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Abstract 
 

Due to their generic and highly programmable 
nature, FPGAs provide the ability to implement a wide 
range of applications.  However, it is this nonspecific 
nature that has limited the use of FPGAs in scientific 
applications that require floating-point arithmetic.  
Even simple floating-point operations consume a large 
amount of computational resources.  In this paper, we 
introduce embedding floating-point multiply-add units 
in an island style FPGA.  This has shown to have an 
average area savings of 55.0% and an average increase 
of 40.7% in clock rate over existing architectures. 
 
Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design Studies 
C.1.3 [Other Architecture Styles]: Adaptable 
Architectures – Field-Programmable Gate Arrays  
 
General Terms 
Design, Performance 
 
Keywords 
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1. Introduction 
 

In recent years there has been a significant increase 
in the size of FPGAs.  Architectures contain tens of 
thousands to hundreds of thousands of logic elements, 
providing a logic capacity into the millions of gates.  
With larger FPGAs comes the versatility and 

opportunity for larger and more complex circuits.  This 
increase in size has allowed FPGAs to be considered for 
several scientific applications that require floating-point 
arithmetic [1, 2, 3, 4, 5, 6]. 

In the past, FPGAs have excelled in fixed-point 
computations, but were unable to effectively perform 
floating-point computations due to their limited size.  
Even though it is currently possible, it is not always 
practical to implement these floating-point computations 
on FPGAs as they can consume large amounts of chip 
resources.  ASICs, which can be highly efficient at 
floating-point computations, can be prohibitively 
expensive and do not have the programmability needed 
in a general purpose supercomputer.  Even though 
microprocessors are versatile and have fast clock rates, 
their performance is limited by their lack of 
customizability [7]. 

Because fixed-point operations have long since 
become common on FPGAs, FPGA architectures have 
introduced targeted optimizations like fast carry-chains, 
cascade chains, and embedded multipliers.  Currently, 
floating-point operations are becoming more common.  
There are only a few floating-point operations of 
interest, and because of the acceptance of the IEEE 754 
Standard for Binary Floating-Point Arithmetic [8], these 
operations can be included as embedded units in 
FPGAs.  The idea of embedding coarse gained units in 
FPGAs is not a unique concept.  Currently there are 
FPGAs that have embedded multipliers, block RAMs, 
and even full microprocessors.  By also embedding 
floating-point units, the huge timing and area costs of 
implementing these computations in flexible resources 
are eliminated. 

To test this concept, we have augmented VPR to 
support embedded functional units, as well as high-
performance carry-chains.  VPR was then used to place 
and route benchmarks that use double-precision 
floating-point multiplication and addition.  The five 
benchmarks that were chosen were matrix multiply, 
matrix vector multiply, vector dot product, FFT, and LU 
decomposition.  To test the practicality of using 
embedded double-precision floating-point multiply-add 
units (FPUs) in FPGAs, each benchmark was tested 
using three versions.  The first version uses only CLBs 
to implement the floating-point calculations, the second 
version uses a combination of CLBs and the embedded 
18-bit x 18-bit embedded multipliers to perform the 
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floating-point calculations, and the third version uses the 
embedded FPUs to perform the floating-point 
calculations.  The embedded FPU version had an 
average area reduction of 55.0% compared to the 
version with the embedded 18-bit x 18-bit multipliers 
and an average area reduction of 63.6% compared to the 
version that used only CLBs.  The embedded FPU 
version had an average speed increase of 40.7% over 
using the embedded 18-bit x 18-bit multipliers and a 
85.1% speed increase over using only CLBs.  These 
improvements were obtained while achieving an 
average reduction in the number of routing tracks by 
8.6%. 

The remainder of this paper is organized as follows.  
Section 2 presents background information on the 
floating-point numbering system and the island-style 
FPGA architecture.  The details of how VPR was 
modified and used to test the feasibility of placing 
embedded floating-point units in FPGAs are presented 
in Section 3.  Section 4 presents the testing 
methodology.  The testing results and analysis are 
presented in Section 5.  Finally, Section 6 presents 
conclusions and Section 7 presents future work. 
 
 
2. Background 
 
Floating Point Numbering System 
 

Floating-point numbers consist of a mantissa, 
exponent, and sign bit.  They are combined to form 
single-precision (equation 1) and double-precision 
(equation 2) floating-point numbers [8, 9]. 
 

