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Jordskjelvsdimensjonering ble for fullt introdusert for norske konstruksjoner med den nye 

standarden NS 3491-12. Den nye standarden ble innført som en overgangsordning til den nå 

gjeldende standarden Eurocode 8. Med unntak av noen konstruksjonstyper skal alle 

bygninger, så vel nybygg som tilbygg, kontrolleres for jordskjelvbelastning.  

 

I dag er vanlig praksis å benytte elastisk design med en kontroll om bygningen muligens 

tilfredsstiller kriterier for å utelate videre kontroll av seismisk påkjenning. Dersom seismisk 

design ikke kan utelates beregnes konstruksjonselementer og forbindelser etter de elastiske 

kreftene. I offshorekonstruksjoner er det nødvendig å implementere flere ikke-lineariteter i 

analysemodellen. Det er behov for å undersøke effekten som oppnås ved inkludering av disse, 

i forhold til vanlige dimensjoneringstilnærmelser. 

 

Oppgaven skal kartlegge hvordan massive offshore konstruksjoner oppfører seg under 

jordskjelv. Det skal identifiseres og konkritiseres problemstillinger knyttet opp mot en 

representativ betongkonstruksjon, inklusive de analysemetoder som skal benyttes avhengig av 

type konstruksjon. Framtredende elementer i oppgaven er: 

 

 

 Numerisk modell av representativ konstruksjon i Abaqus 

 Vurdering av interne og eksterne dempingsforhold 

 Hva skjer når konstruksjonen blir utsatt for store deformasjoner og flytning oppstår? 

 Sammenligning av global analyse og kvasi-statisk lokal analyse 

 Evaluering av vanlige dimensjoneringstilnærmelser 

 

 

Det vil være opp til kandidaten å vektlegge de enkelte delene i oppgaven, der oppgaven 

utføres i henhold til retningslinjer for utførelse av hovedoppgaven ved Institutt for 

konstruksjonsteknikk, gitt på instituttets hjemmesider.  
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NTNU and Erik Åldstedt at Multiconsult for their help throughout the semester.

Gratitude is also extended to Jan Arve Øverli and Kjell Magne Mathisen at NTNU,
Erlend Eithun Aasheim, Dan Evert Brekke and Andrew Bekkelund at Multiconsult
and Nils Arne Rakstad at Aker Solutions who greatly facilitated the work on this
thesis.

A special thank you to Helene Alexandra Kornbrekke for her invaluable help with
the layout of the thesis.

i



ii



Summary
This thesis attempts to study the dynamic response of offshore concrete structures
by sequentially introducing physical phenomena which are related to those types of
analyses. This is done by modelling a simplified part of a typical offshore concrete
structure, with the purpose of establishing a reference case, on which more advanced
analyses can be based, as well as evaluate simplified approaches that serve to shorten
the analysis time.

To establish characteristic earthquakes for the selected return periods of 475, 1000,
3000 and 10 000 years, a seismic hazard analysis is performed for an area slightly
off the southwest coast of Norway. Here, information from 964 earthquakes was
collected, such that the Gutenberg-Richter relationship could be established. Based
on this, 50 000 earthquakes were generated based on Monte Carlo simulations, which
served as an extrapolation from which order statistics could be performed. The
determined characteristic earthquake parameters for the different return periods
were found to have a remarkable similarity with the seismic zonation maps used in
most design codes. Finally, the applied accelerogram for a given return period was
simulated from a response spectrum which was chosen to be similar to the mean
response spectrum for that return period.

A comparison was made between the time history and response spectrum analysis,
where three modal combination methods were evaluated. It was found that the
results were either impractically conservative, or dangerously unconservative for all
return periods, suggesting that the response spectrum analysis is not applicable for
the investigated structure.

A material model which included plasticity was evaluated, which resulted in margin-
ally lower stresses, slightly reduced eigenfrequencies and small changes displacements
of the top of the shaft. With the inclusion of elastic stiffness degradation, the results
were similar, leading to the conclusion that plasticity is an unnecessary complication,
as the large dimensions of the structure combined with the low seismicity of the
North Sea results in a structural behaviour which is approximately elastic for all
return periods.

Two methods for the modelling of surrounding water was tested. The first was the
added mass method, where the stresses mostly increased, except for the 10 000-year
earthquake. The second method was an acoustic-structural interaction, where the
fluid around the structure was modelled. This resulted in similar stresses for all
return periods, and gives credibility to the simplified method. For either methods,
the eigenfrequencies were reduced significantly.

The soil upon which the structure rests was included into the analysis by two meth-
ods. The first method involved the use of springs and dashpots which were made
to represent the stiffness and damping of the soil. The other method was a finite
element analysis of the soil layer. Both soft and hard soil was tested, and for the
soft soil, the stresses were radically reduced, as the structure became almost fully
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isolated from the earthquake. The stiffer soil resulted in higher stresses. The two
methods agreed for the soft soil, but not for the hard soil. This was found to be
caused by the spring method being overly simplistic.

iv



Sammendrag
Denne oppgaven forsøker å studere dynamisk respons av offshore betongkonstruk-
sjoner ved å enkeltvis introdusere fysiske fenomener som er typiske for slike analyser.
Dette gjøres ved å modellere en forenklet del av en typisk offshore betongkonstruk-
sjon, med den hensikt å etablere et referansepunkt som mer avanserte analyser kan
basere seg p̊a, s̊a vel som å evaluere forenklede framgangsmåter som har som hensikt
å forkorte analysetiden.

For å etablere karakteristiske jordskjelv for de valgte returperiodene p̊a 475, 1000,
3000 og 10 000 år, utføres en seismisk risikoanalyse for et omr̊ade rett utenfor Norges
sørvestre kyst. Her ble det samlet informasjon om 964 jordskjelv, slik at Gutenberg-
Richter-relasjonen kunne etableres. Basert p̊a dette, ble 50 000 jordskjelv gener-
ert ved hjelp av Monte Carlo-simuleringer, som fungerte som en ekstrapolering or-
drestatistikk kunne benyttes p̊a. De bestemte karakteristiske jordskjelvparametrene
for de forskjellige returperiodene var funnet å ha bemerkelsesverdig likhet med de
seismiske sonekartene som de fleste design-koder baserer seg p̊a. Til slutt, ble det en-
delige akselerogrammet for en gitt returperiode simulert ut ifra et responsspektrum
som var valgt slik at det lignet det midlere responsspektrum for denne returperioden.

En sammenligning mellom tidshistorie- og responsspekteranalyse ble utført, hvor
tre modale kombinasjonsmetoder ble vurdert. Det ble funnet at resultatene var
enten upraktisk konservative eller farlig ukonservative, som gir inntrykk av at en
responsspekteranalyse ikke er anvendbar p̊a den undersøkte konstruksjon.

En materialmodell som inkluderte plastisitet ble vurdert, som resulterte i marginalt
lavere spenninger, s̊a vidt reduserte egenfrekvenser og små forandringer i forskyv-
ninger av toppen av skaftet. Med elastisk stivhetsdegradering inkludert ble resul-
tatene lignende, som fører fram til konklusjonen at plastisitet er en unødvendig
komplikasjon, siden de store dimensjonene til konstruksjonen kombinert med den
lave jordskjelvsaktiviteten i Nordsjøen resulterer i at konstruksjonen oppfører seg
omtrent elastisk for alle returperioder.

To metoder for modellering av omkringliggende vann ble testet. Den første var
tilleggsmassemetoden, hvor spenningene hovedsaklig økte, bortsatt fra for 10 000-
årsjordskjelvet. Den andre metoden var en interaksjon mellom et akustisk medium
og konstruksjonen, hvor vœsken rundt konstruksjonen ble modellert. Dette resul-
terte i lignende spenninger for all returperioder, og gir tillit til den forenklede meto-
den. For begge metodene ble egenfrekvensene markant redusert.

Jorden som konstruksjonen st̊ar p̊a ble inkludert i analysen via to metoder. Den
første metoden involverte bruken av fjœrer og dempningselementer som representerte
stivheten og dempingen til jorda. Den andre metoden var en elementmetodeanalyse
av jordlaget. B̊ade myk og hard jord ble undersøkt, og for den myke jorda ble
spenningene kraftig redusert, siden konstruksjonen ble nesten fullstending isolert
fra jordskjelvet. Den stivere jorda resulterte i høyere spenninger. De to metodene
ga lignende resultater for den myke jorda, men ikke for den harde. Dette ble funnet
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å ha sin forklaring i at fjœrmetoden er for enkel.
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1 Introduction
In the offshore industry today, much uncertainty exists in the treatment of seismic
loads. The dynamic analysis of offshore structures can indeed be a challenge, with
complex environmental interactions and inherent nonlinearities. This issue is ex-
acerbated by a lack of reference cases for which the influence of these difficulties
are known. In this thesis, such a reference case is established, with a number of
complicating factors investigated.

The purpose of this study is to explore the effects of many difficulties one might
encounter in the dynamic analysis of offshore structures, as well as evaluate simpli-
fications that lead to lower analysis times. This is an interpretation of the thesis
definition which more loosely answers the issues posed. The notion of investigating
the structural response when a complication is applied is expanded to involve several
complexities, rather than just plasticity. It is intended to start with as few assump-
tions as possible, and axiomatically establish a thorough analysis of the structural
response due to the seismicity of the North Sea. To accomplish this, an earthquake
hazard analysis is performed, contributing significantly to the contents of this thesis.

