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Problem Description

Automatic extraction of Doppler parameters for the as-
sessment of fetal and maternal health

Reducing the mortality rate among unborns, young children and pregnant women is one
of the Millennium Developments Goals (MDG 4 and 5) of the United Nations (UN).
Diagnostic ultrasound is the only imaging method to be used in pregnancy and widely of-
fered to the general population in developed countries. The Umoja project, ultrasound for
midwives in rural areas, aims to develop an extremely low cost, robust and portable ultra-
sound imaging system (the Umoja ultrasound system) for obstetric imaging specifically
designed for operation in challenging rural areas of developing countries. The project is a
joint effort between three main partners: the National Center for Fetal Medicine (NCFM)
at St. Olavs Hospital and NTNU, the Department of Circulation and Medical Imaging
(ISB) at NTNU, and GE Vingmed Ultrasound AS.

As the Umoja system is intended for non-expert users, automatic parameter extraction
is of importance in order to reduce intra- and inter- observer measurement variability.
The main objective of this master thesis is to investigate the feasibility of automatically
extracting clinically relevant parameters from the Doppler spectrum data. Typically used
clinical parameters are listed below:

o fetal heart rate, the Doppler signal from a moving heart has a characteristic periodic
signature which can be used to measure the heart rate. This is of special interest for
fetal heart, where ECG is difficult to obtain.

e the Doppler velocity waveform
e peak systolic, end-diastolic and mean velocities

e pulsatility index, a known predictor of pre-eclampsia

The algorithms that are deemed feasible will be integrated on the tablet and tested at
NCFM, both by experienced midwifes and non-experienced users with limited or no prior
knowledge of ultrasound.
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Summary

In developing countries, the availability of personnel with training in the use of ultrasound
devices and the availability of conventional ultrasound equipment may be very limited. It
is therefore beneficial to automate the diagnostic features of an ultrasound device.

The Umoja project is an initiative by The National Center of Fetal Medicine (NCFM)
at St. Olavs Hospital and the Norwegian University of Science and Technology (NTNU).
The technical part of this project involves the development of the Umoja ultrasound sys-
tem, a tablet-based ultrasound machine with an intuitive user interface.

An automatic heart rate detection algorithm was developed in order to be implemented
on the Umoja system in the future. The algorithm was developed using Doppler 1Q data
from two patients. Methods using only high frequencies as well as only low (tissue)
frequencies were evaluated. Manual heart rate measurements were made in order to verify
the accuracy of the algorithm.

The automatic calculations differed from the manual measurements on average up to
one BPM, with a negative bias. When using only low frequent tissue data, the results
were improved for heart data which had not been filtered by the scanner.

Most of the rejected calculations were found in segments with low power.

Based on the Matlab timing results and the accuracy of the heart rate calculations,
the algorithm appears to represent a viable method for heart rate detection on a low-cost
ultrasound device.
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Sammendrag

I utviklingsland kan det vere begrenset tilgang pa personale med opplaring i a bruke
ultralydutstyr, og tilgangen pa konvensjonelt ultralydutstyr kan vare svart begrenset. Det
er derfor gunstig & automatisere diagnoseringsfunksjonalitet i en ultralydmaskin.

Umojaprosjektet er et initiativ fra Nasjonalt Senter for Fostermedisin (NSFM) ved St.
Olavs Hospital og Norgest Naturvitenskapelige Universitet (NTNU). Den tekniske delen
av dette projektet omfattet utviklingen av Umoja-ultralydmaskinen, en nettbrett-basert
ultralydmaskin med et intuitivt brukergrensesnitt.

En automatisk algoritme for hjerteratedeteksjon ble utviklet for a implementeres pa
Umoja-systemet i fremtiden. Algoritmen ble utviklet ved hjelp av Doppler IQ-data fra to
pasienter. Metoder som innebar bruk av utelukkende hgyfrekvent innhold, samt utelukkende
lavfrevent (vev) innhold, ble evaluert. Manuelle hjerteratemalinger ble gjort for & kunne
verifisere ngyaktigheten til algoritmen.

De automatiske utregningene skilte seg fra de manuelle malingene i snitt opptil ett slag
per minutt, med et negativt bias. Ved bruk av bare lavfrekvent vevsdata bedret resultatene
seg for hjertedata som ikke hadde blitt forhandsfiltrert av scanneren.

De fleste av de forkastede utregningene befant seg i segmenter med lav signaleffekt.

Basert pa tidsanalyse i Matlab og ngyaktigheten til hjerterate-utregningene ser algo-
ritmen ut til & utgjgre en brukbar metode for hjerteratedeteksjon for en lavkost ultralyd-
maskin.
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Chapter 1

Introduction

Fetal and maternal health assessment represent a considerable challenge in developing
countries. In these countries, the availability of personnel with training in the use of
ultrasound devices may be very limited.

With the introduction of affordable ultrasound hardware, medical ultrasound machines
represent a portable and cost-effective means of reducing fetal and maternal mortality. It
is therefore beneficial to automate the diagnostic features of an ultrasound device as much
as possible so that the user may focus on diagnostic use of the equipment rather than the
specifics of the particular ultrasound device.

1.1 The Umoja Project

The Umoja project is an initiative by The National Center of Fetal Medicine (NCFM) at
St. Olavs Hospital and Department of Circulation and Medical Imaging (ISB) at The Nor-
wegian University of Science and Technology (NTNU), in cooperation with GE Vingmed
Ultrasound.

1.1.1 Background

NCFM has been involved in education and training of midwives in developing countries
for the World Health Organization since 1997. The Umoja project is part of this activity,
focused on teaching and training of obstetric ultrasound in the KwaZulu-Natal province
of South-Africa.

1.1.2 The Umoja Ultrasound System

The development goal of the Umoja ultrasound system is to design a tablet-based ultra-
sound machine with an intuitive user interface. The Umoja system consists of scanner
hardware combined with an Android tablet. The interface is touch-based, which is bene-
ficial for creating an intuitive user experience.

1
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1.2 Project Focus

Doppler ultrasound provides several parameters which can be extracted to assess fetal
and maternal health. Parameters for diagnosing maternal health problems, such as the
pulsatility index, can be of vital importance in countries where health care provision is
limited. However, such a method would not involve a realtime implemntation. This
project focuses exclusively on fetal health parameters, specifically the fetal heart rate,
which can be extracted in realtime.

This project aims to design an algorithm for automatically detecting fetal heart rate
from Doppler ultrasound, for later to be incorporated in the Umoja project. By automating
the process of measuring the duration of the heart cycle, the operator can obtain this
information in realtime. The accuracy of the resulting heart rate calculations will be
considered.

The algorithm is intended to later be implemented on the Umoja ultrasound scanner.
As the processing capabilities of an Android tablet is not specifically tailored to medical
applications, unlike conventional ultrasound hardware, processing speed should be a con-
sideration. Evaluating the processing speed of the algorithm and possible optimizations
is relevant for this reason.

