

Embedded Floating-Point Units in FPGAs

 Michael J. Beauchamp Scott Hauck Keith D. Underwood K. Scott Hemmert
 University of Washington Sandia National Laboratories*
 Dept. of Electrical Engineering Scalable Computing Systems
 {mjb7, hauck}@ee.washington.edu {kdunder, kshemme}@sandia.gov

Abstract

Due to their generic and highly programmable
nature, FPGAs provide the ability to implement a wide
range of applications. However, it is this nonspecific
nature that has limited the use of FPGAs in scientific
applications that require floating-point arithmetic.
Even simple floating-point operations consume a large
amount of computational resources. In this paper, we
introduce embedding floating-point multiply-add units
in an island style FPGA. This has shown to have an
average area savings of 55.0% and an average increase
of 40.7% in clock rate over existing architectures.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies
C.1.3 [Other Architecture Styles]: Adaptable
Architectures – Field-Programmable Gate Arrays

General Terms
Design, Performance

Keywords
FPGA, FPGA Architecture, Floating-Point, FPU

1. Introduction

In recent years there has been a significant increase
in the size of FPGAs. Architectures contain tens of
thousands to hundreds of thousands of logic elements,
providing a logic capacity into the millions of gates.
With larger FPGAs comes the versatility and

opportunity for larger and more complex circuits. This
increase in size has allowed FPGAs to be considered for
several scientific applications that require floating-point
arithmetic [1, 2, 3, 4, 5, 6].

In the past, FPGAs have excelled in fixed-point
computations, but were unable to effectively perform
floating-point computations due to their limited size.
Even though it is currently possible, it is not always
practical to implement these floating-point computations
on FPGAs as they can consume large amounts of chip
resources. ASICs, which can be highly efficient at
floating-point computations, can be prohibitively
expensive and do not have the programmability needed
in a general purpose supercomputer. Even though
microprocessors are versatile and have fast clock rates,
their performance is limited by their lack of
customizability [7].

Because fixed-point operations have long since
become common on FPGAs, FPGA architectures have
introduced targeted optimizations like fast carry-chains,
cascade chains, and embedded multipliers. Currently,
floating-point operations are becoming more common.
There are only a few floating-point operations of
interest, and because of the acceptance of the IEEE 754
Standard for Binary Floating-Point Arithmetic [8], these
operations can be included as embedded units in
FPGAs. The idea of embedding coarse gained units in
FPGAs is not a unique concept. Currently there are
FPGAs that have embedded multipliers, block RAMs,
and even full microprocessors. By also embedding
floating-point units, the huge timing and area costs of
implementing these computations in flexible resources
are eliminated.

To test this concept, we have augmented VPR to
support embedded functional units, as well as high-
performance carry-chains. VPR was then used to place
and route benchmarks that use double-precision
floating-point multiplication and addition. The five
benchmarks that were chosen were matrix multiply,
matrix vector multiply, vector dot product, FFT, and LU
decomposition. To test the practicality of using
embedded double-precision floating-point multiply-add
units (FPUs) in FPGAs, each benchmark was tested
using three versions. The first version uses only CLBs
to implement the floating-point calculations, the second
version uses a combination of CLBs and the embedded
18-bit x 18-bit embedded multipliers to perform the

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear
Security Administration under contract
DE-AC04-94AL85000.

Copyright 2006 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
FPGA'06, February 22-24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002...$5.00.

floating-point calculations, and the third version uses the
embedded FPUs to perform the floating-point
calculations. The embedded FPU version had an
average area reduction of 55.0% compared to the
version with the embedded 18-bit x 18-bit multipliers
and an average area reduction of 63.6% compared to the
version that used only CLBs. The embedded FPU
version had an average speed increase of 40.7% over
using the embedded 18-bit x 18-bit multipliers and a
85.1% speed increase over using only CLBs. These
improvements were obtained while achieving an
average reduction in the number of routing tracks by
8.6%.

The remainder of this paper is organized as follows.
Section 2 presents background information on the
floating-point numbering system and the island-style
FPGA architecture. The details of how VPR was
modified and used to test the feasibility of placing
embedded floating-point units in FPGAs are presented
in Section 3. Section 4 presents the testing
methodology. The testing results and analysis are
presented in Section 5. Finally, Section 6 presents
conclusions and Section 7 presents future work.