The basis for comparison is an elastic structure with surrounding water omitted.
This omittance implies that the goal adopted herein is not to provide a practical
case study, but rather a theoretical investigation of complicating factors in a dynamic
analysis, wherein surrounding water is one of them. Two methods of modelling water
will be attempted; the use of added mass and an acoustic-structural analysis. As
previously mentioned, the effects of plasticity will be investigated, with a proper
material model which can realistically describe oscillatory motion. The effects of
cracking will also be included. Two methods of soil-structure interaction is evaluated
for both soft and stiff soil, namely soil springs and a full on finite element modelling of
the underlying soil. Based on the results from the different analyses, the applicability
of the simplified approaches used will be tested. Additionally, a comparison of the
time history and response spectrum analysis will be given a great deal of attention,
motivated by the desirability of the response spectrum as an analysis tool for design
purposes.
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2 Theory
In the following, general theoretical relations used in the thesis will be derived.
However, specialized subjects will be deferred to their respective sections.

2.1 The equation of motion

For a dynamic problem, the solution strategy is to transform it into a statically equiv-
alent by applying damping and inertia as external loads, as stated by d’Alembert.
Thus, for a system with stiffness, damping and mass matrices of K, C and M
respectively, this can be written as

M (r̈ + r̈g) +Cṙ +Kr = 0 (2.1)

with r being the degrees of freedom of the system and r̈g the imposed ground
acceleration. This system of equations is coupled, as generally neither K, C or M
are diagonal. In the process of decoupling these equations, it is necessary to find
the eigenfrequencies. This is done by solving the undamped free vibration problem:

Mr̈ +Kr = 0 (2.2)

A solution can be found by introducing a vector r̂n satisfying ˆ̈rn = −ω2
nr̂n. Inserting

this into equation 2.2 gives the eigenvalue problem

|K − ω2
nM |= 0 (2.3)

The eigenvalues, ωn are the eigenfrequencies of the system and the eigenvectors r̂n
define the vibration shape of that mode. The normalized equivalents to r̂n are φn
and satisfies

φTMφ = M ∗ (2.4)

where φ is a matrix with φn as columns and M ∗ is a diagonal mass matrix. Equiv-
alently, for a diagonal stiffness matrix:

φTKφ = K∗ (2.5)

As both the mass and stiffness matrices now are diagonal, what remains is the damp-
ing matrix. In order to ensure that C becomes diagonal by the same transformation
as in equation 2.4 and 2.5, Rayleigh damping is assumed:
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C = αM + βK (2.6)

where α and β are mass and stiffness proportional damping coefficients, respectively,
and can be determined as[4]

α

ω
+ βω = 2ξ (2.7)

Using the orthogonality of the mode shapes, a new variable, yn, for mode n can be
introduced, defined by

r = φy =
N∑
n=1

φnyn (2.8)

where N is the number of degrees of freedom. Introducing equation 2.8 into equa-
tion 2.1 and premultiplying by φT results in N uncoupled equations which can be
separately solved, as shown in equation 2.9

ÿn + 2ξnwnẏ + w2
ny = −φ

T
nM

mn

r̈g (2.9)

where mn is the generalized mass of mode n; an element of the diagonal mass matrix
M ∗. It has been used that cn = 2ξnwnmn, where cn is equivalently an element
of C∗. Finally ξn is the modal damping. By defining the ground acceleration
as a time varying amplitude r̈g times a distribution vector, T - which relates the
ground acceleration to the degrees of freedom of the system, one can find the modal
participation factor as

Γn = φnMT

mn

(2.10)

The effective modal mass, M̄n, which states the fraction of the total structural mass
that is associated with a given mode is given by

M̄n = Γ2
nmn (2.11)

The sum of the effective mass of all modes should equal the total structural mass.

As the equation of motion has been reduced to a series of single degree of freedom
systems, they can be solved as such. While there are several ways of solving equa-
tion 2.9, an efficient approach is introducing the Laplace transform throughout the
equation, yielding

s2Yn + 2ξnωnsYn + ω2
nYn = −LnR̈g (2.12)
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where Yn = L(yn) and R̈g = L(r̈g) are the Laplace transformed of yn and r̈g respec-
tively. The transfer function can then be given as

H(s) = − 1
s2 + 2ξnωns+ ω2

n

(2.13)

As it is not possible to solve equation 2.9 analytically, discretization is done by a
first order approximation to the z-transformed, given by the Tustin transformation

s = 2fs
z − 1
z + 1 (2.14)

where fs is the sampling frequency of r̈g. Introducing equation 2.14 into 2.13 gives

H(z) = − 1
γn

 1 + 2z−1 + z−2

1 + 2ω2
n−8f2

s

γn
z−1 + ω2

n−4ξnfs+4f2
s

γn
z−2

 (2.15)

where for clarity, γn = ω2
n + 4ξnfs + 4fs has been introduced. Equation 2.15 is a

filter, which when applied to the earthquake accelerogram, gives the response of the
system. This becomes apparent when the filter is written in the form of a difference
equation

yn[i] = − 1
γn

(r̈g[i] + 2r̈g[i− 1] + r̈g[i− 2])+2ω2
n − 8f 2

s

γn
yn[i−1]+ω

2
n − 4ξnfs + 4f 2

s

γn
yn[i−2]

(2.16)

Equation 2.16 can be efficiently solved by a number of software, for instance MATLAB[22].
Having solved for all uncoupled equations and obtained yn for all modes, n, the so-
lution for the structural degrees of freedom are found by insertion into equation
2.8. In other words, such a solution is only valid for a linear system such that the
principle of superposition can be invoked.

2.2 Finite element analysis

Solving dynamic problems for real structures is a difficult task and cannot be done
analytically. Instead, the finite element method may be used, where either time
history or response spectrum analyses are commonly used methods.

2.2.1 Time history analysis

A time history analysis implies solving the equation of motion for a structure sub-
jected to an earthquake. The earthquake motion may be represented by either ac-
celeration, velocity or displacement time histories, which are either measured from
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a previous earthquake, or synthetically produced. This is the most accurate way of
simulating earthquake response, and the only way to take non-linearities into ac-
count as it does not make use of the principle of superposition. It is however a time
consuming process when applied to large, non-linear models with many degrees of
freedom - as is the case here.

In a finite element format and for time increment i, the equation of motion as given
in equation 2.1 takes the form[4]

MD̈tot
i +CḊi +Rint

i = Pi (2.17)

where D̈tot
i is a vector of the total accelerations experienced by the degrees of freedom

defined by the finite element model and given as

D̈tot
i = D̈i + D̈g,i (2.18)

with D̈g,i being the time dependent imposed earthquake accelerations. Furthermore,
M is the mass matrix, C is the damping matrix, P is a vector of the applied loads
and D̈i and Ḋi are the global acceleration and velocity vectors respectively.

The internal force vector, Rint
i , is for a linear analysis merely given as stiffness times

displacement. For a non-linear analysis, however, the stiffness matrix K needs to
be updated for each time increment, i. Moreover, the correct equilibrium path
needs to be found by way of Newton-Raphson iterations, k, for each increment. An
illustration of the method is shown in figure 2.1. This results in the internal force
vector being given as

Rint,k
i = Kk

iD
k
i (2.19)
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Figure 2.1: A graphical illustration of Newton-Raphson iterations used in non-
linear finite element analysis, shown here for k = 1− 3 iterations.

Combining equations 2.17-2.19 and rearranging gives

MD̈i +CḊi +Kk
iD

k
i = Pi −MD̈g,i = Rext

i (2.20)

In order to obtain the displacement field, from which all stresses and strains are cal-
culated, it is necessary to integrate equation 2.20. This can either be done explicitly
or implicitly. An explicit method solves equation 2.20 for a given time increment
i+1 by using only information from the previous step, i. This implies that no system
of equations needs to be solved, and each step is calculated quickly. On the other
hand, in order to achieve a stable solution, small time steps are necessary. Thus
for an earthquake of duration 10 to 35 seconds, literally millions of time steps are
necessary. This makes an explicit integration scheme inappropriate for the problem
at hand. The implicit method solves the differential equation by establishing a sys-
tem of equations at time step i+ 1. This means that each increment takes longer to
calculate, but the solution is much more stable than the explicit method, resulting in
fewer time steps. In fact, for a linear analysis the implicit method is unconditionally
stable. This is, however not the case for a non-linear analysis. Nevertheless, an im-
plicit method known as Hilber-Hughes-Taylor’s α (HHT) method will be assumed,
and is elaborated upon in the following.

The essence of numerical solution of differential equations lies in the approximation
of their differentials. This is done by use of the Newmark relations[4]
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D̈i+1 = 1
β∆t2

(
Di+1 −Di −∆tḊi − 1

)
−
(

1
2β

)
D̈i

Ḋi+1 = γ

β∆t (Di+1 −Di)−
(
γ

β
− 1

)
Ḋi −∆t

(
γ

2β − 1
)
D̈i

(2.21)

The HHT-method is obtained by editing equation 2.20 in the following manner[16]

MD̈i+1 +(1+α)MD̈i−αMD̈i+(1+α)Kk
iDi+1−αKk

iDi = (1+α)Rext
i+1−αRext

i

(2.22)

where −1
3 ≤ α ≤ 0 is a parameter which controls the amount of numerical damping

applied to the solution. The default in Abaqus[29] is α = −0.05, which is sufficient
to damp out much of the high frequency noise, and have a negligible influence on
the solution[32]. From this, the parameters γ and β can be determined as

γ = 1
2(1− 2α)

β = 1
4(1− α)2

(2.23)

2.2.2 Response spectrum analysis

For large finite element analyses, where no nonlinearities are exptected, it is often
too cumbersome to employ time integration of the equation of motion. Instead an
approximative approach in the frequency domain can be used, namely the response
spectrum analysis.

