
114 6 Implementation

Figure 6.19: Expense list statechart.

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/ImplementationStatecharts/ImplementationStatecharts.mdzip DebtsStateChart Jun 25, 2014 11:04:50 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d
A

ca
de

m
ic

 V
er

si
on

 fo
r T

ea
ch

in
g

O
nl

y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

DebtsStateChart DebtsStateChartstate machine []

State Waiting

State Loading

State Showing
Data

State Overall

logout

refreshDebts

refreshDebts

didFetchDebts

Figure 6.20: Debts list statechart.

6.6 Prototype application 115

Adding a new expense
The view for adding a new expense is shown in Figure 6.17(left). By specifying an
amount and a category for the expense, it is possible for the user, who is logged in, to
add a new expense. As with the login view, the input fields for adding a new expense
have some requirements. As shown on the statechart in Figure 6.21 the provided
amount must be larger than zero and the category must be at least three characters
long.

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/ImplementationStatecharts/ImplementationStatecharts.mdzip AddExpenseStateChart Jun 26, 2014 11:08:14 AM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

A
ca

de
m

ic
 V

er
si

on
 fo

r T
ea

ch
in

g
O

nl
y

C
om

m
er

ci
al

 D
ev

el
op

m
en

t i
s

st
ric

tly
 P

ro
hi

bi
te

d

AddExpenseStateChart AddExpenseStateChartstate machine []

State Amount ValidState Amount Invalid

State Category Invalid State Category Valid

State Add
Button Disabled

State Add
Button Enabled

State Overall
when (amount>0)

when (amount<=0)

when (category.length>2)

when (category.length<=2)
when (isIn(State Amount Valid) && isIn(State Category Valid))

when (isNotIn(State Amount Valid) || isNotIn(State Category Valid))

Figure 6.21: Add expense statechart.

6.6.3 Model
Another part of the application is the model. This is where the data logic of the appli-
cation is placed. As shown in Figure 6.11 it consists of four components. The Model
Component is used to interface with the Application Statechart and uses proxy
ports to forward communication to the various model components. The Expense
model statechart component is in charge of managing expenses. The protocols
used for the input and the output ports are shown in Listing 6.10. The input proto-
col contains message types for fetching the expenses, deleting an expense and creating
a new expense. The output protocol simply defines the method for notifying about
new expenses.

Listing 6.10: Protocols used for the input and output port of the Expense model.

1 // input port protocol
2 @protocol ExpenseModelInputProtocol
3 - (void)fetchExpenses;
4 - (void)deleteExpense:(Expense *)expense;

116 6 Implementation

5 - (void)createExpenseWithAmount:(NSNumber *)amount
6 category:(NSString*)category;
7 @end
8

9 // output port protocol
10 @protocol ExpenseModelOutputProtocol
11 - (void)fetchedExpenses:(NSArray *)expenses;
12 @end

However as shown in Figure 6.11 the Expense model statechart has ports con-
nected with channels to the Webservice component. This is because the Webservice
component is in charge of communicating with the external web-service for deleting,
creating and fetching expenses. In the prototype the Webservice component fakes
the communication to the external web-service by maintaining data locally. This is
done in order to ensure that the prototype is able to run without depending on an
external web-service. The Debts model statechart provides the debts in the system.
Since the debts can be calculated from the expenses, the Debts model statechart
is connected to the Expense model statechart as illustrated in Figure 6.11.

6.7 Summary
The implementation of the framework has now been presented, by looking at how
the concept of components has been introduced by the SHPComponent class. Further
the messaging system has been developed by having a router implemented in the
SHPMessageRouter class which routes message sent to SHPChannel instances that
are connected to either SHPInputPort or SHPOutputPort instances. The statechart
implementation has been covered by explaining how to define a statechart using the
framework, by subclassing SHPStateChart and creating states by subclassing either
SHPOrState or SHPAndState. Several implemented components and tools for inspect-
ing the system have been presented, which together form a runtime that is usable for
developing applications. Lastly, the implemented prototype has been explained, in
order to show how the framework can be used in integration with the existing iOS
SDK in order to model an iOS application, which takes advantage of the abstractions.

CHAPTER 7
Tests & Performance

The previous chapter covered the implementation of the framework. This chapter cov-
ers the testing of correctness and performance of the implementation. First the tests
of the correctness of the statechart engine are presented. Next performance testing
of the statechart implementation, with focus on memory usage and the throughput
performance event, is processed. Finally the throughput of the messaging system is
tested and compared to similar systems.

7.1 Statechart engine
The statechart engine implementation has been tested in order to make sure that it
is executing correctly. All of these tests have been put together into a test project as
explained in Appendix E. To test if a statechart is being executed correctly when an
event occurs, the order of exit, action and enter of events is being recorded. A test is
passed if the expected exit, action and enter calls are performed on the right states in
the statechart and match the recorded ones. The expected result is found according
to the rules of statecharts as explained in Section 4.3.9. For a detailed overview of
the exact test cases, the TestProject in the Appendix E should be consulted.

• Base orthogonal regions 1 - The handling of orthogonality has been tested
using two statecharts. The first statechart is illustrated in Figure E.1. The
source code is found in the Scenario1StateChart class in the TestProject.
The purpose of the test is to verify that the AND state is entered correctly
from an OR state. It is tested that when event1 is fired, both state State1b1
and State1a1 are entered correctly. Further it is tested that a transition going
outside of a region is being performed correctly. This happens when first event1
is fired and then event2. Lastly it is tested that active regions are exited
correctly when the AND state triggers a transition. This happens when event1
and then event3 are fired.

• Base orthogonal regions 2 - The second statechart for testing orthogonal-
ity is illustrated in Figure E.2. The source code can be found in the Sce-
nario2StateChart class in the TestProject. The purpose is to test that the
transitions inside regions of an AND state occur correctly. This requires that
all regions responding to an event result in the correct transition. This is the
case when event1 is fired, where two transitions should be triggered.

118 7 Tests & Performance

• Merge transition - The use of merge transitions has been tested in the
statechart illustrated in Figure E.3. The source code is found in the Sce-
nario3StateChart class in the TestProject. The purpose is to test that
transitioning from two states in separate regions to another state resolves in
a correct merge transition. This is tested by performing event2, which triggers
a transition to State2. It requires both state State1a1 and state State1b1 to
be exited correctly.

