
Tablet based real-time Doppler spectrum
processing

Bjørn Rudi Dahl

Electronics System Design and Innovation

Supervisor: Ilangko Balasingham, IET
Co-supervisor: Hans Torp, ISB

Gabriel Kiss, ISB

Department of Electronics and Telecommunications

Submission date: June 2014

Norwegian University of Science and Technology

Problem description
Reducing the mortality rate among unborns, young children and pregnant
women is one of the Millennium Developments Goals (MDG 4 and 5) of the
United Nations (UN). Diagnostic ultrasound is the only imaging method
to be used in pregnancy and widely offered to the general population in
developed countries. The Umoja project, ultrasound for midwives in rural
areas, aims to develop an extremely low cost, robust and portable ultra-
sound imaging system (the Umoja ultrasound system) for obstetric imaging,
specifically designed for operation in challenging rural areas of developing
countries. The project is a joint effort between three main partners: the Na-
tional Center for Fetal Medicine (NCFM) at St. Olavs Hospital and NTNU,
the Department of Circulation and Medical Imaging (ISB) at NTNU, and
GE Vingmed Ultrasound AS.

When building a low cost system, there is an inherent trade-off between the
Doppler imaging quality and the overall cost of the portable system. The
hardware limitations that come with the low cost requirements will limit the
available computational power. Therefore it is desirable to implement and
execute as much of the signal processing pipeline as possible directly on the
tablet device, which includes both CPU and GPU units at a low cost. The
thesis will investigate the following topics:

1. - implementation of a real-time spectrum processor on the tablet device

2. - optimization of the Fourier transform and the additional signal pro-
cessing algorithms on the tablet device

3. - based on data received from the scanner generate the Doppler sound
and investigate the use of Android’s AudioTrack class for playback
purposes directly on the tablet

4. - evaluation of the influence of different parameters on the quality of
the Doppler spectrum vs. computation time

5. - optimization of the Doppler triplex mode with live color Doppler
support.

Preface
This diploma has been written at the Department of Electronics and Telecom-
munications at NTNU, Trondheim, and carried out under the Department
of Circulation and Medical Imaging at St. Olavs Hospital.

My supervisors during the masters thesis has been Prof. Hans G. Torp
and Gabriel Kiss, who both have contributed with good ideas and invaluable
feedback during the semester. I want to thank Gabriel Kiss in particular for
sharing his knowledge on computer programming and helping me optimize
my code.

I also want to thank the rest of the Umoja-team; Morten Dreier, Sturla
Eik-Nes, Naiad Kahn, Yücel Karabıyık, Eva Tegnander and Agnes Heyer for
making my year at ISB such a great experience.

Lastly I would like to thank Ilangko Balasingham for being my formal
advisor.

Trondheim, June 2014
Bjørn Rudi Dahl

Abstract
By utilizing mobile, low-cost Doppler ultrasound technology in de-

veloping countries, the mortality rate of unborn children, small chil-
dren and pregnant women might be reduced. Two main Doppler tech-
niques which are used in ultrasound are the Doppler spectrum and the
Doppler audio. The Doppler spectrum is used for quantitative anal-
ysis of the blood-flow while the Doppler audio is used for guidance
during recording

This thesis presents the implementation of a real-time Doppler
spectrum generator and a real-time Doppler stereo audio generator,
which is implemented on Android mobile devices; along with real-time
ratings and optimizations. The Doppler spectrum implementation was
compared to a Matlab implementation, while the Doppler audio was
compared to a synthetic test signal. The frequency leakage, in the
Doppler stereo audio generation, from positive- to negative Doppler
shifts and vice versa was at about −20dB with the synthetic test
signal.

The performance of a mid- to high-end Android tablet showed high
framerates for Fast Fourier-Transform lengths up to 128 with both 75
and 87.5 percent overlap and audio-playback frequencies of 8kHz and
16kHz. The low- to mid-end tablet displayed low framerates with the
current implementation.

The optimization of the Fast Fourier-transform by utilizing FFTW
has shown promising results to increase the framerate on the low- to
mid-end tablet. Other ways of improving the framerate on low-end
tablets is to turn off the audio or turn off the stereo processing along
with reducing the settings on the spectrum generator.

4

Sammendrag

Ved å tilgjengeliggjøre Doppler ultralydteknologi til en lav pris i utviklings-
land, kan dødeligheten blandt ufødte, spedbarn og gravide kvinner kanskje
bli redusert. To av hovedteknikkene anvendt i Doppler ultralyd er Doppler-
spektreret og Doppler lyd. Dopplerspektreret er brukt i kvantitativ analyse
av blodstrømsmålinger mens Doppler-lyden er brukt til å veilede brukeren
under skanning.

Denne avhandlingen presenterer implementasjonen av en sanntids Doppler-
spektral analysator og en sanntids Dopplerlyd-generator, som har blitt im-
plementert på bærbare Android-enheter. En evaluering av sanntidsytelsen
til systemet og mulige optimiseringer er i tillegg presentert. Implemen-
tasjonen av Dopplerspektrum-generatoren ble sammenlignet med en Matlab-
implementasjon, mens Dopplerlyden ble testet med et syntetisk test-signal.
Det er en frekvenslekasje mellom lydkanalene som ligger ca. 20dB under det
ønskede frekvensinnholdet.

En høy-ytelses Android tablet hadde høye bilderater for Fast Fourier
Transformasjonslengder opp til 128 med både 75 og 87.5 prosent overlapp og
8−16kHz lydfrekvenser. Lavytelses-tableten hadde generelt lave bilderater
for alle instillinger.

Ved å optimisere Fast Fourier Transformasjonen ved å bruke FFTW-
biblioteket, ble det vist at høye bilderater er oppnåelig på lavytelses-tableten.
Andre mulige optimiseringer for å øke bilderaten er å skru av lydgenererin-
gen, skru av stereo-genereringen og/eller redusere instillingene på spektrum-
generatoren.

6

CONTENTS CONTENTS

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 State of research . 1
1.3 Objectives . 2
1.4 Thesis outline . 2

2 Theory 3
2.1 Basic Ultrasound . 3

2.1.1 Basics . 3
2.1.2 Doppler effect . 3
2.1.3 Clutter filter . 5
2.1.4 Spectrum . 5
2.1.5 Time-sharing . 7

2.2 Doppler spectrum generation 7
2.2.1 Power spectrum . 7
2.2.2 FFT Butterfly algorithm 9
2.2.3 FFT - Power spectrum 10

2.3 Doppler audio generation . 11
2.3.1 Resampling by interpolation 11
2.3.2 Adaptive low-pass filter, Parks-McClellan filter coeffi-

cients . 12
2.3.3 Split filter . 12

3 Methods 17
3.1 Software . 17
3.2 Hardware . 19
3.3 Implementation . 21

3.3.1 Doppler spectrum . 22
3.3.2 FFT optimization . 24
3.3.3 Audio . 26

3.4 Real-Time requirements . 32

4 Results 35
4.1 Spectrum generation timing 35

4.1.1 Nexus 10 . 36
4.1.2 ASUS T300 . 39
4.1.3 VTKs built-in FFT vs FFTW 42
4.1.4 Anticipated run-times with the use of FFTW 43

4.2 Audio Generation timing and system delay 44
4.3 Achievable framerates with VTK’s FFT 47

i

CONTENTS CONTENTS

4.3.1 Spectrum generation only 47
4.3.2 Spectrum and audio generation 48

4.4 Achievable framerates with FFTW 50
4.4.1 Spectrum generation only 50
4.4.2 Spectrum and audio generation 51

4.5 Spectrum and Audio validation 53
4.5.1 Spectrum Validation 53
4.5.2 Audio Validation . 54

4.6 Spectrum quality . 60

5 Discussion 67
5.1 Spectrum generation . 67
5.2 FFT optimization . 69
5.3 Audio generation and playback 69
5.4 Realtime assessment . 72

6 Conclusions 75

7 Recommendations 77

A Synthetic signal for spectrum validation (Matlab) 81

B Synthetic signal for audio validation (Matlab) 82

C Source code for division of IQ-data between sound and spec-
trum (C++) 83

D Source code for the generation of the Doppler spectrum
(C++) 84

E Source code for audio generation (C++) 86

F Smoothing methods comparison (Matlab) 88

G Difference image 89

H Raw-data from the spectrum timing 90

ii

LIST OF FIGURES LIST OF FIGURES

List of Figures
2.1 Angle corrected Doppler shift 4
2.2 Ideal clutter filter . 5
2.3 Realistic clutter filter . 6
2.4 Spectrum from carotid artery 7
2.5 PW-Doppler . 8
2.6 Radix-2 FFT . 10
2.7 Spectrum processing . 11
2.8 Linear interpolation scheme 13
2.9 Effects of interpolation . 14
2.10 Ideal interpolation lowpass-filter 15
2.11 Split filter before up-shifting 15
2.12 Standard split-filter . 16
3.1 Kiwi . 18
3.2 Vivid Q . 19
3.3 IQ-processing . 21
3.4 Spectrum processing flowchart 23
3.5 Hamming overlap . 24
3.6 Audio processing flowchart . 28
3.7 Split filter design . 29
3.8 Original split filter design before Hann-Windowing 30
3.9 Original split filter design after Hann-Windowing 31
3.10 Fluency ratings . 33
4.1 Nexus 10 spectrum timing, 75% Overlap 36
4.2 Nexus 10 spectrum timing, 87.5% Overlap 37
4.3 Gathered plot for Nexus 10 measurements 38
4.4 ASUS T300 spectrum timing, 75% overlap 39
4.5 ASUS T300 spectrum timing, 87.5% overlap 40
4.6 Gathered plot for ASUS T300 measurements 41
4.7 FFTW vs VTK 75% & 87.5% overlap 42
4.8 Nexus 10 anticipated run time with FFTW 43
4.9 ASUS T300 anticipated run time with FFTW 43
4.10 Audio generation timing . 45
4.11 Audio delay . 46
4.12 Spectrum validation with noise 53
4.13 Noisy difference spectrum . 54
4.14 Power spectrum of the audi validation signal 55
4.15 Audi test signal . 56
4.16 Audio validation filters . 57
4.17 Audio validation spectrums, left channel 58

iii

LIST OF FIGURES LIST OF FIGURES

4.18 Audio validation spectrums, right channel 59
4.19 Spectral smoothing comparison 61
4.20 64-point FFT spectrum . 62
4.21 100-point FFT spectrum . 63
4.22 128-point FFT spectrum . 64
4.23 200-point FFT spectrum . 65
4.24 256-point FFT spectrum . 66
G.1 Original validation image . 89

iv

LIST OF TABLES LIST OF TABLES

List of Tables
4.1 FFT vs full run-time fractions on the Nexus 10, 75% overlap 37
4.2 FFT vs full run-time fractions on the Nexus 10, 87.5% overlap 37
4.3 FFT vs full run-time fractions on the ASUS T300, 75% overlap 39
4.4 FFT vs full run-time fractions on the ASUS T300, 87.5% overlap 40
4.5 FFT timing fractions . 42
4.6 Average framerates for the Nexus 10 47
4.7 Average framerates for the ASUS T300 47
4.8 Average framerates for the Nexus 10, with audio-delay, 8kHz 48
4.9 Average framerates for the Nexus 10, with audio-delay, 16kHz 48
4.10 Average framerates for the ASUS T300, with audio-delay, 8kHz 49
4.11 Average framerates for the ASUS T300, with audio-delay, 16kHz 49
4.12 Anticipated framerates for the Nexus 10 50
4.13 Anticipated framerates for the ASUS T300 50
4.14 Anticipated framerates for the Nexus 10, with audio-delay, 8kHz 51
4.15 Anticipated framerates for the Nexus 10, with audio-delay,

16kHz . 51
4.16 Anticipated framerates for the ASUS T300, with audio-delay,

8kHz . 52
4.17 Anticipated framerates for the ASUS T300, with audio-delay,

16kHz . 52
H.1 Nexus 10, 6410Hz PRF, 75% overlap. Raw data. 90
H.2 Nexus 10, 2890Hz PRF, 75% overlap. Raw data. 91
H.3 Nexus 10, 2890Hz PRF, 87.5% overlap. Raw data. 91
H.4 Nexus 10, 6410Hz PRF, 87.5% overlap. Raw data. 92
H.5 ASUS T300, 2890Hz PRF, 75% overlap. Raw data. 92
H.6 ASUS T300, 6410Hz PRF, 75% overlap. Raw data. 93
H.7 ASUS T300, 2890Hz PRF, 87.5% overlap. Raw data. 93
H.8 ASUS T300, 6410Hz PRF, 87.5% overlap. Raw data. 94

v

Nomenclature
API Application Programming Interface

CW-Doppler Continuous Wave Doppler

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPS Frames Per Second

GPL General Public License

NDK Native Development Kit

PRF Pulse Repetition Frequency

PW-Doppler Pulsed Wave Doppler

RF Radio Frequency

SIMD Single Instruction Multiple Data

SNR Signal to Noise Ratio

VES VTK OpenGL ES

VTK Visualization ToolKit

1 INTRODUCTION

1 Introduction
The thesis presents the realtime implementation of the processing of Doppler
signals with live spectrum display and audio on Android platforms.

1.1 Motivation
Reducing the mortality rate among unborns, young children and pregnant
women is one of the Millennium Developments Goals (MDG 4 and 5) of the
United Nations (UN). Diagnostic ultrasound is the only imaging method
used in pregnancy and which is widely offered to the general population in
developed countries. The Umoja-project, ultrasound for midwives in rural
areas, aims to develop an extremely low cost, robust and portable ultra-
sound imaging system (the Umoja ultrasound system) for obstetric imaging,
spesifically designed for operation in challenging rural areas of developing
countries. The project is a joint effor between three main partners: the Na-
tional Center for Fetal Medicine (NCFM) at St. Olavs Hospital and NTNU,
the Department of Circulation and Medical Imaging (ISB) at NTNU, and
GE Vingmed Ultrasound AS.

When building a low cost system, there is an inherent trade-off between
the Doppler imaging quality and the overall cost of the portable system. The
hardware limitations that come with the low cost requirements will limit the
available computational power. Therefore it is desirable to implement and
execute as much of the signal processing pipeline as possible directly on the
tablet device, which includes both CPU and GPU units at low cost[1].

1.2 State of research
A similar implementation as the Doppler spectrum generator has been re-
ported by a research team in 2012 [3]. Their implementation featured a
custom made PW-Doppler system and direct transfer of IQ-data through
the audio-jack. It is unclear from the paper how well the system performed,
and if it was good enough for real-time usage. Their implementation did not
feature Doppler audio-playback, and I have not found any scientific papers
describing Doppler audio-generation on mobile devices.

Another company called signostics1 has launched a ultrasound-device
featuring PW-Doppler capabilities which is implemented on the Windows
mobile device, but I could not find any references to Doppler audio in their
product.

1www.signosticsmedical.com

1

1.3 Objectives 1 INTRODUCTION

1.3 Objectives
For the further development of the Umoja-system, this thesis will focus on
the implementation of a well-performing real-time Doppler spectrum gen-
erator and real-time stereo audio-generator on mobile devices running the
Android operating system.

The spectrum and the audio must be validated to ascertain that the
implementation produces a high-quality spectrum and good audio.

