
Data Acquisition with Unmanned Aerial
Vehicle (UAV) from Floating Sensor
Nodes

Remus-Gabriel Barbatei

Embedded Computing Systems

Supervisor: Tor Arne Johansen, ITK
Co-supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: July 2014

Norwegian University of Science and Technology

Data Acquisition with Unmanned

Aerial Vehicle (UAV) from Floating

Sensor Nodes

Remus-Gabriel Barbatei

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the

European Masters in Embedded Computing Systems
Department of Engineering Cybernetics

Norwegian University of Science and Technology

7 July 2014

Supervisor: Professor Tor Arne Johansen

Co-Supervisor: Associate Professor Amund Skavhaug

http://mundus.eit.uni-kl.de/

i

Preface

This Master Thesis was carried out as a part of the study program European Masters in

Embedded Computing Systems at the Department of Engineering Cybernetics at the

Norwegian University of Science and Technology. The work was done in the time period

between January and July 2014.

This thesis is a continuation of a previous project done by the author at the Norwegian

University of Science and Technology during the fall semester of 2013. In order to clearly

describe the underlying theoretical aspects some parts of the fall project have been rewritten

in this current work.

This project is one of the many projects carried out at the UAV Lab at the Norwegian

University of Science and Technology It is also supported by the Center for Autonomous

Marine Operations and Systems (AMOS).

ii

Acknowledgments

I want to give thanks to my parents and very good friends, for the moral support I received

throughout my entire academic development, I say thank you with all my heart!

I gratefully acknowledge the support and resources made available to me by my supervisor,

Professor Tor Arne Johansen, for his patience, careful guidance and support at all times.

Without him I would have not come this far. It has been a beneficial opportunity for me to

work on a project that is part of the UAV lab which he is the director of.

Special thanks go to Associate Professor Amund Skavhaug for his continual encouragement

and constant motivation, pushing me to do more and always keep an ambitious attitude

towards work. He has been more than a good supervisor to me, offering much more than

academic advice for which I am most grateful.

My gratitude also goes to the staff of the Department of Engineering Cybernetics for all the

support that they offered me, with special emphasis to: John Olav Horrigmo, Per Inge Snildal,

Terje Haugen, Lars Semb, Torkel Hansen and Janne Karin Hagen.

I would be ungrateful if I fail to acknowledge the support I had from Nhan Nguyen, Kristian

Klausen, Frederik Stendahl Leira and even fellow colleagues from the University of Porto in

Portugal.

iii

Title: Data Acquisition with Unmanned Aerial Vehicle (UAV) from

Floating Sensor Nodes

Student: Remus Gabriel Barbatei

Problem Description:

One of our research visions is coordinated data acquisition from marine sensor networks that

forms a heterogeneous network of Unmanned Aerial Vehicle nodes (UAVs), Autonomous

Underwater Vehicle nodes (AUVs), floating sensor nodes, and surface ships.

The project will focus on the interaction between UAVs and floating sensor nodes having

built-in sensors and radio communication capabilities and, in the future, hydro-acoustic

communication as well. The first step is the development of the floating sensor node design,

hardware and software alike. The software is based on 2 multi-node coordination open-source

software frameworks, NEPTUS and DUNE that have been developed by the University of

Porto.

The main tasks and objectives of the candidate are:

1. Carry out a study of required background theory and previous related work

2. Propose a solution for the general system

3. Design and implement the proposed solution, both hardware and software.

4. Perform tests (both in the lab and in the field) with the built hardware and the

software system that comes with it

5. Evaluate and discuss the results

6. Draw practical conclusions from what has been built, programmed and tested

7. Suggest further work and improvements

Supervisor: Professor Tor Arne Johansen

Co-Supervisor: Associate Professor Amund Skavhaug

iv

Summary

Short background, results and conclusions

In the last decades an increase in the need for ocean monitoring capabilities has arisen. To be

able to meet these requirements a low-cost, automated solution is needed. It should be easy

to maintain and to reconfigure as well as environmentally friendly.

To this extent, a small-sized floating sensor node would be suitable for the task. The node

would be similar to a floating buoy but having a size comparable to that of a soda can.

Furthermore it should be easily deployable and have the possibility to be recuperated from

the ocean surface using UAVs with fixed-wing or using multicopters but these aspects are not

part of this current work.

There is also a need to transfer the data between the UAVs, sensor nodes and the end user.

This is done using robust hardware, reliable software frameworks and well established

protocols. For the interface and communication between the sensor nodes and UAVs a

software framework, called DUNE, is used and for the end-user interface NEPTUS is

employed. Both of these will be described in a later chapter.

In order to achieve a unified communication protocol among the devices in the system the

IMC (Inter-Module Communication) message formatting is used, detailed later on.

The work touches topics in disciplines such as Engineering Cybernetics, Electronics

Engineering and Computer Science.

Analysis and exploration has been carried out in order to analyze current existing solutions

that addresses the problem, reveal what kind of measurements are possible to do with a small-

sized sensor node and what kind of sensors can be used.

It is important to mention that the software frameworks that have been used, DUNE and

NEPTUS are projects currently being developed. They are considered to be research topics

and they are also viewed as unique as compared to other similar frameworks in development

today. These shall be described throughout this report. They are open source projects and

have been developed during the last 10 years and are constantly being improved. They were

v

originally used by the University of Porto and now more and more Universities are gaining

inters in them.

Objectives that have been achieved by the candidate throughout this work:

- perform research on the type of hardware components needed

- mechanically design a physical case for the device

- design custom printed circuit boards for the proposed hardware

- write the firmware that runs on the embedded device

- program the necessary software used to communicate with the built embedded device

- perform verification and validation on the system

- perform measurements on data integrity and range over the wireless medium, power

consumption and hardware limitations

- carry out lab and field tests in order to prove the functionality of the proposed solution

- analyze and interpret the results

The total work carried out, tests and development that were carried out are split into two

main categories, hardware and software.

The hardware is composed of a sensor node with all required components (passive and active)

and several boards which form a payload for the UAV. The UAV acts as a data sampler and

communication relay between the sensor node (in the water or on ground) and a base station.

Building the sensor node is part of the hardware category. The sensor node has been built

(and tested) to be buoyant, directionally stable in water and hermetically sealed.

Among the software tasks that come into the proposed solution are the programming of the

microcontroller that runs the code on the embedded device, programming parts of the software

framework (DUNE) that is used to communicate with the embedded device and prepare the

intercommunication between DUNE and the end-user application, NEPTUS.

A simple conclusion on the work that has been carried out so far, after running field tests

with the proposed system is that the proposed solution can be a viable solution good for the

scientific community and with more work it could even be developed into a working product.

vi

Contents
Preface ... i

Acknowledgments ... ii

Summary ... iv

Short background, results and conclusions ... iv

List of Figures ... x

List of Acronyms .. xii

1. Introduction .. 1

1.1 Background of the task .. 1

1.2 Motivation ... 2

2. Solutions to address this problem ... 3

2.1 Current solutions ... 3

2.1.1 Argo Sensor nodes ... 3

2.1.2 Starmon mini - underwater temperature recorder ... 4

2.2.3 Star Oddi FishCall .. 5

2.1.3 MATAKI - low-cost, wirelessly-enabled tracking platform 6

2.1.4 Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System . 6

2.2 Proposed solution and objectives ... 7

2.3 Outline of the report, structure of solution description .. 8

3. Proposed Solution ... 9

3.1 Introduction, General Overview ... 9

3.2 General characteristics ... 10

4. Hardware Description ... 15

4.1 Introduction ... 15

4.2 General Hardware Description ... 15

4.2.1 Main Microcontroller Board, Atxmega192C3 .. 15

vii

4.2.2 Peripherals interfaces used .. 16

4.2.3 Overall architecture ... 17

4.2.4 Other aspects .. 18

4.3 Detailed Hardware Description .. 21

4.3.1 Physical case construction ... 21

4.3.2 Top Module Description (Module 1) ... 25

4.3.3 Main Controller Module (Module 2) .. 28

4.3.4 Power Supply Module (Module 3) ..30

4.4 Conclusions on hardware .. 32

5. Software Design and architecture ... 33

5.1 Introduction on software architecture ... 33

5.2 Design patterns ... 33

5.3 Software architecture on the embedded device ...34

5.4 DUNE ...37

5.5 NEPTUS ..38

5.6 Conclusions on software ..38

6 Communication protocols .. 40

6.1 Introduction on communication protocols .. 40

6.2 IMC ... 40

6.3 DUNE and Sensor Node protocol ..43

6.3.1 First option for the protocol (IMC based) ..43

6.3.2 Second option for the protocol (IMC-NMEA based) ... 45

7. Application Modes and Software States .. 47

7.1 Introduction ... 47

7.2 Basic states description .. 47

7.3 Example scenario for state switching and transitions ... 49

7.4 Dynamic workflow example ... 51

viii

8. Tests, Results and Discussions .. 56

8.1 Introduction ... 56

8.2 Field Tests ... 56

8.2.1 Radio module range test .. 56

8.2.2 Complete system tests on land .. 59

8.2.3. Complete system tests on water ... 62

8.4 Conclusions on tests ... 66

7. Future Work ... 67

7.1 Immediate future goals .. 67

7.1.1 A better choice for the hardware modules ... 67

7.1.2 Main board and software improvements .. 68

7.2 Long-term future goals .. 69

7.2.1 Acoustic fish telemetry module ... 69

7.2.2 Energy harvesting ... 69

5.2.1 Data compression algorithms... 70

8. Conclusions ... 72

References ..73

Appendices .. 76

Appendix A .. 77

Main Board schematic ... 77

Radio module schematic .. 78

Printed circuit board layout top and bottom .. 79

Voltage Regulators (DC-DC and linear) .. 80

Appendix B ... 81

Printed Circuit Board - version 1 .. 81

Printed Circuit Board - version 2 .. 82

Appendix C ..83

ix

UAV Payload ...83

x

List of Figures

Fig. 2.1 - ARGO nodes around the world [1] .. 3

Fig. 2.2 - ARGO node and ship [1] ... 4

Fig. 2.3 - Miniaturized Underwater Temperature Sensor [3] ... 5

Fig. 2.4 - Submersible Acoustic Transmitter [4] .. 5

Fig. 2.5 - Context diagram showing a DART II system and the related telecommunication

nodes. [5] ... 7

Fig. 3.1 – General overview of system components and interaction 10

Fig. 3.2 - Modular concept of the sensor node... 11

Fig. 3.3 – Possible Physical Design of the Sensor Node... 11

Fig. 3.4 - Example of disrupted communication because of the ocean waves13

Fig. 3.5 - Combo puck antenna [7] ...13

Fig. 4.1 - Overall hardware architecture ... 18

Fig. 4.2 - Battery sensing circuit [8] .. 19

Fig. 4.3 – Vertical section through the sensor node ...22

Fig. 4.4 – 3D Graphic design of the device (left); Manufactured prototype (right) 23

Fig. 4.5 – Sensor node prototype and attached components...24

Fig. 4.6 – Zigbee network topologies (left) and Radiocraft network topologies (right) 27

Fig.4.7 – Plotted gyroscope measurements .. 29

Fig..4.8 – overview of relative positioning algorithm ..30

Fig. 5.1 – UML diagram for the observer design pattern ...35

Fig. 5.2 – Communication flow between the sensor node, the UAV running DUNE and a

computer running NEPTUS ...39

Fig. 6.1 – IMC message example ... 41

Fig. 6.3 – IMC message bus and DUNE tasks configuration example 41

Fig. 6.4 – IMC-like structure definition listing .. 44

Fig. 6.5 – Endianness issues .. 45

Fig. 7.1 – Basic software states of the embedded device ... 48

Fig. 7.2 – Timing diagram showing UAV and sensor node basic interaction 50

Fig. 7.3 – Basic flowchart partially showing the software workflow on the sensor node 52