• Fork transition - Fork transitions have been tested using the statechart illus-
trated in Figure E.4. The source code can be found in the Scenario4StateChart
class in the TestProject. The purpose is to test that transitioning to two states
in separate regions from another state resolves in a correct fork transition. This
is the case when event2 is fired. It causes the statechart to enter State1a2 and
State1b2.

• Internal transition - Internal transitions have been tested using the statechart
illustrated in Figure E.6.

• Not responding event - The purpose is to test that when an event is posted,
where no states in the state configuration respond, nothing happens. The source
code can be found in the Scenario5StateChart class in the TestProject. As
illustrated in Figure E.5 this is the case when event2 is posted to the statechart.

• Self transitions - Self transitions have been tested using the statechart illus-
trated in Figure E.6. The source code is found in the Scenario6StateChart
class. When being in the state State2a1 and event2 occurs, a self transition to
state State2a1 should be performed. Further a special kind of self transition is
being tested, where the state responding to the event is defined on a superstate
of the leaf state, and performs a transition to the current leaf state. This is the
case being in state State2a1 and having event1 occur.

• Guarded transition - The handling of guarded transitions has been tested.
The statechart for this test is illustrated in Figure E.7. The source code is
found in the Scenario7StateChart class in the TestProject. The purpose
is to test that guarded transitions are handled correctly. It is tested that the
initial transition results in State Overall being active. Further it is tested that
when StateA2, StateB2 and StateC2 are active, a transition from StateD1 to
StateD2 is automatically performed.

• History transition - The history mechanisms are tested. The statechart for
this test is illustrated in Figure E.8. The source code is found in the Sce-
nario8StateChart class in the TestProject. The purpose is to test that his-
tory transitions are handled correctly. It is tested that the last active substate
of State2 is being entered when a transition from State1 is performed.

7.2 Statechart performance 119

• Submachine - The use of submachines is tested and the statechart for this
test is illustrated in Figure E.9. The source code can be found in the Sce-
nario9StateChart class in the TestProject. The purpose is to test that sub-
machines inside a statechart are executing correctly.

7.2 Statechart performance

The implementation of the statechart engine is complex and adds an overhead to the
execution when used. A goal of the framework as explained in Section 1.4 has been
to provide performance acceptable for practical usage. The most important factors
are the memory usage and the event-processing throughput. For this reason these
two factors have been tested. The example presented in Example 6 will be used
to measure the memory usage and event processing performance of the statechart
engine.

Example 6 In order to test the statechart performance a small example of a state-
chart has been developed called TikTok. The project is available in the resources. It is
illustrated in Figure 7.1. When the initial transition has been performed, the statechart
will enter the state Start and automatically make a transition to the state TikTok.
It will further enter the leaf state Tik. The entry action of state Tik will perform the
event performTik, which will trigger a transition to state Tok. In the entry action
of state Tok the event performTok is triggered, which causes a transition to state Tik
again. In the action of performTok the extended state variable numberOfToks will be
increased by one before. In the entry of state Tik a transition to state Tok is triggered
again. This continues until the guarded transition on state TikTok becomes true and
a transition to state Done is performed. The guard becomes true when the value of
numberOfToks has become equal to a predefined goal variable.

7.2.1 Memory usage
During the execution of the statechart it is important that the memory consump-
tion is kept stable. Having spikes in memory usage in iOS causes memory warnings
and the result of this may be that the system terminates the application (Apple,
2014a). A project has been created implementing Example 6 as explained further on
Appendix F. It is used to measure the memory usage using Instruments4 with the
variable goal set to 100000. The result is shown in Table 7.2.

4Instruments is a profiling tool included as a part of the iOS SDK.

120 7 Tests & Performance

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip TikTok Jun 24, 2014 11:58:30 AM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version fo
r T

eaching Only

Commercial D
evelopment is

 stric
tly Prohibited

state machine TikTok TikTok[]

performTikentry /

Tik

performTokentry /

Tok

TikTok

goal = <some value>entry /

Start

Done
performTikperfromTok / numberOfToks++

 [numberOfToks == goal]

Figure 7.1: TikTok statechart suitable for testing statechart performance

Seconds Live bytes #Live objects Overall bytes #Overall objects
5 1.31 mb 14534 19.69 mb 542256
10 1.30 mb 14539 45.50 mb 1343524
15 1.30 mb 14472 73.08 mb 2198530

Table 7.2: Memory consumption over time.

As the statechart is being executed the number of overall created objects rises,
which also results in an increase in the overall amount of bytes allocated. However
the live bytes in the memory stays constant, as the statechart is constantly releasing
old memory. This happens because of an auto release pool that has been set up around
the event processing of the statechart. Doing so has a performance consequence as
cleaning up memory is a costly operation, however it keeps the memory usage low
and peaks are avoided.

7.2.2 Event processing
An interesting performance measure for the statechart is how fast it can process in-
coming events. The TikTok statechart explained in Example 6 is used to measure
this using the implementation in the project from Appendix F. In the entry action of
the state TikTok the current time is stored as an extended state and in state Done the

7.2 Statechart performance 121

event processing performance is the measured. The test was performed on an iPhone
5S. The results are listed in Table 7.3

Goal Seconds Messages per second
100 0.09 1106
1000 0.23 4192
5000 0.87 5720
10000 1.60 6234
50000 7.69 7646
100000 13.07 7648
200000 25.52 7834

Table 7.3: Event processing for different goals.

Further the results are plotted in Figure 7.4. As the figure illustrates the perfor-
mance stabilizes around a goal above 50000 messages, resulting in a bit more than
7500 messages per second.

The statechart clearly introduces an overhead in performance compared to trying
to capture the state using simpler methods as discussed in Section 3.3.1. Running
a profiling with Instruments on the TikTok example with the goal variable equal
to 100.000, reveals in which methods the most time is spent. The results have been
mapped to tasks and it is presented in Table 7.5.

Task Time in percent
Enter target state 19.8%
Releasing memory 17.6%

Finding lowest common ancestor 15.7%
Check transition condition 12.7%

Perform state action 11.7%
Creating message identifiers 7.4%

Other 15.3%
Table 7.5: Percent of time spent doing different tasks.