From equation 2.15, it is seen that the transfer function is dependent upon the fre-
quency of a given mode, ωn. Obviously, the solution of the modal equation, yn, must
also be a function of frequency. Solving equation 2.16 for a set of frequencies, each
representing the eigenfrequency of a single degree of freedom system, and extracting
the maximum absolute value of |yn| from each of them, the displacement response
spectrum, SD(ω), can be obtained. The pseudo-velocity response spectrum, which
is approximately equal to the velocity response spectrum SV (ω), is then given by

SV (ω) = ωSD(ω) (2.24)

where ω now represents a set of frequencies, corresponding to eigenfrequencies of
single degree of freedom systems. Similarly, the pseudo-acceleration response spec-
trum, approximately equal to SA(ω), is given by

SA(ω) = ω2SD(ω) (2.25)
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It is the acceleration response spectrum that is normally given in design codes.

For a multi degree of freedom system with N separated modal equations, the max-
imum displacement for a given mode n, in a given direction i, is given by

|yn|maxi = Γn
ω2
n

SA(ωn) (2.26)

It is now possible to return to time domain by multiplying with the appropriate
eigenvector, φn

|Dn|maxi = φn|yn|maxi (2.27)

This results in a set of N peak displacement vectors, from which the force, moment
and stress can be derived. Their application to the finite element model is however
not completely unproblematic. The biggest approximation in the response spectrum
analysis is the combination of modes. Several combination methods exist, each with
different implications as to their correlation. Here, three such methods will be
explored, the first of which is the absolute sum of modal peak values. It is given by

Dmax
i =

N∑
n=1
|Dn|maxi (2.28)

Equation 2.28 is the most conservative approximation of the response of the struc-
ture, as it assumes that the contributions from the different modes are all in effect
at the same time. It is obvious that such an estimate can yield a structural response
that is much higher than those from an equivalent time history analysis. On the
other end of the spectrum, one finds the method of the square root of the sum of
squares (SRSS):

Dmax
i =

√√√√ N∑
n=1

(
Dmax

n,i

)2
(2.29)

The approach of equation 2.29 assumes no correlation between modes. While this
generally produces better results than equation 2.28 if the modes are well separated,
it may also lead to unconservative results if modes closely packed - which is the case
for three-dimensional structures.

A compromise between equation 2.28 and 2.29 is the complete quadratic combi-
nation[35]. It is given by

Dimax =

√√√√ N∑
n=1

N∑
m=1

Dmax
n,i ρmnD

max
m,i (2.30)

The correlation coefficient, ρmn is derived from random vibration theory, and is given
by
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ρmn = 8ξ2(1 + rmn)r3/2
mn

(1− r2
mn)2 + 4ξ2rmn(1 + r2

mn) + 8ξ2r2
mn

(2.31)

where rmn = ωm

ωn
is the ratio between eigenfrequencies ωm and ωn, and ξ is the

modal damping ratio, here assumed constant for all modes. A closer examination
of equation 2.31 reveals that ρmn = 1 if ωm = ωn, and much smaller than one if the
two eigenfrequencies are well separated. In these two limiting cases, equation 2.30
converges to equation 2.28 and 2.29 respectively. For this reason it is expected that
the complete quadratic combination should produce results which lie somewhere
in-between the absolute sum and the SRSS methods.

To account for seismic action from all three directions, a response spectrum needs to
be defined for each of them, thus introducing the problem of directional combination.
A conservative approach is algebraic summation, which gives the total displacement
as

Dmax =
3∑
i=1
Dmax

i (2.32)

To reiterate, an inherent problem in a response spectrum analysis is that all measure
of simultaneity is lost - it is not possible to determine when a given mode provides
its contribution. Equation 2.32 assumes that all modes are applied simultaneously
Another option is the square root of the sum of the squares, which one might in-
tuitively opt to use for a directional combination, however this also implies that
all the modes are completely uncorrelated - which can yield unconservative results.
Another issue is that in the establishment of the response spectrum, absolute values
have been used, such that all information about signs are lost. This implies that
both positive and negative values returned by response spectrum calculations need
be considered.
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3 Material properties
3.1 Concrete

In order to describe the plastic behaviour, a yield condition needs to be specified.
For concrete, such a condition needs to be dependent upon the hydrostatic pressure,
and thus the von Mises yield condition cannot be used. Instead, a modified version
of the Drucker-Prager yield surface will be used.

3.1.1 Yield condition

The Drucker-Prager yield condition is defined by[9]

√
J2 + αI1 = k (3.1)

where I1 = σ1 + σ2 + σ3 is the first principle stress invariant, with σi being the
principle stress in direction i. The second stress deviator, J2, is given as

J2 = 1
6
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
(3.2)

For a uniaxial stress state, where yielding is given by fc, equation 3.1 takes the form

1√
3
fc + αfc = k (3.3)

Equivalently, for an equibiaxial stress state with yield stress of fb:

1√
3
fb + 2αfb = k (3.4)

Combining equations 3.3 and 3.4 gives the constants as α = 1√
3

fb/fc−1
2(fb/fc)−1 and k =

1√
3 (1− α) fc. Inserting this into equation 3.1, and allowing for a hardening model

one gets after a little algebra

f(σ) = 1
1− α [σe + 3ασm]− σc ≤ 0 (3.5)

where σe =
√

3J2 is the von Mises equivalent stress and σm = 1
3I1 is the hydrostatic

stress. Furthermore σc is the yield stress, defined to be equal fc before hardening
takes place.
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Equation 3.5 gives good results for compressive stress, however as it is derived for the
purpose of describing soil plasticity, it fails to represent the behaviour of concrete
in tension. To mend this, Lubliner et al proposed the following modified yield
condition[21]

f(σ) = 1
1− α [σe + 3ασm + β〈σ̂max〉 − γ〈σ̂max〉]− σc ≤ 0 (3.6)

where 〈x〉 = 1
2 (|x|+x) and σ̂max is the maximum eigenvalue of the stress tensor

σ. This implies that the Drucker-Prager yield condition is obtained for biaxial
compression, where σ̂max = 0.

The constant γ is a function of the material parameter Kc and is given as

γ = 3 (1−Kc)
2Kc − 1 (3.7)

Finally, the parameter β is given by Lee & Fenves as[19]

β = σc
σt

(1− α)− (1 + α) (3.8)

where σc and σt are the yield stresses in compression and tension respectively, de-
pendent upon the selected hardening rule.

The plastic flow is assumed to be non-associated, giving the equivalent plastic strain
rate, ṗ, as

ṗ = λ̇
∂g(σ)
∂σ

(3.9)

where λ̇ ≥ 0 is the rate of the non-negative plasticity parameter and g(σ) is the
plastic flow potential, given here as[31]

g(σ) =
√

(εft tanψ)2 + σ2
e − σm tanψ (3.10)

where ε is the eccentricity, ft the uniaxial cracking stress and ψ is the dilation angle.
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3.1.2 Hardening rule

Eurocode 2[10] has been used to define most of the material properties. The concrete
type B45 has been selected, and various material constants are given in

Table 3.1: Material constants for concrete type B45, taken from Eurocode 2[10].
Parameter Value

fcm 53 MPa
fctm 3.8 MPa
Ecm 36 000 MPa
εc1 0.24%
εcu1 0.35%

In compression, the non-linear stress-strain relation suggested by Eurocode 2 is
adopted. It is given as

σ = fcm
kη − η2

1 + (k − 2)η (3.11)

where k = 1.05Ecm |εc1|
fcm

and η = ε
εc1

.

Equation 3.11 is valid for all strains in the interval 0 ≤ ε ≤ εcu1, which implies
a non-linear elastic relationship. Such a relation is not supported by Abaqus[29],
with which all analyses are performed. This problem is solved by introducing an
approximate linear-elastic regime, with a yield stress fc = 0.4fcm = 21.2MPa. This
results in equation 3.11 being reduced to a hardening rule in compression. For strains
larger than εcu1, the stress-strain relationship is extrapolated linearly towards zero
resistance, representing total compressive failure.

In table 3.1 the parameter fctm is adapted herein as the uniaxial cracking stress in
tension ft. At strains higher than that which leads to cracking, the tensile resistance
of the concrete is linearly reduced to one percent of the cracking stress, after which
it is kept constant due to convergence difficulties. The slope is determined such that
the maximum reduction occurs at a plastic strain of p = 0.2%.

The stress-strain relationship is shown in figure 3.1.
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Figure 3.1: Stress-Strain relationship, slightly modified from Eurocode 2.

3.1.3 Cracking

Any material model which hopes to describe the behaviour of concrete with any
realism, will have to take cracking into account. This creates a challenge when
trying to simulate earthquake loads, as the stresses fluctuate between tension and
compression. This causes areas which at one point were subjected to tension, so that
cracking occurred, to be compressed. This, in turn, closes some of the cracks causing
some of the elasticity of the material to be regained. To properly take such effects
into account, the concept if elastic stiffness degradation[31] has been assumed. It
will be derived in the following.

It is henceforth assumed that the additive strain rate decomposition is valid, which
is given as

ε̇ = ε̇el + ε̇pl (3.12)

The effective stress represents the stresses that would be observed had the material
been undamaged. It is given as

σeff = C0
(
ε− εpl

)
(3.13)
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where C0 is the undamaged elasticity matrix.