2. Background

Floating Point Numbering System

Floating-point numbers consist of a mantissa,
exponent, and sign bit. They are combined to form
single-precision (equation 1) and double-precision
(equation 2) floating-point numbers [8, 9].

 () 12721.1 −⋅⋅− ES f=X (1)

 () 102321.1 −⋅⋅− ES f=X (2)

The IEEE standard for single precision floating-point
numbers is 1 sign bit, 8-bit exponent, and 23-bit
mantissa as shown in Figure 1. Double precision is
similar with 1 sign bit, 11-bit exponent, and 52-bit
mantissa as shown in Figure 2.

The advantage of floating-point numbers over fixed-
point is the range of numbers that can be represented
with the same number of bits. In addition, the IEEE
standard for floating-point numbers has defined
representations for zero, negative and positive infinity,
and not a number, NaN. This increased range and

special cases results in more complex computations and
requires additional hardware compared to fixed-point
calculations.

S Exp Mantissa

0 1 8... 9 31...

Figure 1. Single precision IEEE floating-point number

S Exp Mantissa

0 1 11... 12 63...

Figure 2. Double precision IEEE floating-point number

Island-Style FPGA

While the typical island-style FPGA consists only of
IO and logic blocks, it is becoming more common to
have various types of embedded units. Current
embedded units include block RAMs, multipliers, DSP
blocks, and even complete microprocessors [10, 11].
These advances have allowed for greater usability of
circuits that use fixed-point numbers. However, circuits
that use floating-point numbers still require a large
number of CLBs (Configurable Logic Blocks) to
perform basic operations. Thus, this paper examines the
impact of adding floating-point units to the list of
embedded blocks.

While floating-point calculations encompass a wide
variety of operations including addition, subtraction,
multiplication, division, powers, and roots, not all of
these operations are heavily used in typical applications.
Including operations that are not widely used would
exacerbate the primary drawback of this approach:
wasted hardware. The most popular of the operations
are multiplication and addition, and they are often used
in combination. Therefore, a floating-point unit that
consists of a multiply-add will be used to test the
feasibility of embedding floating-point units in FPGAs.
Other, less frequent operations can be built by using
multiple floating-point multiply-add operations to
implement algorithms such as Taylor series expansion
or Newton-Raphson iterations. Alternatively, other
operations can be implemented in the general
reconfigurable fabric.

3. VPR

VPR [12, 13] is the leading public-domain FPGA
place and route tool. It uses simulated annealing and a

Table 1. IEEE single and double precision floating-point computation logic resources for Xilinx Virtex II Pro 2 and 100
Single Precision Double Precision

Logic Resources Used Logic Resources Used Computation
Slices

XC2VP100 XC2VP2
Slices

XC2VP100 XC2VP2
Add 328 0.7% 23.3% 799 1.8% 56.7%

Multiply 345 0.8% 24.5% 1177 2.7% 83.6%
Multiply Accumulate 693 1.6% 49.2% 2012 4.6% 142.9%

timing based semi-perimeter routing estimate for
placement and a timing driven detailed router. In this
paper VPR was used to determine the feasibility of
embedded floating-point units, FPUs, in island-style
FPGAs.

Previous versions of VPR supported three types of
circuit elements, input pads, output pads, and CLBs. To
test the feasibility of embedded floating-point units and
to incorporate necessary architectural elements, VPR
was modified to allow the use of embedded block units
of parameterizable size. Additionally, a fast carry-chain
was incorporated into the existing CLBs elements.

An FPGA architecture was used that approximately
models the Xilinx® Virtex-II Pro FPGA family. Our
model architecture consisted of IO blocks, CLBs (which
included 4-input function generators, storage elements,
arithmetic logic gates, and a fast carry-chain), 18Kb
block RAMs, and embedded 18-bit x 18-bit multiplier
blocks [10]. In addition to the Xilinx® Virtex-II Pro
features, the architecture incorporated embedded
floating-point units. The various blocks were arranged
in a column based architecture similar to Xilinx’s®,
ASMBL™ (Advanced Silicon Modular Block)
architecture [14], as seen in Figure 3, which is the
architectural foundation of the Virtex-4 FPGA family
[15].

To directly incorporate embedded blocks with the
existing circuit elements of VPR, the new embedded
block size must be quantized with the size of the
existing circuit elements. Each embedded unit type has
two size parameters, height and width, each in terms of
CLB size. In keeping with the column based
architecture, horizontal routing was allowed across the
embedded units, but vertical routing was kept only at the
periphery of larger units. The regular routing structure
that existed in the original VPR was maintained as
shown in Figure 4.