Since the processing power differs between different mobile devices, op-
timizing bottlenecks in the implementation is needed and as such the cost
of the system can be lowered. By optimizing the Fast Fourier-Transform,
low- to mid-end devices might be able to handle the workload of both the
Doppler spectrum- and audio-processing.

Since the spectrum can be processed with different parameters, such as
overlap percentage and FFT-size, finding the optimal setting which produces
a good result and at the same time gives a good framerate for the spectrum
update is crucial to enable usage of the implementation on low-cost systems.

The Doppler spectrum generator is based on my fifth-year autumn project[7],
but it has been almost totally rewritten for this thesis.

1.4 Thesis outline
The theory section covers the basic theory relevant for understanding the
algorithms used to implement the spectrum- and audio-generator, aswell as
the optimization of the Fast Fourier-Transform.

The methods section covers the software and hardware which has been
used in the thesis. It also includes a detailed description of how the spec-
trum and audio-generator algorithms are implemented in the Umoja-system.
Lastly a rating scheme for the achievable framerates are presented.

Results are divided into six main parts. The first two parts are reserved
for timing of the spectrum and audio-genration on both tablets investigated,
aswell as a full-delay timing for the tablets. The third and fourth parts of the
results section is the achievable framerates with the two tested Fast Fourier-
Transform algorithms, and these values are derived from the timing results in
the first two parts of the results section. Part five of the results is the valida-
tion of the spectrum and audio, and lastly part six depics different smoothing
methods and the spectrum quality with different generation-parameters.

After the results section, there is a discussion which is based on the
results; before conclusions are drawn in the last section.

A final section, named recommendations, is added to the end. This sec-
tion is a list of the most important improvements which can be made to the
algorithms and the system concerning both spectrum and audio-generation.

2

2 THEORY

2 Theory
The theory part is split into three main parts: The first part explains basic
ultrasound principles and other principles needed to understand the second
and third parts. The second part is dedicated to the generation of the
Doppler spectrum in ultrasound, while the third part explains how stereo
audio is generated from raw ultrasound data.

2.1 Basic Ultrasound
2.1.1 Basics

Ultrasound is based on the propagation, reflection and scattering of high
frequency sound waves in a scattering medium. These high frequency sound
waves are produced by an apparatus called a transducer, which in modern
ultrasound systems consists of several pieozoelectric crystals which expand
when a voltage is applied to them. These piezoelectric crystals vibrate, by
applying an oscillating current, to create the ultrasonic waves which then
again travel through the interrogated medium and return to the transducer
again. The piezoelectric crystals will also produce an electric current when
presure is applied to them, and this electric signal which is generated can be
further analyzed to produce an ultrasound image [21].

When several such crystals are composed to form a surface, the voltage
to each crystal can be controlled individually and the ability to create a
focal point at which each wave from each transducer-element constructively
interfere can be created. These focal points can both be controlled in the
azimuthal- and the longitudinal -direction depending on how the elements
are arranged and how the delays to each element is are applied. A general
grayscale 2D image or B-mode image can be created by emitting ultrasonic
waves towards several focal points and controlling the focal point on re-
cieve by the means of dynamic focusing. Dynamic focusing is achieved by
controlling the delay of the current from each element.

Other modes used in ultrasound are e.g. ColorFlow imaging and spectral
analysis, which both are dependant on Pulsed-Wave ultrasound discussed in
section 2.2.1.

2.1.2 Doppler effect

The Doppler shift can be defined for a source transmitting at a frequency
f0 towards a target approaching the source with radial velocity vt [11]. The
target will percieve the incoming signal ft to be shifted so that

3

2.1 Basic Ultrasound 2 THEORY

Figure 2.1: Doppler shift adjusted for the angle between the target and the
source/receiver.

ft = f0

(
vt+ c

c

)
(2.1)

where c is the speed of sound in the given medium. When the reflected
pulse returns to the transmitter, the system will percieve the recieved fre-
quency fe to be

fe = ft

(
c

c−vt

)
(2.2)

The Doppler/frequency-shift fd is the difference between the transmitted
and shifted recieved signal frequency

fd = fe−f0 = f0

[
c+vt
c−vt

−1
]
≈ 2f0

vt
c

(2.3)

The last approximation assumes that the target’s velocity vt is much
smaller than the sound speed in the medium: vt� c.

The Doppler shift can also be adjusted for a target that does not move
directly towards or from the source by multiplying equation 2.3 with the
cosine of the angle between the source and the target [21]

fd = 2f0
vtcosθ

c
(2.4)

illustrated in figure 2.1.

4

2 THEORY 2.1 Basic Ultrasound

Figure 2.2: Ideal clutter filtering.

2.1.3 Clutter filter

When using ultrasound to measure the Doppler shift of moving blood inside
veins or arteries, there will also be strong reflections from slow-moving vessel
walls and surrounding tissue. Since the measured Doppler shift also contains
frequencies from slow moving tissue, as depicted in figure 2.2 we need to high-
pass filter the recieved Doppler-signal to separate the clutter signal from the
moving blood cells [17].

Figure 2.2 depicts an ideal situation, where the clutter- and blood-signals
are separated. This is never the case, as the signal from blood and tissue
will overlap and we have a situation more like the one in figure 2.3. Without
sufficient clutter rejection, the low velocity blood flow cannot be estimated
and the high velocity blood flow will have a high bias.

2.1.4 Spectrum

The Doppler power spectrum is used to visualize motion of patricles within
an area of interest in a scattering medium. For ultrasound this constitutes
visualization of blood-flow within vessels or the heart [21]. There are mainly
two ways of aqcuiring the Doppler signal from moving particles in ultra-
sonics; PW-Doppler and CW-Doppler. Only PW-Doppler will be discussed
here, as it is the only method used in this thesis.

PW-Doppler is based on the Doppler-effect explained in 2.1.2. It requires a

5

2.1 Basic Ultrasound 2 THEORY

Figure 2.3: Clutter filtering.

transducer with the ability to fire short ultrasound pulses at a rapid rate,
called the Pulse Repetition Frequency (PRF). The pulses travels through
the interrogated medium before returning/scattering back to the system
which in turn samples the pulse in a short time-span to obtain a range
cell of interest. This method of sampling enables the user to select an area
of interest to measure blood-flow. By deploying the Doppler spectrum gener-
ation method in section 2.2, a frequency-time periodogram of the blood-flow
can be visualized as in figure 2.4.

The maximum measurable Doppler-shift fdmax is evaluated as

fdmax = 2f0
vmaxcosθ

c
(2.5)

The maximum PRF is limited by the range of interest in the following
manner, where the factor 2 in the denominator results from the fact that
the pulse has to travel to- and from an object.

PRFmax = c

2rmax
(2.6)

Due to the limitations of the Nyquist-Shannon theorem [21], the maxi-
mum measurable Doppler-shift is also dependent on the PRF by the follow-
ing equation

fdmax = PRFmax
2 (2.7)

6

2 THEORY 2.2 Doppler spectrum generation

Figure 2.4: A Doppler spectrum generated from a carotid artery.

which results in, by inserting equation 2.7 into equation 2.5

PRFmax
2 = 2f0

vmaxcosθ

c
⇒ vmax = PRFmaxc

4f0cosθ
(2.8)

2.1.5 Time-sharing

Modern ultrasound systems have real-time B-mode images, colorflow and
PW-Doppler spectral measurements at the same time, called triplex-mode.
Since the modalities needs to share time to use the transducer, the Doppler
spectrum will have synthetic spectral signal in the time-slots where the
greyscale- and colorflow-image is updated [16]. This causes the spectrum
to be slightly obscured when triplex-mode is active. Deactivating the B-
mode and colorflow overlay will allow the PW-Doppler spectrum modality
to update the spectrum without filling the gaps with synthetic signals.

2.2 Doppler spectrum generation
2.2.1 Power spectrum

The Doppler power spectrum is generated from a PW-Doppler capable sys-
tem shown in figure 2.5 which emits short pulses of ultrasound [21] and

7

2.2 Doppler spectrum generation 2 THEORY

Figure 2.5: The operation of a PW-Doppler system. Taken from [21]

samples the return signal at an adjustable time-delay after emmission. This
enables us to choose a range gate of interest along the ultrasound beam.

The system emits a pulse with a center frequency f0 with bandwith B, at
a rate of PRF Hz. The pulse travels through the interrogated medium before
returning to the system again which samples the pulse at at least twice the
highest frequency of the bandwidth of the emitted pulse after quadrature
demodulation.

Before sampling, the signal is amplified by a Reciever Amplifier (RA)
and demodulated down to baseband by a quadrature demodulator, which
also produces the real and imaginary parts of the complex envelope of the
incoming RF-signal. The demodulator also removes high frequency products
of the mixing by applying a low pass filter with about 100kHz bandwidth.
The pulse is then filtered by a Reciever filter (matched filter) which maxi-
mizes the SNR.

After sampling, the signal goes through a smoothing filter to remove
transients from the sampling before a clutter filter (see section 2.1.3) is ap-
plied to remove signal from slow-moving tissue [21]. The resulting signal is
hereby referred to as "IQ-data", a term which is used for spectrum and audio
processing further on.

8

2 THEORY 2.2 Doppler spectrum generation

2.2.2 FFT Butterfly algorithm

The Fast Fourier Transform (FFT) is an algorithm to compute the Discrete
Fourier Transform (DFT) and its inverse. The DFT of a complex discrete
sequence x0, ...,xN−1 is calculated by the following formula

Xk =
N−1∑
n=0

xne
(−i2πk nN) k = 0, ...,N −1 (2.9)

which has a complexity of O(n2). Two well known versions of the FFT is
the Cooley-Tukey radix-2 algorithm and mixed-radix algorithm. The radix-
2 algorithm [6] or the "Butterfly"-algorithm splits an ordinary N = 2p point
DFT into two N

2 point DFTs, one which calculates the even numbered indices
x2m and one for the odd numbered indices x2m+1 with m = 0, ...,N/2− 1
as shown in figure 2.6. The algorithm is only applicable to radix-2 size
inputs. Splitting the DFT into a sum of the even numbered indices and odd
numbered indices yields

Xk =
N/2−1∑
m=0

x2me
− 2πi
N/2mk+e−

2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi
N/2mk = Ek+e−

2πi
N kOk

(2.10)
where e− 2πi

N k =W k
N is the so-called twiddle factor. Due to the periodicity

of the DFT and the exponential, we know that

Ek+N
2

= Ek (2.11)

and

Ok+N
2

=Ok (2.12)

and

e−
2πi
N (k+N/2) =−e−

2πik
N (2.13)

This periodicity allows us to calculate the complete set of outputs for
0≤ k ≤ N

2 as

Xk = Ek+W k
N Ok (2.14)

9

2.2 Doppler spectrum generation 2 THEORY

Figure 2.6: Radix-2 Cooley-Tukey fast Fourier transform. x [n] denotes the
complex input, X [k] is the complex output. E [k] is the even indiced DFT
of the input and O [k] is the odd indiced DFT of the input. W k

N are the
so-called twiddle-factors. The image is retrieved from [4]

Xk+N
2

= Ek−W k
N Ok (2.15)

Equations 2.14 and 2.15 are the butterflies of the FFT. This method of
computing the complex DFT reduces the complexity to O(Nlog2N) which
is a substantial reduction on the number of arithmetic operations compared
to the standard DFT algorithm. The Cooley-Tukey algorithm can also be
generalized to re-express a DFT of a composite size N = N1N2, also called
mixed-radix cases.

2.2.3 FFT - Power spectrum

The power spectrum is visualized on a device as in figure 2.4 by transforming
the M -point IQ-data to the frequency domain by the means of a N -point
FFT and logarithmically compressing the resulting data for visualization
purposes. A diagram of the processing is shown i figure 2.7.

The input IQ-data is divided into overlapping segments to increase the
time-resolution and reduce the modified periodogram’s (a periodogram which
has been windowed by e.g. a Hamming window) variance [22]. The modified
periodogram is averaged after taking the absolute value and squaring the

10

2 THEORY 2.3 Doppler audio generation

Figure 2.7: Spectrum processing flowchart.

result, that is before the logarithmic compression, to decrease the standard
deviation as much as possible.

2.3 Doppler audio generation
The IQ-data which is used for spectral processing can also be used to generate
audio, which also can be split into two channels; one for positive Doppler-
shifts and one for negative shifts.

The Doppler audio is generated in three steps:

1. Interpolate the signal from the sampling frequency (PRF) to an ap-
propriate audio-playback frequency Fs.

2. Filter the interpolated signal to remove transients.

3. Filter the audio to split the positive and negative frequencies into two
channels.

The steps are described in further detail in the rest of this section.

2.3.1 Resampling by interpolation

Linear interpolation is a method of curve fitting between two points. It is
defined by

y−y0
x−x0

= y1−y0
x1−x0

(2.16)

where (x0,x1) are the known values of x and (y0,y1) are the know values
of y. x and y is the unknown point of interest [5]. Equation 2.16 can be
rewritten to solve for y

11

2.3 Doppler audio generation 2 THEORY

y = y0 +(y1−y0) x−x0
x1−x0

(2.17)

which can be represented graphically as in figure 2.8. By defining the
original step size x1−x0 of the original sampling frequency (PRF) as 1, the
new step sizes for an arbitrary resampling frequency Fs can be defined as

step= PRF

Fs
(2.18)

which is the new relative distance between each interpolated point.
If we let X(f) be the Fourier transform of any function, x(t) which is

sampled at some interval T to produce the sequence x [n]. The discrete-time
Fourier transform of the sequence x [n] is defined as [14]

∞∑
n=−∞

x(nT)e−i2πfnT = 1
T

∞∑
k=−∞

X (f − k/T) (2.19)

where the discrete-time Fourier transform is rewritten as a periodic sum-
mation of X(f). Here the sampling interval T = 1

PRF . If we now resample
at a frequency Fs = 1

L , we increase the periodicity by a factor of L

L

T

∞∑
k=−∞

X

(
f −kL

T

)
= PRF

Fs

∞∑
k=−∞

X

(
f −kPRF

Fs

)
(2.20)

which implies that if we resample a signal, we will have replicas of the
spectrum X(f) around multiples of the old sampling frequency PRF as
shown in figure 2.9.

2.3.2 Adaptive low-pass filter, Parks-McClellan filter coefficients

To filter the unwanted replicas of the signal spectra, a lowpass-filter with
cutoff-frequency at PRFFs needs to be applied to the interpolated signal. This
is since we sample the IQ-data at a rate of PRF and the new sampling fre-
quency after interpolation is Fs. Since the PRF can vary relatively arbitrar-
ily, the filter needs to be adaptive as shown in figure 2.10. The filter design
is based on the Parks-McClellan algorithm for finding optimal Chebyshev
FIR filter coefficients [20].

2.3.3 Split filter

To split the positive and negative frequencies of the audio signals, two split-
filters can be applied to the lowpass-filtered and interpolated audio signal.

12

2 THEORY 2.3 Doppler audio generation

Figure 2.8: Linear interpolation scheme

The split filter is first designed as a lowpass-filter with a cut-off frequency
of Fs/2

2 ,as illustrated in figure 2.11 , before each frequency component is
shifted by π

2 to get a band-pass filter from 0→ Fs
2 by multiplying each filter

coefficient h [0...N −1]with a complex exponential

hshifted [n] = h [n] exp
(
i
π

2n
)

n= 0...N −1 (2.21)

which gives us the split filter, for the retrieval of positive frequencies,
illustrated as the top figure in figure 2.12. The bottom split filter, which
retrieves negative frequencies, is attained by complex conjugating the split-
filter coefficients

h−shifted [n] = h∗shifted [n] n= 0...N −1 (2.22)

where ∗ denotes complex the complex conjugate.