 ( ) 12721.1 −⋅⋅− ES f=X  (1) 
 

 ( ) 102321.1 −⋅⋅− ES f=X  (2) 
 

The IEEE standard for single precision floating-point 
numbers is 1 sign bit, 8-bit exponent, and 23-bit 
mantissa as shown in Figure 1.  Double precision is 
similar with 1 sign bit, 11-bit exponent, and 52-bit 
mantissa as shown in Figure 2. 

The advantage of floating-point numbers over fixed-
point is the range of numbers that can be represented 
with the same number of bits.  In addition, the IEEE 
standard for floating-point numbers has defined 
representations for zero, negative and positive infinity, 
and not a number, NaN.  This increased range and 

special cases results in more complex computations and 
requires additional hardware compared to fixed-point 
calculations. 

S Exp Mantissa

0 1 8... 9 31...

 
Figure 1.  Single precision IEEE floating-point number 

S Exp Mantissa

0 1 11... 12 63...

 
Figure 2.  Double precision IEEE floating-point number 

 
Island-Style FPGA 
 

While the typical island-style FPGA consists only of 
IO and logic blocks, it is becoming more common to 
have various types of embedded units.  Current 
embedded units include block RAMs, multipliers, DSP 
blocks, and even complete microprocessors [10, 11].  
These advances have allowed for greater usability of 
circuits that use fixed-point numbers.  However, circuits 
that use floating-point numbers still require a large 
number of CLBs (Configurable Logic Blocks) to 
perform basic operations.  Thus, this paper examines the 
impact of adding floating-point units to the list of 
embedded blocks. 

While floating-point calculations encompass a wide 
variety of operations including addition, subtraction, 
multiplication, division, powers, and roots, not all of 
these operations are heavily used in typical applications.  
Including operations that are not widely used would 
exacerbate the primary drawback of this approach:  
wasted hardware.  The most popular of the operations 
are multiplication and addition, and they are often used 
in combination.  Therefore, a floating-point unit that 
consists of a multiply-add will be used to test the 
feasibility of embedding floating-point units in FPGAs.  
Other, less frequent operations can be built by using 
multiple floating-point multiply-add operations to 
implement algorithms such as Taylor series expansion 
or Newton-Raphson iterations.  Alternatively, other 
operations can be implemented in the general 
reconfigurable fabric. 
 
 
3. VPR 
 

VPR [12, 13] is the leading public-domain FPGA 
place and route tool.  It uses simulated annealing and a 

Table 1.  IEEE single and double precision floating-point computation logic resources for Xilinx Virtex II Pro 2 and 100 
Single Precision Double Precision 

Logic Resources Used Logic Resources Used Computation 
Slices 

XC2VP100 XC2VP2 
Slices 

XC2VP100 XC2VP2 
Add 328 0.7% 23.3% 799 1.8% 56.7% 

Multiply 345 0.8% 24.5% 1177 2.7% 83.6% 
Multiply Accumulate 693 1.6% 49.2% 2012 4.6% 142.9% 



   

  

timing based semi-perimeter routing estimate for 
placement and a timing driven detailed router.  In this 
paper VPR was used to determine the feasibility of 
embedded floating-point units, FPUs, in island-style 
FPGAs. 

Previous versions of VPR supported three types of 
circuit elements, input pads, output pads, and CLBs.  To 
test the feasibility of embedded floating-point units and 
to incorporate necessary architectural elements, VPR 
was modified to allow the use of embedded block units 
of parameterizable size.  Additionally, a fast carry-chain 
was incorporated into the existing CLBs elements. 

An FPGA architecture was used that approximately 
models the Xilinx® Virtex-II Pro FPGA family.  Our 
model architecture consisted of IO blocks, CLBs (which 
included 4-input function generators, storage elements, 
arithmetic logic gates, and a fast carry-chain), 18Kb 
block RAMs, and embedded 18-bit x 18-bit multiplier 
blocks [10].  In addition to the Xilinx® Virtex-II Pro 
features, the architecture incorporated embedded 
floating-point units.  The various blocks were arranged 
in a column based architecture similar to Xilinx’s®, 
ASMBL™ (Advanced Silicon Modular Block) 
architecture [14], as seen in Figure 3, which is the 
architectural foundation of the Virtex-4 FPGA family 
[15]. 