As cracking takes place, the value of the elasticity matrix is reduced by the scalar
damage parameter, d, in the following manner:

C = (1− d)C0, 0 < d < 1 (3.14)

It is noted that d can vary between 0 and 1, where a value of zero implies that the
material is undamaged. Equivalently, a value of one means that the structure has
lost all its stiffness. For a given strain state, the stresses are given as

σ = (1− d)σeff = (1− d)C0
(
ε− εpl

)
(3.15)

From equation 3.15 the main principle of the elastic stiffness degradation becomes
obvious. The observed stresses are assumed to be a fraction of the stresses which
would have occurred if the material had been undamaged. This fraction gets smaller
as damage is accumulated and d increases. In a finite element formulation of con-
crete, as is attempted here, the above implies that the elasticity matrix needs to be
continuously updated. However, the complete loss of strength as d reaches a value
of 1 is easily implemented, as one merely needs to remove the element in question.

As mentioned earlier, the effects of regained elasticity as tension shifts to compression
is to be included in the model. To this end, the scalar damage parameter d is assumed
to consist of a contribution from tension, dt, and a contribution from compression,
dc, with their relationship being

(1− d) = (1− stdc)(1− scdt), 0 < st, sc < 1 (3.16)

where st and sc are stiffness recovery parameters in tension and compression, respec-
tively. A reasonable assumption when modelling concrete is that the compressive
stiffness is recovered upon the closing of cracks, and that no tension stiffness is re-
gained - as this is a situation in which cracks are opening. This assumption assigns
the following values to the stiffness recovery paramters:

st = 0
sc = 1 (3.17)

In other words, equation 3.17 does not give any damage reduction when recovering
from compression into tension. On the other hand, the damage parameter dc is
completely reset for each cross-over from tension to compression.
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3.2 Reinforcement Properties

The definition of constitutive relations for steel is much simpler than for concrete
for several reasons. First of all, steel is isotropic and pressure independent, such
that the von Mises yield condition can be used, including only a single yield stress
σY , valid both in tension and compression. It is given as

f(σ) =
√

1
2 (σ1 − σ2)2 + 1

2 (σ2 − σ3)2 + 1
2 (σ3 − σ1)2 − σY ≤ 0 (3.18)

Another simplifying factor is that plastic flow is associative, which means that the
equivalent plastic strain rate now is given as

ṗ = λ̇
∂f(σ)
∂σ

(3.19)

Finally, the hardening rules are the same both in tension and compression, and no
brittle cracking needs to be taken into account. Based on this, and the realisation
that great accuracy is not needed for the yielding of reinforcement, a perfectly plastic
hardening rule is assumed, as is shown in figure 3.2. In this study, a yield stress
of σY = 500MPa and an elasticity modulus of Es = 200 000MPa has been used, in
accordance with Eurocode 2.
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Figure 3.2: Stress-strain relationship for the reinforcement.
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3.3 Water

The effect of a surrounding fluid on a moving object is a difficult subject, and
even more so for large structures. The surrounding water is here assumed to be
still. This is a simplification, as in a real design situation currents and waves are
necessary elements in the analysis. For the sake of this study however, it is believed
that those effects serve only to obscure the results. Presented here are two ways of
describing the properties of water under this assumption.

3.3.1 Morison’s equation

As a simple estimate for the loads per unit length, F (t), incurred by oscillations
through water, the Morison equation[8] can be used. It is given in equation 3.20

F (t) = ρCAAr̈ + 1
2CDDṙ|ṙ| (3.20)

where ρ = 1025kg/m3 is the density of water, A is the projected area of the object,
CA is the added mass coefficient, CD is the drag coefficient, D is a characteristic
width and r̈ and ṙ are the acceleration and velocity of the moving object, respectively.
In a finite element format, equation 3.20 refers to the nodal accelerations, velocities
and mass.

The use of equation 3.20 on large volume concrete structures is in fact erroneous
as the equation is strictly speaking only valid for widths D < λ/5, where λ is the
wavelength of, in this case, generated waves[8]. This implies that equation 3.20 only
can be used for slender structures, which is not the case at all here. This limitation is
ignored however, in the belief that the results do not stray too far from reality. It is
also assumed that the drag term can be neglected as the velocities in the structure
are assumed to be small due to the rapid oscillations of the ground acceleration.
The earthquake motion generates waves around the structure, rather than a flow
of water around it, for this reason it is radiation damping that poses the velocity
dependent water resistance, rather than drag force. Radiation damping cannot be
described by the Morison formula.

Having neglected the drag force of Morison’s equation, the problem of fluid-structure
interaction has been reduced to a matter of finding the appropriate added mass
coefficient, CA. This is unfortunately quite problematic, as the motion through
water creates separated flow behind the structure, which alters water resistance. The
added mass coefficient is in other words frequency dependent. Very few experimental
results which determine empirical relationships for CA exist, thus forcing the use of
coefficients valid for steady current - without considering frequency variation. By
comparing with figure 4.1, which describes the geometry of the structure, possible
choices for added mass coefficients have been selected. Geometries for which DNV
recommends added mass coefficients are given in figure 3.3[8].
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Figure 3.3: Geometries for which added mass coefficients are known, where u is
the water particle velocity. Adapted from DNV-RP: Environmental
conditions and environmental loads[8].

Figure 3.3a has a two-dimensional geometry, which is applicable when the structure
penetrates the surface, thus preventing water from flowing over it. For fully sub-
merged structures, where the fluid has the option of flowing around all four sides,
figure 3.3b is a better fit, although it applies the restriction of quadratic cross section.

From equation 3.20, it is seen that the remaining load term is proportional to the
acceleration of the structure, such that it is possible to apply it as an addition to
the structural mass. The following expression for the added mass, MA, can then be
established:

MA = ρCAV = ρCAAH (3.21)

where V is the effective volume of the structure and H is the height affected by
added mass effects - applicable when two-dimensional geometry is assumed. The
effective volume V and area A are given in figure 3.3b and 3.3a respectively.

A source of error when using equation 3.21 is the distribution of added mass. Cer-
tainly, it is necessary to apply it as evenly distributed along all surfaces of the
structure which interacts with water. This causes additional gravity forces through-
out the structure, and thus artificial compressive stresses - an effect which could
yield unconservative results in concrete structures as otherwise occurring tensile
stresses may be reduced or cancelled out completely. For oscillatory motion of the
structure, an applied acceleration activates the loading posed by water resistance.
However, the same acceleration is equally felt in the structures wake, thus errantly
generating loads there as well. Indeed, the fluid-structure interaction proposed in
this section is highly simplified, and should be viewed only as an order of magnitude
approximation - which is adequate for the purpose of this study.
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3.3.2 Navier-Stokes’ equations

Raising the level of ambition slightly, it is possible to establish a better approxi-
mation for the fluid-structure interaction by introducing the famous Navier-Stokes’
equations for the fluid, although a few simplifications are necessary. Firstly, fluid
convection is neglected, meaning that

v · (∇v) = 0 (3.22)

where v is the velocity field of the fluid. Furthermore, the fluid is assumed inviscid
such that its viscosity is equal to zero, meaning that no shear stresses at fluid
boundaries can be described. Finally, compressibility is assumed. The resulting,
simplified expression for momentum conservation is then given by[5]

ρ
∂v

∂t
−B∇ (∇ · v) = 0 (3.23)

which is the equation that Abaqus introduces, with volumetric drag neglected, to
solve the fluid-structure interaction problem under the given assumptions[30]. In
equation 3.23, ρ is the density and B is the bulk modulus. Conservation of momen-
tum generates pressure waves as the submerged structure oscillates, thus producing
both an acceleration dependent force and radiation damping. Equation 3.23 is con-
sidered an improvement over the Morison equation, given in 3.20, however a few
limitations exists. No transversal waves can be generated, only longitudinal, mean-
ing that the transfer of momentum is not entirely accurate. Also, the pressure
gradient has been defined as equal to zero, implying that equation 3.23 is valid
only for small pressure changes, which is the case for massive concrete structures as
small displacements are expected. Another limitation is that no turbulence can be
included. Because of this, the acceleration proportional loading, like the Morison
equation, can only describe a steady current, and as such does not provide a better
estimate for the added mass effect. On the other hand, the added mas coefficients
are no longer submitted to as large a degree of speculation as was the case in section
3.3.1. The biggest improvement lies in that the loading is only applied to surfaces
which pushes water ahead, rather than being evenly distributed. Furthermore, no
artificial compression is induced and radiation damping by means of pressure wave
generation is included.
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4 Investigated structure
As the purpose of this report is to investigate the dynamic response of massive
concrete structures located in the North Sea, a natural choice of geometry is one
which resembles a typical gravity based structure - such as an offshore oil platform.
Obviously, non-linear analysis of an entire oil platform is an enormous undertaking,
yielding impractical time consumption. For this reason, the following simplifications
to geometry are assumed:

• Where one might expect an oil platform to have four legs, symmetry is imposed
such that only one leg is included in the analysis.

• No topside is included, instead one quarter of its assumed mass is represented
as a point mass placed on the symmetry axis of the structure, at the top of
the shaft.

• The leg of a platform is usually a cylindrical, hollow shaft. In a finite element
analysis this causes numerical difficulties as an irregular mesh occurs in the
transition zones between circular and rectangular parts of the structure. For
this reason, the shaft is assumed to have a quadratic cross section.

The point mass of a topside structure varies largely with the size of a platform, its
purpose and even time. For the sake of this study, it is assumed equal to 20 000
tonnes. This means that the chosen structure, which represents one quarter of an oil
platform, is subjected to 5000 tonnes atop its shaft. The structure is also assumed
to stand on the seabed, at a depth of 35 m, meaning that 15 meters of the shaft are
above water.
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4.1 Geometry

The discussion above results in a model as shown in figure 4.1 which is elaborate
enough to represent an offshore structure, but not so much that its intricacies over-
shadow the results of the numerical study.

Figure 4.1: General view of the finite element model used in the numerical study,
assumed to be representative of a typical offshore strucutre.

