplier,
that can be configured to perform either one double-precision
multiplication or one single-precision multiplication. Akkaş
improves on Even’s design in [12] with a floating-point multi-
plier that can perform either one quad-precision multiplication,
or two double-precision additions in parallel. Akkaş’ designs
can be scaled down to one double-precision/two single-preci-
sion units.

Diniz and Govindu [14] presented the design of a field pro-
grammable dual-precision FPU that can be configured at run-
time to switch between single-precision (two in parallel) and
double-precision multiplication and addition. The FPU is a soft-
core that is implemented in the fine-grained fabric, so does not
provide the improved speed and area of an embedded hardware
FPU. Their design targets run-time reconfigurable systems, so
provides no benefits to applications where changing precision at
run-time is not needed since there is a speed and area overhead.

In contrast to the works by Beauchamp [7] and Ho [8], who
only estimate area and delay of the embedded FPUs (from
FPUs in existing commercial processors) when modelling
their FPGAs with embedded FPUs, we have built actual FPUs
specifically for this work. This provides a more accurate model
for our embedded FPUs.

The Hybrid FPGA work by Ho [9] synthesizes an FPU
library for the FPUs embedded in their coarse-grained unit. The
FPUs in the coarse-grained units were double-precision only.
The configuration of the coarse-grained units in the Hybrid
FPGA was customized towards the benchmark circuits. Our
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embedded FPU is more generic and flexible, but lacks the
customizable word-blocks of the Hybrid FPGA. The Hybrid
FPGA architecture is an interesting design and some of the
ideas could be adapted for our multimode embedded FPU in
future work.

While Beauchamp [7] briefly suggests modifying the double-
precision FPUs into dual single-precision FPUs and allowing
access to internal components of the FPU to reduce the disad-
vantage of unutilized embedded FPUs wasting space, our work
is the first to objectively implement and evaluate this idea.

Akkaş [11], [12] and Even [13] have presented designs for
dual-precision FPUs, but our work is the first to investigate em-
ploying dual-precision FPUs as embedded blocks in FPGAs.
Our dual-precision FP adder is similar in design to Akkaş’ [11],
but we use a different approach for our dual-precision FP multi-
plier. Akkaş uses two multipliers for the two lower precision
multiplications, and uses the two multipliers in a multicycle
feedback arrangement for the higher precision multiplication
[12]. This reduces area, but because it is a multicycle operation,
it increases latency by an extra clock cycle and blocks the use
of the multiplier during that cycle when performing the higher
precision multiplication, thus resulting in lower throughput. Our
novel design uses a multiplier tree large enough for performing
a double-precision multiplication in one cycle. When in single-
precision mode, the partial products for each pair of operands
are injected into the multiplier tree at different locations. This
is explained in more detail in Section IV-B. Our design has
the advantage of completing both single- and double-precision
multiplications in one cycle. The disadvantage of our design is
that the delay to complete the single-precision multiplications
is slightly longer than necessary and area is greater than Akkaş’
design. These disadvantages are not much of a concern for the
embedded FPU because it will be many times faster and smaller
than implementing a floating-point multiplier in the fine-grained
logic.

Unlike Diniz and Govindu [14]’s work which targets dynam-
ically reconfigurable applications only, our embedded FPU pro-
vides benefits in both reconfigurable and non-reconfigurable ap-
plications. Reconfiguration time of our embedded block is low
because it only involves changing the control signals for the
multiplexers.

Therefore, the main contributions of this paper are as follows:
• an FPGA architecture with a novel flexible multimode em-

bedded FPUs is presented and modelled;
• an architecture for an IEEE754 compliant flexible mul-

timode FPU that can perform double-precision, or dual
single-precision operations, as well as a variety of integer
operations is presented;

• a novel dual-mode integer multiplier that can compute one
large multiplication or two smaller multiplications within
in a single cycle is presented, which is the key component
in the dual-precision floating-point multiplier.

III. BACKGROUND

A. Floating-Point Representation

The IEEE754 standard [15] floating-point format consists of
three fields—a sign bit , a biased exponent , and a man-

Fig. 1. (a) Single-precision and (b) double-precision IEEE754 floating-point
numbers.

tissa . Single-precision numbers have a 1-bit sign, 8-bit ex-
ponent, and 23-bit mantissa as shown in Fig. 1(a). Double-pre-
cision numbers have a 1-bit sign, 11-bit exponent, and 52-bit
mantissa as shown in Fig. 1(b).

The three fields make up a floating-point number according
to (1) (single-precision) and (2) (double-precision). There is an
implied “1” to the left of the binary point (except in the special
case of denormal numbers)

(1)

(2)

Floating-point numbers have an advantage of being able to
cover a much larger dynamic range compared to fixed-point
numbers. The disadvantage is that floating-point computations
are much more complex to implement in hardware.

