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Abstract 

Ice abrasion has been reviewed. Concrete and ice and their most important properties in accordance 

to ice abrasion have been studied.  Concrete strength and contact pressure between ice and 

concrete is found to be important factors. Former studies of ice abrasion differ in their conclusions of 

which parameters they include in their ice abrasion models. The different parameters are; ice contact 

pressure, ice sliding speed, temperature, concrete strength, size of aggregate, total sliding distance. 

Different models include one or more of these parameters. Some of the previous experiments has 

come to different conclusions, possible reasons for these differences has been discussed. 

A detailed description of the NTNU Ice Abrasion Laboratory is given. The abrasion test apparatus is 

based on the sliding contact abrasion test principle. A concrete specimen is mounted and an ice 

cylinder is slid on top of the concrete with applied pressure. Pressure, speed and temperature are all 

fully controllable to create different test scenarios.  A custom made National Instruments LabView 

program is used to control, monitor and log the activities in the abrasion laboratory. 

Ice abrasion testing has been done at the NTNU Ice Abrasion Laboratory, investigating a possible 

difference in abrasion rate for identical concrete with unlike initial treatment. A total of four 

concretes sample were tested. All four of them were saturated after this saturation period 2 of them 

was abrasion tested directly and 2 of them were dried, resaturated and then abrasion tested. 

Abrasion results were distorted by cracking of the concrete samples. No conclusive data on the 

abrasion rate were obtained. Two possible reasons for cracking of the concrete samples were found. 

The concrete samples have not been stored in best possible way before testing, which may have 

caused them to weaken. Secondly the ice abrasion machine has a weakness somewhere under the 

concrete sample. Either the concrete bedding its bearings or the load sensors yields during testing 

allowing the concrete to tilt up and down as the ice moves back and forth. Tilting of the concrete 

sample creates a bigger strain for the concrete at the turning point of ice cylinder. Measurers to 

remove this problem are discussed. 

 

Acknowledgements 

First I would like to give a big thank you to my supervisor Professor Stefan Jacobsen, who has 

supported me with his great knowledge and his patience with a slow-going student. Without him this 

thesis would not have been completed.   

Big thanks for the aiding I have gotten from the technical personnel at the NTNU concrete laboratory, 

especially Steinar Seehus and Ove Lorass. 

Thanks to Egil Møen who pioneered the ice abrasion lab at NTNU. 

A thank you also goes to the guys at “Stålhjørnet” SINTEF for lending of digital indicator and 

coordinate table. 

Thank you all! 

 



2 

 

Contents  
1. Introduction ..................................................................................................................................... 4 

1. Ice abrasion foreword ................................................................................................................. 4 

2. Why study ice abrasion on concrete? ......................................................................................... 4 

3. Limitations ................................................................................................................................... 4 

2. Background ...................................................................................................................................... 5 

1. What is ice abrasion? .................................................................................................................. 5 

2. Ice ................................................................................................................................................ 5 

i. Freeze-thaw weathering ......................................................................................................... 5 

ii. Ice mechanical and physical properties .................................................................................. 6 

iii. Ice movement .......................................................................................................................... 8 

3. Concrete ...................................................................................................................................... 9 

4. Ice abrasion on concrete, the mechanism ................................................................................ 11 

3. Methods ........................................................................................................................................ 12 

1. Laboratory testing ..................................................................................................................... 12 

i. Relative abrasion test ............................................................................................................ 13 

ii. Revolving disc test ................................................................................................................. 13 

iii. Tumbler abrasion test ........................................................................................................... 14 

iv. Sliding contact abrasion test ................................................................................................. 14 

2. Field testing ............................................................................................................................... 15 

3. Field studies ............................................................................................................................... 15 

4. Results from previous studies, discussions ............................................................................... 16 

i. Abrasion test with cylindrical ice at NTNU laboratory, effects of difference in ice sliding 

distance. ........................................................................................................................................ 16 

ii. Differences in previous test results ....................................................................................... 21 

5. Calculation models for ice abrasion on concrete ...................................................................... 24 

2. Ice abrasion testing at NTNU ......................................................................................................... 26 

1. The laboratory ........................................................................................................................... 26 

i. Room ..................................................................................................................................... 26 

ii. The ice abrasion rig ............................................................................................................... 26 

iii. Computer software, LabView ................................................................................................ 28 

iv. Measuring of abrasion ........................................................................................................... 29 

2. Test procedure .......................................................................................................................... 32 

i. Preparation: ........................................................................................................................... 32 



3 

 

ii. Running the machine: ........................................................................................................... 33 

iii. After testing: .......................................................................................................................... 34 

iv. Test procedure quick guide step by step: ............................................................................. 35 

5. Testing ............................................................................................................................................... 36 

1. Abrasion results ......................................................................................................................... 37 

i. Concrete sample A1 .............................................................................................................. 37 

ii. Concrete sample B1............................................................................................................... 42 

iii. Concrete sample A2 .............................................................................................................. 45 

iv. Concrete sample B2............................................................................................................... 48 

v. Variations of test parameters during testing ........................................................................ 51 

2. Comparison, evaluation and discussions of results .................................................................. 53 

6. Conclusion ..................................................................................................................................... 56 

Figure list ............................................................................................................................................... 57 

Table list ................................................................................................................................................ 59 

References ............................................................................................................................................. 60 

Appendix A, screenshots from LabView ................................................................................................ 62 

Appendix B, Maintenance of abrasion machine after down period ..................................................... 65 

Measurment excel file is digitally attached for particularly interested. 

  



4 

 

1. Introduction 

 

 

1. Ice abrasion foreword 

Ice is an obstacle for constructions of marine structures in cold regions. Abrasion on structures is a 

problem wherever there is moving ice. This is particularly in the arctic and sub-arctic areas.  To 

understand the ice abrasion problem we need knowledge about the involving materials and their 

interaction. Ice and concrete properties are important factors to understand ice abrasion.  Together 

with laboratory testing and field studies we can understand and predict ice abrasion problems. In 

order to increase this understanding NTNU has developed an ice abrasion test laboratory. This 

laboratory is used to find relations between abrasion depth in concrete and different test 

parameters. The variable parameters are concrete properties, ice properties, temperature, ice-

concrete sliding speed and pressure between ice and concrete. 

2. Why study ice abrasion on concrete? 

Ice abrasion on concrete causes damage to structures which are exposed to moving ice. Continuous 

exposure will weaken the structure and can cause collapse if no measurement is taken. Ice abrasion 

is mainly a problem in the arctic and sub-arctic areas.  In these areas harbors and offshore 

installations will be subjected to ice abrasion. As the need for fossil fuel goes up, more offshore 

installations must be built in the fossil fuel rich environment in the arctic/sub-arctic areas. In order to 

ensure that these structures can cope with the environment, ice abrasion data must be acquired.  

The abrasion has been studied in many different ways the last decades. For example, field 

investigations, computer simulations and laboratory tests. Many of these tests have not come to the 

same conclusions. The important factors of ice abrasion differ in different studies. These differences 

prove that further studying of ice abrasion is needed to fully understand the problem.  

3. Limitations 

In this master thesis I will limit my work to get to know the ice abrasion problem, describe the test 

apparatus and procedure, and do some basic abrasion experiments.  A theoretical introduction to ice 

and concrete and their properties which are important for ice abrasion is necessary, together with a 

study and discussion of earlier ice abrasion studies and testing. 
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2. Background  

 

1. What is ice abrasion? 

Abrasion is the process of wearing down or rubbing away by means of friction. Ice abrasion is 

abrasion caused by ice. Abrasion rely on difference in hardness of materials, generally the hardest 

material will abrade the weakest material. However any two materials rubbing against each other 

will tend to abrade. If the process is repeated significantly many times a softer material will also 

abrade on the harder one.  Ice abrasion typically will occur when drifting ice or an ice floe slides 

against a structure.  This movement will cause friction between the structure and the ice and both 

the ice and the structure will be abraded. The amount of drifting ice is so large compared to the 

structure that it will abrade the structure even though the structure materials are much harder than 

the ice. 

2. Ice 

Basically ice is water frozen into solid state. Usually ice is the phase known as ice lh, the hexagonal 

form of ordinary ice. Virtually all ice in the biosphere is ice lh. This face occurs when liquid water is 

cooled below 0 degrees centigrade at 100 kPa or 1 atmospheric pressure.  In nature ice appears in 

many forms, snowflakes, hail, icicles, glaciers, pack ice, floes, ridges and so on. 

Ice is considered a mineral due to its naturally occurring crystalline solid with an ordered structure. 