1.2.1 Previous Work

The algorithm described in this thesis is a continuation of previous work on a similar al-
gorithm for the final-year specialization project at NTNU. The specialization project was
smaller in scope, and mainly focused on the implementation described by Jezewski [6].

1.2.2 Review of Existing Methods

There are multiple methods for non-invasive fetal heart rate detection.

Implementations using autocorrelation of Doppler signals were described in detail by
Hua and Jezewski [3, 6]. Jezewski modified the autocorrelation function by applying a
triangular window and used a segment size with length adapted according to previous
measurements.

In some cases, secondary analysis of the heart rate calculations are useful. Signorini
and Kimura explores spectral analysis of the fetal heart rate variability, where Kimura
uses wavelet transform for this purpose [4, 7].

There are also other uses for HR analysis, such as cardiac gating. Brekke describes
a method for using tissue Doppler in order to synchronize 3D Doppler recordings to the
same point in the heart cycle [8].

Some requirements for the resolution of heart rate measurements were suggested by
Wickham and Voicu [9, 5].

Direct ECG was used in order to evaluate heart rate results of a few of the described al-
gorithms [11, 10, 6]. A non-invasive method using ECG was also described by Karin [10].
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1.3 Thesis Layout

Chapter 2 of the thesis details the most important theoretical knowledge used as a basis
for the development of the detection algorithm.

In chapter 3, the different components of the algorithm are explained, along with the
decisions involved in choosing the algorithm parameters and how they can be adjusted for
optimal results. Some example plots from various stages of the algorithm are also shown
for illustrative purposes.

Chapter 4 describes the acquired sets of Doppler data used in testing. Manual mea-
surements were made in order to evaluate the automatic calculations. The step-by-step
approach used in acquiring these measurements is described. The chosen set of parame-
ters in the evaluation of the algorithm are also described.

Chapter 5 focuses mainly on the end results, which consist of segments of the recorded
Doppler spectra, the corresponding mean frequency estimates and the resulting heart rate
calculations.

In chapter 6, the results are discussed and evaluated. Suggestions for further develop-
ment are made.

Chapter 7 sums up the findings and presents the advantages and disadvantages of the
approach.
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Chapter 2

Theory

2.1 Doppler Ultrasound

Doppler ultrasound utilizes the Doppler effect in order to measure the velocity of blood
and tissue movement. The ultrasound probe emits an ultrasound beam with a frequency
response determined by the probe design. When the beam is reflected by objects, the
objects moving towards the ultrasound probe result in a positive frequency shift of the
probe center frequency, whereas objects moving away from the probe result in a negative
frequency shift. This shift modulates the envelope of the emitted pulse.

2.1.1 IQ Demodulation

In order to extract this Doppler shift, the negative frequencies of the real-valued Doppler
signal are filtered out via the Hilbert transform. When the Hilbert transform of a signal is
added to the signal (eq. 2.1), the real-valued signal becomes the complex pre-envelope of
the signal. This makes it possible to represent each sample as a complex number with an
in-phase (I) and quadrature (Q) component.

g+(t) = g(t) +19(t) 2.1

The remaining signal is demodulated so that the center frequency is shifted down to
zero. After demodulation, the spectrum consists of negative frequencies (the negative
Doppler shift) and the positive frequencies (the positive Doppler shift). This makes it
possible to distinguish between the negative and positive Doppler shift, as opposed to the
real-valued signal received by the probe.

After demodulation, the IQ data is passed on to be further processed by the scanner
software.

2.1.2 PW Doppler

Pulsed Wave (PW) Doppler is a method which uses a sampled ultrasound pulse in order
to acquire a Doppler signal from a specific depth range. With a continuous wave (CW)
Doppler signal, there is no way to know precisely in which region the scatterers are lo-
cated. PW Doppler solves this problem, but also introduces aliasing. This means that the
maximum measurable velocity is lower than for CW Doppler

5
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Pulse Repetition Frequency

The PW Doppler pulses are emitted at intervals decided by the Pulse Repetition Frequency
(PRF). The signal is also sampled at this rate, which means the PRF is equivalent to the
sampling frequency f;. Due to aliasing, the highest measurable Doppler frequency will
be PRF/>. The Nyquist velocity is expressed in equation 2.2 [2], where f; is the center
frequency of the probe, c is the propagation velocity of sound in water, and 6 is the angle
of the probe relative to the movement of the scatterer.

PRF,,,, -

Umaz = m 2.2)

2.2 Spectral Doppler

In order to analyze the Doppler signal, frequency analysis is performed so that the signal
can be displayed visually. In addition, the Doppler shift lies within audible frequencies
and can be listened to by the user. The Doppler spectrum consists of low frequency
components from tissue, high frequency components from blood, and a thermal noise
floor.

2.2.1 Clutter

Clutter in a Doppler spectrum consists of low frequency components in the Doppler data,
such as movement of tissue (e.g. blood vessel walls).

When the Doppler spectrum is generated, strong clutter frequencies will interfere with
the higher frequency content of the spectrum when using short-time Fourier transform.
The spectrum is generated by using time-limited windows of the signal, which results in
sidelobes after transformation. A Hamming window has less pronounced sidelobes, but it
does not solve the clutter problem.

Clutter Filtering

In order to ensure that the blood frequencies are visible in the spectrum, a clutter filter can
remove the strong reflections from tissue. The clutter filter should have a short transition
region to prevent blood frequencies from being filtered out.

2.2.2 Duplex Mode

In addition to the Doppler spectrum display, a 2D color Doppler image can be displayed
alongside the spectrum so that the areas with the strongest blood flow can easily be found.
A grayscale image is displayed underneath the color Doppler image. This enables the user
to keep track of the location of the beam while acquiring data for the Doppler spectrum.
However, by using different imaging modes simultaneously requires the probe to alternate
between different types of pulses for each type of imaging mode. This leads to gaps
in the Doppler spectrum. Therefore, the color Doppler image must be frozen prior to
spectral Doppler acquisition, unless the gaps in the signal can be sufficiently estimated
and substituted.
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2.3 Mean Frequency Estimation

The Doppler spectrum discussed previously forms a two-dimensional image. In order
to detect the heart rate from a one-dimensional signal, the mean frequency must be esti-
mated.

2.3.1 Autocorrelation Method

The mean frequency can be estimated by using the autocorrelation estimator in equa-
tion 2.3 [1], where NV is the number of samples to average and * represents complex
conjugation. By increasing N, the estimator bias can be reduced.

Ra(1) = %Zz(m 1)2(k)* 2.3)

k=1

The mean angular frequency is estimated as shown below [8].

wy = arg(Rn (1)) (2.4)

2.3.2 Signal Envelope

Some of the existing algorithms which were explored used the envelope of the Doppler
signal [6, 5, 7] instead of using frequency estimation. In one implementation, a real-
valued Doppler signal, A(n), is derived by using the Hilbert transform of the signal, 3(n)
(equation 2.5) and filtered with a lowpass filter with a cutoff frequency around 50 Hz [6].