Fig.7.4 – Interrupts and their dataflow in the embedded device ... 54

file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529159
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529160
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529161
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529162
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529163
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529163
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529164
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529165
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529166
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529167
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529168
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529169
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529170
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529171
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529172
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529173
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529174
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529175
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529176
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529177
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529178
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529178
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529179
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529180
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529181
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529182
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529183
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529184
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529185
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529186

xi

Fig.7.5 – Timeline diagram of the program flow ... 55

Fig.8.1 – Radio module range test setup ... 57

Fig.8.2 – Tested mobile sensor GPS trace ... 58

Fig.8.3 – Filed test setup on land and component interaction ... 59

Fig.8.4 – Flight trajectory of the UAV in the land test (generated with Google earth) 60

Fig.8.5 – Flight trajectory of the UAV in the first test ... 61

Fig.8.6 – Screen capture of Neptus showing the sensor node on the ground 62

Fig.8.7 – Filed test setup on water and component interaction ...63

Fig.8.8 – Flight trajectory of the UAV in the water test (generated with Google earth) 64

Fig.8.9 – Screen capture of Neptus showing the sensor node in the water 65

Fig.8.10 – Measured GPS altitude of the sensor node during the test 65

Fig.7.1 – ECO 200 [24] .. 69

Fig. 7.2 –Design of Linear Faraday Generator with Ferro Fluid Nano Bearings (left) 70

CIIIS Linear Generator prototype (right) [25][26] ... 70

Fig. 7.3 – Example scenario regarding the range of the wireless communication modules ... 71

file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529187
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529188
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529189
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529190
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529191
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529192
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529193
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529194
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529195
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529196
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529197
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529198
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529199
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529200
file:///C:/Users/Administrator/Google%20Drive/NTNU%20Project/Master%20thesis/master%20thesis%20remus.docx%23_Toc392529201

xii

List of Acronyms

API Application programming interface

AUV Autonomous underwater vehicle

CDM A Code division multiple access

CPU Central processing unit

DM A Direct memory access

GPS Global Positioning System

GSM Global System for Mobile Communications

I²C or I2C Inter-Integrated Circuit

IM C Intermodule Communication

M CU, µC Microcontroller

OO Object oriented

OS Operating System

PCV Printed Circuit Board

POSIX Portable Operating System Interface

RTOS Real-time operating system

SD Secure Digital

SPI Serial Peripheral Interface bus or

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicle

UM L Unified modeling language

xiii

1

1. Introduction

1.1 Background of the task

Global wheatear changes have become a significant concern in our life over the last few years.

It is estimated that the sea level is rising at high rates every year, up to 3mm/year. Along

with this, the Arctic ice cover is shrinking and there is an increase of temperature in high

latitude areas. Sometimes lives are lost by extreme weather events and there are enormous

burdens on local organizational and insurance companies and administrative departments in

the countries that are close to the sea shore. Since the scientific community began recording

statistics, around 1860, we had the 8 out of the 10 warmest years globally, only in the last

decade. The main reason for these effects are a mixture of natural variability and long-term

climate change. Sometimes, the impact of these changes can be both good and bad. It can be

good because the growing seasons are longer in some areas and also, there are new trading

opportunities due to the opening of Arctic shipping routes. But these changes can also have

a negative impact. They can cause coastal flooding, more frequent and extreme heat waves,

intense and dangerous droughts and, in some cases, severe phenomenon like tropical cyclones

can be observed [1].

The ocean’s ecosystem is also impacted by human activities. Entire habitats are severely

affected yearly and most of these are either because of human negligence or a lack of care for

the environment. Oil spills problems on the ocean have started to gain more and more

attention from the world in the last 20 years. This is because disasters caused by such

chemicals in the water greatly impact sea life and actually can destroy entire species of fish

and birds that depend so much on clean water. For example, oil can destroy the insulating

ability of the fur in some mammals (like sea otters). The water insulating capability of the

feathers on some birds is also compromised by oil making them vulnerable to the harsh

elements of the ocean and increasing their probability to die because of hypothermia. Some

bird species also can ingest oil along with the water they use to clean themselves, poisoning

them in the process. Of course the ocean contains many kinds of fish and shellfish and even

though they might not be exposed directly to oil spills they do come in contact with the water

and this can lead to severe effects on their health in the future. For example, when adult fish

comes in contact with water contaminated by oil they can experience changes in heart and

2

respiration rates, reproduction impairment, reduced growth, fin erosion and other effects. Oil

in water can also have bad effects on fish eggs and larval survival rate [2].

1.2 M otivation

Having a proper understanding of occurring oceanic phenomenon and eventually predicting

them is required in order to guide international actions, to shape industrial strategies and to

optimize governmental policies against these issues. To make these predictions possible an

accurate model of the climate of the earth is required, particularly the climate of the oceans.

The data for this kind of sea model has to be collected somehow. Lack of sustained

observations about the ocean have set back greatly the development of valid climate models

of the ocean. There are many examples in which sea monitoring was required in order to

avoid serious disasters. Furthermore monitoring oil spills and other kind of substances or

garbage that is illegally dumped on the ocean surface has started to be of great value in the

last decade.

Not just large bodies of waters such as seas and oceans need to be monitored. Small lakes,

rivers and even man-made reservoirs require observation. Measuring parameters such as water

purity of a spring, the amount of minerals in some lakes and even monitoring fish in fish

farms are some more usage scenarios which require an adequate system to solve this.

The issues specified have to be addressed somehow, in an efficient and cost effective manner

that first of all does not further impact the environment in a negative way.

3

2. Solutions to address this problem

2.1 Current solutions

2.1.1 Argo Sensor nodes

Several attempts at monitoring the sea have been made, out of which the most mentionable

of all is ARGO. It is a global array composed of around 3000 profiling sensor nodes that are

free-drifting and constantly measure the temperature and salinity of the world’s oceans. They

are not only floating but can submerge to up to 2000m under the ocean, allowing for continual

monitoring of salinity, temperature and the velocity of the upper ocean. All the data they

gather they send via satellite to a centralized database and this is publicly available [1].

The project is well appreciated in the scientist community as many organizations and weather

monitoring facilities use it daily. Fig. 2.1 shows a rough estimate of where each node is located

in the world’s oceans, based on their last reported GPS coordinates.

Fig. 2.1 - ARGO nodes around the world [1]

4

Some key characteristics of these nodes include their size and weight. They are approximately

1.3m long and about 20cm in diameter. They also weigh a hefty 40kg. Also because of their

size and weight they are difficult to maintain and usually when something happens to one of

them they are simply replaced.

This combined with their total cost of $15,000 makes reusability and expandability an issue.

They also require ships to be deployed and collected from the ocean surface (Fig. 2.2) further

adding to the overall cost of using such devices.

However even with all of these factors this project continues to expand and receive more and

more involvement from governments in many countries around the world.

2.1.2 Starmon mini - underwater temperature recorder

Another mentionable device, this time on a smaller scale is the Starmon mini - underwater

temperature recorder. It is a miniaturized sensor (25mm x 130mm) that is capable of long

period temperature measurements and logging underwater [3]. The next image (Fig.2.3) shows

the sensor. One first disadvantage can be seen immediately: to get the sampled data, the

sensor needs to be picked up from the water. Nevertheless some applications are well suited

for this kind of sensors even if it’s not that convenient if you would need to download the

Fig. 2.2 - ARGO node and ship [1]

5

sampled data from 100 such sensors at one time. A centralized way of collecting the data from

such sensors is needed.

2.2.3 Star Oddi FishCall

Another kind of device that is used to interact with the marine biodiversity is a submersible

acoustic transmitter (Fig.2.4). It is a low frequency transducer, loudspeaker and sounder,

developed to attract fish. The main usage scenarios for such a device include the ability to

train fish so that they can be easily relocated and monitoring their lifespan [4].

Being a relatively large device it might be difficult to handle and maintain. The immediately

observable characteristic of this device is its size. In an ever miniaturizing world as the world

we live in today, size tends to matter more and more meaning that such monitoring devices

are viewed better if their size is small. Small size generally means lower power, leading to

longer battery life, and a longer life cycle.

Fig. 2.3 - M iniaturized Underwater

Temperature Sensor [3]

Fig. 2.4 - Submersible Acoustic

Transmitter [4]

6

2.1.3 M ATAKI - low-cost, wirelessly-enabled tracking platform

Other similar solution for monitoring, but this time, not particularity floating or water-related

have also proven to solve the problem of tracking and monitoring in an elegant and efficient

way. One example of such a solution is called MATAKI [6]. They are small boards fitted with

sensors, GPS modules and RF communication. They are low power and can be adapted and

used in various applications.

2.1.4 Real-Time Deep-Ocean Tsunami M easuring, M onitoring, and

Reporting System

Another solution for deep opcean monitoring is the second-generation Deep-Ocean Assessment

and Reporting of Tsunamis system know as DART II. Tsunami data from the DART system

can be combined with seismic data ingested into a forecast model to generate accurate tsunami

forecasts for coastal areas.[5]

The sistem is composesd of two physical components: a tsunameter on the ocean floor and a

surface buoy with iridium satellite network telecommunications capability.

The DART II systems have bi-directional communication links and are thus able to send and

receive data from the Tsunami Warning Center and others via the Internet.

The Tsunameter incorporates a divers set of componentes. The computer, designed around

the 32-bit, 3.3 volt Motorola 68332 microcontroller, reads presure readings, runs a tsunami

detection algorithm, and sends and recivies commands and data tto and from the buoy via

an acuoustic modem(A Benthos ATM-880 Telesonar acoustic modem with an AT-421LF

directional transducer). The pressure sensor is a 0-10,000 psi model 410K Digiquartz® unit

manufactured by Paroscientific, Inc.

7

2.2 Proposed solution and objectives

Our solution to address the problem of ocean monitoring in a cheap and eco-friendly way

involves a new kind of sensor node. It is small-sized, no more than 30cm in height, 6cm in

diameter and low-weight (around 500 grams). The beauty of this is that it is deployable and

recoverable using unmanned aerial vehicles (UAVs).

The sensor node is also modular, so that it can have a multitude of sensors and functionalities

making it vary in size, depending on what kind of sensors it has connected to it. It encapsulates

small and low power sensors, GPS positioning, wireless communication capabilities and a non-

volatile storage medium.

Fig. 2.5 - Context diagram showing a DART II system and the related

telecommunication nodes. [5]

8

2.3 Outline of the report, structure of solution

description

In the next chapters the proposed solution shall be discussed. At first the physical

characteristics of the sensor node will be treated then, moving on further to the electric

characteristics and a description of what components are inside the node. After that the

software part is also described.

This software part is split into 3 main categories: the embedded software that runs on the

device itself, the software framework that is used to communicate with the device and the

end-user interface software that displays the sensor node. Besides all this, a protocol will be

described in detail as to how the low-level software on the sensor node communicates with

the higher level software.

In the latter chapter, tests and experiments will be described and discussed. The basic features

of the built prototype of the sensor node have been successfully tested and proved to work.

All of the results will be treated and discussed in details.

Finally, since this is a rather complex project, future goals and suggestions have a separate

chapter.

9

3. Proposed Solution

3.1 Introduction, General Overview

The proposed solution to deal with the problem described in the previous chapter involves

more than just a simple sensor node with embedded software running on it. It is a composition

of robust hardware carefully designed to withstand more than normal working conditions.

After all, some of the operating environments in which the sensor should work can involve

both warm and cold ocean waters, strong winds and even mechanical shocks.

Along with this kind of hardware, a carefully designed software framework is part of the

solution. The whole system uses well thought-out communication protocols adding a certain

level of completeness to the whole implementation.

The solution, first of all, has to require as little maintenance as possible. Monitoring of the

ocean needs to be done in an automated way, with as less human involvement as possible.

This solution aims at removing the need for a boat placing or picking-up the sensors in the

ocean. This implies having the sensor nodes picked-up and removed from the ocean

automatically with the help of Unmanned Aerial Vehicle. UAVs are also to be used to collect

data from the sensor node, to store it and forward it to a ground base station where it can be

processed by meteorologist, biologists, physicists, etc.

The next figure (Fig 3.1) shows a representation of how the whole system functions. UAVs

are launched from the ground station with the purpose of deploying sensors on the ocean, to

collect the data that has already been sampled by previously placed sensors or to pick up the

sensor.

Sensor deployment and recovery from the ocean surface are not part of this current work and

will not be treated in great detail. However, the whole communication and system interaction

will be described in detail throughout this report.

