
Few- and Single-Cycle Coherent 
Pulse Propagation in Multi-
Level Media

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2014

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and 
Electrical Engineering
Department of Electronics and Telecommunications

Robert Marskar



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Electronics and Telecommunications

© Robert Marskar

ISBN 978-82-326-0230-8 (printed ver.)
ISBN 978-82-326-0231-5 (electronic ver.)
ISSN 1503-8181 

Doctoral theses at NTNU, 2014:154

Printed by NTNU-trykk



Biographical sketch

The author of this thesis was born in Narvik, Norway on September 18, 1984. He entered

in the Physics and Applied Mathematics program at the Norwegian University of Science

and Technology (NTNU) in August 2004 and received the degree Master of Science and

Technology in 2009 with a specialization in fluid mechanics. The author spent the summer

of 2008 working in the process and flow technology department at SINTEF, a research

institution in Norway. He entered the doctoral program at the Department of Electronics

and Telecommunication at NTNU in December 2009, and carried out his doctoral research

under the supervision of Professor Ulf L. Österberg.

The research work conducted in this thesis was carried out by Robert Marskar un-

der the advisement of Professor Ulf L. Österberg. This thesis is based on the following

publications.

List of Publications

Paper I: R. Marskar and U. Österberg,

Multi-level Maxwell-Bloch simulations in inhomogeneously broadened media,

Optics Express 19, 16784 (2011).

Paper II: R. Marskar and U. Österberg,

Linear and non-linear optics precursors with self-induced transparency,

Physical Review A 86, 063286 (2012).

Paper III: R. Marskar and U. Österberg,

Backpropagation and decay of Self-Induced Transparency Pulses,

Physical Review A 89, 023828 (2014).

Paper IV: R. Marskar and U. Österberg,

Multi-level reduced Maxwell-Bloch equations: Application to femtosecond conical emis-

i



ii BIOGRAPHICAL SKETCH

sion in atomic sodium,

In preparation.

Paper V: R. Marskar and U. Österberg,

Single-cycle coherent terahertz pulse propagation in rigid rotor molecular media,

Submitted to Physical Review A (2014).



Acknowledgements

I want to sincerely thank my scientific advisor, Professor Ulf L. Österberg, for his guid-

ance and unprecedented patience while suffering through my incoherent ramblings the

past four years. Your perseverance and unwavering support have been pivotal for the

completion of this work, and are attitudes that I one day hope to emulate. I also wish to

thank Professor Joseph H. Eberly for accomodating me with the graduate students at the

Department of Physics and Astronomy during my visit at the University of Rochester. I

also thank the institutions that helped bring this work to fruition by providing financial

or computational resources. These include travel grants from Department of Electron-

ics and Telecommunication, and allocation of computational resources from NOTUR, the

Norwegian Metacenter For Computational Science.

I would also like to extend my gratitude to my fellow graduate students in both Trond-

heim and Rochester for their cherished friendships. A wholehearted thanks goes out to my

parents Turid and Øystein. Finally, I wish to thank my significant other, Silje Erstad, for

her patience, encouragement, and unconditional love.

iii





Abstract

Recent experimental realizations of single-cycle pulses in the terahertz, infrared, and opti-

cal regions provide promising light sources for applications in telecommunication, medical

imaging, spectroscopy, and coherent control. In the resonant regime, the short duration of

such pulses imply that they may escape certain effects that are detrimental to coherence;

spontaneous emission is one such example. In combination with an octave-spanning spec-

tral bandwidth, an adequate theoretical approach necessitates a semiclassical coherence

model outside the conventional few-level, rotating wave, and slowly varying envelope

approximations. The evolution equations that govern the underlying dynamics of such

systems are inherently nonlinear and possess solutions only in certain idealized, limiting

cases. In this thesis we investigate the viability of obtaining general-purpose numerical

solutions to such problems.

A computational approach based on Maxwell’s equations coupled with a multi-level

quantum mechanical model for homogeneously and inhomogeneously broadened media

is reported. The formulation leads to a numerical algorithm applicable to bi-directional

propagation of pulses of arbitrary duration along all three spatial coordinates. For suffi-

ciently dense inhomogeneously broadened materials we show, numerically, that when the

forward propagation approximation of Maxwell’s wave equation is not valid, certain types

of optical solitons may lose a significant amount of energy with increasing propagation

distance through the co-excitation of a backward mode.

A second set of computational routines is based on neglection of optical backpropa-

gation in Maxwell’s wave equation. The resulting propagation equation generalizes the

paraxial wave equation to the single-cycle pulse regime and is shown to be susceptible to

numerical integration in conjunction with quantum theory. Our computer code is applied

to femtosecond conical emission in atomic sodium. We find that cone emission occurs to-

gether with spatiotemporal pulse breakup analogous to the soliton-type splitting observed

in self-induced transparency. We furthermore support these results by presenting comple-

mentary numerical calculations of the same phenomenon in the picosecond pulse regime.

The angular structure of the conical emission observed numerically agrees with experi-

v



vi ABSTRACT

mental measurements performed by others. Our computational results resolve some of the

underlying questions surrounding conical emission in alkali metal vapors.

Consideration of optical selection rules in rigid-rotor molecules is shown to greatly

simplify the numerical evaluation of single-cycle pulse propagation in multi-level molec-

ular systems. Numerical application of linearly polarized single-cycle terahertz pulses in

rigid rotor molecular media, incorporating a full rotational manifold, shows that coher-

ent bleaching effects ultimately lead to self-steepening of the driving pulse. A possible

practical consequence of these results is that coherent, nonlinear saturation effects may

partially cancel dispersion-induced temporal broadening of single-cycle pulses, opening

up the possibility of increased energy transmission of terahertz pulses through molecular

media.
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Chapter 1

Introduction

Electromagnetic waves are extremely versatile for controlling matter in all of its phases.

Often, control over an atom or a molecule is exerted by using coherent light pulses shorter

than the spontaneous emission lifetime of the medium, and the experimenter is then con-

cerned with the induced electronic or nuclear motion and the propagation characteristics

of the pulse - onto which the response of the probed medium is encoded. In resonance

studies using moderately intense laser beams, the contemporary theoretical approach is

”half quantum”, meaning that the electromagnetic field is imposed as a spatially and tem-

porally varying classical field, while the medium is treated with quantum theory. The

composite model accounts for electromagnetic wave and quantum coherence, and has led

to the prediction and comprehension of a number of exotic, non-classical optical effects

like adiabatic following [1, 2], electromagnetically induced transparency (EIT) [3, 4], slow

light [3, 5], fast light [6, 7] and so on. One of the most surprising phenomena was also

one of the first to be discovered. In the late 60s when the production of laser light systems

was still under development, McCall and Hahn [8] studied the propagation light pulses

tuned close to a resonance in a helium-cooled ruby absorber rod, with surprising results.

Remarkably, the reaction of the molecules to the external laser field was to absorb only a

fraction of the light - the remainder of the laser light was reshaped into a pulse with a spe-

cial shape-kinematic relationship that traveled over anomalously long distances without

losing significant energy. The phenomenon was termed self-induced transparency (SIT),

and McCall and Hahns experimental effort is rightfully regarded to be the first observa-

tion of an optical soliton. Their work [8, 9] provoked immediate experimental extensions

[10–14] to other kinds of media. Today, solitons are ubiquitous in physics. They repre-

sent special mathematical solutions to certain nonlinear wave problems where dispersive

and nonlinear wave effects cancel such that a wave form travels with constant shape and

velocity.

1



2 CHAPTER 1. INTRODUCTION

Technological advances in laser science has currently reached a point where extremely

short and intense laser pulses may be generated by using commercially available table-

top laser systems. Such pulses are either applied directly or used for generating other

pulses in different frequency regions, which are then used by researchers for experimental

probing into new venues of physics. For example, optical pumping of a nonlinear crystal

with a femtosecond (fs) pulse may, through optical rectification, result in the emission of

terahertz radiation [15]. Terahertz (THz) occupies, loosely speaking, the spectral region

between microwaves and infrared radiation. Unlike optical radiation which predominantly

excites valence electrons in atoms or molecules, THz waves excite low-energy modes like

molecular rotations [16], lattice vibrations [17], or spin waves [18]. Nonlinear terahertz

technology is still in its infancy, but is presently emerging as a promising research field

with applications in biomedical imaging [19], quantum information [20], population con-

trol [21], molecular orientation [22], and high-harmonic generation [23]. A theoretical

analysis of nonlinear wave THz wave propagation phenomena is inherently difficult be-

cause several of the traditional approximations that are invoked in the conventional ”half

quantum” model are stretched to their limits - or even broken - in this newly opened regime

of nonlinear optics [24]. Heralded single-cycle pulses are, for example, now a reality in

the terahertz [25], infrared [26], and optical [27] spectral regions, and their spectral widths

break with some of the bandwidth constraints that are directly or implicitly engaged in SIT

or EIT theory.

The difficulty in obtaining theoretical predictions to nonlinear propagation problems

outside the standard approximations has prompted researchers to promote the use of nu-

merical simulations for calculating the material response and its effect on the propagat-

ing laser field. Calculations are usually performed within the framework of the finite-

difference time-domain (FDTD) method [28] for Maxwell’s equations, usually coupled

with quantum theory under the two-level restriction [29].

The primary purpose of this work is to detail new numerical methods for pulse prop-

agation models outside the standard approximations, and then apply these methods to the

exploration of new physics. To accomplish these goals, this thesis work will be orga-

nized as follows. Chapter 2 develops the necessary theoretical framework starting from

the Maxwell equations for the electrodynamic field variables, and the Schrödinger equa-

tion for the medium. The brief summary provided in this chapter details the notational

convention used, and is a theoretical precursor to the remaining contents of this thesis.

Chapter 3 presents a theoretical study of bi-directional SIT pulse propagation. After

first carefully deriving a three-dimensional generalized pulse propagation equation, which

replaces the paraxial wave equation in the single-cycle regime, we quantify the limita-

tions of the uni-directional propagation assumption. Expanding on the pre-existing set

of numerical methods based on the FDTD technique, we report on a numerical method
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for homogeneously and inhomogeneously broadened multi-level media. This numerical

integrator relies on an operator splitting method for the quantum mechanical material re-

sponse and a pseudospectral method for Maxwell’s equations. The algorithm is applied to

the McCall-Hahn solution under standard conditions, except for one important distinction;

that of a comparatively long Beer’s length. We will find that when backpropagation cor-

rections are non-negligible, the McCall-Hahn pulse gradually loses energy with increasing

propagation distance through the co-excitation of a backward propagating wave.

Chapter 4 discusses the possible co-existence between a self-induced transparency

pulse and an optical precursor. Precursors are forerunners to a main signal and are pre-

dicted for almost all kinds of waves; in linear optics, they arise due to color dispersion.

We find that nonlinear optical precursors can originate by the injection of an initially

transform-limited and resonant pulse with initial pulse area between � and 3� . The gen-

erated pre-pulse excites the red and blue wings of the absorption line and is trailed by a

soliton with a large time retardation. Our results offers a comparatively straightforward

way of measuring both linear and nonlinear optical precursors.

Chapter 5 provides a study of femtosecond conical emission in atomic sodium. Coni-

cal emission is surrounded by a controversial history and has been one of the more elusive

phenomenon to be explained over the past 4 decades. Presently, no generally accepted the-

ory for pulsed conical emission exists. Conical emission occurs when a near-resonant light

pulse propagates on the self-focusing side of an optical resonance, and it manifests itself

as a bright ring of light surrounding the central beam spot. Realizing that direct Maxwell

simulations are incapable of numerically resolving the macroscopic propagation distances

that are involved in conical emission experiments, we develop propagation models based

on the propagation equation derived in Chapter 3, which mitigates the shortcomings of

direct methods. This numerical algorithm is applied to the propagation of 20 fs few-cycle

wavepackets in atomic sodium and we present, for the first time, fully non-perturbative

calculations of cone emission in agreement with experiments.

Drawing further on the uni-directional propagation equation, Chapter 6 discusses the

propagation of linearly polarized single-cycle THz pulses in rigid rotor molecular media.

Exact solutions are derived in the linear propagation regime, and these appear as temporal

beats in the time domain. Physically, we suggest that the impulses are the result of in-

terference between various 0� pulses [30]. We supplement these solutions by computer

simulations in the nonlinear interaction regime. Notably, a significant improvement is the

incorporation of an unprecedented large number of possible energy eigenstates. In the

nonlinear propagation regime we find that saturation effects lead to coherent bleaching

and self-steepening of single-cycle pulses.

Finally, Chapter 7 provides some concluding remarks.



Chapter 2

The Maxwell-Bloch model

2.1 Introduction

The Maxwell-Bloch (MB) theoretical model is a semi-classical model which describes

the interaction of electromagnetic laser pulses with dielectric media, where the electro-

magnetic field variables are treated as classical fields and the medium is treated quantum

mechanically. This model is valid when the laser field intensity is (i) sufficiently high so

that single-photon correlations are negligible, and (ii) sufficiently low so that ionization

can be disregarded. The first assumption implies that the electromagnetic field may be

treated as a continuous variable. The second condition presumes that the field intensity

is so low that one may neglect the possibility of molecular dissociation or detachment of

a valence electron, and the electronic or nuclear motion is thus confined to bound energy

eigenstates. The MB model uses the full electromagnetic wave equation to describe the

propagation of the laser field and the Schrödinger equation, or von Neumann equation if

density matrices are required, to describe the temporal evolution of the material.

In the remainder of this chapter we discuss the MB theoretical model. We will describe

the N -level optical Bloch equations in Sec. 2.2 and their damping mechanisms, before

moving on to discussing Maxwell’s equations in Sec. 2.3. These equations constitute the

theoretical basis for the subsequent chapters in this thesis.

2.2 The optical Bloch equations

The starting point for the optical Bloch equations is the classical Hamiltonian

H D
X

i

.pi �Qi A/
2

2m
C qiˆC V; (2.1)
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2.2. OPTICAL BLOCH EQUATIONS 5

where pi is the canonical momentum of a particle indexed by i , qi its charge, A and ˆ

are the electromagnetic vector and scalar potentials, and V is the usual Coloumb interac-

tion. For quantum mechanical systems the continuous field variables become operators

H ! yH . In the semi-classical Maxwell-Bloch model, only the atoms are treated quan-

tum mechanically while A is retained as a continuous quantity. One then proceeds by

choosing the radiation gauge r � A D 0, and then presume that A varies little over the

dimensions of an atom or a molecule. Atomic dimensions are on the order of 10�10 m,

so this approximation, called the dipole approximation, may be safely applied even to soft

X-rays.

Under the dipole approximation, the Hamiltonian becomes

yH D yH0 � O� �E.t; r/; (2.2)

where yH0 D Op2

2m
C V is the free Hamiltonian and O� is the dipole moment operator. This

Hamiltonian is the starting point for an optical Bloch model, where electric charges move

not only according to an internal Hamiltonian yH0, but also due to an externally applied

electric field E . In principle, E denotes the total electric field. We are, however, concerned

with pulse intensities considerably higher than the single-photon level and the contribution

of the atomic-self field to E is therefore provisionally ignored.

The time evolution of an atom or a molecule follows the Schrödinger equation

i¯ d

dt
j‰i D yH j‰i ; (2.3)

where the vector j‰i can be expanded in an appropriate set of eigenfunctions. This

eigenset is chosen to be the set of eigenfunctions fjkig for yH0, and one can write

j‰i D
X

k

ck jki : (2.4)

It is customary to normalize the state vector such that h‰j‰i D 1, in which case the com-

plex coefficients ck obey the normalization condition
P

k jckj2 D 1, indicating preserva-

tion of probability. For real media the number of possible configurations jki that electric

charges can occupy in an atom or a molecule are discretely distributed, but otherwise in-

finite in extent. However, an external electromagnetic field will usually only couple the

lowest excited energy eigenstates of the system, and one may often consider only a finite

number of possible electronic or nuclear configurations. The time evolution of this finite

set constitutes the optical Bloch equations.

2.2.1 Density matrix equations

In the field of nonlinear optics one usually deals with materials consisting of a number of

atoms or molecules so large that it is generally impossible to write down the wavefunction
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for the system. The situation is worsened by the fact that the medium is normally coupled

to a thermal bath which causes decoherence and ultimately relaxation into a state in ther-

mal equilibrium. While there is no way of writing down the wavefunction of such systems,

one may safely treat the medium as a statistical ensemble when the number of particles be-

comes very large. The density operator of such systems is defined as an ensemble average

O� D
X

i

pi j‰i ih‰i j ; (2.5)

where j‰i i is a pure state wave function, representing one of the infinite number of possi-

ble microstates in the ensemble. The scalar quantities pi are probability weights associated

with these microstates. In the present context where the medium is treated as a statistical

mixture of atoms or molecules, pi may be thought of as the fraction of atoms or molecules

that occupy a microstate j‰i i. The sum generally runs over all possible quantum mechan-

ical microstates available in the system. One important advantage of the density operator

is that it describes a statistical ensemble in a compact way, while simultaneously incor-

porating quantum mechanical uncertainties (due to the uncertainty principle) and classical

uncertainties (due to incomplete knowledge of particle correlations). In the density oper-

ator formalism the Schrödinger equation for the time evolution a pure state is replaced by

the von Neumann equation

i¯dt O� D
h
yH; O�

i
; (2.6)

for the time evolution of the ensemble. The notation dt � d=dt is used as a short-

hand notation for differentiation, and the square brackets Œ; � indicate the commutator, i.e.h
yH; O�

i
D yH O� � O� yH .

Expanding the pure states j‰i i D
P

k c
i
k
jki in Eq. (2.5) expresses O� in the basis states

jki,

O� D
X
k;k0

 X
i

pic
i
kc

i
k0

*

! ˇ̌
k
˛˝
k0
ˇ̌

�
X
k;k0

�kk0

ˇ̌
k
˛˝
k0
ˇ̌
:

(2.7)

Equation (2.6) then allows one to consider the evolution of completely mixed states

O� D

0BBBBB@
�11 0 : : : 0

0 �22

: : :
:::

:::
: : :

: : : 0

0 : : : 0 �NN

1CCCCCA ; (2.8)
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the special case of pure states

O� D

0BBBB@
c1c

*
1 c1c

*
2 : : : c1c

*
N

c2c
*
1 c2c

*
2 : : : c2c

*
N

:::
:::

: : :
:::

cN c
*
1 cN c

*
2 : : : cN c

*
N

1CCCCA ; (2.9)

and any other mixed state fitting in between these two categories. The density operator O�
is always semi positive definite. That is, all eigenvalues of O� are greater than or equal to

zero. For closed systems, which are the only systems considered in this thesis, probability

is conserved
�P

i pi D 1
�

and O� always has unity trace Tr . O�/ D 1. The diagonal elements

�kk are called populations because they indicate the probability of measuring a particle in

the system in state jki. Since the off-diagonal elements essentially describe the purity of

the mixed state (i.e. define a phase-relationship between the atoms or molecules), these

are called coherences.

In the density matrix formalism detailed above the medium is essentially treated as a

statistical mixture of atoms or molecules. To motivate the use of density matrices on a clas-

sical level one can consider that an atom resembles, pedagogically speaking, an electron

connected to a nucleus with a spring. For an external, harmonically time-varying electric

field the equilibrium position of the electron relative to the nucleus will be interrupted

and the electron begins to oscillate. The oscillatory motion xi .t/ of the valence electron

attached to atom i has both an amplitude x0i and a phase �i , and can be represented by

xi .t/ D x0i .t/ cos.!t C �i /; (2.10)

where it is assumed that the electron oscillates at frequency!. If one now considers several

such atoms occupying a spatial region smaller than an optical wavelength but larger than

an atom, the average displacement of the electrons from their respective nuclei is

X D 1

N

X
i

x0i .t/ cos.!t C �i /; (2.11)

where N is the number of atoms or molecules per unit volume. The sum runs over the

atoms occupying this unit volume. It is immediately apparent that if all the atoms have

the same displacement x0i , and are phased equally (�i D 0, for the sake of argument),

then X reaches a maximum value of ˙x0i at times !t D n� where n D 0; 1; 2; : : :. On

the other hand, if the amplitudes are the same but the phases �i are distributed randomly,

then X evaluates to zero. This simplified physical picture demonstrates the distinction

between pure states and mixed states; pure states are states with maximum correlation, or

coherence, between each atom (i.e. the individual atoms are described by the same wave-

function) at a specific spatial position in the medium. Mixed states represent states where
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the atoms are unequally phased so that macroscopic quantities (or expectation values) can

partially or completely wash out by averaging over several measurements. For a com-

pletely mixed state there is no definite phase relationship between the atoms or molecules.

For initially pure states a number of physical phenomena may lead to deterioration

of the state purity, causing the gradual transition into a mixed state. A handful of these

mechanisms are discussed below.

2.2.2 Homogeneous broadening

If an atom is excited, emission of a photon and de-excitation of the valence electron to a

lower energy state may occur. This relaxation process occurs at a rate equal to or faster

than the reciprocal spontaneous emission lifetime of the relevant transition, and will de-

stroy the excitation amplitude x0i of the oscillator. Spontaneous emission is additionally

an incoherent process (i.e. it does not conserve the relative phase of the wavefunction),

implying that the relative phases �i are also affected.

In multi-atomic systems, for example a vapor of alkali metal atoms, the constituents

will, due to thermal motion, have a non-zero velocity relative to the laboratory frame and

collide with one another. Collision processes may, broadly speaking, be divided into two

categories. The first is elastic collisions, where random Stark shifts are imposed on each

atom during the collision process. This randomizes the phases of the colliding atoms

relative to the remainder of the medium, and leads to decoherence without changes in

state populations. The second category is inelastic collisions, where the collision process

additionally leads to a collision-induced transition from the excited state to a lower state.

In the language of the oscillator picture discussed in the previous section, the two processes

randomize the phases �i (elastic) and destroy the amplitudes x0i (inelastic). Both of these

processes lead to homogeneous broadenening of the transition line.

Homogeneous broadening is incorporated by writing Eq. (2.6) in Lindblad form

i¯dt O� D
h
yH; O�

i
C i¯ yR; (2.12)

where

yR D
X
k;l

�
O�kl O� O��

kl
� 1
2
O� O��

kl
O�kl � 1

2
O��

kl
O�kl O�

�
; (2.13)

is a relaxation operator. The dagger indicates the Hermitian adjoint, equal to the conjugate

transpose for finite-dimensional systems. Here, O�kl D p�kl jkihl j, where �kl is a positive

real number, is a damping operator. Operators O�kl with k D l lead to decoherence, and

operators with k ¤ l lead to population transfer from state jli to jki. Note that yR is

introduced phenomenologically, but in a physically meaningful way. Namely, this form

of yR preserves both the semi definite positiveness and trace of O�. Effective lifetimes for
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each coherence and population element of O� may be derived from Eq. (2.12), and these

generally depend on the various relaxation rates �kl . Writing out Eq. (2.12) elementwise

yields

dt�mn D 1

i¯
h
yH; O�

i
mn
�
X

j

�
�jm C �jn

2

�
�mn for m ¤ n; (2.14a)

dt�mm D 1

i¯
h
yH; O�

i
mn
C
X
j ¤m

�mj�jj �
X
j ¤m

�jm�mm: (2.14b)

Here, the sum in Eq. (2.14a) defines the decoherence time T
.mn/
2 for the �mn coherence.

Although T
.mn/
2 is different for each coherence we will condense notation by denoting all

of these times by T2. In cases where this notation becomes ambiguous, we specify which

coherence T2 is associated with. Typically, for dilute alkali metal vapors the homogeneous

width T �1
2 is on the order of a few hundred MHz, implying that T2 is tens of nanoseconds

long. The sums in Eq. (2.14b) define two processes for the population of state jmi. The

first sum describes population transfer to state jmi from other states jj i, and the second

describes population transfer from jmi to other states jj i. Following convention, we will

denote the time in which population escapes from jmi by T
.mm/
1 , or just T1 for short.

2.2.3 Inhomogeneous broadening

In real media the effective resonance frequency may differ from atom to atom. In gases,

this arises due to the Doppler effect where atoms that move with velocity v relative to

the propagation axis effectively see a laser beam with a different central frequency. In

the laboratory frame this is equivalent to taking the eigenstate energy of each atom to be

¯!i D ¯!0i .1C v=c/, where ¯!0i is the eigenstate energy in the rest frame, and !0iv=c

is the Doppler shift.

By the analogy of the simple oscillator picture, the average displacement for such a

medium may be written as

X D 1

N

X
i

x0i .t/ cos.!i t C �i /; (2.15)

where a distribution of resonance frequencies !i is incorporated. Like homogeneous

broadening, inhomogeneous broadening can also lead to a vanishingX , but through an en-

tirely different process. The medium is now described by a distribution of atoms with dif-

ferent velocities v, where the weight of each v is estimated from the Maxwell-Boltzmann

distribution for gases

g.v/ D 1p
2�vp

exp

 
� v

2

2v2
p

!
; (2.16)
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where vp is the velocity standard deviation. Thus g.v/dv indicates the fraction of atoms

with velocities in the interval Œv; v C dv�. Considering x0i D 1, �i D 0 at t D 0, for the

sake of simplicity, and evaluating X for such a distribution gives

X D 1

2
p
2�vp

ei!0i t

1Z
�1

exp

 
� v

2

2v2
p

C i !0iv

c
t

!
dv C c.c.

D exp

 
� t2

2T *
2

2

!
cos.!0i t /;

(2.17)

where T *
2 D c=.!0ivp/. Equation (2.17) shows that the macroscopic signal X is ex-

ponentially damped at the inhomogeneous lifetime T *
2 . Unlike homogeneous damping,

inhomogeneous relaxations may, in certain cases, be reversible because the atomic wave-

function phase changes by a predictable amount, in this case due to a fixed Doppler shift of

each atom. Because of this important distinction between the two damping mechanisms,

we will refer to inhomogeneous damping as ”dephasing”, and homogeneous damping as

”decoherence”.

To incorporate inhomogeneous broadening in the Bloch equations we include a para-

metric dependence of the free Hamiltonian and density operator on an inhomogeneous

broadening variable ı (not necessarily the velocity), such that O�.t; r/ ! O�.t; rI ı/ �
O%ı.t; r/. The master equation becomes

i¯dt O�ı D
h
yHı ; O�ı

i
C i¯ yRı : (2.18)

In cases where inhomogeneous broadening is disregarded the subscript ı is omitted.

The above method of incorporating inhomogeneous broadening is tantamount to solv-

ing Eq. (2.12) for a range of velocities, resonance frequencies, or detunings. In terms of

the density matrix the macroscopic polarization of the medium is written as an ensemble

average

P D N

1Z
�1

Tr . O�ı O�/ g.ı/dı

� N hTr. O�ı O�/iı ;
(2.19)

where N is the atomic number density and g.ı/ is normalized such that

1Z
�1

g.ı/dı D 1: (2.20)

The term Tr . O�ı O�/ is the expectation value of the dipole moment operator of atoms indexed

by the inhomogeneous broadening variable ı, and represents essentially the polarization
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contribution of these atoms. The macroscopic polarization is then given by the sum of

individual atomic or molecular contributions. To condense notation, averaging over the

inhomogeneous lineshape is denoted by subscripted angular brackets, i.e. h.: : :/iı . In

some cases we will sum over detunings� or resonances frequencies !s , in which case the

notation h.: : :/i� or h.: : :/is is used interchangeably.

Without external fields inhomogeneous broadening will lead to dephasing between the

atoms and a deterioration of the macroscopic polarization. In the optical regime T *
2 may

be less than one nanosecond (ns) and the corresponding inhomogeneous linewidth is usu-

ally on the order of tens of GHz. In liquids or glasses different mechanisms dominate,

for example fluctuations in the amorphous environment of liquids or doping impurities in

glasses. In doped glasses it is most notably material inhomogeneities that lead to inho-

mogeneous broadening. These impurities lead to local electric and magnetic field vari-

ations that are experienced differently at each ion site. The variously experienced local

fields then produce, via the Stark effect, local variations in the energy levels leading to

inhomogeneous broadening of the transition line. The corresponding spectral width of

the inhomogeneous lineshape in bulk media is usually much larger than in gases. In a

neodymium glass (Nd:glass) laser, for example, inhomogeneous line widths up to several

THz (T *
2 < 1 ps) are realistic.

2.3 Maxwell’s equations

The propagation of the classical electromagnetic field follows Maxwell’s equations

r �E D � 1
	0

r �P ; (2.21a)

r �E D �@B
@t
; (2.21b)

r �B D 0; (2.21c)

r �B D 1

c2

@E

@t
C 1

	0c2

@P

@t
; (2.21d)

where a dielectric material is assumed. Here, B is the magnetic field and the constants 	0

and 
0 are the permittivity and permeability of free space.

Incorporation of the atomic response via P is standard practice in the treatment of

field-matter interactions, and leads to a very complicated nonlinear wave propagation

problem. The starting point for such problems is either Eq. (2.21) or the inhomogeneous

wave equation which is readily derived from Eq. (2.21) as

@2
t E � c2r2E C c2r.r �E/ D � 1

	0

@2
t P ; (2.22)
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where @t � @=@t . This equation is susceptible to different levels of approximations dis-

cussed later in this thesis.

2.4 Physical Bloch systems

Real atoms and molecules have many possible energy eigenstates and the reduction to

an optical Bloch model, which relies either on bandwidth contraints or selection rules,

deserves explicit demonstration. A level configuration which has been heavily exploited

in quantum optics is the D2 transition line in 87Rb, which is shown in Fig. 2.1. The
87Rb isotope is often favored over the 85Rb isotope because the 87Rb hyperfine struc-

ture has cycling transitions that are more useful for optical pumping. Rubidium has 37

electrons, but in the ground state electronic configuration only one electron occupies the

outermost s-shell. This is the only electron that is assumed to respond to the external

laser field, while the remaining 36 electrons are presumed to be tightly bound in the

1s22s22p63s23p63d104s24p6 orbitals. By Unsölds theorem the inner electrons com-

pletely fill the inner shells and constitute a spherically symmetric wavefunction, and only

the valence electron and the nucleus are dynamic participants. Rubidium therefore be-

haves, roughly speaking, similarly to the hydrogen atom. The D2 line is the transition of

the active electron between the 52S1=2 and 52P3=2 orbitals at around 780 nm. An addi-

tional transition exists from the 52S1=2 to the 52P1=2 level at � 795 nm which is known

as the D1 line transition. The ground state 52S1=2 and the excited state 52P3=2 of the out-

ermost electron are each resolved into hyperfine levels F . Each of these levels can again

be split into various Zeeman sublevels mF D �F;�F C 1; : : : ; F � 1; F by applying

an external magnetic field. The hyperfine splitting of the ground state 52S1=2 in 87Rb is

approximately 6:83 GHz, while the hyperfine splitting of the excited states is at least one

order of magnitude smaller.

If one considers a linearly polarized initial pulse at 780 nm with a bandwidth smaller

than the ground state hyperfine splitting but larger than the excited state hyperfine splitting,

Fig. 2.1 can be represented as a three-level ƒ-system where the F D 1 and F D 2 man-

ifolds of the 52S1=2 orbital become the two ground states, and the hyperfine manifolds

of the excited 52P3=2 are collapsed into a single excited state. If one applies an optical

pulse with a bandwidth larger than 6:83 GHz (i.e. duration shorter than 150 ps), the two

hyperfine ground states cannot be resolved from one another and may be represented as

a single ground state. The D1 line is not excited if the bandwidth is smaller than 7 THz,

placing the pulse duration between 1 ps and 150 ps, in which case Fig. 2.1 may be rep-

resented as a two-level Bloch system. In addition to disregarding near-degenerate levels,

higher-lying excited states may occasionally be ignored, particularly if they are not close

to one- or two-photon resonance. For example, the coupling from the 52S1=2 into one of
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52S1=2

F D 2

F D 1

2.563 GHz

4.271 GHz

6.834 GHz

52P3=2

F D 3

F D 2

F D 1

F D 0

193 MHz

229 MHz

302 MHz

71 MHz

266 MHz

156 MHz

72 MHz

780.231 nm

384.230 THz

1.589 eV

mF D �1
mF D 0
mF D 1

mF D �2
mF D �1
mF D 0
mF D 1
mF D 2

mF D 0

mF D �1
mF D 0
mF D 1

mF D �2
mF D �1
mF D 0
mF D 1
mF D 2

mF D �3
mF D �2
mF D �1
mF D 0
mF D 1
mF D 2
mF D 3

Magnetic field strength

FIG. 2.1: The 87Rb D2 transition line is an example of a physically realizable two- or three-level

system. The dashed line indicate a possible laser configuration for experimentally realizing a

ƒ-system. The blue line indicates a possible two-level configuration. The line data is obtained

from Steck [31].

the fine structure levels of the higher-lying 4d -orbital may occur if the transition via 5p

is two-photon resonant. The 52S1=2 $ 52P1=2 and 52S1=2 $ 52P3=2 transitions then

become virtual transitions, and the valence electron is excited into the 4d orbital instead

of the 5p orbital.

Multi-electron atoms may also be represented as simplified Bloch models where only

the motions of the electrons occupying the outermost shell are considered. An example
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of such an atom is Strontium, an element with one more nuclear proton than Rubidium.

The ground state configuration of atomic strontium is 1s22s22p63s23p63d104s24p65s2

where two electrons occupy the outer 5s shell. In the presence of an external laser field,

one, or even two, of these electrons may move into a higher orbital. A transition in Stron-

tium that is exploited in conical emission experiments [32] is the 5s2 1S0 ! 5s5p 1P1

transition at 461 nm.

Bloch models are not unique to atomic electrons, and the relative motion of molecular

nuclei may also be described by carefully investigating the possible excitation paths. The

energy required to excite nuclear motions is usually considerably smaller than the energy

required to excite a valence electron, and for this reason the absorption lines are usually

found in the infrared to microwave spectral regions. It is, for example, the molecular

librations of liquid water that are responsible for its large absorption coefficient in the

microwave region. The prototypical examples of molecular excitations are the rotational,

ro-vibrational, and vibronic transitions of a diatomic molecule. In the case of rotational

excitation the external laser field exerts a torque through the permanent dipole moment of

the molecule, transferring one unit of angular momentum to the molecule which begins to

rotate in the laboratory frame. In the case of vibrational excitation, an external laser field

causes the two nuclei to oscillate relative to each other.

A model sketch of the energy levels of a diatomic molecule composed of two dif-

ferent nuclei is depicted in Fig. 2.2. The vertical lines show possible excitation patterns

for linearly polarized lasers. Like atoms, each angular momentum state j may be split

into its Zeeman sublevels by applying a strong, external magnetic field. Labelling each

eigenstate of a specific electronic orbital as j�; j;mi where j and � are the rotational and

vibrational quantum numbers, and m the Zeeman level, the rotational and ro-vibrational

optical transition rules for linearly polarized fields are

j�; j;mi $ j�; j ˙ 1;mi (rotational); (2.23a)

j�; j;mi $ j� ˙ 1; j ˙ 1;mi (vibrational): (2.23b)

In addition, for molecules where the spin or orbital angular momentum is non-zero (such

as e.g. nitric-oxide), Q-branch transitions j�; j;mi $ j� ˙ 1; j;mi are weakly allowed.

For circularly polarized light fields the rotational transition rules are only slightly more

complicated, and can be written as j�; j;mi $ j�; j ˙ 1;m˙ 1i. That is, circularly

polarized fields couple rotational Zeeman levels.

2.5 Naming conventions

The Bloch systems and laser pulses investigated in this report differ in terms of complexity

and approximations. For example, we investigate both bi-directional and uni-directional
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j�; j D 0;mi m D 0

j�; j D 1;mi m D 0
m D �1

m D 1

j�; j D 2;mi
m D �2
m D �1
m D 0
m D 1
m D 2

j�; j D 3;mi

m D �3
m D �2
m D �1
m D 0
m D 1
m D 2
m D 3

j�; j D J;mi

j� C 1; j D 0;mi m D 0

j� C 1; j D 1;mi m D 0
m D �1

m D 1

j� C 1; j D 2;mi
m D �2
m D �1
m D 0
m D 1
m D 2

j� C 1; j D J 0; mi

P-branch
R-branch

Magnetic field strength

FIG. 2.2: Sketch of the vibrational and rotational level structure of a diatomic molecule with a

non-zero permanent dipole moment and zero electronic orbital angular momentum. Vertical lines

indicate levels that can be coupled by applying an external laser field.

pulse propagation for both long and short pulses under different levels of approximation.

Correspondingly, the equations of motion vary throughout this thesis. To avoid future

disorder in referral to the various sets of equations, these are outlined below on a purely

pedagogical level. The three categories investigated are:
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Maxwell-Bloch equations: The MB equations constitute the full set of equations summa-

rized in this chapter (i.e. the full Maxwell’s equations and an optical Bloch model).

The MB equations allow bi-directional wave propagation along all three spatial co-

ordinates. We apply these equations to the study of optical backpropagation of SIT

pulses in Chapter 3.

Reduced Maxwell-Bloch (RMB) equations: The RMB equations are an approximation of

the MB equations when backscattering is neglected and slow spatial evolution over

a wavelength is assumed. These equations are applied in Chapter 5 in the study of

conical emission, and in Chapter 6 for investigating single-cycle pulse propagation

in linear molecules.

SIT equations: The McCall-Hahn set of equations. SIT theory employs the two-level re-

striction, neglects backscattering, and invokes the rotating wave and slowly varying

envelope approximations. We apply the SIT equations in Chapter 4 when investi-

gating optical precursors, and the paraxial SIT equations (i.e. including a transverse

spatial dependence) in Chapter 5 in the investigation of conical emission.



Chapter 3

Nonlinear optical backpropagation

3.1 Introduction

In this chapter we model the propagation of linearly polarized ultrashort (i.e. shorter than

the homogeneous lifetime) femtosecond pulses in inhomogeneously broadened saturable

media. The definitions of the system considered are shown in Fig. 3.1. A laser with central

frequency !c is presumed to propagate in a medium composed of two-level atoms with

resonance frequencies !s D ! C�, where ! denotes the center frequency of the absorp-

tion line, and � denotes the relative atomic detuning. The medium is homogeneously and

inhomogeneously broadened with transverse lifetimes T2 and T *
2 respectively.

j1i

j2i

! C�
!c

1=.2T2/

!

Absorption line

!c

Pulse spectrum
�

� ��
1=T �

2

FIG. 3.1: Theoretical two-level medium. The resonance frequency of each atom is !s D !C�
and is distributed according to a normalized function g.�/. The average initial laser detuning

from the line center is � D !c � !.

In Sec. 3.5 we will consider propagation of linearly polarized pulses E D Ey.t; ´/ Oy ,

B D Bx Ox in a two-level medium with a number density sufficiently high so that the

17
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slowly varying envelope and slowly evolving wave assumptions [33] will break down.

The equations of motion are the MB equations under the plane wave assumption,

@tEy D c2@´Bx � 1

	0

@tPy ; (3.1a)

@tBx D @´Ey ; (3.1b)

i¯dt O�� D
h
yH�; O��

i
; yH� D yH0� � O
yEy D

 
0 �
12Ey

�
12Ey ¯.! C�/

!
; (3.1c)

where O
y D 
12 .j1ih2j C j2ih1j/ is the projection of O� onto the polarization axis of E ,

presumed to lie along y. The diagonal terms of yH0� constitute the free Hamiltonian and

represent free rotation of the state vector in the Hilbert space spanned by the states j1i and

j2i. The off-diagonal terms represent interaction with the external laser. By convention,

the energy level of j1i is taken to be zero, while the energy of j2i is taken to be equal to

the transition energy ¯.! C �/. Equation (3.1) is a bidirectional propagation model (i.e.

it allows propagation along ˙´) which must be analyzed numerically in the general case.