A(n) =+/s%(n) + §%(n) (2.5)

The Matlab hilbert (xr, n)'function uses ann-point FFT to compute the Hilbert
transform.

2.4 Fetal Heart Rate Detection

Fetal Heart Rate detection algorithms have been available in obstetric ultrasound for
decades.

The manual detection features in modern ultrasound machines commonly involve the
manual selection of a recorded segment of the fetal Doppler spectrum. The heart rate
is calculated based on the selection length averaged over the required number of heart
cycles.

Automatic detection algorithms involve autocorrelation as a means of detecting the
heart period. Another method, which was used on less capable hardware, is the average
magnitude difference function (AMDF) [3].

'www.mathworks.se/help/signal/ref/hilbert.html
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2.4.1 Clinical Significance

The heart rate can indicate a wide variety of fetal health problems, such as hypoxia or
respiratory stress [4].

Fetal Arrythmia

Healthy fetal heart rate lies in the rage of 110-160 BPM [5]. Fetal arrythmia, such as
tachycardia (above 160 BPM) or bradycardia (below 110 BPM), is suited for detection

with an automatic algorithm.

Fetal Heart Rate Variability

Another parameter which may indicate fetal health issues is the fetal heart rate variability
(FHRV). The FHRYV is measured on a beat-to-beat basis, and a high FHRV measurement
is considered a sign of good fetal health [9].

In order to sufficiently measure the FHRYV, a heart rate detection algorithm should be
able to achieve a resolution of 0.25 BPM, according to Voicu, whereas Wickham accepted
a resolution of 1 ms [5, 9].

2.4.2 FHR Measurement Methods

In this project, the goal is to measure the fetal heart rate non-invasively. There are mul-
tiple approaches to achieving fetal heart rate measurements in a non-invasive manner. A
completely manual approach involves the use of a fetoscope where the midwife can listen
to the sound of the heart beat by placing the instrument on the abdomen of the mother.
However, automated and more accurate methods are preferred.

Fetal Ultrasound

Ultrasound cardiotography measures fetal heart rate and uterine contractions. Initially,
the fetal heart rate could be measured automatically by integrating the Doppler signal and
using a level detector [11]. The second generation of devices began using autocorrelation
methods as a means of detecting the heart period.

In addition to heart rate detection, spectral analysis of the FHRV may be performed
using wavelet transform [7].

Instead of measuring the heart rate itself, heart rate detection may also be used to
detect the same event in each heart cycle (cardiac gating), for instance so that several 3D
ultrasound recordings of the heart may be synchronized in order to improve framerate.
This can be achieved with tissue Doppler [8].

Fetal ECG

Indirect ECG uses the maternal ECG signal (abdominal electrocardiography, AECG)
which is processed to separate the fetal ECG from the maternal ECG [10]. This is a
non-invasive method.
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Verification of Accuracy

Direct fetal ECG can be used as a way to compare the results from ultrasound detection
to the heart rate [6, 11]. Direct FECG is acquired by placing scalp electrodes on the fetus,
which is an invasive procedure and limited to the time of labor. Another invasive method
is measurements of umbilical blood oxygen levels to compare fetal heart rate variability
results [7].
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Chapter 3

Fetal Heart Rate Detection Algorithm

3.1 Overview

The fetal heart rate detection algorithm was developed in Matlab. It operates partially on
the full datasets and on segments. In a realtime implementation, the algorithm would be
fully based on segments.

The main steps of the heart rate dection algorithm are shown in figure 3.1.

IQ0 data
4

Clutter Filter

v

Mean Frequency
Estimate

v

Autocorrelation
Function

v

Peak Detection

v

Heart Rate
Calculation

Figure 3.1: The main components of the algorithm

The first step involves the selection of the parts of the spectrum to be considered by
filtering the IQ data. The resulting spectrum should be periodic in time.

The next step is to estimate the mean frequency. This estimated frequency will be
used in the autocorrelation step in order to detect the heart period.

The autocorrelation function calculated from the frequency estimate segment is used
in a peak detection step. The location of the detected peak yields the period in samples.

Finally, the heart rate is calculated using the sampling frequency and the peak location
in samples. This heart rate is displayed and color coded based on the corresponding cost
function.

11
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The first steps are going to have the most influence on the end result.

3.2 Mean Frequency Estimation

3.2.1 Clutter Filtering

The 1Q-signal is highpass filtered so that low-frequency components from tissue move-
ment (clutter) are removed.

A Chebychev filter was designed using the filterbuilder tool in Matlab and
used as clutter filter. The clutter filter requires a narrow transition region so that the
clutter may be removed without also removing blood frequencies in the process.

The filter was assigned a filter order of 10 in order to have a stopband attenuation of
80 dB.

Magnitude (dB) and Phase Responses
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Figure 3.2: Chebychev clutter filter, magnitude (blue) and phase response (green)

3.2.2 Using Clutter

When using a lowpass filter to only consider the low frequency content of the heart signal,
the viability of this approach will be limited to heart signals.

After clutter filtering, the remaining heart signals contain several peaks per cycle. In
theory, up to six different peaks may appear due to different types of heart contractions
and valve movement, but in a recorded Doppler signal there will be fewer peaks [5]. In
the remaining Doppler spectrum shown in figure 3.3 contain two positive peaks and two
negative peaks.

As the peaks in the Doppler spectrum appear in a periodic fashion, the correlation will
also peak at periodic intervals where two beats are correlated with each other. In addition,
the peaks will correlate to a lesser degree with each other, resulting in additional, smaller
correlation peaks.
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Doppler spectrum, fetal heart

frequency [Hz]

time [s]

Doppler spectrum, fetal heart, clutter filtered
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Figure 3.3: Original spectrum (top) and clutter filtered spectrum (bottom), fetal heart,
patient A

Doppler spectrum, umbilical artery
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Doppler spectrum, umbilical artery, clutter filtered
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Figure 3.4: Original spectrum (top) and clutter filtered spectrum (bottom), umbilical
artery, patient B
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The recorded data from the umbilical artery results in a much simpler signal after
clutter filtering (see figure 3.4), compared to the heart spectrum (figure 3.3). Each cycle

of the remaining signal consists of a single, clearly defined peak.

3.2.3 Reducing Estimator Bias

The mean angular frequency estimate is the average of N samples, as described in sec-
tion 2.3.1. This can be implemented as a moving average FIR filter, which can be opti-

mized by using FFT.
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Realtime

For the segment approach, which will be more practical in a realtime implementation,
using a ring buffer is suitable. The ring buffer will allow for the same result as when
using a continous dataset.

With a ring buffer, the summation of the samples does not need to be fully repeated
for each calculation. The sum can be recalculated for each step by subtracting the oldest
sample and adding the newest sample within the averaging length.

3.2.4 Power Thresholding

When the 1Q-signal is high pass filtered, blood velocities which lie below the cutoff fre-
quency will also be filtered out. In segments where the bloodflow frequencies lie in the
stopband, only thermal noise will remain after filtering. This will result in noisy angular
frequency estimates in these segments. In order to prevent this, the signal is thresholded
to remove problematic segments.