10

3.2 General characteristics

The main physical characteristics of the device are buoyancy, and water tightness and being

directionally stable in water. Even though these seem like common sense, all design must

begin and end with these in mind. In the water it will stay upright, having most of its case

completely submerged and the other part (which contains the antennas) will be floating. This

characteristic of being directional stable in water is achieved by carefully placing the

components inside in such a way that the heaviest ones are situated at the bottom and at the

top part of the cylindrical sensor node there are only antennas and optionally a deployment

and recovery mechanism. These mechanisms can be considered to be a combination of special

Fig. 3.1 – General overview of system components and interaction

11

hooks. A rough representation of how the device’s modularity is organized is shown in the

following figure (Fig.3.2).

One of its important characteristics of the sensor node is that it should have a modular design.

Modular in the sense that it should be easy to add new sensors to it, or remove old ones in

the case that they become defective. Also, this modularity must be combined with the very

important property of being a watertight sensor node. To achieve this kind of modularity a

cylindrical design composed of many cylinder segments is to be used. An example of this is

shown in Fig. 3.3.

RF communication/GPS

Sensors

MCU

Power supply/Energy harvesting

Recovery mechanism/buoyancy module

Fig. 3.3 – Possible Physical Design of the Sensor Node

Fig. 3.2 - M odular concept of the sensor node

12

In the figure, each section represents a different functionality. To be able to satisfy the

properties described earlier (directionally stable in water and buoyant) some sections of this

node can be entirely dedicated for this, containing low density, high volume material that

floats. For example the upper most section is composed of materials that offer buoyancy to

the entire cylinder while the lower most part of the node has the heaviest components like

the battery.

The way the sections are connected to each other to provide a safe seal is also very important.

Some of the ways in which this can be achieved are to have threads on each section and screw

the sections together like a normal bottle screw or just by joining them together, without

screwing them into position, but keeping them joined with metallic or plastic small screws.

They should also contain rubber O-rings for water sealing. Because each section has a

dedicated task and functionality there is clear need of all being connected electrically to the

power source and to the main MCU board. This calls for a way of interconnecting the sections

in a way that does not interfere with the screwing in place and assembling the whole device.

As mentioned earlier the device has GPS positioning and wireless communication capabilities

with the UAVs. There is a minimum of 2 antennas that need to be fitted onto the node: one

for the GPS module and one for the wireless communication. The normal way to proceed in

this situation is to have 2 separate antennas, one of which is a simple straight (flexi) antenna

(the one used for wireless communication, the GPS antenna is standard). But as theory states

flexi antennas are designed to have the range of effect on a horizontal plane and not on a

vertical one.

Naturally, an entire network of such sensors deployed on the ocean surface is the end goal.

Ideally these sensors should be able to communicate and exchange data with each other but

there is one big problem with this: because of the sea waves certain nodes will be out of line-

of-sight range and can be blocked from communicating with one another, as shown in Fig.

3.4.

13

Even in this situation an actual data link might be made and communication could be

established but it comes with great power costs. Since we want the sensor nodes to be low

power this leads us to make the decision of designing the nodes in such a way that they don’t

exchange data with each other but only communicate with the UAVs. This again leads to

other issues caused by the type of antenna we use. As mentioned earlier normal flexi-type

antennas are designed to have horizontal functionality range and not vertically as we need it.

This is cleverly solved by using a puck antenna.

These kind of antennas are designed to have an effective range in the shape of a semi-sphere

making them perfect for ensuring the communication channel between the node and the UAV.

Because of the lack of space a clever way of satisfying both communication needs and size

constraints is to use a combo puck antenna (Fig. 3.5). This kind of antennas feature 2 built

in antennas in one package, one for GPS and one for GSM, and CDMA type wireless

communication capabilities [7].

Since the sensor node will be carried, deployed and recovered by UAVs it needs to have some

certain weight and size constrains previously mentioned. Also it must tolerate around 15G of

acceleration and shock forces since it will be dropped from the UAVs when deployed and

Fig. 3.5 - Combo puck antenna [7]

Fig. 3.4 - Example of disrupted communication because of the ocean waves

14

rapidly pulled out of the water when recovered. These requirements can be safely satisfied if

we use a strong plastic case for the node. Also, when going for plastic as the material for the

case it should be pointed out that plastic is not affected by salty water corrosion, is resistant

to temperatures and is also low cost.

Low power is of great importance for this project and wave energy harvesting could also

greatly impact the way the node is designed. Many tweaks and design considerations for

having a low-power system will be discussed throughout the document but at the end, as a

future goal, there is a special chapter dedicated to wave energy harvesting.

15

4. Hardware Description

4.1 Introduction

This next section is meant to describe the hardware components and architecture of the sensor

node. Details such as values of the passive components and other related facts are omitted.

The focus is mainly on what components are used how they are interconnected and

communicate with one another.

4.2 General Hardware Description

4.2.1 M ain M icrocontroller Board, Atxmega192C3

The core of the hardware lies in an 8/16bit microcontroller by Atmel, the ATxmega C3 core

family chip. The main reasons why the decision to use this particular vendor for the

microcontroller are as follows: First of all we needed something that is low cost and low power.

And also the speed of the device is really not a very important issue since its main purpose is

monitoring. The µC runs at maximum 32MHz and at that speed it can consume maximum

15mA. This gives us a lot of flexibility in terms of speed and power consumption. For example

the speed of the device can be dynamically lowered or increased at runtime. The chip has the

characteristic that after reset, it will always start up running from its 2MHz internal oscillator.

Also, during normal operation, the system clock source and prescalers can be changed from

software at any time and in turn lowering or increasing its power consumption.

Other important characteristics that were taken into consideration when choosing this µC

involve the existence of a DMA bus and controller, further helping with lowering the power

consumption by not loading the CPU too much during simple monitoring operations.

16

Like most microcontrollers, it has many peripheral interfaces for communicating with sensors,

memory devices and even other microcontrollers. These include SPI, I2C, and UART which

are used in our system.

4.2.2 Peripherals interfaces used

In this section a brief description of each peripheral device attached to the microcontroller

will be provided.

First of all, since we are talking about mostly monitoring functionalities of the device there

has to be a safe and cheap way of storing the monitored data. For this purpose we are using

a micro SD card. These cards are cheap and can be easily interfaced with the microcontroller

using the SPI interface.

Localization of the device is also needed and for this purpose a GPS module is connected to

the µC. Most GPS modules have standard communication interfaces to work with a

microcontroller and for our application we will be using the UART interface with the module.

Implementation details for how this is achieved are not so relevant at this point since most

GPS modules work very similarly.

Special attention must be given to the wireless communication module. Each sensor node

must communicate with UAVs both for sending previously saved monitored data and for

commands and configuration parameters. These parameters can be anything from specific

measurement time intervals patterns or even modifications that alter the functionality of the

node. For example, disabling a sensor due to a fault or inconsistent data reports. All of this

information must be transmitted fast and over a relatively large distance. After all, fixed wing

UAVs cannot fly really low or slow and they cannot wait in case of slow communication.

Therefore the decision of using a RF communication module provided by Radiocrafts has

been made. It is the Radiocraft-rf1280 module. In its US variant (433MHz) 2-4km in range

can be achieved and this would be equivalent to around 1-2Km for the European version of

the model (868MHz). It has a data rate of 4.8Kbits/sec and most important a low current

consumption: 21mA for receiving and 28mA for transmitting the data. Further details for this

module will be described in a later chapter. Another key important feature that makes it

17

suitable for our need is the fact that it has a standard UART interface and the device by

itself takes care of data transmission and reception. The user only has to read or write data

via the serial interface to it and the device takes care of all communication. Naturally, there

are certain configuration parameters that need to be configured but all-in-all it is not

complicated to work with such a device.

The microcontrollers is also fitted with an internal analog to digital converter and the main

board is designed is a way that it allows easy access to the microcontroller pins that are

connected to the ADC. Various analog sensors can be connected using this interface.

What makes this device unique is its modular design. Sensors need to be added and removed

in a way that would not require any hardware modifications to the main board. For this

reason all sensors that are to be connected to the device will use either an I2C interface or an

industrial RS-485 interface. It is well known that both of these interfaces offer bus connection

that can support multiple devices making them ideal for our need. Each new added sensor

will just be a new device on the bus and modifications will only be carried out on the software

part, substantially reducing the workload required for adapting the sensor node to new needs.

4.2.3 Overall architecture

Taking into consideration the previously described devices and communication interfaces a

rough hardware architecture is presented in the following figure (Fig. 4.1). It shows a typical

configuration with multiple sensors attached to the main microcontroller.

18

4.2.4 Other aspects

It is important to state that there is a minimum configuration of components that all sensor

nodes must have. All nodes are to be equipped with data storage (micro SD card), wireless

communication and a GPS module. The rest of the sensors can be chosen according to the

Fig. 4.1 - Overall hardware architecture

19

monitoring requirements. For example, some nodes can be specially designed to monitor oil

spills while others can be designed to monitor sea life and sea conditions such as the level of

chlorophyll in the water, nutrients, dissolved oxygen and pH. All the sensors that measure

these are to be connected to the I2C bus, to the RS-485 bus or to the analog input pins.

Therefore the printed circuit board must be designed to permit this. For example it might be

necessary to modify the values of the pull-up resistors of the bus, depending on the number

of devices connected on the bus.

Another key feature of the device includes self-monitoring. The sensor node is to be designed

in such a way that the internal temperature of its components can also be viewed. For example

it might be important to know the temperature of the battery and that of the microcontroller,

since the whole device might be required to work in extreme temperatures.

Besides monitoring the temperature of the battery, the charge level of the battery must also

be measured. For this we can either chose a smart battery that has internal circuitry for

monitoring (and also connect it to the microcontroller via some interface). Or, we can add a

chip that takes care of these functionalities or we can just create a simple circuit for battery

voltage sensing and do the rest of the processing on the main µC. A simple battery

measurement circuit is presented in Fig.4.2. As seen in the figure the circuit is designed in

such a way that it does not consume battery energy unless it is used (enabled) [8].

Fig. 4.2 - Battery sensing circuit [8]

20

Since the environment in which the sensor node function is a relatively cold one, techniques

for extending battery life are very important and should be considered. These techniques are

not discussed in detail here since there is literature on this particular topic [9].

21

4.3 Detailed Hardware Description

4.3.1 Physical case construction

The production of the proposed prototype was done in several steps.

First, the shape of the device an issue: should it be spherical? Cylindrical? Or Like a cube?

The decision to make it have a cylindrical form has been made because it is easy to

manufacture and, most importantly, most buoys have a cylindrical shape. So if something is

already proved to work and it is used in many different scenarios, then it is a good idea to

also use that design.

The second part of the design was to decide on the size of the device. This had to be done

taking into consideration several issues such as the ability of being deployed in water easily,

the size of the battery that can be fitted inside, and the size of the electronics that go inside.

After careful consideration on the availability and size of the hardware that can be fitted

inside, the next step in designing the case was to use a 3D printer and print an initial

prototype. This step was repeated 2 times until the size of the device was fine-tuned in an

optimal way.

The last step involved making the cylindrical shape out of PVC water resistant plastic. Not

much effort has been put in optimizing the weight of the device. It was made from materials

that were available at that time at the workshop of the university. The work was done by the

employees there.

The next figure shows a vertical section of two sections of the sensor node. It shows how the

design decision has been made so that when joining them they will form a watertight seal.

There are basically two important dimensions. These are marked in the figure as D1 and D2.

One section is made of a cylinder which has its bottom outer diameter D2 and its top outer

diameter D1. They are designed in such a way that they would fit into one another (D2<D1).

Each section comes at the bottom part with a rubber O-ring. When joining together two

section this O-ring acts as a good water sealant. Furthermore after uniting 2 modules, they

are to be fastened together with screws (blue color in the figure). The screws are made of

22

metal and they are corrosion resistant so that they can withstand the harsh conditions of the

ocean waters. The position of the screws is above that of the O-rings. This has been done so

that there would be no holes drilled inside the compartment that is to be water-tight. In case

any water goes in through the screw hole it will stop when it gets to the rubber O-ring.

