
Design Trade-Offs in Floating-Point Unit
Implementation for Embedded and Processing-In-

Memory Systems

Taek-Jun Kwon, Jeff Sondeen, Jeff Draper
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292 U.S.A.

{tjkwon,sondeen,draper}@ISI.EDU

Abstract—Hardware support for floating-point (FP) arithmetic
is a mandatory feature of modern microprocessor design.
There are many alternatives in floating-point unit (FPU)
design, and overall performance can be greatly affected by the
organization of a floating-point unit. In this paper, design
considerations and trade-off factors are evaluated for two
types of floating-point unit architecture and implementation
optimized under different design goals. The implementation
results of the proposed FPUs based on standard cell
methodology in TSMC 0.18µm technology exhibit that both
designs are well optimized for their target applications. A
single-instruction issue design is implemented in very small
area; however, a design capable of concurrently executing FP
add and multiply instructions is achievable with only a modest
24% area increase.

I. INTRODUCTION
 Due to the constant advances in VLSI technology and

the prevalence of business, technical, and recreational
applications that use floating-point operations, floating-point
computational logic has long been an essential component of
high-performance computer systems as well as embedded
systems and mobile applications. Floating-point units (FPU)
can be implemented in various ways, and the architecture of
an FPU has a great affect on its overall performance, area,
and power dissipation. This paper explores the trade-off
space with respect to two FPU architectures that are
optimized for different design goals. These two architectures
were driven by the differing requirements of the Data-
Intensive Architecture (DIVA) and Morphable Networked
Micro-Architecture (MONARCH) projects. Although the
cornerstone of both projects is a high-density VLSI device
including FPU capability, the two projects differ in area and
performance goals.

DIVA [1][2] uses embedded memory technology as
processing-in-memory (PIM) to replace the memory system
of a conventional workstation with “smart memories”
capable of very large amounts of processing. DIVA targets

applications that are not aided by caches in conventional
systems due to little spatial or temporal data locality and are
thus severely impacted by the processor-memory bottleneck.
Based on our first PIM implementation, a PIM system
incorporating these devices is projected to achieve speedups
ranging from 8.8 to 38.3 over conventional workstations for
a number of applications [2]. Since DIVA PIM chips serve
primarily as memory components, it is important to preserve
a large majority of the die area for memory, so the
processing logic for such PIM chips should be compacted as
much as possible. Hence, the FPU architecture design for
DIVA should occupy minimal area when implemented,
perhaps even at the expense of performance and power.

MONARCH [3] targets real-time embedded applications
that involve both high-speed signal processing and also data-
dependent decision-oriented computing. At an architectural
level, the MONARCH chip contains functional units that
may serve as the central elements in a dataflow architecture
for highly efficient stream computing or through morphing
they may become the basis of vector extension units
controlled by embedded threaded processors, such as a
simple RISC design. In the latter mode, the configuration of
the computational elements strongly resembles the
WideWord operation of DIVA [4]. To achieve high-
performance stream processing capability in MONARCH,
FPU throughput should be maximized, even at the expense
of area.

The remainder of the paper explores trade-offs in FPU
design as motivated by the DIVA and the MONARCH
projects. Section 2 presents the description of basic FPU
blocks followed by a detailed description of two types of
FPU architectures. Implementation details are presented in
Section 3. Section 4 presents the simulation and comparison
results followed by a brief summary and conclusion in
Section 5.

33310-7803-8834-8/05/$20.00 ©2005 IEEE.

II. DIVA FPU AND MONARCH FPU

A. Basic Blocks: ALU and Multiplier/Divider Fused Unit
Both the DIVA and the MONARCH FPUs implement a

subset of the IEEE-754 floating-point standard [5]. Since
target applications of both architectures are mostly from the
multimedia realm, only single-precision numbers are
supported. A multiplicative division algorithm is carefully
chosen and implemented to minimize the area overhead
while achieving high throughput. To achieve a better area-
performance solution, operations on denormalized numbers
are not supported, and such operations cause exceptions
when attempted. In addition, whenever a result is a
denormalized number, an underflow exception is raised and
the minimum normalized number is produced for output. The
inexact exception flag on division operations is not IEEE-

754 compliant, which is common for multiplicative division
algorithms. Additional operations are necessary to correct
this. Other exception flags – Invalid, Divide by Zero,
Overflow, Underflow and Inexact (except divide) – are
accurately generated as specified by the IEEE-754 standard.
All four rounding modes are implemented.

Block diagrams of the ALU block and the Mul/Div block
are shown in Fig. 1 and Fig. 2. Addition (which subsumes
subtraction) and multiplication are not only the most
frequently occurring floating-point arithmetic operations, but
together they can support all other operations required by the
IEEE 754 floating-point standard. We can regard all other
functions, including division, as additions to or
enhancements of these basic blocks. For these reasons, the
implementation of addition and multiplication largely
determines the overall performance of an FPU. Six
operations (Add, Subtract, Fp2Int, Int2Fp, Absolute, Negate)
are executed by the ALU block while Multiply and Divide
operations are executed by the Mul/Div block.