B. Floating-Point Addition

The conventional floating-point addition algorithm consists
of five stages—exponent difference, pre-alignment, addition,
normalization and rounding [16]. Given floating-point numbers

and , the stages for com-
puting are described as follows.

1) Find exponent difference . If , swap
position of mantissas. Set larger exponent as tentative ex-
ponent of result.

2) Prealign mantissas by shifting smaller mantissa right by
bits.

3) Add or subtract mantissas to get tentative result for man-
tissa.

4) Normalization. If there are leading-zeros in the tentative re-
sult, shift result left and decrement exponent by the number
of leading zeros. If tentative result overflows, shift right and
increment exponent by 1 bit.

5) Round mantissa result. If it overflows due to rounding, shift
right and increment exponent by 1 bit.

Fig. 2 shows the datapath for a floating-point addition.
Only the main parts of the datapath are shown for clarity. The
prealignment and normalization stages require large shifters.
The prealignment stage requires a right shifter that is twice the
number of mantissa bits (i.e., 48 bits for single-precision, 106
bits for double-precision) because the bits shifted out have to be
maintained to generate the guard, round and sticky bits needed
for rounding. The shifter only needs to shift right by up to 24
places for single-precision or 53 places for double-precision.

The normalization stage requires a left shifter equal to the
number of mantissa bits plus 1 (to shift in the guard bit), i.e.,
25-bits for single-precision and 54-bits for double-precision.
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Fig. 2. Floating-point adder datapath.

The shift amount is determined by the leading one detector
(LOD) circuit [17], which outputs the number of leading zeros
before the first one in the bit string.

The final stage of the floating-point adder is the rounding unit.
It makes a rounding decision based on the rounding mode, the
LSB of the mantissa, the round bit and the sticky bit. If rounding
is necessary, “1” is added at the LSB of the mantissa.

There are other variations of the conventional floating-point
adder architecture that improve performance, such as the
leading one predictor (LOP) architecture [18] and the dual-path
architecture [19]. The tradeoff involved with these two archi-
tectures is that they require additional hardware and area for the
added performance. The conventional architecture was chosen
over the faster architectures for area savings and reduced
complexity, which simplifies the conversion to a dual-precision
structure.

C. Floating-Point Multiplication

Algorithmically, floating-point multiplication is much
simpler than floating-point addition. However, a very wide
integer multiplier is required. Given floating-point numbers

and , can
be computed using

(3)

(4)

(5)

Fig. 3 shows the datapath for a floating-point multiplier. Only
the main parts of the datapath are shown for clarity. If the result
from the multiplier has two bits left of the binary point, the man-
tissa has to be shifted right to compensate and the exponent is

Fig. 3. Floating-point multiplier datapath.

Fig. 4. Booth Wallace multiplier structure. � is the multiplier and � is the
multiplicand.

incremented. If the rounding of the mantissa results in an over-
flow, the mantissa is shifted right by one and the exponent is
incremented.

Equation (5) calls for a very wide multiplier—53 53-bit
unsigned multiplier for double-precision and 24 24-bit for
single-precision. Therefore, an efficient multiplier must be em-
ployed. In our work, we use a Radix-4 modified booth encoded
(MBE) Wallace multiplier as shown in Fig. 4, which was based
on the designs in [20]–[22]. Radix-4 recoding halves the number
of partial products, thus reducing the number of levels required
in the Wallace tree, which improves performance and reduces
area. For more on Booth recoding, refer to [23] and [24]. The
Wallace tree [25] reduces the number of partial products to two,
which are added together by a fast final adder to get the final
product. For the 53 53-bit multiplication, 7 reduction levels
in the Wallace tree are needed and 5 reduction levels for the
24 24-bit multiplication.

IV. MULTIMODE FPU

The multimode embedded FPU was designed to include a
dual-precision floating-point multiplier and a dual-precision
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Fig. 5. Two single-precision numbers in one 64-bit word.

Fig. 6. 2 � 8-bit/1 � 16-bit adder—capable of performing two independent
8-bit additions in parallel or one 16-bit addition.

floating-point adder. They were designed to be IEEE754 com-
pliant [15], except that hardware support for denormals was
not included and only the IEEE754 default rounding mode
(round-to-nearest even) was implemented. The design can be
easily modified to support the other rounding modes specified
in IEEE754. The dual-precision FPU accepts 64-bit inputs,
where double-precision operands occupy the full 64-bits and
single-precision operands each occupy half of the 64-bits as
shown in Fig. 5.

The following two sub-sections explain the modifications
made to a standard floating-point adder and multiplier to convert
them into dual-precision versions capable of performing one
double-precision operation or two single-precision operations
in parallel.