This design was proved to work and was tested to be water-tight, therefore the final protoype

has been realised in this way.

Fig. 4.3 – Vertical section through the sensor node

23

The next figure shows a side-by-side comparison with what has been initially designed on a

computer and a picture of what has been realised in the end. As it can be observed, this was

a case when expectations met realiy and what has been theoretically designed at first, has

been implemented, tested and proved to work in the end.

Fig. 4.4 – 3D Graphic design of the device (left); M anufactured prototype (right)

24

The tests carried out to prove the water-tightness of the device were of 2 kinds. First test was

to fill it with water and then place high sensitivity paper around the joints. If the test would

fail and any drop of water were to reach those pieces of paper it would have been clearly

observed. The device was left for around 10 hours under normal pressure and temperature

conditions and it was a success.

The second test carried out involved completely submerging the device in water and again,

live if for around 10 hours. This time, humidity indicator paper was placed inside the sensor

node and the results were similar, it proved to be water tight. This test was carried out with

the device submerged only a few centimeters under the water.

The device is modular, therefore each section has a specific purpose. The developed prototype

has 3 main sections (as it can be seen in the previous image) which will be described in detail

in the next subchapters.

An overview of the entire hardware can be seen in the next figure.

Fig. 4.5 – Sensor node prototype and attached components

25

4.3.2 Top M odule Description (Module 1)

The top module of the device contains 3 main parts: the radio communication module, The

GPS module and the antenna for these.

GPS M odule

The GPS module used in this project is a generic one (GPS-610F provided by RF solutions)

It has standard UART interface and the protocol used is NMEA. The reason behind this

choice for this kind of module is its ease of working with and the fact that it can support an

external antenna (passive or active). The main GPS chip is already soldered on an interface

board and it offers easy access to the most important pins.

The downside of choosing this particular model is that it does not have a power-off pin to

shut it down for power saving purposes.

Radio module

In choosing the appropriate wireless radio communication module some investigation has been

made. To start with, the output power of the module and the frequency at which it worked

had to be open and regulated and approved to work in Europe. Also it should not interfere

with other frequencies that are used in the UAV for telemetry.

The following table (Table 1) shows a number of devices that were considered for this project.

Very detailed comparisons and tests for the performance of all of these was not carried out

since it is beyond the scope of this current project. Just the basic characteristics were

considered when the choice was made. Cost, range, power consumption and, very important,

module and antenna size and shape were key factors that influenced the final decision.

26

Out of the 5 possible devices some were immediately not considered: Module number 2 from

the table is the same module used for the UAV telemetry therefore it was the first to be

removed. Also with that, the 433 MHz frequency became unavailable. Even though several

devices can use the same base frequency, to try to avoid as much as possible interference it is

good not to have many devices running at the same frequency.

It is reasonable to say that the remaining devices were of 2 categories: XBee/Zigbee modules

and Radiocrafts modules.

The main difference between these is the protocol they are using. Module number 1 and 3 use

an XBee - ZigBee based protocol and the Radiocrafts module use an embedded RC232

protocol.

It is well known that XBee/ZigBee type modules are mainly used when extra network

functionalities are needed. They provide functionalities for devices to work as Coordinator,

routers or end devices. Besides all this, they have different topologies that can be adapted to

many scenarios.

Our current usage scenario does not require that much protocol overhead and configuring

such devices to fit our current needs might be unpractical so the more robust and lightweight

protocol of the Radiocrafts module was considered to be a better option. Therefore the selected

Option Name VCC Power

- TX

Power

- RX

Range Data

rate

cost

(euro)

1 XBee-PRO 868 3.3V 500mA 65mA 40km 24kbps 65

2 3DR Radio 433Mhz

"Air" module

(Europe)

3.3V 100mA 25mA 1.6km 250kbps 25

3 Zigbee/802.15.4

865/868LP RF

2.7 to

3.6

VDC

48mA 27mA 4km

max

80kbps 20

4 RADIOCRAFTS -

RC1280

2.8 to

5.5

VDC

28mA 21mA 1-2km 4.8kbps 60

5 RADIOCRAFTS -

RC1280HP

3.2 to

4.2

VDC

700mA 21mA 5-6km 4.8kbps 80

Table 1 – M ain characteristics of several radio modules

27

module to be used was the Radiocrafts - RC1280 module. The high power one is more

expensive both money-wise and power-wise. Range and data loss tests for the RC1280 module

have been performed and will be described in a next chapter.

Another feature that was taken into account when choosing this module was the fact that its

interface is a standard UART interface. Although the datasheet specifies the working voltage

for the UART interface of the module as being 3.3V tolerant the truth is that the UART

levels are at 2.7V. Therefore a level shifter needs to be used to be able to properly interface

the module (see Appendix A).

The next figure (Fig.4.6) shows the main differences between these 2 protocols.

Antenna

The antenna used is a GSM combo puck antenna. It supports a variety of frequencies and it

encapsulates two physical antennas in one package. One was used for the GPS module and

the other one for the radio module. This kind of package was suited for the required space

constraints of the sensor node.

Fig. 4.6 – Zigbee network topologies (left) and Radiocraft network topologies (right)

28

4.3.3 M ain Controller M odule (Module 2)

The main controller board of the embedded device has at its core the ATxmega 192C3 8bit

microcontroller. The board size is 5cm x 4cm and it is a 2 layer standard width circuit board.

The board has been custom designed to be used in the sensor node as it was made to be as

small as possible and to offer a good modularity and adaptability in the future. The

manufacturing of the custom PCB was done using a milling machine, therefore several

limitations on vias under chips exist. All the details (schematic, PCB Layout and detailed

pictures) can be seen in appendices.

Besides the main microcontroller the board has a SD card slot, a RTC oscillator and a RS-

485 bridge circuit. Most pins of the microcontroller have either been separated and designated

to a dedicated module or bus or have been laid out and exposed on the board for future

expandability.

Two prototypes of the board have been designed and soldered. The second version is the

version currently in use and it is an improvement of the first variant. Still, both versions of

the PCBs have been tested to work and partially work (the first one having some limitations)

and that will be presented later on.

The board is powered directly by a regulated 3.3V source. All the pins of the microcontroller

that are to be used to connect the different modules are placed near the edge to facilitate the

connection of other devices to it. Power and ground to the external components connected to

the board have also been placed near the edge. A programming header is also present on the

board making it easy to flash and debug.

In this module of the constructed prototype some sensors have also been placed: a temperature

sensor and an IMU (accelerometer, gyroscope and magnetometer).

Both sensors are connected on the same I2C bus and they act as 2 slaves while the

microcontroller is the master. Both of the devices have been tested and proved to work using

the same shared bus.

The main application in which an IMU sensor can be used in such a device is for calculating

wave amplitude and frequency. This kind of application can also be known known in the

scientific community as localization based on accelerometer and gyroscope. [28][29].

29

The next graph (Fig.4.7) shows the raw, unfiltered data sampled from the gyroscope. The

sample rate is 5Hz. It is easy to observe that the data is nowhere near the point at which it

can be used for meaningful wave height calculations. Filtering of the data and other

compensations are required to achieve that.

An example of how an algorithm for relative position calculation can look can be seen in the

following figure (Fig.4.8) It is largely based on the work seen in [28] and [28] and will not be

presented in greater detail since it’s beyond the scope of this work.

Fig.4.7 – Plotted gyroscope measurements

30

4.3.4 Power Supply M odule (M odule 3)

The third segment built as part of the embedded device is responsible for supplying all the

circuits. It has a battery pack and a 3.3V voltage regulator. (see appendix A)

In choosing the voltage regulator two options were considered:

The first one was to use a step-down converted and the second one was to use a low-dropout

linear regulator. Both of these options were compared and tested.

The next table shows measured and calculated values for the current consumption of the

devices. Some of the values were measured in the lab and where measurement was not possible

in a straightforward way, the datasheets values were used.

Fig..4.8 – overview of relative positioning algorithm

31

Component(s) M ode/Characteristics Consumption

(mA)

M easurement

M ethod

GPS module no attached antenna, searching

for sattelites (Enhanced-mode

Acquisition)

74 Lab

measurments

GPS module attached active antenna,

searching for sattelites

(Enhanced-mode Acquisition)

88 Lab

measurments

GPS module attached active antenna,

searching for sattelites

(Tracking mode lock on 6

sattelites)

66 Lab

measurments

GPS module module in RESET mode 37 Lab

measurments

IM U sensor normal operation mode 4 Lab

measurments

Radio module receive mode + consumption

of level shifter

26 Lab

measurments

Temperature

sensor

normal operation mode <1 Datasheet

RS-485 bridge no load 2 Datasheet

All components normal sampling and

transmitting mode, + linear

regulator, no writes to SD card

220 Lab

measurments

All components normal sampling and

transmitting mode, no linear

regulator, no writes to SD card

180 Datasheet

DC Step-down

converter

efficiency is minimum 90%

depending on the charge

varies with

voltage

Datasheet

Linear

regulator

(LDO)

Quiescent Current max 12 Datasheet

A comparison on the voltage regulators used can be made using the table above.

 Computing power loss for the step-down converter:

If the efficiency is 90% then it means 10% (L) of the energy gets wasted.

Table 2 – current consumption for some of the devices

32

This means:

L x V x Itotal = DC-loss

10% x 3.7V x 220mA = 81.4mW

Where:

L - The percentage of energy lost

V – Battery voltage

Itotal – Measured current consumption of the entire device (see Table 2)

 Computing power loss for the step-down converter:

V x Itotal – Vcc x Idevice = LDO-loss

3.7V*220mA - 3.3V * 180mA = 220mW

Where:

V – Battery voltage

Itotal – Measured current consumption of the entire device (see Table 2)

Vcc – 3.3V required to supply all the circuitry

Idevice – calculated current consumption without using any regulator.

This means that by using the step-down converter the power wasted is only 40% when

compared to low dropout regulator.

4.4 Conclusions on hardware

This chapter has been dedicated to the most important hardware components that are used

in the design of the sensor node. It should also be pointed out that all sensors and peripheral

devices are chosen in such a way that they offer various sleep modes of operation. This, in

combination with the sleeping modes of the main microcontroller make a device that is low

power and runs at fully capacity only when needed. The rest of the time it just sleeps in order

to save energy.

33

5. Software Design and architecture

5.1 Introduction on software architecture

It is important to understand that in today’s software projects code modularity and

reusability has the greatest importance of all time. Because of how much the hardware has

evolved, speed simply is not the only parameter that evaluates one’s piece of code but rather

modularity, reusability and expandability.

To try to satisfy these characteristics there are many different paths to follow. For example

having fixed and well-known design patterns into your software represents a huge leap forward

into making your piece of code more understandable and modular. There are many popular

software design patterns today but most of them apply strictly to object oriented high-lever

programming languages. Nevertheless there are still some design patterns and OO-language

specifics that can indeed be implemented in pure C language and used in embedded software

[10].

5.2 Design patterns

Design patterns are not finished designs that can be converted into running code. They are

mainly a description or a template for how to solve the problem. They provide a general

solution to most common problems in software. The whole challenge becomes how to reduce

your problem into a well-known problem that has already been solved by the community and

then apply a design pattern on that known problem.

The sensor node has at its heart an 8/16-bit microcontroller, therefore the programming

language for that is embedded C and/or assembly language. This means that certain object

oriented languages specifics cannot be used. However with careful programming and well

written code, to a certain degree some very important OO-languages properties can be

obtained.

34

Let us take, for example, the concept of public and private to functions. The C compiler does

not know about abstraction or encapsulation so, we have to enforce these by imposing some

set of rules that each programmer must respect [8]. The first rule for achieving a

public/private type of function behavior in C is to place the declaration of public functions

and variables in a separate file from those which are private to a module. Another rule is to

only allow the use of headers from public declarations in the #include directive. And, a third

rule, which is a bit difficult to respect in a large software project is to embed the type of the

function in its name. This is also called as the Hungarian Notation [11]. Also, “private” and

“public” words can be added to header, source and function names. This way it becomes very

clear when you are violating private and public modifiers when importing the header files and

using the functions.

5.3 Software architecture on the embedded device

Taking all these issues into account one design pattern very much used in the software

engineering filed today can be easily adapted to our need. It is the observer pattern [13].