To directly incorporate embedded blocks with the 
existing circuit elements of VPR, the new embedded 
block size must be quantized with the size of the 
existing circuit elements.  Each embedded unit type has 
two size parameters, height and width, each in terms of 
CLB size.  In keeping with the column based 
architecture, horizontal routing was allowed across the 
embedded units, but vertical routing was kept only at the 
periphery of larger units.  The regular routing structure 
that existed in the original VPR was maintained as 
shown in Figure 4. 

The outputs of the embedded units can be registered.  
Each embedded unit type has three timing parameters: 
sequential setup time, sequential clock-to-q, and 
maximum combinational delay if no clock is used. 

The fast carry-chain is a dedicated route that is 
separate from the rest of the routing structure.  It 
connects the carry-out at the top of one CLB to the 
carry-in on the bottom of the CLB directly above.  Since 
the carry-chain connection between CLBs is 
independent from the normal routing structure and does 
not go through connection boxes, switch boxes, or 
isolation buffers, it has its own timing parameter. 
 
3.1. Component Area 
 

The areas of the CLB, 18x18 bit multiplier, and 18 
Kb RAM were approximated using a die photo of a 
Xilinx Virtex-II 1000 [16] courtesy of Chipworks Inc.  
The area estimate of each component includes the 
associated connection blocks, which dominate the 
routing area.  The baseline size of the floating-point unit 

 
Figure 3.  ASMBL 

 

 
(a) 

 

 
(b) 

 
Figure 4.  (a) Our column based architecture with CLBs, 
embedded multipliers, and block RAMs.  (b) Our column 
based architecture with CLBs, embedded floating-point 
units, and block RAMs 



   

  

was conservatively estimated from commodity 
microprocessors and embedded cores in previous work 
[17, 18] and the actual area used was increased to 
accommodate one vertical side of the FPU being filled 
with connection blocks (assumed to be as large as a 
"CLB").  This made the true area of the FPU dependent 
on the shape chosen.  We believe this to be an extremely 
conservative estimate.  The areas were normalized by 
the process gate length.  All areas are referenced to the 
smallest component, which is the CLB.  These values 
are shown in Table 2. 
 
Table 2. Embedded Component Timing & Area 

 TSETUP 
[ns] 

TCLK→Q 
[ns] 

Area 
[106 L2] 

Area 
[CLBs] 

CLB 0.32 0.38 0.662 1 
Multiplier 18x18 2.06 2.92 11.8 18 
RAM 18Kb 0.23 1.50 18.5 28 
FPU 64-bit 0.50 0.50 107 161 

 
3.2. Component Latency 
 

The CLBs that were used are comparable to the 
Xilinx® slice.  Each CLB is composed of two 4-input 
function generators, two storage elements (D flip-flops), 
arithmetic logic gates, and a fast carry-chain.  To 
accurately represent the timing of this in VPR's CLB 
architecture, nineteen VPR subblocks were used.  For 
each subblock the sequential setup time, sequential 
clock-to-q, and maximum combinational delay if no 
clock is used were found in Xilinx data sheets or 
experimentally using Xilinx design tools. 

The latency of the embedded multipliers and RAMs 
are based on the Xilinx® Virtex-II Pro -6.  The latency 
of the FPUs was more difficult to estimate 
appropriately.  Given a processor on a similar process 
(the Pentium® 4) can achieve 3 GHz operation with a 4 
cycle add and a 6 cycle multiply, we assume that an 
FPU in an FPGA could achieve 500 MHz at the same 
latency.  Setup and clock-to-q were set conservatively 
assuming the latency included registers front and back. 
 
3.3. Track Length & Delay 
 

We use four different lengths of routing tracks: 
single, double, quad, and long, where long tracks 
spanned the entire length of the architecture.  The 
percentages of different routing track lengths were based 
on Xilinx® Virtex-II Pro family and can be seen in 
Table 3 [10]. 

VPR uses a resistive and capacitive model to 
calculate the delay for various length routing tracks.  
Based on previously determined component area, the 
resistive and capacitive values were estimated by laying 
out and extracting routing tracks using Cadence IC 
design tools.  Timing results for the overall design were 
found to be reasonable based on previous experience 
with Xilinx parts. 