A numerical procedure for dealing with such problems is presented in Sec. 3.4.

3.2 The McCall-Hahn solution

Before analyzing Eq. (3.1), it is of interest to first review the SIT equations and the McCall-

Hahn soliton solution [8, 9], a special solution under the rotating wave and slowly varying

envelope approximations. By engaging these approximations the problem is reduced to a

one-way propagation model with simplified temporal and spatial evolution. This solution

will be compared with numerical solutions in Sec. 3.5 when the one-way propagation

approximation is violated.

3.2.1 The rotating wave approximation

The rotating wave approximation (RWA) is an approximation of the interaction Hamilto-

nian O� �E and applies near resonance �� !c . When the electric field is written

Ey.t; ´/ D OyE.t; ´/e�i!c tCikc´ C c.c.; (3.2)

where E.t; ´/ is the pulse envelope, !c the carrier frequency, and the wavenumber is de-

fined as kc D !c=c, the RWA is equivalent to approximating yH� as

yH� �
 

0 �
12E.t; ´/
*ei!c t�ikc´

�
12E.t; ´/e
�i!c tCikc´ ¯.! C�/

!
; (3.3)

where column ordering j1i, j2i is assumed. Classically, the RWA is equivalent to mathe-

matically disregarding rapidly oscillating exponential terms that quickly average out under
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time integration of the Schrödinger equation. The RWA is applicable if the pulse duration

is comparatively long with respect to the carrier period, and the pulse is tuned sufficiently

close to resonance. For quantized fields, the RWA is equivalent to disregarding virtual

photon transitions. That is, one disregards terms in the Hamiltonian representing simul-

taneous excitation of both atom and field. Such interaction terms lead to, for example,

the Lamb shift if only the atomic self-field is considered. When additional external laser

fields are present, which is the case here, the RWA leads to neglection of the Bloch-Siegert

shift [34], a stimulated shift of the atomic resonance frequency which is relevant when the

driving field is strong [35].

The oscillating exponentials in Eq. (3.3) suggest transformation of the state vector (or

O��) into a frame of reference rotating at !c . Based on the differential equation

i¯dt��;21 D ¯.! C�/��;21 C 
12Ee�i!c tCikc´.��;22 � ��;11/ (3.4)

for the ��;21 coherence the transformation ��;21 D %�;21e�i!c tCikc´ is seen to be useful.

Furthermore, we take %�;11 D ��;11 and %�;22 D ��;22
�. When this substitution is

applied, the von Neumann equation simplifies to

idt O%� D
h
yH�; O%�

i
; yH� D

 
0 �1

2
�*

�1
2
� � ��

!
; (3.5)

where � D !c � ! is the detuning of the central laser frequency from the absorption line

center. We have defined the pulse Rabi frequency as

� D 2
12E

¯ : (3.6)

Equation (3.5) describes the atomic evolution in terms of the density operator O%� in a

frame of reference rotating at !c .

3.2.2 The slowly varying envelope approximation

To obtain an equation describing the spatiotemporal evolution of the laser field one pro-

ceeds by deriving the wave equation from Eq. (3.1):�
@2

´ �
1

c2
@2

t

�
Ey D 1

	0c2
@2

tPy : (3.7)

The polarization is given by

Py D N hTr. O
y O��/i�
D N
12

D
%�;21e�i!c tCikc´

E
�
C c.c.;

(3.8)

�In all that follows, the rotating frame density operator is denoted by O% and the laboratory frame density

operator by O�.
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where the lineshape average runs over detunings �.

Inserting Eq. (3.2) and Eq. (3.8) into Eq. (3.7) and invoking the slowly varying enve-

lope approximation,

j@tE.t; ´/j � !c jE.t; ´/j ; (3.9a)

j@´E.t; ´/j � kc jE.t; ´/j ; (3.9b)

j@t%�;21.t; ´/j � !c j%�;21j ; (3.9c)

leads to a first-order differential equation for the Rabi frequency,

.@t C c@´/� D iN!c j
12j2
	0¯ h%�;21i�: (3.10)

The slowly varying envelope approximation assumes that the pulse duration is much

longer than a carrier period. For optical wavelengths (
 � 600 nm) the carrier period

is approximately 0:3 fs so that the temporal part of the SVEA [Eq. (3.9a)] can be safely

applied to pulses longer than 30 fs. The spatial part of the SVEA [Eq. (3.9b)] assumes

that the pulse envelope evolves slowly over an optical wavelength, an assumption which

is equivalent to requiring that the absorption length is much longer than said wavelength.

Although this approximation is indeed encountered in most nonlinear optics experiments,

the condition may be broken for resonant propagation in dense atomic vapors, as evidenced

in the local field experiments by Maki et al. [36]. The final part of the SVEA assumes that

the rotating frame atomic variables evolve slowly in time relative to the carrier period of

the field, an approximation which is valid when the Rabi frequency is smaller than !c .

From Eq. (3.1c) it is implied that j
12jE0=¯ � !c . For alkali metals 
12 � 10�29 Cm

hence !c¯=
12 � 3:3 � 1010 V/m in the optical regime, and if slow evolution is required

then E0 should be smaller than � 3:3 � 108 V/m, corresponding to intensities less than

15 GW/cm2.

Traveling reference frame

Equation (3.10) suggests substitution to a new variable � D t � ´=c that describes the

evolution in terms of a delayed time. Formally, introduce

� D t � ´=c D a.�; ´/; (3.11a)

� D ´=c D b.�; ´/ (3.11b)

and

t D e.�; �/ D � C �; (3.12a)

´ D f .�; �/ D c�: (3.12b)
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Introduce new functions �0.�; ´/ D �Œe.�; ´/; f .�; ´/� D �Œt.�; �/; ´.�/�. One finds

@��
0 D @t

@�

@�

@t
C @´

@�

@�

@´

D @t�C c@´�;

(3.13)

and @��
0 D @t�. Letting �0.�; ´/ ! �.�; ´/ yields c@´�.�; ´/ D .@t C c@´/�.t; ´/

transforming Eq. (3.10) to

@´� D iN!c j
12j2
	0¯c h%�;21i�; (3.14)

where � D �.�; ´/ and O%� D O%�.�; ´/ describe the spatiotemporal evolution in terms of

the delayed time � .

3.2.3 The 2� soliton solution

In this section we will review the propagation of pulses tuned exactly to resonance � D
0. Homogeneous relaxations are ignored, implying that we investigate time scales much

shorter than T2. The equations of motion are

id� O%� D
h
yH�; O%�

i
; yH� D

 
0 �1

2
�*

�1
2
� �

!
; (3.15a)

@´� D i�h%�;21i�; (3.15b)

where we condense notation by defining � � N!c j
12j2=.	0¯c/. These equations are the

McCall-Hahn SIT equations, and they hold under the RWA and SVEA for times � � T2.

Although Eq. (3.15) is a nonlinear wave equation, a number of exact solutions ex-

ist. These solutions can be derived through use of the inverse scattering transform (IST)

[37–39], which is essentially a nonlinear Fourier transform where �.�; 0/ decomposes

into a set of ”scattering eigenvalues” defined by a Zahkarov-Shabat eigenvalue problem.

These eigenvalues ”propagate” along ´ analogous to the way Fourier coefficients do for

linear time-invariant problems. Alternative approaches for deriving solutions are through

Bäcklund transformation methods [40, 41] or direct integration [8, 9].

The most significant solution to Eq. (3.15) is the 2� soliton solution

�.�; ´/ D 2

T
sech

"
� � ´.v�1

g � c�1/

T

#
; (3.16)

where T is the nominal pulse duration and vg is the pulse velocity in the laboratory frame.

One notices that Eq. (3.16) is a solution with constant wave form propagating at fixed
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velocity vg in the laboratory frame. This solution represents an optical soliton and is

called a 2� pulse because the pulse area

�.´/ D
1Z

�1

�.�; ´/d� (3.17)

evaluates to �.´/ D 2� for any ´. In addition, it is apparent that the 2� pulse does

not lose energy during propagation, despite the fact that it propagates resonantly with an

atomic transition. For this reason Eq. (3.16) is called a self-induced transparency (SIT)

pulse.
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FIG. 3.2: Pulse area theorem. The curves are drawn from Eq. (3.19) for initial areas �0 D
.n C 1=2/� , n D �4;�3;�2;�1; 0; 1; 2; 3. Starting at ´ D 0, the solutions move away from

odd multiples of � and towards even multiples as ´!1, corresponding to the attenuator area

theorem. Analogously, the area moves away from even multiples of � and toward odd multiples

as ´! �1, corresponding to the amplifier area theorem.

It is possible to derive an evolution equation for the pulse area under restricted condi-

tions. This equation is

@´�.´/ D 	˛0

2
sin �.´/; (3.18)

where ˛0 is the absorption coefficient ˛0 D ��g.0/ [42] and the 	 indicates preparation

of the atoms either as an absorber (�), where all the atoms are initially in j1i, or as an

amplifier (C) where all the atoms are initially prepared in state j2i. Equation (3.18) holds

provided that (i) the input pulse is resonant and transform-limited (i.e. not chirped), and

(ii) the inhomogeneous broadening line is symmetric around its center [43]. One notices

immediately from Eq. (3.18) that areas which are integer multiples of � remain constant
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during propagation because @´�.´/ D sinn� D 0. When the input area is slightly per-

turbed from n� , the area moves toward one of many asymptotes.

The solutions to Eq. (3.18) lead to the pulse area theorem

�.´/ D 2n� C 2 arctan

�
e�˛0´=2 tan

1

2
�0

�
; (3.19)

where �0 D �.0/ is the area on the input plane. For absorbers, the pulse area theorem

shows that pulses with initial areas �0 < � will evolve into pulses with 0� areas when

´!1, pulses with areas � < �0 < 3� will evolve into 2� pulses, areas 3� < �0 < 5�

will result in a 4� pulse and so on. For amplifiers, the pulse area theorem shows that

pulses will evolve into pulses whose area is always an odd multiple of � . That is, an initial

area between 0� and 2� will result in a �-pulse, an initial pulse with area between 2�

and 4� will tend to a 3� pulse etc. We have illustrated the pulse area theorem in Fig. 3.2

which shows the evolution of the pulse area along ˙´ for various choices of �0. Starting

at ´ D 0, the attenuator area theorem may be read towards ´ > 0, and the amplifier area

theorem towards ´ < 0.

The various asymptotes shown in Fig. 3.2 correspond to different soliton solutions,

with the ˙2� asymptotes representing the McCall-Hahn solution. Although the pulse

area theorem is immensely helpful in the search for explicit soliton solutions, it is also of

limited applicability. For example, the pulse area does not directly pertain to the pulse

energy. Broadly speaking, the area obeys the relationship � � �0T while the energy is

/ j�0j2T . That is, a shorter 2� soliton is more intense and energetic than a longer 2�

soliton. The area theorem does not distinguish between these solutions. Moreover, there

is a class of non-trivial independent solutions corresponding to 0� pulse areas. Amongst

these solutions is an obvious linearized solution by Crisp [30], but also a nonlinear 0�

breather solution [41], which is essentially a coupled oscillation between a 2� pulse and

a �2� pulse of the McCall-Hahn type. Moreover, these 0� solutions may occur together

with the 2� pulse, without appearing explicitly in the area theorem. In addition, it is also

clear that the conditions of resonance, zero chirp, and symmetric line broadening are not

necessarily always met and that the area theorem therefore does not always apply. For

example, the area does not monotonically approach its stable value if the pulse is initially

launched off resonance [43–46].

If the material is prepared as an attenuator, the corresponding solution for the rotating
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frame density operator O%� is

%�;11 D 1

1C .�T /2
 

tanh2

"
� � ´.v�1

g � c�1/

T

#
C .�T /2

!
; (3.20a)

%�;22 D 1

1C .�T /2 sech2

"
� � ´.v�1

g � c�1/

T

#
; (3.20b)

%�;12 D i

1C .�T /2 sech

"
� � ´.v�1

g � c�1/

T

#

�
 

tanh

"
� � ´.v�1

g � c�1/

T

#
� i�T

!
;

(3.20c)

and %�;21 D %*
�;12. The explicit solution for O%� also demonstrates the transparency of the

2� pulse. One finds that when � !˙1 then %�;11 ! 1 and %�;22 ! 0 for all detunings

�, which shows that all atoms are returned to their ground state j1i after the pulse has

passed. The 2� SIT pulse owes its transparency to a coherent exchange of energy between

the pulse and the medium. Its leading edge is sufficiently strong to coherently excite atoms

into state j2i, and the pulse is sufficiently short so that the trailing edge coherently brings

the atoms back to j1i. Note in particular that Im.%�;21/ > 0 indicating absorption of the

leading edge [recall Eq. (3.14)], while the pulse tail is amplified since Im.%�;21/ < 0. By

evaluating Eq. (3.20b) it is evident that the pulse completely excites all the resonant atoms

� D 0 since %0;22 D 1 at the pulse peak � D ´ �v�1
g � c�1

�
. The McCall-Hahn 2� pulse

solution is plotted in Fig. 3.3 for various times � and detunings �.

The solution for the rotating frame density operator O% characterizes the evolution of the

valence electron when exposed to the McCall-Hahn pulse without detailing the expected

location of the electron relative to the nucleus, nor its expected motion relative to the di-

rection of the electric field. Although the McCall-Hahn solution is a solution to a generic

two-level system (not necessarily an alkali metal vapor), examination of these quantities in

greater detail, which is most conveniently done in terms of the probability density, exposes

the remarkable nature of SIT even further. It is sufficient to investigate the behaviour of

the resonant atoms� D 0. Specifically, one may consider degenerate D1 and D2 line tran-

sitions, in which case the approximate electronic wave function orbitals are the spherical

harmonics Y 0
0 .�; '/ and Y 0

1 .�; '/ for the ground and excited states, respectively. Explicit

expressions for these functions, as well as the probability density for density operators,

are found in subsection 6.2.3. Here, � is associated with the polar angle the electron

makes with the quantization axis, which is chosen to lie along y (the polarization axis)�.

The electronic wave function is then ‰.� I �/ D c1.�/Y
0

0 .�; '/ C c2.�/Y
0

1 .�; '/, which

�For rotor molecules, the angle 	 is reversed and indicates the angle the molecular axis makes with the

quantization axis.
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FIG. 3.3: Top left panel: Plot of the McCall-Hahn pulse solution [Eq. (3.16)]. The vertical axis is

the Rabi frequency in units of T �1 and the horizontal axis the time in units of T . The area under

the curve is 2� . Top right panel: Corresponding solution for the excited state population O%�;22 at

various detunings � (measured in units of T�1). Bottom left panel: Imaginary (absorbtive) part

of the rotating frame coherence %�;21. Bottom right panel: Real (dispersive) part of the rotating

frame coherence %�;21. Curves are drawn from Eqs. (3.16) and (3.20).

is symmetric around the quantization axis. Optical selection rules for linearly polarized

fields prevent excitation into the Y 1
1 .�; '/ and Y �1

1 .�; '/ orbitals. The notation �.� I �/ in-

dicates the probability of observing the electron at an angle � from the polarization axis at

time � . For pure states the probability density may be calculated as �.� I �/ D j‰.� I �/j2.

The color-coding in Fig. 3.4 shows the probability density �.� I �/ under the excitation of

a 5 fs long McCall-Hahn 2� pulse at ´ D 0. The solid line in Fig. 3.4 shows the elec-

tric field E.�/ D �.�/e�i!c� C c.c. in arbitrary units, where �.�/ is the McCall-Hahn

envelope at ´ D 0, and the dashed line shows the corresponding polarization. All data

are generated by numerically solving the rotating frame Bloch equations, and the rotating

frame variables are then transformed back into the laboratory frame. Strictly speaking,

the SVEA and RWA are not very well satisfied at 5 fs excitation - the short pulse is used

only to expose the carrier oscillations of the electron in greater detail, without affecting

the interpretation of the phenomenon.

The excitation of the D-lines with a McCall-Hahn pulse forces the initially symmetric

probability density to oscillate between the two poles, �=2 radians out of phase with the
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FIG. 3.4: Electronic probability density (color coded) under excitation with a McCall-Hahn 2�

pulse. The solid and dashed lines indicate the full electric field and polarization, respectively. The

lines are plotted in arbitrary units against the baseline at � D �=2.

electric field. Moving from negative to positive times in Fig. 3.4, one observes that at

times where E D 0, the probability density �.� I �/ peaks at one of the poles, and @�P D
0. During the first half of the pulse, the electron moves much like a classical harmonic

oscillator with a gradually increasing amplitude. At the crossing-points E D 0 in the left

half of the figure, one notices that when E becomes positive the electronic probability

density is driven towards � D � , and vice versa when E becomes negative, analogous

to what is expected from a classical response. When half of the pulse has entered the

medium, the valence electron is completely excited into the Y 0
1 orbital. At the second half

of the pulse the relative phase between the polarization and the electric field has shifted

by an additional factor of � . The implication of this phase change is that the second half

of the pulse drives the electron opposite to what is expected from a classical, electrostatic

point of view. Starting again from one of the crossing points of E in the right half of

the figure, one finds that when E becomes positive the electron is driven towards � D 0

and the electric and polarization fields will tend to anti-align. Consequently, energy will

tend to leave the medium during the second half of the pulse. From the von Neumann

equation it may be verified that @�N

D
Tr
�
O��
yH0�

�E
�
D E@�P . In the first half of the

pulse where E > 0 has a turning point @�E D 0, one finds @�P > 0 showing that the

material is excited by the pulse. At equivalent turning points of E in the second half of

the figure, @�P < 0, showing that the pulse tail drives the electron back towards the Y 0
0

orbital. A remarkable property of the special shape of the hyperbolic secant 2� pulse is

that this motion is possible also for symmetrically detuned atoms, showing that an entire

absorption line can be coherently excited and de-excited with a single McCall-Hahn 2�
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pulse. Overall, one thus finds that the transparency of the 2� pulse is due to coherent

energy return on the pulse tail. Note that the process depends intimately on preservation

of a definite phase relationship between the induced polarization and the driving pulse;

decoherence ruins the return process and prevents complete return to the Y 0
0 orbital.

3.2.4 Other explicit solutions

The McCall-Hahn single pulse solution is by far the most commonly quoted example of

SIT. However, other explicit solutions describing lossless propagation exist. Multi-soliton

solutions [47] may for example evolve from initial pulses with areas > 3� . The input

pulse may then split into different pieces where each individual piece evolves into a 2�

hyperbolic secant pulse. The solitons separate from one another as ˛0´ becomes large.

Along the same vein, collision of initially separated pulses may also occur. In particular,

if one considers a temporally separated initial pair of 2� pulses, one fast and one slow, a

collision between the two pulses occurs when the fastest pulse catches up with the slower

one. The collision process does not at all occur like the overtaking of linear waves, but in

such a way that a phase shift is imposed on the two colliding components - demonstrating

a particle-like type of collision. In passing we mention that SIT breather solutions do not

break up with propagation distance; they travel with a constant group velocity but contain

”internal oscillations”. They are discussed in greater detail in the context of the reduced

Maxwell-Bloch (RMB) equations in the subsequent section.

An entirely different class of solutions to the SIT equations also exists. Crisp [48] and

Eberly [49] have demonstrated the existence of optical pulse train solutions described in

terms of Jacobian elliptic functions. Unlike the 2� pulse solution which was experimen-

tally observed immediately after its theoretical prediction, the wave train solution was first

observed more than 25 years after its theoretical prediction, then by Shultz and Salamo

[50]. It is not surprising that elliptic solutions to the SIT equations exist because under

certain conditions the SIT equations reduce to the Sine-Gordon (SG) equation. The SG

equation is the equation of motion of a pendulum, for which the solutions are well-known

to be elliptic functions.

3.2.5 Few-cycle SIT pulses

We have seen that explicit nonlinear solutions to the SIT equations are possible. Eilbeck

et al. [51] have shown that forward-traveling pulse solutions are possible outside both

the RWA and the temporal part of the SVEA. To derive their equations one must reduce

Eq. (3.7) to a first order differential equation in ´ by neglecting the effects of backscat-

tering, without invoking the SVEA. We will discuss this reduction in greater detail in

the subsequent section. The resulting equations of motion are, by convention, called the
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reduced Maxwell-Bloch (RMB) equations, and are analogous to the McCall-Hahn SIT

equations. One then proceeds in the same way and derives solutions either through the use

of nonlinear transforms or by direct integration. Eilbeck and Bulloughs breather solutions

[51–53] hold the same physical significance as the McCall-Hahn solution, and reduce to

the McCall-Hahn 2� pulse in the limiting case of temporally long pulses !cT 
 1.
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FIG. 3.5: 0� few-cycle breather pulse solution. The color-coded data indicates the value of �

(in units of 2�0) and is drawn from Eq. (3.21) under the condition of exact resonance, � D 3,

ıR D 0, and ıI D ��=2. The vertical axis shows the propagation length measured in units of the

reshaping length ´0 D 2�c=Œ!c.me �mc/�. The horizontal axis indicates the delayed time � in

units of !�1
c .

Specifically, the generalization of the 2� McCall-Hahn soliton for arbitrary durations

is the 0� breather solution

�.t; ´/ D 2�0 sech �R

cos �I � � sin �I tanh �R

1C �2 sin2 �I sech2 �R

; (3.21)

where �R D 1
2
�0.t�me´=c/CıR, �I D !c.t�mc´=c/CıI, and � D �0=.2!c/. Note that

in Eq. (3.21), � denotes the full Rabi frequency, and is defined � D 
12E.t; ´/=¯. We

otherwise apply the definition � D 2
12E.�; ´/=¯ for complex fields. The expressions

for the refractive indices me and mc in the sharp line regime are found in e.g. the paper by

Bullough et al. [53]. Figure 3.5 shows the propagation of this breather solution for a few

propagation lengths. One finds that the RMB breather solution propagates at a reduced

group velocity and contains internal oscillations. The pulse recovers its initial temporal

shape after propagation lengths that are integer multiples of 2�c=Œ!c.me � mc/�. In the

limit of long pulses � ! 0 Eq. (3.21) decomposes into a carrier-envelope expression for
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the field and becomes the McCall-Hahn solution [Eq. (3.16)], while to first order in � the

corrections in Eq. (3.21) describes a chirped 2� McCall-Hahn pulse.

The upshot of Eq. (3.21) is that SIT is possible for arbitrary pulse durations and de-

tunings, provided that backscattering corrections of the forward propagation pulse can be

ignored. A recent review of the present state of SIT is presented by Maimistov et al. [54],

where the McCall-Hahn and RMB solutions are compared in greater detail.

3.3 The uni-directional approximation

Before addressing backpropagation in SIT, we present a relatively straightforward argu-

ment in order to reduce the inhomogeneous wave equation into a generic wave equation

which allows propagation only along C´. The advantage of deriving such an equation,

rather than invoking it by the assumption, is that a measure of the influence of backpropa-

gation is returned. The starting point for this derivation is Maxwell’s wave equation

@2
t E � c2r2E C c2r.r �E/ D �@2

t � ?P � 1

	0

@t Pnl (3.22)

where the total polarization P D 	0�?ECPnl is presumed to decompose into linear and

nonlinear contributions. The star symbol (?) indicates a temporal convolution. We now

scale E and P by constants Ec and Pc such that

E 0 D E

Ec

; (3.23a)

P 0
nl D

Pnl

Pc

; (3.23b)

are quantities of order unity. Taking the Fourier transform of Eq. (3.22) yields�
.i!/2 � c2@2

´

	
E 0 D c2

�r2
?E 0 � r.r �E 0/

	 � .i!/2�.!/E 0 � ".i!/2P 0
nl; (3.24)

where? indicates the transverse components (e.g. r2
? D @2

xC@2
y), and " � Pc=.	0Ec/ is

assumed to be a small parameter. It is implied in Eq. (3.24) that E 0 and P 0
nl are dependent

on the variables .!; ´; r?/. To reduce Eq. (3.24) to a uni-directional wave equation, the

strategy is to look for solutions with dominant forward traveling parts and forward and

backward traveling perturbations,

E 0 D E 0
0.!; r?/e

�i!´n=c CE 0
1.!; ´; r?/e

�i!´.n�1/=c C : : : ; (3.25a)

P 0
nl D P 0

0.!; r?/e
�i!´n=c CP 0

1.!; ´; r?/e
�i!´.n�1/=c C : : : ; (3.25b)

where n.!/ D p
1C �.!/ is the linear refractive index of the material. This type of

expansion has been applied by Bullough et al. [53] in the development of the RMB equa-

tions, but then " has referred to the total polarization response. Here, we generalize this
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argument by taking out the underlying (i.e. linear) evolution and extending it to fully

three-dimensional problems. This simple step is sufficient for (i) obtaining a quantita-

tive measure for the uni-directional approximation, and (ii) deriving a three-dimensional

uni-directional propagation equation valid for arbitrary pulse durations. This equation is

essentially the paraxial wave equation without the slowly varying envelope approximation,

and is a very useful starting point for coupling to the optical Bloch equations. The logic

behind the expansion in Eq. (3.25) is that backpropagation must necessarily be a nonlinear

effect since E 0 D E 0
0.!; r?/e

�i!´n=c (r2E 0
0 D 0) is an exact solution propagating along

C´ for any n.!/ when " D 0. Note that we consider only spatially homogeneous materi-

als. For layered materials, or more generally when �.!/ ! �.!; ´/, a wave propagating

along �´ may arise due to constructive interference of reflections from individual spatial

inhomogeneities. The zeroth order solution E 0 D E 0
0.!; r?/e

�i!´n=c is a wave moving

alongC´ only, and the Ansatz in Eq. (3.25) is not applicable to such media.

Inserting Eq. (3.25) into Eq. (3.24) gives, after some lengthy but straightforward alge-

bra, to order ":�
i!n

c
C @´

�
E 0 D c

2in!

h
r2

?E 0 C "

n2
r.r �P 0

nl/
i
� " i!

2nc
P 0

nl CO."2/: (3.26)

Note that "� 1 is central to the convergence of Eq. (3.25) and the derivation of Eq. (3.26);

the reduction to a wave equation that is a first order differential in the propagation coor-

dinate then arises primarily due to the fact that the nonlinear polarization propagates as a

forward wave to order ", with backscattered corrections becoming O."2/. Note that this

equation is derived by assumption, but self-consistently to O."/.

Equation (3.26) shows that the electric field obeys a forward propagation equation

along C´ and demonstrates that phase-matching of a counter-propagating pulse can be

disregarded to first order if the optical nonlinearity is sufficiently small, provided that

the field originally propagates in the forward direction. This is true without invoking

assumptions about the underlying evolution (e.g. slow evolution over a wavelength). We

point out that "� 1 is a sufficient but not a necessary condition for one-way propagation.

In fact, exact solutions to Eq. (3.1) describing forward propagating half-cycle solitons that

are immune against backpropagation for any " have been derived by Bullough and Ahmad

[55].

3.3.1 Simplified propagation equations

Having shown that phase-matching of a backwards pulse is negligible for "� 1, we will

now proceed by showing that several known wave equations are automatically retrieved

using this condition. Firstly, the definition of a propagation problem usually coincides with

the assumption of a weak nonlinearity and a comparatively long Beer’s length. Further
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simplifications than Eq. (3.26) are then possible. Letting �.!/ � O.	/ in Eq. (3.24) and

denoting the scaled total polarization by P 0 has the effect of giving n! 1 and P 0
nl ! P 0

in Eq. (3.25), where " now also contains linear contributions. We then obtain in the time

domain

@t

�
1

c
@t C @´

�
E 0 D c

2
Œr2

?E 0 C "r.r �P 0/� � "

2c
@2

t P 0: (3.27)

In physical terms, this is equivalent to the slowly evolving wave assumption [33], indicat-

ing that the material induces negligible changes to the field over a distances comparable to

a wavelength. In principle, Eq. (3.27) can be used for analyzing nonlinear pulse propaga-

tion in the forward direction, although the divergence term r.r �P 0/ contains complicated

´-derivatives and does not straightforwardly transform into a moving frame. A simplified

equation can be derived when the field polarization is sufficiently transverse during prop-

agation. Taking P 0 D P 0
? C "P 0

´ Ó in Eq. (3.27) one obtains to order ":

@t

�
1

c
@t C c@´

�
E 0

? D
c

2

�r2
?E 0

? C "r?.r? �P 0
?/
	 � "

2c
@2

t P 0
?: (3.28)

This allows switching to a traveling reference frame with delayed fields

E 0.t; ´; r?/! E 0.�; ´; r?/ (3.29)

which yields

@´� E 0
? D

c

2
Œr2

?E 0
? C "r?.r? �P 0

?/� �
"

2c
@2

� P 0
?; (3.30)

where E 0 D E 0.�; ´; r?/ and P 0 D P 0.�; ´; r?/ are the delayed fields. The conditions

under which the longitudinal electric field component remains negligibly small during

propagation can be quantified as follows. Using delayed fields for the longitudinal com-

ponent, Eq. (3.27) changes to

@´�E
0
´ D

c

2

�r2
?E

0
´ C ".@´ � c�1@� /.r? �P 0

?/
	
: (3.31)

Next, r2
?E

0
´ describes diffraction of the longitudinal component and is physically uninter-

esting in comparison to the remainder of the right-hand side. Under the slowly evolving

wave assumption we can approximate�
@´ � c�1@�

�
.r? �P 0/ � �c�1@�

�r? �P 0
?

�
(3.32)

since the characteristic wavelength 
c D c=f , where 1=f is a typical time scale (usually

the carrier period) of the field, is shorter than the length scale L which describes the

distance over which changes to the pulse are induced by the polarized material. Keeping

this term and letting r? D r 0
?=Rc where the constant Rc is a length scale such that r 0

? �
P 0

? is of order unity yields @´E
0
´ � "=Rc . Hence, if the longitudinal component is initially
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zero then it will certainly remain negligible if the propagation distance is ´ � Rc=". In

most cases Rc denotes the beam waist so this holds under quite general conditions, and

Eq. (3.30) is therefore a useful substitute for Eq. (3.22). Traditionally, the divergence

term r?

�r? �P 0
?

�
is dropped despite the apparent conflict with the underlying form of

the solutions
�
i.e. P 0

? D P 0
?.�; ´; r?/

	
, which constitutes the transition to a scalar wave

equation and has been discussed by Lax [56]. Having derived Eq. (3.34) cognizant of

the divergence term being of order " in the absence of transverse spatial inhomogeneities

in the medium, we can quantify the conditions under which r.r � E/ can be dropped

from Eq. (3.22). Using the previous scaling where 1=f is a typical timescale and letting

@� P 0
? D f @T P 0

? where @T P 0
? is of order unity, Eq. (3.30) leads to

@´T E 0
? D


c

2

�
1

R2
c

r 0
?

2
E 0

? C
"

R2
c

r 0
?.r 0

? �P 0
?/ �

"


2
c

@2
T P 0

?

�
: (3.33)

For weakly focused beams Rc 
 
c the divergence term is the least dominant term on

the right-hand side and can be dropped. The plane wave limit is also recovered when

2"R2
c 
 
2

c . For strongly focused beams, Rc � 
c , the longitudinal field component

grows roughly as 
c=". Meanwhile, Eq. (3.33) shows that diffraction dominates the evo-

lution of the transverse field on the length scale 
c , which is much shorter than the length

scale associated with the longitudinal component. Under such focusing conditions both

the divergence term and the source term @2
T P 0

? must be kept. Recovering standard units

we now find for Eq. (3.30)

@´� E D c

2

�r2
?E C 	�1

0 r?.r? �P/
	 � 1

2	0c
@2

� P : (3.34)

In Eq. (3.34) and all that follows, we have omitted the subscript ? such that E and P

denote the delayed transverse fields.

Equation (3.34) is the forward wave equation (FWE) which is a forward propagation

approximation to Maxwell’s wave equation. It applies to the electric field E without

requiring a pulse envelope and phase, and describes the three-dimensional vectorial prop-

agation of pulses of arbitrary duration and intensity. It was derived from the assumption of

a sufficiently small nonlinearity and disregards backpropagation. Note that backpropaga-

tion is a nonlinear bulk phenomenon unrelated to spatial inhomogeneities in the medium,

and qualitatively resembles pulsed self-reflection. However, backpropagation is a real ef-

fect and the conditions under which it becomes relevant have most likely been met in the

local field experiments by Maki et al. [36]. In practice, macroscopic backpropagation is

most likely to occur near a very strong optical resonance. Note also that Eq. (3.34) implies

a long Beer’s length but not necessarily a refractive index close to unity. Formally one

may take �.!/ D �0 C "�1.!/ in Eq. (3.24), which just has the effect c ! c=
p
1C �0,

" ! "=.1 C �0/ in Eq. (3.30). In other words, if the absorption length is long but the
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refractive index is high, then this is equivalent to taking c in Eq. (3.34) to be the back-

ground phase velocity in the material. We anticipate that Eq. (3.34) therefore holds for

most cases of practical interest. Using Pc D Npc where pc is a measure of the single

atom/molecule nonlinear polarization and N is the number density of the material shows

that the backpropagation approximation is primarily one of density.

The FWE is consistent with other wave equations found in the literature: Generalized

self-induced transparency theories [52] use the FWE under the simplifying approximations

E D E.t; ´/ Ox, r2
?E D 0, and a similar first-order equation has been derived by Leblond

et al. [57] by using multiple scales analysis. By disregarding r?.r? � P/ we recover the

first order propagation (FOP) equation derived by Geissler et al. [58]

@´� E D c

2
r2

?E � 1

2	0c
@2

� P : (3.35)

By taking the Fourier transform of Eq. (3.35) with respect to � and r? we recover the

spectral wave equation found by Kolesik and Moloney [59] which was derived by modal

expansions of E and retaining the forward traveling parts. A similar approach was consid-

ered by Husakou and Herrmann [60]. We also mention the projection equation by Kolesik

et al. [61] and the useful factorization approach by Kinsler [62], which solves for pairwise

forward/backward fields (Eq. (3.26) is formally equivalent to the forward field equation in

the paper by Kinsler [62]).

The power of the above approach is that the premature assumption of unidirection-

ality is avoided, and that a criterion for making the forward propagation approximation

in the first place is obtained. The validity of this approximation in theoretical models is

justified either through experimental knowledge or analytic or numerical computations of

the nonlinear optical properties of the material. Intuitively, one may initially suspect that

knowledge of a full solution to Eq. (3.22) is necessary before a uni-directional propagation

assumption can be justified. Unlike other results [58–62] which rely on Maxwell’s equa-

tions, we show that only the constitutive relation P D P.E/ is necessary for establishing

a unidirectional approximation. Knowledge of this criterion is pivotal for determining

whether a specific pulse propagation problem should use the full or reduced version of

Eq. (3.22). We emphasize that this condition is local, and is easily evaluated numerically

for a few test-pulses before solving (or even choosing!) a pulse propagation equation.

3.3.2 Envelope equations

The FWE governs the propagation of the electric field rather than its envelope. Never-

theless, complex envelope and enhanced envelope equations can be recovered straightfor-
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wardly: Let

E.�; ´; r?/ D E.�; ´; r?/e
�i!c� C c.c.; (3.36a)

P.�; ´; r?/ D P.�; ´; r?/e
�i!c� C c.c.; (3.36b)

where !c is the carrier frequency as determined on the input plane. Substituting these

expressions into the FWE yields

@´E D c

2
.@� � i!c/

�1
�r2

?E C 	�1
0 r?.r? �P/

	 � 1

2	0c
.@� � i!c/P ; (3.37)

which is the nonlinear envelope equation (NEE) derived by Brabec and Krausz [33]. It

is readily verified that dropping the terms proportional to @� in Eq. (3.37) constitutes the

SVEA and returns the paraxial wave equation,

@´E D i

2kc

r2
?E C

i!c

2	0c
P : (3.38)

We will apply this equation in Chapter 5 when investigating conical emission in two-level

media. Under the additional approximation r2
?E � 0 one recovers

@´E D i !c

2	0c
P ; (3.39)

which is equivalent to Eq. (3.10). We remark however that Eq. (3.34) puts the paraxial

wave equation in a broader reference frame since only the assumption of uni-directionality

is a necessary ingredient. In light of Eq. (3.34), which is valid for arbitrary pulse dura-

tions, the SVEA is associated only with the temporal pulse duration and is just an optional

addition. Neglect of backpropagation and assumption of a long Beer’s length are more im-

portant approximations. Complete conformance with the NEE is achieved by disregarding

the divergence term and extracting the linear polarization P l from P D P l C Pnl, and

then calculating the linear contribution P l D 	0F
�1Œ�.!/E.!/� where the linear suscep-

tibility �.!/ is expanded in a Taylor series around !c . F�1 denotes the inverse Fourier

transform. By discarding the diffraction term r2
?E , the resulting equation can be further

reduced to the nonlinear Schrödinger equation (NLS) in Kerr media [33].

3.3.3 Energy conservation

An energy conservation equation which replaces Poynting’s theorem can be derived for

Eq. (3.34) in the frequency domain. Letting E D E1
O1 C E2

O2 where O1 and O2 are the

transverse polarization eigenvectors (e.g. Ox, Oy or Or , O'), taking the Fourier transform of

Eq. (3.34), multiplying by E *.!/ and adding the complex conjugate yields

r � J .!/C i!

2

�
E *.!/ �P.!/ �E.!/ �P*.!/

	 D 0; (3.40)
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where J .!/ is the spectral energy ”current” with longitudinal and transversal components

J´.!/ D 	0cjE.!/j2; (3.41)

J?.!/ D i	0c
2

2!

0@X
iD1;2

E*
i .!/r?Ei .!/ �E *.!/Œr? �E.!/�

1AC c.c. (3.42)

The inverse transform of Eq. (3.40) yields a continuity equation in the time domain,

demonstrating that energy is conserved (to O."/) in the forward propagation approxima-

tion. Note that J´ � 0 which is necessary for any uni-directional model. As mentioned

above, the divergence term activates when the beam waist becomes comparable to a wave-

length. Retaining this term is necessary, for example, in the modeling of catastrophic

self-focusing in Kerr media [63]. Furthermore, we define the vector fluence

F D
1Z

�1

J .!/d!; (3.43)

such that the quantity F � dS describes the energy delivered through a differential surface

dS .

3.4 Numerical Maxwell-Bloch methods

It is expected that when " D Pc=.	0Ec/ becomes comparable to unity the uni-directional

approximation may break down. It is evident that uni-directional SIT theory cannot cap-

ture the complete evolution of the electromagnetic field because it a priori assumes that

the backscattering corrections are negligible. It is of considerable interest to investigate

the behavior of the 2� SIT pulse when these approximations do not apply.

To theoretically analyze the bi-directional propagation of a pulse the full wave equation

is called for. Although we will analyze propagation only in the plane wave approximation,

a generic computer algorithm can be formulated for the full Maxwell equations for multi-

level media. This method is of particular interest for analyzing the propagation of short

pulses in nonlinear crystals, but is in principle applicable to any system whose spatial

dimensions are no larger than a millimeters (for optical frequencies).