The density of ice is less than the density of water, this is an unusual property. This makes ice float on 

water which is an important factor in the ice water sphere. Without this reduced density lots of the 

water on earth could have been frozen from top to bottom [2]. Ice density is about 10 % less than 

that of water, resulting in 90 % of the ice floating in water is beneath the waterline. The reduced 

density is a result of the dominating hydrogen bonding packing the molecules less dense. Less dense 

packing also results in increased volume when frozen. Increased volume is the cause of freeze- thaw 

weathering. In engineering freeze-thaw effect and ice properties together with ice movement are 

important. 

i. Freeze-thaw weathering 

Freeze-thaw weathering is the process of water freezing and thawing. When water freezes it expands 

with approximately 10 %. If water is kept enclosed when it freezes it will expand and force enclosure 

to become bigger. This process is most frequently in moist areas with fluctuating temperatures above 

and below 0 degrees centigrade. Alpine areas are subject of freeze-thaw actions. On land the arctic 

areas is not especially subjected to freeze-thaw actions due to constant temperature below 0, but in 

marine environment where the tides moves up and down freeze-thaw action is expected. This is due 

to the tides going up and down, when the tide move up the water thaws the ice and refills it water. 

When the tide goes down again the structure is frozen down again in the cold climate.  
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ii. Ice mechanical and physical properties 

Ice properties are very useful when calculating ice actions on structures.  The mechanical properties 

of ice have been studied for many years. Reliable data about physical properties and strength 

parameters has been acquired. The physical and mechanical properties we need knowledge about to 

predict ice action is: 

- Compressive strength 

- Tensile/flexural strength 

- Elastic modules 

- Fracture toughness 

- Shear strength 

- Density 

- Salinity 

- Hardness 

The compressive and tensile strength of concrete varies with temperature and reaches for 5 -25 MPa 

compressive and 0.7 - 3.1 MPa tensile over the temperature range of -10 to – 20 degrees.  Generally 

the strength of ice increases with decreasing temperatures in both tension and compression.[3]

 

Figure 1 - Tensile and compressive strength of ice as a function of temperature[3] 

 

Ice elastic modulus at a temperature of – 10 degrees  ranges for 9.7 – 11.2 GPa Young’s modulus and 

0.29 – 0.32 Poisson’s ratio.[3] 
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Fracture toughness of ice is in the range of 50 – 150 kPa m
1/2

, this is roughly one-tenth of fracture 

toughness of glass.[3] 

 

Figure 2 - Fracture toughness of ice as a function of temperature[3] 

 

Salinity of the ice influences the strength of the ice.  Generally the higher salinity the lower the ice 

strength.[4] 

 

Figure 3 - The relation between tensile strength and salinity at various temperatures for elliptical splitting[4] 
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Hardness of the ice is also an important for the abrasion rate. Harder ice creates more abrasion. 

Hardness of ice varies as a factor of loading time and temperature. Longer loading times reduce 

hardness of the ice. Lower temperatures increase hardness of ice.[5] 

 

 

Figure 4 - Indentation hardness of polycrystalline ice as a function of absolute temperature for various loading times.[5] 

  

 

 

iii. Ice movement 

Moving ice is a big contributor to all the ice action on structures, except from freeze-thaw 

weathering. Ice movements differ hugely around the globe. The main forces behind ice movement at 

sea are sea currents and wind. To predict the ice movement in an area we need good data on wind 

and current.  The current and wind can differ a lot even within one sea[6]. Exact data from the 

planned construction site is necessary to understand the ice movement in the area. 
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3. Concrete 

Concrete is a composite material, composed of cement and other cementitious materials such as fly 

ash and slag cement, aggregates, water and chemical admixtures. The aggregate is generally made of 

gravel or crushed rock and finer particles such as sand. [7] 

Concrete hardens if mixed with water and is allowed to lay still. This hardening process is a chemical 

process called hydration. During the hydration water reacts with the cement and binds all the other 

concrete components together.  

Concrete is the most used man-made material in the world.[8] There are many types of concrete 

available, and if you are going to construct something special you could design your own concrete 

just for that purpose. By varying the proportions of the different concrete ingredients you vary the 

concrete properties.  

Concrete properties like strength, density, reaction speed, reaction heat development, frost 

resistance, coefficient of thermal expansion, permeability can all be adjusted to fit your construction 

requirements as best as possible. Two of the most important concrete properties which create 

resistance to ice abrasion are concrete strength and frost resistance. High concrete strength and 

good frost resistance together with good bonding between cement paste and aggregate gives good 

ice abrasive resistance. [9] 

Concrete strength is influenced by: 

Compaction, compaction is driving the air out of the concrete. Good compaction gives a denser 

concrete which is stronger. 

Curing, keeping the concrete under controlled temperature and in humid conditions will allow it to 

reach maximum strength. 

Type of cement, different types of cement gives different strengths.  

Water cement ratio, the less w/c the stronger the concrete, if other variables is kept the same.[10] 

To make high strength concrete producers select high quality portland cement, optimize aggregates 

and optimizes the combination of material proportions cement, water, aggregates and admixtures. 

Aggregates for high strength concrete is selected by strength, size, bond between cement paste and 

aggregate and the surface characteristics.[11] 

Frost resistance of concrete is mainly determined by the air content. Higher air content gives better 

frost resistance. With more pores the water in the concrete has more space to expand to before 

damage to the concrete is unavoidable. Proper use of micro silica will also increase frost resistance.  

Micro silica gives an improved pore stability which gives a more effective pore structure to reduce 

freeze-thaw damage.[12] 

Concrete changes strength and strain properties during freeze-thaw cycles. The fatigue strength of 

concrete is also reduced due to freeze-thaw cycles. In ordinary cement concretes bond strength at 

the concrete surface is reduced faster than compressive or tensile strength.  Concrete containing 
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silica and blast furnace slag withstand freeze-thaw cycles best. Concrete subjected to freeze-thaw 

cycles and ice abrasion at the same time may abrade more than with just ice abrasion. Below is a 

figure showing the strength loss due to freeze-thaw cycles. Values after 0, 25 and 50 cycles is given. 

[13] 

 

Figure 5 - Flexural tensile strength of concrete and the bond strength of aggregate stones as the function of w/c ration 

and number of freeze-thaw cycles.[13] 

 

 

Good bonding between cement and aggregates is generally obtained with higher strength of the 

concrete. Better bond between aggregate and cement  gives higher concrete strength.[11] 
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4. Ice abrasion on concrete, the mechanism 

 

The abrasion on concrete can be divided into three steps.[14]  

Step a:  abrasion of the cement paste.  

Step b: abrasion of the cement paste and the loosening of aggregates 

Step c:  abrasion of concrete paste and removal of aggregates which has become so loose that the 

bonding between the cement and the aggregate is weaker than the friction forces. 

 

Figure 6 - Ice abrading mechanism a - c[13] 

 

Ice pressure, sliding direction and friction between the concrete and the ice affects the rate of 

abrasion. Higher pressure gives more abrasion. Ice sliding parallel with the surface of the structure 

causes more abrasion than ice moving straight onto the structure. Higher friction gives more 

abrasion. Abrasion of the surface tends to give a higher friction coefficient against the ice. Abrasion 

may therefore go faster after the smoother outer layer has disappeared[14]. 

  



12 

 

3. Methods 

 

 

To predict the abrasion of concrete it has been done both laboratory- and field testing. These results 

have been used to create models for calculating ice abrasion.  

 

1. Laboratory testing 

 

Laboratory testing of ice abrasion main principle is to move concrete and against each other and 

create friction and also create pressure between the two materials.  In 1995 Hara made a suggestion 

to which conditions an ice abrasion apparatus should be able to simulate. They were the 

following[1]. 

- Different contact pressure, ice temperature and relative velocities 

- Both static and kinetic friction during the same test 

- Easy and accurate measurement of the abrasion amount 

- Prevent melting of ice due to frictional heat 

- Allow for easy removal of ice and concrete shavings on the specimen surface 

- The coefficient of friction between the ice and concrete must remain constant 

- The test results should be as realistic as possible so they can be used as basis for predicting 

the wear rate for real structures exposed to ice abrasion 

He also divided the different testing apparatuses into four different categories based on their test 

method basics. 

- Relative abrasion test 

- Revolving disc test 

- Tumbler abrasion test 

- Sliding contact abrasion test 
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i. Relative abrasion test 

The relative abrasion test was developed by ABAM Inc. in 

cooperation with other companies in the same 

development program. The principle design of this 

abrasion test is a round concrete specimen rotating 

between two blocks of ice. The concrete rotated at 100 – 

500 rpm and the pressure between the ice and the 

concrete is 0.21 – 0.34 MPa. Mentioned weaknesses with 

this test where, only kinetic friction, too high rotating 

speed, friction heat may create an ice film on the concrete 

specimen and the ice contact area increases over time 

reducing the effective pressure. 

.  