Table 3. Track Length 
Size Length Fraction 

Single 1 22% 
Double 2 28% 
Quad 4 42% 
Long All 8% 

 
 
4. Methodology 
 
4.1. Benchmarks 
 

Five benchmarks were used to test the feasibility of 
embedding floating-point units in an island style FPGA.  
They were matrix multiply, matrix vector multiply, 
vector dot product, FFT, and LU decomposition.  The 
LU decomposition benchmark is still preliminary, with a 
complete datapath, but a control path that is still under 
development.  All of the benchmarks use double-
precision floating-point addition and multiplication.  
Additionally, LU decomposition includes floating-point 
division, which must be implemented in the 
reconfigurable fabric for all architectures.  Each of the 
benchmarks were placed and routed in three FPGA 
versions.  In the first version, the floating-point 
calculations were performed using only the CLBs.  The 
CLB only version is used as a point of reference to 
compare the other versions.  In the second version, the 
floating-point calculations were performed using CLBs 
and embedded 18-bit x 18-bit multiplier blocks.  This 
version is representative of existing FPGAs, specifically 
the Xilinx® Virtex-II Pro.  The third version adds the 
embedded double precision floating-point multiply/add 
units in various aspect ratios. 
 
Table 4.  Number of components in CLB only benchmark 

Benchmark CLBs I/O RAM 
Matrix Mult. 32,478 196 128 
Vector Mult. 35,630 1,274 14 
Dot Product 30,653 782 0 

FFT 46,590 555 152 
LU 33,534 194 64 

Average 35,777 600 72 
 
Table 5.  Number of components in embedded multiplier 
and embedded FPU benchmarks 

Embedded Mult Embedded FPU Benchmark 
CLBs MULT CLBs FPU 

Matrix Mult. 25,290 72 9,373 8 
Vector Mult. 27,836 90 8,012 10 
Dot Product 21,301 72 4,926 8 

FFT 37,130 72 15,432 28 
LU 24,257 72 8,108 8 

Average 27,163 76 9,170 12 
 

The floating point benchmarks were written in a 
hardware description language, either VHDL or JHDL 



   

  

[19], and synthesized into an EDIF (Electronic Data 
Interchange Format) file.  The Xilinx® NGDBuild 
(Native Generic Database) and the Xilinx map tool were 
used to reduce the design from gates to slices (which 
map one-to-one with our CLBs).  The Xilinx NCD 
(Native Circuit Description) Read was used to convert 
the design to a text format.  A custom conversion 
program was used to convert the mapping of the NCD 
file to the NET format used by VPR; thus, the traditional 
VPR T-Vpack path for mapping is completely bypassed. 

The benchmarks vary in size and complexity.  Table 
4 gives the number of components for the benchmarks 
that perform the floating-point operations using the 
CLBs only.  The number of IO and 18Kb RAM blocks 
will remain constant for all three versions of the 
benchmarks.  Table 5 gives the number of components 
for the benchmark versions that perform the floating-
point calculations using 18 x 18 embedded multipliers 
and the number of components for the benchmark 
versions that perform the floating-point calculations 
using the embedded FPUs. 

There are a few interesting trends and distinguishing 
aspects to notice.  There is an average reduction by 24% 
in the number CLBs from the CLBs only benchmark 
versions to the embedded multiplier version, and a 66% 
reduction from the embedded multiplier version to the 
embedded FPU version.  This is to be expected because 
the embedded multipliers replace some of the CLBs 
allocated for floating-point calculations in the CLB only 
version and the FPUs replace the embedded multipliers 
that were used for floating-point calculations in the 
embedded multiplier version.  The reduction in the 
number of CLBs between the embedded multiplier 
benchmarks and the FPU benchmarks varies from 58% 
for the FFT to 77% for the dot product.  This variation is 
due to the ratio of control to datapath logic and the 
number and type of floating-point calculations 
performed. 
 

 
Figure 5.  Simplified CLB with fast vertical carry-chain 
 
 

The number of IOs differs by almost an order of 
magnitude between the different benchmarks from 194 
for the LU decomposition to 1,274 for the matrix vector 
multiply.  This is largely an artifact of how the 
benchmarks are extracted and has no significant impact 
on the results. The number of block RAMs also has a 
significant variation from the dot product which does 
not use any block RAMs to the FFT which uses 152.   
 