This design pattern is used in system where there is a subject (in our case coordinator) which

has several observers registered to it. Each observer must satisfy a well-defined form and must

have some pre-defined functions. In our case an actual observer is a concrete sensor attached

to the device and all sensors, no matter what their functionality is, must implement an

abstract interface that has functions to configure and control the sensor. The coordinator then

holds a list of these registered observers (devices) to it and when it wants to control them it

just iterates through the list and call one of those generic functions. It is not the task of the

coordinator to know each particular detail of each attached device but rather, it is the

responsibility of the device to implement and use a well-defined interface that is to be used

and known by the coordinator. All of the concrete sensor objects can be added and removed

to and from the list of sensors dynamically, without code recompilation. This is a clear

advantage over standard solutions because, if something bad happens to a sensor it can be

simply removed from the list, without requiring to reprogram the microcontroller.

35

The figure above (Fig. 5.1) shows a UML diagram of how observer pattern is to be

implemented on the embedded device but not all the implementation details are included.

This pattern is mainly applied in object oriented programming languages but there is a way

to implement it in C [12] and, therefore it can be implemented in embedded C and the code

for it can run on the microcontroller.

The above example is only an illustration, in real case implementation, several sensor lists

may exist, each of them categorizing sensors based on their usage and on the interval at which

they are sampled.

It is important to mention that the configuration parameters transmitted to a concrete sensors

are not directly transmitted by the coordinator. They are read from header files specific to

each sensor and/or from a configuration file found on a non-volatile memory storage system

(each sensor node has a micro SD card with FAT file support).

Even in the case that the coordinator issues a command to sample data for all the sensors,

the actual data might not be transmitted back to the coordinator but, written to a file on the

storage device or sent via the wireless medium. Basically, the code for the coordinator is

written in the main source code file of the project and the files specific for sensor are written

in header files and configuration files found on the storage media.

Fig. 5.1 – UM L diagram for the observer design pattern

36

This kind of code organization leads to better debugging and in the future, with a proper

documentation it will be very easy to add new functionalities to the device.

To prove the feasibility of such an architecture a sample code has been written and tested.

(See attached digital content) The current sample code has been tested on an x86 machine

and implementing it on the microcontroller is one of the future tasks. Other alternatives for

implementing this will also be treated in a next chapter

In comparison to other embedded devices used today in practice as seen from the perspective

of a real time operating system in our device, even though a fully working real time operating

system will not be used, particularities of a RTOS are to be implemented. For example we

would like to have the concept of “concurrent” tasks, non-blocking functions, some memory

allocation capabilities (when reading and writing to and from external flash) and, most

important, separation of driver code and application code. Where and how these

particularities are important in this current system will be described in a later chapter.

37

5.4 DUNE

DUNE Unified Navigational Environment is a runtime environment for software found

onboard of vehicles. It is developed by the Underwater Systems and Technology Laboratory

(LSTS) located in Porto. It offers an architecture and operating system independent software

framework for navigation and control of specific unmanned vehicles such as UAVs. It basically

represents a composition of tasks specifically designed to be loosely coupled, to work

independent, concurrent and to communicate with each other. The framework is based on

POSIX threads, therefore it requires an underlying operating system that supports that. Using

DUNE for the embedded node is out of the question (we have an 8/16-bit microcontroller not

a UNIX capable device) however, DUNE will run on the UAVs designed to communicate with

the sensor node and therefore a certain communication protocol is required between the two.

The sensor node must communicate with any device running DUNE [14][15].

In order to make this possible a new kind of DUNE component (task) is to be coded. This

component is used for communicating with the sensor node and to act as an intermediate

between the sensor node and the end-user software, NEPTUS. Any device running DUNE

that wishes to communicate with the floating sensor node must have a running task

specifically for this.

Each DUNE task communicates with another DUNE task inside the same environment or to

another device running DUNE using the message passing concept. All tasks must comply with

a well-defined communication protocol and on the message bus only messages that correspond

to that format exist. The communication protocol used in DUNE is called IMC and will be

described in a later chapter.

What is important to mention here is the DUNE driver component that is to be implemented

and used to communicate with the sensor node. It serves 2 main purposes: First of all it takes

care of the communication between the actual sensor node and the device running DUNE.

The communication is external to the device and it is done wireless. The device running

DUNE is also using the wireless communication module described in a previous chapter,

therefore the first job of the DUNE component is to have a driver that is used to interface

the wireless communication module. The second job of the DUNE component is to read and

38

write data and commands to and from the sensor node and to relay the data to NEPTUS. It

is basically like an interface for the NEPTUS to communicate with the sensor node.

5.5 NEPTUS

Neptus is a Command and Control software used to monitor and control unmanned systems.

It is written in java making it cross-platform compatible. Neptus is used as an interface

between devices running DUNE and the end-user. It communicates with such devices using

the IMC protocol (which will be described later), making it compatible and interoperable with

any type of device running DUNE. A key advantage of proceeding this way is that at the end

you have a unified way of communicating with heterogeneous classes of autonomous vehicles

and sensors.

Neptus is a framework that has the characteristic of being adaptable and flexible. Plugins can

be created for particular needs and can easily be integrated with the main program source.

Plugins can even be added as already compiled java .jar files. This way a convenient way of

hiding code and intellectual property is achieved.

5.6 Conclusions on software

In conclusion the software part of the project is split into 3 main categories:

1. The software that runs on the sensor node, responsible for interfacing the sensors and

measuring data.

2. The software that runs on the UAV under DUNE that is to communicate with the

sensor node.

3. NEPTUS Application used to monitor the sensor from the end-user perspective.

The first two in the list are to communicate using a very well defined protocol. Since all UAV

communicate with the sensor node using the wireless medium a lot of issues arise here: Data

loss? What happens when a UAV is in reach of 2 or more sensor nodes, with which one does

39

it communicate? And what happens when you send a fleet of UAVs, for example

quadrocopters to pick-up several floating sensor nodes from the ocean? One single sensor node

could communicate with 2 or more UAVs.

These protocols used to address these issues will be described in the next chapter.

Viewed from a higher level an overall architecture of the system is presented in the next figure

(Fig. 5.2). What has been described in the previous paragraph (the DUNE task) is represented

by the green block in the figure.

Fig. 5.2 – Communication flow between the sensor node, the UAV running DUNE and a

computer running NEPTUS

40

6 Communication protocols

6.1 Introduction on communication protocols

A communication protocol is defined as a system of digital rules for exchanging message

within or between computing nodes. Any kind of software or hardware application must use

clearly defined communication protocols. These protocols must define a syntax, must have a

clear semantic and some sort of synchronization mechanisms.

In this current project there are 2 main areas in which communication protocols have

relevance. One is between the sensor node and the UAV and the other is between the UAV

and NEPTUS application.

6.2 IM C

IMC stands for Inter-Module Communication [13]. It is a message oriented protocol with main

usage in networked vehicle and sensor operations. It defines a common message set that all

systems understand and use for communication between nodes in the same network,

particularly, in our case DUNE tasks. The whole IMC standard is fully documented and

designed inside a single XML file which, in turn can be translated using XSLT (Extensible

Stylesheet Language Transformations) into different language bindings.

Each IMC message has a defined structure. It is composed of a header, a payload and a footer.

An example of a message format is given in Fig.6.1. The standard defines a limited number

of predefined messages made unique by their ID. All messages must have a fixed header and

footer and the payload is the only thing that differs from one message to another. Of course,

the standard also allows the creation of custom IMC messages but these, in turn must satisfy

certain rules and must submit to a naming convention for their message ID. Some of the

predefined messages include: Revolutions per Minute, Voltage, Current, GPS

Fix,Acceleration, Magnetic Field, Distance, Temperature, Pressure, Depth, Depth Offset,

Sound Speed, Water Density, Conductivity, Salinity, Wind Speed, etc. [16][17].

41

Having this in mind an overview on the system (from the communication perspective) can be

seen in the following figure (Fig.6.3). The IMC message bus has various messages dispatched

to it among which are messages coming from the sensor node driver (marked in the figure).

Fig. 6.1 – IM C message example

Fig. 6.3 – IM C message bus and DUNE tasks configuration example

42

In essence, the messages that are found on the bus can come from any source and, for the

consumer tasks of the message that are transmitted by the sensor node driver it is irrelevant

that the actual data comes from somewhere far away through wireless communication. That

processing and parsing of data is strictly handled by the driver itself and is completely

transparent for the other running tasks.

With these having been specified it is now clearer why the overall design is loosely coupled

and a high degree of modularity is one of the system’s strong points.

43

6.3 DUNE and Sensor Node protocol

The exchange of messages between the two comprise of 2 main message types: data messages

and control messages.

Data messages can be from the sensor node to the UAV consisting of currently or previously

monitored sensor reading. From the UAV to the sensor node data can represent configuration

files to be written on the flash memory (SD card) of the sensor node, for example for modifying

measuring intervals and sensor configuration parameters.

Control messages are exchanged between the two before and after any data exchange and

most during sensor deployment and pick-up from/to the ocean surface. For example, during

pick-up operations, the 2 devices need to know their exact position, orientation and heading

in real time. Control messages may also include diagnostics, power-on or power-off commands,

etc.

Having this in mind 2 approaches at defining such protocols have been considered:

6.3.1 First option for the protocol (IM C based)

In order to maintain a certain level of consistency, the IMC message protocol described earlier

is used as a basis for a new protocol. Each message (data or command) will have a structure

similar to an IMC message structure. Although it is not pure IMC protocol the standard is

used as a basis for all message formats.

Considering this approach, one advantage arises: There is no need to rethink the new protocol

details, since you are using something that has been used before and proved to work and with

proper documentation.

The code listing provided in the next figure (Fig.6.4) shows how a basic IMC message-type

can be implemented on the embedded device. It is a simple temperature message. Note the

header and footer data structures that will be the same for all messages and keep their fixed

format. This way a basic interpretation of any message can be done without actually reading

the payload data and filtering/validation can be done based only on message ID source and

destination.

44

The messages to and from the sensor node(s) and UAV(s) are broadcasted. Each device within

range can pick-up and read the message. But the message filtering is not done on the transport

or network layer but in the application layer based on the header of these messages. This can

be helpful in the sense that new filtering rules can be easily applied to messages without any

driver/hardware reconfiguration.

Implementing this solution in practice and making it work raises several challenges. First of

data types such as float and double for the AVR Compiler are the same. They offer the same

precision. At the same time, for any capable device running dune, float and double have

different precision. Also memory organization (endianess) is also an issue. The next figure

shows how the data is stored in memory on the AVR architecture (left) and on the right we

have the data received in DUNE. The highlighted numbers show the difference between big

and little endian. Although this is not at all a big issue another approach at implementing

the protocol was considered.

Fig. 6.4 – IM C-like structure definition listing

45

6.3.2 Second option for the protocol (IM C-NM EA based)

The second option, which is easier to implement is based on the NMEA GPS protocol [18].

Basically every message is a sentence transmitted as a string of characters, numbers,

separators and a CRC checksum field. Every such sentence has the same basic fields as the

IMC data fields.

Description and examples:

All messages have the following format:

$msgid,source,destination,data*CRC

 msgid – a message identifier (ex: TEMP, GPSFIX, GYRO, etc.)

 source – a 4 digit base 10 number

 destination – a 4 digit base 10 number

 data - variable for each message type

 CRC – checksum of the package (hex)

 IDs lower than 1000 are reserved and considered a broadcast address

M essages from the UAV->Sensor node:

Fig. 6.5 – Endianness issues

46

Source is always a UAV ID, UAVs don’t communicate using this protocol with each other.

Destination, is the ID of the sensor node to which the data is addressed. It is a number

between 2000 and 9999

M essages from the Sensor node -> UAV:

Source is an ID unique for each sensor node.

IDs between 1000 and 1999 are reserved for UAVs

Destination is always a UAV ID, sensor nodes do not communicate with each other.