 

 

ii. Revolving disc test 

This test was also developed by ABAM joint industry project. The principle of design in this test is a 

hollow concrete cylinder mounted on a rotating disc. The rotating concrete is forced against a 

circular ice sheet. Contact pressure in this test is 0.45 – 0.98 MPa and the rotation speed resulted in 

an ice concrete velocity of 77 cm/s. Others has also developed test apparatus using the revolving disc 

system, but none of them where used directly for ice abrasion testing. 

Mentioned weaknesses with this test where, only kinetic friction, variable relative velocity due to 

circular concrete specimen and a possibility for ice growth on the concrete surface. 

 

Figure 8 - Principle sketch of the revolving disc abrasion test[1] 

 

Figure 7 - Principle sketch of the relative 

abrasion testing[1] 
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iii. Tumbler abrasion test 

Tumbler abrasion test is another ABAM test. The principle of design in this test is a cylindrical 

concrete container which rotates. To test abrasion the container is filled with ice, coarse aggregates 

and aluminum oxide grit. This test does not produce data relevant for the ice abrasion made by 

moving ice sheets. 

 

iv. Sliding contact abrasion test 

The sliding contact abrasion test has been developed at used by different people and firms. All based 

on the same basic design, sliding concrete against ice. The ABAM sliding abrasion test project uses a 

cylindrical concrete specimen sliding with a 20 degree arc over the ice block. The sliding speed and 

vertical force spanned between 10.1 – 20.2 cm/sec at 1.72 MPa. Another test apparatus developed 

by Saeki uses a trapezoidal concrete specimen which slides back and forth over a stationary ice block. 

Possible sliding speeds is 2, 5 and 20 cm/sec and contact pressure could be varied from 0 – 70 MPa. 

The ice abrasion apparatus at NTNU is also a sliding contact abrasion test. The basic concept is the 

same but at the NTNU laboratory the ice is slid against a stationary concrete specimen. This abrasion 

test will be described thoroughly in chapter 2 Ice abrasion testing at NTNU.

 

Figure 9 - Principle sketch of the sliding abrasion test 

 

  



15 

 

2. Field testing 

The abrasion on concrete has also been tested out in the field. These studies were done at sea with 

an icebreaker. A concrete specimen was mounted onto the bow of the icebreaker and abrasion was 

measured after a given distance.  Maximum abrasion was found at the lower part of the specimen. 

The result after 40 km with concrete strength between fc = 30 - 60 MPa varied between 2 - 15 

mm.[15]  

 

 

3. Field studies 

Field studies of ice abrasion are the most reliable data you could obtain about ice abrasion. Accurate 

data on the ice abrasion from that exact location can easily be found. To use these data to calculate 

the probable abrasion on another structure another place you need good data on the ice conditions.  

Without ice condition data from both study location and planned structure location experience from 

the study cannot be used in a proper manner. 

Different studies have been done in Canada, Japan and the Gulf of Bothanica. In Canada studies have 

been done both on bridge pier and in docks. The Japanese studies contains of bridge piers. In the 

Gulf of Bothanica there have been several studies of lighthouses. The abrasion differs a lot from 

place to place and year to year.  Different ice conditions each year contributes heavily to these 

differences.   

The field study of lighthouses gave some knowledge about ice abrasion. Ice conditions means more 

to abrasion than the concrete properties.  Increased abrasion depth further north due to more 

severe ice conditions. No abrasion occurred where the level ice never exceeded 0.3 meter.  

The studies in Japan confirmed that abrasion increases with more severe ice conditions, increased ice 

velocity and pressure.  The abrasion was largest at the waterline which is in good correlation with the 

icebreaker tests done. 
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4. Results from previous studies, discussions  

 

i. Abrasion test with cylindrical ice at NTNU laboratory, effects of 

difference in ice sliding distance. 

 

At NTNUs test laboratory an ice cylinder is used during the tests. This will cause the effective sliding 

distance to differ over the specimen. The cylinder has a diameter of 74mm. In the center the 

effective distance will then be 74mm divided by length of travel. At NTNUs test laboratory this is 200 

mm. So the effective sliding distance in the center of the concrete is 74/200 = 0.37. This means that 

for every meter the test machine runs the concrete is only “feeling “ 0.37*1 meter wear which is  

0.37 meter. To run 1 km effective sliding the machine has to run 1000/0.37 = 2702 meters. This only 

applies in the center of the cylinder. The further away from the center we go the effective abrasion 

distance is smaller. When measuring abrasion mechanically with a digital indicator the concrete 

specimen is given a coordinate system as shown in figure 10. X = 0, 5mm into the concrete sample. Y 

= 0 in the center of the concrete. During the test the ice cylinder is forced back and forth in the y 

direction. The center of the cylinder moves from y=-100mm to y=100mm. 

  

 

 

Figure 10 - Principle sketch showing abrasion measurment coordinate system. Grey concrete specimen with blue ice 

cylinder in the center. 
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Measurements in x-directions begins in x=0 and then stepwise with 10 mm steps until x=90 

Measurements in y-directions begins in y=-100 and then stepwise with 20 mm steps until y=100 

Following table shows an example on how a measurement grid looks like. 

  x=                   

y= 0 10 20 30 40 50 60 70 80 90 

100 

  

        

80 

  

        

60 

  

        

40 

 

         

20 

 

         

0 

 

         

-20 

 

         

-40 

 

         

-60 

 

         

-80 

 

         

-100 

 

         

Table 1 - Measurment grid example 

The effective sliding distance is 1 in the center. Table 2 shows how the effective sliding distance 

becomes smaller away from the center.   

x- 

 coordinate 

Distance 

 From 

 center 

Circle 

Radius 

Distance  

from center 

 to circle 

Effective 

 distance 

Chord length 

Effective  

Distance 

 factor 

0 45 37 0 0 - 

10 35 37 12,0 24,0 0,3 

20 25 37 27,3 54,6 0,7 

30 15 37 33,8 67,6 0,9 

40 5 37 36,7 73,3 1,0 

50 5 37 36,7 73,3 1,0 

60 15 37 33,8 67,6 0,9 

70 25 37 27,3 54,6 0,7 

80 35 37 12,0 24,0 0,3 

90 45 37 0 0 - 
Table 2 - Calculations of effective distance/chord length 

 

Formula for calculation, example at 15mm from center:  

 

 

Figure 11 - Principle sketch chord 
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With this in our minds we now look at the abrasion profiles from previous results from testing at the 

NTNU ice abrasion laboratory. The following abrasion data is found by Egil Møen. Concrete type and 

properties is irrelevant in this discussion. Abrasions are measured after 5 km effective sliding. From 

previous pages we know that that only is true for the center, x=40 and x=50. 

 

Figure 12 - Abrasion profile y = 20 

 

If the results further away from the center is multiplied so the effective distance is the same for 

points. Theoretically if the abrasion is linear in terms of sliding distance and all other factors such as 

pressure and temperature is constant over the circle cross-section, we should get a straight line. 

 

Figure 13 - Abrasion profile y = 20 corrected for difference in effective distance 
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Figure 14 shows both the corrected abrasion depth and the measured abrasion depth. As we can see 

the corrected red line is not straight, but profile is not as V-shaped as the original curve. If we remove 

the points x=0 and x=90 which is outside the abraded area, the results looks better even though it is 

the same data. 

  

 

Figure 14 - Abrasion profile y = 20 corrected for difference in effective distance (without the datum points a x= 0 and x = 

90) 
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Figure 15 - Five different abrasion profiles corrected for difference in effective distance (without the datum points a x= 0 

and x = 90) 

 

In figure 14 and 15 we saw 6 different abrasion profiles with corrections showed. All with x=0 and 

x=90 removed. The results differ from profile to profile, some of them show a pretty straight 

corrected line. Others do not. Hence no obvious conclusion can be made from these data. By 

correcting for effective distance the abrasion becomes more linear, but not at all perfect. This leads 

to believe that other factors also differ when we move away from the center of the sample. Unevenly 

distributed pressure may be one reason that we see that abrasion tends to be highest in the middle 

even when difference in sliding distance is corrected for. Taking this into consideration abrading with 

a quadratic ice specimen could be beneficial.  
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ii. Differences in previous test results  

 

Abrasion testing has been done different places in the world, mostly in areas where ice actions is 

present. Studies have primarily been made in Finland, Russia, Japan, Canada and Norway. When 

taking a closer look at some results from Russia and Japan, quite opposite conclusions has been 

made. 

Abrasion results from Russia originates from the test rig in figure 16.[16]

  

Figure 16- Principle sketch and picture of Russian ice abrasion test rig[16] 

 

This abrasion test setup slides a small concrete specimen on to a big chunk of ice. This chunk of ice is 

either gathered from the sea ice in the ocean or made at the laboratory. 

 

At the Hokkoaido University in Japan the test rig in figure 17 is used.  