3.4.1 Tetradic notation: Liouville space

We consider first the time evolution equation for the density operator O�ı which is assumed

to be of finite dimension N � N . A parametric dependence of the density operator on an

inhomogeneous variable ı is also assumed in the remainder of this section. In computer
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implementations it is convenient to use tetradic notation and parametrize O�ı into a column-

major ordered vector j�ı⟫ defined by

j�ı⟫ D

0BBBBBBBBBBBBBB@

�ı;11

�ı;21

:::

�ı;12

�ı;22

:::

�ı;N �1;N

�ı;NN

1CCCCCCCCCCCCCCA
: (3.44)

Every other operator (e.g. yH , O�) follows the same flattening. Following convention we

will refer to this space as Liouville space. Note that the ordering of the entries in the

super-ket j�ı⟫ is not important; for computational efficiency however, column- or row-

major ordering should be used for compilers that favor column- or row-major ordering

memory.

For column-ordered vectors the matrix equation

yC D yA yX yB (3.45)

where yA, yB , yC , and yX areN �N matrices can be written as an equivalent vector equation

jC⟫ D
�
yB| ˝ yA

�
jX⟫ (3.46)

in Liouville space. From Eq. (2.18) it is then straightforward to verify that j�ı⟫ obeys the

Schrödinger equation

dt j�ı⟫ D
�
LLı CE � LL1

�
j�ı⟫ ; (3.47)

where

LLı D i yH|

ı
˚
�
� yHı

�
C
X
k;l



O�kl ˝ O�kl � 1

2
. O�|

kl
O�kl /˚

� O�|

kl
O�kl

��
; (3.48a)

LL1 D �i O�| ˚ .� O�/ ; (3.48b)

where LLı is the free Liouville operator and E � LL1 is an interaction operator. Here, ˝ is

the tensor product and ˚ is the Kronecker sum yA ˚ yB D yA ˝ OI
dim

�
yB
� C OI

dim
�

yA
� ˝ yB ,

where OI is the unity operator. Note that Eq. (3.47) is just the von Neumann rewritten in a

column-major form; no actual calculations or approximations have been made. As such,

the formulation in Liouville space may seem unnecessarily extravagant. In fact, the sin-

gular theoretical advantage of using tetradic notation is that Eq. (3.47) is the Schrödinger
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equation, and well-known formally exact solutions exist even in the presence of homoge-

neous relaxations.

For every operator yO in Hilbert space there exists an equivalent column vector jO⟫ in

Liouville space. The vectors are expanded as

jO⟫ D
X
j;k

Ojk jjk⟫ : (3.49)

We define a bra-vector ⟪Oj that corresponds to yO� and a scalar product of two vectors

defined by

⟪O1jO2⟫ D Tr
�
yO�

1
yO2

�
: (3.50)

The macroscopic polarization is equal to

P D N
˝
Tr . O�ı O�/

˛
ı

D N
˝
⟪�j�ı⟫

˛
ı
:

(3.51)

We will also need the temporal rate of change of the polarization,

@t P D N@t

˝
⟪�j�ı⟫

˛
ı

D N

D
⟪�
ˇ̌ LLı CE � LL1

ˇ̌
�ı⟫

E
ı
:

(3.52)

3.4.2 Maxwell’s equations: Pseudospectral time-domain

The first numerical discretization of the two-level MB equations [Eq. (3.1)] appears in a

paper by Ziolkowski et al. [29] who employed a finite-difference time-domain (FDTD)

method for Maxwell’s equations in conjunction with a Crank-Nicholson method for the

temporal evolution of the atomic variables. Ziolkowskis method has been adopted by oth-

ers [64–66]. The approach leads to a coupled set of equations which can be solved with

fixed point routines such as a predictor-corrector method. The coupled method works

very well provided that the plane wave and two-level approximations holds. An exten-

sion of the two-level FDTD method for inhomogeneously broadened media has been pre-

sented by Schlottau et al. [67]. When more than two-levels are considered, the Crank-

Nicholson method leads to a discretization scheme that does not necessarily preserve the

semi-definite positiveness of O�ı [68]. In addition, for propagation in two or three dimen-

sions the staggered Yee grid inherent in the FDTD method leads to a very large coupled

linear set of equations that is very time consuming to invert for anything but micrometer

sized optical components [69, 70]. Both of these drawbacks can be remedied by applying

different discretization methods.

To reduce accumulation of numerical round-off errors the Maxwell-Bloch equations

are first scaled into a dimensionless set of equations where the variables are scaled accord-

ing to a characteristic field magnitude Ec and a characteristic dipole moment 
c such that
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the variables

E ! E

Ec

; (3.53a)

B ! B

cEc

; (3.53b)

O�! 
c O�; (3.53c)

are quantities of order unity. In the same way, we scale the time and space coordinates

t ! 
cEc

¯ t; (3.54a)

r ! 
cEc

¯c r; (3.54b)

LL! ¯

cEc

LL: (3.54c)

Note that time is now measured in units of the reciprocal characteristic Rabi frequency

Ec
c=¯ and length in units of ¯c=.
cEc/.

With the scalings above the Maxwell-Bloch equation set is summarized by the two

dimensionless Maxwell curl equations and the Schrödinger equation

@B

@t
D �r �E ; (3.55a)

@E

@t
D r �B � �

D
⟪�
ˇ̌ LLı CE � LL1

ˇ̌
�ı⟫

E
ı
; (3.55b)

dt j�ı⟫ D
�
LLı CE � LL1

�
j�ı⟫ ; (3.55c)

where � � 1

0

N�c

Ec
, and LLı and LL1 are given by Eq. (3.48).

A pseudospectral method [71, 72] together with leap-frog time-stepping can be applied

for the integration of Eq. (3.55) in the general case. Pseudospectral methods allow the use

of co-located spatial grids for all the fields, while at the same time offering a significant

improvement over finite difference method in terms of numerical accuracy. We consider a

Cartesian numerical grid where the fields are sampled on co-located grids with equidistant

grid spacings. Specifically, the fields are sampled on

xi D i4x; (3.56a)

yj D j4y; (3.56b)

´k D k4´; (3.56c)

where 4x, 4y, and 4´ are the numerical step sizes for each of the three spatial dimen-

sions. We define the Fourier derivative operator in the spatial d -direction by

@Fd G D F
�1
d Œ2�ikdFd .G/� ; (3.57)
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where kd is the spatial frequency in the d -direction, andG is a field component of either E

or B. Fd and F�1
d

denote the Fourier and inverse Fourier transforms in the d -direction,

and are implemented using a Fast Fourier Transform (FFT) technique [73]. When dis-

cretized, the approximated temporal time-stepping is denoted by @tG � D
tG. We will

consider temporally staggered grids such that E is stored at integer time steps tn D n4t ,
while B and j�ı⟫ are stored at half integer time steps tnC1=2 D .n C 1=2/4t . With this

discretization scheme, Maxwell’s equations become

D
tBx

ˇ̌n
i;j;k
D � �@Fy E´ � @F´ Ey

�ˇ̌n
i;j;k
; (3.58a)

D
tBy

ˇ̌n
i;j;k
D � �@F´ Ex � @Fx E´

�ˇ̌n
i;j;k
; (3.58b)

D
tB´

ˇ̌n
i;j;k
D � �@F´ Ey � @Fy Ex

�ˇ̌n
i;j;k
; (3.58c)

and

D
tEx

ˇ̌nC1=2

i;j;k
D �

@Fy B´ � @F´ By

�ˇ̌nC1=2

i;j;k
� �

D
⟪
x

ˇ̌ LLı CE � LL1

ˇ̌
�ı⟫

E
ı

ˇ̌̌nC1=2

i;j;k
; (3.59a)

D
tEy

ˇ̌nC1=2

i;j;k
D �

@F´ Bx � @Fx B´

�ˇ̌nC1=2

i;j;k
� �

D
⟪
y

ˇ̌ LLı CE � LL1

ˇ̌
�ı⟫

E
ı

ˇ̌̌nC1=2

i;j;k
; (3.59b)

D
tE´

ˇ̌nC1=2

i;j;k
D �

@F´ By � @Fy Bx

�ˇ̌nC1=2

i;j;k
� �

D
⟪
´

ˇ̌ LLı CE � LL1

ˇ̌
�ı⟫

E
ı

ˇ̌̌nC1=2

i;j;k
: (3.59c)

The use of Fourier transforms for calculating the spatial derivatives means that the

spatial derivatives are calculated exactly as long the sampling period is above the Nyquist

limit. Usually, the temporal time stepping is taken as a second order Yee-type leapfrogging

method

D
tG
ˇ̌nC1=2 � GnC1 �Gn

4t CO
�4t2� : (3.60)

Due to the second order accuracy of this time stepping scheme, we will refer to this as a

PSTD-2 method.

Note that although the PSTD spatial scheme allows the use of relatively rough spatial

grids (in principle the sampling rate may be as low as the Nyquist limit), the Yee time

stepping is a source of numerical dispersion. This implies that the temporal resolution

must be considerably finer than the Nyquist limit in order to counteract the effects of

numerical dispersion accumulation. The limitations of the PSTD-2 method can be partially

overcome by using higher order time stepping [74]. The starting point for a higher order

method is the Taylor expansion of G around the time step tn:

Gn˙1=2 � Gn ˙ 4t
2
.@tG/

n C 1

2Š

�4t
2

�2 �
@2

tG
�n ˙ 1

3Š

�4t
2

�3 �
@3

tG
�n

CO
�4t4� ; (3.61)
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such that

.@tG/
n � GnC1=2 �Gn�1=2

4t � 1

24

�
@3

tG
�n CO

�4t4� : (3.62)

Note that this stepping is of order 4t4 since the time derivative operators of even order

cancel in Eq. (3.62). Rather than discretizing the third order time derivatives @3
tG these

may be converted to spatial derivatives through Maxwell’s curl equations, and they may

then be calculated with Fourier transforms. This is referred to as a PSTD-4 method. Pro-

vided that � is sufficiently small, one can disregard the contributions from the polarization

terms and calculate the fourth order corrections using the electromagnetic field variables

alone.

Since the largest computational burden of the full Maxwell-Bloch equations is the

numerical update of the optical Bloch equations, the PSTD-4 method generally performs

faster than the PSTD-2 method at the same accuracy because rougher spatial grids can be

used.

The PSTD method has a more stringent condition on the maximum allowed time step

size than the FDTD scheme does. The temporal resolution must be chosen according to

4t � 2min .4x;4y;4´/=
�p

D�
�

where D is the dimensionality of the system.

The periodicity implied by the use of numerical Fourier transforms means that ab-

sorbing boundary conditions must be placed on the computational boundaries in order to

prevent reflections from the truncated simulation regions. We have implemented absorbing

layers by using the perfectly matched layer (PML) technique by Berenger [75].

3.4.3 Discretization of the Bloch equations: The Magnus series

The Bloch equations can be solved exactly in terms of a time-ordered propagator. Noting

that LLı are constant operators, i.e. operators without any time-dependence, one may first

transform the Bloch equations into the interaction picture by defining

LUı.4t / D exp
h
LLı.t � t0/

i
; (3.63a)

j�ı;I⟫ D LU�1
ı j�ı⟫ : (3.63b)

This leads to a Schrödinger equation for the interaction picture density operator j�ı;I⟫

dt j�ı;I⟫ D LLı;I j�ı;I⟫ ; (3.64)

where

LLı;I D LU�1
ı

�
E � LL1

�
LUı ; (3.65)

is the interaction picture Liouville operator. The above equations are identical to the von

Neumann equation for the interaction picture density operator O�ı;I , but written in vector

form for incorporation of relaxations.
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The exact solution to Eq. (3.65) is a time-ordered solution

j�ı;I .t/⟫ D expC

0@ tZ
t0

LLı;I .�/d�

1A j��;I .t0/⟫ ; (3.66)

where expC indicates time-ordering of the propagator. The time-ordered exponential op-

erator can be expanded in an explicit series known as the Magnus series [76]

expC

0@ tZ
t0

LLı;I dt

1A D exp

"
1X

nD1

{Mn.t; t0/

#
; (3.67)

where the first few terms are

{M1 D
tZ

t0

d�1
LLı;I .�1/; (3.68a)

{M2 D
tZ

t0

d�1

�1Z
t0

d�2

h
LLı;I .�2/; LLı;I .�1/

i
; (3.68b)

{M3 D
tZ

t0

d�1

�1Z
t0

d�2

�2Z
t0

d�3

�h
LLı;I .�3/; Œ LLı;I .�2/; LLı;I .�1/�

i
C
h
Œ LLı;I .�3/; LLı;I .�2/�; LLı;I .�1/�

i�
:

(3.68c)

The higher-order terms of the Magnus series rapidly become incalculable. Numeri-

cally, we therefore consider a time step t � t0 D tnC1=2 � tn�1=2 D 4t which is suffi-

ciently small so that the higher-order contributions are negligible. Under this assumption

the solution for j�ı;I⟫ is approximated asˇ̌
�

nC1=2
I;v ⟫ � exp

h
{M1.4t /

i ˇ̌
�

n�1=2
I;v ⟫: (3.69)

We approximate the integral by the central midpoint rule:

{M1.4t / D
tnC1=2Z

tn�1=2

dt LLı;I .t/

� LLn
ı;I4t:

(3.70)

Furthermore, consistent with the first-order Magnus series approximation we may take

LLı;I � E n � LL1 since the corrections introduced in Eq. (3.65) become second order in4t
in the exponential argument. This implies that only one interaction propagator needs to
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be calculated at each spatial point at each time step, dramatically reducing the number of

floating point operators necessary for evaluating inhomogeneously broadened systems.

We note furthermore that the matrix exponential exp.E n � LL1/ is an N 2 �N 2 dimen-

sional square matrix. One can use the property

exp
�
yO1 ˚ yO2

�
D exp

�
yO1

�
˝ exp

�
yO2

�
; (3.71)

of the Kronecker sum and the hermiticity of O� to reduce this matrix to a tensor product

between two N �N matrices

exp.E n � LL1/ D exp .�iE n � Œ O�| ˚ .� O�/�/
D exp .iE n � O�4t /* ˝ exp .iE n � O�4t / :

(3.72)

Obviously, only one of these matrices need to be calculated numerically. Finally, the

numerical solution for the Schrödinger picture density operator is thenˇ̌
�

nC1=2

ı
⟫ D LUı

h
exp .iE n � O�4t /* ˝ exp .iE n � O�4t /

i ˇ̌
�

n�1=2

ı
⟫: (3.73)

One can increase the rate of convergence by splitting the free propagator in Eq. (3.73)ˇ̌
�

nC1=2

ı
⟫ D LU 1=2

ı

h
exp .iE n � O�4t /* ˝ exp .iE n � O�4t /

i
LU 1=2

ı

ˇ̌
�

n�1=2

ı
⟫; (3.74)

which leads to a second-order method in 4t . Reading from right to left, Eq. (3.74) is

essentially a second-order split step method where propagation of the density operator

in time is performed by first taking a half linear step followed by a full nonlinear step

followed by another half linear step. Since the discretization method was based on the

Magnus series, O� is guaranteed to be semi positive definite and have unity trace for any

choice of 4t . That is, Eq. (3.74) is an absolutely stable discretization method for the

homogeneously and inhomogeneously broadened multi-level Bloch equations of arbitrary

dimension N .

The matrix exponential in Eq. (3.74) must be calculated in order to advance
ˇ̌̌
�

n�1=2

ı
⟫

in time. A straightforward way of calculating the matrix exponential is through the second-

order approximation

exp .iE n � O�4t / �
�
OI � iE

n � O�4t
2

��1 �
OI C iE n � O�4t

2

�
; (3.75)

which allows calculating the matrix exponential through an inverse matrix. Here, OI de-

notes theN -dimensional identity matrix. Temporal evolution is unitary in this approxima-

tion since evaluation of
�
OI � i yA

��1 � OI C i yA���

D
�
OI � i yA

� �
OI C i yA

��1

; (3.76)
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where

yA D E n � O�4t
2

; (3.77)

leads to


�
OI � i yA

��1 � OI C i yA��� �
OI � i yA

��1 � OI C i yA� D OI : (3.78)

We also mention that direct computation of the matrix exponential is also possible. The

software package expokit[77] contains several computational routines based on various

levels of approximations that are well suited for such calculations. A few numerical exam-

ples of the use of the PSTD-4 method have been demonstrated by Marskar and Österberg

[78].

3.4.4 Parallellization & Performance

The largest computational burden is the update of the optical Bloch equations. Optimiza-

tion of the computer algorithm will usually be necessary. Firstly, we note that the operators

LUı are usually very sparse and that numerical multiplication by these matrices can be done

very efficiently by storing them in a sparse format and using optimized matrix multiplica-

tion routines. This results in a dramatic increase in performance, especially for multi-level

systems. Secondly, we have purposefully constructed an explicit numerical scheme where

no iterative corrections are necessary. One observes that the numerical update of the den-

sity operators j�ı⟫ occurs simultaneously with the calculation of the B-field. Moreover,

the entire spatial grid can be updated simultaneously which means that these calculations

may be distributed over a number of processes using the Message Passing Interface (MPI)

and Open Multi-Processing (OpenMP) protocols, leading to very efficient parallelization.

In practice, direct Maxwell-Bloch simulations, although they are valid for two-way

propagation along all three spatial coordinates and incorporate all the physical features as-

sociated with Maxwell’s equations, do not scale very well with propagation distance. The

reason is that even with pseudospectral methods and high-order time stepping the spatial

resolution must be finer than an optical wavelength, and this will rapidly lead to exhaustion

of computational resources. The method is therefore most useful for propagation distances

up to a few millimeters. It is, nevertheless, possible to obtain three-dimensional numerical

solutions for pulses of arbitrary duration propagating over long distances in multi-level

materials if one starts out from a different propagation equation. We will consider such a

model in Chapter 5.



44 CHAPTER 3. NONLINEAR OPTICAL BACKPROPAGATION

3.5 Optical backpropagation of 2� pulses

Having reviewed SIT theory, RMB theory, and numerical Maxwwell-Bloch methods, we

are now in a position to address the case of backscattering corrections to SIT. First, for mu-

tual consistency between the McCall-Hahn definitions and the results derived by Marskar

and Österberg [79], we define the quantities

� � 
12Ey

¯ ; (3.79a)

�B � 
12cBx

¯ ; (3.79b)

and � D ´=c such that Eq. (3.1) may be written as the system

@t� D @��B � !�@tp; (3.80a)

@t�B D @��; (3.80b)

idt O�� D
h
yH�; O��

i
C yR�; yH� D

 
0 ��
�� ! C�

!
: (3.80c)

The missing factor of 2 in the definition of the Rabi frequency in Eq. (3.79) is due to the

use of complex fields in McCall-Hahn SIT theory. Equations (3.80) are the two-level MB

equations. By definition, the coupling frequency !� is defined !� D N j
12j2=.	0¯/.
Furthermore, the average atomic polarization and material inversion are given by

p D
Z

d�g.�/.��;12 C ��;21/; (3.81a)

w D
Z

d�g.�/.��;22 � ��;11/; (3.81b)

where we consider a Gaussian distribution

g.�/ D T *
2p
2�

exp

"
�
�
�T *

2

�2
2

#
: (3.82)

The medium is otherwise characterized by ! D 6��1013 rad/s (
 D 10 
m), 
12 D 5 D,

and T *
2 D 50 fs. Homogeneous damping which removes the energy that is locked in

the dipoles via e.g. spontaneous emission is incorporated in yRs , with T1 D 1 ms and

T2 D 0:1 ms, substantially longer than the pulse durations we consider below. The spatial

and temporal discretization lengths are 4´ D 
=100 and 4t D 24´=.�c/, and we

have verified that the output from our computer simulations do not change with increased

resolution.

By introducing the pseudofields

�˙ D 1

2
.�	�B/ ; (3.83)
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the Poynting vector S D 	0c
2E �B may be written in the plane wave approximation as

S D ���B Ó
D
�
�C2 ���2

�
Ó :

(3.84)

The two fields �˙ represent forward (�C) and backward (��) propagating modes.

In what follows below, Eq. (3.79) is solved for up to 5000 different values of � using

the PSTD-2 method discussed in the previous section. We consider a Gaussian shaped

input pulse

�.t; 0/ D �0 exp

�
� t2

2T 2

�
sin.!c t /; (3.85)

which is emitting from a total field-scattered field [28] two-point source at ´ D 0 in

vacuum. Double sources are used in order to minimize Gibbs’ phenomenon. This pulse

propagates in free space for 250 
m before penetrating a medium of length L. After prop-

agating through the medium the pulse exits back into free space again. The computational

boundaries are padded with perfectly matched layers that prevent backreflection from the

truncated simulation regions. We consider a resonant pulse (!c D !) with input peak am-

plitude E0 D 8:27 � 107 V/m (�0 � 1013 rad/s) and duration T D 250 fs. This fixes the

input area defined by the Gaussian envelope slightly below 2:6� and ensures that the input

pulse is a temporally slowly varying pulse !cT � 50. We are therefore in the conven-

tional McCall-Hahn SIT regime where the pulse duration fits between the two transverse

lifetimes (T2 
 T > T *
2 ). As a sidenote, an alternative to solving Eq. (3.1) directly is to

derive separate evolution equations for �˙ that are coupled through Eq. (2.6), and then

address these equations simultaneously.

3.5.1 Conventional SIT results

Consistent with the derivations in Sec. 3.3 we expect the emergence of a backwards pulse

when !� becomes comparable to the peak Rabi frequency �0. To verify the reliability

of our computational results we first investigate SIT behavior in the conventional regime

!� � �0. We take N D 5 � 1023 m�3 and L D 2:5 mm which gives �0 � 88!� . The

optical density of the dielectric is ˛0L � 14:5. With the numbers above, ˛�1
0 � 17:2
 D

172 
m. Figure 3.6 shows that the standard SIT features, which are expected to hold at

these conditions, are captured by our numerical code: The initial pulse partially reflects

while the remaining part penetrates the material. It is then compressed and amplified over

the first few absorption lengths and reshapes into a hyperbolic secant pulse with pulse

area 2� which propagates stably and with constant energy. We have calculated the pulse

area as the Fourier transform of �.t; ´/ on the line center, i.e. �.´/ D j�.!; ´/j Dˇ̌R1
�1�.t; ´/e�i!t dt

ˇ̌
, and the pulse energy is found by integration of the Poynting vector.
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The top panel in Fig. 3.6 shows that the computer solution agrees very well with the

area theorem �.´/ D 2n� C arctanŒexp.˛0´=2/ tan.�0=2/�, where �0 is the input area.

We nevertheless point out that it is the soliton feature and not the area theorem which

is the fundamental property of the system. Although the soliton feature holds whenever

T � T2 and backpropagation can be ignored (even when the slowly varying and rotating

wave approximations are not valid), the area theorem holds only when the initial pulse is

resonant, transform-limited, slowly varying through the material, and the absorption line

is symmetric around ! [43]. These conditions are fulfilled by the parameters above.
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FIG. 3.6: Top panel: Normalized pulse energy (dotted line, plotted against the right vertical axis)

and area (solid line) compared with the area theorem (dashed line). The shaded region indicates

the presence of the two-level medium. Bottom panel: Average material inversion w (thick solid

line, plotted against the right vertical axis). Plotted against the left vertical axis is the forward field

�C (thin solid line), its envelope (dashed line), and the backward field�� (dotted line). The data

are taken from a distance ´0 D 1:75 mm (˛0´0 � 10) into the material.

The bottom panel in Fig. 3.6 shows the auxiliary fields �˙ and their corresponding

envelopes e�˙ after penetrating 2 mm into the dielectric. We have obtained the envelopes
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e�˙ via the analytic signals of�˙. The full electric field profile coincides with the forward

field �C and has been confirmed to be a hyperbolic secant with area � 2� . It inverts the

material and completely reverts it to its ground state. The presence of the negative flux

field �� is clearly negligible. After the formation of the 2� pulse, the long time behavior

of the system is�˙.t !1; ´/ D 0 andw.t !1; ´/ D �1, which makes this particular

pulse an SIT pulse.

3.5.2 Bidirectional SIT

Having established the reliability for our computational model with�
 !�p we can now

address the regime � � !�p where backpropagation is expected to have a non-negligible

effect. The density is now taken as N D 4:4 � 1025 m�3 which gives �0 � !� . The

absorption length is ˛�1
0 � 0:195
s , and the material is essentially opaque for linear

transmission of resonant radiation. We take the length of the material to be L D 0:5 mm

long so that its optical thickness is ˛0L � 256. We consider the same Gaussian input

pulse.

The top panel in Fig. 3.7 shows the envelopes e�C and e�� a distance ´0 D 0:25 mm

into the material, and the negative flux field �� is readily discerned. The most important

difference between the behaviors in Figs. 3.6 and 3.7 lies in the fact that �C ¤ � and

that the long term behavior is w.t ! 1; ´/ ¤ �1 for the denser material. In Fig. 3.7

we see that �˙.t ! 1/ D 0, w.t ! 1/ � �0:98, and the pulse leaves behind energy

in the material. It is therefore not an SIT soliton. This failure to return the material to

the ground state after the passage of the pulse is not related to the initial shedding of

energy that usually takes place when a non-SIT pulse reshapes into a soliton under ideal

SIT conditions, which is seen in Fig. 3.6 as an initial decline in pulse energy over the first

few absorption lengths. Even at a distance ´0 D 0:25 mm into the material, the pulse in

Fig. 3.7 has propagated ˛0´0 � 128 absorption lengths, a substantial distance. Under

ideal SIT conditions (i.e. no backpropagation or other losses), a 2� soliton would be

expected at this penetration depth. Here, the pulse instead leaves behind a trail of inversion

w > �1 and a soliton does not form. The inset in the top panel in Fig. 3.7 shows that

although the residual material excitation is relatively small, it has a profound impact on the

pulse over many absorption lengths. The initial dip in energy is associated with the initial

reshaping into a sech pulse while the decay from ˛0´ � 10 to ˛0´ � 256 is connected to

a backpropagation loss. It is interesting that this decay is almost linear up to ˛0´ � 170

and that the final state of inversion lies close to �1, which is indicative of a small-area

backward-propagating pulse. Indeed, as seen in the top panel of Fig. 3.7 the area undere�C is much larger than that under e��. The flattening of the pulse energy after ˛0´ � 170
is most likely due to an edge-effect where the backpropagating pulse is being generated

from a smaller spatial region. To expose the pulse in greater detail, the bottom panel in
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Fig. 3.7 shows the full field � and a comparison between the corresponding envelope e�
(dashed line) and a numerical least squares fit (LSQ, dotted line) of a hyperbolic secant

pulse envelope f .t/ D A sech Œ.t � t0/=��. The pulse in Fig. 3.7, unlike the pulse in

Fig. 3.6, is not a pure 2� hyperbolic secant pulse, although it remains so to a very good

approximation. Plotted against the right vertical axis in Fig. 3.7(b) is also the spectral

intensity of the pulse. We notice that the center frequency of the pulse is slightly blue

shifted to a value � 1:005!.
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FIG. 3.7: Top panel: Plotted against the left vertical axis are the envelopes of �C (dashed line)

and �� (dotted line). The inversion w (solid line) is plotted against the right vertical axis. The

inset shows the pulse energy normalized to the input pulse energy as a function of propagation

distance. The bottom panel shows the full field � (thin solid line) and its envelope (dashed line)

compared with a least squares fit (LSQ, dotted line) of a hyperbolic secant pulse. Plotted against

the second set of axes is the input pulse spectrum (dashed-dotted) and the spectrum �.!; ´0/

(thick solid line). The data in both panels are taken at a propagation length of ´0 D 0:25 mm

(˛0´0 � 128) into the material.

To compare the forward and backward fields, the two panels in Fig. 3.8 show the
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propagated spectra of�˙ plotted together with the inhomogeneous broadening line g.!s/

(dotted line) and also the initial pulse spectrum�.!; 0/ (solid line). Several features of the

computer solution deserve mention: Firstly, we observe that the forward spectrum broad-

ens over the first few Beer’s length, indicating that temporal compression of the pulse due

to spatiotemporal reshaping into a quasi-SIT pulse is taking place. The subsequent nar-

rowing of the spectrum is due to backpropagation losses that lead to temporal elongation.

Note also that although the spectral intensity of the input pulse around !=! � 0:78 is

zero, there is such a peak in the spectrum of the reflected field �� and no such feature

for �C. Nonlinear reflection from interfaces has been studied by Forysiak et al. [80] in

the incoherent regime T2 � T � T1; T
*
2 , and a red-shift has been predicted due to the

Doppler shifted reflection from the moving saturation front that is formed in the material

when the pulse penetrates the interface. This explanation presumably holds true here as

well. The pulse velocity v near the interface in Fig. 3.9 is roughly v=c � 0:11 and matches

the Doppler shift �! � 0:22!. The small color shifts of �˙.!; ´/ during propagation

are, to the best of our knowledge, not predicted by any existing theory. It is established,

on the other hand, that if the rotating wave and slowly varying envelope approximations

in time and space are valid, frequency pushing of an initially off-resonance 2� hyperbolic

secant soliton may occur [45, 46]. In our computer simulations, the input pulse is reso-

nant and transform limited, therefore any initial pulse chirp or change in center frequency

occurs as a result of either propagation, or frequency biased reflection/transmission from

the interface.

Figure 3.9 shows the spatiotemporal reshaping that is induced by the backwards prop-

agating mode. The two horizontal axes are the temporal pulse delay t � ´=c and the

propagation distance ´ into the medium in units of ˛�1
0 . Only the spatiotemporal reshap-

ing over the first 176 absorption lengths is shown. The solid line plotted in the top plane

indicates the peak pulse delay at various ´. Its curvature in the .t � ´=c; ´/ plane indi-

cates a non-constant group velocity. We find that over the first few absorption lengths

the pulse is temporally compressed. This initial reshaping is not surprising considering

the initial conditions that are applied. According to the area theorem, which holds as a

first approximation over the first absorption lengths, the Fourier coefficient of �C.!; ´/

must decrease to 2� during the initial reshaping to a hyperbolic secant pulse. During

this reshaping the excess spectral energy at line center is either absorbed by the medium

or pushed into the spectral wings of the pulse, which results in spectral broadening and

temporal compression. With further propagation we observe the non-standard features:

As the pulse energy diminishes with increasing propagation distance the temporal pulse

width increases and the pulse travels with further reduced group velocity. For an even

longer material, the pulse will eventually broaden to timescales that are comparable to the

homogeneous decoherence time T2 and is then rapidly absorbed by the material. This type
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FIG. 3.8: Top panel: Spatial propagation of the spectrum of the forward spectrum �C.!; ´/
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initial pulse spectrum �.!; 0/ are shown with dotted and solid lines, respectively. The dashed

lines indicate the position of the material/vacuum interfaces. Bottom panel: Same as for the top

panel, but for ��.!; ´/.

of pulse stretching is typical of solitonic systems with loss, and has been studied by others

through the introduction of phenomenological loss terms (see e.g. Diels and Hahn [45] or

Alhasan et al. [81]). The loss mechanism considered here is not phenomenological but is

an inevitable part of Maxwells wave equation. It will be finite also for less dense materials

having the same optical thickness, although homogeneous damping will then dominate.

To our knowledge, the only soliton solution to Eq. (3.1) known at present is the half cycle

hyperbolic secant �.t; ´/ D �0 sech Œ�0.t � ´=vg/� (i.e. a hyperbolic secant without

carrier) [55], and its N -soliton generalizations. These solitary pulses do not satisfy the

multi-dimensional Maxwell’s equations in vacuum, and are presently therefore of little

practical relevance. Whether such solitons can stabilize in a material through a compensa-

tion of self-focusing and diffractive effects is an intriguing question, and requires a study

of the three-dimensional Maxwell-Bloch equations. To the best of our knowledge, such a

study has not been performed to date.
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indicates the magnitude of the full field pulse envelope. The solid line plotted in the top horizontal

plane indicates the peak time delay at various propagation distances.

We now briefly mention that if the inhomogeneous lifetime becomes longer such that

T < T *
2 � T1; T2, the pulse behavior changes and a larger blue shift (see e.g. [82] for the

sharp-line case) can move the pulse completely outside the absorption band of the material

where it can propagate a longer distance. Nevertheless, we have numerically verified also

for dense media that off-resonant hyperbolic secant pulses are also incapable of completely

returning the material back to the ground state and also lose energy during propagation,

although to a considerably smaller extent than for resonant pulses in inhomogeneously

broadened media. Obviously, in the artificial undamped limit T1; T2; T
*
2 !1 the excited

dipoles radiate forever and optical transparency is difficult to avoid. Additionally, insofar

as SIT is valid down to the single cycle regime so are the results of this section. We

have verified that the breather solution Eq. (3.21), which is valid in the forward wave

approximation � 
 !�p, coincides with computer solutions when we consider close-

to single-cycle input pulses, and that when the forward wave approximation is not valid,

these pulses also leave the material slightly excited after they have passed.

3.5.3 Energy versus distance behavior

The energy vs distance decay of SIT pulses has a complicated structure that depends on

the input pulse shape and the relation between the pulse duration and the transverse and



52 CHAPTER 3. NONLINEAR OPTICAL BACKPROPAGATION

longitudinal lifetimes. For example, after exciting the medium with non-SIT pulses of du-

ration T < T *
2 in the uni-directional approximation, a long-lived precursor might precede

the driving pulse [78]. Even when the soliton has formed after many Beer’s length, this

forerunner might persist due to its spectral location around the wings of the absorption line

where it experiences little absorption. The forerunner will be discussed in greater detail

in Chapter 4. In the case of an SIT pulse propagating in an inhomogeneously broadened

attenuator, which is the scenario considered in this paper, the energy decay is adequately

explained by phenomenologically incorporated loss terms in the Bloch equations. Fig-

ure 3.10 shows a computer solution of the propagation of the pulse above, but under the

rotating wave and slowly varying envelope approximations and with the inclusion of a

spontaneous emission lifetime T1 D 20 ps. That is, this pulse fits between the two trans-

verse lifetimes T *
2 < T < T2. Although the long-term behavior of this system w ! �1,

the same qualitative pulse behavior is recovered in this simplified model. The pulse energy

decays linearly with propagation distance, the pulse broadens temporally and propagates

with a reduced group velocity. On the whole, the propagational results elaborated on in

this section may be understood in terms of uni-directional solitonic SIT systems with phe-

nomenologically incorporated loss terms.
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FIG. 3.10: Energy versus distance (dotted line) and area versus distance (solid line) for a com-

puter solution under the rotating wave and slowly varying envelope approximations. The condi-

tions are the same as in Figs. 3.6-3.9, but neglecting backpropagation and including a spontane-

neous emission lifetime of 20 ps.
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Relation to other studies

We briefly mention that the above results relate to recent studies of the area theorem using

Eq. (3.1) in the undamped limit: Hughes [83] considered propagation of initial pulses

�.t; 0/ D �0 sech

�
t

T

�
sin.!ct /; (3.86)

with areas between 2� and 12� (i.e. �0=.2!c/ � 0:1 � 1) and showed that these pulses

did not return the material to its initial state. A similar analysis was performed by Xiao

et al. [84] and Novitsky [85]. We remark that if the Rabi frequency is comparable to !c

then in view of Eq. (3.21) the initial pulses used by Hughes [83], Xiao et al. [84], and

Novitsky [85] are not SIT pulses but must be reshaped by the material before propagating

as solitons. The residual energy left behind in the material in [83, 85] is a sign of this

reshaping. With the indicated parameters in the above references, the systems investigated

are nevertheless solitonic, supporting SIT pulses down to arbitrary durations.

3.6 Summary

This chapter reviews McCall-Hahn SIT theory and the uni-directional pulse propagation

approximation. After obtaining a measure of negligible backpropagation we derive sev-

eral forward wave equations under various levels of approximation. We then reviewed

the formulation of a general numerical Maxwell-Bloch model that incorporates multi-

level effects and inhomogeneous broadening. This numerical integrator was applied to the

propagation of pulses in the traditional SIT regime under the presence of optical back-

propagation. We found that the McCall-Hahn SIT solution decays slowly with propaga-

tion distance due to a co-excited backward propagation pulse that prevents reversion of the

material to the ground state. The results were adequately explained by the introduction of

phenomenological loss terms in the optical Bloch equations.

Several of the results and equations derived are useful in the later chapters in this thesis.

In particular, the FOP equation and the corresponding energy conservation equation are

the starting equations for the RMB model. This model is employed in Chapter 5 where we

analyze conical emission of few-cycle pulses in a multi-level sodium atomic model.



Chapter 4

Nonlinear optical precursors with SIT

4.1 Introduction

In their theoretical study of superluminal group velocity in causal, linear dielectrics, Bril-

louin [86] and Sommerfeld [87] showed that a precursor (or forerunner) can significantly

precede a main signal. In their studies, they investigated the propagational characteristics

of a step-function pulse propagating in a dielectric medium described by a single Lorentz

resonance. They found that the main signal is preceded by one or two forerunners, which

represented spectral regions of the initial pulse that propagated with group velocities dif-

ferent from that of the main pulse.

The theoretical literature on optical precursors has been improved over the years, and

is now quite extensive [88]. However, only a handful of experimental observations of the

elusive precursor have actually been made. With the exception of Pleshko and Palócz [89],

most experiments have been performed in the past two decades. Aaviksoo et al. [90] used

one-sided exponential pulses propagating close to a narrow excitation line in Gallium-

Arsenide, Jeong et al. [91] observed optical precursors in the anomalous dispersion regime

of a laser-cooled Potassium vapor, Du et al. [92] observed precursors at the biphoton level

using slow light, and Wei et al. [93] performed optical precursor experiments in a laser-

cooled Rubidium vapor. There have also been reports of precursors in water [94], but these

claims have been contested [95, 96].

Only recently has the search for optical precursors been extended to the regime of non-

linear interactions. Palombini and Oughstun [97] investigated the propagation of Gaussian

pulses placed on the red side of a Lorentz resonance, but with one important addition; they

included the effects of a cubic nonlinearity which accounts for self-phase modulation and

odd harmonic generation. On the whole, they find that the precursor fields are conserved

to a considerable extent also for nonlinear interactions, but with quantiative changes in the

54
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strength of the precursor field. Macke and Ségard [98] suggested that precursors can co-

exist with SIT in homogeneously broadened media (i.e. excluding Doppler broadening).

We mention also analogous results encountered by Crisp [99], and also by Diels and Hahn

[44, 45], where a forerunner was observed, but not rigorously analyzed.

For comparison, we investigate here the possibility of optical precursor propagation

in hot vapors, thus incorporating the effects of Doppler broadening. We show that co-

existing transform-limited SIT and precursor pulses may originate by the application of a

resonant > � area pulse. The precursors observed are essentially 0� pulses [30] and may

individually interact nonlinearly with the material.

4.2 Theoretical basis

The equations of motion are the resonant McCall-Hahn SIT equations [Eq. (3.5) and

(3.10)]

id� O%� D
h
yH�; O%�

i
C i OR�; yH� D

 
0 �1

2
�*

�1
2
� �

!
; (4.1a)

@´� D i�h%�;21i�; (4.1b)

where we recall Fig. 3.1 for definitions. Here, the medium is Doppler broadened accord-

ing to Eq. (3.82). To numerically solve Eq. (4.1) we apply a standard implicit trapezoidal

method for both equations. This results in implicitly coupled discretized equations, and

these are iterated to convergence by using a predictor-corrector method. Because we pre-

sume that the pulse duration is much shorter than the homogeneous transverse lifetime,

decoherence is disregarded in what follows.