A. Dual-Precision Floating-Point Adder

As in [11], the method for converting a standard floating-point
adder into a dual-precision adder involves duplicating the data-
path for a single-precision adder and then linking duplicated
functional blocks together (and widen them where necessary)
to accommodate double-precision. Multiplexers controlled by
a mode signal (double) selects between single-precision mode
and double-precision mode.

A double-precision exponent is 11-bits, while a single-preci-
sion exponent is 8-bits. For all the operations on the exponents
that involve adding or subtracting, we use two 8-bit adders that
can combine into one 16-bit adder, as shown in Fig. 6. When
double , it computes and

in parallel. When double , it
computes . This 2 8-bit/1
16-bit adder/subtractor is used in the exponent difference stage,
the exponent subtractor (after normalization) and the exponent
incrementer. The 11-bit exponent can be aligned to the MSB po-
sition (i.e., A[15:5]) so that the carry-out is valid. If the carry-in
is used, the remaining bits can be padded appropriately to allow
the carry-in to propagate or it can be multiplexed directly into
the carry-in of A[5]. Alternatively, the 11-bit exponent may also
be aligned to the LSB position (i.e., A[10:0]) and the carry-out
read out of the 12th bit position (i.e., A[11]).

Fig. 7. (a) Conventional multistage shifter and (b) modified multistage shifter
capable of operating as two smaller shifters or as a larger combined shifter.

A single-precision mantissa is 24-bits and linking two 24-bit
functional units in the same way as Fig. 6 results in 48-bits,
which is not wide enough for a 53-bit double-precision man-
tissa. Therefore, most of the functional units on the mantissa
side of the datapath must be widened. The main adder has the
same structure as Fig. 6, but the left adder is widened to 27-bits
and the right adder is widened to 26-bits, to give a total of 53-bits
when linked. The other adders on the mantissa datapath, like in
the rounding unit, are also modified in a similar fashion.

The variable right shifter in the prealignment stage is modi-
fied so that it behaves as two independent 53-bit right shifters
when in single-mode and a combined 106-bit shifter in double-
mode. Both shifters are able to shift the inputs by 64 places (6-bit
shift amount). Fig. 7 compares the structure of a standard multi-
stage shifter with the modified shifter. In Fig. 7(a), is the input
to be shifted and is the shift amount. In Fig. 7(b), double
sets it to single-mode, where is shifted by places and

is shifted by . The inputs on the sides of the shift boxes
indicate what values are to be shifted in. For prealignment,
and are the sign extensions of and , respectively. When
double , the bits shifted into the shifter comes from the
LSBs of the shifter to form a larger combined shifter for
double-mode. is shifted by places in double-mode.

The variable left shifter in the normalization stage would be
the left shift version of Fig. 7(b), with two 27-bit shifters in
single-mode and a combined 54-bit shifter in double-mode.

B. Dual-Precision Floating-Point Multiplier

The main challenge in modifying a standard floating-point
multiplier into a dual-precision multiplier is modifying its 53
53-bit integer multiplier. The design by Akkaş [12] uses two
smaller multipliers, which are reconfigured into a multicycle
(two cycles) arrangement in high precision mode. The problem
with Akkaş’ design is that a new high precision multiplication
can only start every other cycle as the hardware is unavailable
until the previous multiplication is completed. To avoid this
problem, our novel design uses the full 53 53-bit multiplier for
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Fig. 8. Modified Booth Wallace multiplier that can perform either one � -bit
unsigned multiplication or two smaller � and � bit multiplications in parallel.

both double-mode and single-mode. Our design requires more
hardware compared to Akkaş’, but is partly offset by the use of
Radix-4 recoding. A higher radix could be employed to reduce
hardware further if necessary.

The dual-mode integer multiplier has to perform one 53-bit
multiplication in double-mode or two 24-bit multi-
plications and in single-mode. The
Radix-4 MBE Wallace multiplier from Fig. 4 was retained for
its performance and area efficiency. The partial products gener-
ator was modified to generate partial products for the full 53-bit

when in double-mode and for both of the 24-bit portions
and in single-mode. The partial products selector operates as
normal in double-mode, but in single-mode, the partial products
for each of the 24-bit portions need to be placed in a special ar-
rangement before being fed into the Wallace tree as shown in
Fig. 8.