4.2. Fast Carry-Chains 
 

VPR was also modified to allow the use of fast carry-
chains.  The CLBs were modeled after the Xilinx Virtex 
II Pro slice.  Along with the two 4-input function 
generators, two storage elements, and arithmetic logic 
gates, each CLB has a fast carry-chain affecting two 
output bits.  The carry-out of the CLB exits through the 
top of the CLB and enters the carry-in of the CLB above 
as shown in Figure 5.  Each column of CLBs has one 
carry-chain that starts at the bottom of the column of 
CLBs and ends at the top of the column.  Since each 
CLB has logic for two output bits, there are two 
opportunities in each CLB to get on or off of the carry-
chain as seen in the simplified CLB shown in Figure 5. 

The addition of the carry-chain was necessary to 
make a reasonable comparison between the different 
benchmark versions.  The versions of the benchmarks 
that implemented the floating-point multiply-add using 
the embedded multipliers or only CLBs make extensive 
use of the fast carry-chains.  The double-precision 
addition requires a 57 bit adder.  If the carry signal was 
required to go out on general routing it would 
significantly decrease the adder frequency.  This would 
dramatically skew the results in favor of the embedded 
FPUs.  
 
Table 6.  Maximum frequency with a and without the use 
of the fast carry-chain for the embedded multiplier version 

Benchmark 

Max. Freq. 
w/o Fast 

Carry-Chain 
[MHz] 

Max. Freq. 
with Fast 

Carry-Chain 
[MHz] 

Matrix Multiply 87 126 
Vector Multiply 89 117 

Dot Product 87 149 
FFT 79 104 

LU Decomposition 84 142 
Average 85 128 

 
To demonstrate the correct operation of the carry-

chain modification, the benchmarks that used the 
embedded multipliers to implement the double-precision 
floating-point multiply-add were placed and routed 
using VPR with and without the carry-chain 
modification.  The results are shown in Table 6.  By 
using the fast carry-chain the benchmarks had an 
average speed increase of 49.7%. 



   

  

Because the carry-chains only exist in columns of 
CLBs and only in the upward direction, it is necessary to 
initially place all of the CLBs of a given carry-chain in 
proper relative position to each other and to move/swap 
all of the CLBs that comprise a carry-chain as one unit.  
To accomplish this, the move/swap function of VPR 
was modified.  When a CLB that is part of a carry-chain 
is chosen to be moved or swapped the following 
algorithm is used. 
 
1. The CLBs that are to be moved or swapped are 

randomly determined based on the constraints of 
the placement algorithm. 

2. If the CLBs are part of a carry-chain the beginning 
and end of the carry-chain are determined. 

3. Whatever carry-chain is the longer of the two CLBs 
to be swapped determines the number of CLBs to 
be swapped. 

4. It is determined if the CLBs could be moved or 

swapped without violating the physical constraints 
of the chip and breaking any other carry-chain. 

5. If the move swap is determined to be illegal, the 
move/swap is discarded and a new set of blocks are 
chosen for a potential move/swap.  Even though 
this potential move is discarded, it is not considered 
a rejected move.  The success of simulated 
annealing depends on trying a large enough number 
of moves.  Therefore, before a move can be 
considered as accepted or rejected, a legal move 
must be found. 

6. Once a legal move is found, all of the nets that 
connect to all of the CLBs that comprise the carry-
chain are considered in the cost of moving the 
carry-chain. 

7. The move is accepted or rejected based on the 
current simulated annealing temperature. 

8. If a move/swap is accepted all of the CLBs on the 
carry-chain are moved together to maintain the 

Figure 6.  Floating-point unit benchmark area 
 

Figure 7.  Floating-point unit benchmark maximum frequency 
 

Figure 8.  Floating-point unit benchmark channel width 



   

  

physical constraints of the carry-chain architecture. 
9. The accepted or rejected move of a carry-chain 

consisting of N CLBs is considered N accepted or 
rejected moves. 

 
The rest of the details of the simulated annealing 

algorithm remain unchanged.  This resulted in making 
VPR significantly slower, but was necessary to maintain 
the integrity and results of simulated annealing. 
 