4.3 Gaussian excitation

Following Marskar and Österberg [100] we consider first the propagation of Gaussian

pulses. For the physical parameters, we take the transition wavelength 
 D 800 nm (! D
7:5� � 1014 rad/s), the inhomogeneous lifetime T *

2 D 0:5 ns, and a number density N D
1017 m�3. The transition dipole moment is taken as 
12 D 2:75 � 10�29 Cm. These

numbers correspond to a Beer’s length ˛0 � 2:5 mm. The medium is L D 8 cm long

which yields an optical thickness of ˛0L � 32. As the initial state of the medium, we

presume that all atoms are in their ground state before the pulse enters into the material.

The input pulse shape is described by a Gaussian

�.�; 0/ D �0 exp

�
� �2

2T 2

�
; (4.2)
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which is turned on at � D �10T and off at � D 10T such that the leading and trailing

edges of the pulses are very small. The area of the Gaussian pulse described by Eq. (4.2)

is �0 D
p
2��0T . We recall that the area can be taken as DC value of Fourier component

of �, and can be found numerically via Fast Fourier Transforms rather than Gaussian

quadrature.

We mention that we refrain from exciting the medium using pulses that are already

2� SIT pulses. Such pulses are exact solutions to Eq. (4.1) and have no forerunners. In

addition, we use the term ”precursors” only for pulses that significantly precede a main

signal, propagates with group velocity vg � c, and which itself is not an SIT pulse.

First, we keep the area constant at �0 D 1:1� and change the pulse duration from

T D 0:15T *
2 to T D 2T *

2 . Since the area is proportional to the DC Fourier coefficient

of �, decreasing the pulse duration while maintaining a constant area implies that the

energy in the spectral wings of the input pulse increases. Following Parseval’s theorem

the energy of the pulse as a whole increases as well. The five panels in Fig. 4.1 show the

exit pulses after propagating through the material. In each panel, the input pulse duration

T is different. We have plotted the phase � D arctanŒ�I.t; ´/=�R.t; ´/� where �.�; ´/ D
�R.�; ´/C i�I.�; ´/ against the right vertical axis in each panel, which shows that the exit

pulses are not phase modulated. We have verified that this is true in all of our simulations

when we consider resonant propagation. As noted by Hopf and Scully [101], the absence

of phase modulation is understood from the formal solution for %21.t; ´;�/:

%�;21.�; ´/ D i

2

�Z
�1

d� 0�.� 0; ´/e�i�.��� 0/
�
%�;22.�

0; ´/ � %�;11.�
0; ´/

	
: (4.3)

Under the conditions of exact resonance, no initial chirp, and symmetric Doppler line

broadening, then the in-phase component of the polarization vanishes after taking the en-

semble average hi� of Eq. (4.3). Insertion of this result into Eq. (4.1b) shows that the field

propagates without acquiring a modulated phase. The envelopes that are plotted in Fig. 4.1

are normalized to the individual Rabi peak amplitudes, and show that the magnitude of the

precursor decreases when the input pulse duration increases. In addition we note that the

peak amplitude of the pulse is reduced roughly by a factor of 1=5 in each simulation. By

the area theorem it is apparent that temporal elongation of pulses with initial areas < 2�

is expected during propagation. Since the area is equivalent to the DC Fourier coefficient

of the Rabi frequency, this coefficient must grow to 2� if the area theorem is fulfilled.

The energy required for this increase is taken from the spectral wings of the pulse; the

spectrum narrows and the pulse broadens. For the longest pulses there are no immediate

signs of a precursor and only the main signal can be clearly seen (although it’s not dis-

cernible in Fig. 4.1, there is an oscillating front with a relative peak amplitude 2:6 � 10�4

for T D 2T �
2 , and a front with relative peak amplitude 2:5 � 10�3 for T D 1:25T �

2 ). By
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FIG. 4.1: Amplitude (solid line) and phase (dashed line) of the exit pulses for input pulses with

durations T D 0:15T �
2 , 0:3T �

2 , 0:6T �
2 , 1:25T �

2 , and 2T �
2 . The dotted line for T D 0:6T �

2 shows a

hyperbolic secant fit to the main pulse, displaced vertically for enhanced readability. The y-axis is

normalized against the individual input peak Rabi frequencies. The dots mark breakpoints used

for separation of the precursor and the main pulse.

curve fitting a hyperbolic secant shape �fit.�/ D A sechŒ.� � �0/=Tfit� to the numerical

results, we have confirmed that the main pulses (apart from T D 0:15T �
2 ) are hyper-

bolic secant pulses. The parameters that give the elevated dotted curve for T D 0:6T �
2 in

Fig. 4.1 are A=�0 D 0:189, �0 D 28:0 ns, and Tfit D 2:3 ns, and gives a pulse velocity

vg � c=106 and area � � 2� . The pulse velocity is estimated from the peak delay �0
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and is given by vg D c=.1C c�0=L/. As the initial pulse duration decreases and the en-

ergy increases, there are clearer signs of a pulse propagating at a velocity close to c with

the trailing main pulse propagating at a lower velocity. For the shortest of these pulses

(T D 0:15T �
2 ), we cannot distinguish between the main pulse and the precursor.

Figure 4.2 shows a comparison between the computer calculated pulse area and the

area evolution as predicted by the pulse area theorem. We find that the area theorem agrees

very well with our numerical solutions. Note that although T < T *
2 the area theorem

accurately describes the pulse evolution since the conditions of resonance, zero chirp,

and symmetric line broadening are fulfilled. We also mention a rederivation of the area

theorem by Eberly [102], who showed that the pulse area theorem holds even for chirped

pulses, provided that the inequality T 
 T *
2 is fulfilled.
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FIG. 4.2: Comparison between the area theorem and numerical solutions in Fig. 4.1. The area

predicted by the pulse area theorem for an initial area of 1:1� overlaps with the calculated area

from the computer simulations.

Note that the existence of Doppler broadening is not required for the area theorem per

se, but that the dynamic evolution from an initial Gaussian pulse to a hyperbolic secant

envelope will generally depend on its presence. In the language of IST theory [38, 39]

the initial pulse envelope decomposes into a set of scattering eigenvalues. One part of

this spectrum is discrete; these eigenvalues correspond to optical solitons and propagate

without change through the medium. The other part of the spectrum is continuous; this part

of the spectrum is ”radiation”, representing energy that will be absorbed by the medium

as the pulse moves through it. For an inhomogeneous broadened medium T *
2 � T this

absorption is very efficient and the radiation part of the spectrum is rapidly removed during

the first few Beer lengths, and only the discrete spectrum can propagate long distances.

Note that in this language solitons are not actually created; they are already present in

the initial pulse and emerge when the inhomogeneous medium has peeled away all the



4.3. GAUSSIAN EXCITATION 59

”radiation” of the initial pulse. Each of the optical precursors observed in Fig. 4.1 is

”radiation”, and will eventually be completely absorbed by the medium. Overall, we

thus understand that the role of Doppler broadening is to smooth out the pulse evolution,

eliminating any ringing preceding or trailing the 2� soliton. This is the reason why a

precursor may be observed for T D 0:3T *
2 but not T D 2T *

2 . In the latter case Doppler

broadening is sufficiently effective to entirely eliminate the forerunner before temporal

separation occurs.

To investigate linearity, spectrum, and pulse area of the precursors in Fig. 4.1, we

perform a frequency analysis of these pulses. The field is split into two contributions,

�.�;L/ D �p.�; L/ C �2�.�; L/, where �p.�; L/ is the precursor pulse, defined as

�.�;L/ up to the breakpoints shown in Fig. 4.1 and zero otherwise. The main pulse

is denoted by �2�.�; L/ and is zero for all times before the breakpoint, and equal to

�.�;L/ for times after. This decomposition of the electric field is artificial and can only

be performed once the temporal separation between �p and �2� is unambiguous. The

separation occurs in all of our computer simulations except when the input pulse duration

becomes much shorter than T �
2 . For example, there is no clear distinction between the

precursor and the main signal for T D 0:15T �
2 in Fig. 4.1 after 32 Beer lengths, but we

have verified that there is after a distance of 60 Beer lengths.

The top panel in Fig. 4.3 shows the spatiotemporal reshaping of the initial Gaussian

pulse with duration T D 0:6T *
2 as it propagates through the medium. The horizontal axis

shows the pulse delay time � and the vertical axis shows the propagation depth ´ in units of

the Beer’s length. The bottom panel in Fig. 4.3 shows the spectrum of the precursor (solid

line) and the main pulse (dashed line) at the exit face of the material, plotted together with

the initial pulse spectrum (dotted line) and the inhomogeneous lineshape g.�/ (dashed-

dotted line). It is evident that the main pulse is indeed a 2� hyperbolic secant pulse by the

time it exits the material. The precursor itself is seen to be a 0� pulse, which is evidenced

by a vanishing DC Fourier coefficient. The spectral contents of the precursor are located

primarily in the wings of the absorption line. We find that the the main pulse and the fore-

runner are well separated after a propagation distance ˛0´ � 16. Moreover, the precursor

propagates along � � 0, indicating that it propagates approximately with velocity c, sub-

stantially faster than the main pulse which propagates with group velocity vg � c=106.

We observe also that the temporal beats of the precursor are occuring more rapidly with

increasing propagation distance. The physical explanation of this is that the absorption is

stronger closer to the line center so that with increasing propagation depth, the two spec-

tral bumps of the precursor move further apart. The precursor observed here is similar to

the 0� pulse first suggested by Crisp [30] (later experimentally observed by Rothenberg

et al. [103]); it is linear, located around the wings of the absorption band, shows temporal

beats, is slowly decaying, and has a 0� area. In fact, the connection between traditional
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FIG. 4.3: Top panel: Reshaping of a Gaussian input pulse with duration T D 0:6T �
2 and initial

area 1:1� . The color coding shows the normalized amplitude of the field. Bottom panel: Spectral

magnitude of the exit pulse after propagating a distance ˛0L D 32. The solid line shows the

spectrum of the precursor, the dashed line the spectrum of the soliton, and the dotted line shows

the spectrum of the initial Gaussian pulse. The dashed-dotted line shows the inhomogeneous

absorption line of the medium.

optical precursors and 0� pulses has already been established in the literature (see e.g.

Jeong and Österberg [104] and references therein). We have also verified that after the

precursor and the main signal begin to separate around ˛0´ � 8, the maximum population

transfer caused by the precursor is less than 2:5% and occurs for atoms that are detuned

approximately 675 MHz from the line center (i.e. where the spectral magnitude of the pre-

cursor is largest). Hence, this precursor approximately interacts linearly with the material.

This is not surprising since the amplitude of the precursor is in the linear regime, as noted

by both Macke and Ségard [98] and Crisp [99]. Eventually, for a material with sufficient

optical depth the precursor is completely absorbed by the detuned atoms, and they are left

in an excited state. Due to the 0� area of the precursor, the atoms on the line center are

essentially unaffected by the precursor passage.

We have confirmed that when the input pulse duration becomes longer than T �



4.3. GAUSSIAN EXCITATION 61

0

8

16

24

32
˛

0
´

�0:2

0

0:2

0:4

0:6

0:8

1

0 5 10 15 20 25

�2

�1

0

1

2

� (ns)

�
=
.2
�
/

(G
H

z)

�1

�0:5

0

0:5

1
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2

and area �0 D 1:1� . The color coding shows the normalized amplitude of the field. Bottom

panel: Excitation of the absorption line at ˛0L D 32. The color coding shows the inversion

%�;22.�; L/ � %�;11.�; L/, the solid line shows the exit pulse and the dashed line shows g.�/
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0:6T *
2 , even less population is transferred during the precursor passage. However, when

the initial pulse duration becomes shorter, the precursor becomes sufficiently strong to

excite the red and blue wings of the absorption line; that is, the interaction between the

precursor pulse and the medium becomes nonlinear. The top panel in Fig. 4.4 shows

the spatiotemporal reshaping of a pulse with T D 0:3T *
2 , analogous to the top panel in

Fig. 4.3. The color-coding in the bottom panel in Fig. 4.4 shows the material inversion

%�;22.�; L/ � %�;11.�; L/ for a time window large enough to contain the precursor and

the main pulse, and for a range of � sufficiently broad to contain the entire absorption

line. The solid line shows the pulse plotted against the horizontal axis, and the dashed line

shows g.�/. We find that the precursor pulse excites the blue and red wings of the absorp-

tion line, and that the population transfer is actually quite high; Up to 30% of the atoms

at Doppler detuning �=.2�/ � 1 GHz are transferred to state j2i during the precursor

passage. Although the relative atomic density at this detuning is only 1%, Fig. 4.4 shows

that the McCall-Hahn solution is very stable against these perturbations. It is clear that the

detuned atoms are prepared by the forerunner to a certain degree, but that this preparation
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affects the soliton solution to a minor degree. It is readily seen that the 2� pulse interacts

also with the pre-excited atoms, which is observed as ringing along the vertical coordinate

� for � � 12 ns in the bottom panel of Fig. 4.4. The pre-excited atoms are returned to

their precursor-prepared state after the main pulse has completely passed.

4.4 Box-car excitation

Next, we consider resonant excitation with box-car input pulses

�.�; 0/ D
8<:0; j� j > T=2
�0; � � T=2:

(4.4)

The input pulse duration is taken as T D T *
2 and the input area as �0 D 1:1� . Initially,

the pulse spectrum has several sidelobes (see Fig. 4.5) that are individually strong enough

to nonlinearly interact with the absorption wings of the medium. Figure 4.5 shows the

spectrum of the precursor, main pulse and input pulse for the boxcar pulse. At the exit

face of the medium we again find that the precursor occupies the spectral sidelobes at

˙1 GHz and that the main pulse area is 2� .

�4 �3 �2 �1 0 1 2 3 4
0

�

2�

Relative detuning (GHz)

�
.!
;L
/

0

0:5

1

g.�/

g.0/

�p

�2�

Input

g.�/

FIG. 4.5: Box-car pulse spectrum at the exit face. The duration and area of the input box-car

pulse duration are T D T �
2 and �0 D 1:1� . The solid line shows the spectrum of the precursor,

the dashed line the spectrum of the main pulse. For comparison, the dotted line shows the

input spectrum. The inhomogeneous lineshape (dashed-dotted line), normalized against g.0/, is

plotted against the right vertical axis.

Figure 4.6 depicts the reshaping of the boxcar pulse as it propagates through the

medium. Similarly to the smooth Gaussian input pulse, a precursor starts to separate

from the main pulse around ˛0´ � 8 and the two are temporally well-separated at the

exit face of the medium. There are two rapid oscillations on � D ˙T *
2 =2 that were not

present for the Gaussian input pulse. These two oscillations coincide with the initial unit
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FIG. 4.6: Pulse evolution of a boxcar input pulse with duration T D T �
2 and initial area �01:1� .

Top-panel: Spatio-temporal reshaping of the pulse, the horizontal axis indicates the pulse delay �

and the vertical axis indicates the propagation distance in units of ˛�1
0 . Bottom panel: Excitation

of the absorption line at the exit face. The solid line shows the exit pulse, and the dashed line

indicates the absorption line of the medium (height of both lines are in arbitrary units). The color

coding indicates the material inversion %�;22.�; L/ � %�;11.�; L/.

steps of the input pulse, showing that the pulse fronts propagate at the speed of light in

vacuum. In most other aspects, this precursor shows similar qualitative behaviour as for

the Gaussian input pulse: the main pulse is a hyperbolic secant with area 2� , the precursor

has 0� area, the frequency pushing of the lobes closest to resonance persists, and neither

the precursor or the main pulse are phase modulated. The bottom panel in Fig. 4.6 shows

that the precursor excites detuned atoms �=.2�/ � ˙1 GHz and �=.2�/ � ˙3 GHz,

which coincides with the two closest lobes in�p.!;L/. However, the low atomic density

at the 3 GHz detuning ensures that these atoms contribute little or nothing to the pulse

evolution. We also remark that the box-car pulse produces much larger precursors than

Gaussian pulses do. In particular, our simulations show that using a boxcar pulse with

duration �0 D 2T �
2 and area 1:1� produces a precursor with a peak amplitude � 0:95�0,

while for a Gaussian pulse with comparable pulse duration the precursor amplitude was
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negligible (see Fig. 4.1). The reason is that the two rapid oscillations at the leading and

trailing edges of the box-car input pulse will generally persist with increasing propagation

distance because the active electron has a non-zero inertial mass, and therefore cannot

respond to the infinitely fast oscillation. Precursors excited by step-function pulses are

therefore exceptionally long-lived.

A note on homogeneous broadening

In this study, pulse energy loss through spontaneous emission which occurs at a rate of

1=T1 is not incorporated. Typically, the emerging 2� soliton is not stable if it does not

exit the material well within T1, and can collapse to a 0� pulse [81]. The physical reason

for this collapse is that although spontaneous emission is negligible for the duration of

the pulse, small losses through spontaneous emission may accumulate during propagation

such that a significant amount of energy is lost during propagation. The process is shown

explicitly in Fig. 3.10. This results in temporal elongation of the pulse, and the pulse

will propagate with a lower group velocity. Eventually, the pulse will will elongate to

timescales comparable to the decoherence time and is then absorbed by the medium. This

effect could be included with an additional degree of theoretical complexity, but does

not provide further insight into the physics. Nevertheless, it places restrictions on the

materials and pulses one can use for the experimental verification of the above results. For

example, an input area of 1:1� may result in a soliton that is so slow that it loses most of

its energy through spontaneous emission before it exits the material. To satisfy the time

scale requirement �0 � T1, �0 being the peak delay, one might decide to use even shorter

pulses, in which case a colder vapor must also be considered.



Chapter 5

Pulsed conical emission

5.1 Introduction

When a propagating laser beam is tuned close to the blue (self-focusing) side of an alkali

metal D-line, a diffuse ring of light may in certain cases be observed around the central

beam spot (see Fig. 5.1). This is called conical emission (CE), a phenomenon surrounded

by much controversy since its first observation by Grischkowsky [1]. Conical emission

is a physically rich phenomenon which has been observed in several of the alkali metals,

such as potassium [1, 105, 106], sodium [107–111], rubidium [112], and cesium [113].

CE has also been observed in the alkaline earth metals barium [114] and strontium [32]

(near the 5s2 1S0 ! 5s5p 1P1 transition at 461 nm). The emission of a light cone is,

however, not unique to near-resonance propagation in vapors, and cone emission has been

observed as a non-resonant process in bulk media such as liquid water [115–117] and

glasses, where the results are adequately explained by the excitation of linear X-waves

[116–120]. Broadly speaking, X-waves are non-diffracting and non-dispersive solutions

to the ubiquitous nonlinear Schrödinger equation; they are invariant in the propagation

coordinate and describe cylindrically traveling modes with a prominent X-profile in the

angular-frequency spectrum.

In the alkali and alkaline earth metals, near-resonant cone emission has been observed

over a wide range of experimentally adjustable parameters. In most experiments per-

formed when the laser beam is tuned to the blue side of resonance, self-focusing of the

laser beam is observed. Presently, self-focusing is generally believed to be necessary for

conical emission. Experiments are performed using either continuous wave (cw) laser

beams or pulsed lasers. For pulsed excitation, CE has been observed for pulse dura-

tions ranging from several nanoseconds down to only 100 fs. It is clear, particularly

in the picosecond and femtosecond regimes, that coherence may play a central part in

65
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the spatial and temporal evolution of the pulse. Moreover, pulsed CE experiments have

shown that conical emission is observable over a range of detunings �. In the nanosec-

ond pulse experiments by Paul et al. [32], cone emission was observed in the range

�=.2�/ 2 Œ100 GHz; 270 GHz�, in the picosecond experiments by Sarkisyan et al. [105]

�=.2�/ 2 Œ100 GHz; 400 GHz�, and in the femtosecond experiments by Vaičaitis and

Paulikas [110] �=.2�/ 2 Œ10 THz; 40 THz�. In practically all pulsed CE experiments in

alkali metal vapors where a cone is observed, the central frequency of the cone emission

is red-detuned with respect to the atomic resonance frequency. Moreover, in most cases

the cone and the laser beam are observed roughly symmetrically around the resonance

frequency, i.e. !laser�� D !CEC�. In addition to the detuning�, CE is observable over

a range of densities N . Typically, the atomic density in CE experiments lies somewhere

in the 1020� 1022 m�3 range. Moreover, sufficient optical depth is required for observing

CE, indicating that cone emission is a propagation phenomenon. In experiments, typi-

cal propagation lengths are L D 1 � 20 cm depending on the investigated elements, the

density N , and the detuning �.

Pump beam

Vapor cell

Cone emission

Detector screen

D1

D2

Laser

FIG. 5.1: Conical emission sketch. A laser tuned to the blue (self-focusing) side of one (or both)

of the D-lines generates a sideband at longer wavelengths propagating conically with respect to

the optical axis.

On a superficial level, conical emission is still a controversial subject because no the-

ory, or numerical calculations, have been able to predict the experimentally observed an-

gular structure that appears when a pulse is tuned to the self-focusing side of a one-photon

transition. In the continuous-wave regime cone emission appears to be reasonably well ex-

plained by four-wave mixing within a quasi-trapped light filament, but the pulsed regime

has withstood theoretical treatments. The problem is rooted in the complexity of the equa-

tions of motion to which no analytic solutions are known, and which require a supercom-
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puter for numerical analysis. However, a computational approach opens up the possibility

of investigating the spatiotemporal reshaping of the pulse in the interior of the medium,

and is definitely called for.

In this chapter we numerically investigate, with two objectives in mind, conical emis-

sion in atomic sodium and rubidium. Firstly, we formulate a computational algorithm

based on the RMB equations for investigating three-dimensional propagation of few-cycle

laser pulses in multi-level media, thereby mitigating the shortcomings of the MB equa-

tions, which are computationally expensive due to the presence of bi-directional wave

propagation. Secondly, we apply this numerical integrator to blue-detuned propagation in

atomic sodium in order to highlight new features of cone emission. Sodium is chosen as

a model medium in the femtosecond regime because the fine structure splitting of the 3p

orbital is small, around 500 GHz, allowing degenerate treatment of the D1 and D2 lines

for light pulses shorter than 2 ps. For longer pulses which resolve both absorption lines,

the interaction with both lines may result in the emission of multiple cones [121]. Based

on the inhomogeneously broadened paraxial SIT equations, we will also examine the pi-

cosecond regime, in which case we investigate propagation through rubidium. 87Rb is

chosen because picosecond pulses, whose bandwidths are on the order of tens of GHz or

smaller, cannot excite both the 5P3=2 and 5P1=2 levels since the fine structure splitting is

over 7 THz.

This chapter is organized as follows. In the subsequent section we first provide brief

summaries of the most commonly cited models of conical emission. We proceed by pre-

senting a numerical method for the RMB equations in Sec. 5.3. A multi-level sodium

model is then introduced in Sec. 5.4 and explicit computer solutions are discussed in

Sec. 5.5. We also compare these results with the predictions of the paraxial SIT model

in Sec. 5.5.5. It will be shown that two-level theory is not quantitatively adequate in the

femtosecond regime. In Sec. 5.6 we analyze, using the paraxial SIT equations, the inhomo-

geneously broadened picosecond regime for resonant, red- and blue-detuned pulses prop-

agating in atomic rubidium. Finally, we summarize the results of this chapter in Sec. 5.7.

5.2 Conical emission models

Presently, the most complete descriptions of conical emission are those due to Valley et al.

[122], Harter and Boyd [123], and Paul et al. [124]. Valley et al. [122] investigated cone

emission for continuous-wave (cw) laser beams under steady state conditions. A brief

summary of this model is as follows: The pump beam at !laser is, due to a careful bal-

ance between diffraction and self-focusing, quasi-trapped during propagation through the

medium. The term quasi-trapped implies that the beam is trapped into a filament whose

radius oscillates with propagation distance, but which is otherwise smaller than what is
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expected from diffraction. Generation of new frequencies !3 > !laser occurs through Ra-

main gain amplification of the resonance fluorescence, and four-wave mixing between !3

and the pump wave results in a red sideband at !4 D 2!laser � !3 < !laser. The field

envelope A4 at !4 is split into two contributions A4L and A4R by optically Stark-shifted

absorption, and the field envelope at !3 is divided into A3L and A3R by a four-wave mix-

ing coupling. The propagation of the A4L component through the spatially dependent

refractive index prepared by the pump beam results in the formation of a cone.

The model by Harter and Boyd [123, 125] is based on resonantly enhanced four-wave

mixing of the Rabi sidebands of a two-level atom [126]. In the Harter-Boyd model, the

pump beam is presumed to be trapped or quasi-trapped through self-action effects into

single- or multiple light filaments that propagate along the vapor. Generation of new fre-

quencies at !3 D !laser Cƒ occurs through the three-photon effect (i.e. due to transitions

between the dressed atomic states) inside the saturated filaments. Here, ƒ is the general-

ized Rabi frequency

ƒ D
q
�2 C�2

: (5.1)

Emission at !4 D !laser � ƒ is presumed to occur through a phase-matched four-wave

mixing process between the pump beam and the sideband at !laser Cƒ. Due to saturation

inside the filament, the sideband at !4 is anti-guided and ejected from the filament at an

angle predicted by Snell’s law, resulting in the apperance of a cone.

Perhaps the most complete model of CE is that due to Paul et al. [124]. The authors

solved the two-level density matrix equations in the dressed atomic frame for cylindrically

symmetric self-trapped beams. The calculations are performed in terms of the pump beam

and the red and blue Rabi sidebands, and include both Doppler broadening and transverse

diffraction. The authors assert that their model is valid also for beam breakup into multiple

filaments, but for comparison with experimental results [32] they presume that only a

single cylindrically symmetric light filament is formed inside the vapor. Computational

limitations prevented Paul et al. [124] from obtaining time-dependent solutions of their

model, and they analyze CE in the steady state regime. The observed gain in their model

did not agree with the experimentally observed gains for pulsed experiments, and the

authors conjectured that the low gain predicted theoretically is due to the neglection of

higher-order radial modes of the laser beam.

For pulsed CE there is a serious problem with the four-wave mixing model of cone

emission, which predicts as much scattering into the blue sideband as into the red, be-

cause the blue sideband required for phase matching is not observed experimentally [127].

Figure 5.2 shows a typical far-field conical emission spectrum, measured in terms of the

angle � each frequency component makes with the propagation axis. The concentration of

contour lines surrounding the region � � 18:5 mrad, �r ��l � 225 GHz indicates conical
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emission. Notably, no blue sideband is observed propagating either axially or conically.

Presently, the most viable explanation of pulsed CE appears to be that due to Crenshaw

and Cantrell [128, 129], who numerically investigated the propagation of a strong laser

beam tuned 60 GHz above a one-photon resonance in two-level approximation. The prop-

agation distance in their computer simulations is sufficiently short so that self-focusing

effects, although incorporated into their calculations, had an almost negligible effect on

propagation. Their numerical calculations show that when a transverse variation is incor-

porated into the initial conditions for an 8� pulse propagating off resonance, temporal

pulse breakup leads to a transverse spatial variation which they argue is CE. The some-

what angularly isolated frequency components asserted by Crenshaw and Cantrell [128]

to be cone emission, were detuned to the blue side of the resonance, in direct conflict with

experimental results. Presumably, computational limitations at the time prevented prop-

agating the pulse a sufficiently long distance to place a sideband on the red side of the

resonance.

FIG. 5.2: From Paul et al. [32] with permission. The data show the angular-frequency spectrum

after propagation through a strontium vapor. The contour lines surrounding the region � �
18:5 mrad, �r � �l � 225 GHz indicates cone emission. The numbers in the top right corner

indicate the initial detuning (130 GHz), the beam radius (30 
m), the cone energy (540 pJ), and

the input pulse energy (46 nJ).

Another model that has attracted considerable attention is the Cherenkov radiation

model [130–132]. According to this model, saturation of atoms inside the filament causes

the appearance of a traveling polarization field at velocity c=n.!laser/, where n.!laser/ is

the index of refraction of the pump laser. The induced polarization produces radiation at

the Rabi sideband !laser�ƒ which propagates with velocity c=n.!laser�ƒ/. The velocity

difference between the polarization wave and the laser beam is responsible for the cone



70 CHAPTER 5. PULSED CONICAL EMISSION

emission of the Rabi sideband, with a cone angle cos �CE D n.!laser/
n.!laser�ƒ/

. However, these

suggestions do not solve the mystery of the missing sideband [127].

Cone emission may be observed also under different experimental conditions, and

we now mention a few experiments where the results are adequately explained by exist-

ing theoretical models. Kauranen et al. [108] have investigated two-beam-excited conical

emission in a sodium vapor, and the experimental data are well explained by presuming

that the medium responds as a Kerr material where the cone emission then occurs as a

result of a perfectly phase-matched four-wave mixing process. Krasinski et al. [107] have

investigated the propagation of light beams tuned close to the 3s ! 4d two-photon tran-

sition in atomic sodium, which resulted in cone emission at frequencies near the 4d ! 3p

and 3p ! 3s transitions. The propagation of the beam through the medium occured with-

out influence from self-focusing, and the data were in excellent agreement with theoretical

predictions based on a four-wave mixing model.

Self-focusing is generally believed to participate in the formation of the light cone.

Provided that the input beam does not saturate the medium, self-focusing becomes possi-

ble if the input power exceeds the critical power

Pcr D K� c2

!2
cn2

; (5.2)

where !c is the carrier frequency of the input beam, K � 1:896 for Gaussian beams, and

n2 D N j
12j2
2c	2

0

�¯��3 (5.3)

is the Kerr refractive index [133]. These expressions are valid provided that saturation

and linear absorption are negligible, the two-level restriction holds, and homogeneous

broadening dominate. In general, expressions for n2 and Pcr require averaging over the

Doppler velocity distribution [134] and incorporation of background absorption contribu-

tions [135]. The inclusion of both effects tends to increase critical power compared to

the predictions of Eq. (5.2). Nonetheless, even when these corrections are taken into ac-

count, n2 remains antisymmetric in the detuning �. The effective refractive index for a

continuous-wave beam is, by the Kerr effect, given by n.r/ D n0 C n2I.r/, where I.r/

is the beam intensity. For conventional laser beams I.r/ peaks at r D 0 and decreases

monotonically outwards in r , and in this case n.r/ becomes largest on the axis for lasers

tuned to the blue side, implying that the effective phase velocity on the axis is lower than

that in the radial periphery. Due to the difference in phase velocity in the different annu-

lar slices of the beam, the wave fronts develop a concave curvature during propagation,

quite analogous to the curvature that is induced by a convex lens. The process leads to

self-focusing. In certain limited cases self-focusing and diffraction may balance, leading
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to trapping of the beam. Evidently, on the red side of resonance both diffraction and the

Kerr effect act to expand the beam profile since n2 < 0.

Several pulsed CE experiments are performed in the coherent strong-field regime

where Rabi oscillations presumably take place. For alkali metal D-lines the transition

dipole moment is on the order of 2 � 10�29 Cm. Letting �0 be the input peak Rabi fre-

quency, estimated input intensities from experiments are then as follows: �0=� � 1 in

the experiments by Paul et al. [32]; �0=� � 1� 20 in the experiments by Sarkisyan et al.

[105]; �0=� � 1 in the experiments by Vaičaitis and Paulikas [110]. The inclusion of

self-focusing will tend to raise these values somewhat, and it is immediately apparant that

an analysis of alkali metal CE requires a Maxwell-Bloch approach rather than employing

models based on parametric wave amplification.

5.3 The RMB equations of motion

Before analyzing conical emission, we will briefly review a computational method for the

RMB equations. Recalling that direct Maxwell-Bloch models require a spatial resolution

finer than a wavelength, it is evident that the MB equations are incapable of generating reli-

able numerical solutions to the macroscopic propagation distances where conical emission

is observed. In the case of a medium L D 20 cm long and R D 3 mm wide, the numerical

grid necessitated by direct MB simulations consists of billions of grid points, ruling out

direct MB methods as a viable numerical approach. From a numerical point of view, one

might nonetheless argue that long-range propagation can be implemented in direct MB

simulations simply by adjusting the density N such that the desired propagation length

� NL is obtained. This conjecture is inconsistent with the underlying physics. Firstly,

the uni-directional condition "� 1may be broken when N becomes unrealistically large,

possibly leading to artificial macroscopic backpropagation in direct MB simulations. In

the transverse degrees of freedom increasing N implies decreasing the transverse dimen-

sions by a factor 1=
p
N if the same diffractive effects are considered. This compensation,

in conjuction with a much larger nonlinear polarization, may lead to artificial numerical

activation of the divergence term r.r �P/.
Analysis of conical emission is computationally tractable if one starts out from a prop-

agation equation rather than the full Maxwell equations. In the few-cycle regime, the

equations of motion are then the RMB equations, summarized by the first-order propaga-

tion equation [Eq. (3.35)] and the von Neumann equation,

@´E D c

2

�Z
�1

r2
?Ed� 0 � 1

2	0c
@�P; (5.4a)

i¯d� O� D
h
yH0 � O
E; O�

i
C i¯ yR; (5.4b)
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where O� is the N �N dimensional density operator describing the Bloch system. For def-

initeness, the laser pulse is taken to be linearly polarized in the xy-plane, and propagation

axis lies along C´. In the following we disregard inhomogeneous broadening, although

inhomogeneous damping is straightforwardly incorporated following the procedures sum-

marized in Sec. 3.4.

5.3.1 Numerical solutions to the RMB equations

The RMB equations are favored over the MB equations because they open up the possi-

bility of examining long-distance propagation of laser pulses whose duration may be as

short as a single cycle. The extreme bandwidths of single-cycle pulses imply that some

of the bandwidth constraints are implicit in the SIT equations are broken, implying that

additional energy eigenstates become participants in the laser dynamics. The matrix for-

malism employed for the optical Bloch equations in Sec. 3.4 is useful for describing such

media, and may be immediately coupled to Eq. (5.4a). To evaluate Eq. (5.4), we use the

Bloch equation solver summarized in Sec. 3.4, but replace the full Maxwell equations by

the first order propagation equation which is solved by a standard differential method.

Scaling and Liouville space

Firstly, Eq. (5.4) is scaled into a dimensionless set of equations where the quantities E and

O
 are of order unity, and the time and space coordinates are

� ! Ec
c

¯ � � �

�c

; (5.5a)

´! N
c

2	0c�cEc

; (5.5b)

r !
s

N
c

	0c2�2
cEc

r; (5.5c)

where 
c and Ec are characteristic constants. Next, only cylindrically symmetric beams

E.�; ´; r; '/ D E.�; ´; r/ are investigated. When the von Neumann equation is moved

into Liouville space (recall Sec. 3.4), the dimensionless equations of motion are

@´E D
�
1

r

@

@r
C @2

@r2

� �Z
�1

Ed� 0 � ⟪
ˇ̌ LL0

ˇ̌
�⟫ ; (5.6a)

id� j�⟫ D
�
LL0 CE LL1

�
j�⟫ : (5.6b)
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For completeness, we recall that the free Liouville operator LL0 and the interaction Liou-

ville operator E LL1 are

LL0 D i yH|

0 ˚
�
� yH0

�
C
X
k;l



O�kl ˝ O�kl � 1

2

� O�|

kl
O�kl

�˚ � O�|

kl
O�kl

��
; (5.7a)

LL1 D �i O
| ˚ .� O
/ : (5.7b)

Discretization

To solve Eq. (5.6) numerically, we apply second order differential Adams-Moulton and

Adams-Bashforth linear multistep methods for propagation along C´ together with finite

differences in the transverse coordinate. The numerical method applied for the integra-

tion of the Liouville equation along the temporal coordinate � is the same as for direct

Maxwell-Bloch simulations, with the important exception that staggered temporal grids

are no longer used. Discretized variables E.�; ´; r/ ! En
i;j and j�⟫ ! ˇ̌

�n
i;j⟫ are now

stored on the same computational grid

´i D i4´; (5.8a)

rj D j4r; (5.8b)

�n D n4�: (5.8c)

On a co-located temporal grid Eq. (3.70) does not apply. Instead, the integral is evaluated

using linear interpolation between the integration endpoints located at �nC1 and �n. This

yields
�nC1Z
�n

LLI

�
� 0
�

d� 0 � En CEnC1

2
LL14� (5.9)

for Eq. (3.70). Following the subsequent calculations in Sec. 3.4, the numerical update of

the density operator is performed according to

j�nC1⟫ D LU 1=2
0
LU nC1
I
LU 1=2
0 j�n⟫ ; (5.10)

where

LU nC1
I D exp

�
i
.EnC1 CEn/ O
4t

2

�*

˝ exp

�
i
.EnC1 CEn/ O
4t

2

�
: (5.11)

The first-order propagation equation is numerically evaluated by first approximating

the integral using Gaussian numerical quadrature,

�nC1Z
�1

Ed� 0 �
 

nX
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2
EnC1

i;j

!
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4� CO.4�2/;

(5.12)
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where E.� ! �1/ D 0 for physical pulses.

The radial grid is defined at grid points

rj D
�

j � 1
2

�
4r; j D 1; 2; : : : ; (5.13)

which avoids the singularity at r D 0 and the need for pole equations. The radial deriva-

tives are evaluated with 2nd order finite differences

1

r

@E

@r

ˇ̌̌̌n
i;j

� 1

rj

En
i;jC1 �En

i;j�1

24r CO
�4r2

�
; (5.14a)

@2E

@r2

ˇ̌̌̌n
i;j

� En
i;jC1 � 2En

i;j CEn
i;j�1

4r2
CO

�4r2
�
: (5.14b)

Evaluation of the radial derivatives on the grid point closest to the origin (r1 D 1
2
4r)

using 2nd order centered finite differences requires knowledge of the field variable in a

point directly across the origin. The system is closed by invoking cylindrical symmetry

on the centerline and by imposing a perfect electric conductor (PEC) boundary condition

[28] on the outer surface. Although the use of a PEC boundary condition result in re-

flection of outgoing waves, the computational domains used in the simulations below are

sufficiently large to prevent waves reaching the outer boundary, and therefore emulate an

open medium.

Numerical integration along the propagation coordinate ´ is performed with a second

order Adams-Moulton method (i.e. the implicit trapezoidal method), which together with

Eqs. (5.12) and (5.14) gives a rather lengthy expression for Eq. (5.6a):

�4´4�
44r2

�
1 � 4r

2rj

�
EnC1

iC1;j�1 C
�
1C 4´4�

24r2

�
EnC1

iC1;j �
4´4�
44r2

�
1C 4r

2rj

�
EnC1

iC1;jC1

D EnC1
i;j C

4�4´
4rj4r

 
†n

iC1;jC1 C†n
i;jC1 �†n

iC1;j�1 �†n
i;j�1 C

EnC1
i;jC1 �EnC1

i;j�1

2

!

C 4�4´
24r2

�
†n

iC1;jC1 C†n
i;jC1 � 2.†n

iC1;j C†n
i;j/C†n

iC1;j�1 C†n
i;j�1

�
C 4�4´

44r2

�
EnC1

i;jC1 � 2EnC1
i;j CEnC1

i;j�1

�
� 4´

2
⟪

ˇ̌ LL0

ˇ̌
�nC1

i;j C �nC1
iC1;j⟫: (5.15)

Equation (5.15) defines a triangular matrix equation AEu D Eb for the column vector Eu Dn
EnC1

iC1;j

o
, j D 1; 2; : : : and with Eb given by the right-hand side of Eq. (5.15). It is solvable

with the Thomas algorithm. Breaking with the quasi-3D model yields extra derivatives in

the azimuthal coordinate and will lead to a block tridiagonal linear system for the column

vector Eu D
n
EnC1

iC1;j;k

o
, j D 1; 2; : : :, k D 1; 2; : : : where k is the additional numerical

index associated with the azimuthal grid points. This system is solvable by the block

Thomas algorithm. Thus, for a given time step in Eq. (5.15) we progressively solve for Eu
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(containing the transverse unknowns) by stepping along the discrete coordinate i. The only

complication is that the terms ⟪

ˇ̌ LL0

ˇ̌
�nC1

iC1;j⟫, contained in Eb, are not known quantities,

calling for an iterative numerical scheme.