The traversal of the states in order to find the LCA is the most time consuming
task. As many objects are being created and released during the execution. Also

122 7 Tests & Performance

0 2,5⋅104 5⋅104 7,5⋅104 1⋅105 1,25⋅105 1,5⋅105 1,75⋅105 2⋅105
0

2500

5000

7500

1⋅104

1,25⋅104

1,5⋅104

Goal

Messages per second

Figure 7.4: Plot of messages for event processing per seconds with different values
of goal.

memory management by the system has a big impact on the performance. A sur-
prising discovery is the noticeable time spent on creating the UUIDs which are the
unique identifiers of the messages sent between the components.

7.3 Messaging system throughput

So far the focus has been on the performance of the statechart implementation. As
an application may consist of many components communicating with each other, it
is important that the messaging system delivers an acceptable performance. The
throughput between the components may be a bottleneck in the system. As pre-
sented in Section 5.2.5, the system uses a single central router where all the traffic
passes through. If the throughput is too low, messages will get queued up and eventu-
ally it could cause the application to run out of memory. It is important to notice that
performance optimization has not been a main goal for the messaging system, but
instead it is designed to give advantages for inspection and debugging, as discussed
in Section 5.4. Example 7 is used to measure the throughput of the messaging system.

7.3 Messaging system throughput 123

Example 7 In order to measure the throughput performance of the messaging sys-
tem, the example project PingPong has been created. The project is available in the
resources. The project consists of two components called Component1 and Compo-
nent2. They are connected to each other as illustrated in Figure 7.6. When start
is called on Component1, it will measure the current time before sending the message
ping out on its output port. This port is connected to the input port of Component2,
using a SHPChannel going through the SHPMessageRouter singleton. When receiving
a ping message, Component2 will the send a pong message on its output port. This
port is connected to Component1s input port. Every time Component1 receives a pong
message it will decrease the value of a variable called goal. The communication will
continue until the goal variable is zero and the execution time will be recorded.

Component 1 Component 2
output

output

input

input

Figure 7.6: Showing how Component1 and Component2 are connected in Example 7.

The throughput test was performed on an iPhone 5S and the results are shown in
Table 7.7 for different values of the goal variable.

Goal Seconds Messages per second
100 0.02 5366
1000 0.09 11467
5000 0.39 12850
10000 0.76 13055
50000 3.90 12822
100000 7.85 12733
200000 15.45 12941

Table 7.7: Throughput for channel system with different goals.

The messages sent per second stabilize around the initial goal variable having the
value of 50000, which gives a throughput of about 13000 messages, as illustrated in
Figure 7.8.

In order to compare the results, a similar test was performed with the normal method
invocation in Objective-C. Instead of having two components sending messages to each

124 7 Tests & Performance

0 2,5⋅104 5⋅104 7,5⋅104 1⋅105 1,25⋅105 1,5⋅105 1,75⋅105 2⋅105
0

2500

5000

7500

1⋅104

1,25⋅104

1,5⋅104

Goal

Messages per second

Figure 7.8: Plot of messages per seconds for message throughput with different val-
ues of goal.

other, two normal objects were created that called methods directly on each other.
Method invocation is highly optimized for performance. The results are shown in
Table 7.9

Goal Seconds Messages per second
100 0.004 22364
1000 0.02 55766
5000 0.05 104248
10000 0.09 112072
50000 0.45 109700
100000 0.83 120368
200000 1.59 121894

Table 7.9: Throughput for Objective-C method invocation with different goals.

As illustrated in Figure 7.10, method invocation is approximately 10 times faster
than the implemented messaging system with more than 100.000 messages per second
for 5000 messages. Which, as expected shows that the messaging system introduces

7.3 Messaging system throughput 125

much overhead compared to plain method invocation.

0 1⋅104 2⋅104 3⋅104 4⋅104 5⋅104 6⋅104 7⋅104 8⋅104 9⋅104 1⋅105 1,1⋅105 1,2⋅105 1,3⋅105 1,4⋅105 1,5⋅105 1,6⋅105 1,7⋅105 1,8⋅105 1,9⋅105 2⋅105 2,1⋅105 2,2⋅105 2,3⋅105
0

1⋅104

2⋅104

3⋅104

4⋅104

5⋅104

6⋅104

7⋅104

8⋅104

9⋅104

1⋅105

1,1⋅105

1,2⋅105

1,3⋅105

1,4⋅105

1,5⋅105

1,6⋅105

1,7⋅105

1,8⋅105

1,9⋅105

2⋅105

Messages per sec

Goal

Figure 7.10: Plot of messages per seconds for objective-C method invocation with
different values of goal.

In order to determine whenever the performance of the messaging system is useable
in a real life application, a comparison of the performance with an existing and pop-
ular framework has been performed. The third party library ReactiveCocoa5, which
implements the use of the Reactive Programming Model as discussed in Section 3.3.5,
uses signals as a way of reacting as events occur. This can be used to model the
PingPong example described above. It is done by having two objects that each send
out a signal when they receive a signal until a goal is reached. The results of such a
program running on an iPhone 5S are shown in Table 7.11

5ReactiveCocoa is a popular Objective-C framework. https://github.com/ReactiveCocoa/ReactiveCocoa

126 7 Tests & Performance

Goal Seconds Messages per second
100 0.02 3752
1000 0.11 8682
5000 0.56 8912
10000 1.03 9646
50000 4.80 10410
100000 9.65 10360
200000 19.11 10464

Table 7.11: Throughput for Reactive Cocoa with different goals.

As illustrated in Figure 7.12 the messages per second is a bit lower than using
the implemented messaging system with around 10.000 messages per second for 5000
messages.

0 2,5⋅104 5⋅104 7,5⋅104 1⋅105 1,25⋅105 1,5⋅105 1,75⋅105 2⋅105
0

2500

5000

7500

1⋅104

1,25⋅104

1,5⋅104

Goal

Messages per second

Figure 7.12: Plot of messages per seconds for ReactiveCocoa with different values
of goals.