The outputs of the embedded units can be registered.
Each embedded unit type has three timing parameters:
sequential setup time, sequential clock-to-q, and
maximum combinational delay if no clock is used.

The fast carry-chain is a dedicated route that is
separate from the rest of the routing structure. It
connects the carry-out at the top of one CLB to the
carry-in on the bottom of the CLB directly above. Since
the carry-chain connection between CLBs is
independent from the normal routing structure and does
not go through connection boxes, switch boxes, or
isolation buffers, it has its own timing parameter.

3.1. Component Area

The areas of the CLB, 18x18 bit multiplier, and 18
Kb RAM were approximated using a die photo of a
Xilinx Virtex-II 1000 [16] courtesy of Chipworks Inc.
The area estimate of each component includes the
associated connection blocks, which dominate the
routing area. The baseline size of the floating-point unit

Figure 3. ASMBL

(a)

(b)

Figure 4. (a) Our column based architecture with CLBs,
embedded multipliers, and block RAMs. (b) Our column
based architecture with CLBs, embedded floating-point
units, and block RAMs

was conservatively estimated from commodity
microprocessors and embedded cores in previous work
[17, 18] and the actual area used was increased to
accommodate one vertical side of the FPU being filled
with connection blocks (assumed to be as large as a
"CLB"). This made the true area of the FPU dependent
on the shape chosen. We believe this to be an extremely
conservative estimate. The areas were normalized by
the process gate length. All areas are referenced to the
smallest component, which is the CLB. These values
are shown in Table 2.

Table 2. Embedded Component Timing & Area

 TSETUP
[ns]

TCLK→Q
[ns]

Area
[106 L2]

Area
[CLBs]

CLB 0.32 0.38 0.662 1
Multiplier 18x18 2.06 2.92 11.8 18
RAM 18Kb 0.23 1.50 18.5 28
FPU 64-bit 0.50 0.50 107 161

3.2. Component Latency

The CLBs that were used are comparable to the
Xilinx® slice. Each CLB is composed of two 4-input
function generators, two storage elements (D flip-flops),
arithmetic logic gates, and a fast carry-chain. To
accurately represent the timing of this in VPR's CLB
architecture, nineteen VPR subblocks were used. For
each subblock the sequential setup time, sequential
clock-to-q, and maximum combinational delay if no
clock is used were found in Xilinx data sheets or
experimentally using Xilinx design tools.

The latency of the embedded multipliers and RAMs
are based on the Xilinx® Virtex-II Pro -6. The latency
of the FPUs was more difficult to estimate
appropriately. Given a processor on a similar process
(the Pentium® 4) can achieve 3 GHz operation with a 4
cycle add and a 6 cycle multiply, we assume that an
FPU in an FPGA could achieve 500 MHz at the same
latency. Setup and clock-to-q were set conservatively
assuming the latency included registers front and back.

3.3. Track Length & Delay

We use four different lengths of routing tracks:
single, double, quad, and long, where long tracks
spanned the entire length of the architecture. The
percentages of different routing track lengths were based
on Xilinx® Virtex-II Pro family and can be seen in
Table 3 [10].

VPR uses a resistive and capacitive model to
calculate the delay for various length routing tracks.
Based on previously determined component area, the
resistive and capacitive values were estimated by laying
out and extracting routing tracks using Cadence IC
design tools. Timing results for the overall design were
found to be reasonable based on previous experience
with Xilinx parts.

Table 3. Track Length
Size Length Fraction

Single 1 22%
Double 2 28%
Quad 4 42%
Long All 8%

4. Methodology

4.1. Benchmarks

Five benchmarks were used to test the feasibility of
embedding floating-point units in an island style FPGA.
They were matrix multiply, matrix vector multiply,
vector dot product, FFT, and LU decomposition. The
LU decomposition benchmark is still preliminary, with a
complete datapath, but a control path that is still under
development. All of the benchmarks use double-
precision floating-point addition and multiplication.
Additionally, LU decomposition includes floating-point
division, which must be implemented in the
reconfigurable fabric for all architectures. Each of the
benchmarks were placed and routed in three FPGA
versions. In the first version, the floating-point
calculations were performed using only the CLBs. The
CLB only version is used as a point of reference to
compare the other versions. In the second version, the
floating-point calculations were performed using CLBs
and embedded 18-bit x 18-bit multiplier blocks. This
version is representative of existing FPGAs, specifically
the Xilinx® Virtex-II Pro. The third version adds the
embedded double precision floating-point multiply/add
units in various aspect ratios.