Illustrated in Fig. 8 is how the partial products for two smaller
and bit multiplications are arranged within the partial prod-

ucts array for the larger -bit significand (for this application,
and ). Each partial product is padded with

two extra bits on the left to avoid needing to sign-extend each
partial product as described in [20]. The white rectangles repre-
sent the partial products for the -bit significand. Each partial
product is offset 2-bits to the left of the partial product above
it as a result of the Radix-4 recoding. The thinner rectangles
within the white rectangles represent the positions of the partial
products for the two and bit multiplications. They are placed
at opposite “corners” of the array and all unused bits are padded
to zero. There must be a separation of at least unused bits be-
tween the top-most partial product and the bottom-most par-
tial product to ensure that the intermediate values of the com-
putation will not contaminate the values of the computation
as they pass through the Wallace tree. The maximum bit-length
of the partial products increases by 1-bit every odd numbered
level of the Wallace tree (excluding the first level). Our Wallace
tree has seven levels for double-precision when using Radix-4
recoding. Therefore, a separation of at least is sufficient
to guarantee correctness. A double-precision partial product is
55-bits long and a single-precision partial product is 26-bits.
Therefore, the condition is satisfied. The Wallace tree
reduces the partial products down to two, which are added to-
gether by the final carry-select adder. The output is a -bit

Fig. 9. Structure of embedded FPU block. Contains a dual-precision floating-
point multiplier and adder.

result, from which the smaller -bit and -bit results can be
extracted.

The modifications for the rest of the dual-precision
floating-point multiplier datapath are relatively straightfor-
ward. The adders and subtractors on the exponent part of the
datapath were modified into 2 8-bit/1 16-bit adders and
subtractors like in Fig. 6. The rounding unit is modified in the
same way as the rounding unit in the floating-point adder in
Section IV-A.

C. Embedded Multimode FPU Block

Fig. 9 shows the structure of the embedded FPU block.
The FPU block contains one floating-point multiplier and
one floating-point adder. These can be used independently, or
configured in a multiply-add configuration by enabling a bus
connecting the output of the multiplier to an input of the adder.
Optional registers are available at the inputs and outputs of the
FPU block to allow for easy implementation of pipelined or
multicycle circuits.

To increase the usefulness of the floating-point units, sev-
eral key integer components within the floating-point units were
made accessible. These components are as follows.

• Dual-mode 53 53-bit integer multiplier in the floating-
point multiplier. Can be configured as two independent 24

24-bit multipliers.
• Dual-mode 53-bit integer adder in the floating-point adder.

Can be configured as independent 27-bit and 26-bit adders.
• The 106-bit right shifter in the pre-alignment stage of the

floating-point adder. Since maximum shift is 64 places,
access is given to 64-bits of the shifter so that it appears
to be a 64-bit shifter with maximum shift of 64 places.

• The 54-bit left shifter in the normalization stage of the
floating-point adder. Maximum shift is 54 places.

To make these integer components available, multiplexers are
added at the inputs of each component. The multiplexers select
their normal inputs when in floating-point mode and select ex-
ternal inputs in integer mode. Multiplexers at the outputs of the
FPUs select between the floating-point result and the integer re-
sult. The integer and floating-point modes share the same in-
puts and outputs to minimize the number of pins needed (but
the shifters are given dedicated input/outputs). Sharing the input
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TABLE I
AREA OF EMBEDDED FPU BLOCK IN TERMS OF NUMBER OF VIRTEX-II SLICES

TABLE II
AREA AND DELAY OVERHEAD OF MULTIMODE FPU

and output pins allows the embedded block to be configured to
perform integer multiply-add operations using the same bus as
the floating-point multiply-add.

The decision to include the large integer multiplier and adders
was made because they are very commonly used operations.
Large multipliers are slow and very costly in terms of resources
when implemented in the fine-grained FPGA fabric, which has
led FPGA vendors to include embedded multipliers in many
of their FPGAs. By embedding our multimode FPU block, the
FPGA vendors could remove many of the embedded multipliers
because we provide access to the fast integer multiplier that is
used within the FPU block. The multiply-add functionality of
our embedded FPU block could also allow FPGA vendors to
replace MAC units in their FPGAs with our embedded FPU
block.

Large shifters are slow and occupy a lot of resources when
implemented in the fine-grained FPGA fabric. Since we have
large shifters present in the FPU blocks, we make these available
as well. The shifters have dedicated input and output ports so
that the shifters can be used at the same time as the integer adder.

To estimate the overhead of the dual-precision FPU and al-
lowing access to the integer components, a circuit with the same
structure as Fig. 9 was built, but instead of a dual-precision
adder and multiplier, a conventional double-precision adder and
multiplier was used and access to integer components was not
provided. They were both synthesized using Synopsys Design
Compiler with a 0.13- m TSMC standard cell library to obtain
area and delay. The area and critical path delay results are com-
pared in Table II. A 31% area overhead and 20% delay overhead
was observed. The overhead is relatively small considering the
amount of flexibility that the modifications have given the mul-
timode embedded FPU.