To meet performance requirements of modern scientific
applications such as 3D graphics rendering, high
performance is crucial for division as well as multiplication.
Since eight copies of an FPU are to be implemented in the
case of DIVA, a good area-performance solution was one of
the primary design goals. To achieve this, we adapted the
multiplicative division algorithm proposed by Liddicoat and
Flynn [6][7], which computes the quotient significantly
faster than other division algorithms with a relatively small
hardware overhead. The multiplier in the Mu/lDiv fraction
datapath is shared between multiply and divide operations
and several multiply operations in the division algorithm are
executed by this multiplier to reduce area.

B. MONARCH FPU (Add-Multiply Configuration)
The organization of the MONARCH FPU is shown in

Fig. 3. MONARCH targets real-time embedded dataflow
applications that require highly efficient stream processing
capability. Therefore, the overall FPU architecture should be
optimized to achieve higher performance, such as low
latency and high throughput. To maximize the throughput of
floating-point operations, a high issue rate is also an essential

Figure 1. Block diagram of the ALU block

Figure 2. Block diagram of the Mul/Div block

Figure 3. MONARCH FPU organization

3332

point of design consideration, especially the ability to
concurrently execute FP add and multiply operations.

To achieve such requirements, we adapted the Add-
Multiply configuration, which is a commonly used FPU
architecture found in most modern microprocessors. This
configuration consists of separate ALU and MulDiv blocks,
and there is no common datapath component shared between
these two blocks. Both blocks have separate inputs and
outputs and they operate independently. Therefore, a high
throughput can be achieved by issuing up to two floating-
point instructions at the same clock cycle, assuming one
instruction is an ALU type and the other is a Mul/Div type.
Since both basic FPU blocks do not share any component,
each block can be optimized separately to have a reduced
number of stages to achieve low instruction latency. As a
result, the ALU block has a 3-stage pipelined architecture,
and the MulDiv block has a 4-stage pipelined architecture.
The latency of all ALU operations and multiply operation is
3 clock cycles while the latency of division operation is 9
clock cycles. (Note that the actual implementation of the
MONARCH FPU for the streaming processing component
does not support division operations. The floating-point
divider was included for the purpose of a fair comparison for
this paper).

C. DIVA FPU (Fused Configuration)
Fig. 4 depicts the organization of the DIVA FPU. Since

we need to preserve as much area as possible for memory in
DIVA, several design considerations have been made. The
exponent computation functions for both blocks are
combined in one datapath to reduce area. Similarly, logic for
converting to/from the internal number format and rounding
logic are shared between both datapaths. DIVA execution
control is a simple in-order single-issue instruction pipeline
[4][8], therefore combining common datapaths does not
suffer any performance penalty. The pipeline registers for the
ALU and the Mul/Div blocks are controlled by separate
enable signals so that only one of the datapaths is active for
each instruction. A 2-stage pipelined fraction multiplier is
used for better synthesis results and stage balance between
the ALU and Mul/Div blocks. As a result, the proposed FPU

for DIVA has a 5-stage pipelined architecture. The latency of
all operations is 5 clock cycles except division, for which the
latency is 12 clock cycles. For a more detailed description of
the DIVA FPU, refer to [9][10].

III. IMPLEMENTATION
Both FPU designs have been described in Verilog with

the exception of the two-stage multiplier, where the netlist
was generated using Synopsys synthesis tools. These netlists
along with the ROM needed for the divider were combined
together. For balanced pipeline stages and generating a 2-
stage multiplier, register retiming techniques have been
generally applied in the logic synthesis step. The FPUs were
synthesized to 0.18µm technology under the timing
constraint of a 266MHz clock frequency, and the resulting
netlists were then placed and routed to generate a layout
using Cadence Silicon Ensemble. The layouts and features of
both FPUs are presented in Fig. 5 and Table I, respectively.

IV. COMPARISON RESULTS

A. DIVA FPU vs. MONARCH FPU
The implementation results show that the area of the

DIVA FPU is 19.7% smaller than the area of the
MONARCH FPU. The area overhead of the DIVA FPU to
the overall PIM design is also very small as 8 FPUs occupy
only 3.6% of the total area of the existing DIVA PIM chip,
preserving the majority of the die area for memory. This area
optimization has been achieved through sub-block sharing
among different functions. Another factor of area reduction
results from the architectural difference between the two
designs. Since the DIVA FPU is a 5-stage pipelined
architecture and the MONARCH FPU is a 3-stage pipelined
architecture, a smaller design is generated in the case of the
DIVA FPU in the synthesis step, when the same timing
constraint is applied, as less logic per stage and overall is

Figure 4. DIVA FPU organization

Figure 5. DIVA FPU layout and MONARCH FPU layout

TABLE I. Summary of prototype FPUs

 DIVA FPU MONARCH FPU
Technology TSMC 0.18µm CMOS
Supply Voltage 1.8V
Dimension 695µm x 693µm 750µm x 800µm
Gate Count 9,467 12,539
Transistor Count 105,539 119,777
Speed 266MHz @1.8V

3333

needed to meet the timing requirement. This architectural
difference also shows that the MONARCH FPU exhibits
superior performance to the DIVA FPU. In addition to
supporting concurrent add/multiply operations, the latency of
the MONARCH FPU is 3 clock cycles, while the latency of
the DIVA FPU is 5 clock cycles (for all operations except
division in both cases, as noted earlier).