Table 4. Number of components in CLB only benchmark

Benchmark CLBs I/O RAM
Matrix Mult. 32,478 196 128
Vector Mult. 35,630 1,274 14
Dot Product 30,653 782 0

FFT 46,590 555 152
LU 33,534 194 64

Average 35,777 600 72

Table 5. Number of components in embedded multiplier
and embedded FPU benchmarks

Embedded Mult Embedded FPU Benchmark
CLBs MULT CLBs FPU

Matrix Mult. 25,290 72 9,373 8
Vector Mult. 27,836 90 8,012 10
Dot Product 21,301 72 4,926 8

FFT 37,130 72 15,432 28
LU 24,257 72 8,108 8

Average 27,163 76 9,170 12

The floating point benchmarks were written in a
hardware description language, either VHDL or JHDL

[19], and synthesized into an EDIF (Electronic Data
Interchange Format) file. The Xilinx® NGDBuild
(Native Generic Database) and the Xilinx map tool were
used to reduce the design from gates to slices (which
map one-to-one with our CLBs). The Xilinx NCD
(Native Circuit Description) Read was used to convert
the design to a text format. A custom conversion
program was used to convert the mapping of the NCD
file to the NET format used by VPR; thus, the traditional
VPR T-Vpack path for mapping is completely bypassed.

The benchmarks vary in size and complexity. Table
4 gives the number of components for the benchmarks
that perform the floating-point operations using the
CLBs only. The number of IO and 18Kb RAM blocks
will remain constant for all three versions of the
benchmarks. Table 5 gives the number of components
for the benchmark versions that perform the floating-
point calculations using 18 x 18 embedded multipliers
and the number of components for the benchmark
versions that perform the floating-point calculations
using the embedded FPUs.

There are a few interesting trends and distinguishing
aspects to notice. There is an average reduction by 24%
in the number CLBs from the CLBs only benchmark
versions to the embedded multiplier version, and a 66%
reduction from the embedded multiplier version to the
embedded FPU version. This is to be expected because
the embedded multipliers replace some of the CLBs
allocated for floating-point calculations in the CLB only
version and the FPUs replace the embedded multipliers
that were used for floating-point calculations in the
embedded multiplier version. The reduction in the
number of CLBs between the embedded multiplier
benchmarks and the FPU benchmarks varies from 58%
for the FFT to 77% for the dot product. This variation is
due to the ratio of control to datapath logic and the
number and type of floating-point calculations
performed.

Figure 5. Simplified CLB with fast vertical carry-chain

The number of IOs differs by almost an order of
magnitude between the different benchmarks from 194
for the LU decomposition to 1,274 for the matrix vector
multiply. This is largely an artifact of how the
benchmarks are extracted and has no significant impact
on the results. The number of block RAMs also has a
significant variation from the dot product which does
not use any block RAMs to the FFT which uses 152.

4.2. Fast Carry-Chains

VPR was also modified to allow the use of fast carry-
chains. The CLBs were modeled after the Xilinx Virtex
II Pro slice. Along with the two 4-input function
generators, two storage elements, and arithmetic logic
gates, each CLB has a fast carry-chain affecting two
output bits. The carry-out of the CLB exits through the
top of the CLB and enters the carry-in of the CLB above
as shown in Figure 5. Each column of CLBs has one
carry-chain that starts at the bottom of the column of
CLBs and ends at the top of the column. Since each
CLB has logic for two output bits, there are two
opportunities in each CLB to get on or off of the carry-
chain as seen in the simplified CLB shown in Figure 5.

The addition of the carry-chain was necessary to
make a reasonable comparison between the different
benchmark versions. The versions of the benchmarks
that implemented the floating-point multiply-add using
the embedded multipliers or only CLBs make extensive
use of the fast carry-chains. The double-precision
addition requires a 57 bit adder. If the carry signal was
required to go out on general routing it would
significantly decrease the adder frequency. This would
dramatically skew the results in favor of the embedded
FPUs.