Table III shows a summary of the main differences between
the conventional double-precision FPU and the multimode FPU
that contribute to the overheads. The first column shows the
main modules of the FPU. The second column lists the com-
ponents where there are differences between the FPUs. The
third and fourth columns show the differences in components
between the FPUs. In the cases of MUXes and registers, the
fourth column shows the number of additional muxes and reg-
isters required in the multimode FPU compared to the conven-
tional FPU. In the case of adders, the third and fourth columns
show the different adder configurations used in the conventional
and multimode FPUs, and the fifth column shows the number
of instances where they are different. For example, the seventh

TABLE III
DIFFERENCES IN COMPONENTS BETWEEN CONVENTIONAL DOUBLE-PRECISION

FPU AND MULTIMODE FPU

row indicates that in the floating-point multiplier, the multimode
FPU has three pairs of 8-bit adders in place of three 11-bit adders
when compared to the conventional FPU. The eighth row indi-
cates that in the floating-point adder, in place of a 53-bit adder,
the multimode FPU has 26-bit and 27-bit adders. Note that the
numbers in Table III are obtained pre-synthesis, so the synthesis
tools may have performed optimizations that may have altered
the numbers. Table III shows that a significant number of ad-
ditional MUXes are required to enable the additional function-
ality.

To verify the design, simulations were performed using Mod-
elSim. It was tested against SoftFloat [26], an IEEE754 com-
pliant, publicly available open-source floating-point software
emulation package, which includes a program that generates test
patterns. This included random inputs, as well as specific pat-
terns to cover border conditions and rounding cases. Single- and
double-precision modes were tested and verified.

V. FPGA ARCHITECTURE

The proposed architecture for the FPGA with embedded
multimode FPUs is an island-style FPGA structure based on
the Xilinx Virtex-II. The embedded FPUs would be distributed
in a regular arrangement around the FPGA, surrounded by
fine-grained configurable logic blocks (CLBs) as illustrated
in Fig. 10. The number and arrangement of the the embedded
FPUs would be decided by the FPGA vendor and would depend
on the size of the FPGA. In this work, embedded FPUs are
placed evenly spaced in two columns near the center of the
FPGA.

VI. MODELLING

Beauchamp [7] used a VPR [27] methodology to model
embedded FPUs in an FPGA. There are several downsides of
using the VPR methodology. VPR can only roughly approxi-
mate commercial FPGA architectures. Commercial synthesis
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Fig. 10. Architecture of FPGA with embedded FPU blocks. Small squares rep-
resent CLBs. Note that this diagram is for illustration purposes only and is not
to scale.

tools cannot be used with the VPR flow, so optimizations such
as retiming are unavailable. Ho et al. [8] presented a modelling
methodology, which they call the virtual embedded block
(VEB) methodology, that overcomes these issues by modelling
the embedded blocks on commercial FPGAs. By modelling
on commercial FPGAs, a more accurate model is possible and
comparisons with commercial FPGAs are more accurate. The
VEB methodology uses a commercial tool flow, so optimiza-
tions like retiming are available. The VEB methodology was
chosen to model our FPGA architecture because of the above
mentioned advantages and for the convenience of using the
vendor’s toolset.

The VEB methodology involves first synthesizing the em-
bedded block using a standard cell ASIC flow. The multimode
embedded FPU was written in structural VHDL and synthesized
using Synopsys Design Compiler. A 0.13- m TSMC standard
cell library was used to approximate the technology used by the
Xilinx Virtex-II (0.12/0.15 m process). Area and timing in-
formation for the embedded block were obtained from the syn-
thesis tool. The case analysis option in Synopsys Design Com-
piler was used so that it would take the mode bits into account
when generating timing results.

Using the area and delay results, we then construct a dummy
logic block (VEB block) that approximates the size and delay of
our embedded block. The VEB blocks can then be instantiated
when building the benchmark circuits and placed in the Virtex-II
device using area and location constraints.

Using the method in [8] of instantiating and adjusting the
length of carry-chains, VEB blocks with a close approximation
of the delay could be constructed. To emulate the area taken up
by our embedded FPU when placed into the FPGA, we need to
determine the area in terms of the number of slices. Since our
target FPGA is the same as the one used by Ho in [9] (a Xilinx

XC2V3000-6-FF1152), we use the same parameters in our cal-
culations. The area of a slice is approximated to be 10 912 m
from [9]. The area of our embedded FPU block was reported to
be 264 065 m by the synthesis tools. Following the procedure
described in [9], we assume a 15% area overhead after place and
route and we determine the size of our embedded FPU block to
be approximately 37 slices as shown in Table I.