Examples:

msgid=TEMP

data is a floating point number, 3.2 digits format

example:

$TEMP,2001,0001,025.75*23

msgid=GPSFIX

data is represented by multiple fields

latitude is a floating point number, 4.7 digits format longitude is a floating point number,

4.7 digits format

altitude is a floating point number, 6.2 digits format

example:

$GPSFIX,source,dest,latitude,longitude,height*56

$GPSFIX,2002,0003,0063.4120751,0010.4292460,000148.39*56

In the proposed prototype this second option has been used.

47

7. Application M odes and Software States

7.1 Introduction

Generally, in engineering (automata theory and computer science) a state of a computer

program is a technical term used to described the stored information at a given instant in

time. More in particular, a state of an embedded device has, along with the information about

the state of the data, the output and input signals of the actual circuit [15].

This chapter is mainly focused on the states in which the embedded device (sensor node) can

be and will not focus on the software states of the UAVs that interact with these sensor nodes.

7.2 Basic states description

The next figure (Fig.7.1) shows the basic states in which the sensor node can be at any

particular moment time. State transitions are not named in the figure but will be described

in detail.

48

As anticipated, the system has a well-defined starting state to which it cannot switch back to

once it has been through all the processing that is involved in that state (although certain

functionalities of this initial state can be re-executed under certain commands and conditions

but this will be treated later). This initial state is mainly responsible for the starting up of

the system, loading of the drivers, initializing the very important filesystem, configuring the

microcontroller frequencies, allocating the necessary memory for the peripherals used and,

performing an initial self-check and calibration of the sensors and other peripherals attached

to the microcontroller. As mentioned in a previous chapter, most of the configurations used

in the system are located in files on the microSD card. If anything fails during this stage there

is no point for the device to proceed to the next states and the system enters in a “problem”

state or it hangs. This is not represented in the figure. This is why this initial state must be

separated from the rest. Basically the ways in which the device can enter the “problem” state

are not deterministic and this is out of the scope of the current discussion. We can just assume

this state represents any way in which the device is not functioning, including hardware

failures, power failures or even physical damage.

The monitoring state is the state in which the device will be most of the time. During this

state it constantly samples data from the sensors and stores it for later transmission to the

UAV.

Fig. 7.1 – Basic software states of the embedded device

49

7.3 Example scenario for state switching and transitions

Even though a real time operating system will not be fully implemented on the device some

OS-like features will be used. One such example can include concurrent “tasks”. The device

transits from the monitoring state to command and control state only when the UAVs “tells”

it to. For this to happen there has to be some sort of polling or interrupt-based mechanism

for the node to “know” when it is in range of the UAV and vice versa. Therefore, in parallel

with the polling of the sensor task there is another task (interrupt) that runs constantly to

check and see if there is a UAV within range. If so, the device enters the command and control

state and waits for commands from the UAV. The commands can be as simple as an

identification request or as complex as reconfiguring the device parameters or large data

exchange. Nevertheless, no matter what kind of commands it receives and executes, or for

how long it stays in the command and control states, there has to be this particular and

separate working state of the device.

For the device to conserve as much power as possible a good way of detecting when a UAV

is in range of it is needed. For this purpose the UAV is the one that continually polls for

signals coming from the device and the sensor node, in turns, send basic ping messages at a

predefined time interval. The next figure (Fig.7.2) shows a scenario in which the sensor node

changes states through basic interaction with the UAV.

The timing diagram corresponding to a) represents the moments in which the sensor node

samples data from the sensors and writes that to the storage medium.

50

The task that sends ping messages for the UAV to be intercepted if in range is marked by b).

It should be mentioned that a) and b) in the figure are tasks (or interrupts) running

concurrently on the sensor node during the monitoring state. The intervals between the tasks

in the figure are only to provide a rough estimate of how the system works. The period

between sampling activities – timeline a) can be tens of minutes or even hours and the period

between ping messages intended for the UAV are only a few seconds but there may exist

times of day in which the node does not send these messages. For example, in order to save

power an offline scheduling policy for this time intervals can be made. We can assume that

during nighttime the sensors will not be picked up and no UAV will fly above them so, just

by taking this into account out of 24 hours in which the device can send these messages we

can reduce them to 12, 8 or even 6. Many other variations for these schedules can exist: only

send these messages during certain week days or only during odd/even hours, etc.

The diagram c) represents a task belonging to the UAV responsible for polling of the sensor

node. Diagram d) represents the states in which the sensor node is.

The scenario described in the figure is as follows: The sensor node is floating on the ocean

surface while constantly monitoring data – task a) and at the same time sending messages in

the clear, to be picked up by any passing UAV – task b). At the moment T1 the UAV is in

range of the device. The UAV stops polling for the node because it found it – task c). The

Fig. 7.2 – Timing diagram showing UAV and sensor node basic interaction

51

node also knows that it was found, it stops sending ping messages and sampling data and it

enters command and control mode. Between T1 and T2 the sensor node receives and executes

commands from the UAV and is in the command and control state. At the end of this time

interval T2, the sensor node and UAV have finished exchanging data, the sensor node goes

back to the monitoring state and the UAV flies away, this time without polling any more for

any new device since it has finished its mission.

Since power consumption is a big issue, the sensor nodes sends ping messages, waits for a

response and then goes to sleep. This is done at a rate that is given by configuration files

found on the device, usually a few seconds as mentioned before. The time interval between

these messages must be carefully chosen, taking into account the minimum speed at which a

fixed-wing UAV can fly and the typical range of the wireless module onboard the sensor node.

For example if the minimum speed for the fixed-wing UAV is 13m/s and the range of the

wireless module is, for example, 1.3km (radius) resulting in a 2.6km diameter range, the UAV

would be in range of the sensor for about 200 seconds. This means that the period at which

the sensor node sends its ping messages should be at least once every 100 seconds for the

device to be detected by the UAV. But these figures are pure theoretical, many parameters

such as weather and atmospheric conditions might affect the communication range and in

practice the frequency at which the ping messages are sent would be much higher, taking into

account that you also need to exchange data between the two and not only detect the floating

device.

7.4 Dynamic workflow example

The monitoring state of the embedded device is its main working state and requires a more

detailed description. The static representation of how it works was presented in a previous

chapter, the observer design pattern is used for that. The dynamic workflow of the device has

not yet been presented.

The next flowchart (Fig.7.2) partially shows the dynamic workflow of the software on the

sensor node, starting from the initial state and proceeding to the monitoring state.

52

Fig. 7.3 – Basic flowchart partially showing the software workflow on the sen sor node

53

The next few paragraphs describe what happens in each step represented in the previous

flowchart, Fig 7.3:

(1) Configure M CU Parameters. It is the first set of operations carried out by the

microcontroller. It configures the clock systems, basic drivers for peripheral

communication, clock and calendar type functionalities, enables and configures

interrupt routines and prepares basic boot-strap of the soon to be started tasks.

(2) Configure M CU core devices. In this step the microcontroller loads the drivers

for its base core devices attached to it. No sensor node will be without a GPS

module, a micro SD card for storage and wireless communication. These peripherals

need to be configured and started and that is done in this step.

(3) Configure and start all connected sensors. All the sensors that are to be used

in the sensor node need to be configured. During this step the MCU load and

configures the drivers for the peripheral communication

(4) Self-check and calibration for all sensors. In this step all the connected

sensors to the device have their initial run and sample their first few measurements.

For example, for a temperature sensor a self-check function might be measuring

the temperature and comparing it to a certain interval in which that temperature

should be. If the temperature is not between a reasonable range, it means that

something is wrong with the sensor.

(5) Sample sensors and save data. It is the most executed step of all. Here all

functional and active the sensors that are connected to the device are sampled and

their data is stored on the storage medium, the SD card and/or sent to the UAV

(6) Enter sleep mode. After the sensors have been sampled the device is to enter

sleep mode and wake up after a certain pre-defined time. This step is optional,

depending on the usage scenario of the sensor node

In practice when the sensor is first started it might be on the ground, even before loading it

onto the UAV and it will be dropped in the ocean already started. In this case, step (4) and

the example given in that with the temperature of the ocean would apply for the ambient

temperature of the location where the node is first started. From the command and control

state the execution flow can jump into most of the steps described above. For example, the

UAV can give the command to re-initialize the system.

54

The previous flowchart and descriptions only show and describe the normal workflow of the

program. In reality the device is programmed to also handle several interrupts. These

interrupts are presented below:

Fig.7.4 – Interrupts and their dataflow in the embedded device

55

To better illustrate the dataflow of the whole system (including interrupts) a rough scenario

is presented in the figure below:

The timelines a), b) and c) are the interrupts presented earlier. The period at which they

have been represented has been scaled in order to better illustrate their interaction. Timeline

d) is the main program flow and it can be seen how it is interrupted by any of a), b) or c).

An example scenario is as follows: When T1 occurs the bytes received by radio module -

interrupt a), are enough to be decoded and interpreted into a command. The command in

this case is to stop monitoring. After the end of the interrupt routine the device has stopped

its monitoring state (note d) and c) in the figure) but the main program loop still continues

to run and interrupt are continued to be served and processed.

Fig.7.5 – Timeline diagram of the program flow

56

8. Tests, Results and Discussions

8.1 Introduction

This chapter is entirely dedicated to describing the tests that have been carried out and

making some conclusions based on the results obtained.

Tests are split into 2 main categories: indoor/lab and outdoor tests. Throughout all the

development phase small tests have been carried out (for example proper writing to the SD

card, correct functionality of the software on the embedded device, data integrity on the I2C

bus, etc.) These tests have all been part of the development and are not described in detail.

The overall system tests and proof-of-concept demonstration shall be treated in this chapter.

8.2 Field Tests

8.2.1 Radio module range test

The main purpose of the first field test was to see and measure the range of the radio modules.

The test setup was composed of the two designed versions of the PCB, one of them was using

the linear converter for the power supply and the other one was using the step-down converter.

Test scenario: One node of communication was placed in a fix, predefined place and not

moved throughout the entire experiment. It was programmed to send data packages via the

wireless radio interface (Radiocrafts RC-1280).

The second sensor node has been fitted with a GPS module. It was programmed to receive

any incoming data from the wireless module, and write that data received along with a

timestamp and GPS coordinates on the SD card. Basically, this test has checked the

functionality of the SD card, radio module, GPS module, voltage regulators and several GPIO

pins used to control some status LEDs.

57

The next picture shows the 2 devices tested and the way in which they have been set up:

Test scenario:

After placing in a predefined fix position the sensor node programed to send data. The second,

mobile sensor has been moved around the area in approximately 1km radius from the fixed

sensor.

The next image shows the trace of the moving sensor. It is drawn using the Google maps API

[19]. The red line trace represents the location at which the mobile sensor received data from

Fig.8.1 – Radio module range test setup

58

the fixed sensor. Distance measurement was done using the built-in tools provided by Google

maps

Test Results:

The results of the test were very promising: The maximum distance at which the 2 modules

communicated was 660m. This leads to a potential area equivalent to a circle with the

diameter of 1.3km. Although the test conditions were not ideal, this result led to believe that

a valid communication between a UAV and a sensor node in the water at that distance can

be successfully achieved. A better test scenario would have involved a different location, far

away from the city and any radio interference that are present in a city.

Fig.8.2 – Tested mobile sensor GPS trace

59

8.2.2 Complete system tests on land

The next tests are perform in order to check the feasibility of the entire communication flow

presented in chapter 5. A key difference from the previous test is that one more module has

been added to these tests: a UAV. The UAV used is an X8-flying wing and its payload include

a pandaboard and several mechanical/electrical additions (see appendix C) which was

programed and set up to start DUNE software framework which was presented in a previous

chapter.

The pandaboard is running Linux and a DUNE task has been written to read the incoming

data from the serial port parse it and pack it into IMC messages. After that, the received

messages were sent to DUNE via a 5 GHz link.

Test scenario and setup:

To be able to test the system flying a UAV was required. The test location was Breivika,

Agdenes, Norway. The sensor node has been placed on land. The UAV was flying above it to

collect its data and to forward it to a base station. The next image shows a snapshot of the

test procedure, its main components and interactions.

Fig.8.3 – Filed test setup on land and component interaction

60

In this test scenario the sensor node has been programed to sample data, send it to the UAV

and log it to the SD card as well. No sleep modes have been used. The data sent by the sensor

node is composed of temperature read and its GPS coordinates.