As is also seen in figure 4.1, the shaft rests upon a lower wall structure, henceforth
referred to as a caisson, which consists of several internal walls whose purpose are
to transfer moment and shear forces from the shaft to the ground. This is shown in
figure 4.2.

Figure 4.2: General view of the internal wall system of the caisson.
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The total height of the structure is chosen to be 50 meters, with the shaft contribut-
ing 35 meters and the caisson the remaining 15 meters. The shaft and caisson have
widths of 20 and 60 meters respectively, and the internal walls are placed 20 meters
apart. This is shown diagrammatically in figure 4.3.

Figure 4.3: External dimensions of the structure. All units are in meters.

Not shown in figure 4.3 is the water level, which is assumed to be 35 meters above
the seabed. In order to cancel out the hydrostatic pressures acting on the external
walls, it is assumed that the structure is filled with water up until the same level
as the water surface. This is represented in the dynamic analysis by an additional
mass density added to the walls which are supposed to lie below the water surface.
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4.2 Design

A great deal of focus has not been dedicated to finding the most efficient or economic
design. On the other hand, the structure needs to comply with design specifications
in order to produce results of any interest. In this study, design has been performed
in accordance with the Eurocodes.

A time history analysis has been used for the determination of seismic loading.
For this purpose, artificial accelerograms, generated as described in chapter 5, have
been used. Eurocode 8 states several requirements to the implementation of the
accelerograms in the finite element analysis. These are elaborated upon in the
following.

• 3.2.3.1.1(2)P
When a spatial model of the structure is required, the seismic motion shall
consist of three simultaneously acting accelerograms. The same accelerogram
may not be used simultaneously along both directions.

The two horizontal, orthogonal accelerograms are simulated from the same re-
sponse spectrum - representing 475 year return period earthquakes. However,
as they are created by Monte Carlo simulations, they are made to be statis-
tically independent. In other words, this condition is satisfied. The vertical
accelerogram also uses the same response spectrum as basis for simulation, but
it has been scaled down by a factor of 0.7. This representation of seismic load-
ing is similar, but slightly more conservative, to the recommendations of the
NORSOK standard. It suggests having one of the horizontal accelerograms
as dominant, with the other two directions having their contributions scaled
down by a factor 2

3 [26].

• 3.2.3.1.2(1)P
Artifical accelerograms shall be generated so as to match the elastic response
spectra given in 3.2.2.2 and 3.2.2.3 for 5% viscous damping (ξ = 5%).

This requirement is found to be too lenient for the design of offshore concrete
structures. Instead, a viscous damping of 1% has been used. The basis for
simulation has been response spectra of recorded earthquakes, which are picked
such that they are as similar as possible to a mean response spectrum for a
given return period. This is further investigated in chapter 5.

• 3.2.3.1.2(2)P
The duration of the accelerogram shall be consistent with the magnitude and
the other relevant features of the seismic event underlying the establishment of
ag.

All simulated accelerograms are designed to have a duration of 15 seconds,
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regardless of return period. For the 475 year return period, which Eurocode 8
concerns itself with, this is realistic - as such a duration is found to be quite
average. The parameter ag is the peak ground acceleration, PGA.

• 3.2.3.1.2(3)
When site-specific data are not available, the minimum duration Ts of the
stationary part of the accelerograms should be equal to 10s.

This is satisfied, almost to a fault. It can be debated whether such a long
duration of significant ground motion is physical for earthquakes of such low
return period. This problem is exemplified by figure 5.7. Here, a closer ex-
amination reveals that the overall shape of the accelerogram is perhaps not
typical of an earthquake. It is noted that all generated accelerograms are quite
similar, though statistically independent, such that the problem persists. This
issue is ignored however, as it is less prominent for earthquakes of larger return
periods.

In addition to the requirements above, three accelerograms have been used in the
design process, with all of them generated such that their peak ground acceleration
is equal to the characteristic value for the given return period. This is in compliance
with section 3.2.3.1.2(4) of Eurocode 8.

With the seismic loading in place, design of the concrete structure is performed
according to Eurocode 2. Additional load is subjected by the mass of the topside
structure, equal to 5000 tonnes. Furthermore, the concrete is assumed to have a
density of ρ = 2500kg/m3, thus causing distributed gravity loads. Finally, loads are
also caused from the internal water of the structure, which is modelled as distributed
mass.

The thickness of the walls are chosen such that they have sufficient capacity in
compression and shear. This leads to wall thicknesses of 0.7 meters throughout
the structure. An exception is the roof of the caisson, with reference to figure 4.1.
Here, problems with shear compression demands a cross section of 1.5 meters. It
is observed in appendix D that even with the thickness increase, the slab is at
maximum utilization. This is however still in compliance with Eurocode 2, and
since the task at hand is not to design a structure which is to be part of an existing
project, no further changes are made.

For simplicity, a reinforcement mesh of doubly placed rebars with diameters of 20
millimeters and spacing of s = 150 millimeters have been used throughout the struc-
ture - both in the vertical and horizontal direction, and on both faces of the walls.
This is shown in figure 4.4. The reinforcement coverage, c, is chosen to be 55 mil-
limeters, thus ignoring environmental effects. In places where shear reinforcement
is needed, shown in figure D.29, this is taken care of by the inclusion of hoop rein-
forcement with a diameter of 14 millimeters and spacings of 250 millimeters in each
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direction. No long term effects, such as creep or relaxation are included, as it is not
appropriate for accidental load cases such as earthquakes.

t

c

s

Reinforcement

Figure 4.4: Cross section of a typical wall with thickness t, reinforcement spacing
s and reinforcement cover c.

The capacity checks are performed based on analysis with Abaqus[29], with the
post-processing software MultiCon[23]. It determines the loading by assuming each
time increment is a load case, such that envelope curves of section forces can be
created. The utilization of both the concrete capacity in compression and shear,
as well as the reinforcement capacity can then be evaluated. This is shown in
appendix D. This procedure implies that an elastic finite element analysis has to
be performed, otherwise the load cases cannot be superposed. Its application rests
upon the assumption that an elastic structure is stiffer than an equivalent yielding
structure, such that higher loads are generated, giving a conservative design.

4.3 Modelling

All analyses are performed with the finite element software Abaqus[29]. In this
section, a summary of general modelling considerations within the Abaqus environ-
ment is presented. However, details pertaining to the modelling of specific analyses
- such as the interaction with water - are deferred to sections in which they become
necessary.

The structure itself is modelled entirely with shell elements. The reason for this is
that the wall thicknesses are much smaller than the other dimensions, making the
choice of shell elements appropriate. Another motivating factor is simplicity - the
thickness of a shell element is an imposed property, rather than a dimension which
needs to be modelled. This makes it easier to adjust the model if necessary. The de-
ciding factor, however, was the simple implementation of reinforcement. While vol-
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ume elements require the reinforcement to be modelled as embedded one-dimensional
beam elements, shell elements distribute the reinforcement area into rebar layers at
specified locations in the cross section. The thickness of such a section is defined
by[33]

ts = As
s

(4.1)

where ts is the rebar layer thickness, As reinforcement area and s the spacing between
rebars. For the present model, a few simplifications were made.

• Both the vertical and horizontal reinforcement are placed in the same rein-
forcement layers, thus rendering an otherwise highly orthotropic layer almost
isotropic. Obviously, in reality the orthogonal rebars cannot intersect each
other, but it is believed that the neglect of this offset - a few centimeters at
most - will constitute an error smaller than that introduced by the smearing
of reinforcement area.

• Shear reinforcement is ignored. This is perhaps a more controversial choice
than the above, however, looking at appendix D it is seen that the areas of
the structure which require shear reinforcement are localized to the connection
zones between vertical walls and the roof of the caisson. Figure 6.13 shows
that the presence of reinforcement does not constitute a radical change to the
material behaviour. Finally, the material model is not accurate enough to
predict shear failure. These reasons lead to the conclusion that shear rein-
forcement, to the extent which is needed here, will have a negligible effect on
the global response of the structure.

The choice of an appropriate shell element is not entirely straightforward for the
problem at hand. Such a selection cannot be arbitrary, as the use of thick-shell
elements for a thin-plate problem may lead to shear locking. Equivalently, the use
of thin-shell elements to thick-plate problems may lead to severe inaccuracies as the
transverse shear is ignored. For thin shell theory to apply, the ratio of thickness to
a characteristic length should be smaller than 1/15. The characteristic length can
be determined by the wavelength of a significant natural mode[34], or the distance
between two areas of the structure which are constrained - such as the intersection
of walls. This criterion is satisfied in some areas - suggesting the use of thin shell
elements, but not in others.

A complicating factor in non-linear analyses is thickness change of the shell ele-
ment, which may change the applicability of a thick shell element. Furthermore,
the inclusion of rebar layers transforms the homogeneous shell element into a sand-
wich element, in which case transverse shear may be important[34], and thin shell
elements inappropriate. In order to overcome this, Abaqus supplies a family of so
called general-purpose shell elements. These elements apply Mindlin plate theory
for thick-plate problems and Discrete Kirchhoff plate theory for thin-plate problems,
interpolating in-between[34].

The element selected is a 4-node, linear, quadrilateral element known as S4 - since
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there are no quadratic general-purpose elements. As these elements model a three-
dimensional structure, subjected to three-dimensional loading, in-plane bending is
expected. In this case, the Abaqus manual[34] recommends the use of full integration
- an advice which is taken.

An important issue in all finite element analyses is the one of convergence. The
element size needs to be chosen such that sufficient accuracy is achieved, however
there are limits to how many elements can be included before the problem size
becomes prohibitively large. In order to choose an adequately accurate element
size, a comparison of eigenfrequencies were performed. The results are shown in
figure 4.5. Here it is seen that difference between the 3 and 1 meter mesh are
smaller than between the 5 and 3 meter mesh, suggesting that decreasing element
size leads towards a converged solution.
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Figure 4.5: Eigenfrequencies for different mesh sizes.