 

Figure 17 - Princicple sketch of Japanese test rig[17] 
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Both rigs use sliding contact abrasion. Even though the principle of these two test rigs is very similar 

the results coming from the test seem to differ. 

 

 

Figure 18 - Variation of specific abrasion depth depending on temperature and contact pressure, results from Russian 

testing.[16] 

 

Figure 19 - Variation of specific abrasion depth depending on temperature and contact pressure, results from Japanese 

testing.[17] 

 

Both tests show that higher contact pressure gives higher abrasion rate. This is acknowledged and 

well known.  Looking at the abrasion rate on different temperatures the two tests concludes 

opposite. In the Russian test abrasion rate decreases with lower temperatures, reverse of what you 



23 

 

would expect due to ice strength increasing at lower temperatures. In the Japanese test abrasion 

rate increases significantly when temperatures drop below -10 °C. The two tests finds opposite 

results, with test equipment using the same principle of testing.  What is the reason of these 

opposite results?  

In the Japanese tests  an air blower is used to blow away abraded ice and concrete from the surface, 

this air blower is also used to cool down the ice.[17] Concrete temperature in this setup could be 

different from the ice temperature. In Russia temperature is fixed in the lab, making concrete and ice 

temperatures the same. Concrete surface temperatures below 0 °C can cause add-on freezing on the 

concrete. If ice melts due to pressure and friction heat it can refreeze on top of the concrete and 

create a thin ice layer. This thin ice layer will protect the concrete from abrasion. The friction 

between the concrete and the ice will be significantly reduced causing abrasion rate to decrease. In 

the Japanese test where concrete and ice could have different temperatures there will be no add-on 

freezing if the concrete temperature is kept above 0 °C. This will cause colder stronger ice to abrade 

more than warmer weaker ice.  

In a real world situation most ice abrasion happens in a water environment. It is reason to believe 

that in the contact zone between ice and concrete water will appear, reducing the chance for add-on 

freezing on the concrete structure. Based upon this assumption the Japanese test results will be 

more real world comparable. 
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5. Calculation models for ice abrasion on concrete 

By combining testing and field studies models for determination of abrasion on concrete has been 

made.  An overview of the different models is given in table 3. 

Developed by Formula Parameters Comments 

Itoh, Y.[18, 19] 2 6(9.708 1295.7)*10rS p T −= +
 

Sr = rate of abrasion [mm/km] 

P = ice contact pressure [kgf/cm
2
] 

T = ice temperature 

 

Only considering 

ice temperature 

and contact 

pressure 

Hanada, M[20] * *r vS S Lσ=  

S = Total average abrasion depth [mm] 

Sr = Abrasion rate of the exposed 

material [mm/km/MPa] 

vσ = Contact pressure between ice and 

structure [MPa] 

L = Total sliding distance of the ice [km] 

 

Much alike Itoh’s 

formula pluss 

taking account 

for abrasion rate 

for exposed 

material 

Hara, F. [21] 0.0012* vS σ=  
S = rate of abrasion [mm/km] 

vσ = ice contact pressure 

 

General based on 

one concrete and 

one ice condition 

Janson, J. E.[22] 0.0015Abrasionrate vsdt= ∫  v = ice drift velocity  [knots] 

s = ice thickness [mm] 

t = time [days] 

Ice thickness and 

ice velocity the 

two governing 

parameters 

Huovinen, S. 

[15] 

1 1

lg

lg

(1 )

n
s

i i
i

i

n
ABR a R

n

a b

=

=

+ −

∑

∑
 

ABR = Abrasion depth [mm] 

ai = proportional volume of aggregate 

stones with radius Ri   

ia∑ = total proportional volume of 

aggregate stones in concrete 

ns = number of ice impacts during ice 

sheet movement 

n1 = number of ice impacts when Lcr/R 

= 1 

b = abrasion rate of cement paste 

[mm] 

Lcr = crack length [mm] 

Ri = radius of aggregate stone [mm] 

Abrasion with 

loosening of 

aggregate stones 

and cement 

paste abrasion.  

Figure 8 gives 

results with this 

formula. 

Huovinen, S.[15] 1 3

(1 )i c

ABR s
a f

=
−∑

 
ABR = Abrasion depth [mm] 

ia∑ = total proportional volume of  

aggregate stones in concrete 

fc = compressive strength of the 

concrete[MPa] 

 

Abrasion depth 

when the bond 

strength 

between 

aggregate stones 

and the cement 

paste is so weak 

that the stones 

loosen during the 

first ice impact.  
Table 3 - Models for calculations of ice abrasion 
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In figure 20 we can see the results from calculations of abrasion depth as function of ice movement 

for different concrete strengths using the last model in table 3. 

 

Figure 20 – Example of abrasion calculations  for concrete strengths fc= 40, 60, 80 and 1000 MPa as the function of ice 

movement[15] 
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2. Ice abrasion testing at NTNU 

 

1. The laboratory  

 

i. Room 

The ice abrasion lab at the department of structural engineering is a small insulated room specially 

made for ice abrasion testing. The room is equipped with an industrial cooler which can maintain 

room temperature of -20 degrees centigrade. Low temperature is essential for ice testing or else ice 

will melt instead of keeping its intended form. It would be possible to just cool the ice and the 

concrete specimen to the wanted temperature, but this will give an unwanted effect melting the ice 

causing water flowing around in the lab. Cooling of the entire room has the positive effect of keeping 

the ice cold and dry even after being abraded on the concrete. Therefore the room is kept at 

temperatures below freezing during test periods. 

ii. The ice abrasion rig 

The ice abrasion rig contains of 3 major components; (1) the machine creating the horizontal 

movement, (2) an insulated cylinder for the ice specimen connected to an engine which creates the 

vertical pressure and (3) bedding for the concrete specimen. A refrigerated/heating circulator, a 

julabo, is also connected to the test rig. Detailed description and figures follows. 

 1: An old metal plane machine creating the horizontal movement of the ice over the concrete. This 

machine has been modified to its purpose and is computer controlled through an especially made 

program in LabView. The machine is connected to a draw wire distance recorder which reports to the 

same program in LabView.  In the computer program you can adjust the engines revolutions per 

minute. The higher the rpm the higher the horizontal sliding speed becomes. The in the moment 

speed and the average speed of the machine reads out and gets recorded in the program thanks to 

the draw wire distance recorder. Total distance is also recorded.

  

Figure 21 - NTNU Ice abrasion apparatus, the grey metal plane machine 
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2: The part in figure 22 (not the grey part on the left) is an 

insulated cylinder with a piston in the top. The insulated 

cylinder’s inside is made of cobber; this cobber cylinder has 

flow circuit connected to the Julabo. When removing the 

ice, heating is applied to get rid of all the ice rests. The 

piston pushes down through the cylinder creating vertical 

pressure down on the concrete specimen. The vertical 

pressure engine is computer controlled via LabView. The 

engine speed is also controlled to keep assured that the 

pressure is as constant as possible. This whole part is 

mounted on the plane machine and moves horizontally 

over the concrete specimen. 

 

 

 

3: The bedding is mounted to ground and keeps the concrete specimen at a fixed position. Six bolts 

hold the concrete specimen in position perpendicular to the ice movement. In the ice movement 

direction a pretension system is used to hold the specimen in place. This pretension system includes 

a pressure sensor which reports to LabView. With this pressure sensor it is possible to read out the 

friction between the ice and the concrete. The concrete lies on a copper plate which has flow circuit 

connected to the Julabo, this is used for controlling the concrete temperature. Copper has a very 

high thermal conductivity, about 400 W/mK. High thermal conductivity results in fast heat transfer to 

the concrete specimen. The concrete temperature at the surface is important to control, if it is too 

cold the ice will freeze on top of the concrete and create a layer that protects against abrasion. Too 

warm concrete will melt the ice fast. A concrete specimen with 3 temperature sensors casted inside 

is used to find the right temperature in the copper bedding.  Underneath the cobber plate lies two 

pressure sensors together these two reports the vertical pressure from the ice.  

 

Figure 23 - NTNU Ice abrasion apparatus, concrete bedding 

Figure 22 - NTNU Ice abrasion apparatus, insulated 

cylinder and vertical pressure engine 



28 

 

iii. Computer software, LabView 

National Instruments LabView is used for controlling and logging data in the NTNU abrasion 

laboratory.  

What is labview: 

“LabVIEW is a graphical programming environment used by millions of engineers and scientists to 

develop sophisticated measurement, test, and control systems using intuitive graphical icons and 

wires that resemble a flowchart. It offers unrivaled integration with thousands of hardware devices 

and provides hundreds of built-in libraries for advanced analysis and data visualization – all for 

creating virtual instrumentation. The LabVIEW platform is scalable across multiple targets and OSs, 

and, since its introduction in 1986, it has become an industry leader.”[23] 

The LabView program at NTNU abrasion laboratory is programmed to control all parts of the ice 

abrasion machine except from the Julabo and the room cooler.  