A problem we encountered with using the VEB methodology
to model our embedded FPU block was that because the VEB
block is constructed with Virtex-II slices, the VEB block would
not have enough input and output pins to model our embedded
FPU block. The last two columns in Table I show the number
of input and output pins of the Virtex-II slice and our embedded
FPU (with the maximum number of pins supported in brackets).
Each Virtex-II slice has 8 inputs and 2 outputs, so if we were to
build a VEB block of 37 slices, it would support a maximum
of 295 inputs and 74 outputs. However, our embedded FPU
requires 396 inputs and 288 outputs. To support the required
number of input and output pins, we enlarge the VEB block to
144 slices (to give a maximum of 1152 inputs and 288 outputs),
which is considerably larger than the 37 slices reported by the
synthesis tools. Therefore, area results presented in Section VIII
are overly pessimistic.

VII. EXPERIMENTS

In order to evaluate the proposed FPGA architecture, a set of
benchmark circuits were built and implemented on our FPGA
with embedded FPUs, and then compared to their implemen-
tation on a standard XC2V3000-6-FF1152 device. The bench-
mark circuits were a butterfly circuit (bfly), a digital sine co-
sine generator (dscg), a four-tap finite impulse response filter
(fir4), a 3 3 matrix multiply circuit (mm3), and an ordinary
differential equation solver (ode). The benchmark circuits were
chosen to be the same as those used in [8] and [9]. Note that
the benchmark circuits were built independently from [8] and
[9], so results may not be directly comparable due to differ-
ences in implementation. Both single-precision and double-pre-
cision versions of each circuit were built in order to evaluate the
multimode embedded FPUs in both precision modes. For the
circuits implemented on the XC2V3000-6-FF1152 device, the
circuits made use of the embedded multipliers. All the circuits
were pipelined, except for the ode circuit, which was a multi-
cycle implementation due to dependencies. Retiming in the syn-
thesis tools was enabled for all benchmarks for improved per-
formance. The tools used were Synplicity Synplify Pro 9.24 for
synthesis and Xilinx ISE 9.2i for place and route.

For the implementations on our FPGA with embedded FPU
blocks, we map the floating-point operations onto the VEB
blocks. Placement constraints are used to force the place and
route tool to place the embedded blocks in the desired locations
and to prevent any other logic from being placed within the area
occupied by the embedded blocks. The number and placement
of the embedded FPU blocks are fixed on the FPGA, but only
the blocks that are actually utilized by the benchmark are
reported in the results.

To evaluate the benefits of the integer mode of the embedded
FPUs, fixed-point versions of the benchmark circuits were built,
which make use of the integer components in the embedded
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TABLE IV
TABLE OF RESULTS—AREA AND DELAY RESULTS FOR DOUBLE-PRECISION BENCHMARK CIRCUITS

TABLE V
TABLE OF RESULTS—AREA AND DELAY RESULTS FOR SINGLE-PRECISION BENCHMARK CIRCUITS

FPUs. For each benchmark, circuits were built for a range of
different bit-widths (16, 24, 32, and 53 bits). The 24- and 53-bit
cases were chosen because they utilize the full bit-widths of the
integer components. The 16- and 32-bit widths were chosen be-
cause of their common usage and as cases when the bit-widths
of the integer components are not fully utilized. For these ex-
periments, the worst-case delay was used for each VEB block.
For example, the same delay is used in the VEB block whether
a 32-bit add or a 53-bit add is performed, even though the ex-
pected delay is lower if only a 32-bit add is performed. There-
fore, the delay results would be conservative.

To provide further insight into the evaluation of the integer
modes, a set of integer circuits were built on the XC2V3000-6-
FF1152 device. These integer circuits perform the same opera-
tions as the integer operations of the embedded FPU. By com-
paring the number of slices occupied and the delay when the
integer operations are implemented on a standard FPGA, we
can gauge the usefulness of providing access to these integer
components in the embedded FPU. These integer circuits were:
two parallel 24 24-bit multipliers , a 53
53-bit multiplier (mult53), 64-bit right shifter (rshift64), 54-bit
left shifter (lshift54), 53-bit adder (adder53) and two parallel
26-bit and 27-bit adders (adder26,27).

VIII. RESULTS AND DISCUSSION

The results comparing the implementation of the benchmark
circuits on a standard Xilinx XC2V3000-6-FF1152 without em-
bedded FPUs against the implementation on our FPGA with em-
bedded FPU blocks are presented in Tables IV and V. Table IV
shows the results for double-precision versions of the bench-
mark circuits and Table V shows the results for single-precision
versions of the benchmark circuits.

For both Tables IV and V, columns 2–6 show the resource
utilization and delay when implementing the benchmark circuits
on the Xilinx XC2V3000-6-FF1152 device. The second column
shows the number of 18 18-bit embedded multipliers used.