Power Estimate

A logarithmic power estimate is calculated as follows:

20
Py =7 > logio(z(k)) (3.1)
k=1

This method produces a smooth estimate which is suitable for thresholding.

Samples in the filtered 1Q-signal are zeroed if they correspond to the samples in the
power estimate where the power lies below a set threshold.

The power estimate is averaged in the same way as the mean frequency estimator.
By keeping the noise in the power estimate low, the thresholding will also be more sta-
ble, instead of alternating rapidly between rejection (zeroing) and the accepted frequency
estimate values.
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Power estimate
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Figure 3.5: Power estimate with 80 dB threshold (top) and mean frequency estimates
before thresholding (middle) and after thresholding (bottom)

Figure 3.5 shows the frequency estimate of the signal before and after thresholding
based on the power estimate. The estimate contains a lot of noise in the segments below
the threshold, shown in red. The noisy segments where the spectrum contains mainly
thermal noise result in a noisy frequency estimate. After thresholding, the periodicity in
the estimate is more easily identified.

Signal Power vs. Threshold

If the threshold is set too high, the thresholding step is more likely to remove useful parts
of the estimate. The acquired datasets in this case had power estimate troughs of 70 dB
and peaks around 100-110 dB. Dataset A7 is shown in figure 3.5 and was the dataset
containing some of the weakest peaks (85 dB peak at the lowest). A segment of B6 also
contained some peaks around 85 dB. This needs to be considered when choosing the
threshold level. In this case, choosing a threshold of 85 dB will remove the weakest peaks
altogether, whereas a threshold level below 70 dB is ineffective.

Realtime

The power estimate is averaged the same way as the frequency estimate. A ring buffer
solution should work equally well in this case. The power threshold is a constant value
which does not change over time.
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3.3 Autocorrelation Function

3.3.1 Decimation

The signal is decimated in order to reduce the number of samples used for each autocor-
relation step. As the decimation factor is increased, the accuracy of the results will be
reduced. As there will be a trade-off between accuracy and processing speed, the choice
of decimation factor will depend on the implementation and the capabilities of the hard-
ware.

Lowpass Filter

In order to prevent aliasing in the decimation step, the signal can first be lowpass filtered.
The cutoff frequency of the filter is /xvauis/ar, where M is the decimation factor. However,
this filter is not needed if there is sufficient averaging of the estimate, as averaging will
also act as a lowpass filter.

If the lowpass filtering is done after the thresholding, there will be more ripples in the
estimate due to filtering of the transition between the original signal and the thresholded
parts. This will lead to changes in the autocorrelation function and lead to less accurate
results. Therefore, anti-aliasing should take place prior to thresholding, if needed.

Decimation Factor

The conversion from heart period in samples to heart rate in frequency is non-linear, and
the heart rate resolution is lower for higher heart rates. The decimation will further affect
the resolution of heart rates in the higher end of the range more than the lower end. If
fetal heart rate variability is a desirable feature, decimation may lead to inaccurate results.

The optimal choice is to avoid decimation altogether. However, this will result in a
large segment size. For instance, if the PRF is 2500 Hz and the segment length is two cy-
cles at 70 BPM, the segment length will be 4286 samples, as calculated from equation 3.2.

cycles . samples
Samples _ segment second

segment BPM

(3.2)

3.3.2 Cycles Per Segment

The segment used for each autocorrelation step needs to contain at least two heart cycles
in order to correctly detect the distance between two heart beats. If the algorithm should
be able to correctly measure all heart rates in the chosen range of heart rates, the segment
length must be able to contain at least two cycles of the lowest detectable heart rate.

If the maternal heart rates should be detectable, the segment length should accommo-
date this. For instance, if the segment is too short, the maternal segment may come close
to only containing a single heart beat. At that point, thresholding becomes important in
order to avoid noise which may result in correlation peaks larger than the heart period
peak.
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By choosing longer segment lengths, the maternal heart rate can be correctly detected.
However, this increases the number of samples for autocorrelation. Another, but minor,
drawback is that it will take longer for the algorithm to adjust to changes in heart rate.

Segment of frequency estimate, maternal signal, patient A
T

(R S R ¢

115 12 125 13
time [s]
AF of segment, detected peak (samples)

250 300 350 400 550 600 650 700

angle [rad]
v w

o

correlation
o 3 @
g 8 8
T T T

)

450
lag [samples]

Figure 3.6: Frequency estimate and autocorrelation function, transition from fetal
heart cycles to maternal heart cycles, detected peak marked with red.

In figure 3.6, the frequency estimate initially contains fetal heart cycles, but switches
to maternal heart cycles at the 11-second mark. The autocorrelation function will contain
three peaks, one for the fetal heart cycle, one for the transition which contains a partial
maternal heart cycle, and the maternal heart cycle. The shortest period is more likely to
be detected, as this will be more likely to appear multiple times in the segment. With a
shorter window, the algorithm will quickly detect the switch, but may not correctly detect
the maternal heart rates.

Static Segment Size

A static segment size is used, as it is more suited for realtime application. The amount of
samples used for each autocorrelation step is constant, which means the processing time
will also be predictable.

Step Size

The step size is determined by the amount of desired calculations per cycle. The location
of the next segment will be advanced by the following number of samples:

fs
tep = 33
Sep calculations per second (3-3)

3.3.3 Autocorrelation

A segment is selected for autocorrelation calculation. The autocorrelation needs only be
calculated for lag values | € [0, maxcorr], where maxcorr is the maximum detectable heart
period in samples. The correlation at lag zero is the energy of the signal. The segment
used for peak detection lies within the range [ € [mincorr, maxcorr|, where mincorr is the
minimum detectable heart period in samples.



18 CHAPTER 3. FETAL HEART RATE DETECTION ALGORITHM

Autocorrelation function for fetal heart segment
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Figure 3.7: AF for heart segment (top) and umbilical segment (bottom), patient B

Figure 3.7 shows autocorrelation functions for the two types of acquisition targets. In
both cases, there is one dominating peak for each heart cycle, and peak detection resulted
in accurate heart periods.

Heart Rate Range

The mincorr and maxcorr values are calculated based on the range of heart rates the
algorithm should be able to detect, as shown in equations 3.4 and 3.5.

60 - fs
mincorr = —f (3.4
BPM, 0
60 - fs
maxcorr = —f 3.5)

By limiting the detectable heart rate, the number of calculations in the autocorrelation
step will be reduced. However, if the true heart rate lies outside of this range, it will
not be correctly detected. Extremely low or extremely high heart rates are not physically
possible and should always be eliminated, as peaks in these ranges may still occur and
take priority over the correct peak.

Autocorrelation Bias

In a biased autocorrelation function, the correlation values decrease with lag. By using an
unbiased autocorrelation function, the peaks in the function will have similar maximum
values, rather than peak values tapering off as the lag increases. The biased autocorrela-
tion used in this algorithm is shown in 3.6.