Function Controllable by  LabView Logged by LabView 

Horizontal speed Yes Yes 

Auto stop after given ice sliding 

distance  

Yes Yes 

Vertical pressure  ice/concrete 

contact pressuere 

Yes Yes 

Speed of vertical pressure 

adjustment 

Yes Yes 

Auto adjust to keep constant 

vertical pressure, to high and to 

low 

Yes Yes 

Auto stop when in need of ice 

exchange 

Yes Yes 

Room temperature No Yes 

Concrete temperature, with 

temperature sensor specimen 

 

No Yes 

Temperature in insulated 

cylinder 

No Yes 

Horizontal pretension of the 

concrete specimen 

No Yes 

Horizontal force, friction 

between concrete and ice 

No Yes 

Table 4 - Labview control and logging capabilities  

 

See appendix A for screenshots of NTNU Ice abrasion laboratory LabView program. 
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iv. Measuring of abrasion 

 

Measuring of the abrasion can either be done mechanical or digitally with an advanced camera/laser 

scanner. Mechanical measuring is faster and requires less equipment and computer power. 

Mechanical measuring is done with a digital indicator. 

ATOS 3 by GOM Optical Measuring Techniques is the name of the digital scanner. This advanced 

camera photographs the concrete specimen and gives you a digital picture with very accurate 

measurement of the abrasion. It is build up by 2 cameras and a projector in the middle. Space in 

between the two cameras is needed for taking pictures scans in three dimensions.  In order to 

measure objects of different sizes the camera and projector lens can be switched out.   

 

 

Figure 24 - ATOS Scanner standard setup with identification of components 

In figure 24 you can see the standard setup of the ATOS 3 scanner. In order to get a correct scan of 

your object it needs to have sufficient contrast on the surface. For best results a light and dull surface 

with dark background is wanted. On the surface of your object it is also needed to put on reference 

points. The reference points are small self-adhesive or magnetic marks with a defined geometry and 

high contrast. Circular or square marks which are black with a white circle in the middle are used. The 
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easiest objects to 3D digitize is objects that fits into the measuring volume. This makes the need of 

individual measurements smaller [24]. Even though the concrete sample fits into the ATOS 

measuring volume the amount of data created by the ATOS scanner is big and requires significant 

computing power. 

 

Figure 25 - Concrete sample with self-adhesive circular marks 

  

 

 

Figure 26 - Contour plot by Laser scan of concrete surface wear (Møen 2009/NTNU Ice abrasion lab) 

Figure 25 shows an example scan made by Egil Møen. Standard concrete w/c = 0.60, 1 km sliding 

distance 1 MPa contact pressure, ice temperature -10°C.  Darker color means deeper abrasion.  
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Mechanical abrasion measuring with a digital indicator is a fast and easy 

method of measuring abrasion. The concrete specimen is mounted in rig 

and measurements are made with a digital indicator at a predefined 

coordinate system, mentioned in 3.4.i. To ensure that the right points are 

measured the concrete specimen lies on a coordinate table. A coordinate 

table is a table where you can precisely move the tabletop in the plane.  

The digital indicator used at NTNU now the Mitutoyo Corp. 543-270B ID-

C1012B. The Mitutoyo has an accuracy of 0.02 mm.  

 

 

 

 

 

 

Figure 28- Mechanical measuring test setup 

  

Figure 27 - Mitutoyo Corp. 

543-270B Digital indicator 
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2. Test procedure 

 

 

i. Preparation:  

In order to start a test you have to choose type of concrete you want to test. Concrete may be casted 

after the right specifications or drilled out of the wanted concrete structure. The concrete needs to 

be in the size defined by the test rig. Length 310 mm, width 100 mm and thickness 50 mm. When 

casting, casting the concrete in twice the thickness then cutting the concrete specimens in half is a 

good alternative. Initial treatment of the concrete may be applied, such as freeze-thaw cycles or 

saturation and drying. After initial treatment is done pretest surface measurement has to made, 

either with ATOS scanner or mechanical measuring with a digital indicator. This is done to have a 

zero abrasion reference. The concrete specimen is now ready for testing. 

The test laboratory at NTNU uses standard bore size cylindrical ice with a diameter of 74mm. This ice 

cylinders could be drilled out in sea ice or casted at the laboratory. To avoid massive corrosion of the 

lab equipment the ice used for testing is ice made from tap 

water at location. Mean abrasion amount on total sliding 

distance has been found to be almost the same as sea 

ice.[17] Plastic cylinders with inner diameter of 74 mm is 

filled up with water and put in the freezer or just in the 

laboratory if it is kept cool testing. As we can see from the 

picture, air is trapped inside the ice cylinder due to freezing 

from all directions at the same time. This may cause a 

weaker ice. Ice without this weakness could be made at an 

ice grow laboratory where a basin of water is frozen from 

top to bottom and ice samples could be drilled out of the 

ice sheet without this defect.  

Calibration of the sensors should be completed before 

testing. In the calibration tab in labview, calibration of both horizontal and vertical pressure sensors 

can be made. This is done by calibrating with zero load and a known load. 

To make sure your test will give meaningful test data you have to decide the test settings. The 

different settings which is adjustable is contact pressure between ice and concrete, sliding speed, ice 

and lab temperature and temperature in the concrete bedding.  

Contact pressure between ice and concrete is set in the main tab of labview. The value input is 

newton, in order to get pressure in MPa the number is divided by the area in mm
2
. Ice area is 4300 

mm
2
. So a load of 4300 newton will give 1 MPa contact pressure. To other variables is needed to 

ensure correct contact pressure. Vertical engine speed determines application speed of the vertical 

ice load. 1350 revolutions per minute (rpm) are found to keep the vertical load stable. The down 

drift, the distance the vertical engines pushes the ice when pressure is below wanted, has to be 

determined as well. Setting this distance to high may cause a too high pressure right after being too 

low. A low down drift distance may cause the engine to run very often. 0.005 mm has proven to give 

a fairly constant pressure. Both of these variables are set in the main window of labview. 

Figure 29 - Ice cylinders with and without formwork 
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Sliding speed is set by the rpm on the horizontal engine. Labview gives you the average speed over 

the cycle so by testing some different speeds the right rpm can found. 565 rpm is found to give an 

average speed of 0.1 m/s.[25] 

The concrete bedding optimal temperature should be found with a concrete specimen with 

temperature sensors casted inside. By testing with this concrete you can find the temperature which 

gives about 0 degrees at the concrete surface. If no concrete specimen with temperature sensors is 

availabe it is also possible to make a test run and inspect the surface of the concrete while the test is 

running. Start with a low temperature in the concrete bedding then increase temperature stepwise, 

when there is no longer an ice surface on the concrete the bedding temperature is ok. 

Lab temperature is set on the cooler control panel located just outside the refrigerated room. 

Wanted total sliding distance is put in “Stopp at horisontal distanse” input field in the LabView main 

windows.  

The last step in the preparation face is to make sure logging is activated. Logging is either done cycle 

wise or by number of reports per second. This is adjusted in the logging tab in labview.  

 

ii. Running the machine: 

Before starting the machine the test the concrete has to be mounted on the concrete bedding and 

fixed with the appropriate pretension. Make sure the Julabo heater is turned on to prevent freezing 

of the concrete specimen. Bringing the concrete into the lab and mounting it directly on the heated 

copper plate prevents it from ever freezing, minimizing danger of internal frost damage .Then an ice 

cylinder needs to be placed in the ice compartment. When the ice is in place the bedding is placed 

moved under the ice compartment. This is done manually, a wheel on the side of the machine moves 

the bedding horizontally.  

 

Figure 30  - Concrete bedding in both positions, manually moved by wheel with handle in bottom right corner 

 

Now testing is ready to start. It is important to start the horizontal movement before applying 

vertical pressure. If vertical pressure is applied first the ice may fasten to the concrete and this may 

cause unwanted damage to the concrete. When the horizontal engine is started by pushing the 

Run/Stop button, the vertical pressure may be applied. This is done by pushing the v. last automatikk 
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ned på (in English: vertical load automatic down on) button. Immediately as this button is turned the 

logging begins. This means the test has started.  

The machine will run by itself and logging in wanted pace until either the ice runs out, or wanted 

horizontal distance is acquired. When ice runs out or wanted distance is acquired an alarm starts in 

labview. Labview will make continuous beeping for about 5 seconds and set the machine in 

inspection needed mode. This inspection needed mode raises the vertical engine to top position 

turning of ice pressure. The horizontal engine is set to 400 rpm, this is done in order to ensure that 

the remaining ice not will fasten to the concrete.   