The third column shows the estimated area of the embedded
multipliers used in terms of slices. From the Xilinx data-sheet
[28], an embedded multiplier is four CLBs tall. The width is
not published, but let us assume it is half a CLB wide. Each
CLB contains four slices, so the area of an embedded multiplier
is estimated to be equivalent to approximately eight slices. The
fourth column shows the number of slices used for logic and the
fifth column shows the total area. The percentages in brackets
show the percentage of resources used out of the total resources
of that type available on the FPGA. The sixth column shows the
maximum delay.

Columns 7–11 show the resource utilization and delay when
implementing the benchmark circuits on our FPGA with em-
bedded FPU blocks. Column 7 shows the number of embedded
FPU blocks used in the circuit and column 8 shows the total
area (in terms of slices) that those FPU blocks occupy. Column
9 shows the number of slices used in the fine-grained CLB fabric
and column 10 shows the total area used (inclusive of the area
occupied by the embedded FPUs). Column 11 shows the max-
imum delay of each circuit. The final two columns show the
improvement gained by using the embedded FPUs.

Table IV shows that a mean of 5.5 times improvement in
area and 5.8 times improvement in delay was obtained for the
double-precision benchmarks. Table V shows that a mean of
3.8 times improvement in area and 4.2 times improvement in
delay was obtained for the single-precision benchmarks. These
are significant improvements in area and performance. Given
the same amount of real estate occupied by an XC2V3000-6-
FF1152 implementation, it would be possible to build up to five
parallel circuits for each of the benchmarks using our embedded
FPU blocks, all operating at up to five times the clock frequency.

Our results in Table IV are better than the embedded FPUs
in Ho’s VEB paper [8], which had means of 3.7 times area im-
provement and 4.4 times delay improvement. The differences
could partly be because Ho estimated the area and delay of the
embedded FPUs from FPUs in commercial processors, while
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Fig. 11. Area results for fixed-point benchmarks, showing the estimated embedded multiplier (EM) and CLB usage area for a standard FPGA, compared to the
embedded FPU and CLB usage area for the proposed FPGA.

we built and synthesized our FPUs, making our FPU models
more accurate. Differences in implementation could also affect
the results.

Our results in Table IV also compare well to the results ob-
tained by Ho with their Hybrid FPGA [9], who obtained means
of 18.3 times area improvement and 2.48 times delay improve-
ment. There are several reasons for the differences in our area
improvement compared to Ho’s Hybrid FPGA. First, our area
results are severely pessimistic because our embedded FPUs
were enlarged significantly in order to overcome the limitations
of the modelling technique as described in Section VI. Second,
each of the coarse-grained units in Ho’s Hybrid FPGA have
two floating-point multipliers and two floating-point adders, in
addition to configurable word-blocks, so they are able to map
more logic to each coarse-grained block. The parameters of the
Hybrid FPGA’s coarse-grained units were also tuned to best-fit
their set of benchmark circuits. Our embedded blocks are more
generic, so only the floating-point operations are mapped to the
embedded blocks. Third, our delay results were better, so it ap-
pears that the implementation of the circuits in Ho’s work were
tuned more for area savings than performance. Last, while we
chose similar benchmark circuits as Ho’s, our benchmark cir-
cuits were built independently, so differences between our im-
plementations and Ho’s could account for differences in results.

Our results in Table IV show greater improvement compared
to Beauchamp’s work [7], who obtained averages of 2.2 times
area improvement and 1.35 times delay improvement by using
embedded FPUs. However, direct comparison is difficult be-
cause Beauchamp used a different modelling technique (VPR),
different tools, different benchmarks and estimated FPU area
and delay from other FPUs.

As shown in Table V, the capability of our embedded blocks
to perform two parallel single-precision additions and two par-
allel single-precision multiplications reduces the number of em-
bedded blocks required to implement each benchmark circuit
by up to 2 times. Alternatively, by using the same number of

embedded FPU blocks as used by the double-precision bench-
marks, the throughput could be doubled. This gives the designer
an option of using double-precision if required, or choosing
single-precision for increased throughput.

Figs. 11 and 12 show the area and delay results respec-
tively for the fixed-point benchmark circuits. Fig. 11 shows
the number of slices required to implement each benchmark
using the standard XC2V3000-6-F1152 FPGA compared to
the implementations on our FPGA with embedded FPUs. The
proportion of area attributed to the embedded multipliers and
embedded FPUs are also illustrated in Fig. 11. Each embedded
multiplier is assumed to occupy a space equivalent to eight
slices.