The pandaboard in the UAV payload is running a DUNE task that reads the data coming

from the sensor node, logs it and at the same time, sends some data back to the sensor node

and also forwards the received sensor data via UDP connection the 5 Hz link to the base

station.

The base station is a computer running DUNE software which is also connected to a ROCKET

M5 5GHz Hi Power 2x2 MIMO AirMax TDMA BaseStation

Test Results:

The flight took 14 minutes and throughout the entire time there was a valid data link between

the sensor node, the UAV and the base station. The next image shows the flight path of the

UAV. The sensor node has been placed in the center of the red circles represented on the

map. The maximum distance at which the UAV was from the sensor node was 100m on the

horizontal axis and 100m in altitude.

Fig.8.4 – Flight trajectory of the UAV in the land test (generated with Google earth)

61

The number of messages (GPS position and Temperature) that have been sent from the sensor

node to the UAV was about 438. All these messages had a checksum field attached and there

was only one checksum fail during the entire flight. This means that the packages lost due to

invalid transmission from the sensor node to the UAV was minimum.

A different situation was in the messages sent from the UAV back to the sensor node. The

data packets that are sent from the UAV to the sensor node are supposed to be commands

and configuration files. In this test scenario the data (commands) received was not interpreted,

it was just logged on the SD Card.

The results were quite surprising. In the next image we have a snipped of the data that was

supposed to be received (left) and on the right we have the data that was actually received.

Since no CRC field was added to these data packages even the corrupt ones have been logged.

Computing the validity of the entire log file results show that only 13.38% of the received

“12345678” packets were valid, the rest was corrupt.

The link between the UAV and the base station is more stable and robust. The messages sent

from the UAV (pandaboard) to the base station (laptop computer) were IMC messages

packaged in UDP network frames. The next image is a screen capture taken from the field

Fig.8.5 – Flight trajectory of the UAV in the first test

62

tests which displays the sensor node on the map (identified as “ais-1” vehicle) and its incoming

data (temperature) based on the received network messages from the UAV.

The results of this test is that a valid link between the sensor node, the UAV and NEPTUS

command interface has been successfully made. Some package losses are to be expected and

have been present throughout the test time but the basic functionality has been proven.

8.2.3. Complete system tests on water

Test scenario:

The second test carried out was with the sensor node floating in the water. It has been placed

next to the shore in relatively shallow waters and anchored to the ground using rope

Same as before, the UAV has flown above the sensor node and collected its data.

The next figure (Fig.8.7). shows the test environment and the interaction between the UAV,

sensor node in water and the base station.

Fig.8.6 – Screen capture of Neptus showing the sensor node on the ground

63

Test Results:

The flight test took 12 minutes during which a number of 376 data packages representing

sensor readings were sent from the sensor node to the UAV. None of these had a CRC fail.

Same as before, the string “12345678” was sent from the UAV to the sensor node and this

time the data integrity was lower than in the first case. Only 6.4% of the received data packets

were correct.

The flight path is presented in the next figure (Fig.8.8):

Fig.8.7 – Filed test setup on water and component interaction

64

The maximum distance at which the UAV was situated from the sensor node was 264m

(measured using Google maps) and the height was 100m. At these distances at there was still

a valid data link.

The next screen capture (Fig8.9) shows NETPUS command interface showing the sensor node

on the map and its incoming temperature readings:

Fig.8.8 – Flight trajectory of the UAV in the water test (generated with Google earth)

65

During the flight time the sensor has been moved from ground and placed in water. The next

graph (Fig.8.10) shows the plotted altitude of the sensor node during the flight time.

Fig.8.9 – Screen capture of Neptus showing the sensor node in the water

Fig.8.10 – M easured GPS altitude of the sensor node during the test

66

8.4 Conclusions on tests

All the numbers and statistics presented as results in this chapter are measured data during

field/lab tests. Some are taken from the log files on the pandaboard and some are from the

SD card inside the sensor node.

These results of the tests presented earlier were encouraging:

 The tested range of the radio devices used in the sensor node proved to be sufficient

allowing for a robust sensor node to UAV communication and not so robust from the

UAV back to the sensor node

 The proposed physical case solution proved to float in the water and be directionally

stable, while still achieving its functionality.

 Meaningful data was sent across the system

 The software written on the embedded device and on the pandaboard have achieved

their role in interfacing the embedded device

 NEPTUS command interface can be used with ease for displaying senor readings

Videos taken from the project demonstration can be seen here:

https://www.youtube.com/watch?v=7_dGRSydzB4

https://www.youtube.com/watch?v=d3XSWpmu6tk

https://www.youtube.com/watch?v=7_dGRSydzB4
https://www.youtube.com/watch?v=d3XSWpmu6tk

67

7. Future Work

Since the system is designed to be modular, both from the software and hardware perspective

there are many opportunities for adding extra functionalities to the current design.

7.1 Immediate future goals

7.1.1 A better choice for the hardware modules

As presented in the previous chapters the current hardware has been tested and proved to

work but during the development and testing stage several issues have arisen with the chosen

hardware modules.

For instance the Radiocrafts module, RC-1280 is not perfectly 3.3V compatible as the

datasheet states. This means that a level shifter had to be used to interface it. Because of

this, the complexity of the hardware has slightly increased. This is not a very bad radio

module and the fact that it has been proved to work does not necessarily impose that it should

be changed. At least, it should be avoided in other future related project. A possible choice

for a new radio module can be the first or second option presented in Table 1 in Chapter

4.3.2.

Also, the GPS module has its limitations. Because the system is designed to be low power.

All components should have and support shutdown functionalities. Most GPS module on the

market have a Shutdown pin that can be used to completely power off the device. The current

chosen module does not have this, limiting to some degree the extent at which optimum power

efficiency can be achieved. Also the size of the device is not particularly optimum either. To

fit the module in the sensor node some hardware modifications had to be done to it in order

to have the external antenna connected to it.

68

7.1.2 M ain board and software improvements

There is some discussion also related to the choice of the hardware platform in use. Even

though the microcontroller chosen for the sensor node is more than capable of doing what is

supposed to do improvements can be made.

Taking into account the designed software architecture (Chapter 5.3) and the proposed

implementation of it, several choices exist at this point. The code that runs on the

microcontroller is written in ANSI C language. This is not an object oriented programming

language and implementing designs patterns in such languages is not that common, but still

practiced. The compiler used (Atmel Studio 6.1) supports C++ codebase therefore the code

can be rewritten in C++ or the project setup can be made so that it supports both languages.

This is also possible with some work and time invested.

So the basic options are:

a) Implement the proposed hardware architecture as it is in the current project setup

b) Rewrite and merge C and C++ code so that the project supports object oriented

characteristics.

c) Chose a different hardware platform altogether.

The third option might be taken into account in situations where the desired goal is the

application, not the hardware itself. There are a number of hardware platforms that could

have been used for this current project, small, low-power and most importantly providing a

multitude of predefined libraries. One of such platform is the mbed LPC1768 [20]. It supports

all the needed peripherals as the currently used platform but the time it takes to build an

application is much lower. It also offers a built in OS making it more adaptable

The choices have been presented, none of these are bad and the time it would take to adopt

these changes is not that long.

69

7.2 Long-term future goals

7.2.1 Acoustic fish telemetry module

One of the research topics currently under work at the Norwegian University of Science and

Technology involves using an acoustic fish telemetry device for monitoring fish behavior and

ecology. Currently these devices are placed in the water and long wires are used to connect

them to a base station. Having such devices connected to a sensor node via the RS-485

interface would be a great improvement. The need for wires is gone and the data can become

easily accessible by using UAVs to sample it. Having this module integrated with the sensor

node also means that the acoustic fish telemetry module can be placed in more remote areas

and with less impact to the ecosystem

7.2.2 Energy harvesting

From the beginning of the project it has been mentioned that the system is to be designed as

efficiently as possible from a power consumption point of view. But even with all the low

power design principles and sleep modes of the devices and hardware there the reality that at

a certain point the battery of the device will be drained. In this case adding energy harvesting

capability would overcome this.

Harvesting wave energy is not something new, it has been done before many times but almost

all the present solutions for wave energy harvesting are done at a very large scale and with

attaching something heavy on the bottom of the sea [21][22][23]. These constrains limit us

very much to the number of options we have for energy harvesting.

Fig.7.1 – ECO 200 [24]

70

However there are certain ways in which wave energy harvesting can be done at this small

scale. First of all there are solutions that use the piezoelectric effect. This basically converts

mechanical strain into electric current and voltage. Since the sensor is floating on the ocean,

at every moment in time, it will move. The wise idea would be to use this movement and

generate electricity. One solution for achieving this is to use a miniaturized piezoelectric

energy harvester [24] (Fig. 7.1)

Another option for wave energy harvesting would be to use a linear faraday generator [25][26].

This is a fairly new concept, it is not currently very popular and patents are still being issued

for it. The basic principle of functionality is that what would normally be a spinning coil and

some permanent magnets to generate electricity would be placed not in a circle but linearly.

The rotary movement of the axis would just be replaced by a linear movement up and down

in line with the waves. A basic design prototype is presented in the following figure (Fig.7.2)

5.2.1 Data compression algorithms

Transmitting large amounts of data over a wireless medium in a system that is designed to

be low-power is not always a good idea. A simple way of reducing power consumption in this

situation is to do some local processing (compressing) on the data. For this purpose a popular

conversion library written in C can be used: zlib[27].

Fig. 7.2 –Design of Linear Faraday Generator with Ferro Fluid Nano Bearings (left)

CIIIS Linear Generator prototype (right) [25][26]

71

Let’s say that the range of the wireless communication module fitted on the UAV and on the

sensor node has the range of 1.3km (d1). Ideally this means that the UAV can be in range

with the sensor node on a surface equivalent to a circle with the diameter of 2.6km (d2). But

the range of the module is more like a sphere and loses range with height. If the UAV flies

very high it might not reach it.

Taking a reasonable value into consideration we can say that the UAV is in range with the

node for about 1.3km (d1 in the figure). If the minimum speed at which a fixed-wing UAV

can fly is 13m/s that means that the two would be in range of each other for about 100

seconds. If the maximum speed of the wireless module is about 4.8kb/s, in the best case we

could have only 480kb of data transmitted. This would certainly not be enough to contain

data sampled over a few months, for example.

Here is where zlib comes in. Typical zlib compression ratios are on the order of 2:1 to 5:1.

This means that in theory with some local processing both on the sensor node (for

compressing) and on the UAV (for decompressing) a lot more data (up to five times) can be

transmitted wirelessly if we compress it. In this case UAV would have to fly over the sensor

node fewer times and the node can be in sleep mode for longer periods of time, resulting in

an overall reduction of power consumption.

Fig. 7.3 – Example scenario regarding the range of the wireless communication

modules

72

8. Conclusions

To sum up everything that has been presented, this project is addressing an ever increasing

problem in the world in a way that has not been done previously: scalable and easy to

maintain large scale ocean monitoring. It incorporates research done in various fields,

electronics and communications, computer science, high level design principles and even

physics and chemistry.

The tests carried out and the prototype built lead us to conclude that the approach and the

idea for the project so far is good and that if continuing with the same approach, the project

can bring value to the scientific community.

The software used is open source, making it free, easy to expand, upgrade and debug, having

a large community of developers that constantly support it.

Finally, because of the current existing working prototype and the proof-of-concept tests

carried out it is advisable to continue on with this project and develop it further.