When the machine runs out of ice a new ice cylinder 

will need to be installed to continue testing. To 

change ice, stop the horizontal engine by pushing 

Run/Stop button. Then move the concrete bedding to 

the side with the wheel. Moving the concrete bedding 

to side should be done within minutes after stopping 

the horizontal engine, preferably as soon as possible.  

To remove remaining ice in the ice compartment the 

heat flow to the ice compartment needs to be 

switched on. This is done by opening the valves 

behind the Julabo. When remaining ice is removed, 

turn off the heating of the ice compartment. If this is 

not done the ice will melt extremely fast during 

testing. Then insert new ice cylinder and move concrete bedding back underneath ice compartment. 

The test can now continue. Remember to adjust horizontal rpm back to wanted speed, as the 

inspection needed mode has set the speed to 400 rpm.  Push the Run/Stop button then push the v. 

last automatikk ned på (in English: vertical load automatic down on). The test is now running and 

logging again. 

Repeated changes of ice will be necessary. Ice wear will vary. Pressure, temperature, speed and 

surface may affect wear.  Several ice changes per effective kilometer have to be expected. 

iii. After testing: 

 

When wanted sliding distance is acquired the alarm will go off. Then it is time to remove the 

concrete from the machine. Stop the horizontal engine by pushing the Run/Stop button. Then move 

the concrete bedding to the side release the pretension and lift the concrete out.  When the concrete 

specimen is removed from the bedding it is ready for a new surface measurement. By comparing the 

pretest measurement with the new measurement we can obtain abrasion data.  

Log files from labview should be obtained and stored in wanted archive. They are located at D:\!!! on 

lab computer. These log files contains all test data recorded by labview. 

  

Figure 31 - Valves behind Julabo heater 
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iv. Test procedure quick guide step by step: 

Preparation 

1. Choosing type of concrete to test. 

2. Casting the concrete. 

3. Initial treatment of the concrete, for example  freeze/thaw , saturation and drying 

4. Pretest surface measurement 

5. Make ice 

6. Decide test settings, ice/concrete pressure, sliding speed and distance, temperature in 

bedding to ensure ice free surface and pretension of concrete 

7. Make sure calibration of machine is ok (calibration windows in LabView) 

8. Make sure logging is activated (log windows  in LabView) 

Running the machine 

1. Mount the concrete specimen in the bedding with correct pretension. 

2. Insert ice. 

3. Make sure bedding is located in start position, directly underneath ice cylinder. 

4. Hit Run/Stop button (main window LabView) 

5. Apply vertical loading (main window LabView) 

The machine will stop when ice is abraded away or wanted sliding distance is obtained. If wanted 

distance is not obtained change the ice and restart the machine. 

Post testing 

1. Remove concrete specimen from the bedding. 

2. Measure abrasion with desired method. 

3. Obtain log file from LabView and store in archive. 
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5. Testing 

 

 

In this test 4 concrete samples has been tested for ice abrasion. Two double sized concrete samples 

with size 31x10x10 cm were cut in half to create 2 + 2 equal samples. From the first concrete 

specimen we have sample A1 and A2 from the second B1 and B2. Both samples were standard 

w/c=0.6 concrete with air, made at the NTNU concrete laboratory in 2008.  Storage has differed 

through the years. The last years they have stored partly covered in plastic in room temperature at 

the laboratory.  

The goal for this test was to find out if drying and resaturation of concrete would increase the 

abrasion rate of the concrete. All four samples were saturated. Sample A2 and B2 was then dried for 

1 week at 50 degrees and then resaturated. Table below shows weight development throughout 

saturation, drying and resaturation. 

Weight development concrete specimens [g] A1 A2 B1 B2 

13.04.2012 3480 3595,7 3648,2 3461,2 

17.04.2012 3511,9 3614,9 3692,5 3489,4 

21.04.2012 3516,2 3616,2 3695,6 3491,2 

25.04.2012 3524 3619,4 3703,6 3498 

23.05.2012 3524 3619 3703 3498 

    Drying   Drying 

01.06.2012   3539,6   3411 

04.06.2012   3615,9   3491,7 

08.06.2012   3618,8   3497,6 
Table 5 - Weight development during saturation of concrete samples 

All test where performed according to chapter 4.2 test procedure.  
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1. Abrasion results 

i. Concrete sample A1 

 

Test parameters   

Concrete type w/c = 0,6 std. Concrete with air 

Initial concrete treatment Saturated 

Contact pressure ice/concrete 1 Mpa 

Ice temperature/Ambient temperature Tice -10 °C 

Velocity range over one cycle  0 – 0,2 m/s 

Average ice sliding velocity 0,1 m/s 

Total ice sliding distance  1350m 

Total, effective ice exposure at a point on the concrete surface 500 m 

Total test duration each specimen about 4 hours 

Table 6 - Test parameters concrete sample A1 

Comments: 

Originally 1000 m effective sliding distance was wanted, and a mid-test measure of the abrasion after 

500m. Unfortunately the concrete specimen could not handle the forces applied by the ice abrasion 

machine and cracked into 3 pieces during the test. The cracking of the concrete happened after the 

first ice change, which in meters will be around 500 meters of sliding.  After abrasion measurement 

at 500 effective meters, the condition of the concrete specimen was not good enough to continue 

testing. Results after 500 effective meters are given below. 

 

Figure 32 - Picture of concrete sample A1 after abrasion testing 
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Results summary   Average Average 

Specimen A1 Abrasion Abrasion 

Pressure 1,0 Mpa 0 - 500 m 0 - 500 m 

Temperature -10 °C Total [mm]  [mm/km] 

Section y = 0 -0,195 -0,390 

Section y = 20 - - 

Section y = 40 -0,004 -0,008 

Section y = 60 0,006 0,012 

Section y = 80 0,017 0,034 

Section y = 100 -0,001 -0,002 

Section y = -20 -0,080 -0,160 

Section y = -40 -0,064 -0,128 

Section y = -60 -0,028 -0,057 

Section y = -80 -0,206 -0,412 

Section y = -100 -0,148 -0,296 
Table 7 - Results summary A1 

 

Ice abrasion depth all points                   

Specimen A1 

         

  

Total distance 500 meter   

       

  

  x Avarage 

y 0 10 20 30 40 50 60 70 80 90 

each 

section 

[mm] 

100 0 -0,01 -0,01 -0,01 -0,05 -0,05 0 0,02 0,07 0,03 -0,001 

80 0 -0,01 0 -0,01 -0,03 0 0 0,03 0,11 0,08 0,017 

60 0 -0,01 -0,02 0 -0,01 -0,02 0 0,03 0,05 0,04 0,006 

40 0 -0,03 -0,03 -0,04 -0,02 -0,02 -0,01 -0,02 0,03 0,1 -0,004 

20 - - - - - - - - - - - 

0 0 -0,12 -0,19 -0,17 -0,2 -0,26 -0,24 -0,24 -0,28 -0,25 -0,195 

-20 0 -0,02 -0,05 -0,08 -0,08 -0,09 -0,13 -0,12 -0,12 -0,11 -0,080 

-40 0 -0,02 -0,04 -0,07 -0,06 -0,09 -0,09 -0,08 -0,09 -0,1 -0,064 

-60 0 0 -0,06 -0,03 -0,13 0,05 0,15 - - - -0,003 

-80 0 -0,05 -0,12 -0,17 -0,21 -0,25 -0,28 -0,34 -0,29 -0,35 -0,206 

-100 0 -0,03 -0,07 -0,09 -0,17 -0,21 -0,21 -0,22 -0,24 -0,24 -0,148 

Avarage all 

sections                   -0,062 

Table 8 - Abrasion results all measured points A1 

Section y=20 and last 3 points at y=-60 has no measurement due to cracking in concrete specimen. 
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Figure 33 - Surface topography of all sections A1 

  

Figure 33 shows surface topography of all sections before and after 500 testing. Distance between 

the blue and red line indicates the abrasion. 
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ii. Concrete sample B1 

 

 

Comments: 

Originally 1000 m effective sliding distance was wanted, and a mid-test measure of the abrasion after 

500m. Unfortunately the concrete specimen could not handle the forces applied by the ice abrasion 

machine and cracked into 2 pieces during the test. The cracking of the concrete happened after the 

second ice change, which in meters will be around 800 meters of sliding.  After abrasion 

measurement at 500 effective meters, the condition of the concrete specimen was not good enough 

to continue testing. Results after 500 effective meters are given below. 