The results show that using the fine-grained CLBs and em-
bedded multipliers on the standard XC2V3000-6-F1152 FPGA
is more efficient for the small 16-bit circuits. This is to be ex-
pected because the embedded FPUs are of fixed size and would
be under-utilized at 16-bits. Also, smaller circuits can be ef-
ficiently implemented on FPGAs because the carry-chains are
not long and the multiplications can fit within the 18 18-bit
multipliers. The standard FPGA was also relatively efficient for
implementing the 16-, 24-, and 32-bit circuits and the results are
comparable to the implementations using the embedded FPUs.
When the bit-widths are increased to 53 bits, the amount of re-
sources used increases dramatically. The main reason is that the
embedded multipliers are only 18 18 bits, so to achieve a mul-
tiplication larger than 18 18 bits, the operands have to be split
across multiple multipliers. In general, given -bit multi-
pliers as building blocks, a -bit multiplier would re-
quire multipliers. Therefore, nine 18 18-bit multipliers are
required to make a 53 53-bit multiplier. The partial products
would then have to be summed, which also requires a very large
amount of logic and routing resources.

The delay results in Fig. 12 show that the implementations
using our embedded FPUs were faster in almost all cases, de-
spite using the worst case (and hence pessimistic) delay in our
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Fig. 12. Delay results for fixed-point benchmarks.

TABLE VI
TABLE OF RESULTS—AREA AND DELAY RESULTS FOR INTEGER CIRCUITS

VEB models. Dedicated large multipliers will always be faster
than building a large multiplier out of smaller ones, and it shows
in the results.

Table VI shows the area and delay of implementing integer
circuits on the XC2V3000-6-FF1152 compared to the area and
delay of the embedded FPU in its integer modes. In all cases, the
embedded FPU outperforms the XC2V3000-6-FF1152 imple-
mentations in terms of delay. The performance gains are modest
because the XC2V3000-6-FF1152 implementation made use
of the fast embedded multipliers for the multiplier circuits and
the carry-chains for the adder circuits, which allowed it to keep
up for the small circuits. However, with the larger adders and
multipliers, the gap widens in favor of our embedded FPUs.
This is because the XC2V3000-6-FF1152 implementation
needs to combine more embedded multipliers together to form
larger multipliers and the delay of the carry-chain increases
linearly with carry-chain length. The shifters show the largest
gains, justifying their inclusion. Large variable shifters are still
not efficiently implemented on typical FPGA architectures.
It is worth noting that the area comparisons in Table VI are
pessimistic. First, with each embedded FPU, the multiplier,
adder, and shifters are all available to use at the same time, i.e.,
the area of a single embedded FPU concurrently supports four
different integer operations. Second, the area occupied by our
embedded FPUs is overly pessimistic for the reason described
in Section VI.

The performance of the integer modes of the embedded
FPUs suggests that they may be useful resources to be em-
bedded into FPGAs. The coarse-grained nature of the blocks
may prevent them from completely replacing the finer-grained
structures available in current FPGAs, but could complement
them well. The multifunctional nature of the embedded FPUs
make efficient use of silicon area.

Each embedded FPU block only occupies about 1% of the
area of an XC2V3000-6-FF1152 FPGA, despite increasing the
area of each FPU block by a factor of 3.9 (from 37 to 144 slices)
to overcome the limitations of the VEB modelling methodology
described in Section VI. In a real implementation, the area of
each embedded FPU block should be less than 1%. Thus, the
area overhead of implementing the flexible multimode FPUs on
a commercial FPGA is not prohibitive.

IX. CONCLUSION

This paper presented a flexible multimode embedded
floating-point unit for FPGAs. Each embedded FPU con-
tains a dual-precision floating-point adder and multiplier,
which can each perform one double-precision operation or
two single-precision operations in parallel. The output of the
floating-point multiplier can be internally linked to an input
of the floating-point adder to perform a fused multiply-add
operation. To further increase flexibility of the embedded
FPU, access to integer components of the FPU are provided,
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including a large and fast integer multiplier, adder and two
shifters. This paper also presented a novel design for a dual-pre-
cision floating-point multiplier. Results show that the FPGA
with embedded multimode FPUs provide considerable perfor-
mance and area benefits in single-precision, double-precision,
fixed-point, and integer applications. We expect the benefits
of the embedded multimode FPU to scale accordingly when
implemented on the latest FPGAs, such as the Xilinx Virtex-5
FPGA, since the technology shrink will allow for shorter delays
and greater density.

X. FUTURE WORK

Future work includes exploring other ways to improve flexi-
bility, such as reconfiguring components within the FPU to per-
form other functions or adding more multifunction hardware to
the embedded blocks. Making the components used by the FPU
more general-purpose is possible at the expense of performance
and/or area, so an exploration of these tradeoffs may be worth-
while.

In our current design, when in the floating-point multiply-add
mode, the result of the multiplication is rounded prior to the ad-
dition. This could cause rounding errors to build up. A dedi-
cated floating-point MAC unit does not round the product re-
sult prior to addition, but requires a different and more complex
design. Future work could see the design modified to allow an
unrounded product to be fed to the floating-point adder to min-
imize rounding error, like in a dedicated floating-point MAC
unit.
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