13

2.3 Doppler audio generation 2 THEORY

Figure 2.9: Effects of interpolation. The top figure is a pure sine-wave at
the Nyquist frequency for a sampling frequency of 4kHz. The bottom figure
is the same spectrum after linear interpolation to a new sampling frequency
of 16kHz.

14

2 THEORY 2.3 Doppler audio generation

Figure 2.10: Ideal low pass filter to filter transients caused by interpolation.

Figure 2.11: Split filter before up-shifting

15

2.3 Doppler audio generation 2 THEORY

Figure 2.12: Split filter and its conjugate. These two filters split the positive
from the negative frequencies.

16

3 METHODS

3 Methods
The methods part is divided into four parts needed to understand the im-
plementation of the algorithms used for real-time spectrum- and audio-
generation and the real-time requirements of the system. The first part
is a brief overview of the software used to implement the algorithms on the
tablet, while the second part briefly describes the hardware used for data-
acquisition and implementation. The third part explains in detail how the
spectrum- and audio-generation is implemented on the hardware, while the
last part is dedicated to a brief overview of the real-time requirements of the
system, and how the framerate for the spectrum generation is rated.

3.1 Software
The thesis has relied on a number of software components which enables the
live streaming and processing of IQ-data from the ultrasound-scanner (Vivid-
I/Q), and other libraries for visualization, interaction and audio playback on
an Android device.

VTK

VTK is an open source software system for computer graphics, modeling and
image processing [12]. It is implemented as a C++ toolkit, enabling users to
create complex visualizations of models or datasets. The toolkit is created
and continually extended by Kitware and it is cross-platform as it runs on
Linux, Windows, Mac and mobile platforms; such as Android or IOS.

VES

VES is the VTK OpenGL ES Rendering toolkit created by Kitware enabling
users to render OpengGL ES 2.0 applications on mobile devices.

Kiwi

Kiwi ties VTK and VES together to enable users to write applications for
mobile devices utilizing both the VTK and VES libraries, depicted in figure
3.1. Kiwi also enables multitouch interaction with Android or IOS and is
created by Kitware.

OpenSL ES

OpenSL ES is a cross-platform audio API that is created for embedded
systems. It enables programmers to write audio-applications for embedded

17

3.1 Software 3 METHODS

Figure 3.1: Software structure layout for VTK, VES and Kiwi layout. The
picture is taken from [8].

devices such as smartphones.

Android NDK

The Android NDK, or Native Development Kit, is a toolset that allows
developers to write applications for Android using native-code such as C or
C++.

Data streaming

The GEStreamer code enables live-streaming of raw data from the Vivid-
I/Q. This streaming client is developed at the Department of Circulation
and Medical Imaging which is a part of the Medical Faculty at NTNU. The
streaming client has the capability to establish a connection to the ultra-
sound scanner and recieve data over IP and convert and sort it into a VTK
format; data which is accessible through functions provided by the stream-
ing client libraries. The streaming client also enables sending commands
to the ultrasound scanner via IP for remote control of modality, PRF, gate
selection etc.

18

3 METHODS 3.2 Hardware

Figure 3.2: The GE Vivid-Q laptop ultrasound scanner. The image is re-
trieved from http://www3.gehealthcare.com/

3.2 Hardware

Vivid-Q

The Vivid-Q is a high performance laptop ultrasound scanner which can
run on internal battery as an ordinary laptop. It has a programmable sys-
tem architecture and is the source of the raw-data used in the thesis. The
GEStreamer code streams live ultrasound data from the Vivid-Q via an eth-
ernet cable connected to the scanners back side. The Vivid-Q also recieves
commands from the GEStreamer code via the same ethernet cable.

Google Nexus 10

The Google Nexus 10 is used as the high-performance reference and it is a
ten-inch tablet with a 2560-by-1600 pixel display produced by Samsung. It
is powered by a dual-core ARM Cortex-A15 CPU operating at 1.0GHz to
2.5GHz and a Quad Core ARM Mali TS04 GPU supporting OpenGL ES
1.1-3.0.

19

3.2 Hardware 3 METHODS

ASUS Transformer Pad T300

The ASUS T300 is used as a low-medium performance reference and it is
a ten-inch tablet with a 1280-by-800 pixel display produced by ASUS. It is
powered by a quad-core NVIDIA Tegra 3 T30L CPU operating at 1.2GHz
and a GeForce 12-core GPU supporting OpenGL ES 2.0 but not OpenCL.

Samsung Galaxy S4 Active

The Samsung Galaxy S4 Active is used as the smartphone test-device and
it is a five-inch smartphone with a 1080-by-1920 pixel display produced by
Samsung. It is powered by a quad-core ARM Krait 300 CPU operating at
1.9GHz and a Quallcomm Adreno 320 quad-core GPU supporting OpenGL
ES 3.0.

20

3 METHODS 3.3 Implementation

3.3 Implementation
The data from the ultrasound scanner comes in packets which contain times-
tamped IQ-data. These data-packets are parsed in the functionAddDopplerData
in the class vtkIQStreamData where they are fed into the spectrum-generator
and audio-generator packet-by-packet as shown in figure 3.3.

vtkIQStreamData feeds the two generation classes with IQ-data . It en-
ables synchronization between the spectrum and audio since they recieve the
same IQ-packet at the same time, as well as easy access to change parameters
and access data within the two sub-classes: vtkDopplerGenerateSpectrum
and vtkDopplerGenerateAudio. All aspects of my implementation are writ-
ten in C++ and run in real-time on Android. All developments have been
tested on a Google Nexus10, an ASUS T300 and a Samsung Galaxy Nexus
4 Active.

Figure 3.3: IQ-data processing flowchart. The source code for the flowchart
is given in appendix C.

21

3.3 Implementation 3 METHODS

3.3.1 Doppler spectrum

The class vtkDopplerGenerateSpectrum is responsible for generating spec-
trum lines and new timestamps given a packet of IQ-data as shown in figure
3.4. The spectrum-line data and new timestamps are stored in a linear
buffer and can be retrieved through the vtkIQStreamData-class. The spec-
trum lines are generated with an overlap between IQ-data to increase the
time-resolution.

Firstly the IQ-data packet is pushed into the back of a linear buffer in
vtkIQStreamdata, which can contain at most a given length in time of IQ-
samples. The IQ-data is then parsed to vtkDopplerGenerateSpectrum by
a function-call to ProcessIQPacket.

A set of M samples is chosen from the last overlap position n if the sum
of them do not exceed the number of IQ-samples available kN , where k is
the packet number and N is the number of IQ-samples in this packet. If
there are enough samples available we move further down the chain, if not; a
new packet is added if there are more packets left this run. The overlapping
is shown in figure 3.5.

The next step is applying a Hamming window described in section 2.2.3
to reduce side-lobe levels and spectral leakage between overlapping sections
of IQ-data. Zeropadding to a length L is performed on the temporary M
-point IQ-set if M < L , before the L-point FFT is excecuted. If the data
window size is larger than the preset FFT-size, then the FFT-size is set to
the window-size. After applying the FFT, we need to shift the zero frequency
to the middle of the spectrum line for visualization purposes. This results
in a spectrum where the zerofrequency-line is in the middle of the image,
the positive frequencies are represented at the top half of the image and the
negative frequencies at the lower part.

The Fourier-transformed IQ-data is then processed further on by finding
the power, then the data is put through a moving average filter of a given
amount of miliseconds to reduce the variance of the estimated spectrum, if
we have enough spectrum lines. Finally logarithmic compression is applied
to scale and compress the data to intensity values from 0→ 255.

After this processing is done, a timestamp is generated for the produced
spectrumline and the spectrumline is saved to a linear buffer. The start
position of the window is incremented by s miliseconds and another round
of processing commences.

Both VTKs built-in FFT algorithm and FFTW was implemented in the
dataStreamClient, but only VTKs built-in FFT was implemented on the
Android devices.

22

3 METHODS 3.3 Implementation

Figure 3.4: Doppler spectrum processing flowchart. The spectrum genera-
tion code is given in appendix D.

23

3.3 Implementation 3 METHODS

Figure 3.5: Overlapping the IQ-data with a Hamming window, 75% overlap.

3.3.2 FFT optimization

VTK FFT

The VTK FFT-implementation has been analyzed manually by analyzing
the source-files of VTK’s implementation. This may cause the conclusion to
what kind of implementation VTK uses to be incorrect, and the reader is
advised as such.

VTK seems to implement a version of Rader’s FFT algorithm [18] along-
side with a radix-2 FFT. It splits the input length into prime factors and
uses Rader’s FFT algorithm for prime factors other than 2, for which it uses
the standard butterfly radix-2 FFT method. This means that for radix-2
FFT-sizes VTK will use radix-2 FFT to process all the data for a complex-
ity of O(Nlog2N)while its complexity will approach O(N2) for prime factors
approaching the FFT-size, or for FFT-sizes which are primes.

FFTW

FFTW is a C subroutine-library implementation of the discrete Fourier
transform that adapts to the hardware in order to maximize performance[9].
FFTW uses a planner which searches for the fastest solution of the DFT
of a given DFT-length for the spesific harware. It searches through differ-
ent FFT-algorithms for the given length and times the algorithms to decide

24

3 METHODS 3.3 Implementation

which is the fastest. This plan for a given FFT-length can be saved for later
use on the same machine, and it is called wisdom. FFTW creates codelets,
specific lines of code designed for fast computation of a sub-problem, which
are hardware specific SIMD-instructions on supported hardware. If these
codelets can be written as SIMD-instructions, the performance is greatly
increased.

FFTW includes settings for how wide the search for the optimal plan will
be, and thus how much time will be spent searching through algorithms to
find the optimal plan. Since this plan can be saved as wisdom for later use,
the search only needs to be done once for each machine and then the wisdom
can be loaded when it is needed. FFTW also supports multithreading.

The library is released under the GNU General Public License (GPL),
but the GPL protection can be voided by purchasing a non-free license from
MIT. This license is a one-time fee, which gives the user access to use the
software commercially without having to publish their source-code.

25

3.3 Implementation 3 METHODS

3.3.3 Audio

The audio generation setup is much the same as the spectrum generation.
The class vtkDopplerGenerateAudio also has a function called ProcessIQPacket
which is called from vtkIQStreamData. vtkIQStreamData sends IQ-data
in packets to the ProcessIQPacket-function. The packet sent to both the vtk-
DopplerGenerateSpectrum-class and vtkDopplerGenerateAudio-class is the
same, and it is sent at the same time, as this ensures some synchroniza-
tion between the shown spectrum and the audio.

The audio generation class is responsible for generating stereo audio, one
channel for positive frequencies and one for negative, and sending the re-
sulting data at a certain rate Fs, which is the playback frequency, to an
audioplayer implemented by Gabriel Kiss using OpenSL ES’ AudioTrack
class. vtkDopplerGenerateAudio contains several steps to make good audi-
ble stereo sound from the raw IQ-data.

First there is a check to determine if the PRF , sampling frequency Fs or
any other important parameter has changed, or if we are at a new processing
startup, e.g. when we have a mode change from ColorFlow to PW-Doppler.
This check determines wether we have to design a new split-filter or not as
seen in figure 3.7. If we have to design a new split-filter, then this is done
and the new design is saved until a new setup is required.

The split filter is a combined lowpass-filter, as in figure 2.10 ,and split-
filter, as in figure 2.12 ,which reduces the overall filtering complexity with
a factor of two. So instead of lowpass-filtering and then applying the split-
filter; the lowpass-filter’s cut-off frequency is halved and the filter is shifted
up the new cut-off frequency, as illustraded in figure 3.8. The split filter
is designed using the Parks-McClellan FIR-filter design algorithm, and an
external library computes the filter coefficients by a simple function call to
the function parksMcClellan which contains the FIR-filter coefficients after
the call.
// Designing the s p l i t f i l t e r as a lowpass− f i l t e r at p r f / f s /2
ParksMcClel lan parksMcClel lan (AudioCoeff ic ientsNumber ,

I n t e r p o l a t i o n I n c r e m e n t /2 , 0 , 0 . 0 3 , LPF) ;

The problem with this filter-design is that the side-lobe levels are very
high, at about−16dB. The split-filter is multiplied by a Hann-window before
shifting to reduce these sidelobe levels, and the resulting two split filters
can be seen in figure 3.9. The mainlobe of the filter has widened, but the
sidelobes have decreased significantly which gives us a good differentiation
between positive and negative frequencies.

The frequency up-mixing, Hann-window multiplication and conjugation
is performed by the following code in the program

26

3 METHODS 3.3 Implementation

//Mixing the d i f f e r e n t c o e f f i c i e n t s up , so we now have a lowpass−
f i l t e r from 0−>p r f / f s ;

//The complex conjugate i s a lowpass− f i l t e r from −p r f / fs−>0.
// Also m u l t i p l y i n g with the Hann window , to reduce s i d e l o b e l e v e l s .
for (int i=AudioCoeff ic ientsNumber −1; i >= 0 ; −−i) {

va l . Real = parksMcClel lan . F i r C o e f f [i]∗ cos (i ∗M_PI∗
I n t e r p o l a t i o n I n c r e m e n t /2)∗Hann [i] ;

va l . Imag = parksMcClel lan . F i r C o e f f [i]∗ s i n (i ∗M_PI∗
I n t e r p o l a t i o n I n c r e m e n t /2)∗Hann [i] ;

A u d i o S p l i t F i l t e r . push_back (va l) ;
va l . Imag = −va l . Imag ;
A u d i o S p l i t F i l t e r C o n j u g a t e . push_back (va l) ;

}

The variable InterpolationIncrement is PRFFS
, the up-shifting is done by

multiplying the real and imaginary parts of the filter-coefficients by the co-
sine and sine of the up-shifting argument respectively. The filter-coefficients
are also multiplied by a Hann window and complex conjugated by changing
the sign of the imaginary part of the coefficients. The filter length is set
to AudioCoefficientsNumber. A reverse-run for-loop is used to insert the
filter-coefficients in reversed order since the filtering is a convolution between
the IQ-samples and the filter-coefficients.

After the initial setup of the filter, or if nothing has changed since the
last run, the data is upsampled from a samplerate of PRF to Fs by the
means of linear interpolation.

After the interpolation the audio-samples are filtered with the split-filter,
which results in two audio-channels. One channel for the negative frequen-
cies and one for the positive. These two channels, which are concatenated
into one array (L,R,L,R), are then sent to an audioplayer which plays the
generated samples in real-time. The audio-player has an adjustable buffer,
which is set for 25ms, of samples to compensate for possible interruption in
the processing.

27

3.3 Implementation 3 METHODS

Figure 3.6: Audio processing flowchart. The source code for the audio-
processing is given in appendix E.

28

3 METHODS 3.3 Implementation

Figure 3.7: Parks-McClellan split filter design. The filter coefficients are
shifted up PRF

Fs/2 .