To further investigate the influence of mesh size, the structure is subjected to a
horizontal jolt with the intention of simulating seismic loads. This is represented by
an imposed burst of acceleration to the foundation of the model over a time period
of one second and analysed with an implicit dynamic procedure. The duration of
the analysis was 5 seconds, the last four of which consisted of free vibration. The
parameter for which mesh size comparison is made is the von Mises stress of the
shaft. Its spatial distribution is linearised and measured along one of its corners,
down to the caisson roof. The results are shown in figure 4.6, where it is shown
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that decreasing mesh size leads to a smoother stress distribution and a higher peak
value. It is noted however that the curves are similar.

To reiterate, the choice of element size is a weigh-off between longer analysis time
and higher accuracy. This leads to the choice of a 3 meter mesh size, as figure 4.5
and 4.6 show that this yields reasonable accuracy. Further, the analysis time for the
stress analysis, using 1000 increments, was 29.2 minutes, as opposed to 4.2 hours
for the 1 meter mesh model.
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Figure 4.6: Eigenfrequencies for different mesh sizes.

What remains in order to have a trustworthy implicit dynamic analysis is a time
step small enough such that accuracy is achieved. A measure used in the selection of
an appropriate time step is the sum of all energy in the system - which is supposed
to be approximately constant. The results are shown in figure 4.7.
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Figure 4.7: The total energy of the model for different time steps.

From figure 4.7 it is observed a jump in the supposedly constant total energy - for
all time steps. This occurs when the structure is accelerated, as kinetic energy is
introduced to the model. When the external loading is removed, such that only free
vibration remains, the total energy becomes approximately constant. This effect is
reduced when the time steps are decreased, which is only natural as the implicit
procedure becomes accurate enough to resolve the motion of the structure such that
energy balance can be achieved. It should be noted that the scale of figure 4.7 makes
it misleading. A more proper representation is a comparison with the kinetic energy,
where the jump of energy is less dramatic. In this case however, a selection of time
step is the purpose, such that relative differences between time steps suffices.

It is essential to choose a time step small enough to produce accurate results. To
achieve this, a time step of ∆t = 0.005s is used.

30



5 Seismic hazard analysis
The purpose of this study is to investigate the response of a structure to increas-
ingly large earthquakes, such that displacements become larger and the influence of
the complicating factors become greater. In order to do that, it is necessary to de-
termine characteristic earthquakes of certain return periods. Here, ground motion
accelerograms that represents return periods of 475, 1000, 3000 and 10 000 years
respectively will be generated.

5.1 Establishment of statistical data

To determine seismic parameters which represent a return period, a rectangular
area of the North Sea is chosen, with the coordinates of the opposing corners being
(58◦, 0◦) and (63◦, 5◦) respectively. Within this area, which is called the estimation
area and shown in figure 5.1, information of earlier earthquakes is gathered. The
structure is located in the middle of the estimation area, at coordinates (60.5◦, 2.5◦).
It should be noted that no effort has been made to ascertain the conditions of this
location with respect to water depth and ocean floor topography - it is merely a
point chosen for the purpose of seismic hazard analysis.

Due to the size of the estimation area, earthquakes located towards the boarders will
have attenuated greatly by the time they reach the location of the structure and thus
yield a negligible contribution to observed acceleration. This causes inaccuracies
when one attempts to establish probabilistic relationships for the ground acceleration
as measured earthquakes are not uniformly distributed throughout the estimation
window, which creates a bias towards earthquakes that occur close to the structure
over those that occur further away. For this reason, an area of radius 100 kilometers
around the structure is chosen to be the simulation area, where earthquakes are
simulated based on magnitude relations determined from the estimation window.
The simulation window is shown in figure 5.1.
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Figure 5.1: Location of the structure, estimation window and simulation window.

As a basis for the statistical analysis, the magnitude and location of 964 earthquakes
which have occurred within the estimation area between 1979 and 2010 have been
collected from the NORSAR earthquake catalogue[24]. Their locations are shown
in figure 5.2.

Figure 5.2: Locations of the 964 earthquakes collected.
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From figure 5.2 it is observed a large concentration of earthquakes along the south-
western coast of Norway. This may be caused by deglaciation, as the right half was
approximately covered by ice during the last ice age[27]. As the ice melted, post-
glacial uplifting started occurring, causing stresses in the crust, and thus creating
the seismic activity observed. This claim is supported by Dahle & Bungum et al[6].
Other sources[3] argue that tectonic forces and loads from deposits are the main
catalysts of the seismic activity. Nevertheless, the statistical relations derived from
the observed earthquakes are assumed valid for the entire estimation area.

The earthquakes considered here are assumed to follow Gutenberg-Richter’s law[15],
given as

log(N) = a− bM (5.1)

where N is the number of earthquakes having a magnitude larger or equal to M . The
coefficients a and b are determined by curve fitting, the results of which are shown in
figure 5.3. The linear regression gives the coefficients as a = 4.58 and b = 0.87. It is
observed from figure 5.3 that around magnitude M = 2, the earthquake records no
longer adhere to equation 5.1. The reason for this is that far too many earthquakes
occur at low magnitudes than can be recorded, thus creating an incomplete dataset
for those magnitudes. For this study, only magnitudes larger than 2 are included.

Figure 5.3: Curve fitting of 964 earthquake records to Gutenberg-Richter’s law,
yielding the coefficients a = 4.58 and b = 0.87.
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While the constant a is of little physical meaning, b describes the relative number
of small to large earthquakes in the region. These constants seem to agree well with
earlier investigations performed by Marrow[14], yielding a = 4.42 and b = 0.84.
Another result which agrees with the present calculations are those obtained by
Kanamori & Anderson[17]. They argue that the constant b should be close to unity
based on the assumption that the number of earthquakes at a given magnitude times
the equivalent area is constant.

5.2 Monte Carlo simulation of earthquakes

Due to lack of data, it is difficult to determine what constitutes earthquakes of
large return periods. Another complicating factor is that while equation 5.1 gives
a relationship between magnitude and frequency of occurrence, it is not necessarily
true that an earthquake of larger magnitude creates ground motions at the location
of the structure that are consistent with a given return period. The reason for
this is the attenuation of energy, and as a result, the location of the epicenter is of
utmost importance when one wants to quantify seismic risk. For these reasons, the
information gained from the estimation area is extrapolated by use of Monte Carlo
simulations within the simulation area.

The simulation is performed by generating 50 000 earthquakes which are uniformly
distributed within the simulation area - a circle of radius 100 kilometers around the
structure, thus implying that no generated earthquake has an epicentral distance
from the structure greater than that. If one manipulates equation 5.1, and apply it
as an annual probability distribution, one can find the magnitude M by

M = log(φNeq)− a
b

(5.2)

where Neq is the total number of earthquakes one wishes to simulate - in this case
50 000, φ is a pseudo-random number generated for each of the earthquakes and
a and b are the coefficients determined from the linear regression of equation 5.1.
Obviously, such an abstraction is a step away from reality as there are no limits to
the magnitude one can create with a lucky roll of the dice. To amend this, a lower
bound of M = 2 has been used, as information of earthquakes with magnitudes lower
than that are of doubtful quality. Equivalently, and more importantly, it is highly
unlikely that an earthquake of very large magnitude can occur in the North Sea.
For this reason, an upper bound of M = 6.4 is imposed, complying with Seismic
Zonation for Norway[25].

So far, 50 000 earthquakes with a defined location and magnitude have been gen-
erated, but as previously discussed this is in no way sufficient to quantify seismic
risk, as one needs the acceleration experienced by the structure. With such an ac-
celeration being dependent upon the epicentral distance, it is necessary to find an
appropriate way of expressing that relationship. To this end, the following intraplate
attenuation relationship is used[7]:
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ln(PGA) = c1 + c2M + c4
√
R2 + 152 − ln

(√
R2 + 152

)
+ ε, R ≤ 100 km (5.3)

where R is the epicentral distance in kilometers, M is the magnitude and PGA is
the peak ground acceleration at a given location in m/s2. Furthermore a focal depth
of 15 kilometers is assumed. The additional parameters used in equation 5.3 are
defined as c1 = −1.471, c2 = 0.849 and c4 = −0.00418. The term ε expresses a
normal distributed error with zero mean and a standard deviation of σ = 0.83.

For each of the 50 000 earthquakes, equation 5.3 is used to determine peak ground
acceleration at the location of the structure, thus yielding a distribution of PGA
values. The error term is accounted for by generating pseudo-random numbers
following the normal distribution specified. The hazard analysis is performed by
order statistics with the cumulative standard Gumbel distribution, given as

P (T ≤ t) = e−e
−t (5.4)

An assumption necessary is that the relation P (TR) = 1
TR

holds, where TR is the
return period of a given earthquake. Using equation 5.4 one can introduce the
following transformed probability, y:

y(TR) = − ln
[
− ln

( 1
TR

)]
(5.5)

Plotting y as a function of PGA, sorted in ascending order, uncovers a linear relation
for large enough PGA, as is shown in figure 5.4, where a plotting position of Pi =
i

N+1 has been used. In other words, the following can be written

y = α + βPGA (5.6)
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Figure 5.4: Order statistics for one simulation, where PGA values are read for
each transformed probability y equivalent to a given return period TR.
The inclusion lines mark boarders within which earthquakes for the
return period are selected.

What is not shown in figure 5.4 is that equation 5.6 does not hold for low PGA-
values, as it abruptly breaks off towards the origin. This does not matter however,
as the relation is valid for the considered interval.