 
5. Testing & Analysis 
 
5.1. Floating-Point Units 
 

To determine the appropriate aspect ratio for the 
FPU, each benchmark was run using eight different 
heights and widths.  These FPUs with different aspect 
ratios were combined in a column based architecture 
with CLBs and RAMs.  With an increase in the height 
of the FPU (decrease in the aspect ratio), there will be 
fewer FPUs on a single column.  To maintain the same 
ratio of FPUs, CLBs, and RAMs for all the different 
FPU sizes, the number of columns of FPUs was 
increased as the FPU height increased.  Table 7 shows 
the relative number of columns of CLBs, RAMs, and 
FPUs for each of the different FPU heights. 
 
Table 7.  Component column architecture ratios for 
various FPU sizes 

FPU 
Height 

CLB 
Col. 

RAM 
Col. 

FPU 
Col. 

4 46 2 1 
8 46 2 1 

16 45 2 1 
32 40 2 2 
64 40 2 4 
96 40 2 6 
128 40 2 8 
160 40 2 10 

 
The area of the FPUs varies with the aspect ratio due 

to the overhead of connecting the FPU with the 
surrounding routing resources - for each row of CLBs 
along an FPU’s edge, a row’s worth of routing resources 
must be provided.  A conservative estimate was used 
that for each CLB of height added to the FPU, an 
additional full CLB tile’s worth of area was required. 

Each benchmark was tested with eight different FPU 
heights.  These benchmarks with different FPU sizes 
were compared on three criteria: area, maximum 
frequency, and number of routing tracks.  These results 
are given in Figure 6 through Figure 8. 

Because there was an area penalty for greater FPU 
heights to account for connectivity and routing, the 
architecture with the shortest FPUs had the smallest area 
as seen in Figure 6.  However, the average difference in 
area is only 3.3%. 

Modern FPGAs have a large number of routing 
tracks.  Therefore, apart from its impact on maximum 
clock frequency, the required number of routing tracks 
is unlikely to be the driving consideration when 
choosing the best aspect ratio for the FPU (see Figure 
8).  The Virtex II Pro, for example, has enough routing 
tracks to accommodate most of the benchmarks in most 
of the configurations.  Some configurations (16, 32, 
160) are completely routing neutral.  These are likely to 
be better choices if all else is equal. 
 

The last consideration, maximum frequency, is the 
most significant aspect.  There is a significant difference 
in the maximum frequency between the benchmarks 
with different aspect ratio FPUs.  As seen in Figure 7, 
the benchmarks with FPUs of height 32 had the highest 
average frequency.  The lower frequencies were found 
at the extremes, those with very large and very small 
aspect ratios.  The benchmarks with large aspect ratios 
and small FPU heights were very wide and consequently 
had large horizontal routes that increased the overall 
circuit latency.  The benchmarks with small aspect ratios 
and large FPU heights had congestion on the vertical 
routing tracks.  Also, as seen in Table 7, with the larger 
FPU height there was a greater number of FPU columns 
to keep the overall number of FPUs constant, this causes 
congestion due to the large number of nets associated 
with each FPU. 
 
5.2. Results 
 

Eight different FPU aspect ratios were compared to 
determine which size gave the best results.  The 
different sizes ranged from a FPU with an equivalent 
CLB height of 4, up to a FPU with an equivalent CLB 
height of 160.  On average, the benchmarks that used 
the FPU of height 32 had the highest frequency, fewest 
number of routing tracks, and did not have a significant 
area increase over those with other aspect ratios.  
Therefore, it is the architectures with FPUs of height 32 
that are being compared to the architectures with the 
embedded multipliers and with CLBs only.  They were 
compared by area, maximum frequency, and track 
count. 
 