29

3.3 Implementation 3 METHODS

Figure 3.8: Combined adaptive lowpass- and split-filter design. The top fig-
ure is before shifting and the bottom one is after frequency-shifting. This fil-
ter was designed for a PRF of 4kHz and resampling frequency Fs = 16kHz.
This should give a final cut-off frequency after shifting at PRFFs = 0.25 which
can be verified from the bottom figure. The x-axis represents the normalized
frequency (×πrad/sample) after interpolation.

30

3 METHODS 3.3 Implementation

Figure 3.9: Combined adaptive lowpass- and split-filter design after Hann-
Window multiplication. The mainlobe has widened, but the sidelobes have
been considerably lowered. This filter was designed for a PRF of 4kHz and
resampling frequency Fs = 16kHz. The x-axis represents the normalized
frequency (×πrad/sample) after interpolation.

31

3.4 Real-Time requirements 3 METHODS

3.4 Real-Time requirements
A signal processing system, or any other system for that matter, is only
considered real-time when it can process and output data faster, or at least
as fast as the input. This means that if a system spends 5 seconds processing
and outputting 4 seconds worth of data, it is not deemed real-time and the
data will stack up as time progresses.

The implication is that both the spectral processing and the audio pro-
cessing times combined will have to be less than the data-aqcuisition time;
since they are run on the same thread. It is still a good idea to keep the
processing time as low as possible, to allow for some delay in other parts of
the system.

The number of frames per second which is deemed fluent is a tricky sub-
ject, since it can vary between modalities. A table which nootebookcheck.net
uses to rate graphic cards’ performance in video games, depicted in figure
3.10, can be a good indication of fluency, and it is used as a pseudo-objective
benchmark for the spectrum generation.

The table in figure 3.10 gives a score of fluent when the FPS reaches
about 25→ 35. The measured run-times for the 10 seconds of IQ-data can
be converted to FPS by the following equation

FPS = 1
Runtime/10 = 10

Runtime
(3.1)

where the variable Runtime is the total measured run-time in seconds.
This formula can also be rewritten to find the maximum run-time which
achieves a FPS of i.e. 25

Runtimemax = 10
FPS

(3.2)

which gives a maximum run-time of 10
25 = 400ms. To achieve 35 FPS the

maximum run-time can at most be 10
35 = 285.7ms.

The maximum achievable FPS is also dependant on how fast the system
can parse the data to the spectrum generator and refresh the screen, but
this is not considered here.

32

3 METHODS 3.4 Real-Time requirements

Figure 3.10: Fluency ratings for graphics cards from nootebookcheck.net

33

3.4 Real-Time requirements 3 METHODS

34

4 RESULTS

4 Results
4.1 Spectrum generation timing
The Doppler spectrum generation was timed on both a Google Nexus 10 3.2
and an ASUS T300 Transformer Pad 3.2. A cumulative timer for 10 seconds
of IQ-data was measured and the measurements was performed and averaged
5 times to eliminate the influence of background programs and reduce the
variance of the measurements. All timers were measured in real-time with
the tablets connected to the Vivid-Q. The probe was given a coat of gel, but
it was not in contact with anything.

Both the Nexus 10 and the T300 were measured using two different
PRF ’s; 2890Hz and 6410Hz. These values for the PRF were chosen be-
cause they are preset PRF ’s used in the Umoja-prototype, and the size of
the IQ-packet recieved per timepoint to the program varies with different
PRF ’s. A higher PRF results in an IQ-packet larger than a low PRF
IQ-packet.

Alongside with a full cumulative timer of the Doppler spectrum genera-
tion, a cumulative FFT-timer was also measured in the same manner as the
Doppler spectrum timer to measure how much of the processing that went
into executing the FFT.

All raw-data used to produce the figures in the coming sections can be
found in appendix H.

Doppler spectrum generation cumulative run-times was also measured for
both VTK’s built in FFT-algorithm and an implementation of FFTW’s im-
plementation using FFTW’s Exhaustive algorithm search. The cumulative
run-timing was conducted in the exact same fashion as for the timers on the
Android devices except that this timing was performed on a laptop com-
puter1. From these timings, an anticipated new cumulative run-time for the
Android devices is presented. The FFTW-measurements on the laptop was
performed with SIMD-support, but no multithreading was used due to the
small problem size.

1Dell Precision | M4700. Intel i7-3540M CPU at 3.00GHz. Nvidia Quadro K2100M
GPU and 16GByte RAM. Using Visual Studio 2012 Professional debug build.

35

4.1 Spectrum generation timing 4 RESULTS

4.1.1 Nexus 10

The measurements on the Nexus 10 are given for overlapping windows of
both 75% and 87.5%, as shown in figures 4.1 and 4.2 respectively. The
window-length for the respective overlap percentages was set to a static
20ms . The full run-times are displayed as the full bars in the figures while
the green parts of the bars represent the FFT run-time only.

As can be seen from figure 4.1 the cumulated run-times for the Doppler
spectrum generator ranged from 80 ms to 250 ms for both PRF ’s. There is
a significant difference at a FFT-size of 200 for an overlap of 75%, where the
cumulative timer for a PRF of 6410 is almost double compared to a PRF of
2890. This discrepancy is intuitive since a higher PRF would result in more
processing before the FFT, but the difference is also extreme and thus the
measurement of the size-200 FFT at 2890Hz should be disregarded.

Table 4.1 shows that the fraction of the cumulative timer for the FFT
versus the whole run-time of the spectrum generation, ranges from 35.53% to
47.51%. The highest relative run-time percentages are found for a FFT-size
of 100.

Figure 4.1: Spectrum timing for the Nexus 10 with 75% overlap. PRF
of 2890 to the left and 6410 to the right. The full column represents the
cumulated run-time for 10 seconds of IQ-data while the green bar represents
the FFT only. The data is averaged over 5 measurements.

Figure 4.2 shows that for an overlap of 87.5% the cumulative run-times
for the whole spectrum processing ranges from 130 to 460 ms, and it also
shows that there is almost no difference between a PRF of 2890 and a PRF
of 6410.

As can be seen from table 4.2 the fraction of the cumulative FFT run-
time versus the whole spectrum processing run-time ranges from 37.58% to
48.11%. The highest ratio can be found where the FFT-size is 200.

36

4 RESULTS 4.1 Spectrum generation timing

PRF\FFT size 64 100 128 200 256
2890Hz 38.00% 46.95% 39.76% 39.01% 43.08%
6410Hz 35.53% 46.52% 38.55% 47.51% 42.40%

Table 4.1: FFT vs full run-time fractions with 75% overlap on the Google
Nexus 10. The table represents how much of the processing is spent per-
forming the FFT versus the full run-time of the spectrum generation.

PRF\FFT size 64 100 128 200 256
2890Hz 38.51% 47.28% 40.34% 48.08% 42.05%
6410Hz 37.58% 47.11% 39.38% 48.11% 41.68%

Table 4.2: FFT vs full run-time fractions with 75% overlap on the Google
Nexus 10. The table represents how much of the processing is spent per-
forming the FFT versus the full run-time of the spectrum generation.

Figure 4.2: Spectrum timing for the Nexus 10 with 87.5% overlap. PRF
of 2890 to the left and 6410 to the right. The full column represents the
cumulated run-time for 10 seconds of IQ-data while the green bar represents
the FFT only. The data is averaged over 5 measurements.

The gathered plot for the cumulative run-times for the Nexus 10 can
be seen in figure 4.3. The figure depicts the full cumulative run-times for
both 75% and 87.5% overlap alongside with the cumulative run times for
the associated FFT-sizes.

37

4.1 Spectrum generation timing 4 RESULTS

Figure 4.3: The spectrum timings for the Nexus 10 gathered in one plot.

38

4 RESULTS 4.1 Spectrum generation timing

PRF\FFT size 64 100 128 200 256
2890Hz 47.93% 55.82% 47.68% 57.74% 49.60%
6410Hz 42.72% 54.93% 48.15% 57.99% 49.00%

Table 4.3: FFT vs full run-time fractions with 75% overlap on the ASUS
T300. The table represents how much of the processing is spent performing
the FFT versus the full run-time of the spectrum generation.

4.1.2 ASUS T300

The measurements for the ASUS T300 Transformer pad were conducted
in the exact same fashion as for the Google Nexus 10 and the results are
presented in the same manner.

For an overlap of 75% figure 4.4 shows that the cumulative spectrum
generation timer ranged from 120 to 450 ms, and that there was no significant
difference in run-times between a PRF of 2890 and a PRF of 6410.

As can be seen from table 4.3 the fractions of the FFT vs the full spectrum
generation run-times varied from 42.72% to 57.99% and the highest fractions
can be found at an FFT-size of 200.

Figure 4.4: Spectrum timing for the ASUS T300 10 with 75% overlap. PRF
of 2890 to the left and 6410 to the right. The full column represents the
cumulated run-time for 10 seconds of IQ-data while the green bar represents
the FFT only. The data is averaged over 5 measurements.

An overlap of 87.5% has cumulative run-times for the spectrum genera-
tion ranging from 220 to 900 ms as can be seen from figure 4.5. The most
significant differences between a PRF of 2890 a PRF of 6410 can be see at
FFT-size of 200 and 256.

The fractions of the FFT cumulative run-times and the whole cumulative

39

4.1 Spectrum generation timing 4 RESULTS

PRF\FFT size 64 100 128 200 256
2890Hz 42.83% 57.68% 46.97% 57.91% 50.17%
6410Hz 54.29% 49.94% 46.71% 57.53% 49.12%

Table 4.4: FFT vs full run-time fractions with 75% overlap on the ASUS
T300. The table represents how much of the processing is spent performing
the FFT versus the full run-time of the spectrum generation.

run-time for the spectrum generation ranges from 42.83% to 57.91%, as can
be seen from table 4.4. Significant differences between the two different PRF
’s can be seen at FFT-sizes of 64 and 100. The highest fractions without
difference between the FFT-sizes can be found for an FFT-size of 200.

Figure 4.5: Spectrum timing for the ASUS T300 10 with 87.5% overlap.
PRF of 2890 to the left and 6410 to the right. The full column represents the
cumulated run-time for 10 seconds of IQ-data while the green bar represents
the FFT only. The data is averaged over 5 measurements.

The gathered plot for the cumulative run-times for the ASUS T300 can
be seen in figure 4.6. The figure depicts the full cumulative run-times for
both 75% and 87.5% overlap alongside with the cumulative run times for
the associated FFT-sizes.

40

4 RESULTS 4.1 Spectrum generation timing

Figure 4.6: The spectrum timings for the ASUS T300 gathered in one plot.

41

4.1 Spectrum generation timing 4 RESULTS

% Overlap \ FFT-size 64 100 128 200 256
75 34.87% 15.16% 13.38% 12.44% 11.42%
87.5 33.92% 17.53% 20.10% 10.28% 13.49%

Table 4.5: Run-time differences represented as fractions for both 75% and
87.5% overlap. The fractions are calculated as FFTWruntime

V TKruntime .

4.1.3 VTKs built-in FFT vs FFTW

The two different implementations of the FFT, VTKs built-in FFT and
FFTW with Exhaustive settings, was timed on a laptop in the same manner
as on the Android devices. A cumulative timer for the execution of the FFT
for 10 seconds of IQ-data was performed 5 times and averaged. The timing
was done for both 75% and 87.5% overlap as can be seen from figure 4.7.
The blue bar displays VTKs built-in FFT cumulative timer and the red bar
represents FFTWs cumulative timer.

Table 4.5 depicts figure 4.7 in terms of how much time FFTW’s FFT-
algorithm spends on 10 seconds of IQ-data compared to VTKs FFT-algorithm.
The table shows cumulative run-times for the FFTW algorithm to be from
3−10 times faster than the VTK FFT-algorithm.

Figure 4.7: VTKs built-in FFT vs FFTW. The run times are cumulated
over 10 seconds of IQ-data and averaged over 5 measurements. 75% Overlap
to the left and 87.5% overlap to the right.

42

4 RESULTS 4.1 Spectrum generation timing

4.1.4 Anticipated run-times with the use of FFTW

New run-times for the Google Nexus 10 and the ASUS T300 is computed
from figures 4.3 and 4.6, respectively. The original run-times for the FFTs
were scaled according to table 4.5 and the results are displayed for the Nexus
10 on the left hand side in figure 4.8 and in the left hand side in figure 4.9
for the ASUS T300.

Figure 4.8: The anticipated run time for spectrum generation by using
FFTW on the Nexus 10 on the left vs the measured times with VTK on the
right.

Figure 4.9: The anticipated run time for spectrum generation by using
FFTW on the ASUS T300 on the left vs the measured times with VTK
on the right.

43

4.2 Audio Generation timing and system delay 4 RESULTS

4.2 Audio Generation timing and system delay
The computational efficiency of the audio generation is shown in figure 4.10,
where the audio generation code was timed for 10 seconds of IQ-data 5
times, and averaged. These measurements were conducted for two different
PRF ’s and two different playback frequencies. Both the ASUS T300 and
the Nexus 10 were timed. The timing setup for the audio was the same as
for the spectrum.

For the Nexus 10, the cumulated computational delay accounts for 75ms
run-time for a playback frequency of 8kHz and between 115− 130ms for
a playback frequency of 16kHz. The Asus T300 displayed run times at
approximately 115ms for a playback frequency of 8kHz while for a playback
frequency of 16kHz the cumulative timer was close to 190ms.

An "impluse" test was also conducted, where the Nexus 10 and the ASUS
T300 was laid flat upon the Vivid-Q. Both systems were running, and the
probe was tapped against the palm of the hand to produce an "impulse"
sound. The lag between when the sound was played from the ultrasound
machine and the tablet was timed by recording several taps and measuring
the difference in time between start-playoff from the Vivid-Q and start-
playoff from the tablet. The recording device was a Samsung Galaxy S4
which was held by hand at a distance of approximately 50cm. The audio-
recordings were imported to a laptop where they were analyzed in Audacity2

to measure the lag. The Results of this test is shown in figure 4.11.

2http://audacity.sourceforge.net/

44

4 RESULTS 4.2 Audio Generation timing and system delay

Figure 4.10: Audio generation times on the ASUS T300 and Nexus 10, based
on the average of 5 runs with 10 seconds of IQ-data.

45

4.2 Audio Generation timing and system delay 4 RESULTS

Figure 4.11: Measured lag between the Vivid-Q and the two different tablets.
This is a measure of the full delay between the transfer of IQ-data; audio
processing and audio playback through the system.

46

4 RESULTS 4.3 Achievable framerates with VTK’s FFT

4.3 Achievable framerates with VTK’s FFT
Based on equation 3.1, the data in appendix H and the audio-timing in
figure 4.10 the framerate of the spectrum generation is computed and listed
in tables 4.6→4.11.The performance is evaluated based on figure 3.10 with
ratings from green-orange-red where green is best and red is worst. Due to
a huge discrepancy in the results for the timing of the Nexus 10, the cell at
75% overlap, 2890Hz PRF and and FFT-size of 200 should be disregarded.

4.3.1 Spectrum generation only

Tables 4.6→4.7 are the achievable framerates if we only take into account
the spectrum generation. Table 4.6 shows that the Nexus 10 performs well
in most cases, except FFT-sizes of 200→ 256 with an overlap of 87.5%,
while table 4.7 shows that the ASUS T300 performs well for low FFT-sizes
(64→ 128) with an overlap of 75%, but the only adequate performance for
87.5% overlap is with a FFT-size of 64.