Table 6. Maximum frequency with a and without the use
of the fast carry-chain for the embedded multiplier version

Benchmark

Max. Freq.
w/o Fast

Carry-Chain
[MHz]

Max. Freq.
with Fast

Carry-Chain
[MHz]

Matrix Multiply 87 126
Vector Multiply 89 117

Dot Product 87 149
FFT 79 104

LU Decomposition 84 142
Average 85 128

To demonstrate the correct operation of the carry-

chain modification, the benchmarks that used the
embedded multipliers to implement the double-precision
floating-point multiply-add were placed and routed
using VPR with and without the carry-chain
modification. The results are shown in Table 6. By
using the fast carry-chain the benchmarks had an
average speed increase of 49.7%.

Because the carry-chains only exist in columns of
CLBs and only in the upward direction, it is necessary to
initially place all of the CLBs of a given carry-chain in
proper relative position to each other and to move/swap
all of the CLBs that comprise a carry-chain as one unit.
To accomplish this, the move/swap function of VPR
was modified. When a CLB that is part of a carry-chain
is chosen to be moved or swapped the following
algorithm is used.

1. The CLBs that are to be moved or swapped are

randomly determined based on the constraints of
the placement algorithm.

2. If the CLBs are part of a carry-chain the beginning
and end of the carry-chain are determined.

3. Whatever carry-chain is the longer of the two CLBs
to be swapped determines the number of CLBs to
be swapped.

4. It is determined if the CLBs could be moved or

swapped without violating the physical constraints
of the chip and breaking any other carry-chain.

5. If the move swap is determined to be illegal, the
move/swap is discarded and a new set of blocks are
chosen for a potential move/swap. Even though
this potential move is discarded, it is not considered
a rejected move. The success of simulated
annealing depends on trying a large enough number
of moves. Therefore, before a move can be
considered as accepted or rejected, a legal move
must be found.

6. Once a legal move is found, all of the nets that
connect to all of the CLBs that comprise the carry-
chain are considered in the cost of moving the
carry-chain.

7. The move is accepted or rejected based on the
current simulated annealing temperature.

8. If a move/swap is accepted all of the CLBs on the
carry-chain are moved together to maintain the

Figure 6. Floating-point unit benchmark area

Figure 7. Floating-point unit benchmark maximum frequency

Figure 8. Floating-point unit benchmark channel width

physical constraints of the carry-chain architecture.
9. The accepted or rejected move of a carry-chain

consisting of N CLBs is considered N accepted or
rejected moves.

The rest of the details of the simulated annealing

algorithm remain unchanged. This resulted in making
VPR significantly slower, but was necessary to maintain
the integrity and results of simulated annealing.

5. Testing & Analysis

5.1. Floating-Point Units

To determine the appropriate aspect ratio for the
FPU, each benchmark was run using eight different
heights and widths. These FPUs with different aspect
ratios were combined in a column based architecture
with CLBs and RAMs. With an increase in the height
of the FPU (decrease in the aspect ratio), there will be
fewer FPUs on a single column. To maintain the same
ratio of FPUs, CLBs, and RAMs for all the different
FPU sizes, the number of columns of FPUs was
increased as the FPU height increased. Table 7 shows
the relative number of columns of CLBs, RAMs, and
FPUs for each of the different FPU heights.

Table 7. Component column architecture ratios for
various FPU sizes

FPU
Height

CLB
Col.

RAM
Col.

FPU
Col.

4 46 2 1
8 46 2 1

16 45 2 1
32 40 2 2
64 40 2 4
96 40 2 6
128 40 2 8
160 40 2 10

The area of the FPUs varies with the aspect ratio due

to the overhead of connecting the FPU with the
surrounding routing resources - for each row of CLBs
along an FPU’s edge, a row’s worth of routing resources
must be provided. A conservative estimate was used
that for each CLB of height added to the FPU, an
additional full CLB tile’s worth of area was required.

Each benchmark was tested with eight different FPU
heights. These benchmarks with different FPU sizes
were compared on three criteria: area, maximum
frequency, and number of routing tracks. These results
are given in Figure 6 through Figure 8.

Because there was an area penalty for greater FPU
heights to account for connectivity and routing, the
architecture with the shortest FPUs had the smallest area
as seen in Figure 6. However, the average difference in
area is only 3.3%.

Modern FPGAs have a large number of routing
tracks. Therefore, apart from its impact on maximum
clock frequency, the required number of routing tracks
is unlikely to be the driving consideration when
choosing the best aspect ratio for the FPU (see Figure
8). The Virtex II Pro, for example, has enough routing
tracks to accommodate most of the benchmarks in most
of the configurations. Some configurations (16, 32,
160) are completely routing neutral. These are likely to
be better choices if all else is equal.