Equations (5.15) and 5.10 are coupled through the appearance of
ˇ̌
�nC1

iC1;j⟫ on the right-

hand side of Eq. (5.15) and EnC1
iC1;j implicitly via Eq. (5.11). To solve the coupled equation

set we impose a predictor-corrector method. This leads to the following procedure:

1. For a given n; i, obtain initial predictions for Eu and
ˇ̌̌
�nC1

iC1;j⟫ by an explicit update

of Eqs. (5.15) and (5.10). This entails to approximating
ˇ̌
�nC1

iC1;j⟫ �
ˇ̌
�nC1

i;j ⟫ and

EnC1
iC1;j � En

iC1;j in the right-hand sides of Eqs. (5.15) and (5.11), and then inverting

the equations.

2. Insert the predicted values into the right-hand sides of the same equations and ob-

tain corrected values for the unknown variables. This process is iterated until a

convergence criterion is met.

3. Step along i ! iC 1 until the entire spatial grid is updated, and then take another

temporal step n! nC 1.

5.3.2 Parallelization & Performance

Computer implementations using the formulation detailed above executes rapidly in the

plane wave, homogeneously broadened limit. With current computer facilities the execu-

tion time is usually on the order of a few seconds for two or three levels. However, numer-

ical parallelization is necessary for propagation in two or three spatial dimensions, partic-

ularly when inhomogeneous broadening is incorporated. Efficient computational scaling

may be achieved by distributing the Bloch equation calculations over a two-dimensional

numerical process grid, where the two dimensions are associated with the inhomogeneous

broadening variable and the radial variable, respectively. Each process in this grid is then

assigned an equally large chunk of the optical Bloch equations, and all calculations (i.e.

the inhomogeneous line average) are first performed locally over each chunk before the

simulation data are assembled globally. The datapoints in Fig. 5.3 indicate the wall clock

execution time for a two-level RMB simulation on a 200�200 spatial grid. Inhomogeneous

broadening is included, and the line is sampled at 256 different values of the inhomoge-

neous broadening variable. The computer simulation is otherwise propagated for 600 time

steps. In this computer implementation, two computing cores are reserved for updating

the propagation equation while the remaining cores are allocated to the Bloch equations.

Figure 5.3 shows the RMB equations scale very well numerically. One finds, for exam-

ple, that a 50% reduction in computation time is achieved by increasing the number of

processors from 64 to 128.
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FIG. 5.3: Scalability of the RMB equation solver. The horizontal axis shows the number of

computing cores assigned to the simulation, the vertical axis the wall-clock execution time in

seconds. The simulations are performed on an SGI Altix ICE X distributed memory cluster with

two 8-core Intel Sandy Bridge (2:6 GHz) processors on each node.

5.4 The multi-level RMB sodium model

Having addressed the numerical aspects of the RMB equations we are now in a position

to discuss the RMB sodium model in greater detail. One might expect that propagation of

ultrashort laser beams tuned further from resonance (> 1 THz) may enhance certain fea-

tures of CE. Rabi sidebands are then spectrallly placed further from the center frequency

of the pump beam, which might lead to clearer distinctions between self-phase modulated

spectral broadening and Rabi sideband generation. We will consider, numerically, the

propagation of 20 fs pulses detuned �=.2�/ D 23:5 THz from the 3s � 3p resonance at

589 nm of an atomic sodium vapor. At these conditions the sodium D1 and D2 lines are

approximately degenerate. Figure 5.4 shows the excitation diagram of the active electron

in a sodium atom, and this is the only electron that is assumed to respond to the external

laser field. Our sodium Bloch model incorporates the first 5 levels of the s, p, and d

orbitals for the active electron. The remaining 10 electrons are assumed to reside in the

1s22s22p6 configuration during the entire evolution, based on the presumption that they

are tightly bound to the nucleus. These electrons completely fill the inner orbitals and con-

stitute a spherically symmetric wavefunction. Hence, they do not affect the propagation

of the external laser field. In addition, fine and hyperfine splittings of the active electron

orbitals are disregarded, and the fine structure levels 32P3=2 and 32P1=2 are thus treated

as a single 3p orbital. We have not tested this approximation explicitly but anticipate that

it holds based on the different time scales involved. The fine structure splitting of the 3p

orbital is around 500 GHz, corresponding to a time constant of 2 ps, while the input pulse

is 100 times shorter.
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FIG. 5.4: Sodium energy levels for the first five s, p, and d orbitals in the single ac-

tive electron approximation. The ground state electronic configuration for atomic sodium is

1s22s22p63s 2S1=2. A few higher orbitals that are not regarded in our model are shown as

unlabeled horizontal lines. Fine and hyperfine levels are ignored. Near-resonant one- and two-

photon transitions are indicated with vertical arrows. The two curves shown at the top of the

bottom vertical arrow indicate the input pulse spectrum (dashed line) and the 3s � 3p absorption

line (solid line, assumed to be a Lorentzian with half width T�1
2 D 1 THz). The detailed D1

and D2 lines, shown in the lower right corner, are not plotted to scale. Data are obtained from

Sansonetti [136], Kelleher and Podobedova [137], and Steck [138].

In the femtosecond regime Doppler broadening may be disregarded because the pulse

duration is orders of magnitude shorter than T *
2 . Spectrally, the pulse bandwidth is on

the order of several THz while the Doppler half width is usually on the order of a few

GHz. Next, the energy levels are arranged in order of increasing eigenstate energies of the

s orbitals first, then for p orbitals, and then finally for the d orbitals. With this ordering
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the 15�15 dimensional free Hamiltonian operator and dipole moment operator (projected

onto the polarization axis) become

yH0 D

0B@¯ O!s
O0 O0

O0 ¯ O!p
O0

O0 O0 ¯ O!d

1CA ; (5.16a)

O
 D

0B@ O0 O
s!p
O0

O
�
s!p

O0 O
p!d

O0 O
�

p!d
O0

1CA ; (5.16b)

where O0 is a 5 � 5 dimensional zero matrix. O!s is the diagonal matrix

O!s D diag.!3s; !4s; !5s; !6s; !7s/ (5.17)

which contains the eigenstate energies (in units of ¯) of the first five s orbitals. In the same

way, O!p and O!d contain the eigenstate energies of the p and d orbitals. By convention

!3s D 0 is taken as the reference energy. The partial dipole moment operators O
s!p and

O
p!d are each in the form

O
q!r D

0BBBBBB@

3q;3r 
3q;4r 
3q;5r 
3q;6r 
3q;7r


4q;3r 
4q;4r 
4q;5r 
4q;6r 
4q;7r


5q;3r 
5q;4r 
5q;5r 
5q;6r 
5q;7r


6q;3r 
6q;4r 
6q;5r 
6q;6r 
6q;7r


7q;3r 
7q;4r 
7q;5r 
7q;6r 
7q;7r

1CCCCCCA ; (5.18)

where q D s; r D p, or q D p; r D d . The transition dipole moments 
k
i are obtained

from the oscillator strengths [133]

fkl D 2me!kl j
kl j2
3¯q2

e

; (5.19)

whereme is the electron rest mass, !kl the transition frequency, and qe the electron charge.

In our level model fine and hyperfine states are grouped into single levels, and an effective

dipole moment is obtained for the composite transitions. In this way one avoids dealing

with problematically large Bloch dimensions while retaining experimentally observed line

intensities. Oscillator strengths and transition frequencies are taken from Sansonetti [136]

and Kelleher and Podobedova [137]. For the 3s � 3p multiplet the obtained transition

dipole moment is j
3s;3pj � 3:66 � 10�29 Cm.

Incorporation of homogeneous broadening follows Eq. (2.13) where the population

relaxation rates �kl (k ¤ l) are taken from the Einstein A coefficients [139]

Akl D
!3

kl
gkj
kl j2

3�	0¯c3gl

; (5.20)
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are obtained from Sansonetti [136] and Kelleher and Podobedova [137]. Here, gk and gl

are the degeneracies of the respective multiplet levels.

5.5 Computational results of femtosecond CE in atomic sodium

In this subsection we report on computational results where femtosecond conical emission

in atomic sodium is observed. We suppose a medium of length L D 20 cm and density

N D 5 � 1021 m�3. Under these conditions the forward propagation approximation is

valid and is quantitatively justified using typical numbers for sodium: assuming a 2�

pulse with a duration of 50 fs propagating resonantly with the 3s � 3p transition at the

above density yields Ec � 108 V/m and Pc � N
3s;3p � 10�7 Cm�2. This corresponds

to " � 10�4 and the one-way approximation is therefore justified. Interaction with a self-

induced backward mode can therefore be disregarded. Out of computational necessity we

take the decoherence time T2 D 1 ps for each coherence. The equations are numerically

integrated for a time 2T2 D 2 ps which is sufficiently long for all pulse transients to die out.

Disregarding linear absorption and Doppler broadening, the numbers above correspond to

a critical power

Pcr � 29 W: (5.21)

We impose an input pulse with a Gaussian profile in time and space,

E.�; r/ D E0 exp

�
� �2

2T 2
� r2

2R2

�
sin.!c�/: (5.22)

The pulse duration, waist, and carrier are T D 20 fs, R D 100 
m, and !c D 1:065� �
1015 rad/s

�

 D 563:3 nm

�
. The time-averaged input intensity on the centerline is I0 D

	0cjE0j2=2, whereas the input peak power is

P0 D 	0c�R
2jE0j2: (5.23)

Equation (5.22) yields a beam divergence angle

�d D arctan

�
RL.!c/

L

�
� 1:47 mrad;

(5.24)

where

RL.!/ D R
r
1C c2L2

!2R4
(5.25)

is the diffraction-induced beam waist for each frequency component ! in the absence of

the material. The associated Rayleigh length is ´R.!/ D !R2=c. These expression are

obtained by solving Eq. (5.4) analytically for propagation in vacuum with Eq. (5.22) as
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the initial condition [see Eq. (6.3)]. Comparatively small beam waists are used in order

to excite only single filaments in the sodium vapor. For comparison, the femtosecond

experiments by Vaičaitis and Gaižauskas [109] employed pulse energies of 0:05 mJ, which

is almost 100 times larger than what is applied in the computer simulations presented

below. Higher input beam waists or energies are not a problem for the RMB equations

per se, but multiple filaments may form inside the vapor for large input powers. The

computational results assume cylindrical symmetry and would not be very meaningful at

such conditions.

The parameters above correspond to a spectral pulse bandwidth (FWHM) of 623 cm�1

(18:7 THz). The low frequency wing measured at the half width half maximum (HWHM)

of the pulse is located at 17129 cm�1. The bandwidth of the 3s � 3p absorption line is

T �1
2 D 1 THz, and the relative detuning between the low frequency wing of the pulse and

the high frequency wing of the 3s � 3p absorption line centered 16967 cm�1 is approx-

imately 100 cm�1 (3 THz). At this laser detuning linear absorption, and its contribution

to the critical power Pcr, is non-negligible. The relative detuning between the center fre-

quency of the pulse and the absorption line is 784 cm�1
�
�=.2�/ � 23:5 THz

�
. The

spectral placements and bandwidths of the input pulse and the absorption line (assumed

to be a Lorentzian) are indicated in Fig. 5.4. At the wavelengths considered the input

pulse spectrum also lies close to the resonantly enhanced 3s� 6s and 3s� 4d two-photon

transitions. The relative two-photon detunings are �866cm�1 (�26 THz) for the 3s � 6s
transition and 957 cm�1 (28:7 THz) for the 3s � 4d transition, respectively. With the ex-

ception of changing the input amplitude E0, these parameters are retained in the computer

simulations below.

5.5.1 Linear propagation regime

Figure 5.5 shows the output from a computer solution in the linear propagation regime.

The peak amplitude of the input pulse is taken as E0 D 4 � 104 V/m, corresponding to a

pulse energy of a few femtojoules, an input intensity I0 D 	0cjE0j2=2 � 0:42 kW/cm2,

and an input peak power of P0 D I0�R
2 � 66 mW. The corresponding pulse area on

the centerline is �0 � 10�4. The solid line in Fig. 5.5(a) shows the input pulse envelope

(in units of E0) on the centerline. The dashed line, plotted against the right vertical axis,

shows a corresponding envelope for the output pulse at ´ D L. The normalized pulse

envelopes are obtained as the magnitude of the analytic signal,

u.�; ´; r/ D 1

E0

ˇ̌̌̌
E.�; ´; r/C i

��
? E.�; ´; r/

ˇ̌̌̌
; (5.26)

where the star symbol (?) denotes a spectral convolution. Corresponding centerline input

(solid line) and output (dashed line) pulse spectra are plotted in Fig. 5.5(b) as a function of
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wavelength 
. The curves are normalized against the spectral peak magnitude of the input

pulse. The input (output) spectrum is plotted against the left (right) vertical axis, and the

position of the 3p � 3s resonance relative to the pulse spectra is also indicated.

Figure 5.5(c) shows the energy transmission (solid line) through each cross-section ´

of the material. The dashed line shows the on-axis fluence and is plotted against the right

vertical axis. The two curves are individually normalized against the input energy and

the input fluence on the centerline. This kind of normalization is used in all plots below

(field, spectrum, fluence, energy etc.). The fluence is numerically calculated following

Eq. (3.43), which under the simplifying conditions of linear polarization, cylindrical sym-

metry and comparatively large beam waist becomes

F´.´; r/ D
1Z

�1

	0c jE.!; ´; r/j2 d! (5.27a)

Fr .´; r/ D
1Z

�1

i	0c
2

2!

�
E*.!; ´; r/

@E.!; ´; r/

@r
�E.!; ´; r/@E

*.!; ´; r/

@r

�
d!: (5.27b)

Moreover, following Eq. (3.40) the components of the ”Poynting vector” are given by the

integrands in Eq. (5.27).

Standard propagation features are observed in Fig. 5.5. Firstly, the temporal broaden-

ing of the on-axis pulse seen in Fig. 5.5(a) is due to strong color dispersion in the neighbor-

hood of the 3s � 3p absorption line(s). Secondly, pushing of the pulse spectrum towards

blue frequencies is due to the combined effects of spectrally asymmetric linear absorption

and diffraction. Frequency components in the red wing have a shorter Rayleigh length

[recall Eq. (5.24)] than components in the blue, and are detuned less from resonance. This

results in both stronger diffraction and absorption of the red part of the field spectrum.

A comparison of the data in Figs. 5.5(a) and (b) shows that the width of the input and

output spectra are comparable, but the temporal durations are different. Because the input

pulse was transform limited this is equivalent to pulse chirping, which is expected this

close to resonance. Thirdly, the decrease in axial fluence is due to the combined effects of

absorption and diffraction. For reference, at these parameters the total linear transmission

throughout the medium is 47%.

More careful examination of the remaining simulation data for different values of r

and ´ shows that the radial components of the fluence and Poynting vectors are always

positive, and the pulse evolution is therefore diffractive for the entire propagation dis-

tance. In short, for this simulation we observe a diffractive expansion of the pulse waist

during propagation, a frequency chirp, a frequency push to the blue, linear absorption, and

decreasing fluence. The maximum population of the 3p level is negligible (< 0:1%) and

the evolution is therefore linear through the medium.
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FIG. 5.5: Computer simulation with N D 5�1015 cm�3,E0 D 4�104 V/m (I0 � 0:21 kW/cm2),

pulse energy of 4:73 femtojoules. (a) On-axis input pulse envelope (solid line), plotted against

the left vertical axis. The dashed line shows the on-axis pulse envelope at the output facet and

is plotted against the right vertical axis. (b) Normalized input and output pulse spectra on the

centerline. The on-axis input spectrum (solid line) is plotted against the left vertical axis, the

on-axis output spectrum (dashed line) is plotted against the right vertical axis. (c) The solid line

shows the normalized energy transmission through each cross-section ´ of the vapor and is

plotted against the left vertical axis. The dashed line shows the centerline longitudinal fluence

F´.´; r D 0/, plotted against the right vertical axis.

5.5.2 Nonlinear propagation regime

With sufficiently high input powers propagation through the vapor results in cone emis-

sion. Figures 5.6(A)-(C) show the normalized fluence component F´.L; r/ on a loga-

rithmic color scale at the output facet of the medium for three different input intensities

(A) 0:21 kW/cm2, (B) 21 GW/cm2, and (C) 42 GW/cm2. Case (A) refers to the linear

propagation regime and is used as a reference for the nonliner cases (B) and (C). Key

quantities, such as input power, intensity, and area, are summarized in table 5.1 for the

various pulses. The area is defined by the integral of the Gaussian envelope function,
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�0 D �3s;3pE0

¯

R1
�1 e��2=.2T 2/d� .

TABLE 5.1: Simulation reference data (input).

Simulation E0 P0=Pcr I0 �0=�

(A) 4 � 104 V/m � 10�7 0:21 kW/cm2 � 10�4

(B) 4 � 108 V/m � 14:1 21 GW/cm2 2:2

(C) 4
p
2 � 108 V/m � 28:2 42 GW/cm2 3:1

The simulation data in Fig. 5.6 are plotted on a logarithmic scale over 4 decades for

the various figures, and individual datasets are normalized against the output centerline

fluence for the specific simulation. The color range is different for each figure and chosen

such that the brightest colors indicate the highest longitudinal fluence F´ on the output

facet, and darker colors indicate a lower axial fluence. In each plot black regions indicate

regions where F´ is 104 times smaller than the maximum output fluence. The input pulse

amplitudes and energies used in each simulation are indicated in the caption. The data are

plotted as a function of the distance r away from the symmetry axis. Figures 5.6(B) and

(C) should be compared to Fig. 5.6(A) which shows the fluence distribution at the output

facet in the linear propagation regime. Qualitatively, concentric rings appear around the

central beam spot and demonstrates that CE has occured somewhere in the material. Visual

examination of the central spot shows that its diameter increases with increased input pulse

energy. Strictly speaking, the existence of a diffuse beam spot on the output facet does not

rule out CE which is most reasonably described in the far-field in terms of the angular-

frequency spectrum. We will address this spectrum later. Note that our computer code does

not solve for the azimuthal coordinate and the plots in Fig. 5.6 have been reconstructed by

invoking cylindrical symmetry. We observe from the data in Figs. 5.6(B),(C) that the CE

ring is located slightly further out in the radial direction for higher pulse energies.

Finer features of the radial profile at the output face of the medium are shown in

Fig. 5.7 [the simulation data are otherwise the same as in Fig. 5.6]. The following ra-

dial features develop at the exit face of the medium: In the linear propagation regime the

radial profile is monotonically decreasing in amplitude as expected. For pulses (B) and

(C) (dashed and dotted lines, respectively) bumps and flattenings of the radial profile of

the main beam are observed together with CE. The cone emission is observed as a bump

in the fluence F´.L; r/ for larger radii, r � 1:4 mm and r � 1:6 mm for (B) and (C),

respectively. Notably, Fig. 5.7 also shows the apperance of two peaks in the radial profile

for pulse (C) at r D 0 mm and r � 0:25 mm. These two bumps demonstrate the appear-

ance of interconnected radial filaments. As we do not solve for the azimuthal coordinate

we cannot comment on the stability of these filaments against azimuthal perturbations.

The radial spread (FWHM) of the cones, which are observed as two bumps abovebelow
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FIG. 5.6: Fluence distribution at the output facet of a sodium vapor with N D 5 � 1021 m�3.

The color-range is 4 decades, darkest colors indicate a fluence less than 104 of the peak fluence

at the output facet. The labels along the horizontal axes indicate the distance (in mm) from the

symmetry line. In each panel the same input pulse is used which is a 20 fs Gaussian centered

at 563:3 nm with a 100 
m beam radius. The various input energies used are (A), 4:3 fJ, (B),

472 nJ, (B), 944 nJ. Corresponding peak field amplitudes E0 and intensities I0 are (A) E0 D
4 � 104 V/m, I0 D 0:21 kW/cm2, (B) E0 D 4 � 108 V/m, I0 D 21 GW/cm2, and (C) E0 D
4
p
2 � 108 V/m, I0 D 42 GW/cm2.

r D 1:5 mm, is approximately 200 
m giving�rCE=rCE � 0:1�0:2 for the two computer

simulations. In addition, where cones are observed the intensity of the CE relative to the

input intensity is slightly higher for higher pulse energies. Nonetheless, the CE intensity

is comparatively weak since the peak intensity in the cone is 10�3 times smaller than the

peak intensity of the input pulse. Owing to a large surface area, the energy contained in

the cone is nevertheless significant. We define the relative CE energy as

†CE D
R rmax

rmin
F´.L; r/rdrR1

0 F´.0; r/rdr
; (5.28)

where rmin and rmax are chosen so that they contain the entire CE and nothing of the

central spot. †CE describes the ratio between the energy contained in the cone relative

to the input energy. Spatial separation between the central spot and the CE is necessary

before calculating†CE, and this is clearly the case here. For the above simulations we find

†CE � 1% (A), †CE � 1:5% (B) for the two cones in Fig. 5.7.

Figure 5.7 may be qualitatively compared with the CE experiments by Paul et al. [32]

where particular care was taken to avoid excitation of multiple light filaments. Comparing

the dashed line in Fig. 5.7, where only a single filament is excited, with Fig. 9(f) in the

paper by Paul et al. [32] demonstrates a favorable qualitative agreement. Strictly speaking,

the system examined by Paul et al. [32] is different from the present one, and quantitative

comparison is therefore not possible. In addition, we mention that Fig. 5.7 shows the

fluence distribution on the output facet rather than the far-field. Some diffractive spreading
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FIG. 5.7: Radial fluence profiles at the output facet of a sodium vapor. The simulation data are

the same as in Fig. 5.6.

of the central beam spot must be expected when the central beam spot propagates from the

output facet to the detector, which will tend to lower the peak at r D 0.

Having observed the formation of ring surrounding the central beam spot we now

address the question whether or not this represents conical emission. The color-coded

data in Figs. 5.8(A)-(C) show the logarithmic r � ! spectrum of the various pulses at

´ D L plotted as a function the relative detuning from the input center frequency !c .

The vertical coordinate indicates the distance r away from the symmetry axis. Solid lines

superimposed on top of each color map show the on-axis output spectral magnitude in each

simulation and are plotted against the right vertical axis on a logarithmic scale. All data

(color-coded and lines) are normalized against the spectral peak amplitude of the input

pulse, and the spectral magnitude at various radial positions may be estimated from the

color map included in the various plots. The relative detuning from the resonant 3s � 3p,

3p � 5s, 3p � 4d one-photon transitions and the resonant 3s � 6s two-photon transition

are indicated with symbols �k
i . Firstly, a comparison between the spectra in Figs. 5.8(A)

and (B) shows that the spectrum of the main beam is pushed primarily to the blue. A

spectral hole has developed at 570 nm which is most likely due to one-photon absorption

at the 3p � 4d transition, indicating that the 3p level has been populated somewhere

inside the vapor cell. Missing spectral holes at 579 nm and 550 nm which correspond

to absorption at the 3s � 4d and 3s � 6s virtual two-photon transitions show that if the

4d and 6s levels are populated, then this occurs via one-photon absorption from the 3p

level and not from virtual transitions directly from the 3s level. The pulse in Fig. 5.8(C),

which had twice the input energy shows even more spectral holes, with the deepest being

at 570 nm. We have not checked the position of each of these holes, but some of these are

believed to originate from various Stark-shifted one- and two-photon resonances, while
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others are the result of spatiotemporal pulse splitting. In general the r � ! spectrum has a

very complicated structure that cannot be explained by absorption alone, and we examine

the allied spatiotemporal r � � structure below. CE is readily visible in Fig. 5.8(B) as

a continuous streak at r � 1:6 mm for detunings �35 THz to �75 THz corresponding

to the wavelength range 602 nm to 650 nm. For the pulse with twice the energy the CE

spectrum extends from approximately 610 nm to 660 nm, and has a particular structure

that has been observed in femtosecond CE experiments where the shortest wavelengths

of the CE are scattered furthest out into the cone, and longer wavelengths lie further in.

In both Fig. 5.8(A) and (B) the spectral peak of the cone appears at frequencies that are

complementary to the laser detuning in the sense that the equality !c�!3p�3s � !3p�3s�
!CE,max is weakly satisfied. For definiteness, !CE,max indicates the position of the spectral

peak of the CE. Examination of the r � ! spectrum for larger detunings (> 50 THz) that

are not plotted in Fig. 5.8 shows that this part of the spectrum is negligible.

Figure 5.8 describes the logarithmic r � ! spectrum at the output facet of the mate-

rial. We believe that the broadening to the blue side is due to self-phase modulation and

we will make our case below. Note that parts of the CE spectrum also coincides with the

3p � 5s transition. However, we will show below that the cone is a pulse which propa-

gates primarily through regions where the main beam does not, and consequently through

regions where the 3p level is not populated. Absorption at the 615 nm 3p � 5s transition

is therefore not observed. In summary, one finds the rings shown in Figs. 5.6 consist of

red-detuned frequencies in the 600 nm to 650 nm range.

Experimentally, significant transverse reshaping may occur either as a continuous pro-

cess through the material or even close to ´ D L. The ring-like structure observed in

Figs. 5.7 and 5.8 is not necessary for CE, nor is it guaranteed to exist at the exit face of

the medium. Experimentally, the spectrum is therefore measured in terms of the angular-

frequency � � ! spectrum in the far-field, defined by the double transform

E.!; ´; k?/ D
1Z

0

E.!; ´; r/J0.k?r/rdr; (5.29)

where J0 is the 0th order Bessel function of the first kind, E.!; ´; r/ is the r�! spectrum

(as shown in Fig. 5.8), and � is related to k? through � � arctan.ck?=!c/ � ck?=!c

in the paraxial approximation. It may be verified from Eq. (3.35) that jE.!; ´; k?/j is in-

variant for propagation in free space. The quantity E.!; ´; k?/ describes, in terms of the

transverse wavenumber k?, the angle each frequency component ! makes with the propa-

gation axis. The transform defined by Eq. (5.29) is the zeroth order Hankel transform, and

is equal to the two-dimensional spatial Fourier transform with the understanding that the

radial wavenumber is k? D
q
k2

x C k2
y , where kx and ky are the transverse wavenumbers

in the x- and y-directions, respectively.
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FIG. 5.8: Logarithmic r � ! spectrum jE.!;L; r/j (color-coded) at the output facet. All data

are normalized against input peak spectra of the individual simulations. The solid lines shown in

each plot indicate the on-axis output spectrum in each simulation. Panels (A)-(C) correspond to

simulations (A)-(C) in Fig. 5.6 and all data are plotted relative to the input center frequency. In

each figure the dashed vertical line indicates the center frequency of the pulse, the dotted line

indicates the position of the 3s�3p resonance (at �23:5 THz). Relative detunings where various

one- and two-photon transitions become resonant are indicated by symbols �k
i .

Figure 5.9 shows the logarithmic � �! spectrum corresponding to the r �! spectrum

shown in Fig. 5.8(B). The data are normalized against the peak magnitude of the input

Fourier-Hankel spectrum. We observe an angular structure commonly seen in CE experi-

ments where the spectral peak of the cone is roughly detuned a complimentary amount to

the red side of resonance as the pulse is detuned to the blue side. In this case the central

peak of the cone is placed at 
 � 620 nm which corresponds to a detuning of 25:6 THz

from the 3s � 3p resonance. For completeness, we recall that the input pulse was detuned

approximately 23:5 THz from the 3s�3p resonance. Figure 5.9 shows that the cone spans
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a relatively narrow angular width ��=� � 0:15. By following the contour lines of the CE

from red to blue we observe that the conically emitted frequency components move up-

wards in � as � moves closer to �
3p
3s , a feature which has been observed experimentally

[32, 110].
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FIG. 5.9: Logarithmic � � ! spectrum jE.!;L; k?/j for pulse (B) at the output facet. The

horizontal is plotted in terms of the relative detuning .! � !c/=.2�/, the vertical axis in terms

of the emission angle � D ck?=!c . The dotted vertical lines show the locations of the spectral

cone peak and the 3s � 3p resonance.

Having examined the r � ! and � � ! spectra at ´ D L we now locate the geometric

origin of the CE inside the vapor cell. The color-coded data in Fig. 5.10(B) show the

normalized longitudinal component F´.´; r/ for pulse (B) at all positions .´; r/ in the

medium and is plotted on a logarithmic scale over 5 decades. The solid line, plotted

against the left vertical axis r , indicates the calculated beam waist

R.´/ D
p
�
R1

0 F´.´; r/rdrR1
0 F´.´; r/dr

; (5.30)

where the
p
� factor is used to normalize such that R.0/ D R D 100 
m. In the same

plot, the dotted line indicates the normalized on-axis fluence as a function of position ´

in the vapor cell, and is plotted against the right vertical axis. The opening angle the

dashed line makes with the ´-axis indicates the internal CE angle. Figure 5.10(C) shows a

corresponding plot for pulse (C). Based on the simulation data we find that the pulses are

focused a few centimeters into the vapor cell, evidenced by a decreasing beam waist and an

increased fluence. Examination of the r � ! spectrum during this initial reshaping shows

that the pulse spectrum initially broadens symmetrically around its center frequency. The

spectrum is pushed to the blue when the pulse amplitude increases further and conical

emission occurs. The spectral broadening to the blue observed in Figs. 5.8(B) and (C) is
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therefore attributed to self-phase modulation. As expected, pulse (C) which has higher

input intensity focuses a shorter distance into the same medium than pulse (B) does. The

peak fluence occurs at ´ D 6:4 cm [(B)] and ´ D 3:8 cm [(C)] in the two cases, with

amplification factors of 7:1 and 7:7 respectively. The minimum beam waist reached dur-

ing propagation is approximately 38 
m for both cases, and occurs at ´-positions where

the axial fluence reaches its maximum. We find that the CE occurs after collapse (i.e.

where the centerline fluence has a turning point). By examining the opening angle of

the dashed lines shown in Figs. 5.10(B) and (C), the internal angle of CE is found to be

�i � 10:9 mrad in both cases. These predictions agree with the calculations based on the

� � ! spectrum. Consequently, the CE angle is not strongly dependent on the input pulse

amplitude, consistent with experimental observations. The full opening angle of the emit-

ted cone in the far-field would in this case be �CE D 2�i � 22 mrad, comparing favorably

with femtosecond experiments in sodium at similar densities and detunings [110]. Exam-

ination of the CE around the dashed lines shown in Fig. 5.10 shows that the CE energy

decreases gradually with further propagation into the medium, a result which is attributed

to linear absorption and diffraction.

The appearance of a self-focusing region with a finite longitudinal fluence indicates a

saturable nonlinearity through population transfer between the 3s and 3p orbitals, which

is also consistent with an observed spectral hole at the 3p � 4d resonance. We now

present detailed plots of the spatiotemporal pulse dynamics in the vicinity of the spatial

region where the CE occurs for simulation (B). We have observed analogous behaviour for

pulse (C) and therefore do not present these simulation data in detail. Figures 5.11-5.13

show the normalized field envelope u.�; ´; r/ at six different ´-positions in the material.

Figure 5.11(a) shows the pulse envelope in the time-radius plane at the position ´ D 5 cm

in the medium, 1:4 mm before collapse occurs (defined by the position ´where the fluence

is largest). At this propagation depth the pulse is compressed radially while temporal

steepening, presumably due to the combined effects of self-focusing and spatiotemporal

compression of the SIT type, has caused the peak amplitude to increase by a factor of

3:5. With further propagation the pulse steepens even more and reaches an amplitude of

4:5E0 with an even shorter pulse duration after 7 cm, as shown in Fig. 5.11(b). At this

propagation depth collapse has initiated and the pulse begins to break up temporally. We

remark that the internal oscillations, or ”holes”, in the pulse spectrum observed at the exit

facet [see Fig. 5.8] are, in addition to absorption, spectral signatures of temporal pulse

splitting. In fact, for any function f .�/ D f1.� � �1/ C f2.� � �2/ where f1 and f2

are individual pulses and �1 and �2 are respective peak pulse delays, the composite power

spectrum

jf .!/j2 D jf1.!/j2 C jf2.!/j2 C 2Re
h
f1.!/f

*
2 .!/e

�i!.�2��1/
i

(5.31)
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FIG. 5.10: (B) Logarithmic longitudinal normalized fluence F´ (color-coded) for pulse (B). The

solid line shows the calculated beam waist R.´/ and is plotted against the left vertical axis. The

dotted line shows the normalized longitudinal fluence F´ on the axis r D 0 and is plotted against

the right vertical axis. The opening angle of the dashed line indicates the internal CE angle. (C)

Same as for (B), but for 944 nJ input pulse energy.

shows that the pulse spectrum contains internal sidelobes depending on the temporal sep-

aration �2 � �1 between the two pulses. These internal oscillations of the pulse spectrum

have physical significance but these features may experimentally average out over many

measurements when the timing jitter between the two pulses is severe.

Figures 5.12(a) and (b) show the pulse in the time-radius plane at positions ´ D 9 cm

and ´ D 11 cm and depict the temporal dynamics during the initial breakup process (from

Fig. 5.10(B) we observe that at this propagation length a conical emission begins to sep-

arate from the main beam). Figure 5.12(a) shows that a positive lobe appears behind the

main peak. Temporal ripples have developed both on the trailing lobe and in the radial

periphery of the main beam. By investigating the r �! at this propagation length we have

found that the pulse has developed a broadened spectrum together with a red sideband.

The axial spectrum is broadened primarily to the blue with a broad spectral ”hole” at the

driving frequency, which is simply a spectral signature of temporal breakup. In addition,

the pulse has developed a hole at 568 nm which indicates aborption at the 3p�4d resonant
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transition. The temporal ripples are manifestations of coherent temporal beating between

the main beam and the generated red sideband, which has not yet escaped from the main

pulse. They mark the onset of conical emission. These ripples tend to move outwards in

r as the breakup process proceeds; they move away from the main beam with gradually

decreasing amplitude. Figure 5.12(b) shows the spatiotemporal dynamics at ´ D 11 cm,

slightly further into the material. We find that the pulse amplitude decreases as it elon-

gates temporally and broadens radially. At this stage the absence of temporal modulations

(ripples) on the trailing lobe shows that the sideband has completely moved away from the

beam axis and into the radial wings of the main pulse.
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FIG. 5.11: Normalized electric field envelopes u.�; ´; r/ for the time window � 2 Œ0; 200 fs� and

radii r 2 Œ0; 100 
m� for different propagation lengths: (a) ´ D 5 cm, (b) ´ D 7 cm.

Figures 5.13(a) and (b) show the spatiotemporal pulse envelope at propagation dis-

tances ´ D 13 cm and ´ D 15 cm. We find that the pulse amplitude continues to decrease

with further propagation, and this is a general trend until the pulse exits the material at

´ D 20 cm. Note that by following one of the isochronic lines around � � 200 fs in

Fig. 5.13(b) we observe that the pulse breakup process occurs primarily close to the cen-

terline which, which has left behind a ”bubble-like” pulse shape with a central emptiness

on the axis. It is difficult to visually discern the CE pulse in Fig. 5.13 because it moves

away from the centerline like a cylindrical wave and correspondingly has a much smaller

amplitude than the main beam. Only weak temporal modulations can now be seen in the

radial periphery of the main beam. The CE pulse is slightly visible on the isoradial line

r D 1 mm in Fig. 5.13(b) where it appears as an increase in u.�; r; ´/ close to � D 100 fs.

At this stage the main beam is completely modulated and the conical emission has com-

pletely separated from the main beam. That is, the amplitude of the spectral component

representing conical emisison is now saturated and does not grow further with propagation

distance.

By examining the population disitribution of the 3s and 3p orbitals we have verified
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FIG. 5.12: Normalized electric field envelopes u.�; ´; r/ for the time window � 2 Œ50 fs; 300 fs�

and radii r 2 Œ0; 200 
m� for different propagation lengths: (a) ´ D 9 cm, (b) ´ D 11 cm.

that the pulse splitting mechanism observed is of the SIT type. This splitting, which we

will investigate in greater detail in the framework of the paraxial SIT equations in Sec. 5.6,

is initiated by a polarization phase dependent absorption; At the leading edge of the pulse

in Fig. 5.12(a) the material is coherently excited until the 3s � 3p transition is coher-

ently inverted. Under these conditions the relative phase between the polarization and the

pulse has switched such that the electric field tends to align the dipoles anti-parallel to

the instantenous field direction. The next temporal slice of pulse which enters this spatial

region essentially sees an inverted material and becomes amplified as it passes through

this region. This effect is cumulative until the active electron is coherently returned back

to the 3s orbital where E and P again become parallel. For a sufficiently strong pulse

this process may repeat itself in such a way that in effect the medium excavates a hole in

the middle of the temporal pulse shape, leading to breakup on the centerline, as seen in

Figs. 5.12(a) and (b).

It remains now to investigate the conical emission pulse itself. This is done in Fig. 5.14

which shows an inset of Fig. 5.11(f) for the radial range r D Œ0:6 mm; 1:2 mm� and for

a time window large enough to contain the entire CE pulse. The color-coding shows the

relative amplitude of the field in this spatiotemporal region and can be estimated by the

color map included in the figure. To enhance visibility, contour lines whose labels indicate

constant contours of E.�; r; ´/ in units of E0=1000 are superimposed on top of the color

map. We find that the maximum peak amplitude of the CE pulse, after detaching com-

pletely from the main beam, is approximately 8E0=1000 and corresponds to an intensity

of approximately 1:35 MW/cm2. The CE is a pulse whose duration defined by its tempo-

ral FWHM is estimated as 154 fs from Fig. 5.14. One observes that the rise time of the

leading edge of the CE pulse is significantly shorter than the decay time of the tail. In the

paraxial approximation the rise time is reasonably measured as the temporal HWHM for
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FIG. 5.13: Normalized electric field envelopes u.�; ´; r/ for the time window � 2 Œ50 fs; 500 fs�

and radii r 2 Œ0; 1 mm� for different propagation lengths: (a) ´ D 13 cm, (b) ´ D 15 cm.

an iso-radial line (i.e. for a constant value of r) that passes through the pulse peak in the

time-radius plane for a given ´ (thus representing a horizontal slice through r � 0:85 mm

in Fig. 5.14). The decay time is estimated in the same way. From Fig. 5.14 we find

�rise D 20 fs on the front and �decay D 134 fs on the tail. In addition, note that the leading

edge does not represent an optical shock since !CE�r � 46. For comparison the rise time

of the Gaussian input pulse satisfied !cT=2 � 33. The reasons for the temporally asym-

metric CE pulse remain largely speculative. Since nonlinear interaction of the CE and the

material can be disregarded after separation from the main beam, no self-steepening of the

CE pulse may take place. We therefore conjecture that the temporal pulse shape is most

likely a result of color dispersion arising from the 3s � 3p resonance after detachment

from the main beam.

5.5.3 The ”missing” sideband

Historically, much of the controversy of CE surrounds the ”missing” blue sideband. This

sideband is the main source of the disparity between experimental results and theories

based on parametric four wave mixing, which presume that the initial pulse scatters an

equal amount of energy into these sidebands, and that these sidebands then propagate with

different spatial characteristics. In the steady-state case the generated sidebands are ob-

served symmetrically but propagating at different angles with respect to the optical axis.