The implementation of all of the above throughput tests can be found in the Com-
ponentThroughput project in the resources as explained on Appendix G

7.4 Summary 127

7.4 Summary
The chapter has covered the testing of the implementation. First the correctness of
the statechart engine was tested during various test cases. Then the performance
of the statechart implementation was tested by first considering the memory usage.
This turned out to be kept constantly low over time as memory was cleaned during
the processing of events. Next the performance of the statechart event processing was
tested and it was found that for a simple statechart, the implementation is capable of
processing almost 8000 events per second. Finally the throughput of the messaging
system was tested and it was found that it could process almost 13000 messages a
second.

128

CHAPTER 8
Discussion

The presentation of the implementation in Chapter 6 mostly focussed on what the
framework offers. In this chapter the original goals are evaluated by discussing how
to model large applications while keeping them convenient for the developer. Further
it is discussed how the designed system can be used in order to provide new ways of
handling errors. Lastly it will be talked about how the design and the implementation
can be ported to other platforms that face similar challenges.

8.1 Modeling large applications
One of the initial goals for the developed framework was that it could be used to
model large complex iOS applications. The prototype, which was explained in Sec-
tion 6.6, showed how to use the framework to model an iOS application. Further
it was integrated with existing frameworks and provided a very typical overall user
interface navigation. While the prototype is constrained in its functionality, it shows
that using the framework to model iOS applications is possible. Modeling larger ap-
plications is simply accomplished by creating more components for modeling the data
logic of the application and expanding the statecharts representing the user interface
with more submachines.

Moreover, the performance testing results from Chapter 7 show that the framework
allows building an application consisting of many components, while keeping the mem-
ory footprint low and providing good performance. This is both the case for when
many messages are sent in the system, as well as for when a statechart needs to process
many events. This means that the implemented framework can be used for modeling
large applications consisting of hundreds of components, and communicating with up
to 13.000 messages a second between each other.

8.1.1 Dynamic behavior
As a large application is executed, depending on the input, the parts of the appli-
cation being used might be dynamic. This can be modeled using the framework
by having components being allocated and deallocated dynamically according to the
needs. However within a single statechart, there is limited support for modeling this
kind for dynamic behavior. This is because the state and the hierarchy of the state-
chart are determined at compile time and it does not change during execution. The

130 8 Discussion

statechart notation does not define how to deal with this kind of dynamic behavior.
In many cases it can be solved by having some extended states that keep track of the
dynamic part, however this is not always a suitable solution. Allowing the states in a
statechart to be defined dynamically complicates the model dramatically. However,
a solution could be to allow the number of independent regions of a AND state to
be dynamic during execution. By allowing this, dynamic behavior can be achieved
inside of a statechart.

8.2 Implementation overhead

In order to make the framework convenient to work with, it is important that as much
implementation overhead is removed as possible. Common tasks, such as creating a
new statechart, defining the states and the hierarchy and setting up the channels
between components, should be as convenient and easy as possible. Because of this,
convenient methods have been defined to help doing common tasks. Below it is
discussed how these are used to remove implementation overhead, when using the
framework.

8.2.1 Transitions
An example of where efforts have been put in order to make it understandable and
convenient is, when defining transitions between states. Instead of having to create an
instance of SHPStateChartTransition and add it to the state, as shown in Listing 8.1,
a much more convenient way of doing it is offered by simply calling a method as shown
in Listing 8.2.

Listing 8.1: Complicated way of adding transition.

1 SHPStateChartTransition *transition =
2 [[SHPStateChartTransition alloc]
3 initWithEvent:@selector(someEvent)
4 fromStates:@[state1] toStates:@[state2]
5 timeout:nil internal:nil guard:nil
6 historyMode:HistoryModeNone];
7 [state1 addEventTransition:transition];

Listing 8.2: Convenient way of adding transition.

1 [state1 onEvent:@selector(someEvent) transitionTo:state2];

8.2 Implementation overhead 131

8.2.2 State names
As explained in Section 6.3.1 defining a state for a statechart is done by creating a class.
This class must be a subclass of one of the two base state classes SHPOrState and
SHPAndState. However, this introduces a practical problem when applied in languages
that do not support namespaces. This is the case for Objective-C. Two classes cannot
be defined with the same name in Objective-C. An Application consisting of many
statecharts is likely to have two states with the same name. This means that the
classes need to be prefixed. An obvious solution is to prefix them with the name of the
statechart they are being used in as illustrated in Listing 8.3, where the StateStart
state is prefixed with MyStateChart.

Listing 8.3: Defining state with prefix

1 @interface MyStateChartStateStart : OrState
2 @end
3 @implementation MyStateChartStateStart
4 @end

However having to prefix all state classes is complicated and inconvenient to work
with. Luckily Objective-C supports a way of defining an alias for a class using @com-
patibility_alias <alias> <name>. The use of this is shown in Listing 8.4, where
the state StateStart is defined by making a class called MyStateChartStateStart
and making an alias from MyStateChartStateStart to StateStart. Further, in or-
der to get the short name of the state, the method name is implemented, which returns
the name of the state.

Listing 8.4: Defining a state using @compatibility_alias

1 @interface MyStateChartStateStart : OrState
2 @end
3 @compatibility_alias StateStart MyStateChartStateStart;
4 @implementation MyStateChartStateStart
5

6 - (NSString *)name {
7 return @"StateStopped";
8 }
9

10 @end

Defining states this way makes it possible to use the name StateStart within the
MyStateChart class. However, this solution puts overhead on the implementation.
For this reason a macro has been created for easily defining states. It is used by writing
STATE(prefix, statename). Listing 8.5 shows how to define the same StateStart
state with the macro.

132 8 Discussion

Listing 8.5: Macro used for defining state

1 STATE(MyStateChart, StateStart)STATE_END

A macro for defining an AND state exists as well using AND_STATE(prefix, state-
name).

8.2.3 Setting up channels
The introduction of components having ports and channels between them requires
the need to setup channels. As shown in Listing 8.6, it introduces much overhead to
first create a channel that goes through the router and then hooking that channel up
between the two ports, defined on two components.

Listing 8.6: Defining a channel between two ports.

1 SHPMessageRouter *router = [SHPMessageRouter sharedInstance];
2 SHPChannel *channel = [[SHPChannel alloc]
3 initWithType:SHPChannelTypePublishSubscribe
4 messageRouter:router];
5 [router createMessageQueueForChannel:channel];
6 component1.outputPort.channel = channel;
7 component2.inputPort.channel = channel;

In order to make the channel system easier to setup, convenient methods have been
created for connecting two port with a channel as shown in Listing 8.7, where a
publish-subsribe channel is created between the output port of component1 and
the input port of component2.