Area 
 

As seen in Figure 9, the FPU had an average 
reduction in area of 55.0% compared to the embedded 
multiplier version and an average reduction in area of 
63.6% compared to the CLB only version.  While all of 
the benchmarks with the embedded FPUs had an area 
reduction, there was some variation in the amount.  The 
dot product had the largest area reduction of 70.2% 
compared to the embedded multiplier and 77.9% 
compared to the CLB only version.  While still 
significant, the FFT had the smallest area reduction of 
41.0% compared to the embedded multiplier version and 



   

  

50.4% compared to the CLB only version.  This 
variation in area reduction is due to a few different 
factors.  First, benchmarks like the FFT had a larger 
percentage of control logic compared to the other 
benchmarks.  In addition, the FPU version of the matrix 
multiply had 24.5% of its area occupied by block 
RAMs.  The area due to control logic and the block 
RAMs are constant between the different versions and 

are not affected by using the embedded FPUs. 
The third reason for the variation in area reduction 

pertains solely to the FFT.  Even though the FFT uses 
floating-point multiplication and addition they are not 
used as a composite multiply-add operation as in the 
other benchmarks.  Therefore, the multiply-add FPUs 
are being used as either a floating-point multiply or a 
floating-point add, but not both.  This results in both a 
large number of FPUs being needed as shown in Table 5 
and significant portions of the FPUs being unused.  This 
is not an issue in the embedded multiplier and CLB only 
versions, as a floating-point multiplier or adder can be 
developed out of the embedded multipliers or CLBs as 
needed.  With some optimization of the benchmark, the 
amount of single operation use could be reduced.  
Alternatively, by enabling the adders and multipliers to 
be independent, this effect could be greatly reduced.  If 
you remove the FFT from the average, the FPU version 
had a reduction in area of 60.5% compared with the 
embedded multiplier version and an average reduction 
in area of 68.4% compared with the CLB only version. 
 
Frequency 
 

As seen in Figure 10, all five of the benchmarks ran 
faster on the FPGA architecture that used the embedded 
FPUs.  The speed increase comes from the fact that the 
control logic has a shorter critical path than the floating-
point units that are based on CLBs.  Because the control 
logic was optimized for the floating-point units created 
out of the embedded multiplier and not for the faster 
embedded FPUs, the speed increases are 
underestimated.  On average the benchmarks with 
embedded FPUs had a speed increase of 40.7% over the 
embedded multiplier version and a speed increase of 
85.1% over the CLB only version.  The matrix multiply 
had the smallest speed increase of only 19.5% and 
47.3% for the FPU version over the embedded 
multiplier and CLB only versions, respectively.  The 
reason for the smaller speed increase for the matrix 
multiply is a larger benchmark that has a larger number 
of block RAMs.  This results in more congestion and 
consequently longer routes.  The matrix vector multiply 
has the largest speed increase of 69.6% and 107.2% for 
the FPU version over the embedded multiplier and CLB 
only versions respectively.  The matrix vector multiply 
has a smaller amount of control logic than the other 
benchmarks.  The critical path is in the floating-point 
calculations; thus, having the embedded FPUs 
significantly reduces the critical path and results in a 
higher frequency. 
 
Routing Tracks 
 

As seen in Figure 11, on average the FPU had a 
reduction of 8.6% in the number of routing tracks 
compared to the embedded multiplier version.  This is 
not considered a major benefit or detriment of using 

 
Figure 9. Area of circuits with CLBs only, embedded 
multipliers, and FPUs 

 

 
Figure 10. Maximum frequency of circuits with CLBs only, 
embedded multipliers, and FPUs 

 

 
Figure 11. Track count of circuits with CLBs only, 
embedded multipliers, and FPUs 



   

  

embedded FPUs, but rather an indication that using the 
embedded FPUs does not cause a dramatic change in the 
number of routing tracks.  In fact, the FPU version had a 
maximum reduction in the number of routing tracks of 
28.0% compared with the embedded multiplier version 
for the matrix vector benchmarks.  The FPU version of 
the FFT benchmark had the maximum increase in the 
number of routing tracks of 4.0% compared to the 
embedded multiplier version. 
 
5.3. Flops 
 

The performance of each benchmark was calculated 
in Gflops and normalized to a given architecture area.  
The results are shown in Figure 12.  The FPU 
benchmarks had an average performance of 13.38 
Gflops, which is an increase by a factor of 2.4 over the 
average performance of the embedded multiplier 
benchmarks of 3.99 Gflops and an increase by a factor 
of 4.4 over the average performance of the CLB only 
benchmarks of 2.49 Gflops.  However, since the FFT 
benchmark uses the embedded FPUs to perform only 
one floating-point operation, either a multiply or an add 
but not both, the benefits of the embedded FPUs is 
greatly reduced.  Removing the FFT benchmark from 
the average, the FPU benchmarks had an average 
performance increase by a factor of 2.6 over the 
embedded multiplier benchmarks and an average 
performance increase by a factor of 5.1 over the CLB 
only benchmarks.  While removing the FFT from the 

average provides an upper bound for the benefit, it does 
provide insight into the potential advantages of making 
the multiplier and adder independently accessible.  As 
noted earlier, the performance advantage of using 
embedded FPUs is grossly underestimated because new 
critical paths in the control logic are exposed.  With 
sufficient effort, it is expected that the control logic 
performance could be increased significantly. 
 