In fact, for continuous-wave laser operation it can be proven that the emission spectrum of

an atom must always be symmetric (with respect to the sidebands) in the Markovian limit

under the rotating wave approximation [140]. It is reasonable to suspect that this symme-

try is conserved during propagation. For transient excitation, spectral asymmetry of the

Rabi sidebands is a natural consequence which is adequately understood from the Rabi
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FIG. 5.14: Inset of the spatiotemporal region r D Œ0:6 mm; 1:2 mm� for Fig. 5.11(f). The color

coded data shows the conical emission pulse at a propagation distance ´ D 15 cm. Contoured

lines labeled 2 � 8 indicate the relative amplitude in units of E0=1000.

solution of a two-level atom exposed to a monochromatic electromagnetic field. For pico-

and femtosecond excitation one may, as a first approximation, ignore homogeneous relax-

ations altogether. Moreover, evaluation of laser propagation phenomena is not necessary

to obtain a qualitative understanding of the spectral processes involved.

For greatest simplicity we examine a simplified sodium atom where only the two

atomic orbitals j3si and j3pi need to be considered. The atomic wave function is

j‰i D c3s.t/e
�i!3s t j3si C c3p.t/e

�i!3p t j3pi ; (5.32)

where jc3sj2 and jc3pj2 are the probabilities of observing the electron in the 3s and 3p

states. If a monochromatic field E D E0e�i!c t C c.c. is applied to this atom the Rabi

solution for c3s and c3p is [133]

c3s D ei�t=2

"
cos

�
1

2
ƒt

�
� i�
ƒ

sin

�
1

2
ƒt

�#
; (5.33a)

c3p D ie�i�t=2�

ƒ
sin

�
1

2
ƒt

�
; (5.33b)

where � D !c � .!3p � !3s/, and we have presumed that c3s D 1 at t D 0. By

convention, the Rabi frequency is defined as � D 2
3s;3pE0=¯ for complex fields. The
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complex polarization in units of N
3s;3p is then

c*
3sc3p D ���

2ƒ2
e�i�t C �

4ƒ

 
�

ƒ
C 1

!
e�i.��ƒ/t

C �

4ƒ

 
�

ƒ
� 1

!
e�i.�Cƒ/t :

(5.34)

Equation (5.34) shows that the atom responds at three frequencies !c , !c ˙ ƒ, corre-

sponding to the driving frequency at !c and two Rabi sidebands, symmetrically displaced

from the central laser frequency. These three peaks are otherwise known as the Mollow

triplet. For resonant excitation
�
� D 0� the Rabi sidebands at !c ˙ƒ are equally strong,

but in the more general case the sideband closest to the line center will always achieve

greater gain. We will refer to this sideband as the resonant sideband. Note that Eq. (5.34)

only holds for timescales much shorter than the spontaneous emission lifetime. The result

is also analogous under substituting�! ��. Thus, for a laser tuned to the red side of an

optical resonance, the blue sideband is stronger. Note that this asymmetry in the two side-

bands is predicted simply due to a non-zero value �=ƒ, and does not require evaluation

of propagation gain.

Strictly speaking, the expressions above concern only the radiation emitted by the

atoms under constant irradiation by a near-resonant laser field. They do not address the

radiated spectrum for pulsed excitation, and certainly do not concern the propagated field

spectrum. In general, although the generation of new frequencies may be adequately un-

derstood from the Rabi solutions, this does not provide a sufficiently detailed explanation

of the observed CE spectrum. In particular, it is clear that for sufficiently strong pulses

temporal splitting may lead to internal sidelobes in the pulse spectrum, and these are not

predicted by Eq. (5.34). However, for pulsed excitation it is reasonable to expect radiated

Rabi sidebands whose spectrum lies in the region from !c 	 � to !c 	
q
�2

max C�
2
.

When the pulse is tuned to the blue, the resonant Rabi sideband is therefore always placed

on the red side of resonance, and vice versa for a laser tuned to the red. If we consider

the input pulse (B) with 472 nJ energy and estimate E0 � 109 V/m (taking into account

the effects of self-focusing) we find that ƒ � 6:4 � 1014 rad/s yielding �=ƒ D 0:2. The

low-frequency wing of the red sideband is then predicted at a detuning of approximately

�94 THz from the center frequency, comparing favorably with the simulation data pre-

sented in Fig. 5.8(b). In conclusion, the cone emission is therefore believed to be due to

the ejection of the resonant Rabi sideband.
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5.5.4 Comparison with experiments and other theoretical models

In the preceding sections we analyzed the propagation of 20 fs pulses with nJ pulse ener-

gies for a sodium vapor with density N D 5 � 1021 m�3. It was found that the internal

angle of emission for single-filament CE was� 11 mrad with CE spectral widths between

50 � 60 nm depending on the initial pulse energy. Blue-shifted emission complementary

to the red-detuned cone was not observed propagating either axially or conically anywhere

inside the material. The scattered energy into the cone was on the order of a few percent

of the input pulse energy. These results are in agreement with the overall features of CE,

and in particular with femtosecond experiments performed in sodium vapors where typ-

ical values of the CE angle and spectral widths are reported as 8 � 13 mrad for 560 nm

excitation in a vapor with density 8 � 1021 m�3 [110]. Experimentally reported spectral

widths of CE are 10�60 nm for densities in the 4�1021�2�1022 m�3 range and similar

peak amplitudes (E0 � 108 V/m). However, the relative spectral placement of the CE ob-

served here lies slightly further to the red than in the experiments reported by Vaičaitis and

Paulikas [110]. In their experiments, the broadband CE extended from 600 nm to 640 nm

for 120 fs initial pulses with 4 mm input beam waists. We observe CE in the 605 nm to

650 nm range for similar sodium densities but for 6 times shorter pulse durations and 40

times smaller beam waists. For comparison the input intensities used here are higher than

experimentally reported values, and this is presumably the reason for the larger CE detun-

ing observed numerically. We use input intensities up to 40 GW/cm2 while experiments

have so far been performed with intensities up to 4 GW/cm2 [110].

Experimental cross-correlation measurements of the emerging conical light exiting

a high-density rubidium vapor cell excited by 100 fs pulses was recently reported by Sk-

enderović et al. [112]. In the series of experiments conducted, the CE light was temporally

broadened to several picoseconds and consisted of several subpulses spaced temporally

close to each other. The input beam diameter was 2 mm so the findings are not available

for quantitative comparison with our numerical calculations. However, the results lend

supporting evidence of a pulse splitting picture of CE. Based on a combination of the

calculations presented here and the experiment performed by Skenderović et al. [112] we

have reason to believe that CE pulses originate together with temporally splitted pulses on

the centerline, as two aspects of the same process. Moreover, based on the calculations

presented here a carefully designed single-shot experiment should reveal a spatiotempo-

ral structure consisting of a single femtosecond CE pulse coexististing with double axial

pulses.

Crenshaw and Cantrell [129] have numerically investigated the propagation of a near

resonant (60 GHz detuning) picosecond pulse with an 8� pulse area in a two-level atomic

sodium system over comparatively short propagation distances (� 7 mm). Although in-

cluded in their numerical calculations, self-focusing had a negligible influence on prop-



5.5. FEMTOSECOND CE IN ATOMIC SODIUM 97

agation. Propagation of their pulse resulted in multiple pulse breakups and somewhat

angularly isolated frequency components detuned 30 GHz above resonance, which the

authors assert is CE. On the whole, the conical emission observed by the authors, both

spectral placement and gain, are at odds with experiments. In their language, the isolated

Fourier-Hankel component is a result of noncollinear phase matching, arising simply due

to temporal breakup with a transverse variation.

Higher conical gain may also occur from spatial beam breakup into multiple filaments

through self-focusing of smaller diameter regions of the input beam. Pulse breakup and

CE may then occur within each spatial filament, and will presumably lead to higher con-

ical gain. Our numerical integrator invokes symmetry around the centerline and can only

describe radial filaments, and therefore breaks down in this regime. The scattered CE

energy observed in our numerical simulations, all of which occur from single filaments,

are on the order of 1 � 2% of the transmitted pulse energy and should be observable

in atomic sodium. Computational extension to full 3D models for pulse propagation in

atomic sodium may be possible, although the Bloch system must most likely be reduced

to a smaller dimension through careful consideration of active atomic orbitals.

Incorporation of additional physical effects in our model will most likely lead to qual-

itatively similar results in the nonlinear regime that we study. There are nevertheless sev-

eral possible sources of error in our theoretical treatment. On a macroscopic level, the

forward propagating approximation is justified, but the possibility of multiple filamenta-

tion through symmetry breaking in the azimuthal coordinate is not accounted for. Mi-

croscopically, ionization through multi-photon processes may lead to plasma defocusing,

which has also been disregarded here on the grounds that the pulse intensities achieved

were comparatively small. Neglection of fine-structure splitting can also lead to artifi-

cially large dipole moments for composite transitions and the illusion that the entire 3p

multiplet is activated by the pulse. On the whole, we believe that the largest sources of

error are the neglect of ionization and the assumption of cylindrical symmetry.

5.5.5 Comparison with two-level theory

The motivation for using a multi-level model outside the RWA and SVEA was to obtain

qualitative and quantitative theoretical predictions for the short pulse excitation regime.

The input pulses applied were under the simultaneous presence of one- and two-photon

near-resonance conditions. Questions then immediately arise as to which minimum set of

parameters can be defined to observe CE, and whether or not the same dynamical picture

emerges in a simpler model where additional resonances are neglected. A comparison

between the multi-level model and a paraxial two-level model under the RWA and SVEA

is therefore warranted in the present context, and we now address this question. Below, we

compare one of the computer solutions in Sec. 5.5 with the predictions of a simplified two-
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level model. The equations of motion are the paraxial SIT equations, which are discussed

in greater detail in Sec. 5.6
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FIG. 5.15: (a) Propagation of a 472 nJ pulse with 20 fs duration in a sodium vapor approximated

by two-level theory. The dashed line indicates the on-axis fluence and the dotted line shows the

centerline fluence calculated by multi-level theory. (b) Comparison between the centerline pulse

temporal shapes for two-level theory (solid line) and multi-level theory (dashed line) at ´ D 6 cm.

(c) Same as for (b) but at the output facet ´ D L.

We consider pulse (B) propagating through the two-level vapor characterized by the

same material parameters. The color-coded data in Fig. 5.15(a) shows the normalized

longitudinal fluence F´.´; r/ at all points ´; r in the material together with the centerline

fluence (dotted line). This figure should be contrasted with Fig. 5.10(B) which showed

analogous computational results for the multi-level RMB sodium model. The dotted line

in Fig. 5.15(a), plotted against the right vertical axis, shows the centerline fluence as a

function of propagation distance ´. For comparison, the dashed line plotted in Fig. 5.15(a)
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shows the centerline fluence for the RMB model calculations [see Fig. 5.10(B)]. As ex-

pected, we find that CE still occurs. We also find that the maximum axial fluence reached

is higher for the two-level model than in the multi-level model, which is most likely due

to the neglect of multi-photon processes in the two-level case. In a multi-level model

the valence electron is not locked into the 3s and 3p orbitals and may escape to higher

orbitals, which will tend to smooth out self-focusing effects caused by the 3s � 3p non-

linearity. In addition, we observe a weak second focusing of the pulses in the two-level

model, evidenced by an increasing axial fluence around ´ D 13 cm.

Examination of the spatiotemporal r � � data for various positions ´ in the material

(analogous to Fig. 5.11) shows pulse breakup analogous to the predictions of the RMB

model. The simulation data are not discussed explicitly because Figs. 5.11, 5.12, and 5.13

are sufficient for understanding the pulse splitting process on a qualitative level. To quanti-

tatively compare the predictions of the paraxial SIT and the RMB equations, Figs. 5.15(b)

and (c) show the centerline pulse envelopes at position ´ D 6 cm and ´ D L for the two

models. Overall, quantitative agreement is not found. At ´ D 6 cm a comparison between

the two models shows that paraxial SIT theory predicts a higher group velocity than pre-

dicted by the RMB theory. This feature can be attributed to the neglect of multi-photon

resonances in the two-level case, which will result in stronger self-focusing effects.

At the exit face of the medium [see Fig. 5.15(c)] the two models agree only close to the

leading edges of the centerline pulses. Unlike the RMB model the paraxial SIT equations

predict a main pulse of relatively large amplitude (up to 60% of the initial amplitude)

propagating axially, which is a direct result of refocusing of the main beam after CE. In the

multi-level case sufficient energy is lost to higher electronic orbitals to prevent refocusing.

Although CE occurs in both models, and indeed the same break up process is observed,

the results change quantitatively and qualitatively. This is not too surprising considering

the pulse durations and intensities used. As such, two-level theory is not quantitatively

useful for femtosecond excitation.

5.6 Conical emission in the two-level approximation

From the discussions in the previous section it is evident that the two-level approximation

did not apply quantitatively to 20 fs pulses, presumably because promotion of the valence

electron to the 4d state after populating the 3p level was neglected in the two-level case.

Yet, conical emission has been performed over a wide range of experimentally adjustable

parameters, and it is of considerable interest to investigate CE for longer pulses where the

two-level restriction is valid. In this case the equations of motion are the paraxial SIT
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equations [Eqs. (3.5) and (3.38)],

@´� D i

2kc

r2
?�C i�h%�;21i�; (5.35a)

idt O%� D
h
yH�; O%�

i
C i OR�; yH� D

 
0 �1

2
�*

�1
2
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!
; (5.35b)

where we recall kc D !c=c. By convention, the Rabi frequency is defined as � D
2
12E=¯ where 
12 is the transition dipole moment (projected onto the polarization axis)

between the two active states.

The numerical method used for obtaining numerical solutions to the paraxial SIT equa-

tions is identical to the one considered for the RMB equations with the following excep-

tions: (i) a complex field envelope is introduced, (ii) Eq. (3.35) is replaced with the parax-

ial wave equation, and (iii) the multi-level model is replaced by a two-level atom. The

inclusion of inhomogeneous broadening implies that the Bloch equations must be solved

for a range of atomic detunings�. Coupling of the atomic state to the paraxial wave equa-

tion occurs through the inhomogeneously averaged polarization h%�;21i, where, as usual,

g.�/ is a taken as Gaussian.

Generally speaking, numerical evaluation of Eq. (5.35) in the detuned
�
� ¤ 0�, inho-

mogeneously broadened regime requires a vectorized computer. In our implementation we

sample g.�/ on a few hundred values of�, employ a spatial grid with roughly 500�1500
grid points in the longitudinal and radial coordinates, respectively, and propagate for ap-

proximately 10; 000 time steps. The resulting wall clock computation time is around 5

hours on 512 computing cores.

In this section we employ Rubidium as a model medium. The motivation for employ-

ing sodium in the previous section was the fine structure splitting of the 3p level, which is

sufficiently small to treat the 3P1=2 and 3P3=2 levels degenerately for femtosecond excita-

tion. For picosecond pulses this approximation does hold very well, so we choose 87Rb,

which has a fine structure splitting of 7 THz. An alternative medium is 133Cs which has

a fine structure splitting of 16 THz, allowing the use of even shorter pulses. We consider

the 87Rb D2 line at� 780 nm, which is characterized by an effective dipole moment [31]

j
12j2 D 1

3

ˇ̌˝
j
ˇ̌ O�ˇ̌j 0

˛ˇ̌2 � ˇ̌2:07 � 10�29 Cm
ˇ̌2
; (5.36)

where j and j 0 are the orbital angular momentum numbers for the ground and excited

states. The factor of 1=3 enters because linearly polarized light interacts with only one

component of the dipole operator. We incorporate inhomogeneous broadening, taking

T *
2 D 117 ps corresponding to an inhomogeneous half width of 10 GHz. The homoge-

neous lifetimes are taken as T1 D 26 ns and T2 D 52 ns. The numbers are obtained from

Steck [31]. Again, we consider cylindrically symmetric beam propagation.
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From Eq. (5.35a) the following energy conservation equation in the time domain is

found,

r � J D i !cN j
12j
2	0c

E
*h%�;21i� C c.c.; (5.37a)

J´ D 	0cjE j2; Kr D i

2kc

E@rE
* C c.c.; (5.37b)

where J is an energy current. The fluence is then defined F D R1
�1 J d� . Below, we

consider Gaussian input pulses,

�.�; r; 0/ D �0 exp

�
� r2

2R2
� �2

2T 2

�
: (5.38)

5.6.1 Resonant excitation

Before re-addressing propagation on the blue side of resonance, we briefly mention that the

existence of transverse effects is not unique to off-resonant propagation. Comparatively

strong transverse effects, termed coherent self-focusing, may also occur when a pulse

is tuned sufficiently close to an optical resonance. Knowledge of the area theorem in

the annular plane wave assumption
�r2

?� D 0
�

is sufficient for obtaining an adequate

understanding of the phenomenon. Let ‚.r/ be the radial profile of the input area on

the plane ´ D 0, where the area is largest at ‚.r D 0/ D �0. Under the McCall-Hahn

conditions, an input beam with a monotonically decreasing radial profile and initial area

�0 < 3� will reshape into a soliton for distances r < r� from the centerline, where

‚.r�/ D � . The special shape-kinematic relationship of the hyperbolic secant 2� pulse

implies that solitons with higher amplitude propagate faster. In this way the central portion

of the beam outruns the radial periphery, and the beam develops a curvature in the time-

radius plane. With increasing propagation depth the curvature becomes sufficiently strong

to allow diffraction to take over, eventually causing an inwards energy flow towards the

centerline. Coherent self-focusing has been investigated both theoretically [141–143] and

experimentally [144, 145].

Figure 5.16 shows a computer solution of coherent self-focusing of a beam with initial

on-axis area �0 � 2:7� . The data shown in the figure are based on two different computer

solutions for Eq. (5.35) with the same initial conditions. The panels in the left column

show the spatiotemporal evolution in the annular plane-wave approximation with diffrac-

tion artificially switched off. Correspondingly, the panels in the right column shows the

evolution when a transverse energy flow is included. Note that we distinguish between

transverse reshaping and transverse flow; the former corresponds to a transverse variation

depending only on the initial conditions in each uncoupled annular ring of the input pulse;

the latter corresponds to a non-zero transverse energy flow. When the Beer’s length is
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FIG. 5.16: Transverse reshaping of a 250 ps pulse with an initial on-axis area of �0 � 2:7�

propagating in a two-level medium with inhomogeneous dephasing time T *
2 D 117 ps. The left

column corresponds to spatiotemporal evolution in the annular plane-wave approximation. The

data in the column to the right includes transverse coupling. For reference, the input beam waist

is 300 
m, the Beer’s length is 5:3 mm, and the Rayleigh length is 72 cm. The total length of the

propagation region is 10 cm.

shorter than the Rayleigh length the largest contribution to the spatiotemporal reshaping

of the pulse is initially due to the nonlinear material response contained h%�;21i�, result-

ing in initial formation of a soliton-like pulse. The contribution from the transverse term

r2
?�, which describes diffraction, is initially smaller. In effect, over the first few Beer’s

length the pulse develops into a hyperbolic secant 2� pulse with a transverse dependence,

locked into a ”disk” of radius r� . As the group delay between the centerline pulse and the
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radial periphery becomes increasingly larger with further propagation, r2
?� eventually

becomes significant and diffraction ultimately leads to self-focusing, as shown in the right

hand panels in Fig. 5.16.

5.6.2 Blue detuning

In this subsection we numerically address conical emission of blue-detuned pulses in in-

homogeneously broadened media under the two-level restriction. We now consider a 87Rb

vapor cell of length L D 10 cm and density N D 5� 1020 m�3. The input pulse duration

is T D 20 ps, the waist is R D 50 
m, and the pulse is tuned �=2� D 200 GHz above

the D2 line. Correspondingly, the detuning between the low frequency wing of the pulse

and the high-frequency wing of the absorption is roughly

�

2�
� 1

2T *
2

� 1

2T
� 170 GHz; (5.39)

and the resonance is therefore well isolated from the initial pulse spectrum (the spectral

FWHM of the input pulse is roughly 20 GHz). Following Eq. (5.2) the numbers above

yield a critical power of Pcr � 109 W.

Figure 5.17 shows the evolution of the fluence F´.´; r/ and the corresponding beam

waist of a Gaussian pulse with input peak power P0 � 19Pcr � 2 kW (�0=.2�/ �
160 GHz). The spatiotemporal evolution of the fluence (color coded data) shows evidence

of conical emission, and is generally consistent with the observations made for the RMB

equations in the few-cycle pulse regime, with a few important exceptions. Firstly, the

cone emission does not have a specific geometric origin in the vapor cell but extends from

roughly 4 cm to the entire length of the medium. One may safely characterize the radial

expansion of the fluence as cone emission because the opening angle of the ”fluence cone”

in Fig. 5.17 is roughly 20 mrad, whereas the beam divergence angle of the input pulse was

roughly �d � 2:5 mrad. Secondly, after the first self-focus at ´ � 1:7 cm the pulse

refocuses several times with further propagation, evidenced by a sequence of reappearing

peaks in the on-axis energy. Thirdly, the laser beam is trapped during propagation and has

clear spatial structure. The calculated beam waist (dashed line) is approximately 47 
m

at the exit face of the medium, slightly smaller than the initial beam waist. Moreover, by

considering input pulses with the same pulse shape but lower input intensity and power,

we find that the cone emission develops further into the material, the beam evolves through

fewer self-focusing regions, and the oscillations in the on-axis energy are not as severe,

nor as many. Importantly, application of pulses with input peak powers smaller than the

critical power Pcr did not result in conical emission, indicating that self-focusing may

indeed be necessary for the manifestation of CE.
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FIG. 5.17: Normalized logarithmic fluence profile F´.´; r/ (color coded) for a 20 ps pulse tuned

200 GHz above an inhomogeneously broadened resonance. The dashed line indicates the cal-

culated beam waistR.´/ and is plotted versus the two horizontal lines labeled 47 
m and 50 
m,

respectively. The solid line indicates the on-axis fluence F´.´; r D 0/ and is plotted against the

right vertical axis.

A Fourier-Hankel analysis of the comparatively strong transverse reshaping displayed

in Fig. 5.17 exposes numerical evidence of cone emission of a type analogous to the CE

observed in experiments. Figure 5.18(a) shows the logarithmic Fourier-Hankel spectrum

j�.!;L; k?/j at the exit facet of the medium. The data are normalized against the peak

of the input Fourier-Hankel spectrum. One finds that the spectrum predicts cone emis-

sion with a full opening angle of approximately 40 mrad and that the emitted cone con-

sists of frequencies spanning the detuning range from �300 GHz to �800 GHz. We also

observe that the radial compression of the main beam results in an increased beam di-

vergence angle at the exit facet of the medium; The emission angle reaches as high as

� 10 mrad. In the case of Fig. 5.18(a), the far-field will consist of a large central beam

spot surrounded by a diffuse red-detuned ring of light. The CE frequency range com-

pares favorably with the predicted spectral location of the red Rabi sideband. We estimate

this by taking into account the effects of self-focusing, which yields an on-axis ampli-

tude of � 3�0 [see Fig. 5.18(b)]. The red Rabi sideband is then expected to extend from

��=.2�/ D �200 GHz to

�
q
.3�0/2 C�2

2�
� �900 GHz; (5.40)

comparing favorably with actual observed conical emission spectrum. Note that while the

main beam pulse spectrum is broadened also to the blue, the red sideband extends to larger

detunings, presumably because it receives higher gain than the blue.
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FIG. 5.18: Top panel: Logarithmic Fourier-Hankel spectrum j�.!; ´; k?/j as a function of the

detuning .!c � !/=.2�/ at the exit facet of the medium. Middle panel: On-axis input (dashed

line) and output (solid line) temporal pulse shapes. Bottom panel: Spatiotemporal pulse shape

j�.�;L; r/j at the output facet.

Figure 5.18(b) shows the corresponding on-axis input (dashed line) and output (solid

line) temporal pulse shapes. In addition to an overall pulse delay one finds that the on-axis
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pulse steepens due to self-focusing and breaks up into several temporal fragments. Ex-

amination of the remaining simulation data for different propagation distances shows that

the pulse splits into an increasing number of subpulses spaced close to one another. This

modulation first appears on the leading edge of the pulse and travels backward towards

the tail. The reshaping occurs as a gradual process throughout the medium, with the end

result being that the pulse evolves into a envelope-collimated pulse train. The color-coded

data in Fig. 5.18(c) show the spatiotemporal structure of the pulse at the output facet of

the medium. One finds that the pulse evolves into individual collimated envelope frag-

ments with a transverse structure. Note nevertheless the absence of any step-index form in

the radial profile of the beam. In Fig. 5.18 the pulse amplitude decreases gradually with

distance into the radial wings.

By applying the Fourier-Hankel transformation to Eq. (5.35a), the paraxial wave equa-

tion has a formally exact solution given by

�.!; ´; k?/ D �.!; 0; k?/ exp

�
�i k

2
?

2kc

´

�

C i�
´Z

0

˝
%�;21.!; ´

0; k?/
˛
�

exp



�i k

2
?

2kc

.´ � ´0/

�
d´0:

(5.41)

An analogous solution to the RMB equations may be obtained by the same procedure. The

first term on the right-hand side in Eq. (5.41) corresponds to propagation of the initial pulse

in free space whereas the second term describes corrections to this pulse due to reshaping

by the material. Equation (5.41) represents a purely formal solution since %�;21.�; ´; r/

generally depends on the entire past history of �.�; ´; r/, ruling out explicit evaluation of

the right hand side of the equation in the general case. Nevertheless, letting

h%�;21.!; ´; k?/i� D
ˇ̌h%�;21.!; ´; k?/i�

ˇ̌
exp Œi .!; ´; k?/� ; (5.42)

it is immediately apparent that the polarization contribution to the Fourier-Hankel spec-

trum generally relies not only on the generated amplitude, but also phase-matching of the

various frequency components during propagation. We next consider the material quan-

tities in greater detail. Figure 5.19 shows the material inversion h%�;22 � %�;11i� in the

time-radius plane at various propagation distances. In each panel, the color coding runs

from�1 to 1. The solid line, plotted in arbitrary units, indicates the on-axis temporal pulse

shape in each case. On the interface ´ D 0 one finds that the maximum inversion reached

after interaction with the input beam occurs on the axis and is � �0:5. With increasing

propagation distance the axial gain achieved through self-focusing first manifests as ap-

pearing undulations on top of the single material inversion curve [see e.g. Fig. 5.19(c)].

These undulations will appear also in the annular plane wave approximation because the

input area is �0 � 31� , although to a lesser extent. The radiation reaction of the medium



5.6. CONICAL EMISSION IN THE TWO-LEVEL APPROXIMATION 107

then tends to temporally modulate the pulse during propagation. The modulation appears

as an initial undulation at the leading of the pulse which travels backwards toward the tail

with increasing propagation distance. This modulation occurs as a result of multiple inver-

sions and resembles the type of temporal splitting observed in self-induced transparency.
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FIG. 5.19: Material inversion at various propagation distance. The color coding runs from �1 to

1 in all plots. The solid line indicates the on-axis temporal pulse amplitude.
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FIG. 5.20: Angular-frequency polarization density
ˇ̌˝
%�;21.!; ´; k?/

˛ˇ̌
at various propagation

distance. The data are in arbitrary units but each panel is plotted to the same scale.

Next, Fig. 5.20 depicts the Fourier-Hankel polarization spectrum jh%�;21.!; ´; k?/ij
(in arbitrary units) at a few of the same propagation distances considered in Fig. 5.19. We

find that as the pulse focuses into the medium somewhat isolated Fourier-Hankel compo-
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nents in the polarization density appear after a certain propagation distance. The emission

angle �CE � 20 mrad imply that if these components are generated on the centerline, they

quickly escape the filament. After being generated, a propagation distance of 2:5 mm is

sufficient for complete escape from the main beam (which has a � 50 
m waist). Note

also a comparatively symmetric spectral broadening of the longitudinal (i.e. � � 0) po-

larization density. Presently, the most probable explanation for this broadening is due to

self-modulation of the driving pulse. In particular, we furthermore note that the total en-

ergy contained in the red sideband is generally greater than the energy contained in the

blue sideband.

Finally, we briefly mention that we have also reproduced the numerical solutions re-

ported by Crenshaw and Cantrell [128]. While the results reported by Crenshaw and

Cantrell [128] did not display evidence of the type of conical emission observed in exper-

iments, an interesting question is whether or not conical emission appears with increasing

propagation distance. The answer to this question, taken up by us, remains unresolved

because catastrophic self-focusing occured with increasing propagation distance. The

hundred-fold increase in the on-axis energy resulted in temporal structures so small that

they could not be captured numerically. The problem is rooted in the comparatively large

pulse powers implied by Crenshaw and Cantrell’s choice of parameters. At the conditions

they consider, their parameters yield an initial beam power of 575 W, almost 103 times

larger than the critical power predicted by Eq. (5.2) as Pcr � 0:6 W. Numerical analysis

at these conditions will most likely require a state of the art computational approach which

takes into account the possibility of beam filamentation. With the exclusion of inhomo-

geneous broadening, such calculations are, numerically speaking, certainly realistic and

present a natural extension of the work presented above.

5.7 Summary

In this chapter we introduced a quasi three-dimensional multi-level RMB model and a

corresponding paraxial SIT model for the propagation of short light pulses in the fem-

tosecond and picosecond pulse regimes. The use of the RMB equations, which are valid

even down to single-cycle pulse durations, relaxes some of the strict numerical require-

ments associated with Maxwell’s equations and resulted in a computational formulation

applicable to long distance, three-dimensional propagation in multi-level media. Such

calculations are not feasible in the MB framework with current computational facilities.

Standard differential methods were applied for numerical integration of the RMB equa-

tions; finite-differences were used for the propagation equation and an operator splitting

method was applied for the optical Bloch equations.

We applied the RMB and paraxial SIT equations in the study of conical emission.
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Conical emission is still surrounded by much controversy since no theoretical calculations

have, to the best of our knowledge, been able to predict the experimentally observed angu-

lar structure. Here, we report on computer solutions that are consistent with observations

made in conical emission experiments. In sum, we find that conical emission occurs in the

following way:

1. Initial radial compression and symmetric spectral broadening through self-focusing

and self-phase modulation.

2. After a sufficient propagation length self-focusing yields sufficient on-axis gain to

produce multiple population inversions inside the quasi self trapped light filament.

The radiation spectrum from such a driven medium is, broadly speaking, adequately

understood from the Rabi solution of a two-level atom. Under the action of the

pulse, the driven medium radiates two Rabi sidebands at !c ˙ ƒ, where ƒ is the

generalized Rabi frequency.

3. At the same propagation distance saturation effects on the centerline result in pulse

breakup. The radially decreasing intensity profile of the beam in combination with

sideband generation leads to a transverse variation in the polarization density which

then manifests as cone emission of the red Rabi sideband.

Notably, we find that self-focusing appears to be necessary for the initial replenishment of

the centerline intensity which eventually results in cone emission through pulse breakup.

The results presented in this chapter resolve some of the underlying questions surround-

ing conical emission in alkali metal vapors. However, the use of numerical calculations

inhibits both quantitative prediction of experimentally predicted universal features and

precise isolation of the physical mechanism behind CE. For example, we are unable to

quantitatively predict both the emission angle of the red Rabi sideband and the spectral

width of the cone, which would depend on the on-axis gain.



Chapter 6

Single-cycle THz propagation in rigid rotor

molecular media

6.1 Introduction

When compared to experimental efforts in the microwave, infrared, and optical regions,

nonlinear terahertz technology is a research field still in its infancy. The THz spectral re-

gion covers, roughly speaking, frequencies between 300 GHz and 3 THz, corresponding

to wavelengths shorter than 1 mm but longer than 100 
m, thus occupying the frequency

region between microwaves and far-infrared radiation. The three major table-top genera-

tion methods for pulsed terahertz are optical rectification (OR), the photoconductive (PC)

switch [25], and the air-nitrogen plasma, all of which require pumping by an external

femtosecond laser system. In optical rectification, the THz radiation is generated through

difference frequency mixing of a femtosecond pulse in a nonlinear crystal. In the case of

the PC switch a femtosecond pulse is used to excite carriers in the substrate of an antenna,

possibly lithographically made, which then accelerate in the presence of a large DC bias.

The resulting current surge in the antenna radiates a THz pulse. In the air-nitrogen plasma

it is the fundamental and second harmonic of a femtosecond laser pulse that is responsible

for the THz generation. Terahertz pulses may be as short as a single cycle, corresponding

to durations of 1 ps or less, depending on the generation mechanism.

Pulsed terahertz (THz) technology [146] is presently emerging as an attractive research

field with diverse applications in biomedical imaging [19], spectroscopy [147], and molec-

ular alignment [16, 22, 148–151]. In contrast to material excitations using optical radia-

tion, which predominantly excites valence electrons in the � 2 eV range, THz waves ex-

cite low-energy modes such as molecular rotations [16, 150–152], lattice vibrations [17],

and spin waves [18]. It is, for example, the rotational transitions in light molecules that

111
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make THz a candidate for non-ionizing medical imaging of soft tissue. Several other key

applications, such as quantum information [20], chemical selectivity [153], population

control [21] etc., rely on an anisotropic molecular angular distribution. Other researchers

aim at using angularly localized molecules as an intermediate preparation step for initiat-

ing strong field ionization [154], lasing [155], or high harmonic generation (HHG) [23].

Although the field of THz-induced molecular orientation has grown rapidly over the past

decade, the first observation of rotationally oriented molecules appears already in the ex-

periments by Harde et al. [156] and Harde and Grischkowsky [157] over 20 years ago.

Classically, macroscopic molecular orientations are initiated by the torque a polarized ex-

ternal field exerts through the permanent or induced dipole moment of the molecule. For

linearly polarized fields the torsional force is directed in the polar plane and acts to ori-

ent the molecules along the instantaneous field direction. After the pulse has passed, the

free induction decay (FID) signal of the molecules deteriorates rapidly due to the destruc-

tive interference between the continuous, infinite number of classically excited rotational

modes, analogous to the free induction decay of an inhomogeneously broadened two-level

quantum medium. Quantum mechanically, a resonant pulse coherently excites a finite

number of possible angular momentum modes. In the abscence of an external field the

interference among the variously excited transitions also lead to initial suppression of the

free-induction signal, except for certain rephasing periods when the molecules are orien-

tated and the quantum coherences all radiate in phase at equally spaced time bursts. The

space-time behavior of the bursts describe the fidelity of the molecular orientation, and is

of practical interest in the linear and nonlinear excitation regimes.

In this chapter we consider the plane wave propagation of single-cycle THz pulses

through linear, polar molecules. Linear molecules are molecules with atoms oriented at

a 180ı degree angle with respect to each other. The most commonly quoted examples of

such molecules are carbonyl sulfice (O C S) and the hydrogen halides, e.g. cyanide

(H C N). There is also a large class of linear non-polar molecules (i.e. molecules

without permanent dipole moments) which do not have pure rotational transitions. Most

notably are the carbon dioxide molecule (O C O) and the nitrogen dimer (N N).

Rotational motion in such molecules cannot be excited by exerting a field-induced torque

through the permanent dipole moment, and is therefore usually initiated by rotational Ra-

man scattering, where the field instead imposes a torque through an induced vibrational

dipole moment. Recalling Fig. 2.2 one observes that the application of a non-resonant

excitation pulse which interacts via far-detuned vibrational transitions may establish the

necessary coherence between the molecules. In the case of the linear molecule shown in

Fig. 2.2 it is, for example, Raman scattering through the j�; j D 0i ! j� C 1; j D 1i
R-branch and j�; j D 2i ! j� C 1; j D 1i P-branch chain that establishes a two-photon

coherence between the j D 0 and j D 2 rotational states in the ground vibrational mode.
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The excitation of this coherence in a non-polar, linear molecule results in rotational align-

ment of the molecules, but not orientation, since the molecule has mirror symmetry in the

plane parallel to the molecular axis. Two-photon coherence between successive levels j

and jC2 is analogously established by Raman scattering through higher-lying states. Not-

ing that the rotational lifetimes of linear molecules are comparatively long with respect to

THz pulse durations [158], only the coherent regime is investigated in what follows. This

chapter is organized as follows. First, we introduce the molecular model in Sec. 6.2 and

we analyze the linear propagation regime in Sec. 6.3. A novel computational method

which allows evaluating of very large Bloch systems is then presented in Sec. 6.4 and

we proceed by presenting fully time-dependent, non-perturbative solutions incorporating

over 1000 rotational levels in Sections 6.5, 6.6, and 6.7. Finally, Sec. 6.8 provides a few

concluding remarks.

6.2 Physical model

We presume that the THz pulse is polarized along ´ and propagates along Cx, and that

the propagation occurs without significant transverse coupling in the y´-plane. The prop-

agation of the field follows the first order propagation equation [Eq. (3.35)]

@xE D � 1

2	0c
@�P: (6.1)

Note that we have chosen a coordinate system where the field propagates alongCx rather

thanC´. This choice is invariably unimportant, but allows the use of notational convention

in the quantum mechanics literature where angular momentum states are denoted by the

quantum numbers representing the total angular momentum and its projection onto the

space-fixed ´-axis.

The adoption of the plane wave approximation for single-cycle pulses is not neces-

sarily very well justified even for propagation in free space, and before addressing the

molecular equations it is reasonable to first discuss the most obvious shortcomings of this

model. Note that for propagation in vacuum, an exact solution to Eq. (3.35) exists and

may be written down as E.!; x; k?/ D E.!; 0; k?/ exp

�
� k2

?

2kc
x

�
. If one supposes, for

greatest simplicity, an initial beam with a Gaussian transverse profile,

E.�; 0; r/ D F.�/ exp

�
� r2

2R2
0

�
; (6.2)

where F.�/ is the temporal profile, the exact solution to Eq. (3.35) may be obtained in the

frequency domain as

E.!; x; r/ D R0

R.!; x/
exp

�
� r2

2R.!; x/

�
1C ix

xR.!/

�
C i .!; x/

�
F.!/; (6.3)
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E.�; x/ k Ó

�

�

C

�

Perfect orientation

Perfect alignment

FIG. 6.1: Rigid rotor molecular model. The angles � and ' are, respectively, the polar and

azimuthal angles the molecular axis, defined as the vector from the negative to positive charge,

makes with respect to the space-fixed ´-axis.

where R.!; x/ D R0

q
1C x2=x2

R.!/ is the nominal beam waist and xR.!/ D !R2
0=c

is the Rayleigh length for frequency component !. The phase  .!; x/ is the Gouy phase

shift

 .!; x/ D arctan

�
x

xR.!/

�
: (6.4)

Equation (6.3) expresses the presence of diffracton-induced transformation of the beam

profile and the temporal pulse shape, effects captured only outside the plane wave as-

sumption. Firstly, one notices an overall expansion of the beam waist due to linear diffrac-

tion. Notably, the divergence angle of each frequency component ! is generally different;

longer wavelengths diffract more strongly than shorter wavelengths. Secondly, the Gouy

phase term, which arises from transverse spatial confinement of the beam, indicates a rel-

ative change of spectral phase during propagation. Most important is the fact that the

Gouy phase change is generally frequency dependent. For broadband signals, and in for

particular for single-cycle pulses which have extremely broad spectra, this indicates the

possibility of a small amount of free-space chirping accumulated as an effect of propaga-

tion. For propagation distances substantially longer every Rayleigh length, x 
 xR.!/,

the Gouy phase induced chirp dies out since the Gouy phase is  .x !1; !/ D � . Thus,

the neglection of transverse reshaping associated with free space propagation, both waist

expansion and phase changes, is then restricted to propagation lenghts x � xR.!/. For a

propagation length of 10 cm and assuming that xR.!/ � 1 m, the initial beam radius of a

single-cycle terahertz should be larger than 7 mm, a comparatively large value.