B. 1-stage multiplier vs. 2-stage multiplier
A 2-stage pipelined multiplier was used in the DIVA

FPU fraction datapath after several design considerations. By
using a 2-stage multiplier, the number of stages is larger,
therefore increasing the latency. However, the area of the
overall synthesized design is smaller than one using a 1-stage
multiplier because of the smaller size of the synthesized
fraction multiplier, which occupies a substantial area in an
FPU design. Since there are several multiply operations in
the division algorithm used for both FPU designs, the
multiplier architecture also affects the overall performance of
division operations. When a 2-stage multiplier is used, the
latency of the division operation increases from 9 clock
cycles to 12 clock cycles. However, there is a slight
throughput advantage of using a 2-stage multiplier since
consecutive division instructions can be issued at every 5
clock cycles, while 6 clock cycles of instruction issue delay
are required to ensure in-order completion when a 1-stage
multiplier is used.

C. Power Dissipation
Fig. 6 presents simulation results of the power dissipation

of each FPU design for each instruction, where the same
instruction was repeated on a random input data stream at the
highest throughput rate. The results show that the DIVA
FPU consumes approximately 41% more power than
MONARCH FPU as the average power dissipation of the
DIVA FPU is 100.5mW and the average power dissipation
of the MONARCH FPU is 71.2mW with a clock frequency
of 266MHz at 1.8v. This difference results mainly from the
difference between the organizations of the two FPU designs.
Even though one of either the ALU or Mul/Div fraction
datapath is active by controlling the enable signals of the
pipeline registers in the DIVA FPU, there are several
components shared between the ALU and the Mul/Div
blocks that operate continuously. On the other hand, since

the ALU block and the Mul/Div block inside the
MONARCH FPU are completely separated, exactly only one
of them is active at all times for single-instruction issue. If
the MONARCH ALU and Mul/Div blocks are operated
concurrently, then obviously the power dissipation of the
MONARCH FPU is larger than that of the DIVA FPU. The
average power dissipation for multiply and divide
instructions is more than other ALU type instructions,
mainly resulting from the larger datapath of the Mul/Div
block.

V. CONCLUSION
This paper presented two types of FPU architectures

optimized for different design goals, their design trade-offs,
implementation details and comparison results. Standard cell
implementations based on TSMC 0.18µm CMOS technology
have shown that each FPU design is well optimized to satisfy
the requirements of its applications. A single-instruction
issue design is implemented in very small area; however, a
design capable of concurrently executing FP add and
multiply instructions is achievable with roughly a 24% area
increase. The DIVA FPU has been implemented in a PIM
chip, and it is fully functional [10]. The MONARCH chip
incorporating the other described FPU will tape out in 2005.

ACKNOWLEDGMENT
This research was supported by DARPA contract

F33615-03-C-4105.

REFERENCES
[1] M. Hall and C. Steele, “Memory Management in PIM-based

Systems”, in Proc. of the workshop on intelligent memory systems,
Boston, MA, 2000

[2] Jeff Draper, et al, “The Architecture of the DIVA Processing-In-
Memory Chip”, in Proc. of the International Conference on
Supercomputing, June 2002

[3] J. Granacki and M. Vahey, “MONARCH: A Morphable Networked
micro-ARCHitecture”, presentation to High Performance Embedded
Computing Workshop, October 2002

[4] Jeffrey Draper, Jeff Sondeen, Chang Woo Kang, “Implementation of
a 256-bit WideWord Processor for the Data-Intensive Architecture
(DIVA) Processing-In-Memory (PIM) Chip”, in Proc. of the 28th
European Solid-State Circuit Conference, Sep. 2002

[5] “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE
Standard 754, Aug. 1985

[6] A. Liddicoat, “High-Performance Arithmetic for Division and the
Elementary Function”, Ph.D. dissertation, Stanford University, Feb.
2002

[7] A. Liddicoat and M.J. Flynn, “High-Performance Floating-Point
Divide”, Euromicro Symposium on Digital System Design, Sep. 2001

[8] Jeffrey Draper, et al, “Implementation of a 32-bit RISC Processor for
the Data-Intensive Architecture Processing-In-Memory Chip”, in
Proc. of the IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, July 2002

[9] Joong-Seok Moon, Taek-Jun Kwon, Jeff Sondeen, Jeff Draper, “An
Area-Efficient Standard-Cell Floating-Point Unit Design for a
Processing-In-Memory System”, in Proc. of the 29th European Solid-
State Circuit Conference, Sep. 2003

[10] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen, Jeff Draper,
“0.18µm Implementation of a Floating-Point Unit for a Processing-
In-Memory System”, in Proc. of the IEEE Internation Symposium on
Circuits and Systems, May 2004 Figure 6. Power dissipation profile of each FPU

3334