5.4. Other Topics 
 
Single-Precision vs. Double-Precision 
 

The computing usage at Sandia National 
Laboratories is oriented toward scientific computing 
which requires double-precision.  It is because of this 
that the benchmarks were written using double-precision 
floating-point numbers.  With some modification, a 
double-precision FPU could be configured into two 
single precision units, and should show similar benefits. 
 
Other Uses for FPUs 
 

It has been shown that by adding embedded FPUs to 
an island-style FPGA the circuit size can be reduced and 
the maximum frequency can be increased for 
benchmarks that use floating-point without adversely 
affecting the number of routing tracks.  However, if 
unused these embedded FPUs would be wasted space.  
The FPUs are comprised of large multipliers, adders, 
and barrel shifters.  Small modifications to the design 
would expose these sub-components as alternative uses 
of the FPU block.  This could help offset a potential 
disadvantage to using embedded FPUs. 
 
FPU Area Overhead 
 

To determine the penalty of using an FPGA with 
embedded FPUs for non floating-point computations, 
the percent of the chip that was used for each 
component was calculated.   For the chosen FPU 
configuration, the FPUs consumed 17.6% of the chip. 
 
 
 

Table 8.   Comparison of area, maximum frequency, and channel width for benchmarks with CLBs only, embedded multipliers, 
and FPUs 

CLBs Only Embedded Multipliers Embedded FPU 
 Area 

[106 L2] 
Freq 

[MHz] 
Routing 
Tracks 

Area 
[106 L2] 

Freq 
[MHz] 

Routing 
Tracks 

Area 
[106 L2] 

Freq 
[MHz] 

Routing 
Tracks 

Matrix Mult 23,945 104 40 20,037 126 41 9,662 151 40 
Vector Mult 24,283 78 48 20,187 117 50 7,265 199 36 
Dot Product 20,565 104 38 15,223 149 41 4,544 220 35 

FFT 33,856 92 55 28,443 104 50 16,792 145 52 
LU 23,461 105 62 18,169 142 61 7,640 182 59 

Average 25,222   97  47 20,412  132   49 9,181  179   44 

 
Figure 12.  Normalized benchmark performance 



   

  

6. Conclusion 
 

This paper has demonstrated that adding embedded 
floating-point multiply-add units into an island-style 
FPGA can significantly reduce circuit size and increase 
circuit frequency without a significant increase in 
channel width compared with floating-point multiply-
add units that use traditional approaches.  Despite a 
"worst case" area estimate, the embedded FPUs 
provided a significant advantage.  The FPUs provided 
an average reduction in area of 55.0% compared to an 
FPGA enhanced with embedded 18-bit x 18-bit 
multipliers and 63.6% reduction in area compared to 
using only CLBs.  This area achievement is in addition 
to an average speed improvement of 40.7% over using 
the embedded 18-bit x 18-bit multipliers and a 85.1% 
speed increase over the CLB only version.  There is also 
an average reduction in the number of routing tracks by 
an average of 8.6% and a maximum increase in routing 
tracks of a mere 4.0%. 
 
 
7. Future Research 
 

While this paper has shown the potential of adding 
embedded FPUs to FPGAs, there is still room for 
improvement.  The size estimation that was used for the 
FPU was very conservative.  Obtaining a more accurate 
FPU size might improve results.  Additional 
optimization of the way the FPUs were configured has 
potential for improvement.  Also, since all 64 bits of a 
double-precision number generally tends to follow the 
same route, another possibility for improvement would 
be to implement bus based routing. 

There are alternatives to FPUs that could also make 
FPGAs more conducive to floating-point computations 
without being as extensive.  These could include smaller 
embedded units, changes to the logic blocks, or more 
efficient routing. 
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