Furthermore, we presume that the material is described by a collection of individual
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non-interacting molecules, and that the Born-Oppenheimer approximation is valid for the

individual molecules. This decouples the rotational, vibrational and electronic degrees of

freedom. In the abscence of interactions that excite molecular vibronic or ro-vibrational

motions, the molecule remains in its initial vibrational and electronic state, and only the

rotational part of the molecular wave function is affected by the externally applied THz

field. We model this part of the molecule as a rigid rotor (see Fig. 6.1). The interaction

between the rotor molecules and a classical electromagnetic field E is described by the

dipole interaction Hamiltonian

yH D
OJ 2

2I
�E � O�

D
X
jm

¯!jm jjmihjmj �E
X
jm

j 0m0



.´/
jm;j 0m0

ˇ̌
jm

˛˝
j 0m0

ˇ̌
;

(6.5)

where OJ is the angular momentum operator and I is the moment of inertia of the molecule.

The first term on the right-hand side of Eq. (6.5) represents free rotational Hamiltonian yH0

of the molecule and the second term represents the interaction with the electric field. In the

second line of Eq. (6.5), we have expanded the Hamiltonian in the eigenstates jjmi that are

simultaneous eigenfunctions of OJ 2 and OJ´ with eigenvalues OJ 2 jjmi D ¯2j.j C 1/ jjmi
and OJ´ jjmi D ¯m jjmi, where ¯m is the projection of the angular momentum of a state

j i D jjmi onto the space-fixed ´-axis. The dipole moment operator is expanded in

the same basis with O
.´/ D O� � Ó as the projection of the permanent dipole moment onto

the quantization axis. We disregard magnetic field couplings and the eigenstate energies,

given by the eigenvalues of OJ 2 alone, are therefore independent of the quantum number

m. The rotor eigenfrequencies !jm � !j are

!j D 1

¯

*
jm

ˇ̌̌̌
ˇ OJ 2

2I

ˇ̌̌̌
ˇ jm

+
� j.j C 1/

2
�!; (6.6)

where �! D ¯=.2I / is the fundamental quantum beat frequency of the molecule. In

the rigid rotor approximation the energy spacing between adjacent rotational levels is

¯.!j C1�!j / D .j C1/¯�!, and the linear rotational spectrum consists of many equally

spaced spectral absorption lines, as shown in Fig. 6.2. As always, the time evolution of

the molecules is described by the von Neumann equation

i¯d� O� D
" OJ 2

2I
; O�
#
�EŒ O
.´/; O��; (6.7)

where O� is the rotational part of the density operator of the system.

The solution for O�.�; x/ completely describes the rotational state of the medium and the

solution for E.�; x/ the propagation of the external field. Apart from the linear interaction
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E.�; x/

j D 0 m D 0

j D 1
m D �1

m D 0

m D 1

j D 2

m D �2

m D �1

m D 0

m D 1

m D 2

j D J

¯�!

2¯�!

FIG. 6.2: Single cycle pulse interaction with a multi-level system where adjacent energy levels

are connected via electric dipole transitions. The pulse spectrum is broad enough to simultane-

ously excite a large number of molecular eigenstates.

regime, solutions for O� must be obtained numerically. Unlike simple two- or three-level

media, O� has a large number of possible non-zero entries and the temporal evolution must

be described in terms of the experimental observables defined below.

6.2.1 Polarization

The allowed dipole transitions are found by calculating the entries of O
.´/. Using the

Wigner 3-j symbols we find thatD
jm

ˇ̌̌
O
.´/

ˇ̌̌
j 0m0

E
D 
p.�1/2j �m

p
.2j C 1/.2j 0 C 1/

�
 
j 1 j 0

�m 0 m0

! 
j 1 j 0

0 0 0

!
;

(6.8)

where 
p is the permanent dipole moment of the molecule and we note the optical selec-

tion rule for linearly polarized light fields j 0 D j ˙ 1, m0 D m. Evaluating Eq. (6.8)

explicitly yields



.´/
jm;j C1 m D 
p

s
.1C j /2 �m2

.2j C 3/.2j C 1/ : (6.9)

The quantum numbers j;m are good quantum numbers since the molecular motion

is confined to j -space while no coherence is established between states with different m-

numbers. In the suitable coordinate system where E is polarized along ´ for all times the
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interaction potential � �E is independent of '. The force F D �r Œ� �E.�/� exerted by

the field on the molecule locks the THz induced rotations in the polar plane,

F D �
pE.t/ sin � O�: (6.10)

System rotations of the molecule around the polarization axis are invariant, leaving the

molecules free to rotate in the azimuthal plane. We may show explicitly that the ensemble

molecular rotations around the ´-axis vanish. This is proven by calculating the temporal

evolution of the expectation value of OJ´, which gives

d� h OJ´i D 1

i¯ Tr

 
OJ´

" OJ 2

2I
�E O
.´/; O�

#!

D �E
i¯ Tr

�
OJ´

h
O
.´/; O�

i� (6.11)

since

Tr
�
OJ´

h
OJ 2; �

i�
D Tr

�h
OJ´; OJ 2

i
; O�
�
D 0 (6.12)

due to the commutivity of OJ 2 and OJ´. In the same way we may show that in the abscence

of an external field (E D 0), the molecules rotate freely since
h
OJx ; OJ 2

i
D
h
OJy ; OJ 2

i
D 0.

It remains to show that Tr
�
OJ´

� O
.´/; O�	� is also zero. Writing out the trace operation

explicitly, and expanding O� in the jjmi basis yields

Tr
�
OJ´

h
O
.´/; O�

i�
D Tr

�
O
.´/ O� OJ´ � OJ´ O� O
.´/

�
(6.13)

D
X
jm

j 0m0

j 00m00

¯m�j 0m0;j 00m00

�
ımm00ıjj 00


.´/
jm;j 0m0 � ımm0ıjj 0


.´/
j 00m00;jm

�
:

where we have used
D
jm

ˇ̌̌
OJ´

ˇ̌̌
j 0m0

E
D mıjj 0ımm0 . Here, ıjj 0 is the Kronecker delta-

function, defined as 1 if j D j 0 and zero otherwise. Since O
.´/
jm;j 0m0 is non-zero only for

m D m0 the term inside the paranthesis evaluates to
�
ıjj 00


.´/
jm;j 0m � ıjj 0


.´/
j 00m00;jm

�
D

0. The upshot of this result is that linearly polarized lasers do not induce '-motions;

only oscillations in the � -plane are possible. This result is physically obvious since the

torque exerted by E through the permanent dipole moment will cause an alignment of the

rotors completely analogous to the alignment a classical dipole experiences in a DC field.

This property greatly simplifies the numerical evaluation of Eq. (6.7) and allows computer

solutions of single-cycle nonlinear THz propagation in relatively large molecular systems.

Note that the rotor molecules are obviously individually rotating in both the ' and � planes

since the initial state of the medium must be taken as a distribution over all the Zeeman
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levels. The above result refers only to the macroscopic rotation when an ensemble average

is considered; if
D
OJ´

E
is initially zero, it will remain so. Since the initial distribution of the

Zeeman levels is isotropic for media in thermal equilibrium, '-rotations are irrelevant in

all that follows below.

It is evident that the molecular polarization will only lie along ´ when the electric field

polarization does. In the following, to condense notation we will omit the superscript .´/

and use the notation O
.´/ D O
. The coupling to Eq. (6.1) occurs via the polarization

P D N Tr . O
 O�/ where, by using the selection rules that followed from Eq. (6.8) we find

P D N

JM�1X
jmD0

�

jm;j C1 m�j C1 m;jm C 
j C1 m;jm�jm;j C1 m

�
: (6.14)

By using O
 D 
p cos � , we also find that

P D N h O
i
D N
phcos �i;

(6.15)

showing that the orientation hcos �i is a direct measure of the polarization.

6.2.2 Energy conservation

During propagation energy is transferred between field and medium. By using @�N hH i D
�.@�E/P , Eqs. (6.1) and (6.7) may be combined to a common energy conservation equa-

tion

	0c@xE
2 C @�U D 0; (6.16)

where 	0cE
2 is the instantaneous intensity of the external field and U D N hH0i is the

internal molecular energy. In the undamped limit considered here optical transparency is

mathematically inevitable since excited rotor molecules radiate indefinitely. This mani-

fests itself as an infinitely long coherent transient in pulse and medium, while in reality

damping always takes place for sufficiently long time delays and the pulse duration re-

mains finite. In all that follows, our numerical solutions are valid only for time scales

considerably shorter than any such relaxation times. The concept of ”total energy trans-

mission” is not applicable to our computer simulations because the pulse tail is for com-

putational necessity truncated at a finite numerical integration time. Equation (6.16) may

nevertheless be applied unambiguously provided that relaxation times remain compara-

tively long.

6.2.3 Position space

Although our analytic and computational approach solves for the expansion coefficients

of the known wave function basis, it is frequently convenient to represent the molecular
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state in coordinate space. The projection of the eigenstates jjmi into position space r is

h Onjjmi D Y m
j .�; '/; (6.17)

where On is a unit vector along .�; '/ and Y m
j .�; '/ is the complex spherical harmonic

Y m
j .�; '/ D .�1/m

s
.2j C 1/
4�

.j �m/Š

.j Cm/ŠP
m

j .cos �/eim' ; (6.18)

and Pm
j .cos �/ is an associated Legendre polynomial. The probability density � is defined

�.�; xI �; '/ D hOnj O�.�; x/j Oni
D
X

k

pk j‰k.�; xI On/j2 (6.19)

where the single-molecule wavefunction is given by‰k.�; xI On/ D hOnj‰k.�; x/i. Expand-

ing ‰k into spherical harmonics yields

�.�; xI �; '/ D
X
jm

j 0m0

�jm;j 0m0Y m
j Y m0

j 0

*
: (6.20)

The notation .�; xI �; '/ specifies that � is the delayed time, x is the macroscopic propa-

gation coordinate, and .�; '/ are internal coordinates for the molecules. Thus �.�; xI �; '/
describes the probability of observing the molecules oriented along .�; '/ a propagation

distance x into the medium at time � (see Fig. 6.1). Since 

.´/
jm;j 0m0 D 0 for m ¤ m0 one

also has �jm;j 0m0 D 0 form ¤ m0 when the medium starts out in a completely mixed state.

The '-dependence (but not m-dependence) then falls out of Eq. (6.22) and � changes to

�.�; xI �/ D
X

j;j 0;m

�jm;j 0mY
m

j Y m
j 0

*
: (6.21)

For numerical convenience, Eq. (6.21) is compactly written

�.�; xI �/ D O�.�; x/ W yG.�/; (6.22)

where W is the Frobenius product, and yG is a matrix operator with entries

Gjm;j 0m.�/ D Y m
j .�; '/Y m*

j 0 .�; '/: (6.23)

For density operators, � is analogous to the probability density j‰. On/j2 D j h Onj‰i j2 for a

pure state j‰i. Conservation of probability implies that

�Z
0

�.�; xI �/ sin �d� D 1

2�
: (6.24)
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A realistic theoretical prediction for the molecular shape must incorporate Zeeman lev-

els even when no transitions between the various harmonic ladder systems associated with

each quantum number m occur. For example, for media in thermal equilibrium Unsölds

theorem shows that � ! 1=.4�/ only when the Zeeman levels are equally populated for

each j . Spherical symmetry of � indicates that the molecular axes are distributed isotrop-

ically over the unit sphere.

6.2.4 Molecular alignment

Transient optical birefringence is measurable [159] and is proportional to the quantity˝
cos2 �

˛ DX
jm

�jm;jmVjm;jm C �jm;j ˙2 mVj ˙2 m;jm; (6.25)

where

Vjm;jm D 1

3



1C 2 j.j C 1/ � 3m

2

.2j C 3/.2j � 1/
�
; (6.26a)

Vj �2 m;jm D
s
.j � 1/2 �m2

.2j � 1/2
j 2 �m2

.2j � 3/.2j C 1/ : (6.26b)

The observable
˝
cos2 �

˛
may be further partioned into population and coherences [160,

161],

hcos2 �ip D
X
jm

�jm;jmVjm;jm; (6.27a)

hcos2 �ic D
X
jm;

j 0Dj ˙2

�jm;j 0mVj 0m;jm: (6.27b)

For a medium with isotropically distributed magnetic sublevels for each j ,
˝
cos2 �

˛
p

eval-

uates to 1=3.

Equivalently, the orientation and alignment are described in terms of the Legendre

moments

hP�.cos �/i D
X

j;j 0;m

�jm;j 0m.�; x/
˝
j 0m

ˇ̌
P�.cos �/

ˇ̌
jm

˛
� O�.�; x/ W OL� :

(6.28)

Using the Wigner 3j -symbols, the coefficients of the matrices OL� are analytically express-

able, D
jm

ˇ̌̌
OL�

ˇ̌̌
j 0m

E
D .�1/m

p
.2j 0 C 1/.2j C 1/

�
 
j 0 k j

0 0 0

! 
j 0 k j

�m 0 m

!
:

(6.29)
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The odd-even properties of P�.cos �/ imply that odd Legendre moments measure the

orientation and even moments measure the alignment. Special values are hP0.cos �/i D 1,

hP1.cos �/i D hcos �i, and hP2.cos �/i D .3hcos2 �i � 1/=2. By the selection rules of

the Wigner 3j -symbols each moment hP�.cos �/i consists of populations and rotational

coherences up to order jj 0 � j j � �.

6.3 Linearized solution

In the preceding section we introduced the theoretical Maxwell-Bloch model for rigid rotor

molecules. It is clear that in the general case exact solutions are unlikely to be obtainable.

It is possible, nevertheless, to obtain linearized solutions when the pulse area is small, a

result which is interesting in its own right.

6.3.1 Linearization

Firstly, linearization of the model follows from standard time-dependent perturbation ex-

pansions of the density operator. We denote the order of the perturbation expansion by

incorporating a superscript on O� (e.g. O�Œ0
). The relevant differential equations are the

time evolution equations for the population elements �jm;jm and the coherence elements

�j C1 m;jm, which are

d��jm;jm D i E.�/¯
�

jm;j C1 m�j C1 m;jm C 
jm;j �1m�j �1m;jm

� � c.c.; (6.30a)

d��j C1 m;jm D �i
�
!j C1 � !j

�
�j C1 m;jm

C i 
j C1 m;jm

�
�jm;jm � �j C1 m;j C1 m

�
¯ E.�; x/

C i E¯
�

j C1 m;j C2 m�j C2 m;jm � 
j �1 m;jm�j C1 m;jm

�
:

(6.30b)

The final terms on the right-hand side of Eq. (6.30b) contain the two-photon coherences

�j C1 m;j �1 m, �j C2 m;jm and indicate the presence of a rotational Raman coupling. Assum-

ing that the initial rotational state populations are relatively uninterrupted by the pulse, the

first order perturbation solution for the polarization coherence �jm;j C1 m may be written

down as

�
Œ1

j C1 m;jm D i


j C1 m;jm

�
�

Œ0

jm;jm � �Œ0


j C1 m;j C1 m

�
¯

�
�Z

�1

E.� 0/ei.!j C1�!j /.� 0��/d� 0;

(6.31)
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where �Œ0
 D �.�1; ´/ and �
Œ0

jm;j 0m0 D 0 for all jm ¤ j 0m0. That is, the initial state

of the medium is assumed to be a completely mixed state. To obtain a measure of how

much population is moved away from each state during the action of the pulse, we insert

Eq. (6.31) into the right-hand side of Eq. (6.30a) and integrate once with respect to time,

which gives the first order solution

�
Œ1

jm;jm � �Œ0


jm;jm D �
j
jm;j C1 mj2

�
�

Œ0

jm;jm � �Œ0


j C1 m;j C1 m

�
¯2

�
�Z

�1

d� 0

� 0Z
�1

d� 00E.� 0/E.� 00/ei.!j C1�!j /.� 0�� 00/

C : : : :

(6.32)

The dots indicate the presence of additional terms that are of the same order. The largest

possible contribution from the integrals is estimated by the triangle inequalityˇ̌̌̌
ˇ̌

�Z
�1

E.� 0/ expŒi.!j C1 � !j /�
0�d� 0

ˇ̌̌̌
ˇ̌ �

�Z
�1

d� 0
ˇ̌
E.� 0/

ˇ̌
: (6.33)

As a rough approximation we may use a boxcar pulse jE.�/j D E0 for 0 � � � T as a

replacement for the magnitude of a single-cycle pulse. When this pulse is replaced into

the above integral we obtain

�
Œ1

jm;jm � �Œ0


jm;jm � Œ�Œ0

jm;jm � �Œ0


j C1 m;j C1 m�
j
jm;j C1 mj2E2

0T
2

2¯2
C : : : : (6.34)

The linear approximation is essentially a small-area approximation valid if the right-hand

side is small compared to �
Œ0

jm;jm and in this case Eq. (6.31) may be used to calculate the

polarization coherences and the spatiotemporal evolution of the pulse.

To help clarify some of the approximations invoked in deriving analytic solutions, we

consider, in the next two subsections only, also the effects of homogeneous damping by

introducing phenomenological damping terms ���j C1 m;jm into the right-hand side of

Eq. (6.30b).

6.3.2 Perturbative first-order solution

The linear equations of motion are solved by transforming Eq. (6.1) to the frequency do-

main,

@xE.!/ D � i!

2	0c
P.!/: (6.35)

The expressions for the polarization and the coherences �
Œ1

j C1 m;jm in the frequency domain

are obtained by taking the Fourier transform of Eq. (6.31). This leads to a standard ex-

pression where the polarization coherences are described as quantum-mechanical Lorentz
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resonances. Inserting the resulting expressions into Eq. (6.35) yields an evolution equation

for E alone in the frequency domain, with exact solution

E.!; x/ D exp

0@J �1X
j D0

�! ǰx

!j C1 � !j

�
A�.!/ � AC.!/

	1AE.!; 0/; (6.36)

where

A˙.!/ D 1

i! ˙ i.!j C1 � !j /C � : (6.37)

Equation (6.36) shows that E obeys a frequency domain Beer’s law where each frequency

component decays exponentially with distance. The coefficients ǰ are in the general case

given by

ǰ D N .!j C1 � !j /

2	0¯c
jX

mD�j

j
jm;j C1 mj2
�
�

Œ0

jm;jm � �Œ0


j C1 m;j C1 m

�
: (6.38)

When the Zeeman levels are populated isotropically for each j the coefficients become

ǰ D
N
2

p.j C 1/2�!
�
�

Œ0

j;j � �Œ0


j C1;j C1

�
6	0¯c ; (6.39)

where �
Œ0

j;j is the initial population of level j for anym. To revert back to the time domain,

the exponential is expanded in its Taylor series and cross-terms are neglected sinceA˙.!/

is sharply peaked around 	.!j C1 � !j /. In the sharp-line limit � � !j C1 � !j ,

!

i! ˙ i.!j C1 � !j /C � �
	.!j C1 � !j /

i! ˙ i.!j C1 � !j /C � (6.40)

by the same argument. By the convolution theorem F�1ŒA˙.!/E.!/� D A.�/?E.�/ the

transformation back to the time-domain yields

E.�; x/ D E.�; 0/

C
J �1X
j D0

1Z
�1

1X
nD1

.� ǰx/
n

nŠ

�
AC

n .�
0/C A�

n .�
0/
	
E.� � � 0; 0/d� 0;

(6.41)

where A˙
n .!/ D ŒA˙.!/�n and [162]

A˙
n .�/ D

�n�1

.n � 1/Še
����i.!j C1�!j /�h.�/; (6.42)

where h.�/ is the unit step function. The convolution integral in Eq. (6.41) represents the

reshaping of the pulse due to the molecular response, and E.�; 0/ represents free transla-
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tion in the abscence of a medium. Inserting Eq. (6.42) into Eq. (6.41) yields

E.�; x/ D E.�; 0/ (6.43)

C 2
J �1X
j D0

1Z
0

1X
nD1

�� ǰ �
0x
�n

nŠ.n � 1/Š
1

� 0
e��� 0

cosŒ
�
!j C1 � !j

�
� 0�E.� � � 0; 0/d� 0:

The sum over n evaluates to [163]

1X
nD1

�� ǰ �
0x
�n

nŠ.n � 1/Š
1

� 0
D �

r
ǰx

� 0
J1

�
2

q
ǰ � 0x

�
; (6.44)

where J1.x/ is a Bessel function of the first kind. The final solution for E.�; x/ in the

sharp-line limit is

E.�; x/ D E.�; 0/ (6.45)

� 2
J �1X
j D0

1Z
0

r
ǰx

� 0
J1

�
2

q
ǰ � 0x

�
e��� 0

cos
��
!j C1 � !j

�
� 0
	
E.� � � 0; 0/d� 0:

To relate the physical significance of Eq. (6.45) to known results, note that if we con-

sider only a single resonant transition, applying Eq. (6.40) in Eq. (6.36) returns an equation

describing a linear 0� pulse, first derived by Crisp [30] (Eq. (21) in Crisp’s paper). Thus,

each j -term in Eq. (6.45) represents a linear 0�-pulse in the undamped limit. This is

surprising, considering that the approximations that went into deriving Eq. (6.45) are not

the same as those of Crisp [30]. In particular, neither the rotating wave or slowly vary-

ing envelope approximations were made. The reason for this agreement, of course, is

Eq. (6.40), which presumes that the resonances are narrow, spaced far apart, and respond

only at !j C1�!j . We recall that for quasi-monochromatic pulses propagating in two-level

media the pulse area is defined either as the area under the pulse envelope, or equivalently

as the Fourier coefficient on the center frequency. As envelopes are not used here we nec-

essarily stick to the latter definition; the 0�-pulse analogy simply enters due to absorption

at the various resonance frequencies.

Arlt et al. [164] have derived analogous expressions to Eq. (6.45) under the slowly

varying envelope and rotating wave approximations in the context of Rydberg wave pack-

ets [165–167]. Equation (6.45) is a generalization of the results derived by Crisp [30] and

Arlt et al. [164]; it represents a superposition of various single-cycle 0� pulses.

6.3.3 Impulse solution

Equation (6.45) is a general solution to the linearized sharp-line model. In the special

case when ǰ D ˇ the integrand in Eq. (6.45) resonates when �!� 0 D n� , and a pulse
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revival might be observed at times � � n�=�!. When the line strengths of each rotor

transition are equal, the time-domain propagation dynamics can be described explictly in

terms of pulse revivals without the need of evaluating the complicated integral expression

in Eq. (6.45). First, Eq. (6.36) is equivalent to

@xE D �
J �1X
j D0

ǰ

�Z
�1

E.� 0; x/e��.��� 0/

�
�

ei.!j C1�!j /.��� 0/ C e�i.!j C1�!j /.��� 0/
�
d� 0;

(6.46)

in the time domain. To proceed further we assume that ǰ D ˇ D constant, but note that

this does not hold in general because under more realistic conditions the populations are

distributed according to a Maxwell-Boltzmann distribution and the various line intensities

are then evidently not the same. The assumption ǰ D ˇ is a crude approximation in

the present context valid only closest to the interface x D 0 where the Bessel functions

in Eq. (6.45) are small and equally phased. However, by invoking this assumption we

obtain a compact, analytic solution that is convenient for understanding the linear time-

domain molecular response of the system. This solution is included in the present report

because Eq. (6.46) is generic for sharp-line, harmonic, multi-level systems for arbitrary

pulse durations, and an analysis is relevant also in other physical contexts, most notably in

multimode fiber Bragg grating transmission. Under the approximation ǰ � ˇ the model

has only one length scale, substantially simplifying the analytic description of the spatial

evolution. Equation (6.46) is written

@xE D �ˇ
�Z

�1

E.� 0; x/

JX
j D�J

e.j�!��/.��� 0/d� 0: (6.47)

The j D 0 term contained in Eq. (6.47) does not contribute to the integral unless E has

a large DC component. When the spectrum of E lies within the rotational manifold the

limit J ! 1 may be taken since the rapidly oscillating exponentials of the added terms

average out under the time integration in Eq. (6.47). The sum is evaluated by Poisson

resummation
1X

j D�1

ej�!.��� 0/ D Tb

1X
kD�1

ı.� � � 0 � kTb/; (6.48)

where Tb D 2�=�! is the quantum beat period of the system. Equation (6.47) evaluates

to

@xE.�; x/ D �˛
"
1

2
E.�; x/C

1X
kD1

e��kTbE.� � kTb; x/

#
; (6.49)
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where ˛ D ˇTb is the reciprocal characteristic length scale. Equation (6.49) is solved

exactly with the Ansatz

E.�; x/ D
1X

kD0

gk.x/e
�˛x=2��kTbE.� � kTb; 0/; (6.50)

whereE.��kTb; 0/ is the input pulse shifted an amount kTb in time. Replacing Eq. (6.50)

into Eq. (6.49) yields a recursive equation for the unknown algebraic factors gk.x/:

@xgk.x/ D �˛
k�1X
lD0

gl .x/: (6.51)

The boundary condition on x D 0 gives g0 D 1 and all other terms are solved for by

recursive integration. The first few terms are summarized in Table 6.1.

TABLE 6.1: The x-dependence of the driving pulse g0 and the first four impulses

g0.x/ 1

g1.x/ �.˛x/
g2.x/ �.˛x/C 1

2
.˛x/2

g3.x/ �.˛x/C .˛x/2 � 1
6
.˛x/3

g4.x/ �.˛x/C 3

2
.˛x/2 � 1

2
.˛x/3 C 1

24
.˛x/4

g5.x/ �.˛x/C 2.˛x/2 � .˛x/3 C 1

6
.˛x/4 � 1

120
.˛x/5

Equation (6.50) shows that the pulse evolves into a series of impulses following the

driving pulse k D 0 which decays exponentially with propagation distance, an expected

result interpreted as follows: As the pulse enters into the material it excites a coherent

superposition of molecular eigenstates in the material (i.e. a rotational wave-packet) which

oscillates freely in the abscence of the pulse. Due to the harmonic spacing of the energy

levels and equal line intensities, the rotational wave packet rephases at times � D kTb

and emit radiation. Under idealized conditions linear dispersive broadening cancels and

the emitted radiation is a temporal copy of the input pulse, homogeneously damped by

a factor e��kTb . The inequality �Tb � 1 is satisfied for a wide class of media (e.g. the

hydrogen halides) and the pulse train described by Eq. (6.50) may be very long. According

to Eq. (6.36), the pulse spectrum looks like an inverse frequency comb. In optically thin

materials ˛x � 1 these impulses have the same amplitude and are � radians out of phase

with the driving field, and have been termed commensurate THz echoes [156, 157] in the

context of terahertz excitation.
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6.4 Numerical procedure

We showed in Sec. 6.2 that the total number of levels of rigid rotor molecules are .JC1/2.

For J D 31, 1024 levels need to be incorporated into the equation for the propagating field,

corresponding to .JC1/4 D 1; 048; 576 entries in the density operator. This can be further

reduced by the hermiticity and trace requirements to 524; 799 unique coefficients. The

composite system represented by the hundreds of thousands of coupled, nonlinear partial

differential equations is considered to be of substantial complexity in a pulse propagation

context. Presently, computer solutions of coherent single-cycle pulse propagation have

only been presented for a handful of levels [53, 168, 169]. Nonetheless, we will show that

large systems are computationally tractable by using a clever arrangement of the Zeeman

levels.

6.4.1 Subspace formulation

Recalling that for linearly polarized THz pulses the transition dipole moment O
 is non-

zero only for transitions j ! j ˙ 1, m ! m it is immediately realized that O� is very

sparse. Arranging the (finite-dimensional) state vector j i in order of largest negative

m to largest positive m, and within each block from smallest j to largest j , the dipole

moment operator may be written as the diagonal sum

O
 D

0BBBBBBBBBBBBBBBB@

mD�J‚…„ƒ�
0
�

mD�J C1‚ …„ ƒ 
0 
J �1 m; J m


J m;J �1 m 0

!
: : :

mDJ‚…„ƒ�
0
�

1CCCCCCCCCCCCCCCCA
D

mDJM
mD�J

O
.m/;

(6.52)

where O
.m/ is a .J � jmj C 1/� .J � jmj C 1/ dimensional Hermitian matrix. The empty

entries in Eq. (6.52) are filled with zeros.
L

is the direct matrix sum, and Eq. (6.52)

defines a block diagonal matrix with entries O
.m/. Note that the direct sum
L

should

not be confused with the Kronecker sum ˚ which was used in Chapter 5, Sec. 3.4 for the

numerical calculation of the interaction propagator. We may also decompose the density

operator and the free Hamiltonian as block diagonal matrices, leading to corresponding
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expressions

yH0 D
mDJM

mD�J

yH .m/
0 ; (6.53a)

O� D
mDJM

mD�J

O�.m/: (6.53b)

We are allowed to do this because, by virtue of the fact that the entries of O
 and yH0 are

non-zero only for m D m0, so are the entries of O� (provided that the medium starts out in

a completely mixed state). Multiplying a block diagonal matrix by another matrix of the

same block-diagonal form will return the same matrix shape. That is, M
m

yO.m/
1

! M
m

yO.m/
2

!
D
M

m

yO.m/
1
yO.m/

2 (6.54)

where yO.m/
1
yO.m/

2 is a normal matrix product. This allows the von Neumann equation to

be written

i¯d�

mDJM
mD�J

O�.m/ D
mDJM

mD�J

h
yH .m/

0 �E O
.m/; O�.m/
i
; (6.55)

which of course allows solutions in terms of each block m

i¯d� O�.m/ D
h
yH .m/

0 �E O
.m/; O�.m/
i
: (6.56)

Equation (6.56) is an exact decomposition of Eq. (6.7) for linearly polarized fields.

The interpretation of the decomposition is straightforward. Since the molecules are ini-

tially distributed over all azimuthal rotation modes (m-modes) but no coherence can be

established between the various modes, we may decompose the density operator into

each subspace m and solve only for the � -motion of each mode, leaving '-rotations as

frozen variables incorporated into the initial conditions of O�. This process reduces the

.J C 1/2 � .J C 1/2 dimensional density operator into 2J C 1 partial density operators

O�.m/ with different dimensions, each of which describe the � -motion of the molecule for a

given '-mode. The partial density operator with the largest dimension is obviously O�.mD0/

which has dimension .J C 1/ � .J C 1/. The initial population in the m D ˙J is not

coupled to the external field, and �.�J / and �.J / are therefore of dimension 1 � 1.

The number of non-zero entries in the decomposed density operator is substantially re-

duced compared to the full case but nonetheless remains comparatively large. For J D 31,

the total number of non-zero elements in the reduced density operator is 21,856, and

700 GB of hard drive space is needed to store these elements on a 1000 � 4000 spa-

tiotemporal grid when single-precision complex arithmetic is used. Evidently, storage of
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the density operator is both time consuming and resource exhaustive, necessitating cal-

culation of observables during run-time. These may be calculated on each subspace m,

Tr
�
yO1
yO2

�
D Tr

 
mDJM

mD�J

yO.m/
1
yO.m/

2

!

D
mDJX

mD�J

Tr
�
yO.m/

1
yO.m/

2

�
:

(6.57)

Equation (6.57) allows calculations in terms of partial operators instead of full ones, avoid-

ing the need for large matrix multiplications. In the same way, Eq. (6.22) becomes

�.�; xI �/ D
JX

mD�J

O�.m/.�; x/ W yG.m/.�/; (6.58)

where yG.m/.�/ is a .J � jmj C 1/ � .J � jmj C 1/ dimensional matrix with entries

G
.m/

k;k0.�/ D Y m
jmjCk�1.�; '/Y

m*

jmjCk0�1.�; '/; (6.59)

where k; k0 2 Œ1; J � jmj C 1�. An analogous expression is found for OL.m/
� describing the

Legendre moments. Evaluation of yG.m/.�/ and OL.m/ require run-time numerical evalua-

tion. Here, the spherical harmonics are calculated by using the freely available software

library SHTOOLS [170], and the Wigner 3j coefficients were calculated using a Root Ra-

tional Fraction program [171] by Stone and Wood [172].

6.4.2 Discretization

The discretization of Eqs. (6.1) and (6.56) follows the results of Chapter 5, Sec. 5.4, with

the exception that the diffraction term r2
? is discarded. The propagation equation is then

solved with an implicit trapezoidal method and the Bloch equations using the operator

splitting method in the interaction picture. This set of equations is coupled in the same

way as the full three-dimensional model, and we have used a predictor-corrector method

to iterate the solutions to convergence. Furthermore, note that we do not, for greatest

simplicity, incorporate relaxations here, so the transformation to Liouville space is unnec-

essary.

Computer implementations of Eq. (6.1) and (6.56) require parallelization when J be-

comes large. Our code is based on the Message Passing Interface, where one computing

core is used for updating the propagation equation, and 2J C1 cores are used for updating

the density operator, allocating one core to each partial density matrix. The typical execu-

tion time of parallelized computer codes based on the above decomposition is determined

by the serial execution time of the largest partial density matrix. Using J D 31 (1024 total

levels) on a 500 � 1000 spatiotemporal grid, our code executes in about 10 minutes.



130 CHAPTER 6. SINGLE-CYCLE THZ PROPAGATION

We have also developed computer codes based on the full Eq. (6.7) and parallelized the

Bloch equation solver using distributed matrix calculations. These codes did not scale very

well unless the system became very large. At J D 31, codes based on distributed matrix

routines execute orders of magnitude slower than subspace methods. However, since the

code solves for the full density operator the approach might hold merit for elliptically

polarized light fields for which the subspace decomposition above is not valid.

6.4.3 Comparison with analytic solutions

To verify the reliability of our analytic results and our numerical method we present the

results of various computer simulations below. We take the density N D 1018 cm�3,

corresponding to a vapor pressure of 31 torr. The permanent dipole moment is taken as


p D 5 � 10�29 Cm, the quantum beat period as Tb D 5 ps. We consider J D 31 which

gives 1024 states in total. The propagation length isL D 10 cm. Our choice of parameters

does not represent a particular medium.

TABLE 6.2: Parameters used for computer simulations.

Variable Symbol Value

Density N 1018 cm�3

Quantum beat period Tb 5 ps

Dipole moment 
p 5 � 10�29 Cm

Rotational levels J C 1 32

Number of levels .J C 1/2 1024

Propagation length L 10 cm

Choice of input pulse

Since the DC component radiated by a finite-size source propagates evanescently, a basic

propagation requirement prior to reaching the medium is that the DC Fourier coefficient

of the input pulse is zero [173]. For this reason we reject the use of Gaussian pulses where

the DC level depends strongly on the carrier-envelope phase in the single-cycle regime

[33]. Instead, we apply a Poisson input pulse [174],

E.�; 0/ D 1

2
E0ei�

�
1 � i!c�

s

��.sC1/

C c.c: (6.60)

The parameters s, !c , and � describe the duration, location of the spectral peak, and

the spectral phase. The pulse described by Eq. (6.60) has a zero DC coefficient and is

anti-symmetric with respect to � for � D 0 and symmetric for � D �=2. For s close

to unity Eq. (6.60) describes a single-cycle pulse, and for large s the limiting form of
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Eq. (6.60) is a Gaussian pulse with carrier frequency !c , carrier-envelope phase �, and

duration T D p2s=!c . Pulse chirping is taken into account by treating !c as a complex

parameter [174]. In this subsection, we take E0 D 5 � 106 V/m, � D �=2, s D 3, and

!c D 3� � 1012 rad/s. This choice of parameters represents an asymmetric single-cycle

pulse consisting of two main ”carrier lobes” where the first lobe is positive E > 0 and

the second negative E < 0. The input pulse we use is shown as solid line in Fig. 6.3(b).

Taking the Fourier transform of Eq. (6.60) gives

eE.!; 0/ D 2�E0ei�

�
s

!c

�sC1
!se�s!=!c

�.s C 1/ h.!/; (6.61)

where � is the Gamma factorial function and h.!/ the unit step function in the frequency

domain. With the parameters above, Eq. (6.60) describes a spectrum which peaks at

1:5 THz and extends up to approximately 5 THz. The input pulse spectrum is plotted

in the top panel in Fig. 6.4.

The backpropagation and linear approximations are well satisfied for our chosen pa-

rameters: We find for example P=.	0E0/ � 10�2 [see Fig. 6.3(b)], and this is the case for

all of our computer simulations. The ”infinite-ladder” approximation used in Eq. (6.48) is

satisfied since the highest-lying molecular transition lies outside the pulse spectrum.

Impulse solution

First, we consider linear evolution under the condition of equal line strengths. This as-

sumption gives an optical thickness ˛L � 22:5. Figure 6.3 shows the propagation of the

Poisson pulse over the first 16 absorption lengths. According to Eq. (6.50), the driving

pulse is followed by a sequence of impulses propagating at the vacuum light velocity and

which are spaced exactly one quantum beat period apart. These features are captured in

our computer simulation. The color coding in Fig. 6.3(a) shows the magnitude of the elec-

tric field in units of E0 and the recurring impulses are readily observed at times that are

integer multiples of Tb . Figure 6.3(b) shows the near single-cycle pulse close to the inter-

face at x � 0 (solid line, plotted against the left vertical axis). Plotted against the right

vertical axis in the same plot is the molecular orientation hcos �i at x � 0. Rotational

wave packet revivals are readily observed as recurring orientations at every � D kTb . It

is obvious that orientation is achieved in the linear interaction regime since the polariza-

tion is directly proportional to hcos �i. The angular distribution is, however, perturbed

very little from the isotropic distribution as hcos �i is small. We find hcos �imax < 0:015,

indicating very weak molecular orientation.

To expose the pulse evolution in greater detail, we compare in Fig. 6.4 the computer

solution with the analytic solution in Eq. (6.50) after the pulse has propagated an optical

distance ˛x D 3. The solid line in Fig. 6.4(a) shows the computer solution for the electric
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FIG. 6.3: (a) Propagation of the Poisson test pulse in Eq. (6.60) for the first 4 quantum beat

periods and for x 2 Œ0; 16˛�1�. The horizontal axis is the time � in units of Tb , the vertical axis is

the penetration depth x in units of ˛�1, and the color coding shows the magnitude of the electric

field in units of E0 D 5 � 106 V/m. (b) Temporal evolution of the pulse (solid) in units of E0 and

molecular orientation hcos �i.�/ (dashed line, plotted against the second vertical axis) close to

the interface x D 0 for the first two quantum beat periods.

field, and revivals occur at each rephasing period � D kTb . The amplitudes of the impulses

in the computer solution are in excellent agreement with the predictions of the analytic

impulse solution (Fig. 6.4(a), dashed line) and leaves no doubt about the reliability of our

computer simulations. Correspondingly, Fig. 6.4(b) shows the temporal evolution of the

orientation hcos �i for the computer solution. We find that the orientation is one order of

magnitude smaller than at the entrance facet [recall Fig. 6.3(b)], which is understandably

due to strong spectral absorption at the various resonance frequencies close to the interface.

An important propagation-induced phase reversal of the orientation is also observed. The

phase difference between the first orientation revival at ˛x D 0 and ˛x D 3 is precisely

� .