The signal used in the autocorrelation step is a real signal, which eliminates the need
for complex conjugation.

Ryy = %Zx(k:)x(k; 1) (3.6)
k=1
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When detecting a single peak, using the unbiased autocorrelation proved counterpro-
ductive. The algorithm is more likely to favor detection of peaks for lower lag values
when using the biased autocorrelation. If multiple peaks are to be detected, the removal
of bias will be beneficial, as the peaks will be more similar throughout the AF.

AF for fetal heart segment, patient A
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Figure 3.8: Autocorrelation function unscaled (top) and unbiased (bottom) with de-
tected peak shown in red

Windowing of AF

The autocorrelation function will show the highest correlation values for low lag values.
Previously, the peak detection was a simple detection of the maximum value. In that case,
it was necessary to dampen the autocorrelation for low lag values, as it could affect the
detected maximum. A triangular window was applied to the AF to dampen less likely
heart rates. This method has the benefit of dampening additional peaks in each heart
cycle, specifically in the heart signals.

A simpler approach is to use a rectangular window, although this also requires peak
detection which can rule out any maxima detected at the very start of the segment, mid-
slope. This will prevent detection of positions too early in the autocorrelation function.
The rectangular window discards lag values outside of the chosen window, which means
that the chosen range will have an impact on the possible BPM values which can be
calculated.

3.3.4 Cost Function

The cost function should indicate the accuracy of the calculations so that it can be used
as a visible indicator for the user to see if the signal acquired is suitable for heart rate
calculation.

The cost function is implemented as the ratio between the maximum value of the
autocorrelation function divided by the signal energy. This is the same method used in
the previous implementation, as shown below.

Ry (0)

AFR = ———
RN(l)maz

(3.7
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3.3.5 Peak Detection

Peak detection is performed on the AF in order to find the duration of the heart period
in samples. The autocorrelation function will ideally peak at the location where the lag
matches the heart period.

The segments used to calculate the AF are assumed to contain three heart cycles.
This means that the autocorrelation function will contain several large peaks. Without
normalization, these peaks will taper in value with increasing lag.

In this algorithm, the peak with the maximum correlation value is chosen.

Segment of frequency estimate, umbilical artery

angle [rad]

10.6 10.8 11 1.2 11.4 1.6
time [s]
AF of segment, detected peak (samples)

correlation

1

200 300 400 500 600 700 800
lag [samples]
AF of segment, detected peak (BPM)

correlation

0 L 1 I 1
250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50
heart rate [BPM]

Figure 3.9: Frequency estimate segment (top), AF with peak detection (middle) and
FHR conversion (bottom)

In figure 3.8 in section 3.3.3, there are two visible peaks per cycle. In figure 3.9, which
is from the umbilical artery, there is only one clear peak per cycle. This makes it easier to
detect the peak correctly.

3.4 Heart Rate

The heart rate is calculated based on the detected heart cycle in samples, the lag value of
the correlation peak [, as show in equation 3.8.

60fs

BPM = 7

(3.8)

3.4.1 Cost Representation

In order to convey cost information to the user, a cost function threshold value is chosen
so that calculations corresponding to cost values below the threshold can be marked as
inaccurate. A color is assigned to the output values based on the cost function. If the cost
is low, the assigned color is green. Otherwise, the color is red.

A third color, in this case yellow, is used as an indicator of stability. A green value is
colored yellow if any of the n previous values were colored red. This tells the user that the
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algorithm is waiting for a stable signal. False detections may occur, sometimes consisting
of several consecutive values.

Fetal heart rate, Matlab vs. manual

time [s]

Cost function

cost
o
>

T

Figure 3.10: The bottom plot shows cost function (red) with threshold (magenta).
Dots in top plot are green if cost lies below threshold, red if above.

An example of a cost function segment is shown in figure 3.10, along with the corre-
sponding color coding for the heart rate calculations, where n = 1 and the threshold for
red is 0.75.

By assigning the yellow color to the first n values following a rejected value, the green
values will be limited to the more stable segments. The yellow dots in figure 3.10 would
otherwise be green.

3.5 Acquisition Target Considerations

The frequency content of the Doppler spectrum varies depending on the acquisition target,
which means that the parameters used in the algorithm may be adjusted to improve results
for the different acquisition targets if only one of them is considered.

3.5.1 Filter Method

When deciding on a filter method prior to frequency estimation, the clutter content of the
signal should first be considered. The fetal heart signals are suited both for detection after
lowpass filtering and highpass filtering, as they contained strong clutter components and
high frequent components (high blood velocity). The umbilical artery signal was unsuited
as it contained a much weaker clutter signal.

3.5.2 Clutter Filter Cutoff

The fetal heart signal contains frequencies covering a larger spectrum band. This means
that the heart signal can handle a higher cutoff frequency for the clutter filter. For instance,
the fetal heart datasets can still yield accurate results with a higher cutoff frequency than
the umbilical dataset. The umbilical dataset in this case contained peaks at around 1000
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Hz (roughly 80% of the Nyquist frequency), whereas the heart data contained frequencies
past the Nyquist frequency (aliasing). If the filter stopband ends at 1000 Hz, there will
be no accurate umbilical heart rate calculations, whereas the heart data will still yield
accurate results provided sufficient signal power.
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Validation

4.1 Data Acquisition

In order to test the algorithm, Doppler data was recorded on two separate occasions. The
datasets varied in both in acquisition quality and content.

4.1.1 Instrumentation

All sets of Doppler IQ data used in this project were recorded using a GE Vingmed Vivid
E9 ultrasound scanner. The data was exported as DICOM! files, from which the Doppler
IQ data was extracted using a Matlab script.

4.1.2 Datasets

The dataset from patient A consisted exclusively of fetal heart data. The dataset from
patient B consisted of data both from the fetal heart and the umbilical artery. Some of
the datasets from patient B had to be discarded, as the color Doppler mode was still live
during the acquisition of the Doppler spectrum during parts of the acquisition.

The viable datasets (table 4.1) consisted of five datasets from patient A, one of which
contained maternal heart frequencies. In addition, there were two viable datasets acquired
from patient B, namely one fetal heart dataset and one umbilical artery set.

Dataset Target

A2 Fetal heart
A3 Fetal heart
A4 Fetal heart
A6 Fetal heart
A7 Maternal

B6 Fetal heart

B10 Umbilical artery

Table 4.1: Content of datasets

'Digital Imaging and Communication in Medicine standard format

23
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Neither patient was reported to have any health issues relevant to the resulting acqui-
sitions.

The data from patient A appear to have been clutter filtered when compared to the
data from patient B where there is a substantially higher amount of clutter. As shown in
the data segments in figure 4.1, the higher heart frequencies of the bottom spectrum are
obscured.