Because of the error term, ε, in equation 5.3, the regression line of equation 5.6 is
not a deterministic quantity, rather an ensemble of such lines needs to be created.
Here, 100 lines have been created, and for each of them a PGA-value assumed to
represent a given return period has been calculated by

PGAR =
− ln

[
− ln

(
1− 1

TR

)]
− α

β
(5.7)

where it has been used that P (X > x) = 1− P (X ≤ x), thus providing a probabil-
ity of exceedance. At the same time as the representative peak ground acceleration,
PGAR is found, earthquakes with PGA-values that lie within ±0.05 m/s2 of PGAR
are selected, as exemplified in figure 5.4. These earthquakes are assumed charac-
teristic of that return period, yielding three parameters which can be used for time

36



history selection, namely the magnitude, M , the epicentral distance, R and the peak
ground acceleration, PGA.

Obviously, the procedure described above is only applicable as a rough estimate.
First of all, its entire basis is an extrapolation, which can yield inaccurate results.
The upper and lower magnitude limits are artificially imposed, and even they are
estimates. The attenuation relationship, while derived for intraplate earthquakes,
does not take local geology into account. The order statistics is ripe with inaccuracies
for several reasons. Firstly the database of recorded earthquakes does not only
include the largest earthquakes each year, but all earthquakes registered within a
30 year period. This implies that the probabilities are estimates. Secondly, the
choice of fraction for which to perform the linear regression of equation 5.6 affects
the results. Lastly, the choice of earthquakes by the method shown in figure 5.4 is
dubious at best. However, due to the lack of available data it is believed that for
the task at hand, where great accuracy is not required, such an estimate is the most
appropriate way of doing it, with respect to available time.

As the characteristic peak ground accelerations are largely created by simulations
rather than measurements, it is necessary to compare them with earlier work. For
this purpose, the acceleration zonation maps of Seismic Zonation for Norway[25]
has been used, as it has been adopted by both Eurocode 8[11] and the NORSOK
standard[26]. The comparison is shown in table 5.1.

Table 5.1: Comparison of simulated results with those given by Seismic Zonation
for Norway[25].

Return period Simulated Standards
[years] [m/s2] [m/s2]

475 0.61± 0.09 0.6
1000 1.1± 0.2 1.0
3000 1.8± 0.5 -
10000 2.7± 0.9 2.7

The simulated results show remarkable similarity with the zonation maps, giving
credibility to the procedure used in this study.
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5.3 Accelerogram generation

Based on generated triplets of earthquake parameters - namely magnitude, epicentral
distance and peak ground acceleration, 10 recorded earthquake accelerograms are
selected for each return period, as can be seen in table 5.2. For an extended version
of this table, the reader is referred to appendix B.

Table 5.2: Parameters of the chosen earthquakes, where each of them comply with
the selection criteria for a given return period.

TR = 475 years TR = 1000 years TR = 3000 years TR = 10 000 years
M R PGA M R PGA M R PGA M R PGA

[km] [m/s2] [km] [m/s2] [km] [m/s2] [km] [m/s2]
3.3 11 0.6 4.3 16 1.1 5.6 40 1.8 6.9 65 2.5
4.2 8 0.6 4.9 5 1.1 5.7 23 1.8 6.3 30 2.6
4.2 15 0.6 4.8 24 1.2 5.4 9 1.9 4.2 6 2.5
3.4 15 0.6 4.8 4 1.2 5.4 6 1.7 5.9 11 2.7
3.3 3 0.6 4.8 18 1.1 5.6 27 1.8 5.2 16 2.6
4.4 10 0.6 5.2 27 1.2 5.3 13 2.0 6.2 33 2.7
4.5 24 0.6 4.7 2 1.1 5.7 9 1.7 5.4 10 2.5
4.3 7 0.7 4.8 8 1.0 5.2 12 2.0 5.8 11 2.8
4.9 32 0.7 4.9 10 1.2 5.2 9 2.0 5.7 14 2.4
4.9 20 0.8 5.0 12 1.1 5.0 9 1.9 6.0 13 2.5

The databases from which selections are made is the European Strong Motion
Database (ESD)[2] as well as the Pacific Earthquake Engineering Research Center
(PEER)[1]. Due to the difficulty of finding records with parameters of reasonable
similarity to those sought after, a few simplifications have been made. First of all, no
difference has been made between the several types of magnitude definitions. This
introduces inaccuracies as these definitions are generally different, and only valid for
certain, perhaps non-overlapping, intervals. In this study, a generalized magnitude
scale, M , has been used which is assumed valid for all magnitudes. This rationale
is based on the fact that all the magnitude scales are defined to be similar, thus
by concatenating the different scales, valid for different intervals, it is possible to
reduce them to one approximate magnitude scale. Further errors are introduced as
the selection of earthquake records include all types of seismicity. There has been
made no difference between fault type, plate tectonics, or whether an earthquake
is land based or subsea - which is also provoked by lack of appropriate data. It is
however believed that magnitude and epicentral distance combinations help sort out
earthquakes that are similar to those of the North Sea. Another problem is that
it is generally more difficult to find earthquake recordings satisfying earthquakes of
higher amplitude, thus yielding larger separation between simulated and recorded
parameters. The reason for this difficulty is that the simulation process will, by
design, select fewer and fewer earthquakes as the return period increases - as they
are less probable. Furthermore, due to the low seismicity of the North Sea, these
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earthquakes more commonly consist of low magnitude earthquakes with low epicen-
tral distance. Records of such earthquakes are next to impossible to find and have
to be excluded, leaving quite few parameters with which to compare. This problem
is exemplified by the first entry of the 10 000 year return period column of table
5.2 where the magnitude is listed as M = 6.9. This is larger than the maximum
probable earthquake in the North Sea. Efforts have been made however to reduce
the effect of such inconsistencies, as is seen in the following.

For each return period, a response spectrum has been made based on the mean of
the response spectra of the individual earthquakes within a return period. This is
done in lieu of any better form of ensemble statistics, in order to avoid selecting an
accelerogram which only coincidentally satisfies the return period parameters, but
actually is an outlier with respect to the mean. The mean response spectra for each
return period are shown in figure 5.5.
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Figure 5.5: Mean acceleration response spectra for the four return periods consid-
ered.

Figure 5.5 shows that the mean acceleration response spectra have a typical shape,
with low period response dominating. Further, it is observed that increasing re-
turn period brings with it higher response and includes longer periods, which seems
reasonable. In order to establish a reference point, the mean response spectrum
of the 475-year return period is compared with the equivalent design spectrum of
Eurocode 8[11]. Assuming that the structure rests upon solid rock, which implies
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ground type A, the calculated mean response spectrum corresponds well with the
design spectrum, with Eurocode 8 being on the conservative side - as it should be.
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Figure 5.6: Comparison of generated response spectrum with Eurocode 8 - showing
reasonable similarity with ground type A.

The fact that the generated response spectrum corresponds with a stiff rock design
spectrum from Eurocode 8 is not surprising, as the selection and averaging of many
earthquakes filters away individual soil amplifications, leaving only a trend. Looking
at table B.1 in appendix B shows that of the earthquake accelerograms collected,
the majority of them represents recordings taken on solid rock - thus determining
said trend. The reason for this is that most earthquakes are recorded by seismic
listening devices mounted on buildings. There is obviously an abundance of buildings
founded on solid rock, as several, perhaps non-surpassable, difficulties arise when
one attempts to use soft soil as a foundation.

Continuing with the response spectra of figure 5.5, and thus accepting that they are
only valid for structures standing directly on solid rock, it is tempting to use them
as a basis for accelerogram simulation. This would however result in unrealistic
earthquakes, as the frequency content resulting from simulations based on the mean
response spectrum in no way resembles that of a real earthquake. For this reason, a
single response spectrum of a recorded earthquake is chosen for each return period,
which resembles the mean response spectrum as closely as possible.
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By using the software SIMQKE[12], response spectrum compatible accelereograms
are generated. In order to make them comparable between return periods, a duration
of 15 seconds has been imposed on all accelerograms. Furthermore, the simulation
method applied by the software is basically an alteration of the frequency content of
random white noise. Such signals are stationary in nature. In order to mold them
into the shape of a typical earthquake, the modulation function given in equation
5.8 has been chosen, thus rendering the signals quasi-stationary.

I(t) = A
(
e−αt − e−βt

)
(5.8)

In equation 5.8 the constants α = 0.3 and β = 0.45 ensure that by the time 15
seconds has passed, approximately 90% of the amplitude has abated. The coefficient
A is a normalization constant. The final result is a set of characteristic earthquake
accelerograms, one for each return period, which will be used for structural analysis.
They are shown in figure 5.7.

While the generation of realistic earthquake accelerograms has been important, a few
irregularities remain. The 475-year earthquake shown in figure 5.7 has a duration
of significant ground motion which is longer than a natural earthquake - a tell-tale
sign of simulation. The 1000-year earthquake also stands out from the rest with
a higher frequency content, which is a result of the frequency iteration procedure
and is elaborated on further in section 6.1.2. The created accelerograms may not be
geophysically immaculate, but they will suffice in generating structural loads which
are accurate enough to represent reality.
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Figure 5.7: Earthquake accelerogram simulated for each of the four return periods.
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6 Results and discussion
In this chapter, the main results of the various analyses will be presented. First
the elastic time history analysis without surrounding water is presented, providing
a basis for comparison for all following analyses.

6.1 Elastic analysis

For massive concrete structures, such as the one studied here, it is normal design
practice to assume elastic behaviour. For this reason, it is a natural choice to don
the very same assumption as a first approach.