Listing 8.7: Convenient way of defining a channel between two ports.

1 [[SHPMesageRouter sharedInstance] addPublish-
2 SubscribeChannelFromOutputPort:component1.outputPort
3 toInputPort:component2.inputPort];

A similar method exists for creating point-to-point channels.

8.3 Error handling
The implemented messaging system provides a way for components to asynchronously
communicate with each other by sending messages. The state of each component can
be captured using abstract states in a statechart, however out of the box, the pro-
posed solution does not specify how errors are handled. As errors occur the application
should handle these in a controlled manner.

8.3 Error handling 133

A common solution to handle unexpected errors is to terminate the application.
When using exceptions for handling errors, the behavior in many languages, includ-
ing Objective-C, is to terminate the application when an uncatched exception occurs.
This is usually the desired solution, since trying to recover from an unexpected error
may cause data to get corrupted or calls undesired behavior. However with an appli-
cation consisting of concurrent components, that share no memory, it is possible to
only terminate the part of the application where the error occurred. Handling the er-
ror in the component where the error occurred has the same challenges as handling an
error in an application where all parts share memory. Nonetheless, terminating only
the component and letting another healthy component handle the error, simplifies
the problem. This is known as “remote detection and handling of errors.” (Armstrong,
2013, p. 197). The error is not handled in the component where it occurs. Instead
the component is terminated and another component is notified in order to recover.
If the notified component is not able to recover, it will simply be terminated as well,
resulting in another component being notified. When a component is reached that
is able to recover from the error, it can be done by creating fresh copies of the ter-
minated components. The idea is illustrated in Figure 8.1, where the Web Service
Component receives an unexpected error. It then notifies the Expense Model com-
ponent and then terminates it. Since the Expense Model component is unable to
recover from the situation it also terminates, and notifies the Model Component. The
Model Component is able to recover from the situation and does so by creating a new
instance of Expense Model, which causes a new instance of Webservice Component
to be created.

Application

Model component Application
Statechart

Expense model TabBar Statechart

Webservice
Component

Expense model

Webservice
Component

1. terminated

2. terminated 3. create

4. create

Figure 8.1: Error handling by terminating components and creating new ones.

134 8 Discussion

By taking advantage of the fact that an application is structured into independent
components, it is possible to provide an advanced error handling system, where each
component can fail without the entire application to be terminated.

8.4 Porting to other platforms
The implemented framework introduces new concepts and ways of building applica-
tions for iOS. However, since many similar platforms exist that face the same chal-
lenges, it makes sense to look at the possibilities for porting it to other platforms.
Obvious candidates are other mobile platforms such as Android or Windows Phone,
but also other desktop platforms such as Linux and Windows.

Most of the implementation can be easily ported to another object-oriented language.
As explained in Section 6.1 the implementation uses Dispatch Queues to use the
concept of a shared thread pool to provide a context for each component. Porting
the concept of components to another platform, would require implementing a shared
thread pool system, if not already offered by existing frameworks on the platform.

The messaging system takes advantage of a special behavior for NSProxy subclasses,
which as explained in Section 6.2.3 makes it possible to forward a method invocation.
This means that any method can be called on a port, resulting in it being made into a
message that is sent to the channel. The benefit of this approach is a very lightweight
way of sending a message on a port, since it only requires a method call. Providing
content with the message is done by simple adding arguments to the method. Achiev-
ing the same might not be possible in other languages. However, the implementation
of the rest of the messaging system uses structures available in most other languages.

The implementation of the statechart engine is portable and a port to another object-
oriented language could be done quite easily.

CHAPTER 9
Conclusion & future

work
The thesis analyzed the challenges for architecting event-driven software for iOS.
Based on the analysis, a design was proposed for developing applications. The de-
sign consisted of a method for dividing the application into components, where each
component is running in its own context in order to remove dependencies between
the components. Further the communication between components is done using a
decoupled messaging system based on ports and channels. Lastly in order to keep
track of the state inside a component, it can be modeled as a statechart. The imple-
mented framework was used to implement a prototype application, in order to use it
to model a complex iOS application. For testing the performance of the framework
various tests were performed, which showed that the framework is suitable for archi-
tecting large applications. In overall the implemented solution suits as a foundation
for architecting iOS applications by introducing new concepts. These concepts make
it possible to create inspection and debugging tools in order to improve the develop-
ment phase of an application and thus build applications with few bugs consisting of
code that is maintainable.

9.1 Future work

The implemented methods used for architecting software provide a foundation, which
opens up the door for many improvements and extensions. Below are listed some
ideas for future work of the project.

• Testing of statechart - It is possible to test an application by looking at the
behavior of it in different states. Statecharts introduce the concept of abstract
states. Since the number of abstract states is fixed and for each state the
transitions to other states is known, it is possible to test an application by
forcing it into all possible states by sending events to the statechart. This can
be used to create a way of automatically testing a statechart, with the goal
of trying to force it into a particular state configuration, which should not be
allowed. It can be done by creating a helper statechart that gets the same
events as the statechart being tested. The helper statechart however, observes
the other statechart and performs a transition to a fail state if the statechart

136 9 Conclusion & future work

being tested ends up in an illegal state configuration. This is done in order to
indicate that the test failed.

• Debugging tools - As discussed in Section 6.5 the introduced concepts make
it possible to develop new tools for inspecting and easing the development of
an application. This could include many different tools. For instance a tool to
inspect the communication between components that allows pausing all commu-
nication or stepping through a trace of messages being sent, in order to debug
the behavior.

• Dynamic behavior - As mentioned in Section 8.1.1 the statechart notation
has limited support for dynamic behavior. As discussed further a solution could
extend the notation with the possibility of dynamically defining regions to an
AND state.

• Contract on communication - The messages sent between components in
the system are in the implemented framework defined by a protocol put on the
end points. However, this does not guarantee that the correct messages are sent
at the correct times. For instance, if a component sends a message to another
component and expects a message to be sent back as a reply, however the receiv-
ing component expects another kind of message first before being able to reply,
the system ends up in a stuck state. An improvement could be to introduce
the concept of a contract for the communication between components. Such a
contract could be used as a definition for how components can communicate
with each other.