In the coherent regime the polarization and the electric field are, at times, antiparal-
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FIG. 6.4: (a) Comparison between the analytic solution in Eq. (6.50) (dotted line) and a computer

solution (solid line) using the Poisson input pulse with peak amplitude E0 D 5 � 106 V/m. The

data are taken a propagating distance ˛x D 3 into the medium. The pulse spectrum (dotted line)

is plotted in arbitrary units against the top horizontal axis. The vertical bars near the baseline

indicate the spectral location of the various resonance lines. (b) The temporal evolution of the

orientation hcos �i.�/ at ˛x D 3.

lel. Careful examination of Fig. 6.3(b) shows that at the trailing edge of the input pulse

hcos �i < 0 and E > 0. To emphasize this point, consider the polarization P after the

resummation:

@�P.�; x/ D ˛	0c

"
E.�; x/C 2

1X
kD1

E.� � kTb; x/

#
; (6.62)

which shows that the polarization does not in general follow the instantaneous electric

field. Close to the interface x D 0 and for times � < Tb=2 the polarization is excited

quasi-statically by the pulse,

P.�; 0/ � ˛	0c

�Z
�1

E.� 0; 0/d� 0: (6.63)
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Close to the leading edge of the driving pulse in Fig. 6.3(b) where the field is negative,

hcos �i is negative and the molecules are parallel with the electric field. The rotors re-

main parallel until the electric field switches direction and the molecules become oriented

opposite to the external field. In comparison to molecular alignment using static electric

fields, this result is counterintuitive and warrants an explanation. It suffices to consider a

classical dielectric response P.!/ D �.!/E.!/ where �.!/ D �*.�!/. For an isolated

quantum Lorentz resonance

�.!/ D �0

�
1

!0 � ! C
1

!0 C !
�
; (6.64)

P.�/ evaluates to P.�/ D �0

R �

�1 sinŒ!0.��� 0/�E.� 0/d� 0 and the medium responds only

at the resonance frequency !0. WhenE.!/ overlaps with !0 and has a spectral bandwidth

exceeding the absorption linewidth by orders of magnitude the pulse may reverse polarity

faster than the medium can follow. This manifests as anti-parallel electric and polariza-

tion field vectors, opening up the possibility of a radiation reaction that transfer energy

back to the pulse. The effect has been known for a long time, and is the primary mech-

anism for the optical transparency of the linear 0� pulse in the zero damping limit, first

predicted by Crisp [30] and later observed by Varoquaux [175] and Rothenberg [103]. In

essence, Eq. (6.50) is the multi-level superposition of linear 0� pulses when the absorption

coefficients associated with each rotor transition are equal. The quantum beats at time de-

lays that are multiple integers of Tb are manifestations of coherent beating between these

pulses.

The two panels in Fig. 6.5 show the probability density for the linear simulation close

to the interface at x � 0. The color-coding in the top panel shows �.�; x � 0I �/ for times

� 2 Œ�Tb=2; 4:5Tb�, and reading the plot from left to right, the probability distribution of

the molecular axes over the polar angle � may be read at each time � by following the

color-coding vertically along the � -axis. At the isochronic line � D �Tb=2 the probability

density is constant D 1=.4�/ over � , and the molecular axis of the rotor molecules are

distributed isotropically over the unit sphere. Moving horizontally towards � � 0 the

probability density on the northern hemisphere is slightly higher than at the southern,

indicating that the rotor molecules are lining up with the first carrier lobe of the external

THz field. Note that the molecules do not favor up/down; the accumulation of molecules

oriented along C´ is due to the quasi-static orientation the leading pulse edge E > 0

imparts on the molecules [recall Eq. (6.63)]. Moving from � � 0 and towards longer times,

the molecules dephase in the absence of the external field and, the alignment diminishes

and �.�; x � 0I �/ moves towards its isotropic value of 1=.4�/ at � D Tb=2. When � !
Tb the first wave-packet revival is observed as an increased probability density at � D 0

and a decreased density at � D � . This process repeats itself for longer times resulting in

the re-emergence of an oriented ensemble at times that are integer multiples of Tb . Note
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FIG. 6.5: Computer solution showing molecular probability density at x D 0 in the linear prop-

agation regime. Top panel: The color-coded data indicate the value of �.�; x D 0I �/ at various

times and polar angles. The time � reads from left to right along the horizontal axis, and the

polar angle � from top (north pole) to bottom (south pole) along the vertical axis. Bottom panel:

Cross-section of the probability density through the polar plane for two different times � D �Tb=2

(solid line) and � D Tb (dashed line). The distance from the origin indicates the value of � in

each case (the labels on the vertical axis indicate the distance from the origin in units of 4�).

that at half integer revival times � D .k C 1=2/Tb then hcos �i D 0 but hcos2 �ic ¤ 0.

For the above simulation data, we have hcos2 �i � 1=3 and hcos2 �ic � 10�4 such that

the molecules are weakly aligned, but not oriented, at half quantum beat periods.

Although the molecules re-orient at each integer quantum beat period the probability

density of the rotor molecules is only slightly perturbed. The bottom panel in Fig. 6.5

shows a cross-section of �.�; x � 0I �; '/ through the molecular polar plane for two

different times � D �Tb=2 (solid line) and � D Tb (dashed line). The lines are plotted
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for the entire polar cross-section, with the understanding that �.�; 0I �/ is symmetric with

respect to the transformation � ! 2� � � . The radial distance from the origin of the plot

out to the two curves indicate the value of � in each case. We have verified that probability

is conserved in our simulations to a precision better than 10�5. For � D �Tb=2 the initial

condition for � show that molecular axes are distributed evenly over the unit sphere. At the

first revival � D Tb , we find that the distribution is only slightly pushed into the northern

hemisphere, demonstrating that the molecular orientation is not particularly strong.

The case of thermal equilibrium

For a medium in thermal equilibrium the initial state of the medium prior to the action of

the pulse is

�.� ! �1; x/ D 1

Z
exp

 
�
yH0

kBT

!
; (6.65)

where Z D Tr
�

exp
h
� yH0=.kBT /

i�
is the partition function. The line intensities asso-

ciated with each j ! j C 1 transition are evidently different in the thermal and ideal-

ized cases. We now consider linear propagation of the input pulse discussed above, but

this time through a thermal medium at Ta D 300 K. Analogous to Fig. 6.3(a), Fig. 6.6

shows the spatiotemporal evolution of jE.�; x/j over the first 4 quantum beat periods for

the entire propagation length. We find that close to the entrance interface x D 0, wave

packet revivals are observed at each time � D kTb . As the driving pulse and impulses

propagate further into the material the roles of the Bessel factors in Eq. (6.45) become

noticeable and the pulse revivals disperse. Evidently, close to the interface the Bessel

functions in Eq. (6.45) may be expanded in a power series and the integrand resonates at

� 0 D 2�=.�!/ since all ǰx are comparatively small with respect to the first abscissa

of the Bessel function such that J1

�
2
p

ǰ � 0x
�
> 0. Following Eq. (6.41), dispersion

is negligible for ǰx � 1. After a sufficient propagation length the Bessel factors with

the largest ǰ change from positive to negative and phases of the polarization compo-

nents associated with the strongest absorption lines are reversed relative to the weakest

lines. Thus, when the driving pulse has penetrated a sufficient distance into the material

the various rigid rotor transitions are, due to different level degeneracies and populations,

excited with different amplitudes and phases. As the first impulse is emitted close to the

interface it effectively enters into a medium predominantly prepared by excitation of the

strongest resonance lines. This impulse, which is approximately a copy of the initial pulse,

reinforces this response for the later impulses, leading to additional dephasing among the

various polarization components. In the spectral domain, an equivalent description is that

spectral holes are only found at the strongest absorption lines during propagation, and the

pulse develops a more complicated temporal structure. Note that molecular dephasing of



6.5. NONLINEAR PROPAGATION 137

rotational wave packets due to centrifugal distortion of the molecule for higher rotational

modes has been discussed by Harde et al. [156]. Here, we show that for an extended

medium dephasing also occurs as a result of propagation.
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FIG. 6.6: Computer solution for linear single-cycle THz excitation of a molecular ensemble

initially in thermal equilibrium. The color coding in the top and bottom panels show the field

magnitude jE.�; x/j and the molecular orientation hcos �i.�; x/, respectively.

The color-coding in bottom panel of Fig. 6.6 shows the value of hcos �i.�; x/ for the

entire simulation region and demonstrates the dispersion of the induced molecular ori-

entation. Like the pulse, recurring periods of orientation are found at times � D kTb

close to the interface x � 0. With increasing x, propagation-induced dispersion of the

rotational wavepacket becomes noticeable and is observed as temporal broadening of the

orientational revivals in Fig. 6.6(b).

6.5 Nonlinear propagation

Having reviewed the single-cycle linear pulse propagation regime we now turn our atten-

tion to nonlinear propagation. Below, we consider three cases (I) E0 D 108 V/m, (II)
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E0 D 109 V/m, and (III) E0 D 5 � 109 V/m. In each case, the medium is initially

prepared as a thermal ensemble following Eq. (6.65) with Ta D 300 K. Practical limita-

tions prevent us from propagating pulses with even higher amplitudes since the time scale

�c � 1 fs implies a very fine temporal resolution. Propagation over the first few quantum

beat periods then require hundreds of thousands of temporal grid points, and we have been

unwilling to spend much computation time on such scenarios.

6.5.1 Weakly nonlinear regime (I)

First, we investigate the propagation of a pulse with amplitude E0 D 108 V/m and inten-

sity I0 D 	0cjE0j2=2 D 1:32 GW/cm2, which places the interaction of this pulse with the

material in the nonlinear regime. Figure 6.7 shows the rotational population distribution

wj .�; x/ D
X

m

�jm;jm.�; x/ (6.66)

close to the interface x � 0 for � 2 Œ�Tb=5; Tb=5�. The time window is sufficiently large

to contain the entire input pulse. On the .� D �Tb=5;wj /-plane the height of the bars

show the initial Maxwell-Boltzmann distribution prior to the pulse interaction. Initially,

the rotational level with the highest population is j D 5. We find that as the pulse enters

into the medium a significant amount of population is moved to higher rotational states,

evidenced by a shift in the peak of wj from j D 5 at � D �Tb=5 to j D 10 at � D Tb=5

in Fig. 6.7.

To expose the molecular state in more detail during and after the pulse interaction

close to the interface at x � 0, the panels in Fig. 6.8 show the probability density for

various times �=Tb 2 Œ�0:10; 1:05�. For comparison, the dashed line in the panel with

�=Tb D �0:05 shows the uniform probability density of 1=.4�/. The panel with � D
Tb in Fig. 6.8 may be contrasted with Fig. 6.5(b) which showed a corresponding plot

for linear interaction. Like in Fig. 6.5, the angle � runs from the top of each panel and

clockwise and counter-clockwise around the panel [the simulation data is symmetrized

such that �.�; xI �/ D �.�; xI 2� � �/]. The temporal evolution of � is observed by

reading the panels from left to right, top to bottom. We find from the panel with �=Tb D
�0:05 that as the pulse first enters into the material the leading edge of the pulse pushes

� slightly down into the southern hemisphere, which is shown by a small shift in the

center of mass of � towards the south pole. The panel immediately to the right shows

the probability density at � D 0 and demonstrates that the rotor molecules are oriented

primarily along C´ (� < �=2). The reason for the sudden change in orientation, from

slightly towards �´ to sharply along C´, is due to the double leading lobe structure on

the input pulse seen in Fig. 6.3(b). While the first, small negative carrier lobe will tend to

orient the molecules along � D � , the first main carrier lobe, which is much stronger, acts
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x D 0. The time window, measured in units of Tb , is sufficiently large to contain the entire driving

pulse.

to orient the rotor molecules along � D 0. When the field phase reverses at � D 0 and

the subsequent large negative carrier lobe also enters into the medium, the orientation is

reversed and at time �=Tb D 0:05Tb the molecules are found in the southern hemisphere.

The subsequent panels show the near field-free dephasing and rephasing of the molecules.

From �=Tb D 0:05 to �=Tb D 0:5 the rotor molecules gradually move away from an

oriented ensemble to an aligned one. At the quarter revival period �=Tb D 0:25 both the

orientation hcos �i and the alignment hcos2 �ic are approximately zero. At �=Tb D 0:5,

hcos �i � 0 but hcos2 �i � 0:1 (see Fig. 6.9), showing that at half-integer quantum

revival periods the molecules are aligned, but not oriented. The up/down symmetry of

the medium at the entrance interface is preserved at half-revival times, but not at integer

revivals times. Moving on from �=Tb D 0:50 and towards �=Tb D 1 the molecules

gradually re-orient. We observe this for �=Tb D 0:95 where �.�; x � 0I �/ peaks at

� D � , indicating that the bulk of the rotor molecules are oriented along �´. A short

time later, at �=Tb D 1, the ensemble is oriented along C´. Note that the orientation at

�=Tb D �0:05 is weak compared to the orientation at �=Tb D 0:95, while the orientation

at �=Tb D 0 and �=Tb D 1 are quantitatively comparable. The reason is that the evolution

up to �=Tb D �0:05 occurs in the linear regime while the large degree of orientation along

�´ at �=Tb D 0:95 is due to nonlinear interaction with the entire pulse.



140 CHAPTER 6. SINGLE-CYCLE THZ PROPAGATION

�=Tb D �0:10 �=Tb D �0:05 �=Tb D 0:00 �=Tb D 0:05 �=Tb D 0:10 �=Tb D 0:15

�=Tb D 0:20 �=Tb D 0:25 �=Tb D 0:30 �=Tb D 0:35 �=Tb D 0:40 �=Tb D 0:45

�=Tb D 0:50 �=Tb D 0:55 �=Tb D 0:60 �=Tb D 0:65 �=Tb D 0:70 �=Tb D 0:75

�=Tb D 0:80 �=Tb D 0:85 �=Tb D 0:90 �=Tb D 0:95 �=Tb D 1:00 �=Tb D 1:05

FIG. 6.8: (I) Rigid rotor molecular probability density. Each panel shows the probability density

at x D 0 for various times � under nonlinear interaction with a single-cycle THz pulse (I0 �
1:3 GW/cm2). The time between each panel is 0:05Tb .

The distorted probability densities shown in Fig. 6.9 quantitatively show the angular

distribution of the molecules. To examine this data in greater detail and estimate the

order of the wavepacket, Fig. 6.10(a) shows the corresponding evolution of the first few

Legendre moments hP�.cos �/i over the same time period. Note that hP�.cos �/i are

experimental observables, measurable by photoelectron imaging [176] or nonlinear optical

spectroscopy. The maximum value of the first two moments hP1.cos �/i and hP2.cos �/ as

a function of time in Fig. 6.9 is 0:4 and 0:15 respectively, showing that the molecules are

both oriented and aligned. For the higher moments hP3.cos �/i and hP4.cos �/i the peak

values are more modest and equal to 0:05 and 0:025 in the two cases. Moments of higher

order are smaller, with hP5.cos �/imax � 0:01 and hP6.cos �/imax � 0:006. Recalling

that coherences up to order jj 0 � j j � � are present in the expression for the Legendre

moments of order �, we find that the excitation of the interface occurs as a multi-photon

process up to approximately fourth order.

The propagation of the THz field, the orientation hcos �i and the alignment hcos2 �i
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FIG. 6.9: (I) First few Legendre moments hP�.cos �/i close to the interface x � 0.

(measured as hP2 cos �i) are shown in panels (b) and (c) in Fig. 6.10. Overall, we find that

the pulse propagates nonlinearly only over the first few millimeters in the sample and then

falls back into the linear propagation regime. Figure 6.10 shows that strong molecular ori-

entations are achieved in this spatial region of the material. We find that hcos �imax � 0:4
whereas hcos �imax � 10�2 was found in the linear regime. Figure 6.10(c) shows the

corresponding evolution for the alignment. We recall that hP2.cos �/i D 0 for ther-

mal molecules with isotropically distributed Zeeman levels and that hP2.cos �/i con-

tains the Raman coherences �jm;j ˙2 m and population terms. Close to the baseline in

Fig. 6.10(c) the slow increase in hP2.cos �/i is due to population transfer to higher angu-

lar momentum orbitals. The population distribution is asymmetric in the Zeeman levels

since hcos2 �ip,max � 0:38 whereas a value of 1=3 is obtained for an isotropic population

distribution. The rapid oscillations seen at half and integer revival times are due to the ex-

citation of rotational Raman coherences, indicating the presence of two-photon resonant

transitions of the type j ! j C 1 ! j C 2. From the color-coding in Fig. 6.10(c) we

note, importantly, that hP2.cos �/i � 0 for x > 1 cm, showing that the pulse falls back

into the linear interaction regime after only a short propagation distance.
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FIG. 6.10: (I) Top panel: Spatiotemporal evolution of the electric field jE.�; x/j in units of E0.

Middle panel: The molecular alignment hcos �i. Bottom panel: The second order Legendre

moment hP2.cos �/.

6.5.2 Intermediate nonlinear regime (II)

Below, we consider the propagation of a pulse with amplitude E0 D 109 V/m. The tem-

poral resolution for this simulation is4� � 1:25 fs, about 4 times higher than the critical

sampling period 4�crit D �=!J � 5 fs required by the Nyquist-Shannon sampling theo-

rem. Relative to the input pulse then 4�fmax D 6:25 � 10�3 where fmax D 5 GHz is the

upper cut-off frequency [see Fig. 6.4].

The excitation of the interface with this pulse results in a complex excitation of the

medium. The color-coding in the various panels in Fig. 6.11 show the probability density

close to x � 0 for two chosen time windows, one large enough to contain the first few

quantum beat periods and one showing the temporal evolution around the first revival in

greater detail. The solid line running horizontally across each panel indicates the value of

hcos �i, and is plotted in arbitrary units against the baseline � D �=2. In the top panel
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the maximum probability density near the leading edge of the input pulse at � . 0 is as

high as 0:9 indicating that the molecules are strongly oriented along C´ by the leading

positive lobe of the input pulse. At the same isochronic line � is approximately zero for

� � �=2 and all the molecules are therefore found in the northern hemisphere. Note that

the polarization is close to saturation since hcos �i � 1. A short time later � & 0 when

the negative carrier lobe penetrates into the material, the orientation of the molecules is re-

verted so that they are pointing along � D � with approximately 0 observation probability

along � D 0. The subsequent dephasing of the rotor molecules shows that the probability

density is higher at the poles � D 0 and � D � than at the equator � D �=2. In the al-

most field-free dephasing of the material we therefore find that the molecules are aligned,

but not oriented. Recalling that the expression for � contains all coherences �jm;j 0m, the

rapid temporal oscillations and the accumulation of probability on the poles for � & 0

shows that the molecules are excited into a coherent superposition of higher-order angular

momentum states. The higher order coherences oscillate rapidly in the abscence of an

external field and they are responsible for the complicated temporal structure of � seen

in Fig. 6.11(a). The most likely explanation for the weak oscillations of the orientation

hcos �i observed in Fig. 6.11(a) at periods between the pulse revivals is that the molecules

are excited into a wave-packet consisting of fewer jm-modes where complete destructive

interference of the macroscopic polarization does not occur.

The color-coding in the bottom panel in Fig. 6.11 shows the probability density in

greater detail during the first pulse revival around �=Tb D 1 close to x � 0. During

the evolution up to the first recurrence the wave packet oscillates rapidly like an aligned

ensemble where accumulation of probability is observed at the poles � D 0 and � D � .

Revival is first observed as a peak in � at � & Tb at � D 0 in Fig. 6.11(b) and occurs

slightly after � D Tb . The revival process occurs in multiple stages where the proba-

bility density oscillates between the north and south poles, indicating a rapidly changing

polarization spanning several cycles.

The panels in Fig. 6.12 show the propagation of the field E.�; ´/ and the orientation

hcos �i for this pulse. Compared with linear propagation [see Fig. 6.6(a)], we find that

the driving pulse propagates a substantially longer distance into the medium than in both

the linear and weakly nonlinear (I) regimes. During this propagation the driving pulse is

continuously reshaped by the medium and travels with a slightly reduced group velocity.

Comparing Fig. 6.12(b) with Fig. 6.10(b) we find that the orientation hcos �i is maintained

to a considerable during the propagation of the driving pulse and orientations as high as

0:9 are observed. The later impulses for both medium and field are somewhat blurred and

have no clear spatiotemporal structure.

To expose the reshaping of the pulse in even greater detail, the panels in Fig. 6.13

shows the electric field (solid line) for various propagation lengths and for a time window
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FIG. 6.11: (II) Top panel: Probability density � as a function of time � and polar angle � at the

first spatial grid point x � 0. Bottom panel: Inset of (a) for � 2 Œ0:75Tb ; 1:25Tb �.

large enough to contain the driving field and the first revival pulse. For comparison, the

dashed line in each panel shows the propagation of the same pulse in the linear regime.

Reading the panels in Fig. 6.12 left to right, top to bottom, only the leading carrier lobe

of the driving pulse is seen to be significantly affected over the first few centimeters of

propagation. A pulse revival appears at � � Tb after a few millimeters of propagation, but

that the relative amplitude of this impulse is small compared to the predictions of linear

theory. Comparing the panels ´ � 0 and ´ D 6 mm shows that the while the leading

carrier lobe is attenuated, the trailing lobe is slightly amplified during propagation. At ´ �
0 and ´ D 6 mm the maximum amplitudes of the trailing carrier lobe are jE.�; x � 0/j �
0:78 and jE.�; x D 6 mm/j � 0:85 respectively. Further propagation shows that as the

leading lobe is continuously attenuated the trailing lobe remains relatively constant and

a secondary positive field region appears on the driving pulse tail. Correspondingly, the

pulse becomes increasingly temporally symmetric during propagation (see Fig. 6.13 for

´ D 6 mm). This type of reshaping occurs over the first few centimeters of the medium

before the pulse falls back into the linear propagation regime for x & 5 cm. The bottom
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FIG. 6.12: (II) Propagation of a single-cycle THz pulse with amplitude E0 D 5 � 108 V/m. Top

panel: The instantaneous electric field value E.�; x/ (in units of E0). Dark and bright areas show

regions with E.�; x/ < 0 and E.�; x/ > 0 respectively. Bottom panel: Same as (a), but for

hcos �i.

row in Fig. 6.13 shows the electric field profile at the far end of the medium. At x D 9 cm

only a high-frequency weak-amplitude precursor field remains for both the driving pulse

and the revivals in both the linear and nonlinear propagation regimes. Except for an overall

dispersive group delay, these fields, which are most likely the high-frequency content of

the input pulse, change very little with propagation distance.

6.5.3 Strongly nonlinear regime (III)

Finally, we consider the propagation of a pulse with amplitude E0 D 5 � 109 V/m. Such

pulses are presently available from linear accelerators where field amplitudes as high as

4:4 GV/m have been reported recently [177, 178]. The various panels in Fig. 6.14 show

the full field E.�; x/ (dashed lines) and the internal energy h yH0i (solid lines, in units

of ¯!J ) for various propagation lengths. We recall that when @
@�
h yH0i > 0 energy is

transferred from the field to the medium and vice versa if @
@�
h yH0i < 0. We find that
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FIG. 6.13: (II) Temporal electric field profiles at various propagation lengths ´ (indicated in each

panel). Solid and dashed lines show input pulses with amplitudes E0 D 109 V/m (solid) and

E0 D 5 � 106 V/m (dashed).

as the pulse enters into the medium the internal energy h yH0i of the medium is saturated,

evidenced by the appearance of several temporal peaks in h yH0i. The leading bump in h yH0i
observed in Figs. 6.14(a) and (b) are almost certainly due to coherent return occuring when
@

@�
E switches from negative to positive on the small, negative, leading edge (i.e. the part

before the first carrier lobe). The larger, more rapid, oscillations occur for the medium as

a whole, and are analogous to the Rabi oscillations [179] that take place when a longer

pulse coherently saturates a single atomic line transition. We term these oscillations as

collective Rabi oscillations because they relate to the inversion of the medium as a whole

rather than to a single transition. As the pulse propagates deeper into the material the

leading edge of the field is absorbed by the material. When the next slice of pulse enters
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into the medium, which is fully saturated, some of the energy lost by the leading edge is

returned to the pulse. This process then repeats itself several times under each carrier cycle

and the pulse develops self-oscillations superimposed on top of the two carrier lobes, as

seen in Fig. 6.14(b). Further propagation reinforces this behaviour; the leading edge of the

pulse is absorbed and parts of the first main carrier lobe are enhanced, leading to temporal

steepening of the leading pulse edge, as seen in panels (b)-(d) in Fig. 6.14.
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FIG. 6.14: (III) Electric field profiles (dashed line, plotted against the left vertical axis) and

internal molecular energy hH0i (solid line, plotted against the right vertical axis) in units of ¯!J

for various propagation lengths x (indicated in each panel).
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Note that coherent energy return was observed also in the linear regime, then due to a

rapid phase reversal of the electric field. Here, the process is distinctly different as energy

is returned under each carrier lobe without reversing the sign of E. From Eq. (6.16) it is

verified that
@U

@�
D E @P

@�
; (6.67)

so that when @U
@�

goes from positive to negative under a single carrier lobe then the polar-

ization driving term goes from absorbing to amplifying. This mechanism is reminiscent

of self-induced transparency (SIT), which is a process where the leading edge of a suffi-

ciently strong pulse is absorbed as it drives an atomic line transition to inversion, resulting

in a polarization ”flip” (i.e. phase reversal) that allows the trailing edge to coherently re-

gain the energy lost by the front. Transparency of the driving pulse is not observed here

since the final energy state is h yH0i.�/ > h yH0i.� ! �1/. However, the driving pulse

energy is conserved to a considerable extent when compared to the linear regime. The en-

ergy of the field shown in the bottom panel in Fig. 6.14 is approximately 80% of the input

pulse energy, whereas in the linear regime less than 2% of the energy of the driving pulse

(defined as the fluence delivered in time Tb=2) was preserved after exiting the medium.

The preservation of the fluence is due to saturation effects. Scaling Eq. (6.16) by E2
0 leads

to
@

@x
E

2.�; x/ D � 1

	0cE
2
0

@U

@�
; (6.68)

where E D E=E0 is a quantity of order unity. In the linear regimeU / E2
0 [see Eq. (6.34)]

and the effective absorption length scale is constant in the linear regime. When U is

saturated further increases inE0 will result in coherent energy return rather than increased

absorption. The pulse behavior in Fig. 6.14 is therefore understood to be the results of

coherent bleaching of the medium.

To further investigate the behavior of the medium under this pulse excitation, Fig. 6.15

shows the orientation hcos �i as a function of time for the same propagation lengths. In

Fig. 6.15(a) we find that when the pulse enters into the material the small leading edge of

the pulse acts to orient the molecules into the southern hemisphere before the first main

carrier lobe enters. When this part of the pulse enters into the medium the molecules

become oriented along the field direction into the northern hemisphere. Coherent satu-

ration under this part of the pulse leads to an oscillatory motion of the rotor molecules

around hcos �i � 0:25, and the wiggling motion continues until the secondary carrier lobe

brings the molecules back to the equator. Further propagation into the material shows that

leading molecular alignment is diminished as the leading part of the pulse is absorbed.

A particularly striking feature - entirely quantum in nature - is observed in Fig. 6.15(c).

Here, one observes that the molecules that are initially oriented along �´ by the leading

pulse edge are not brought up into the nortern hemisphere as the main carrier lobe - now
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FIG. 6.15: (III) Molecular orientation hcos �i (solid line, plotted against the left vertical axis) at

various propagation lengths x. Plotted against the right vertical axis are the electric field curves

from Fig. 6.14.

encoded by self-oscillations - enters into the medium. This behavior is not expected in

a classical model. Loosely speaking, the process occurs due to rapid coherent saturation

of the medium close to the pulse edge. By the time the rotor molecules have ramped up

enough inertia to orient themselves along C´, an inversion of the various level popula-

tions has occured which essentially switches the sign of the polarization driving terms,

causing the dipoles to wiggle in the southern hemisphere - antiparallel to the electric field

direction. Note that this feature is not linked to the pulse shape itself, but to the inver-
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sion that the pulse drives. For example, if one considers the pulse shape in Fig. 6.15(c),

but with weaker amplitude such that Rabi flopping does not occur, the polarization and

electric field become parallel under the first main lobe. With increasing propagation the

antiparallel orientations are deteriorating - which is understandably due to absorption of

the leading pulse edge that initially caused orientation in the southern hemisphere prior to

the arrival of the main carrier lobes.
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FIG. 6.16: Molecular aligment and electric field reshaping of an initially symmetric THz pulse.

The input field amplitude is E0 D 5 � 109 V/m.
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6.6 The symmetric single-cycle pulse

The excitation of the medium generally depends on the full electric field rather than the en-

velope profile. Finally, we investigate propagation of the symmetric single-cycle Poisson

pulse defined by ' D 0, but consider otherwise the same parameters as in subsection 6.5.3.

The symmetric Poisson pulse has a temporal structure consisting of a small negative car-

rier lobe followed by a stronger positive carrier lobe which is trailed by another negative

carrier lobe. Recalling Eq. (6.61), the energies of the symmetric and anti-symmetric Pois-

son pulses are equal. Analogous to Figs. 6.14 and 6.15, Fig. 6.16 shows the reshaping of

the symmetric single-cycle pulse. On a qualitative level, the same propagation character-

istics appear. That is, as the pulse enters into the material it drives a sequence of collective

Rabi flops under the main carrier lobe. Under each flop, energy is coherently returned to

the pulse, which develops self-oscillations with increasing penetration depth. However,

detailed examination of the simulation data exposes a few key differences between the

anti-symmetric and symmetric pulses. Notably, the absence of a secondary carrier lobe

for the symmetric pulse results in a pulse which resembles a single self-steepened main

carrier lobe encoded by self-oscillations. Importantly, examination of the pulse spectrum

shows that the DC Fourier coefficient remains small during propagation.

Notably, one might speculate if the self-oscillations eventually lead to pulse splitting

analogous to the SIT type. The results of this conjecture are negative, as further propa-

gation of the pulses shown in Figs. 6.14 and 6.16 gradually results in deterioration of the

driving pulse.

6.7 Verification of Bloch model

To verify that our Bloch model is physically realistic at the parameters presently studied we

investigate the propagated spectrum. Figure 6.17 depicts the logarithmic power spectrum

jE.!; ´/j2 for the same propagation lengths shown in Fig. 6.14. The spectra are calculated

from data obtain on the interval Œ�Tb=2; 1:5Tb� tapered by a Blackman-Harris window.

We find that as the pulse steepens several sidelobes appear on the high-frequency side

of its spectrum, which is understandably due to the self-oscillations encoded onto the

carrier lobes. Importantly, the spectral sidelobes appear up to� 40 THz, which is not high

enough to overlap resonantly with the fundamental vibrational transition which occurs for

frequencies fvibr > fJ � f0 � 100 THz. In short, the self-steepening process is therefore

predicted to occur without smoothing effects from the fundamental vibrational transition.
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FIG. 6.17: (III) Logarithmic spectral energy density at the output facet x D 10 cm. The initial

field strength is E0 D 5 � 109 V/m and the data are normalized against the spectral peak of the

input pulse.

6.8 Chapter summary

We have introduced a multi-level RMB model for the propagation of single-cycle THz

pulses in rigid-rotor molecular media. In the linear propagation regime the equations of

motion are solved analytically and the solutions are then analogous to the linear 0�-pulse,

generalized to the single-cycle multi-level regime. In the time-domain, this solution ap-

pears as dispersive temporal beats at each integer quantum beat period. In the idealized

case where the line strengths of each transition are equal, propagation induced color dis-

persion cancels and the pulse revivals are then temporal copies of the input pulse, with a

possible phase of � . Formal decomposition of the density operator into azimuthal rota-

tion modes led to a mathematical formulation where only the polar part of the molecular

rotation is solved for, leaving the azimuthal rotations as frozen variables incorporated into

the initial conditions. The formulation led to very efficient numerical evaluation of the

governing equations, allowing investigation of complicated Bloch systems. Numerical in-

vestigations of symmetric and asymmetric single-cycle pulse propagation in the nonlinear

regime showed that coherent bleaching effects lead to increased transmission of the driv-

ing pulse. Induced collective Rabi oscillations resulted in coherent energy return to the

pulse, which manifests as self-steepening and self-oscillations in the time domain.
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Conclusions

In this thesis we have explored various theoretical semi-classical models for coherent prop-

agation of multi-, few-, and single-cycle pulses through atomic and molecular media. The

purpose of this work was to detail numerical methods applicable to these regimes. Our

central findings, summarized below, pertain to the development of such algorithms and

their applications to certain nonlinear wave propagation problems.

We investigate the possibility of exciting linear and nonlinear optical precursors in the

nano- and pico-second pulse regimes. Numerical calculations of pulses tuned to an alkali

metal D-line show that such precursors may originate in room temperature or hot alkali

metal vapors by application of pulses with initial pulse areas larger than � , and durations

comparable to the inhomogeneous lifetime. Comparatively large temporal separation (up

to tens of nanoseconds) between the main pulse, which is a 2� hyperbolic secant soliton,

and the precursor is achieved when the input area is close to � . These results offer a com-

paratively straightforward way of measuring optical precursors. Injection of pulses with

durations significantly longer than the inhomogeneous lifetime does not result in an optical

precursor because the atoms then rapidly absorb the precursor-part of the spectrum before

temporal separation between the two pulses occurs. In physical terms the formation of the

precursor is due to the onset of an optical soliton; the low group velocity offered by low-

energy self-induced transparency pulses is then responsible for temporal separation. The

precursor, which is essentially a 0� pulse spectrally located around the absorption wings

of the transition line, may individually interact linearly or nonlinearly with the material by

exciting the Doppler detuned atoms.

A general-purpose numerical method for the inhomogeneously broadened, multi-level

Maxwell-Bloch equations was presented. The composite method used an operator split-

ting method for the optical Bloch equations and a pseudospectral method for Maxwell’s

equations. Overall, the method is applicable to bi-directional propagation of pulses of

153
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arbitrary duration, polarization, and amplitude along all three spatial coordinates, but is

in practice limited to comparatively short propagation lengths due to numerical require-

ments on the spatial resolution. We applied this method to nonlinear pulse propagation in

dense, inhomogeneously broadened two-level media under the plane wave assumption. It

is shown that when the forward wave approximation of Maxwell’s equations is not valid,

self-induced transparency solitons lose energy with increasing propagation distance due

to co-excitation of a backward mode, even when the injected pulse duration fits in safely

between the two transverse lifetimes. The presence of the backward mode interferes with

the main pulse’s ability to coherently return the medium back to the ground state and leads

to temporal elongation of the forward pulse. Ultimately, the pulse will temporally broaden

to timescales comparable to the decoherence time of the medium and is then rapidly ab-

sorbed. An important practical question, not resolved in this thesis, concerns the experi-

mental differentiation of backscattering effects and decoherence. Investigation of energy

transmission alone is shown to be insufficient in isolating backpropagation as a singular

loss mechanism; decoherence essentially leads to the same energy-distance decay curve.

A possible experimental signature of the onset of backpropagation may nonetheless lie in

the reflected signal as the combination of reflection and coherent saturation of the interface

may lead to a significant Doppler shift of the reflected laser pulse. Isolation of backprop-

agation as a singular loss mechanism will most likely be an experimental hurdle; it is

implied that the input pulse duration must be considerably shorter than the homogeneous

lifetime of the medium. The most promising candidates for observing backpropagation

are inhomogeneously broadened high-pressure alkali metal vapors, or condensed phase

media with comparatively large transition dipole moments and short Beer lengths, such as

liquid dyes or doped semiconductors.

Drawing on a generalized paraxial wave equation derived by disregarding the possi-

bility of backward wave propagation we report on a computational method for long dis-

tance propagation of pulses of arbitrary duration through atomic or molecular media. The

method mitigates the shortcomings of direct Maxwell methods and is based on an opera-

tor splitting method for the optical Bloch equations and standard differential methods for

the propagation equation. Furthermore, circumvention of the rotating wave approxima-

tion allows application of off-resonant pulses. We apply this method to the propagation of

20 fs pulses tuned 23:5 THz above the D-lines in an atomic sodium vapor. The computa-

tional results show that conical emission, a phenomenon historically surrounded by much

controversy, occurs after sufficient on-axis gain through self-focusing. The gain leads

to spatiotemporal pulse breakup of a type reminiscent of the temporal splitting of self-

induced transparency pulses. Our computational results are supported by additional nu-

merical calculations of the inhomogeneously broadened paraxial SIT equations for 87Rb.

The computational results agree with the overall experimental features of conical emission
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and resolve some of the underlying questions surrounding the phenomenon. On the other

hand, the use of numerical calculations inhibit quantitative prediction of some of the ex-

perimentally observed universal features of cone emission, and future analytical analysis

is definitely called for. The exception is the conical emisson angle versus density depen-

dence �CE /
p
N , which follows from scaling of the equations of motion. We suggest

that conical emission occurs as a result of asymmetric Rabi sideband generation inside a

quasi self-trapped light filament; the emission of the red sideband occurs as a result of a

transverse dependence of spatiotemporal pulse breakup. Experimentally, measurements

of the on-axis and conical temporal pulse profiles, either through the use of streak camera

or single-shot frequency resolved optical grating (FROG) techniques, are likely to return

a definite answer to our numerical predictions. Another possible theoretical and experi-

mental complication, not investigated here, is fragmentation of the initial laser beam into

individual filaments by self-focusing of smaller diameter regions. A numerical analysis of

such scenarios is nevertheless feasible with current computational facilities and represents

a natural extension of the work presented in this thesis. Since the numerical solution is

expected to vary rapidly in the region surrounding the initial beam profile, a viable nu-

merical approach would be to employ a Cartesian grid with numerical clustering in this

region. With exclusion of inhomogeneous broadening, such numerical calculations are

slightly more expensive than those presented in this thesis.

Finally, we considered the plane wave, nonlinear propagation of linearly polarized

single-cycle terahertz pulses through linear, polar molecules. While previous analytical

and computational results account only for a handful of possible energy eigenstates, we

demonstrate that the use of a generalized propagation equation in conjunction with a re-

duction of the Bloch system through decomposition into various Zeeman levels offer a

strong computational advantage. The decomposition isolates the rotational motion to the

polar plane, leaving azimuthal rotations as frozen variables incorporated into the initial

conditions, leading to a dramatic reduction in the underlying complexity of the nonlinear

equations of motion. At the parameters we consider the Bloch system is reduced from

over 106 to roughly 25; 000 unknown entries in the density operator. The evolution equa-

tions are solved analytically in the linear propagation regime. The results show that the

initial pulse, which has an octave-spanning spectral width, excites a broad molecular ro-

tational wave packet with a definite revival time. At each rotational wave packet revival

the medium emits some of the radiation that was initially locked into the molecules by the

driving pulse. In an idealized case where intensity of the various rotational lines are equal,

we show that temporal dispersion of the emitted impulses cancels such that the rotational

wave packet emits a temporal copy of the driving pulse. For media initially in thermal

equilibrium propagation-induced dispersion of each impulse leads to temporal broadening

and mixing of the various wave packet emissions. In both the idealized and thermal cases
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the solutions bear a close resemblance to the linear 0� pulse. Furthermore, we supplement

these analytical calculations by computer solutions in the nonlinear propagation regime.

It is shown that as the input intensity increases the rotational wave packet revivals are sup-

pressed to a considerably degree. Coherent bleaching effects initiated by collective Rabi

flopping furthermore lead to self-steepening and self-modulation of the single-cycle input

pulse. Compared to the linear propagation regime, one finds that the fidelity of the pulse

is preserved to a considerable extent during propagation. For sufficiently strong pulses

coherent bleaching effects lead to increased transmission of the driving pulse.
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