Doppler spectrum, fetal heart, patient A

49 50 51 52 53 54 55
time [s]

Figure 4.1: Comparison of fetal heart data from patient A (top) and patient B (bottom)

4.1.3 Doppler Parameters

The sampling rate is needed when calculating the heart rate from the number of samples.
The PRF used by the scanner could be extracted from the exported DICOM files.
The PRF values are listed in table 4.2.

Dataset f, [Hz]

A2 2550
A3 2550
A4 2550
A6 2550
A7 2550
B6 2572
B10 2572

Table 4.2: Sampling frequencies/PRF

4.2 Manual Heart Rate Measurements

Manual heart rate measurements were made by manual inspection of the Doppler spec-
trum of each data set. Originally, the manual measurements were made entirely with
Matlab by plotting the spectrum in a figure window and recording the mouse input coor-
dinates within the image. However, as the horizontal resolution varied depending on the
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length of the spectrum, a method which resulted in more consistent resolution was used,
as described below.

e The IQ data was lightly clutter filtered in Matlab to reduce sidelobe noise while
retaining as much of the frequency content as possible.

e A frequency spectrum was generated from the filtered IQ data using an FFT length
of 256, Hamming window lengths of 32 and 75% overlap between windows.

e Each spectrum was then exported as a grayscale PNG image file.

e The images were examined in Gimp, an image editing software, where the x-
coordinates (position in time) of the mouse cursor were manually noted once for
each period of the heart cycle.

e The resulting coordinates were then input into a Matlab script in order to calculate
the heart rate.

To evaluate the automatic algorithm, the manual measurements were averaged over
three heart cycles. Each heart rate value was calculated using the time difference between
an interval of three sample points, At. To achieve a central moving average, the sample
is plotted at the time point in the center of the interval, £,.

At =t(n+3) —t(n) 4.1)
:t(n)+t(n+3) 42)
S 2 .

As the resulting calculated heart rate is non-linear, the detected heart periods were
returned along with the heart rate calculations for later comparison.

4.2.1 Manual and Automatic Comparison

The manual measurements were linearly interpolated in order to compare the manual
results with the results from the Matlab algorithm.

Mean Difference

The mean and standard deviation of the difference between the samples was calculated.
The difference between each automatic heart rate measurement m (k) and the interpolated
manual measurement a(k) was defined as d(k) = m(k) — a(k).

d= %Z(m(k:) — a(k)) (4.3)
k=1
04 = ﬁ > (d(k) — d)? (4.4)

The mean difference is the bias of the algorithm output.
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Viable Segments

Most of the evaluated dataset segments were less than five seconds in length. With the
exception of the umbilical dataset, the majority of the remaining sets contained stable,
high power signals for roughly one third of the recording.

Dataset Total length [s] Selected interval [s] Interval length [s]

A2 15.7 55-95 4.0
A3 15.8 7.4-10.5 3.1
A4 15.0 1.7-6.0 4.3
A6 13.9 48-173 2.5
A7 16.0 12.5-15.0 2.5
B6 24.2 43.9-52.0 8.1
B10 18.6 23.2-33.8 10.6

Table 4.3: Time intervals for comparison of manual and automatic results

4.3 Timing and C++ Comparison

A stand-alone C++ implementation of the previous algorithm was developed. This imple-
mentation contained frequency estimation, decimation and calculation of the autocorrela-
tion function with a triangular window applied.

All timing results were sourced from a laptop with an Intel Core 13-2310M CPU, 2
x 2.10 GHz, running 64-bit Linux Mint. The C++ implementation was timed using the
Unix t ime command?.

2http://unixhelp.ed.ac.uk/CGI/man-cgi?time
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Results

The algorithm was applied to the acquired datasets and the difference between the manual
and automatic results was calculated. A combination of parameters which yielded accu-
rate results was found, and some of the parameters were changed to see the effect on the
end result compared to the original configuration.

5.0.1 Power Threshold

The effects of the power thresholding varied considerably between the datasets. The
maternal heart rate segment was most sensitive to changes in the power threshold level,
while the two sets from patient B were least affected.

5.0.2 Decimation Factor

The difference between consecutive heart rate calculations was calculated in order to find
the lowest time resolution, A7T’, shown in table 5.1. As the heart rate conversion is non-
linear, the heart rate resolution, ABPM, was calculated for a specific heart rate. As the
fetal heart rate variability is dependent on resolution, the chosen heart rate was normal
fetal heart rate (140 BPM).

60 60

ABPM = —
Tha0 — % Thao + %

5.1

Decimation factor Time resolution [ms] FHR resolution [BPM]

- 0.392 0.13
2 0.784 0.26
3 1.176 0.38
4 1.569 0.51

Table 5.1: Time resolution when using a PRF of 2550 Hz

27
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5.1 Calculated Fetal Heart Rate

Averaging of the automatic heart rate values was deactivated in order to more clearly
see the variation in the calculations. This makes it easier to see the effect of low power
signals.
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Figure 5.1: Heart rate calculation from umbilical data, patient B

The frequency estimate for the umbilical data, shown in figure 5.1, is the most robust
of the data sets with regards to parameter changes, with the exception of methods using
low frequency content.

Dataset B 6, frequency spectrum
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Figure 5.2: Heart rate calculation from fetal heart data, patient B

The fetal heart rate shown in figure 5.2 matches the manual measurements fairly well
for most of the selected segment. However, in the interval from 40 to 43 seconds, the
signal power is reduced and parts of the frequency estimate is zeroed by the thresholding.
This leads to a larger variation in the heart rate values.
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Dataset A 7, frequency spectrum
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Figure 5.3: Heart rate calculation, maternal heart rate, patient A

In figure 5.3, the signal switches from a fetal heart signal (around 140 BPM) to a
maternal heart signal (around 80 BPM). The manual measurements shown were averaged,
which leads to a larger mismatch between the manual measurements and the automatic
measurements during the transition.

5.1.1 Cycles Per Segment

The choice of segment length was important when detecting the maternal heart rate. As
shown in figure 5.4, the selected segment is too short for detection of the correct heart
cycle period, marked as a red dot where detection fails. When the segment length is
increased to two cycles (for an expected heart rate of 70 BPM, equivalent to four cycles
at 140 BPM), the detection succeeds.

Fetal heart rate, Matlab vs. manual

0

= 140 —
= s o
o T
& 120 Y \\
o 100 a— N
T L i S e e e O R
i 80 ‘ e R —— | e

60 i I i

10 1 12 13 14 15 16
time [s]
Fetal heart rate, Matlab vs. manual

—_— 160/~ A
= = e
2 140 P e —y .
o, 120 e < o \\
o 100 B S g o
I I ™ ———e—— B
[V e 0

60 i I 1 i

10 1 12 13 14 15 16

time [s]

Figure 5.4: Maternal heart rate with a power threshold of 75 dB and 1.5 cycles at 70
BPM (bottom) and two cycles (top)

Another difference between figure 5.3 and figure 5.4 is that the algorithm detects the
transition from fetal to maternal heart rate sooner when the segment length is shorter than
when it is longer.
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5.1.2 Accuracy

The difference between the manual and automatic measurements for the most stable seg-
ments are shown in table 5.2. The manual measurements were averaged to better match
the manual measurement method which would have been used by the midwife to make
manual measurements during an examination. In order to more easily identify problem-
atic segments, there was no averaging of the automatic measurements.