FFT-size\PRF 2890 6410
64 131 128
100 84 81
128 80 76
200 74 44
256 41 41

FFT-size\PRF 2890 6410
64 73 69
100 44 45
128 40 41
200 23 24
256 22 22

Table 4.6: Average framerates for the Nexus 10. The left table is for 75%
overlap and the right table is for 87.5% overlap. The numbers are based on
the raw-data in appendix H and equation 3.1.

FFT-size\PRF 2890 6410
64 81 79
100 46 43
128 35 33
200 23 24
256 22 22

FFT-size\PRF 2890 6410
64 44 40
100 23 23
128 23 23
200 12 13
256 11 12

Table 4.7: Average framerates for the ASUS T300. The left table is for 75%
overlap and the right table is for 87.5% overlap. The numbers are based on
the raw-data in appendix H and equation 3.1

47

4.3 Achievable framerates with VTK’s FFT 4 RESULTS

4.3.2 Spectrum and audio generation

Tables 4.8→4.11 depict the achievable framerates if both the spectrum gen-
eration and the audio generation are taken into account.

The Nexus 10 performs well for all FFT-sizes and PRF’s at 75% overlap
and an audio-playback frequency of 8kHz. The Nexus 10 encounters issues
at FFT-sizes of 200 and 256 at 87.5% overlap.

For an audio-playback frequency of 16kHz the Nexus 10 performs well
at 75% overlap for all FFT-sizes, while issues appears for 87.5% overlap for
FFT-sizes at or above 200. The framerate between 8kHz and 16kHz drops
significantly aswell.

The ASUS T300 displays low performance for almost all FFT-sizes, over-
lap percentages and audio-playback frequencies. The exceptions are FFT-
sizes of 64 and 100 at an audio-playback frequency of 8kHz , FFT-size of
64 with 87.5% overlap and a FFT-size of 64 with 75% overlap at an audio-
playback frequency of 16kHz.

FFT-size\PRF 2890 6410
64 66 65
100 51 50
128 49 49
200 48 33
256 31 32

FFT-size\PRF 2890 6410
64 47 45
100 33 33
128 31 31
200 20 20
256 19 19

Table 4.8: Average framerates for the Nexus 10 with audio generation at
8kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 and equation 3.1.

FFT-size\PRF 2890 6410
64 53 48
100 43 40
128 42 38
200 40 28
256 28 27

FFT-size\PRF 2890 6410
64 40 36
100 30 28
128 28 27
200 18 18
256 17 17

Table 4.9: Average framerates for the Nexus 10 with audio generation at
16kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 and equation 3.1.

48

4 RESULTS 4.3 Achievable framerates with VTK’s FFT

FFT-size\PRF 2890 6410
64 41 42
100 29 29
128 24 24
200 18 19
256 17 18

FFT-size\PRF 2890 6410
64 29 28
100 18 18
128 18 18
200 11 11
256 10 10

Table 4.10: Average framerates for the ASUS T300 with audio generation
at 8kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 and equation 3.1.

FFT-size\PRF 2890 6410
64 32 32
100 24 24
128 21 20
200 16 16
256 16 16

FFT-size\PRF 2890 6410
64 24 23
100 16 16
128 16 16
200 10 10
256 9 10

Table 4.11: Average framerates for the ASUS T300 with audio generation
at 16kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H, audio run-
times in figure 4.10 and equation 3.1.

49

4.4 Achievable framerates with FFTW 4 RESULTS

4.4 Achievable framerates with FFTW
Based on equation 3.1, the data in appendix H, the VTK vs FFTW fractions
in table 4.5 and the audio-timing in figure 4.10 the anticipated framerate,
with the use of FFTW, of the spectrum generation is computed and listed in
tables 4.12→4.17.The performance is evaluated based on figure 3.10. Due to
a huge discrepancy in the results for the timing of the Nexus 10, the cell at
75% overlap, 2890Hz PRF and and FFT-size of 200 should be disregarded.

4.4.1 Spectrum generation only

Table 4.12 show that the Nexus 10 will perform very well for all tested FFT-
sizes and overlap percentages, with the lowest framerate at 36Hz found at
87.5% overlap and an FFT-size of 256. The ASUS T300 will also perform
very well, as table 4.13 shows, for almost all settings. The tablet will only
encounter problems for high FFT-sizes (256) and 87.5% overlap.

FFT-size\PRF 2890 6410
64 186 174
100 135 131
128 126 122
200 120 82
256 70 70

FFT-size\PRF 2890 6410
64 103 97
100 72 72
128 66 66
200 43 45
256 36 36

Table 4.12: Anticipated framerates for the Nexus 10. The left table is for
75% overlap and the right table is for 87.5% overlap. The numbers are based
on the raw-data in appendix H, table 4.5 and equation 3.1.

FFT-size\PRF 2890 6410
64 128 117
100 84 78
128 64 62
200 52 55
256 42 42

FFT-size\PRF 2890 6410
64 65 69
100 43 39
128 42 42
200 28 28
256 22 22

Table 4.13: Anticipated framerates for the ASUS T300. The left table is
for 75% overlap and the right table is for 87.5% overlap. The numbers are
based on the raw-data in appendix H, table 4.5 and equation 3.1.

50

4 RESULTS 4.4 Achievable framerates with FFTW

4.4.2 Spectrum and audio generation

Tables 4.14→4.17 depict the achievable framerates if both the spectrum gen-
eration and the audio generation is taken into account, alongside with an
implementation of the FFTW-library.

The Nexus 10 displays good performance for both 8kHz and 16kHz
playback-frequency, all FFT-sizes and both overlap percentages, as shown
in figures 4.14 and 4.15. For an overlap of 87.5% and FFT-sizes of 200 and
256 the Nexus 10 dips below a FPS of 35 but stays above 24.

Tables 4.16 and 4.17 depicts a relatively good performance for the ASUS
T300 at an audio-playback frequency of 8kHz but it has trouble processing
the workload at FFT-sizes of 200 and 256 at an overlap of 87.5%. For an
audio-playback frequency of 16kHz the ASUS T300 has fluent framerates at
75% overlap until the FFT-size reaches 256. The only fluent framerate at a
overlap of 87.5% is at a FFT-size of 64, the rest of the FFT-sizes at 87.5%
depicts low performance for the ASUS T300.

FFT-size\PRF 2890 6410
64 78 76
100 67 66
128 65 64
200 63 51
256 46 46

FFT-size\PRF 2890 6410
64 58 56
100 48 47
128 44 44
200 33 34
256 29 28

Table 4.14: Anticipated framerates for the Nexus 10 with audio generation
at 8kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 , table 4.5 and equation 3.1.

FFT-size\PRF 2890 6410
64 60 53
100 54 48
128 52 47
200 51 40
256 39 37

FFT-size\PRF 2890 6410
64 49 43
100 40 37
128 38 36
200 29 28
256 26 25

Table 4.15: Average framerates for the Nexus 10 with audio generation at
16kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 , table 4.5 and equation 3.1.

51

4.4 Achievable framerates with FFTW 4 RESULTS

FFT-size\PRF 2890 6410
64 50 51
100 42 42
128 36 37
200 32 34
256 28 30

FFT-size\PRF 2890 6410
64 37 39
100 28 27
128 28 29
200 21 22
256 17 18

Table 4.16: Average framerates for the ASUS T300 with audio generation
at 8kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H , audio
run-times in figure 4.10 , table 4.5 and equation 3.1.

FFT-size\PRF 2890 6410
64 37 36
100 32 31
128 29 28
200 26 27
256 23 24

FFT-size\PRF 2890 6410
64 29 30
100 24 22
128 23 23
200 18 18
256 15 16

Table 4.17: Anticipated framerates for the ASUS T300 with audio generation
at 16kHz. The left table is for 75% overlap and the right table is for 87.5%
overlap. The numbers are based on the raw-data in appendix H, audio run-
times in figure 4.10 , table 4.5 and equation 3.1.

52

4 RESULTS 4.5 Spectrum and Audio validation

4.5 Spectrum and Audio validation
The spectrum generator is validated using a synthetic signal created by Hans
Torp using Matlab. The synthetic signal is generated as a 140Hz sine-wave
in the frequency domain with additive white noise and the synthetic IQ-data
is sampled at a rate of 4kHz. The synthetic signal is depicted with white
noise on the right side of figure 4.12 It can be recreated using the Matlab
script in appendix A.

The Audio is validated using a another synthetic signal which is composed
of two stationary band-pass signals without noise. The two stationary band-
pass signals are centered around 1.7kHz and −0.7kHz with a bandwith of
about 0.2kHz as depicted at the top in figure 4.15. The audio-validation
signal can be recreated using the Matlab script in appendix B.

The validation is performed by comparing the output of both the spec-
trum generation- and sound generation-algorithms in Matlab and C++.

4.5.1 Spectrum Validation

Figure 4.12 depicts the spectrums generated from the synthetic signal both
in Matlab and C++. The comparison between the two different images
depicted in figure 4.13 was created by using the Matlab built-in function
imabsdiff with the two different pictures as input andimagesc to visualize.
There is a slight difference in intensity in the input images. Since imagesc
was used to display the image, the flat gray areas are where the spectrums
were exactly the same. The Black region is where the images were saturated.
Some shot-noise can be seen in the image.

Figure 4.12: Spectrum generated from noisy synthetic IQ-data, representing
a frequency sine-wave of 140Hz. The spectrum on the left is generated with
the C++ -code, while the spectrum on the right is from Matlab using a
standard spectrum-generation algorithm. The two methods use an overlap
of 75% with a FFT-size of 256. Both spectrums are visualized using Matlab.

53

4.5 Spectrum and Audio validation 4 RESULTS

Figure 4.13: The difference between the Matlab-produced spectrum and the
C++-generated spectrum.

4.5.2 Audio Validation

The audio is validated using a synthetic signal composed of two station-
ary band-pass signals and comparing the Matlab-algorithm with the C++
-algorithm - output. The power spectrum of the band pass signals can be
observed in figure 4.14 and was created using a FFT-size of 256 and FFT-
shifted to bring the zero’th frequency to the middle of the spectrum. The
negative frequency signal is found below bin-number 128 and the positive fre-
quencies are found above that bin-number. The original sampling frequency
is 4kHz and the new sampling frequency after interpolation is 16kHz.

Figure 4.17 is the result of computing the negative frequencies-channel
output, using both Matlab, as depicted in the top figure, and C++ as de-
picted in the bottom figure, and displaying the frequency spectrum using
Matlab. Frequency leakage from the positive band-pass signal peaking at
about −20dB can be seen at approximately 2.2→ 2.4kHz. The frequency
content of the positive frequencies-channel output is depicted in figure 4.18,

54

4 RESULTS 4.5 Spectrum and Audio validation

and we can observe frequency leakage from the negative frequency signal at
0.6→ 0.8kHz.

Figure 4.14: The power spectrum of the audio validation signal.

55

4.5 Spectrum and Audio validation 4 RESULTS

Figure 4.15: Audio test signal. The top figure depics the original test signal,
while the bottom figure shows the test signal after interpolation from 4kHz
to 16kHz.

56

4 RESULTS 4.5 Spectrum and Audio validation

Figure 4.16: Filters used to split the positive and negative frequencies.

57

4.5 Spectrum and Audio validation 4 RESULTS

Figure 4.17: Spectrum of the audio generated from the testdata. The top
figure represents the Matlab-generated channel for negative frequencies while
the bottom figure is the C++-generated negative frequency channel. Both
channels are computed with the same algorithm and visualized using Matlab.

58

4 RESULTS 4.5 Spectrum and Audio validation

Figure 4.18: Spectrum of the audio generated from the testdata. The top
figure represents the Matlab-generated channel for positive frequencies while
the bottom figure is the C++-generated positive frequency channel. Both
channels are computed with the same algorithm and visualized using Matlab.

59

4.6 Spectrum quality 4 RESULTS

4.6 Spectrum quality
To determine the quality of the produced real-time spectrum, several screen-
shots were taken from the Nexus 10. These screenshots can be seen in fig-
ures 4.20-4.24, where the top picture is 75% overlap and the bottom figure
is 87.5% overlap in all figures. All spectrums used a 20ms -length window.
The spectrums were created by measuring a human carotid artery in real-
time, so the data differs from picture to picture. The PRF was set to 2890
and the FFT-size ranges from 64→ 256. Triplex mode was turned off so no
synthetic signal is present in the spectrums.

The first thing to note about figures 4.19→4.24, depicting spectral quality
with different parameters, is that the baseline is wrongly adjusted. This is a
minor bug in the software, concerning where VTK draws the baseline, and it
has no effect on the results other than that the y-axis is wrong with respect
to the velocity and that the baseline is drawn at the wrong location.

Figure 4.19 is two screenshots from the Nexus 10, where both pictures
are created with a FFT-size of 256 and an overlap of 75%. The top picture
however is created using spectral smoothing after logarithmic compression,
while the bottom picture is created by spectral smoothing before logarithmic
compression.

60

4 RESULTS 4.6 Spectrum quality

Figure 4.19: Spectrum quality of two smoothing methods. The spectrum in
the top figure is created by smoothing after logarithmic compression and the
bottom figure is created by smoothing before logarithmic compresion. Both
figures use a 256-point FFT and 75% overlap along with 25ms smoothing.
The dynamic range is set to 35dB.

61

4.6 Spectrum quality 4 RESULTS

Figure 4.20: 64 point FFT with 75% overlap on the top and 87.5% overlap
on the bottom. The spectrums have undergone 25ms spectral smoothing
and the dynamic range is set to 35dB.

62

4 RESULTS 4.6 Spectrum quality

Figure 4.21: 100 point FFT with 75% overlap on the top and 87.5% overlap
on the bottom. The spectrums have undergone 25ms spectral smoothing
and the dynamic range is set to 35dB.

63

4.6 Spectrum quality 4 RESULTS

Figure 4.22: 128 point FFT with 75% overlap on the top and 87.5% overlap
on the bottom. The spectrums have undergone 25ms spectral smoothing
and the dynamic range is set to 35dB.

64

4 RESULTS 4.6 Spectrum quality

Figure 4.23: 200 point FFT with 75% overlap on the top and 87.5% overlap
on the bottom.The spectrums have undergone 25ms spectral smoothing and
the dynamic range is set to 35dB.

65

4.6 Spectrum quality 4 RESULTS

Figure 4.24: 256 point FFT with 75% overlap on the top and 87.5% overlap
on the bottom. The spectrums have undergone 25ms spectral smoothing
and the dynamic range is set to 35dB.

66

5 DISCUSSION

5 Discussion
5.1 Spectrum generation
Validation

The spectrum validation in figure 4.13 shows that the spectrum generator
implemented in the Umoja-system performs as well as a standard Matlab-
implementation when quality is concerned. The frequency- and time resolu-
tion with a (almost) full-band, highly varying (140bpm) signal is reproduced
almost identically as the Matlab implementation. Figure 4.13 shows some
very small errors, which are the brighter and darker dots scattered around the
image, besides the difference in intensity, but these are likely accuracy issues
such as floating point-errors[10]. The scattered dots are scaled difference-
values, such that the figure 4.13 depics where there is an error, even very
small ones. The total black dots are either where both images were satu-
rated, or where there was no signal at all in both images. The original image
before scaling is found in appendix G.