The last consideration, maximum frequency, is the
most significant aspect. There is a significant difference
in the maximum frequency between the benchmarks
with different aspect ratio FPUs. As seen in Figure 7,
the benchmarks with FPUs of height 32 had the highest
average frequency. The lower frequencies were found
at the extremes, those with very large and very small
aspect ratios. The benchmarks with large aspect ratios
and small FPU heights were very wide and consequently
had large horizontal routes that increased the overall
circuit latency. The benchmarks with small aspect ratios
and large FPU heights had congestion on the vertical
routing tracks. Also, as seen in Table 7, with the larger
FPU height there was a greater number of FPU columns
to keep the overall number of FPUs constant, this causes
congestion due to the large number of nets associated
with each FPU.

5.2. Results

Eight different FPU aspect ratios were compared to
determine which size gave the best results. The
different sizes ranged from a FPU with an equivalent
CLB height of 4, up to a FPU with an equivalent CLB
height of 160. On average, the benchmarks that used
the FPU of height 32 had the highest frequency, fewest
number of routing tracks, and did not have a significant
area increase over those with other aspect ratios.
Therefore, it is the architectures with FPUs of height 32
that are being compared to the architectures with the
embedded multipliers and with CLBs only. They were
compared by area, maximum frequency, and track
count.

Area

As seen in Figure 9, the FPU had an average
reduction in area of 55.0% compared to the embedded
multiplier version and an average reduction in area of
63.6% compared to the CLB only version. While all of
the benchmarks with the embedded FPUs had an area
reduction, there was some variation in the amount. The
dot product had the largest area reduction of 70.2%
compared to the embedded multiplier and 77.9%
compared to the CLB only version. While still
significant, the FFT had the smallest area reduction of
41.0% compared to the embedded multiplier version and

50.4% compared to the CLB only version. This
variation in area reduction is due to a few different
factors. First, benchmarks like the FFT had a larger
percentage of control logic compared to the other
benchmarks. In addition, the FPU version of the matrix
multiply had 24.5% of its area occupied by block
RAMs. The area due to control logic and the block
RAMs are constant between the different versions and

are not affected by using the embedded FPUs.
The third reason for the variation in area reduction

pertains solely to the FFT. Even though the FFT uses
floating-point multiplication and addition they are not
used as a composite multiply-add operation as in the
other benchmarks. Therefore, the multiply-add FPUs
are being used as either a floating-point multiply or a
floating-point add, but not both. This results in both a
large number of FPUs being needed as shown in Table 5
and significant portions of the FPUs being unused. This
is not an issue in the embedded multiplier and CLB only
versions, as a floating-point multiplier or adder can be
developed out of the embedded multipliers or CLBs as
needed. With some optimization of the benchmark, the
amount of single operation use could be reduced.
Alternatively, by enabling the adders and multipliers to
be independent, this effect could be greatly reduced. If
you remove the FFT from the average, the FPU version
had a reduction in area of 60.5% compared with the
embedded multiplier version and an average reduction
in area of 68.4% compared with the CLB only version.

Frequency

As seen in Figure 10, all five of the benchmarks ran
faster on the FPGA architecture that used the embedded
FPUs. The speed increase comes from the fact that the
control logic has a shorter critical path than the floating-
point units that are based on CLBs. Because the control
logic was optimized for the floating-point units created
out of the embedded multiplier and not for the faster
embedded FPUs, the speed increases are
underestimated. On average the benchmarks with
embedded FPUs had a speed increase of 40.7% over the
embedded multiplier version and a speed increase of
85.1% over the CLB only version. The matrix multiply
had the smallest speed increase of only 19.5% and
47.3% for the FPU version over the embedded
multiplier and CLB only versions, respectively. The
reason for the smaller speed increase for the matrix
multiply is a larger benchmark that has a larger number
of block RAMs. This results in more congestion and
consequently longer routes. The matrix vector multiply
has the largest speed increase of 69.6% and 107.2% for
the FPU version over the embedded multiplier and CLB
only versions respectively. The matrix vector multiply
has a smaller amount of control logic than the other
benchmarks. The critical path is in the floating-point
calculations; thus, having the embedded FPUs
significantly reduces the critical path and results in a
higher frequency.