• Error handling As discussed in Section 8.3 the introduction of components
provides a way of handling errors by linking the components together and crash-
ing a component once an error occurs, in order for another component to recover
the system. By adding a mechanism for easily linking components a powerful
way of handling errors can be archived.

• Platform independent network bridge - As discussed in Section 6.5.2 the
message bridge has the limitations that objects being sent are encoded into a
format that can only be decoded on either iOS or OSX. This means that it is
not possible to bridge to other platforms. But instead using a more general
format such as JSON a platform independent bridge can be archived.

• Porting to more platforms - As many platforms exist facing similar chal-
lenges, the framework can be ported as discussed in Section 8.4.

The findings in the thesis were found profitable for Shape A/S, hence the conceptual
work, for several of the above mentioned additions have already been started in order
to further improve the way software for iOS can be architected.

APPENDIX A
Thread memory

consumption test
In order to run the project, Xcode 5 or newer must be installed. The memory consump-
tion on iOS has been tested with the example project DispatchQueueComponentTest.

The project is included in Projects/DispatchQueueComponentTest in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

A.1 Running the project
Simply open the ThreadMemoryTest.xcodeproj project file in Xcode or AppCode.

$ open ThreadMemoryTest.xcodeproj

In order to specify the number of threads created in the test open AppDelegate.m.
Change the value of numberOfThreads

1 // Specify number of threads that should be created
2 // **
3 NSUInteger numberOfThreads = 250;
4 // **

The memory usage is printed in the console every 10th second.

1 Memory used 163086.3 kb (+163086 kb), free 49139.7 kb

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

138

APPENDIX B
Framework source

The framework can run on iOS7 or higher and OSX 10.9 or higher. The implemented
sources are available in the Source folder in the resources.

The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

A CocoaPod podspec file has been included, which makes it possible to use the code
by adding the following to the podfile.

pod 'SHPStateChart', :path => '<path to folder with SHPStateChart.podspec>'

The prototype application explained in Section 6.6 and available from Appendix D is
a great resource for understanding how to use the framework.

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

140

APPENDIX C
Dispatch queue
component test

In order to run the project, Xcode 5 or newer must be installed. The maximum size
of the dispatch queues provided as a part of the iOS SDK has been tested with the
example project DispatchQueueComponentTest.

The project is included in Projects/DispatchQueueComponentTest in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

C.1 Running the project
Simply open the DispatchQueueComponentTest.xcodeproj project file in Xcode or
AppCode.

$ open DispatchQueueComponentTest.xcodeproj

In order to specify the number of components created in the test open AppDelegate.m.
Change the value of numberOfComponents

1 // Specify number of components that should be created
2 // **
3 NSUInteger numberOfComponents = 513;
4 // **

The result of the test is printed in the console.

1 max = 4.000778
2 min = 2.001259

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

142

APPENDIX D
Prototype application

In order to run the prototype application, Xcode 5 or newer must be installed. The
source for the prototype application is available in the resources.

The project is included in the folder Projects/ExpensesPrototype in the resources.
The resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

D.1 Running the prototype
The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the ExpenesPrototype project folder, install the depending pods.

$ pod install

Run the project by opening ExpensesPrototype.xcworkspace in Xcode or AppCode.

$ open ExpensesPrototype.xcworkspace

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

144

APPENDIX E
Test statechart engine

In order to run the project with the tests, Xcode 5 or newer must be installed. The
test project is included in the project TestProject.

The project is included in Projects/TestProject in the resources. The resources
can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

E.1 Running the project
The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the TestProject project folder, install the depending pods.

$ pod install

Simply open the TestProject.xcworkspace project file in Xcode or AppCode.

$ open TestProject.xcworkspace

The statecharts for the tests are listed below.

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

146 E Test statechart engine

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario1 May 19, 2014 11:36:32 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

state machine Scenario1 Scenario1[]

State1a1

State1b1

State1

State2

event2

event1

event3

Figure E.1: Scenario1

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario2 May 19, 2014 11:37:08 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

state machine Scenario2 Scenario2[]

State1a1 State1a2

State1b1 State1b2

State1

event1

event2

event1

event2

Figure E.2: Scenario2

E.1 Running the project 147

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario3 May 19, 2014 11:37:38 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

state machine Scenario3 Scenario3[]

State1a1

State1b1

State1

State2

event2

event2

Figure E.3: Scenario3

148 E Test statechart engine

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario4 May 19, 2014 11:38:12 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited
state machine Scenario4 Scenario4[]

State1a1 State1a2

State1b1 State1b2

State1

State2

event3event1
event2

Figure E.4: Scenario4

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario5 Jun 24, 2014 5:01:57 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version fo
r T

eaching Only

Commercial D
evelopment is

 stric
tly Prohibited

state machine Scenario5 Scenario5[]

State1a1 Stat1a2

State1b2 State1b2

State1

State2
event1

event3

Figure E.5: Scenario5

E.1 Running the project 149

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario6 May 19, 2014 11:39:23 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited
state machine Scenario6 Scenario6[]

State1a1 State1a2

event6

State1b1 State1b2

State1

State2a1

event2

State2a

State2

event4

event5

event3

event1

Figure E.6: Scenario6

150 E Test statechart engine

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario7 Jun 22, 2014 3:53:28 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

state machine Scenario7 Scenario7[]

StateA2StateA1

StateB1 StateB2

StateC1 StateC2

StateD1 StateD2

State Overall

StateE StateF

even1

event4

even2

event4

even3

even4

 [in(A2) && in(B2) && in(C2)]

 [!in(A2) || !in(B2) || !in(C2)]

 [else]

 [1==2]

 [1==1]

Figure E.7: Scenario7

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario8 May 19, 2014 11:40:23 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited
state machine Scenario8 Scenario8[]

State2a1 State2a2

State2a

State2b1 State2b2

State2b

H

State2

State1

event3

event3

event3

event3

event2event2
event1

event1

Figure E.8: Scenario8

E.1 Running the project 151

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip Scenario9 May 19, 2014 11:40:50 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited
state machine Scenario9 Scenario9[]

 : SubMachine1StateChart

 : SubMachine1StateChart

 : SubMachine1StateChart

State1

event2

event2

event3

Figure E.9: Scenario9

MagicDraw UML, 1-1 /Users/peter/Documents/Private-Repos/Thesis/Report/Resources/TestStateCharts.mdzip SubMachine1StateChart May 19, 2014 11:41:35 PM

Academic Version for Teaching Only, Commercial Development is strictly Prohibited

Academic Version for Teaching Only

Commercial Development is strictly Prohibited

SubMachine1StateChart SubMachine1StateChartstate machine []

StateSM1a

StateSM1b

StateSM1

event3

event1 event2

Figure E.10: SubMachine 1

152

APPENDIX F
TikTok project

In order to run the project, Xcode 5 or newer must be installed. The throughput
tests for the different solutions is included in the project TikTok.