Spectral quality

Smoothing methods: Figure 4.19 is a comparison of two different meth-
ods for spectral smoothing. The difference is that the top picture is smoothed
after the logarithmic compression, while the bottom is smoothed after find-
ing the power of the Fourier-transformed IQ-data, but before the logarithmic
compression. The latter method has been shown to minimize the standard
deviation of the resulting spectrum[15]. A Matlab script which shows this
effect is given in appendix F, where the standard deviation is reduced by
a factor of about five when the smoothing is performed on three samples
before the logarithmic compression. The bottom picture is clearer than the
top picture, which is due to the lower standard deviation.

Quality vs parameters: Since the data in each spectrum in figures 4.20→4.24
is different the quality is hard to assess, but one noticeable effect of increasing
the FFT-size is that the transit-regions between signal and no-signal seems
to be sharper in the frequency-"direction" and the edges seem smoother in
the time-"direction". The overlap percentage increases the time-resolution
as both the inverted tops and dips are clearer in the 87.5%-overlap pictures
compared to the 75% ones.

Parameters vs complexity: Spectral settings and processing time are
closely linked as can be seen from figures 4.3 and 4.6. The FFT-size affects

67

5.1 Spectrum generation 5 DISCUSSION

both how much time is spent computing the FFT alone, but also how much
time which must be spent smoothing and compressing the data. The runtime
overhead (the time not spent computing the FFT) seems to increase in a close
to linear fashion as the FFT-size increases, which is anticipated because a
larger FFT-size increases the amount of data which has to be processed after
the transform.

The FFT-size also increases the time spent computing the FFT itself.
This increase in run-time arises from two factors: The FFT-algorithm used
by the VTK library and the amount of data which needs to be processed.
Since VTK has implemented a FFT-algorithm which specializes in radix-2
transforms, the radix-2 cases will be less computationally expensive com-
pared to their sizes as opposed to non-radix-2 cases, this can be seen from
figures 4.3 and 4.6, as well as tables 4.1→4.4.

Since the window-length is set to a static size (20ms), the window-length
in samples increases with increasing PRF . This causes the computational
complexity before the FFT to increase and thus the runtime is expected
to rise with increasing PRF , but only in a minimal sense since the only
computation performed on the IQ-data before the FFT is multiplication by
a Hamming-window and zeropadding. The increase in PRF will actually
cause the for-loop performing the zeropadding to be less computationally
expensive, since the number of zeros which needs to be inserted is less than
with a lower PRF . As can be seen from figures 4.1→4.6 increasing the PRF
does not always increase the total run-time, but the factor likely to be the
reason for this is measurement variance depicted in the same figures and not
reduced zeropadding complexity.

It should be noted that in figure 4.3, the total run-time for a size-200 FFT
with a PRF of 2890 at 75% overlap is considerably lower than with a PRF
of 6410 (~140ms for 2890Hz and ~225ms for 6410Hz). This discrepancy
cannot be explained by variance or increased complexity and must thus
arise from other factors; which might include typos when measuring or faulty
measurement.

Tablet comparison

Comparing figures 4.3 and 4.6 gives a clear picture of the difference in run-
times for spectrum generation on the Nexus 10 and the ASUS T300. The
Nexus 10 outperforms the ASUS T300 by nearly a factor of two for all FFT-
sizes and overlap percentages.

A noticeable difference is also found by comparing tables 4.1→4.4 where
the fraction of time spent computing the FFT on the ASUS T300 is 5−10-
percentiles higher for all FFT-sizes and overlap percentages compared to the
Nexus 10.

68

5 DISCUSSION 5.2 FFT optimization

5.2 FFT optimization
Performance gain

The FFTW-implementation was 3-10 times faster than the VTK implemen-
tation on the laptop, as figure 4.7 and table 4.5 shows. These numbers are
probably the highest speedups possible with the tested FFT-sizes since the
FFTW-implementation most likely utilized SIMD-instructions to optimize
the codelets.

By recalculating the timers in figures 4.3 and 4.6 with the numbers in
table 4.5, figures 4.8 and 4.9 were created. These latter two figures depict
the optimal performance achievable by implementing FFTW on the tablets.
The performance gain is subtstantial for both the Nexus 10 and the ASUS
T300. The total run-time on the Nexus 10 is decreased by up to 35% and
45% on the ASUS T300.

The results involving the approximated run-times on the ASUS T300
and Nexus 10 are based on an approximately equal difference in run-time
for VTKs implementation of the FFT and FFTWs implementation as on
the laptop. The anticipated results might differ on different mobile plat-
forms because FFTW constructs SIMD-instructions for their codelets, as
described in section 3.3.2, and the CPU on a tablet will either be supported
by FFTW SIMD-generation or not. This will have an important effect on
the run-times achieveable on a mobile device and the efficiency of an FFTW-
implementation.

GNU GPL

One major drawback of using FFTW is that it is released under the GNU
GPL which constricts free usage of the software commercially, but the GNU
GPL can be voided as described in section 3.3.2.

5.3 Audio generation and playback
Validation

The audio validation displayed in figures 4.17 and 4.18 which was created by
applying the test-signal in figure 4.15 shows that the C++-implemenation
matches the Matlab-implementation, but also that there is some spectral
leakage from each of the channels to the other, as well as some induced noise
which is from the linear interpolation[19]. The frequency-leakage is present
because the split-filter’s main lobe is widened by applying a Hann-window
to reduce the side-lobe levels as depicted in figure 4.16. The widening of
the main-lobe causes the filters to have quite high passbands around the

69

5.3 Audio generation and playback 5 DISCUSSION

zero-frequency line and thus spectral leakage from both high positive, high
negative, low positive and low negative frequencies will appear in the oppos-
ing channel.

Since the original IQ-data is clutterfiltered at low frequencies, the near-
zero frequencies will not be a problem but the high- positive and negative
frequencies will leak. Even though leakage from the negative channel to
the positive channel and vice versa is present, the strength of the leaked
frequencies is about 20dB lower than the correct frequencies with the current
test-signal. This is barely audible when listening to the resulting audio and
in live-testing almost no leakage can be heard.

The drawback of the filter-design as it is now, is that for signals crossing
the zero-line with small shifts it will be hard to hear the difference between
positive and negative frequencies; low frequency-shifts, both positive and
negative, will be heard in both channels. This can have implications in
examinations requiring sharp audible differentiation between positive and
negative low-velocity blood flow.

On the other hand, the real-time sound-tests have given clear sound and
a good differentiation between regular carotid blood-flow and flow from the
vein lying next to it (vena jugularis).

Possible improvements One way of improving the filter is to compute
how much the Hann-window widens the main-lobe and then make the neces-
sary reduction in the Parks-McClellan cut-off frequency to compensate. The
filter-order can also be increased, but this will increase the computational
complexity and add to the audio-delay and hardware requirements. Other
specialized adaptive windows, like the Kaiser-Bessel window, might also be
investigated to reduce the width of the main lobe while still suppressing the
side lobe levels sufficiently.

To reduce the induced noise from interpolation, a shifted linear interpolation-
algorithm can be implemented in high-performance devices[19].

Audio runtimes

The timing results in figure 4.10 depicts that the Nexus 10 is somewhat
faster in processing the audio than the ASUS T300, which is to be expected
due to the hardware differences of the two tablets.

There are two main factors which affect the complexity of the audio-
generation algorithm; the PRF and the audio playback frequency. Since
the linear interpolation is set to a static playback-frequency, the PRF influ-
ences how many new points which is needed to achieve the new sampling
frequency. Thus the higher the PRF is the lower the complexity is. The

70

5 DISCUSSION 5.3 Audio generation and playback

playback frequency regulates how many samples which needs to be filtered
after the interpolation, and thus a higher playback frequency should result
in an increased computational complexity.

The effects of the second factor, the playback frequency, is clear from
figure 4.10 while the effects of the first factor seems to be overshadowed by
measurement variance.

Total system delay

The delay-test results depicted in figure 4.11 show a total delay of about
230−320ms on the ASUS T300 and 130−255ms on the Nexus 10 for audio
playback frequencies of 8kHz and 16kHz.

One of the factors that add a static delay is the buffer used by the audio-
player which is set to 25ms in this implementation. Another factor is the
transfer of data from the Vivid-Q to the tablets via IP which could be higher
for the ASUS T300 since it used a wireless connection while the Nexus 10
used a direct cable connection. The filter used to remove transients and
split the positive and negative frequencies is set to a static size of 32samples,
which adds 32

PRF = 5ms to the delay1.
Parsing the data within the system and the processing also accounts

for some of the delay, but this expected to be quite small since the audio-
player is controlled by a different thread than the processing. This means
that for each packet of IQ-samples, the audio-player will start processing
and playing the sound. The rest of the delay is from the audio-player itself
which interacts with the audio-processing hardware and playback algorithms
on the respective tablets.

There is a noticeable difference in the total delay between 8kHz and
16kHz playback and some of the added delay to the 16kHz delay can be
accounted for by the extra processing. But all the extra delay, ∼ 90ms on
the ASUS T300 and ∼ 125ms on the Nexus 10, cannot be explained by
the increased computational complexity introduced by increasing the play-
back frequency. It is clear that an increase in the resampling-frequency will
increase the number of samples which needs to be processed by the audio-
player, but it is unlikely that this accounts for the rest of the additional
delay since the increase in delay on the ASUS T300 from 8−16kHz is less
than for the Nexus 10 in percentage2. The extra delay may be because of
hardware/software specific configurations related to sound-playback on each
of the tablets, but this needs further investigation.

1The PRF was set to 6410Hz in the test
239% for the ASUS T300 and 96% for the Nexus 10

71

5.4 Realtime assessment 5 DISCUSSION

5.4 Realtime assessment

Note The realtime assessment is based on derived values taken from the
performance of the spectrum- and audio-generation as well as the antic-
ipated runtime with FFTW. The assessment is thus subject to the same
performance factors.

VTK performance

The framerates achievable from utilizing the built-in Fourier-transform in
VTK were acceptable for the Nexus 10, listed in table 4.8, which depicted
fluent rates for all FFT-sizes with 8kHz playback-frequency. The Nexus
10 also displayed relatively good framerates, as can be seen in table 4.9,
for 16kHz playback-frequency until a FFT-size of 200. Although some of
the framerates were in the orange region, these rates are deemed acceptable
since we don’t need to refresh the whole frame, just update the spectrum-
part with new lines. The framerates and ratings for the Nexus 10 coincides
with the subjective visual quality.

For the ASUS T300, the framerates, available in tables 4.10 and 4.11, are
barely acceptable at an audio-frequency of 8kHz and an overlap at 87.5% will
make the spectral display very sluggish. The only acceptable FFT-sizes are
from 64→ 128 at 75% overlap at 8kHz frequency. The rest of the framerates
for 8kHz are considerably lower than the Nexus 10 and this will cause the
user to experience sluggish update of the spectrum. For a playback-frequency
of 16kHz the ASUS T300 performed badly for FFT-sizes above 128 at 75%
overlap and FFT-sizes above 64 for an overlap of 87.5%.

The differences between the performance of the two tablets is anticipated
because of the huge difference in both spectrum- and audio-generation cu-
mulative timers.

FFTW anticipated performance

Using the FFTW library the anticipated framerates increased significantly
for both the Nexus 10 and the ASUS T300. Framerates is increased by 5-
15 FPS which results in fluent framerates for both 8kHz and 16kHz with
the highest settings on the Nexus 10. The ASUS T300 can achieve fluent
framerates for both 8kHz and 16kHz up to an FFT-size of 200 with 75%
overlap, which is significantly better than the current VTK-implementation.
The ASUS T300 does not achieve fluent framerates at 87.5% overlap and
16kHz playback frequency which indicates that the low-performance tablets
should be limited to 75% overlap.

72

5 DISCUSSION 5.4 Realtime assessment

Increasing the framerate

Several steps can be taken to improve the framerate on tablets which cannot
handle the workload of both spectrum- and audio-processing.

The first thing to notice is that both the tested tablets perform relatively
well without audio-processing turned on, as depicted in tables 4.6 and 4.7.
The ASUS T300 can operate at a good framerate until a FFT-size of 200
at 75% overlap, which indicates that the operator probably should have the
ability to turn off the audio-processing if the system seems sluggish.

Another point is that not all systems have stereo capabilities, and the
audio-generation implementation could be made adaptive to mono-systems.
Generating mono sound instead of stereo will decrease the computational
complexity and give low-medium performance devices a better spectral refresh-
rate.

Automation If the system is to be adaptive to a wide range of devices,
a script which automatically detects optimal settings (overlap percentage,
FFT-size, stereo/mono-audio) which results in a fluent framerate could be
implemented. This script could time the spectrum- and audio-generation
with different settings and find the systems optimal settings by rating ac-
cording to table 3.10. Such an automatic rating would ensure that the system
performs optimally on the device in use.

73

5.4 Realtime assessment 5 DISCUSSION

74

6 CONCLUSIONS

6 Conclusions
By implementing a real-time Doppler spectrum generator and a real-time
audio generator, the main objectives of this thesis has been achieved. The
optimization of the Fourier-transform, and the evaluation of the influence
that different spectrum-parameters have on the real-time performance of
the system, renders the sub-objectives of the thesis achieved. By assessing
the spectral and audio quality, as well as assessing the real-time performance
of the software, the implementation has shown to be of value for the further
development of the Umoja ultrasound system. No work , however, has been
put into the optimization of the Doppler triplex mode.

To the writers knowledge, the ultrasound Doppler spectrum- and audio-
generation as an out-of-the-box installation supporting several Android de-
vices has given the implementation functionality that is not yet provided by
any other available software.

Assessing both the spectrum and the audio-quality of the implementa-
tion showed that the spectrum is of sufficient quality when compared to
a Matlab-implementation. The audio, subjectively, sounds good; but fre-
quency leakage can be a problem for low and near-Nyquist velocity blood-
flow. The audio-delay, albeit quite high for the highest playback frequency,
is good enough since the displayed spectrum and the audio are synchronized.

The current implementation has proven to perform well on a mid- to
high-end Android tablet but the performance on a low- to mid-end tablet
was unsatisfactory. By applying a new implementation of the fast Fourier-
transform it is shown that the low- to mid-end tablet can perform well.
Without a new implementation of the fast Fourier-transform, the low- to
mid-end tablets should be given a choice wether to process audio or not to
alleviate the computational complexity and thus increase the framerate of
the Doppler spectrum visualization.

A Samsung Galaxy S4 Active has also been tested to check if the imple-
mentation would work on a smartphone. The result of the test, which is a
screen-recording, is included in a video-file in the digital copy of the thesis.
An audio-file which is produced by generating the audio from the spectrum
test signal is also included.

75

6 CONCLUSIONS

76

7 RECOMMENDATIONS

7 Recommendations
This is a short list of the improvements suggested in the discussion, as well
as one additional recommendation.

1. To reduce the induced noise from the linear interpolation in the audio
generator, we can use a shifted-linear interpolation algorithm instead
of the regular linear interpolator[19]. This algorithm is a bit more
computationally expensive, which means it should only be used on
high-end devices.

2. Since the Umoja-system is designed as an extremely low-cost system,
the mobile device which is to be used by the operator should be rela-
tively easy and cheap to aqcuire. To assure that the system performs
optimally on the system in use, a script which automatically evaluates
the hardware could be implemented. This would allow the software to
adapt to the hardware available by finding the optimal spectral-settings
which result in a good framerate. This script could be extended to
check if the current hardware has stereo capabilities and thus adapt
the audio-generator, since deactivating the stereo processing will re-
duce the computational complexity.