Dataset Mean difference [BPM]

A2 0.66 £ 2.15
A3 0.76 £ 3.40
A4 -1.14 £ 1.02
A6 -1.06 £ 1.49
A7 -2.04 £3.13
B6 -0.57 £ 1.05
B10 -0.10 + 1.64

Table 5.2: Comparison of manual measurements and automatic measurements with
75 dB threshold, 32-point averaging, decimation factor 4, clutter filtered

Most of the sets have a slight negative bias where the automatic measurements under-
estimate the heart rate.

Dataset Mean difference [BPM]

A2 1.46 +£2.23
A3 2.84 £ 1.13
A4 -8.38 £+ 23.53
A6 -0.04 = 1.17
A7 -2.18 £2.91
B6 0.09 + 0.81
B10 0.60 £+ 1.13

Table 5.3: Comparison of manual measurements and automatic measurements with
75 dB threshold, 32-point averaging, no decimation, clutter filtered

Table 5.3 shows the difference between manual and automatic measurements when
there is no decimation. The large variation in dataset A4 is a result of a noisy segment
which has several peaks in its autocorrelation function (see figure 5.5) which almost have
the same correlation. This segment varies between successful detection and failure de-
pending on small variations in the maximum value of the three peaks.
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Segment of frequency estimate, fetal heart, patient A
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Figure 5.5: Noisy segment from dataset A4, no decimation

5.2 Tissue Movement

To test how the algorithm performed using tissue frequencies, the clutter filter was re-
placed with a 10th order Butterworth lowpass filter with a cutoff frequency of 0.04 times
Nyquist. The thresholding used after the clutter filter was still useful following this filter-
ing approach.

Dataset Mean difference [BPM]

A2 0.92 +0.76

A3 5.68 £11.18
A4 -1.63 £2.42
A6 -6.02 £ 17.15
A7 17.19 £ 38.29
B6 -0.12 £ 1.05

B10 26.88 + 32.86

Table 5.4: Comparison of manual and automatic measurements, tissue method, 75 dB
threshold

The algorithm parameters are unchanged for the results shown in table 5.4. In ta-
ble 5.5, the power threshold was lowered to 70 dB, which brought the results closer to the
original method.
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Dataset Mean difference [BPM]

A2 1.22 + 1.68
A3 4.64 £6.52
A4 -1.65 £4.42
A6 0.10 £5.24
A7 31.15 £ 41.74
B6 -0.12 £ 1.05
B10 26.88 + 32.86

Table 5.5: Comparison of manual and automatic measurements, tissue method, 70 dB
threshold

The results of the comparison between the manual measurements and the automatic
measurements is shown in table 5.4. Notably, set B6 resulted in the most accurate results
which were also superior to the clutter filter approach. Set A2 also yielded slightly better
results with this method. The maternal heart segment and the umbilical artery segment,
on the other hand, yielded highly inaccurate results.

The accuracy of the results from datasets B6 and B10 were unaffected by the threshold
change.

5.2.1 Fetal Heart

Lowpass filtered spectrum, fetal heart, patient A
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Lowpass filtered spectrum, fetal heart, patient B
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Figure 5.6: Lowpass filtered frequency spectrum, fetal heart, patient A (top) and pa-
tient B (bottom)

The clutter was much stronger in the data from patient B, as shown in figure 5.6, with
calculations in figure 5.7. Figure 5.8 shows results from patient A, which had a weaker,
prefiltered clutter signal.
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Figure 5.7: Heart rate calculation, low frequency, fetal heart, patient B. Clutter filter
method (bottom) for comparison.
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Figure 5.8: Heart rate calculations, low frequency, fetal heart, patient A. Clutter filter
method (bottom) for comparison.

The results from set B6 seem to match the manual measurements more closely than
in figure 5.2, while the results from A4 were less accurate. In the clutter method results
for A4, the frequency estimate contains a noisy signal segment where the calculations are
shown as red.

5.2.2 Umbilical Artery

The umbilical data was not viable for this approach, as this dataset lacks the presence of
strong, periodic tissue movement as seen in the fetal heart data. The resulting calculations
can be seen in figure 5.9.
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Figure 5.9: Heart rate calculations, low frequency, umbilical artery, 70 dB power
threshold. Clutter filter method (bottom) for comparison.

5.3 Choice of parameters

The final choice of parameters is shown in table 5.6. These were the parameters found to
yield the lowest difference between manual and automatic measurements.

Parameter description Value

Clutter filter transition region 0.35 - 0.45 Nyquist
Clutter filter order 10

Averaging of frequency estimate 32 samples

Power threshold 75 dB

Decimation factor 4

Heart rate range 250 - 70 BPM
Segment length 2 cycles!
Calculations per second 2

Table 5.6: Chosen values for algorithm parameters

The decimation factor can be reduced in order to increase resolution of calculations if
longer segments are acceptable. A decimation factor of four is not optimal with regards
to accuracy, but serves as a compromise between accuracy and segment length.

5.4 Matlab Timing Results

The Matlab profile tool was used to estimate whether the algorithm will be suited for
a realtime implementation. The algorithm was evaluated four times per dataset and the
results are shown in table 5.7.

ICycle count refers to the minimum heart rate in the specified range.
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Dataset Size [samples] Duration [s] Matlab CPU time

A2 39754 15.69 11.21 £0.04
A3 39402 15.83 11.23 £0.10
A4 40766 15.98 11.50 = 0.03
A6 34914 13.90 10.08 £ 0.03
A7 40766 15.98 11.49 + 0.05
B6 61952 24.19 16.09 £ 0.04
B10 47542 18.59 13.03 + 0.04

Table 5.7: Timing results, Matlab profile tool

The Matlab algorithm consistently processed the data faster than realtime. However,
the timing results varied too much with each run to examine the effect of algorithm pa-
rameters in detail.

Calls to the Matlab mean function is the most time consuming step in the algorithm,
with calls to this function accounting for nearly 50% of the total runtime. This function
is called when the power and frequency estimates are calculated.

54.1 C++ Implementation

The C++ implementation of the previous algorithm implementation was able to process all
the datasets in less than 0.5 seconds combined. Even though it is a simpler implementation
which does not include a power estimate, the method for frequency estimation is the same
as used in the new algorithm.
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Chapter 6

Discussion

6.1 Power Threshold

The power threshold level had the most effect on low-power segments, as it was intended
to correct for segments with mainly thermal noise content. It also compensated to some
extent for insufficient segment length by removing noise which could result in additional
peaks in the AF. However, in some cases the thresholding for a low power segment would
be excessive and result in a less periodic signal. The threshold value thus needs to be
tuned to fit the desired signal quality with regards to signal power.