Routing Tracks

As seen in Figure 11, on average the FPU had a
reduction of 8.6% in the number of routing tracks
compared to the embedded multiplier version. This is
not considered a major benefit or detriment of using

Figure 9. Area of circuits with CLBs only, embedded
multipliers, and FPUs

Figure 10. Maximum frequency of circuits with CLBs only,
embedded multipliers, and FPUs

Figure 11. Track count of circuits with CLBs only,
embedded multipliers, and FPUs

embedded FPUs, but rather an indication that using the
embedded FPUs does not cause a dramatic change in the
number of routing tracks. In fact, the FPU version had a
maximum reduction in the number of routing tracks of
28.0% compared with the embedded multiplier version
for the matrix vector benchmarks. The FPU version of
the FFT benchmark had the maximum increase in the
number of routing tracks of 4.0% compared to the
embedded multiplier version.

5.3. Flops

The performance of each benchmark was calculated
in Gflops and normalized to a given architecture area.
The results are shown in Figure 12. The FPU
benchmarks had an average performance of 13.38
Gflops, which is an increase by a factor of 2.4 over the
average performance of the embedded multiplier
benchmarks of 3.99 Gflops and an increase by a factor
of 4.4 over the average performance of the CLB only
benchmarks of 2.49 Gflops. However, since the FFT
benchmark uses the embedded FPUs to perform only
one floating-point operation, either a multiply or an add
but not both, the benefits of the embedded FPUs is
greatly reduced. Removing the FFT benchmark from
the average, the FPU benchmarks had an average
performance increase by a factor of 2.6 over the
embedded multiplier benchmarks and an average
performance increase by a factor of 5.1 over the CLB
only benchmarks. While removing the FFT from the

average provides an upper bound for the benefit, it does
provide insight into the potential advantages of making
the multiplier and adder independently accessible. As
noted earlier, the performance advantage of using
embedded FPUs is grossly underestimated because new
critical paths in the control logic are exposed. With
sufficient effort, it is expected that the control logic
performance could be increased significantly.

5.4. Other Topics

Single-Precision vs. Double-Precision

The computing usage at Sandia National
Laboratories is oriented toward scientific computing
which requires double-precision. It is because of this
that the benchmarks were written using double-precision
floating-point numbers. With some modification, a
double-precision FPU could be configured into two
single precision units, and should show similar benefits.

Other Uses for FPUs

It has been shown that by adding embedded FPUs to
an island-style FPGA the circuit size can be reduced and
the maximum frequency can be increased for
benchmarks that use floating-point without adversely
affecting the number of routing tracks. However, if
unused these embedded FPUs would be wasted space.
The FPUs are comprised of large multipliers, adders,
and barrel shifters. Small modifications to the design
would expose these sub-components as alternative uses
of the FPU block. This could help offset a potential
disadvantage to using embedded FPUs.

FPU Area Overhead

To determine the penalty of using an FPGA with
embedded FPUs for non floating-point computations,
the percent of the chip that was used for each
component was calculated. For the chosen FPU
configuration, the FPUs consumed 17.6% of the chip.

Table 8. Comparison of area, maximum frequency, and channel width for benchmarks with CLBs only, embedded multipliers,
and FPUs

CLBs Only Embedded Multipliers Embedded FPU
 Area

[106 L2]
Freq

[MHz]
Routing
Tracks

Area
[106 L2]

Freq
[MHz]

Routing
Tracks

Area
[106 L2]

Freq
[MHz]

Routing
Tracks

Matrix Mult 23,945 104 40 20,037 126 41 9,662 151 40
Vector Mult 24,283 78 48 20,187 117 50 7,265 199 36
Dot Product 20,565 104 38 15,223 149 41 4,544 220 35

FFT 33,856 92 55 28,443 104 50 16,792 145 52
LU 23,461 105 62 18,169 142 61 7,640 182 59

Average 25,222 97 47 20,412 132 49 9,181 179 44

Figure 12. Normalized benchmark performance

6. Conclusion

This paper has demonstrated that adding embedded
floating-point multiply-add units into an island-style
FPGA can significantly reduce circuit size and increase
circuit frequency without a significant increase in
channel width compared with floating-point multiply-
add units that use traditional approaches. Despite a
"worst case" area estimate, the embedded FPUs
provided a significant advantage. The FPUs provided
an average reduction in area of 55.0% compared to an
FPGA enhanced with embedded 18-bit x 18-bit
multipliers and 63.6% reduction in area compared to
using only CLBs. This area achievement is in addition
to an average speed improvement of 40.7% over using
the embedded 18-bit x 18-bit multipliers and a 85.1%
speed increase over the CLB only version. There is also
an average reduction in the number of routing tracks by
an average of 8.6% and a maximum increase in routing
tracks of a mere 4.0%.