3. If the mobile device owned by the user is not good enough for both spec-
tral and audio processing, the user might be given the choice wether to
process audio or not, to improve the framerate of the spectrum display.

4. By computing how much the Hann-window widens the main-lobe of
the split-filter, and thus make the necessary reduction in the Parks-
McClellan cut-off frequency to compensate, the frequency leakage be-
tween channels can be reduced.

5. By porting the FFTW-libraries to the mobile device, we might achieve
significant improvements in the possible framerates as shown in tables
4.12→4.17.

6. My supervisor Gabriel Kiss also suggested using NEON optimizations[2]
for the processing pipeline to further improve the possible framerates.

77

7 RECOMMENDATIONS

78

REFERENCES REFERENCES

References
[1] Umoja - ultrasound for midwives in rural areas: Project description.

[2] ARM. Arm neon support in the arm compiler. White paper, September
2008.

[3] Pay-Yu Chen Chih-Chung Huang, Po-Yang Lee and Ting-Yu Liu. De-
sign and implementation of a smartphone-based portable ultrasound
pulsed-wave doppler device for blood flow measurement. IEEE Trans-
actions on Ultrasonics, Ferroelectrics and Frequency Control, 59, No
1:182–187, 2012.

[4] Wikipedia contributors. Cooley-tukey fft algorithm. Wikipedia, The
Free Encyclopedia., May 2014.

[5] Wikipedia contributors. Linear interpolation. Wikipedia, The Free
Encyclopedia., May 2014.

[6] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Math. Comp., 19:297–301, 1965.

[7] Bjørn Rudi Dahl. Doppler spectrum generation and user interface eval-
uation of a low-cost ultrasound system.

[8] Candemir Doger. Configuring ves for eclipse and ndk-build. Blog. post
538 of the Kitware Blog.

[9] Matteo Frigo and Steven G. Johnson. The design and implementation
of fftw3. Proc. IEEE, 93:216–231, 2005.

[10] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23, No 1:1–48,
1991.

[11] Jens M. Hovem. Marine Acoustics. Peninsula Publishing, Charles Wise-
man, 2012.

[12] http://www.vtk.org/VTK/project/about.html.

[13] http://www.vtk.org/Wiki/VES.

[14] Smith. J.O. Physical audio signal processing. Online book, 2010. Linear
Interpolation Frequency Response.

[15] Kjell Kristoffersen. Real time spectrum analysis in doppler ultrasound
blood velocity measurement. SINTEF Report, 1984.

79

REFERENCES REFERENCES

[16] Kjell Kristoffersen and Bjørn A.J. Angelsen. A time-shared ultrasound
doppler measurement and 2-d imaging system. IEEE Transactions on
Biomedical Engineering, 35:285–295, 1988.

[17] Steinar Bjærum & Hans Torp & Kjell Kristoffersen. Clutter filter design
for ultrasound color flow imaging. IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, 49:204–216, 2002.

[18] C.M. Rader. Discrete fourier transforms when the number of data sam-
ples is prime. Proceedings of the IEEE, Volume:56, Issue: 6:1107 – 1108,
1968.

[19] Philippe Thévenaz Thierry Blu and Michael Unser. Linear interpola-
tion revitalized. IEEE TRANSACTIONS ON IMAGE PROCESSING,
13:710–719, 2004.

[20] James H. McClellan Thomas W. Parks. Chebyshev approximation for
nonrecursive digital filter with linear phase. IEEE Transactions on
Circuit Theory, CT-19:189–194, 1972.

[21] B. Angelsen & H. Torp. Excerpt from ultrasound imaging -waves, sig-
nals and signal processing in medical ultrasonics. Vol I and Vol II,
2003.

[22] Peter D. Welch. The use of fast fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms. IEEE Transactions on Audio and Electroacoustics, AU-
15:70–73, 1967.

80

A SYNTHETIC SIGNAL FOR SPECTRUM VALIDATION (MATLAB)

Appendix
A Synthetic signal for spectrum validation (Mat-

lab)

%s i n g l e f requency Doppler s i g n a l in no i se
% now s t a t i ona r y bandpass s i g n a l in no i se
%2014.03.07 Hans Torp
%c l e a r a l l ; %c l o s e a l l ;
hr=140;%hear t ra t e bpm
pr f=4e3 ;
f 0=5e6 ;
c=1540;
vNyquist=c∗ pr f /(4∗ f 0) ;
dt=1/pr f ;
t=0: dt : 3 ;
Nt=length (t) ;
vmax=0.8∗ vNyquist ;
v=vmax∗ sin (2∗pi∗hr /60∗ t ’) ;
d f i=v/vNyquist∗pi ;%phase increment per sample
%Note t ha t s=exp (i ∗ d f i ∗ t / dt) ; w i l l on ly work f o r

cons tant d f i ! ! ! ! ! ! ! !
f i=cumsum(d f i) ;%t h i s i s the way to do i t
s=exp(1 i ∗ f i) ;%time vary ing s i n g l e f r e q . s i g n a l
n=1/sqrt (2) ∗(randn(Nt , 1)+1 i ∗randn(Nt , 1)) ;
SNR=20;%dB
sn=10^(SNR/20) ∗ s + n ;

81

B SYNTHETIC SIGNAL FOR AUDIO VALIDATION (MATLAB)

B Synthetic signal for audio validation (Mat-
lab)

%s i n g l e f requency Doppler s i g n a l in no i se
% now s t a t i ona r y bandpass s i g n a l in no i se
%2014.03.07 Hans Torp
clear a l l ; close a l l ;
hr=140;%hear t ra t e bpm
pr f=4e3 ;
f 0=5e6 ; c=1540;
vNyquist=c∗ pr f /(4∗ f 0) ;
dt=1/pr f ;
t=0: dt : 3 ;
Nt=length (t) ;
vmax=0.8∗ vNyquist ;
v=vmax∗ sin (2∗pi∗hr /60∗ t ’) ;
d f i=v/vNyquist∗pi ;%phase increment per sample
%Note t ha t s=exp (i ∗ d f i ∗ t / dt) ; w i l l on ly work f o r

cons tant d f i ! ! ! ! ! ! ! !
f i=cumsum(d f i) ;%t h i s i s the way to do i t
%s=exp (1 i ∗ f i) ;%time vary ing s i n g l e f r e q . s i g n a l
n1=1/sqrt (2) . ∗ (randn(Nt , 1)+1 i ∗randn(Nt , 1)) ;
[b1 , a1]= butte r (4 , [0 . 8 , 0 . 9]) ;
s1=h i l b e r t (f i l t e r (b1 , a1 , n1)) ;
[b2 , a2]= butte r (4 , [0 . 3 , 0 . 4]) ;
s2=h i l b e r t (f i l t e r (b2 , a2 , n1)) ;
%s=s .∗ exp(−1 i ∗ p i) ;
n=1/sqrt (2) ∗(randn(Nt , 1)+1 i ∗randn(Nt , 1)) ;
SNR=20;%dB s
sn=(s1+conj (s2)) /2 ;%10^(SNR/20)∗ s + n ;

82

C SOURCE CODE FOR DIVISION OF IQ-DATA BETWEEN SOUND
AND SPECTRUM (C++)

C Source code for division of IQ-data between
sound and spectrum (C++)

1 for (int timeSample = 0 ; timeSample < packetNumberOfTimeSamples ;
timeSample++) {

2 //
−−

3 // save a l l IQ va l ues (raw data) f o r t h i s packet to a l i n e a r b u f f e r
4 t i m e O f f s e t =(timeSample∗DopplerSamplesPerTimepoint∗

DopplerBeamsPerTimepoint ∗2) ; //∗2 because of audio
5 for (int packetBeam = 0 ; packetBeam < DopplerBeamsPerTimepoint ;

packetBeam++) {
6
7 //assumes data format : samples (I−Q−L−R) x beams x

packetNumberOfTimeSamples
8 sampleOf f set = (packetBeam∗DopplerSamplesPerTimepoint ∗2) ; //∗2

because of audio data
9 //add the complex value f o r the current timeSample and beam

10 complexVal . Real = (double) tempIntDopplerArray [t i m e O f f s e t+
sampleOf f set] ;

11 complexVal . Imag = (double) tempIntDopplerArray [t i m e O f f s e t+
sampleOf f set +1] ;

12 DopplerIQSamples . push_back (complexVal) ;
13 }
14
15 //

−−

16 //Generate the Doppler spectrum l i n e s f o r t h i s packet
17 i f (GenerateDopplerSpectrum) {
18 DopplerSpectrumGenerator−>ProcessIQPacket(&DopplerIQSamples [0] ,

DopplerIQSamples . s i z e () , DopplerBeamsPerTimepoint ,
DopplerTimes . end () [−packetNumberOfTimeSamples+timeSample

] , DopplerGeometry .PRF) ;
19 }
20
21 //

−−

22 //Generate the Doppler sound f o r t h i s packet
23 i f (GenerateDopplerSound) {
24 DopplerSoundGenerator−>ProcessIQPacket(&DopplerIQSamples [0] ,

DopplerIQSamples . s i z e () , DopplerBeamsPerTimepoint ,
AudioSamplingFrequency , DopplerGeometry .PRF) ;

25 }
26 }

83

D SOURCE CODE FOR THE GENERATION OF THE DOPPLER
SPECTRUM (C++)

D Source code for the generation of the Doppler
spectrum (C++)

1 void vtkDopplerGenerateSpectrum : : ProcessIQPacket (vtkImageComplex∗
iqSamples , int DopplerIQSamplesNumber , int
DopplerBeamsPerTimepoint , double PacketTime , int DopplerPRFVal)
{

2 // cleanup and a l l o c a t i o n of i n t e r n a l s i f needed
3 i f (! FFTin | | ! FFTout | | (DopplerPRFVal != PRF)) {
4 I n i t i a l i z a t i o n N e e d e d = true ;
5 }
6 // c a l l the i n i t i a l i z a t i o n code i f something has changed
7 i f (I n i t i a l i z a t i o n N e e d e d) {
8 I n i t i a l i z e I n t e r n a l s (DopplerPRFVal) ;
9 }

10 // l a s t sample p o s i t i o n
11 int SamplePosit ion = DopplerIQSamplesNumber −

DopplerBeamsPerTimepoint + L a s t O f f s e t ;
12 // check i f there are enough smaples f o r smoothing
13 bool smoothPoss ib le = true ;
14 i f ((int) SpectrumSamples . s i z e () < SmoothingExtent∗Veloc itySamples)
15 smoothPoss ib le = f a l s e ;
16 // generate the spectrum l i n e s f o r t h i s packet
17 double va l = 0 . 0 ;
18 while (SamplePosit ion+IQWindowInSamples < DopplerIQSamplesNumber)

{
19 //Apply Hamming window to the time samples
20 for (int sample = 0 ; sample < IQWindowInSamples ; sample++){
21 FFTin [sample] . Real = iqSamples [SamplePosit ion+sample] . Real∗

HammingWindow [sample] ;
22 FFTin [sample] . Imag = iqSamples [SamplePosit ion+sample] . Imag∗

HammingWindow [sample] ;
23 }
24
25 // zero padding i f needed
26 for (int sample = IQWindowInSamples ; sample < Veloc itySamples ;

sample++) {
27 FFTin [sample] = zeroComplex ;
28 }
29
30 // execute the FFT transform
31 FftCompute−>ExecuteFft (FFTin , FFTout , Veloc i tySamples) ;
32 //midsample f o r FFT s h i f t i n g
33 int midSample = (int) (0 . 5∗ Veloc itySamples) ;
34
35 // a d d i t i o n a l Doppler process ing [midSample . . . VelocitySamples)
36 for (int sample = midSample ; sample < Veloc i tySamples ; sample++)

{
37 // spectrumline = | FFTout |^2 = Real{FFTout}^2 + Imag{FFTout}^2
38 va l = FFTout [sample] . Real∗FFTout [sample] . Real+FFTout [sample] .

Imag∗FFTout [sample] . Imag ;
39 // convert to unsigned char and push
40 SpectrumSamples . push_back (va l) ;
41 //smooth the spectrum i f p o s s i b l e
42 i f (smoothPoss ib le) {
43 for (int extent = 1 ; extent <= SmoothingExtent ; extent++) {
44 va l += SpectrumSamples . end () [−Veloc itySamples ∗ extent] ;
45 }
46 va l /= SmoothingExtent +1.0;

84

D SOURCE CODE FOR THE GENERATION OF THE DOPPLER
SPECTRUM (C++)

47 }
48 // avoid negat ive va lues
49 va l = (Gain+10∗ l og10 (va l+M_EPSILON)) /DynamicRange ;
50 //clamp to 0 . . . 1
51 va l = CLAMP_TO_UNIT(va l) ;
52 //add to smoothed va lues
53 SpectrumSamplesSmoothed . push_back ((unsigned char) (2 5 5 . 0∗ va l))

;
54 }
55
56 // a d d i t i o n a l Doppler process ing [0 . . . midSample)
57 for (int sample = 0 ; sample < midSample ; sample++) {
58 // spectrumline = | FFTout |^2 = Real{FFTout}^2 + Imag{FFTout}^2
59 va l = FFTout [sample] . Real∗FFTout [sample] . Real+FFTout [sample] .