The project is included in Projects/TikTok in the resources. The resources can
be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

F.1 Running the project
The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the TikTok project folder, install the depending pods.

$ pod install

Simply open the TikTok.xcworkspace project file in Xcode or AppCode.

$ open TikTok.xcworkspace

In order to specify the goal variable used for the test open AppDelegate.m. Change
the value of goal

1 // Specify the value of the goal variable
2 // **
3 NSUInteger goal = 50000;
4 // **

The result of the test is printed in the console.

1 7.69 sec / 50000 msg
2 7646.2 msg / sec

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

154

APPENDIX G
Component

throughput test
In order to run the project, Xcode 5 or newer must be installed. The throughput
tests for the different solutions are included in the project ComponentThroughput.

The project is included in Projects/ComponentThroughput in the resources. The
resources can be downloaded from:
http://www.student.dtu.dk/~s093263/thesis2014/resources.zip.

G.1 Running the project
The project uses CocoaPods, which must be installed before running.

$ sudo gem install cocoapods

While in the root of the ComponentThroughput project folder, install the depending
pods.

$ pod install

Simply open the ComponentThroughput.xcworkspace project file in Xcode or App-
Code.

$ open ComponentThroughput.xcworkspace

In order to specify the goal variable used for the test open AppDelegate.m. Change
the value of goal

1 // Specify predefined goal
2 // **
3 NSUInteger goal = 1000;
4 // **

Further in order to specify which test should run, change the value of the test
variable.

http://www.student.dtu.dk/~s093263/thesis2014/resources.zip

156 G Component throughput test

1 // Specify what should be tested
2 // **
3 // TestComponent, TestMethodInvocation or TestReactiveCocoa
4 Test test = TestMethodInvocation;
5 // **

The result of the test is printed in the console.

1 0.063588 sec / 1000 msg
2 15726.3 msg / sec

Bibliography
Andrachek, J. M. R., Bender, G., Diehl, D., Gorbsky, M., Novak, R., Shapiro, B.,

and Zolyak, A. (2013). The Impact of Mobile. Segue Technologies, Inc.

Apple (2012a). Dispatch queues. https://developer.apple.com/library/
ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
OperationQueues/OperationQueues.html. [Online accessed 1-June-2014].

Apple (2012b). Presenting view controllers from other view
controllers. https://developer.apple.com/library/ios/
featuredarticles/viewcontrollerpgforiphoneos/ModalViewControllers/
ModalViewControllers.html. [Online accessed 10-June-2014].

Apple (2013a). Uinavigationcontroller class reference. https://
developer.apple.com/library/ios/documentation/uikit/reference/
UINavigationController_Class/Reference/Reference.html. [Online accessed
25-Marts-2014].

Apple (2013b). Uitabbarcontroller class reference. https://developer.apple.com/
library/ios/documentation/uikit/reference/UITabBarController_Class/
Reference/Reference.html. [Online accessed 25-Marts-2014].

Apple (2014a). Performance tuning. https://developer.apple.com/library/
ios/documentation/iphone/conceptual/iphoneosprogrammingguide/
PerformanceTuning/PerformanceTuning.html. [Online accessed 1-June-2014].

Apple (2014b). Thread management. https://developer.apple.com/library/
mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/
CreatingThreads.html. [Online accessed 1-June-2014].

Arlow, J. and Neustadt, I. (2002). UML And the unified process - Practical object-
oriented analysis design. Addison-Wesley.

Armstrong, J. (2013). Programming Erlang - Software for a Concurrent World. The
Pragmatic Booksehelff.

Bobbio, A. (2010). System modelling with petri nets.

Booch, G. (1993). Object-Oriented Analysis and Design with Applications. Addison-
Wesley Professional, second edition.

https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/featuredarticles/viewcontrollerpgforiphoneos/ModalViewControllers/ModalViewControllers.html
https://developer.apple.com/library/ios/featuredarticles/viewcontrollerpgforiphoneos/ModalViewControllers/ModalViewControllers.html
https://developer.apple.com/library/ios/featuredarticles/viewcontrollerpgforiphoneos/ModalViewControllers/ModalViewControllers.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/CreatingThreads/CreatingThreads.html

158 Bibliography

Buyya, R. (2009). Object Oriented Programming with Java: Essentials and Applica-
tions. Tata McGraw Hill Education Private Limited.

Collberg, C. (2005). Principles of programming languages.

Demetrescu, C., Finocchi, I., and Ribichini, A. (2011). Reactive imperative pro-
gramming with dataflow constraints. http://arxiv.org/pdf/1104.2293v1.pdf.
[Online accessed 13-June-2014].

DeRemer, F. and Kron, H. (1975). Programming-in-the-large versus programming-
in-the-small.

DiLascia, P. (2004). What makes good code good? MSDN Magazine.

Eales, A. (2005). The observer pattern revisited. Wellington Institute of Technology.

Eshuis, R. (2009). Translating safe petri nets to statecharts in a structure-preserving
way.

Gamme, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns -
Elements of Reusable Object-Oriented Software.

Gursoy, A. and Kale, L. (1994). Dagger: combining benefits of synchronous and
asynchronous communication styles.

Haller, P. and Odersky, M. (2007). Actors that unify threads and events.

Hanson, R. (2014). Cocoaasyncsocket. https://github.com/robbiehanson/
CocoaAsyncSocket. [Online accessed 25-June-2014].