 

Figure 34 - Picture of concrete sample B1 after abrasion testing 

 

 

 

 

Test parameters   

Concrete type w/c = 0,6 std. Concrete with air 

Initial concrete treatment Saturated 

Contact pressure ice/concrete 1 Mpa 

Ice temperature/Ambient temperature Tice -10 °C 

Velocity range over one cycle   

Average ice sliding velocity 0,1 m/s 

Total ice sliding distance  1350m 

Total, effective ice exposure at a point on the concrete surface 500 m 

Total test duration each specimen about 4 hours 

Table 9 - Test parameters concrete sample B1 
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Results summary   Average Average 

Specimen B1 Abrasion Abrasion 

Pressure 1,0 Mpa 0 - 500 m 0 - 500 m 

Temperature -10 °C Total [mm]  [mm/km] 

Section y = 0 -0,538 -1,076 

Section y = 20 -0,544 -1,088 

Section y = 40 -0,515 -1,030 

Section y = 60 -0,519 -1,038 

Section y = 80 -0,474 -0,948 

Section y = 100 -0,528 -1,056 

Section y = -20 -0,730 -1,460 

Section y = -40 -0,655 -1,310 

Section y = -60 -0,382 -0,764 

Section y = -80 -0,605 -1,210 

Section y = -100 -0,575 -1,150 
Table 10 - Results summary B1 

 

Ice abrasion depth all points                   

Specimen B1 

         

  

Total distance 500 meter   

       

  

  x Avarage 

y 0 10 20 30 40 50 60 70 80 90 

each section 

[mm] 

100 0 -0,11 -0,22 -0,35 -0,49 -0,61 -0,71 -0,82 -0,93 -1,04 -0,528 

80 0 -0,14 -0,25 -0,4 -0,51 0,208 -0,73 -0,9 -0,95 -1,07 -0,474 

60 0 -0,1 -0,24 -0,33 -0,46 -0,57 -0,71 -0,79 -0,95 -1,04 -0,519 

40 0 0,03 -0,23 -0,36 -0,49 -0,57 -0,71 -0,86 -0,92 -1,04 -0,515 

20 0 -0,14 -0,25 -0,38 -0,5 -0,61 -0,71 -0,84 -0,95 -1,06 -0,544 

0 0 -0,16 -0,23 -0,36 -0,48 -0,6 -0,71 -0,84 -0,95 -1,05 -0,538 

-20 0 -0,35 -0,31 -0,46 -0,64 -0,8 -0,95 -1,11 -1,3 -1,38 -0,730 

-40 0 -0,12 -0,28 -0,45 -0,61 -0,76 -0,92 -1,03 -1,15 -1,23 -0,655 

-60 0 0,07 0,06 -0,11 -0,28 -0,45 -0,58 -0,74 -0,84 -0,95 -0,382 

-80 0 -0,15 -0,29 -0,42 -0,53 -0,69 -0,8 -0,94 -1,06 -1,17 -0,605 

-100 0 -0,16 -0,29 -0,46 -0,59 -0,71 -0,8 -0,98 -0,57 -1,19 -0,575 

Avarage all sections                   -0,551 

Table 11 - Abrasion results all measured points B1 
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Figure 35 - Surface topography of selected sections B1 

Figure 35 shows surface topology for the 3 most central sections, the other sections look about the 

same and are therefore not included. They are all available in measurement excel document. 

Distance between the blue and red line indicates the abrasion. 
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iii. Concrete sample A2 

 

 

Comments: 

Originally 1000 m effective sliding distance was wanted, and a mid-test measure of the abrasion after 

500m. Unfortunately the concrete specimen could not handle the forces applied by the ice abrasion 

machine and cracked into 2 pieces during the test. The cracking of the concrete happened fast during 

the first ice block, in meters around 100 meters of sliding.  After abrasion measurement at 500 

effective meters, the condition of the concrete specimen was not good enough to continue testing. 

Results after 500 effective meters are given below. 

 

Figure 36 - Picture of concrete sample A2 after abrasion testing 

  

Test parameters   

Concrete type w/c = 0,6 std. Concrete with air 

Initial concrete treatment Saturated, dried, resaturated 

Contact pressure ice/concrete 1 Mpa 

Ice temperature/Ambient temperature Tice -10 °C 

Velocity range over one cycle   

Average ice sliding velocity 0,1 m/s 

Total ice sliding distance  1350m 

Total, effective ice exposure at a point on the concrete surface 500 m 

Total test duration each specimen about 4 hours 

Table 12 - Test parameters concrete sample A2 
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Results summary   Average Average 

Specimen A2 Abrasion Abrasion 

Pressure 1,0 Mpa 0 - 500 m 0 - 500 m 

Temperature -10 °C Total [mm]  [mm/km] 

Section y = 0 -0,007 -0,014 

Section y = 20 -0,032 -0,064 

Section y = 40 -0,038 -0,076 

Section y = 60 0,000 0,000 

Section y = 80 -0,045 -0,090 

Section y = 100 -0,150 -0,300 

Section y = -20 -0,006 -0,012 

Section y = -40 0,008 0,016 

Section y = -60 0,023 0,046 

Section y = -80 -0,004 -0,008 

Section y = -100 0,000 0,000 
Table 13 - Results summary A2 

Ice abrasion depth all points                   

Specimen A2 

         

  

Total distance 500 meter   

       

  

  x Avarage 

y 0 10 20 30 40 50 60 70 80 90 each section 

100 0 -0,13 -0,19 -0,15 -0,15 -0,18 -0,16 -0,16 -0,2 -0,18 -0,150 

80 0 -0,06 -0,03 -0,03 -0,1 -0,05 - - - - -0,045 

60 - - - - - - - - - - - 

40 0 0 -0,03 -0,03 -0,07 -0,05 -0,03 -0,06 -0,06 -0,05 -0,038 

20 0 -0,03 -0,05 -0,04 -0,04 -0,04 -0,05 -0,03 -0,02 -0,02 -0,032 

0 0 0 -0,01 -0,02 0,01 -0,01 -0,01 -0,01 -0,02 0 -0,007 

-20 0 -0,02 -0,03 -0,02 -0,03 0 -0,01 0 0 0,05 -0,006 

-40 0 0,01 -0,01 -0,02 0,01 0,03 0 0,02 0,03 0,01 0,008 

-60 0 0,02 0,01 0,01 0,01 0,01 0,02 0,03 0,05 0,07 0,023 

-80 0 0 -0,01 -0,01 -0,02 -0,02 -0,01 0 0,01 0,02 -0,004 

-100 0 -0,01 -0,01 -0,01 -0,01 -0,01 -0,02 0 0,04 0,03 0,000 

Avarage all sections                   -0,025 

Table 14 - Abrasion results all measured points A2 

Section y=60 and last 4 points at y=80 has no measurement due to cracking in concrete specimen. 
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Figure 37 - Surface topography of selected sections A2 

Again surface topology for the 3 most central sections is given, the other sections look about the 

same and are therefore not included.  They are all available in measurement excel document. 

Distance between the blue and red line indicates the abrasion. 
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iv. Concrete sample B2 

 

 

Comments: 

Originally 1000 m effective sliding distance was wanted, and a mid-test measure of the abrasion after 

500m. Unfortunately the concrete specimen could not handle the forces applied by the ice abrasion 

machine and cracked into 2 pieces during the test. The cracking of the concrete happened very fast 

during the first ice block, in meters around 25 meters of sliding.  After abrasion measurement at 500 

effective meters, the condition of the concrete specimen was not good enough to continue testing. 

Results after 500 effective meters are given below. 

 

Figure 38 - Picture of concrete sample B2 after abrasion testing 

  

Test parameters   

Concrete type w/c = 0,6 std. Concrete with air 

Initial concrete treatment Saturated, dried, resaturated 

Contact pressure ice/concrete 1 Mpa 

Ice temperature/Ambient temperature Tice -10 °C 

Velocity range over one cycle   

Average ice sliding velocity 0,1 m/s 

Total ice sliding distance  1350m 

Total, effective ice exposure at a point on the concrete surface 500 m 

Total test duration each specimen about 4 hours 

Table 15 - Test parameters concrete sample B2 
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Results summary   Average Average 

Specimen B2 Abrasion Abrasion 

Pressure 1,0 Mpa 0 - 500 m 0 - 500 m 

Temperature -10 °C Total [mm]  [mm/km] 

Section y = 0 -0,036 -0,072 

Section y = 20 -0,103 -0,206 

Section y = 40 -0,063 -0,126 

Section y = 60 -0,066 -0,132 

Section y = 80 -0,040 -0,080 

Section y = 100 -0,032 -0,064 

Section y = -20 -0,046 -0,092 

Section y = -40 0,000 0,000 

Section y = -60 0,000 0,000 

Section y = -80 0,022 0,044 

Section y = -100 -0,041 -0,082 
Table 16 - Results summary B2 

 

Ice abrasion depth all points                   

Specimen B2 

         

  

Total distance 500 meter   

       