Imag∗FFTout [sample] . Imag ;
60 // convert to unsigned char and push
61 SpectrumSamples . push_back (va l) ;
62 //smooth the spectrum i f p o s s i b l e
63 i f (smoothPoss ib le) {
64 for (int extent = 1 ; extent <= SmoothingExtent ; extent++) {
65 va l += SpectrumSamples . end () [−Veloc itySamples ∗ extent] ;
66 }
67 va l /= SmoothingExtent +1.0;
68 }
69 // avoid negat ive va lues
70 va l = (Gain+10∗ l og10 (va l+M_EPSILON)) /DynamicRange ;
71 //clamp to 0 . . . 1
72 va l = CLAMP_TO_UNIT(va l) ;
73 //add to smoothed va lues
74 SpectrumSamplesSmoothed . push_back ((unsigned char) (2 5 5 . 0∗ va l))

;
75 }
76
77 // update the time vector f i r s t i n i t i a l i z e with the packet time

then increment with the a c t u a l s k i p time
78 i f (SpectrumTimes . s i z e () <= 0)
79 SpectrumTimes . push_back (PacketTime) ;
80 else
81 SpectrumTimes . push_back (SpectrumTimes . back () + IQSkipInSamples

/PRF) ;
82
83 //move to the next p o s i t i o n by adding the s k i p value
84 SamplePosit ion+= IQSkipInSamples ;
85 }
86
87 // over lap o f f s e t f o r the next packet
88 L a s t O f f s e t = SamplePosit ion−DopplerIQSamplesNumber ;
89 }

85

E SOURCE CODE FOR AUDIO GENERATION (C++)

E Source code for audio generation (C++)

1 void vtkDopplerGenerateSound : : ProcessIQPacket (vtkImageComplex∗
DopplerIQSamples , int DopplerIQSamplesNumber , int
DopplerBeamsPerTimepoint , int AudioSamplingFrequencyVal , int
DopplerPRFVal) {

2
3 // s a n i t y check : check i f there are at l e a s t

DopplerBeamsPerTimepoint Doppler IQ samples
4 i f (DopplerIQSamplesNumber < DopplerBeamsPerTimepoint)
5 return ;
6
7 // d e t e c t i f we are at the s t a r t of a new process ing setup
8 double SamplePosit ion ;
9 i f ((DopplerIQSamplesNumber == DopplerBeamsPerTimepoint) | | (

AudioSamplingFrequency != AudioSamplingFrequencyVal) | | (
DopplerPRF != DopplerPRFVal)) {

10 // s e t the d e f a u l t va lues
11 DopplerPRF = DopplerPRFVal ;
12 AudioSamplingFrequency = AudioSamplingFrequencyVal ;
13 I n t e r p o l a t i o n I n c r e m e n t = DopplerPRF/ AudioSamplingFrequency ;
14 L a s t I n t e r p o l a t i o n P o s i t i o n = 0 . 0 ;
15 SamplePosit ion = 0 . 0 ;
16 A u d i o S p l i t F i l t e r . c l e a r () ;
17 A u d i o S p l i t F i l t e r C o n j u g a t e . c l e a r () ;
18
19 // Designing the s p l i t f i l t e r as a lowpass− f i l t e r at p r f / f s /2
20 ParksMcClel lan parksMcClel lan (AudioCoeff ic ientsNumber ,

I n t e r p o l a t i o n I n c r e m e n t /2 , 0 , 0 . 0 3 , LPF) ;
21
22 //Generate s i d e l o b e−reduction−window
23 GenerateHanningWindow () ;
24 //Mixing the d i f f e r e n t c o e f f i c i e n t s up , so we now have a lowpass

− f i l t e r from 0−>p r f / f s ;
25 //The complex conjugate i s a lowpass− f i l t e r from −p r f / fs−>0.
26 // Also m u l t i p l y i n g with the Hann window , to reduce s i d e l o b e

l e v e l s .
27 vtkImageComplex va l ;
28 for (int i=AudioCoeff ic ientsNumber −1; i >= 0 ; −−i) {
29 va l . Real = parksMcClel lan . F i r C o e f f [i]∗ cos (i ∗M_PI∗

I n t e r p o l a t i o n I n c r e m e n t /2)∗HanningWindow [i] ;
30 va l . Imag = parksMcClel lan . F i r C o e f f [i]∗ s i n (i ∗M_PI∗

I n t e r p o l a t i o n I n c r e m e n t /2)∗HanningWindow [i] ;
31 A u d i o S p l i t F i l t e r . push_back (va l) ;
32 va l . Imag = −va l . Imag ;
33 A u d i o S p l i t F i l t e r C o n j u g a t e . push_back (va l) ;
34 }
35 // c l e a r the i n t e r p o l a t e d va lues
36 InterpolatedIQSamples . c l e a r () ;
37 } else {
38 SamplePosit ion = DopplerIQSamplesNumber −

DopplerBeamsPerTimepoint −1 + L a s t I n t e r p o l a t i o n P o s i t i o n ;
39 }
40
41 // process the packet
42 vtkImageComplex i n t e r p o l a t e d V a l ;
43 vtkImageComplex audioVal ;
44 while (SamplePosit ion < DopplerIQSamplesNumber − 1) {
45
46 // i n t e r p o l a t e the complex data

86

E SOURCE CODE FOR AUDIO GENERATION (C++)

47 i n t e r p o l a t e d V a l = I n t e r p o l a t e V a l u e (DopplerIQSamples ,
SamplePosit ion) ;

48
49 // update the i n t e r p o l a t e d IQ samples
50 InterpolatedIQSamples . push_back (i n t e r p o l a t e d V a l) ;
51
52 // generate the audio sample f o r the l a s t va lue i n s e r t e d and

s p l i t the s i g n a l by apply ing the audio f i l t e r and i t s
conjugate

53 audioVal = GenerateAudioSample () ;
54
55 // convert and push to audio data
56 SoundData . push_back ((short) (CLAMP_TO_SHORT(audioVal . Imag))) ;
57 SoundData . push_back ((short) (CLAMP_TO_SHORT(audioVal . Real))) ;
58
59 //compute a new i n t e r p o l a t i o n p o s i t i o n
60 SamplePosit ion += I n t e r p o l a t i o n I n c r e m e n t ;
61 }
62
63 //sample p o s i t i o n f o r the next packet
64 L a s t I n t e r p o l a t i o n P o s i t i o n = SamplePosit ion − (

DopplerIQSamplesNumber−1) ;
65
66 // clean up in the i n t e r p o l a t e d samples only keep the needed ones
67 int o f f s e t = InterpolatedIQSamples . s i z e () − A u d i o S p l i t F i l t e r . s i z e

() ;
68
69 i f (o f f s e t > 0) {
70 InterpolatedIQSamples . e r a s e (InterpolatedIQSamples . begin () ,

InterpolatedIQSamples . begin ()+o f f s e t) ;
71 }
72
73 // send the data to the audio p layer
74 #i f d e f ANDROID_BUILD
75 audioPlayer−>sendDataToAudioPlayer (&SoundData [0] , SoundData .

s i z e ()) ;
76 #e n d i f
77
78 // c l e a r the sound vector
79 SoundData . c l e a r () ;
80 }

87

F SMOOTHING METHODS COMPARISON (MATLAB)

F Smoothing methods comparison (Matlab)

%% powerspect . smooth
%2014 Hans Torp

N=50000;
M=5;%number o f po in t s averag ing
x=randn(M,N)+i ∗randn(M,N) ;
Pest=squeeze (mean(abs (x .^2))) ;
dBPest=10∗log10 (Pest) ; dBPest=dBPest/mean(dBPest) ;
dBLogav=squeeze (mean(20∗ log10 (abs (x)))) ;
dBLogav=dBLogav/mean(dBLogav) ;

hist ([dBPest ; dBLogav] ’ , 2 0 0) ; legend (’ dBPest ’ , ’ dBLogav ’)
;

disp ([std (dBPest) , std (dBLogav)]) ;

88

G DIFFERENCE IMAGE

G Difference image

Figure G.1: Original difference image before scaling

89

H RAW-DATA FROM THE SPECTRUM TIMING

H Raw-data from the spectrum timing

FFT-size\PRF 2890 Average
64 77.231 80.690 74.056 69.132 79.524 76.126
100 121.881 129.442 110.850 107.830 128.414 119.683
128 127.500 129.007 122.597 134.066 128.414 128.317
200 175.802 122.605 130.507 116.553 129.346 134.963
256 236.319 242.975 242.976 242.342 252.834 243.489

FFT-size\PRF 2890 Average
64 28.920 31.865 28.514 27.334 28.009 28.928
100 57.175 60.164 52.770 50.370 60.496 56.195
128 49.740 51.120 49.277 51.599 53.354 51.018
200 67.897 49.555 49.192 46.009 50.603 52.651
256 101.978 105.718 103.197 105.604 107.975 104.894

Table H.1: Nexus 10 spectral measurements for a PRF of 6410Hz and overlap
of 75%, the top table depics the full run-times while the bottom table is the
FFT run-times. All measurements are given in miliseconds.

90

H RAW-DATA FROM THE SPECTRUM TIMING

FFT-size\PRF 6410 Average
64 70.781 81.928 78.170 85.817 78.4730 78.077
100 117.434 120.611 121.245 132.74 123.561 123.118
128 145.278 123.868 135.067 124.031 126.036 130.856
200 240.093 224.974 210.065 237.22 219.212 226.313
256 236.269 227.58 234.962 259.133 254.162 242.421

FFT-size\PRF 6410 Average
64 26.743 28.996 29.207 28.3 27.141 78.074
100 53.338 57.163 54.648 63.073 58.152 57.275
128 57.664 47.277 48.749 48.545 49.991 50.445
200 111.135 113.241 95.396 109.799 108.085 107.531
256 99.267 93.214 97.274 112.438 111.715 102.782

Table H.2: Nexus 10 spectral measurements for a PRF of 2890Hz and overlap
of 75%, the top table depics the full run-times while the bottom table is the
FFT run-times. All measurements are given in miliseconds.

FFT-size\PRF 2890 Average
64 134.771 137.26 144.42 135.532 136.47 137.691
100 229.193 221.451 224.85 222.908 232.507 226.182
128 238.155 252.844 237.48 256.579 255.113 248.034
200 422.018 454.673 425.749 415.583 448.78 433.361
256 482.756 481.985 444.746 449.188 454.612 462.657

FFT-size\PRF 2890 Average
64 53.962 53.811 53.593 51.407 52.334 53.021
100 107.957 105.258 105.357 105.469 110.687 106.946
128 93.015 104.68 91.962 109.349 101.304 100.062
200 203.945 206.736 209.056 203.647 218.424 208.362
256 210.29 206.263 185.447 185.083 185.598 194.536

Table H.3: Nexus 10 spectral measurements for a PRF of 2890Hz and overlap
of 87.5%, the top table depics the full run-times while the bottom table is
the FFT run-times. All measurements are given in miliseconds.

91

H RAW-DATA FROM THE SPECTRUM TIMING

FFT-size\PRF 6410 Average
64 160.151 140.297 140.347 140.118 143.27 144.837
100 211.075 218.625 225.282 235.166 231.3160 224.293
128 246.582 233.121 245.607 248.27 247.405 244.197
200 418.038 430.757 409.382 429.61 400.323 417.622
256 443.735 503.987 465.69 448.419 456.913 463.749

FFT-size\PRF 6410 Average
64 58.983 54.427 53.167 52.349 53.242 54.434
100 99.283 102.516 104.969 113.408 108.1 105.655
128 99.724 91.097 95.701 98.972 95.306 96.160
200 205.116 207.941 192.841 207.356 191.247 200.9
256 182.636 210.401 193.543 188.134 191.798 193.302

Table H.4: Nexus 10 spectral measurements for a PRF of 6410Hz and overlap
of 87.5%, the top table depics the full run-times while the bottom table is
the FFT run-times. All measurements are given in miliseconds.

FFT-size\PRF 2890 Average
64 114.198 122.4 115.529 146.945 121.737 124.162
100 221.093 211.894 215.283 247.930 200.528 219.346
128 292.431 264.035 271.211 280.995 339.331 289.601
200 517.402 455.243 390.913 423.358 405.641 438.511
256 434.769 454.427 492.796 435.618 442.872 452.096

FFT-size\PRF 2890 Average
64 54.799 55.602 53.867 80.933 52.375 59.515
100 121.269 107.198 130.38 135.53 117.845 122.444
128 148.013 129.21 128.89 130.557 153.703 138.075
200 286.649 261.238 225.759 257.599 234.78 253.205
256 227.556 213.649 254.12 210.219 215.561 224.221

Table H.5: ASUS T300 spectral measurements for a PRF of 2890Hz and
overlap of 75%, the top table depics the full run-times while the bottom
table is the FFT run-times. All measurements are given in miliseconds.

92

H RAW-DATA FROM THE SPECTRUM TIMING

FFT-size\PRF 6410 Average
64 128.646 124.968 130.755 134.192 116.33 126.978
100 234.485 242.391 237.093 232.158 222.709 233.767
128 358.471 293.122 282.264 289.503 292.08 303.088
200 428.955 403.03 448.207 408.023 412.093 420.062
256 459.057 431.908 479.285 444.885 411.917 445.41

FFT-size\PRF 6410 Average
64 48.971 54.256 55.064 64.975 47.962 54.246
100 118.951 136.235 129.076 131.264 126.571 128.419
128 169.377 143.724 137.716 142.587 136.305 145.942
200 258.803 244.58 235.774 244.129 234.729 243.603
256 209.98 215.82 247.261 223.149 195.017 218.245

Table H.6: ASUS T300 spectral measurements for a PRF of 6410Hz and
overlap of 75%, the top table depics the full run-times while the bottom
table is the FFT run-times. All measurements are given in miliseconds.

FFT-size\PRF 2890 Average
64 223.737 262.367 216.606 217.997 218.93 227.927
100 406.866 416.525 448.958 474.03 445.483 438.3742
128 475.702 418.26 414.506 458.491 428.781 439.148
200 823.221 849.845 812.236 823.668 853.303 832.271
256 866.52 905.122 918.027 906.166 880.52 895.271

FFT-size\PRF 2890 Average
64 103.365 93.538 96.664 94.098 100.429 97.619
100 231.944 229.26 258.171 282.371 262.586 252.866
128 242.416 186.348 193.767 200.013 208.902 439.148
200 484.766 505.021 457.784 479.663 483.261 832.455
256 429.144 420.691 498.261 459.474 438.25 895.271

Table H.7: ASUS T300 spectral measurements for a PRF of 2890Hz and
overlap of 87.5%, the top table depics the full run-times while the bottom
table is the FFT run-times. All measurements are given in miliseconds.

93

H RAW-DATA FROM THE SPECTRUM TIMING

FFT-size\PRF 6410 Average
64 341.01 230.295 229.758 233.536 217.913 250.502
100 439.225 451.236 435.192 418.6 419.123 432.675
128 406.069 413.401 404.36 445.317 516.775 437.184
200 827.078 804.775 794.268 802.558 765.991 798.934
256 869.833 839.458 846.402 844.023 855.43 851.029

FFT-size\PRF 6410 Average
64 256.375 111.506 113.253 107.082 91.782 136
100 118.951 261.294 226.231 230.866 243.118 216.092
128 185.903 189.833 194.362 206.661 244.363 204.224
200 480.569 468.514 448.027 460.616 440.324 459.61
256 423.497 413.568 426.833 410.612 415.607 418.024

Table H.8: ASUS T300 spectral measurements for a PRF of 6410Hz and
overlap of 87.5%, the top table depics the full run-times while the bottom
table is the FFT run-times. All measurements are given in miliseconds.

94

	Introduction
	Motivation
	State of research
	Objectives
	Thesis outline

	Theory
	Basic Ultrasound
	Basics
	Doppler effect
	Clutter filter
	Spectrum
	Time-sharing

	Doppler spectrum generation
	Power spectrum
	FFT Butterfly algorithm
	FFT - Power spectrum

	Doppler audio generation
	Resampling by interpolation
	Adaptive low-pass filter, Parks-McClellan filter coefficients
	Split filter

	Methods
	Software
	Hardware
	Implementation
	Doppler spectrum
	FFT optimization
	Audio

	Real-Time requirements

	Results
	Spectrum generation timing
	Nexus 10
	ASUS T300
	VTKs built-in FFT vs FFTW
	Anticipated run-times with the use of FFTW

	Audio Generation timing and system delay
	Achievable framerates with VTK's FFT
	Spectrum generation only
	Spectrum and audio generation

	Achievable framerates with FFTW
	Spectrum generation only
	Spectrum and audio generation

	Spectrum and Audio validation
	Spectrum Validation
	Audio Validation

	Spectrum quality

	Discussion
	Spectrum generation
	FFT optimization
	Audio generation and playback
	Realtime assessment

	Conclusions
	Recommendations
	Synthetic signal for spectrum validation (Matlab)
	Synthetic signal for audio validation (Matlab)
	Source code for division of IQ-data between sound and spectrum (C++)
	Source code for the generation of the Doppler spectrum (C++)
	Source code for audio generation (C++)
	Smoothing methods comparison (Matlab)
	Difference image
	Raw-data from the spectrum timing