7. Future Research

While this paper has shown the potential of adding
embedded FPUs to FPGAs, there is still room for
improvement. The size estimation that was used for the
FPU was very conservative. Obtaining a more accurate
FPU size might improve results. Additional
optimization of the way the FPUs were configured has
potential for improvement. Also, since all 64 bits of a
double-precision number generally tends to follow the
same route, another possibility for improvement would
be to implement bus based routing.

There are alternatives to FPUs that could also make
FPGAs more conducive to floating-point computations
without being as extensive. These could include smaller
embedded units, changes to the logic blocks, or more
efficient routing.

8. Acknowledgements

This work was supported in part by grants from
Sandia National Laboratories and the National Science
Foundation.

9. References

[1] K. D. Underwood and K. S. Hemmert. Closing the gap:

CPU and FPGA Trends in sustainable floating-point
BLAS performance. In Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines,
Napa Valley, CA, 2004.

[2] K. S. Hemmert and K. D. Underwood. An Analysis of
the Double-Precision Floating-Point FFT on FPGAs. In
Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, Napa Valley, CA 2005.
[3] M. de Lorimier and A. DeHon. Floating point sparse

matrix-vector multiply for FPGAs. In Proceedings of the
ACM International Symposium on Field Programmable
Gate Arrays, Monterey, CA, February 2005.

[4] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S.
Gangadharpalli, and V. Sridhar. A high-performance and
energy efficient architecture for floating-point based lu
decomposition on fpgas. In Proceedings of the 11th
Reconfigurable Architectures Workshop (RAW), Santa
Fe, NM, April 2004.

[5] L. Zhuo and V. K. Prasanna. Scalable and modular
algorithms for floating-point matrix multiplication on
fpgs. In 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), Santa Fe, NM, April
2004.

[6] L. Zhuo and V. K. Prasanna. Sparse matrix-vector
multiplication on FPGAs. In Proceedings of the ACM
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2005.

[7] K. D. Underwood. FPGAs vs. CPUs: Trends in Peak
Floating-Point Performance. In Proceedings of the ACM
International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2004.

[8] IEEE Standards Board. IEEE standard for binary
floating-point arithmetic. Technical Report ANSI/IEEE
Std. 754-1985, The Institute of Electrical and Electronic
Engineers, New York, 1985.

[9] I. Koren, Computer Arithmetic Algorithms, 2nd Edition,
A.K. Peters, Ltd. Natick, MA 2002.

[10] Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet. June 2005 (Rev 4.3), [cited Aug
2005], http://direct.xilinx.com/ bvdocs/ publications/
ds083.pdf.

[11] Virtex-4 Family Overview. June 2005 (Rev 1.4), [cited
Sept 2005], http:// direct.xilinx.com/ bvdocs/
publications/ ds112.pdf.

[12] V. Betz and J. Rose. VPR: A new packing, placement
and routing tool for FPGA research. In Proceedings of
the 7th International Workshop on Field-Programmable
Logic and Applications, pp 213-222, 1997.

[13] V. Betz and J. Rose. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers,
Boston, MA 1999.

[14] Xilinx: ASMBL Architecture. 2005 [cited Sept 2005],
http://www.xilinx.com/products/silicon_solutions/
fpgas/virtex/virtex4/overview/

[15] Virtex-4 Data Sheet: DC and Switching Characteristics.
Aug 2005 (Rev 1.9), [cited Sept 2005],
http://direct.xilinx.com/bvdocs/publications/ ds302.pdf

[16] Virtex-II Platform FPGAs: Complete Data Sheet. Mar
2005 (Rev 3.4), [cited Aug 2005],
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

[17] MIPS Technologies, Inc. 64-Bit Cores, MIPS64 Family
Features. 2005, [cited Jan 2005], http://www.mips.com
/content/Products/Cores/64-BitCores.

[18] J. B. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge.
A Low Cost, Multithreaded Processing-in-Memory
System. In Proceedings of the 3rd workshop on Memory
performance issues, Munich, Germany, 2004.

[19] B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B.
Nelson, and M. Rytting. A CAD Suite for High-
Performance FPGA Design. In Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines,
Napa, CA, April 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