  

  x Avarage 

y 0 10 20 30 40 50 60 70 80 90 each section 

100 0 -0,01 -0,02 -0,04 -0,03 -0,03 -0,04 -0,05 -0,05 -0,05 -0,032 

80 0 0 -0,04 -0,04 -0,07 -0,04 -0,03 -0,07 -0,06 -0,05 -0,040 

60 0 -0,01 -0,04 -0,03 -0,09 -0,15 -0,12 -0,07 -0,09 -0,06 -0,066 

40 0 -0,02 -0,04 -0,05 -0,11 -0,11 -0,08 -0,08 -0,08 -0,06 -0,063 

20 0 -0,07 -0,09 -0,1 -0,18 -0,11 -0,12 -0,12 -0,12 -0,12 -0,103 

0 0 -0,01 -0,02 -0,05 -0,02 -0,05 -0,05 -0,06 -0,05 -0,05 -0,036 

-20 0 0 -0,03 -0,06 -0,08 -0,07 -0,04 -0,08 -0,07 -0,03 -0,046 

-40 - - - - - - - - - - - 

-60 - - - - - - - - - - - 

-80 0 0,01 -0,02 0 0,38 -0,03 -0,03 -0,03 -0,05 -0,01 0,022 

-100 0 -0,01 -0,05 -0,05 -0,09 -0,05 -0,03 -0,04 -0,06 -0,03 -0,041 

Avarage all sections                   -0,045 

Table 17 - Abrasion results all measured points B2 

 Section y=-40 and points at y=-60 has no measurement due to cracking of concrete specimen. 
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Figure 39-  Surface topography of selected sections B2 

Again surface topology for the 3 most central sections is given, the other sections look about the 

same and are therefore not included.  They are all available in measurement excel document. 

Distance between the blue and red line indicates the abrasion. 
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v. Variations of test parameters during testing 

 

During the test, test parameters such at pressure temperature and speed will vary. Below the 

variations during testing of concrete sample A2 is given. Similar variations occurred with the other 3 

samples and only data for one test is posted in this thesis. 

 

Figure 40 - Temperature variation in lab during testing 

The temperature variation during testing is present due to the tolerance span of the temperature 

control unit. It calibrated to hold the room between -8°C and -11°C. At around 1500 cycles we see a 

spike in the temperature, this is probably caused by the door of the lab being opened just before the 

temperature reached -8°C.  

 

Figure 41- Variation of vertical load during testing 

The variation in vertical pressure is present because the vertical engine is calibrated to apply more 

pressure if the it to low. When pressure is applied the engine moves pushes the ice cylinder 0,005 
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mm down, causing the pressure to increase. The spike in the pressure occurs when the ice is 

changed. The pressure is 0 when apply vertical pressure button is pushed and logging start, it then 

takes a few cycles to achieve wanted pressure. From the graph we can see that average load is about 

4300 MPa, which is 1Mpa of contact pressure. 

 

Figure 42 - Variation of horizontal velocity 

Horizontal velocity is also varying over the cycles. As we can see from the graph average velocity is 

just over 0.1 m/s. This would imply that the previous assumption that 565 rpm on the horizontal 

engine is slightly too fast. All tests are run with the same speed, so comparison of the results will not 

suffer from slightly higher speeds. 
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2. Comparison, evaluation and discussions of results  

 

A higher abrasion rate for sample A2 and B2 where expected due to their initial treatment. 

It is reason to believe that cracking of the concrete samples has disturbed the test results. A cracked 

concrete may cause the concrete to rest on the coordinate table a different way, this will have a big 

impact when measuring small abrasions.  

 

 

Figure 43- Average abrasion after 500m all samples 

 

The figure above shows the average abrasion of the 4 different test samples. As we can see the 

results vary a lot. Small abrasion depths where expected around the depth of 0,1mm[26]. The result 

for concrete B1 is clearly totally corrupted by the cracking of the concrete. Results for the other 

concretes are in the right magnitude, but the variation here is also high. 
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Figure 44 - Average abrasion after 500m sample A1, A2 and B2 

 

Abrasion rates for sample A1, A2 and B2. B1 is removed to see the variation of the other 3 samples. 

The abrasion rates for these 3 samples are having the expected magnitude. Yet no conclusion can be 

made out of these results. The cracking of the concrete has caused these results to be none 

trustworthy.  

 

By comparing when the concrete samples cracked up during the test some conclusion may be made. 

 

Figure 45 - Test distance before cracking of concrete 

Figure 45 shows that the two concretes that was dried out and resaturated cracked at an earlier 

stage. This may induce that they have become weaker after this treatment. 

It is a possible theory that all 4 concrete samples have been weakened by the storage at NTNU 

laboratory making them too weak to withstand the forces of the ice abrasion test apparatus. 
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All the concrete samples cracked at the same point, sample A1 cracked in two places one at the 

middle and one in the common point.  Figure 47 shows the common crack point.  At this point the ice 

cylinder halts and is pushed back in the other direction. At the opposite turning point when the 

machine pulls back no cracks occur. Either one or more of the different components underneath the 

concrete specimen tend to be compressed due to the pressure. One or more of these parts, concrete 

bedding, bearings or pressure sensors 

does not withstand the vertical load 

satisfactory.  At both ends the 

concrete sample is pushed down. 

Even though this displacement is very 

small, it creates a none flat surface. 

Figure 46 shows a principle sketch on 

how this angle is created. Grey 

concrete lies on copper bedding 

which is placed on top on bearings 

(not present on sketch) with black 

load sensors underneath. The ice cylinder, blue in this sketch, pushes the concrete down. This small 

angle causes high levels of stress at the endpoints. In addition to the larger rest friction the ice 

cylinder now also faces an incline.  Experience from these tests shows that the strain is highest at the 

turn point where the ice cylinder is pushed back. 

 

 

Figure 47 - Common crack point 

All recent test results have been corrupted by cracking of concrete. In order to get good results from 

the ice abrasion test laboratory the cracking problem needs to be solved. Testing the strength of the 

old concrete samples may reveal that concrete is damaged and is no longer suitable for testing. If 

strength testing shows significant weakness of the old concrete, new samples with sufficient strength 

has to be made in order to get good abrasion data. If concrete strength appears to be sufficient, the 

problem is caused only by the tilting of the concrete. 

Figure 46 - Principle sketch displacement of concrete during test 
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Tilting of the concrete sample is an unwanted effect and should be fixed before more tests are 

performed at the laboratory. Concrete bedding, bearings and load sensors needs to be dismantled 

and inspected. If the parts cannot be repaired or replaced so no vertical movement of the concrete is 

allowed, a remodeling of the test apparatus should be considered. Placing a vertical load cell above 

the ice cylinder will remove the need for load cells underneath the concrete and possibly make it 

easier to make bedding which not plunges.  

 

6. Conclusion 

 

The literature study has shown me that ice abrasion is a complex problem. Many different factors 

contribute to the abrasion. Getting to know these factors has given a better understanding of ice 

abrasion .  

Due to all the different factors involved in ice abrasion studies, different studies has found unlike 

results for the same problem. These differences may have occurred due to some unlike factors not 

being accounted for.  When experimenting on ice abrasion good control over the variables is a 

necessity in order to get comparable and reliable data.  

Working in the laboratory has proven to be very time consuming and unforeseen events has a 

tendency to show up. Originally the difference in abrasion rate for identical concrete with different 

initial treatment was to be examined.  All four concrete samples cracked during testing causing 

abrasion measurement to give unreliable data. Testing instead revealed a possible problem with the 

test equipment. Improvements of test equipment have been evaluated. The outcome of a laboratory 

experiment is not always what you expect it to be. Nevertheless laboratory experience has been 

great learning, even though no sensible results came from the experiments.  
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Appendix A, screenshots from LabView 
Following is the 6 different views in the NTNU ice abrasion laboratory LabView program:

 

Figure 48 -Labview main window, machine 

 

 

Figure 49 - Labview logging 
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Figure 50 - Labview variables 

 

 

Figure 51 – Labview Calibrating 
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Figure 52 – Labview debug 

 

Figure 53 - Labview help 
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Appendix B, Maintenance of abrasion machine after down period 

 

All equipment that has not been used for a while is often in need of maintenance.  For the ice 

abrasion lab at NTNU the following has been done in order to get the machine ready for testing 

again.  

Re lubricate moving parts in order to ensure smooth movement and keep the appartus corrosion 

free. 

Adjusting of the insulated cylinder (ice compartment).  It is important that this cylinder is as close to 

the concrete specimen as possible. During the down time this cylinder had become offset with a few 

millimeters and abraded on the concrete.  

Julabo heating/cooling circulation was bad in the in the concrete bedding and complete none flowing 

in the ice compartment.  All couplings were opened up and corrosion and dirt was removed. The two 

circuits were blown clean with compressed air.  

Testing of temperature sensors, all seemed to be ok 

Horizontal movement tested ok. 

Vertical movement tested ok. 

 

 


	Title Page
	Microsoft Word - Master.docx