73

References
- [1] ARGO motivation and concept: http://www.argo.ucsd.edu/index.html

Accessed:14.12.2013

- [2] How oil spills affect marine life .

http://oceanservice.noaa.gov/facts/oilimpacts.html Accessed:14.12.2013

- [3] Underwater Temperature Recorder http://star-

oddi.com/products/34/subsea-temperature-recorder/default.aspx Accessed:02.05.2014

- [4] Submersible Acoustic Transmitter - http://star-oddi.com/products/44/low-

frequency-acoustic-sounder-transmitter/default.aspx Accessed:15.05.2014

- [5] Real-Time Deep-Ocean Tsunami M easuring, M onitoring, and

Reporting System: The NOAA DART II Description and Disclosure -

Christian Meinig, Scott E. Stalin, Alex I. Nakamura NOAA, Pacific Marine

Environmental Laboratory (PMEL), Hugh B. Milburn Oceanographic Engineer

[6] M ATAKI - An open, low-cost, wirelessly-enabled tracking platform

http://mataki.org/ Accessed:14.12.2013

- [7] Puck antenna manufacturer: http://www.globalsources.com

Accessed:14.12.2013

- [8] M easuring battery voltage

http://www.microbuilder.eu/Tutorials/Fundamentals/MeasuringBatteryVoltage.asp

x Accessed:14.12.2013

- [9] Design techniques for extending li-ion battery life.

http://www.digikey.com/us/en/techzone/power/resources/articles/design-

techniques-extending-li-ion-battery-life.html Accessed:14.12.2013

- [10] Adam Petersen, Patterns in C https://leanpub.com/patternsinc

Accessed:14.12.2013

- [11] Hungarian notation - http://msdn.microsoft.com/en-

us/library/aa260976(v=vs.60).aspx Accessed:10.02.2014

- [12] Object-oriented C is simple http://www.embedded.com/electronics-

blogs/object-oriented-c/4397794/Object-oriented-C-is-simple- Accessed:14.12.2013

- [13] Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra, Head First Design

Patterns, O'Reilly Media, October 2004, pages 44-52

http://www.argo.ucsd.edu/index.html
http://oceanservice.noaa.gov/facts/oilimpacts.html
http://star-oddi.com/products/34/subsea-temperature-recorder/default.aspx
http://star-oddi.com/products/34/subsea-temperature-recorder/default.aspx
http://star-oddi.com/products/44/low-frequency-acoustic-sounder-transmitter/default.aspx
http://star-oddi.com/products/44/low-frequency-acoustic-sounder-transmitter/default.aspx
http://mataki.org/
http://www.globalsources.com/
http://www.microbuilder.eu/Tutorials/Fundamentals/MeasuringBatteryVoltage.aspx
http://www.microbuilder.eu/Tutorials/Fundamentals/MeasuringBatteryVoltage.aspx
http://www.digikey.com/us/en/techzone/power/resources/articles/design-techniques-extending-li-ion-battery-life.html
http://www.digikey.com/us/en/techzone/power/resources/articles/design-techniques-extending-li-ion-battery-life.html
https://leanpub.com/patternsinc
http://msdn.microsoft.com/en-us/library/aa260976(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa260976(v=vs.60).aspx
http://www.embedded.com/electronics-blogs/object-oriented-c/4397794/Object-oriented-C-is-simple-
http://www.embedded.com/electronics-blogs/object-oriented-c/4397794/Object-oriented-C-is-simple-

74

- [14] DUNE: Uniform Navigational Environment http://lsts.pt/software/dune

Accessed:14.12.2013

- [15] Experiments with Deliberative Planning on Autonomous Underwater

Vehicles - Jose Pinto, Joao Sousa, Frederic Py and Kanna Rajan

- [16] Implementation of a Control Architecture for Networked Vehicle

Systems - Jose Pinto, Pedro Calado, Jose Braga, Paulo Dias Ricardo Martins,

Eduardo Marques, J.B. Sousa - Department of Electrical and Computer Engineering,

University of Porto, Portugal – 4200-465.

- [17] IM C Inter-Module Communications Protocol for networked vehicles and

sensors https://www.lsts.pt/imc/doc/master/ Accessed:14.12.2013

- [18] NM EA Protocol - http://www.gpsinformation.org/dale/nmea.htm

Accessed:23.02.2014

- [19] Google M aps API - https://developers.google.com/maps/ Accessed:10.01.2014

- [20] MBED http://mbed.org/platforms/mbed-LPC1768/ Accessed:18.04.2014

- [21] Commercially-viable energy from the movement of lakes

http://www.renewableenergymagazine.com/article/commerciallyviable-energy-from-

the-movement-of-lakes Accessed:20.12.2013

- [22] Harvesting the Ocean: A New Approach to Wave Energy Conversion

http://www.worldchanging.com/archives/009241.html Accessed:20.12.2013

- [23] Wave Power Prototype Produces Electricity

http://www.digikey.com/us/en/techzone/energy-

harvesting/resources/articles/Wave-power-prototype-produces-electricity.html

Accessed:20.12.2013

- [24] M iniaturized Energy converter for motion energy harvesting

http://www.enocean.com/en/enocean_modules/eco-200/ Accessed:20.12.2013

- [25] SG2™ -Developing Technology to Generate Unlimited Green Energy from Ocean

Waves - S C Chao El Segundo, California November, 2007

- [26] CIIIS presentation on linear faraday generator technology

- [27] ZLIB - A Massively Spiffy Yet Delicately Unobtrusive Compression Library

http://www.zlib.net/ Accessed:18.12.2013

http://lsts.pt/software/dune
https://www.lsts.pt/imc/doc/master/
http://www.gpsinformation.org/dale/nmea.htm
https://developers.google.com/maps/
http://mbed.org/platforms/mbed-LPC1768/
http://www.renewableenergymagazine.com/article/commerciallyviable-energy-from-the-movement-of-lakes
http://www.renewableenergymagazine.com/article/commerciallyviable-energy-from-the-movement-of-lakes
http://www.worldchanging.com/archives/009241.html
http://www.digikey.com/us/en/techzone/energy-harvesting/resources/articles/Wave-power-prototype-produces-electricity.html
http://www.digikey.com/us/en/techzone/energy-harvesting/resources/articles/Wave-power-prototype-produces-electricity.html
http://www.enocean.com/en/enocean_modules/eco-200/
http://www.zlib.net/

75

- [28] “Direct Gravity Estimation and Compensation in Strapdown INS

Applications “3rd International Conference on Sensing Technology, Ehad

Akeila, Zoran Salcic and Akshya Swain Nov. 30 – Dec. 3, 2008, Tainan, Taiwan

- [29] Tilt Sensing Using a Three-Axis Accelerometer - Freescale

Semiconductor, Document Number: AN3461, Rev. 6, 03/2013

76

Appendices

77

Appendix A

M ain Board schematic

78

Radio module schematic

79

Printed circuit board layout top and bottom

80

Voltage Regulators (DC-DC and linear)

81

Appendix B

Printed Circuit Board - version 1

82

Printed Circuit Board - version 2

83

Appendix C

UAV Payload

During the flight tests the UAV was equipped with the following components: 11.3V battery

pack, 5V voltage regulator, Pandaboard, Power over Ethernet adapter, Radiocrafts module,

usb-uart converter, 868Mhz Antenna, ROCKET M5 5GHz Hi Power 2x2 MIMO AirMax

TDMA BaseStation, 5Ghz antennas

	Preface
	Acknowledgments
	Summary
	Short background, results and conclusions

	List of Figures
	List of Acronyms
	1. Introduction
	1.1 Background of the task
	1.2 Motivation

	2. Solutions to address this problem
	2.1 Current solutions
	2.1.1 Argo Sensor nodes
	2.1.2 Starmon mini - underwater temperature recorder
	2.2.3 Star Oddi FishCall
	2.1.3 MATAKI - low-cost, wirelessly-enabled tracking platform
	2.1.4 Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System

	2.2 Proposed solution and objectives
	2.3 Outline of the report, structure of solution description

	Fig. 2.1 - ARGO nodes around the world [1]
	Fig. 2.2 - ARGO node and ship [1]
	Fig. 2.3 - Miniaturized Underwater Temperature Sensor [3]
	Fig. 2.4 - Submersible Acoustic Transmitter [4]
	Fig. 2.5 - Context diagram showing a DART II system and the related telecommunication nodes. [5]
	3. Proposed Solution
	3.1 Introduction, General Overview
	3.2 General characteristics

	Fig. 3.1 – General overview of system components and interaction
	Fig. 3.2 - Modular concept of the sensor node
	Fig. 3.3 – Possible Physical Design of the Sensor Node
	Fig. 3.4 - Example of disrupted communication because of the ocean waves
	Fig. 3.5 - Combo puck antenna [7]
	4. Hardware Description
	4.1 Introduction
	4.2 General Hardware Description
	4.2.1 Main Microcontroller Board, Atxmega192C3
	4.2.2 Peripherals interfaces used
	4.2.3 Overall architecture
	4.2.4 Other aspects

	4.3 Detailed Hardware Description
	4.3.1 Physical case construction
	4.3.2 Top Module Description (Module 1)
	4.3.3 Main Controller Module (Module 2)
	4.3.4 Power Supply Module (Module 3)

	4.4 Conclusions on hardware

	Fig. 4.1 - Overall hardware architecture
	Fig. 4.2 - Battery sensing circuit [8]
	Fig. 4.3 – Vertical section through the sensor node
	Fig. 4.4 – 3D Graphic design of the device (left); Manufactured prototype (right)
	Fig. 4.5 – Sensor node prototype and attached components
	Fig. 4.6 – Zigbee network topologies (left) and Radiocraft network topologies (right)
	Fig.4.7 – Plotted gyroscope measurements
	Fig..4.8 – overview of relative positioning algorithm
	5. Software Design and architecture
	5.1 Introduction on software architecture
	5.2 Design patterns
	5.3 Software architecture on the embedded device
	5.4 DUNE
	5.5 NEPTUS
	5.6 Conclusions on software

	Fig. 5.1 – UML diagram for the observer design pattern
	Fig. 5.2 – Communication flow between the sensor node, the UAV running DUNE and a computer running NEPTUS
	6 Communication protocols
	6.1 Introduction on communication protocols
	6.2 IMC
	6.3 DUNE and Sensor Node protocol
	6.3.1 First option for the protocol (IMC based)
	6.3.2 Second option for the protocol (IMC-NMEA based)

	Fig. 6.1 – IMC message example
	Fig. 6.3 – IMC message bus and DUNE tasks configuration example
	Fig. 6.4 – IMC-like structure definition listing
	Fig. 6.5 – Endianness issues
	7. Application Modes and Software States
	7.1 Introduction
	7.2 Basic states description
	7.3 Example scenario for state switching and transitions
	7.4 Dynamic workflow example

	Fig. 7.1 – Basic software states of the embedded device
	Fig. 7.2 – Timing diagram showing UAV and sensor node basic interaction
	Fig. 7.3 – Basic flowchart partially showing the software workflow on the sensor node
	Fig.7.4 – Interrupts and their dataflow in the embedded device
	Fig.7.5 – Timeline diagram of the program flow
	8. Tests, Results and Discussions
	8.1 Introduction
	8.2 Field Tests
	8.2.1 Radio module range test
	8.2.2 Complete system tests on land
	8.2.3. Complete system tests on water

	8.4 Conclusions on tests

	Fig.8.1 – Radio module range test setup
	Fig.8.2 – Tested mobile sensor GPS trace
	Fig.8.3 – Filed test setup on land and component interaction
	Fig.8.4 – Flight trajectory of the UAV in the land test (generated with Google earth)
	Fig.8.5 – Flight trajectory of the UAV in the first test
	Fig.8.6 – Screen capture of Neptus showing the sensor node on the ground
	Fig.8.7 – Filed test setup on water and component interaction
	Fig.8.8 – Flight trajectory of the UAV in the water test (generated with Google earth)
	Fig.8.9 – Screen capture of Neptus showing the sensor node in the water
	Fig.8.10 – Measured GPS altitude of the sensor node during the test
	7. Future Work
	7.1 Immediate future goals
	7.1.1 A better choice for the hardware modules
	7.1.2 Main board and software improvements

	7.2 Long-term future goals
	7.2.1 Acoustic fish telemetry module
	7.2.2 Energy harvesting
	5.2.1 Data compression algorithms

	Fig.7.1 – ECO 200 [24]
	Fig. 7.2 –Design of Linear Faraday Generator with Ferro Fluid Nano Bearings (left) CIIIS Linear Generator prototype (right) [25][26]
	Fig. 7.3 – Example scenario regarding the range of the wireless communication modules
	8. Conclusions
	References
	Appendices
	Appendix A
	Main Board schematic
	Radio module schematic
	Printed circuit board layout top and bottom
	Voltage Regulators (DC-DC and linear)

	Appendix B
	Printed Circuit Board - version 1

	Appendix C
	UAV Payload