6.2 Segment Selection

The results indicate that longer segments will yield more stable results, as the autocorre-
lation function will peak more strongly at the location of the most common heart period
in the signal. However, as the fetal heart rate variability is an indicator of fetal health, the
segment size should be limited in size so that this variability is detectable.

6.2.1 Decimation Factor

The decimation factor was examined to see the effects on the heart rate resolution. If
a resolution of 0.25 BPM is desired at the normal fetal heart rate, the resolution is de-
creased too much even with a decimation factor of two. If the ultrasound system is not
powerful enough to process the segments without decimation, calculations of fetal heart
rate variability will not be sufficiently accurate judging by the heart rate resolution alone.
However, as this in a non-linear property, the time resolution may be a more suitable
measure.

6.3 Peak Detection

Some of the segments were not suitable for peak detection. There are some instances
where no peaks can be detected, such as when segments yield a monotonically decreasing
AF. In that case, the maximum value would be found at the lowest permitted lag value, and
no peaks could be found using the findpeaks function in Matlab. A similar problem
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occurs if the entire signal lies below the power threshold, such as after the 11.8 second
mark in set A4. The result is an autocorrelation function which is a constant zero value.
Also here, the maximum of this function will be the first value, as no subsequent values
will be larger. However, this is a result of low-power signals, in which case the result
should be discarded based on visual inspection of the Doppler spectrum.

6.4 Cost Function

The cost function gave a better impression of the accuracy of the calculations when the
previous algorithm was used. In that case, the triangle window dampened peaks other
than at the expected main peak location.

With the new algorithm, inaccurate results are more often caused by detection of a
peak at a different location than the actual heart period. In this case, the maximum value
may still be high relative to the signal energy, which will yield a low cost value. For most
of the false detections, this problem can be masked by asking the user to wait until the
signal has reported several successful detections in sequence.

6.5 Tissue Movement

The tissue method yielded accurate results for patient B, and for some of the recordings
from patient A after parameter adjustment, even though the algorithm had not been fully
optimized for this method. Despite the clutter signal being weaker in the sets from patient
A, there are still segments in which the results resemble the manual measurements when
using the tissue frequencies.

The low power sets yielded better results once the power threshold was lowered by
5 dB, but it had little effect on the datasets which had not been clutter filtered by the
scanner. This indicates that the method may be usable in either case after some refinement,
although unfiltered data is strongly preferable.

The unfiltered umbilical set contained a relatively weak clutter signal (seen in fig-
ure 3.4 in section 3.2.2) which did not appear to be strongly periodic. A possible expla-
nation could be that the angle of insonation was not optimal for capturing the movement
of the umbilical artery walls, but multiple acquisitions would have been needed in order
to verify this.

6.6 Realtime Considerations

The comparison between the runtime of the Matlab algorithm and the C++ implementa-
tion of the previously developed algorithm indicates that the current algorithm should be
suitable for a realtime implementation.

Even though the decimation reduces the amount of samples contained in each seg-
ment, the full segment must still be buffered before it can be decimated. The length of the
segment in time must therefore also be considered.

Vector autocorrelation in Matlab is optimized by using FFT!, which means the Matlab

"Matlab version 8.0.0.783, xcorr .m in the signal processing toolbox, line 105
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implementation of the algorithm uses a more efficient method for autocorrelation than the
autocorrelation in the C++ implementation. This is one example of an optimization step
that can make the C++ implementation more efficient.

6.7 Comparison of Results

In several of the cited articles, the evaluation of the algorithm is either based on results
which were compared against invasive methods, such as direct FECG measurements dur-
ing labor [6] or umbilical blood oxygen saturation [7], or simulated signals [4] or only
considering implementation-related aspects [3]. In this case, only non-invasive Doppler
ultrasound recordings were performed, and the results were only compared to the corre-
sponding manual measurements.

6.7.1 Accuracy

The results were evaluated visually by comparing the calculated Doppler spectrum and
the corresponding heart rate calculations. In parts where signal power drops, the accuracy
is also reduced.

After comparing the automatic algorithm with the manual measurements by calculat-
ing the difference, the algorithm was found to have a slight, mainly negative bias between
0.5 and 1 BPM for sets containing a single acquisition target. However, the manual mea-
surements themselves were not evaluated for accuracy, for instance by having a medical
professional perform manual measurements.

6.7.2 Resolution

The resolution of the measurements was evaluated and compared to requirements for heart
rate and heart period resolution [4, 9]. As long as decimation was avoided, a resolution of
0.25 BPM could be achieved for the desired heart rate range. With a decimation factor of
two, the same could be achieved only for heart rates lower than 140 BPM.

However, if the goal is = 1 ms resolution in the heart rate measurements, a decimation
factor of two could be used.

6.8 Future Work

The peak detection could be improved, such as by calculating an average of multiple peak
distances. However, this may be undesirable if heart rate variability should be detectable.

If the heart rate calculations can be performed without decimation, adding functional-
ity which supports more in-depth analysis of the fetal heart rate variability will be valuable
for detecting fetal health issues [4].
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Chapter 7

Conclusion

An algorithm for automatically detecting fetal heart rate was developed in Matlab and
later tested on two patients. Doppler 1Q data was exported from a GE Vingmed E9 ultra-
sound scanner during the two examinations.

The data from patient A consisted of heart data clutter filtered by the scanner. The
data from patient B consisted of one heart set and one umbilical set, unfiltered.

The algorithm successfully detects both fetal and maternal heart rates and produces
fairly accurate results (mean difference of 0-1 BPM on average, for an optimal configu-
ration) given a stable signal. The high frequency method yields accurate results for both
umbilical and heart data. The algorithm was biased towards lower heart rates in most
datasets (five out of seven).

Umbilical data seems to be best suited for the current algorithm parameters, as the
spectrum peaks only once per cycle. This means fewer ambiguous peaks in the auto-
correlation function, as there should ideally be only one main peak for the detection to
succeed.

Using a lowpass filter was a viable method as well, provided that the signal contained
strong, periodic clutter components. The unfiltered heart data from patient B yielded bet-
ter results, whereas this method could not be used for the umbilical data. The disadvantage
of this approach is that two separate implementations may be needed.

Based on the Matlab profile data and the accuracy of the results, the algorithm appears
to represent a viable method for heart rate detection on a low-cost ultrasound device.
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Appendix A
README.txt

Automatic extraction of Doppler parameters for the
assessment of fetal and maternal health

Agnes Heyer
June 2014, NTNU

Source code and data files

Matlab algorithm

plotall.m runs Umojatest for all datasets, plots results
Umojatest.m calculates estimate, steps through dataset
getxcorrmax.m calculates autocorrelation, finds maximum
cheby.m designs clutter filter

Manualtest.m calculates manual measurements

/data contains all datasets
/manual contains all manual measurements

C++ algorithm

reader binary file, compiled for 64-bit Linux
runall.sh bash script, runs algorithm for all datasets
reader.cpp source file

reader.hpp header file

Makefile compiles source files

/data datasets, exported from Matlab to plaintext
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