Harel, D. (1986). Statecharts: A visual formalism for complex systems.

Harel, D. and Kuger, H. (2004). The rhapsody semantics of statecharts (or, on the
executable core of the uml).

Harel, D. and Politi, M. (1998). Modeling Reactive Systems with Statecharts. McGraw-
Hill.

Havelund, K. (2008). Runtime verification of c programs. Jet Propulsion Laboratory.

Hohpe, G. andWoolf, B. (2004). Enterprise Integration Patterns - Designing, Building
and Deploying Messaging Solutions. Addison-Wesley.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2007). Automata Theory, Languages,
and Computation. Pearson Education, Inc., 3rd edition edition.

Horrocks, I. (1999). Constructing the User Interface with Statecharts. Addison-Wesley.

http://arxiv.org/pdf/1104.2293v1.pdf
https://github.com/robbiehanson/CocoaAsyncSocket
https://github.com/robbiehanson/CocoaAsyncSocket

Bibliography 159

IBM (2005). Designing a software application by using models. http:
//publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp?topic=
%2Fcom.ibm.xtools.modeler.doc%2Ftopics%2Ftwrkcs.html. [Online accessed
3-May-2014].

Jackson, D. (2005). Software abstractions - patterns of modelling analysis. http:
//sdg.csail.mit.edu/6.894/papers/dnj-book-volume2.pdf. [Online accessed
15-May-2014].

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code
Generation. John Wiley Sons, Inc.

Klein, L. (2013). UX for Lean Startups. O’Reilly Media, Inc.

Krzyzanowski, P. (2006). Clock synchronization.

Lockwood, N. (2014). Autocoding. https://github.com/nicklockwood/
AutoCoding. [Online accessed 25-June-2014].

Mackay, P. (1997). Why has the actor model not succeeded? http://www.doc.ic.
ac.uk/~nd/surprise_97/journal/vol2/pjm2/. [Online accessed 1-June-2014].

Roestenburg, R. (2012). Discovering message flows in actor systems with the spider
pattern. http://letitcrash.com/post/30585282971/discovering-message-
flows-in-actor-systems-with-the.

Salvaneschi, G. and Mezini, M. (2014). Towards reactive programming for object-
oriented applications.

Samek, M. (2008). Practical UML Statecharts in C/C++. Elsevier Inc., 2nd edition
edition.

Scheifler, R. W. and Gettys, J. (1987). The x window system.

Schmidt, D. (2003). Programming principles in java: Architectures and interfaces.
http://people.cis.ksu.edu/~schmidt/PPJv12pdf/. [Online accessed 12-June-
2014].

Services, I. G. B. (2012). Creating a compelling mobile user experience.

Smith, M. H. and Havelund, K. (2008). Requirements capture with rcat. Jet Propul-
sion Laboratory.

Szyperski, C. (1999). Component Software - Beyond Object-Oriented Programming.
Addison-Wesley.

van Roy, P. and Haridi, S. (2003). Concepts, techniques, and models of computer
programming.

http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2Ftopics%2Ftwrkcs.html
http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2Ftopics%2Ftwrkcs.html
http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2Ftopics%2Ftwrkcs.html
http://sdg.csail.mit.edu/6.894/papers/dnj-book-volume2.pdf
http://sdg.csail.mit.edu/6.894/papers/dnj-book-volume2.pdf
https://github.com/nicklockwood/AutoCoding
https://github.com/nicklockwood/AutoCoding
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/pjm2/
http://letitcrash.com/post/30585282971/discovering-message-flows-in-actor-systems-with-the
http://letitcrash.com/post/30585282971/discovering-message-flows-in-actor-systems-with-the
http://people.cis.ksu.edu/~schmidt/PPJv12pdf/

160 Bibliography

Vasileios, T. (2011). Introduction to erlang concurrency processes. http:
//trigonakis.com/blog/2011/05/09/introduction-to-erlang-concurrency-
processes/. [Online accessed 2-June-2014].

Wagner, F. (2006). What’s all this state machine stuff? http://www.stateworks.
com/active/download/TN15-Whats-All-This-State-Machine-Stuff.pdf. [On-
line accessed 7-June-2014].

http://trigonakis.com/blog/2011/05/09/introduction-to-erlang-concurrency-processes/
http://trigonakis.com/blog/2011/05/09/introduction-to-erlang-concurrency-processes/
http://trigonakis.com/blog/2011/05/09/introduction-to-erlang-concurrency-processes/
http://www.stateworks.com/active/download/TN15-Whats-All-This-State-Machine-Stuff.pdf
http://www.stateworks.com/active/download/TN15-Whats-All-This-State-Machine-Stuff.pdf

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation & background
	1.2 Problem description
	1.3 Context
	1.4 Goals & requirements
	1.5 Structure of thesis

	2 Analysis
	2.1 Programming in the large
	2.2 Abstractions
	2.3 Event-driven Software
	2.4 Multithreading & concurrency
	2.5 Summary

	3 Methodology
	3.1 Structure of applications
	3.2 Communication between concurrent parts
	3.3 Keeping track of state
	3.4 Summary

	4 Theory
	4.1 Concurrent components
	4.2 Message passing
	4.3 Statechart
	4.4 Summary

	5 Design
	5.1 System of components
	5.2 Communication system
	5.3 Capturing state in components
	5.4 Debugging & inspection
	5.5 Summary

	6 Implementation
	6.1 Implementing components
	6.2 Implementing the messaging system
	6.3 Statechart implementation
	6.4 Overall framework structure
	6.5 Runtime system
	6.6 Prototype application
	6.7 Summary

	7 Tests & Performance
	7.1 Statechart engine
	7.2 Statechart performance
	7.3 Messaging system throughput
	7.4 Summary

	8 Discussion
	8.1 Modeling large applications
	8.2 Implementation overhead
	8.3 Error handling
	8.4 Porting to other platforms

	9 Conclusion & future work
	9.1 Future work

	A Thread memory consumption test
	A.1 Running the project

	B Framework source
	C Dispatch queue component test
	C.1 Running the project

	D Prototype application
	D.1 Running the prototype

	E Test statechart engine
	E.1 Running the project

	F TikTok project
	F.1 Running the project

	G Component throughput test
	G.1 Running the project

	Bibliography