A basis for comparison are the eigenfrequencies of the structure, the first ten of
which are given in table 6.1.

Table 6.1: Unique eigenfrequencies
Mode Frequency

[Hz]
1 2.5965
2* 3.0380
3* 3.9487
4 4.5218
5 5.5669
6 6.2844
7* 6.3006
8 6.3399
9* 6.3419
10 6.4126

* Double Eigenfre-
quencies

It is observed that the eigenfrequencies are quite high, implying a stiff structure -
which is realistic. Also worth noting are the occurrence of double eigenfrequencies.
They are created by the symmetry of the structure, as there is no difference between
the energy demand of a perturbation along either of the two horizontal principle axes
for these modes.

43



6.1.1 Time history analysis

A time history analysis is performed by applying accelerograms similar to, but sta-
tistically independent from, those of figure 5.7 in both of the horizontal directions,
and a scaled down version in the vertical direction. From this, maximum envelope
plots of the von Mises stress can be generated, as shown in figure 6.1.

(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.1: Contour plots of the maximum envelope von Mises stress of the four
return periods considered. Units are in Pascal.

What is especially noticeable about figure 6.1 is the similarity between the 1000-
and 3000-year earthquake response, shown in figures 6.1b and 6.1c respectively. It
is apparent that the 1000-year earthquake produces stresses in the structure which
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are almost identical to those resulting from the 3000-year earthquake, with peak
values that are slightly higher. This occurs in spite of simulating the 3000-year ac-
celerogram from an acceleration response spectrum which suggests stronger ground
motion than the equivalent 1000-year response spectrum, as can be seen in figure
5.5. While this might at first glance seem like a paradox, a closer investigation of
the simulated earthquake Fourier spectra in appendix B.3 reveal the cause of the
discrepancy. From figure B.6 it is seen that the culprit is an unfortunate side ef-
fect of the generation of quasi-stationary earthquakes. As previously mentioned,
the simulation procedure is based on white noise, which is iteratively altered in the
frequency domain such that its response spectrum matches a target response spec-
trum. The remnants of this procedure is observed as stationary oscillations of the
Fourier spectrum for large frequencies. A real earthquake normally does not present
with such oscillations, but instead decays towards zero as the frequencies become
sufficiently large. The artificial oscillations are particularly high for the 1000-year
earthquake, which excites a larger number of structural modes, and thus provokes
a higher response. For the other three return periods, the spurious oscillations are
not as prevalent, resulting in a better approximation to real earthquakes.

6.1.2 Response spectrum analysis

It is interesting to see how well a response spectrum analysis can estimate the
results from the time history analysis, as it completes in a fraction of the time. To
investigate this, 500 modes have been used, accounting for approximately 90% of
the structural mass in terms of effective mass, in each direction. The three modal
combination methods described in section 2.2.2 have been compared. The same
comparison has been performed for all four return periods, but for brevity, only the
results for the 475-year earthquake are presented here, with the rest being available
in appendix E.

The absolute sum combination method, which is the most conservative, is explored
first. Due to the inability of Abaqus to perform modal combination for the von
Mises stress, the nodal moments have been used instead. A contour plot of the ratio
between time history and response spectrum analysis is shown in figure 6.2.

45



Figure 6.2: Contour plot of the ratio between the moment along one of the axes
of symmetry as calculated using time history and response spectrum
analysis respectively.

From figure 6.2 it can be seen that the response spectrum analysis with modal
combination by use of absolute summation is mostly conservative, however there
are areas in which the time history analysis results in a larger moment. These areas
are marked in gray on figure 6.2. It is worth noting that while there are points which
receive a negative ratio, absolute values have been used in establishing the contour
plot. These values are in other words erroneously produced by Abaqus. Fortunately,
there are only a few nodes that are affected, which can be ignored.

Also seen from figure 6.2 is that the unconservative areas are fairly concentrated.
Furthermore, the results are only unconservative by a maximum of 40%. In evaluat-
ing whether a response spectrum analysis is applicable, it is necessary to investigate
whether the unconservatism occur for large or small moments. Obviously, a 40%
increase of an otherwise negligible quantity might also be negligible - meaning that
the response spectrum analysis could be appropriate still. For each of the nodes in
the structure, the moments determined by the response spectrum analysis has been
gathered and plotted relative to the time history analysis, henceforth referred to as
an RS-TH plot, resulting in figure 6.3.
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Figure 6.3: Nodal moments determined by response spectrum and time history,
plotted relative to each other. The slanted line represents the boarder
of conservatism, below which results are unconservative.

Figure 6.3 shows that it is the larger moments which are unconservative, however
they do not stray far into unconservative territory. Furthermore, the moments
present in the structure during the 475-year earthquake are minuscule. By looking at
figure 6.1a it is seen that the maximum von Mises stress that occurs in the structure
is barely twice the stress at which initial cracking takes place. Because of this, the
method of summation of absolute values is considered applicable. This does not,
however, mean that the results are very accurate. Obviously, the best results would
be an almost linear cloud of points slightly above the line of conservatism. This is
not the case in figure 6.3 however, where it is observed largely scattered values, with
a concentration along a line with a much higher slope than the conservatism line.
Such a result implies that large parts of the structure is given an overly conservative
response. This is typical for the absolute sum of peak values - as it assumes that all
modes contribute simultaneously, which is quite unrealistic.

Looking at appendix E, it is seen that summation of absolute values is indeed an
approach which is possible to use, yielding no unconservative results for return perids
higher than 475 years. On the other hand, the results are very conservative. For
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instance, the 10 000 year earthquake, shown in figure E.9, has a moment ratio of
0.1-0.3 for large parts of the structure. Seeing as an earthquake of such a long
return period imposes large moments, this is an unacceptable simplification for use
in practice. Also shown in appendix E is a comparison of shear forces - along one
of the axes of symmetry - determined by the two methods. The same results are
observed here as with the moments: Slightly unconservative results for the 475-year
earthquake, but otherwise the response spectrum analysis produces a much larger
response, making it impractical for design purposes.

Modal combination by use of square root of the sum of squares (SRSS) is investigated
next. In contrast to an absolute sum of peak values, SRSS assumes no correlation
between modes. It is generally accepted that such a method provides better results
if the modes are well spaced. The resulting ratio plot is shown in figure 6.4.

Figure 6.4: Ratio plot between moments determined by time history and response
spectrum analysis using the SRSS method.
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The results show large areas which are unconservative, mostly in the roof and side
walls of the caisson, but also in the shaft. This suggests that the interaction between
modes is significant, which is to be expected if one looks at table 6.1. The eigen-
frequencies are closely packed, meaning that it is unlikely they occur completely
independent of each other. This also implies that double eigenfrequencies, produced
by symmetry, do not correlate, which is obviously erroneous. The RS-TH plot for
the SRSS method is shown in figure 6.5.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Time History [kNm]

R
es
p
o
n
se

S
p
ec
tr
u
m

[k
N
m
]

Figure 6.5: Nodal moments of the time history analysis plotted against those of
the response spectrum analysis, using the SRSS method.

As expected from the ratio plot of figure 6.4, a larger part of the nodes have moments
which are unconservative when determined by response spectrum analysis. It is also
seen from figure 6.5 that the largest unconservatism occurs for the largest moments
such that a great deal of scepticism should be directed towards the use of the SRSS
method. On the other hand, looking at the nodes which have moments that are on
the conservative side, it is seen that these results correspond more closely to those
determined by the time history analysis. This demonstrates what is expected of the
SRSS modal combination method: it is supposed be a better approximation than
the absolute sum, however it may yield unconservative results when the density of
frequencies is high. A mixture between good and unconservative results is then to
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be expected depending on which areas are affected by the different modes.

Although the eigenfrequencies of table 6.1 are closely packed, that does not mean the
modes with significant contribution to the particular motion come close together.
To get a sense of this, the modal participation factors of the structure are shown in
figure 6.6. Here it is seen that the non-negligible participation factors are grouped
around certain frequencies. For instance, in the interval of ∼0-50Hz a large number
of modes have large participation factors. The same can be said for the interval
∼75-150Hz - although with significantly smaller participation factors. Inside such
a packet, the response is underestimated, as correlation is likely to occur, however
intergroup correlation is less probable, suggesting better approximation here.
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Figure 6.6: Absolute value of the modal participation factors for the 475-year
earthquake.
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The final repetition is performed for the complete quadratic combination method
(CQC), which is supposed to provide a compromise between the sum of absolute
values and SRSS. The ratio plot is shown in figure 6.7, where it is seen that this is
not the case. In fact, the unconservative areas have a larger extent than for the SRSS
method. Furthermore, the maximum underestimation of the response is larger.

Figure 6.7: Ratio plot between moments determined by time history and response
spectrum analysis using the CQC method.
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Further clarification is presented by the RS-TH plot:
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Figure 6.8: Nodal moments of the time history analysis plotted against those of
the response spectrum analysis, using the SRSS method.

An important discovery is that figure 6.8 bares a striking resemblance to the RS-TH
plot of the SRSS method, as can be seen in figure 6.5. Apparently, the CQC method
does not adequately account for modal interaction. The reason for this lies in the
correlation coefficient, ρmn, given in equation 2.31, which is unable to accurately
describe the modal interaction for this geometry and motion. This is demonstrated
further by figure 6.9, where the correlation coefficient is plotted for the 500 eigen-
frequencies used. It has a value equal to one for identical eigenfrequencies. For well
spaced eigenfrequencies, there is assumed no correlation, thus yielding a correlation
coefficient of zero here. These are two limiting cases which seem reasonable. It
is however also noticed that the correlation coefficient decays to zero very quickly,
resulting in a perhaps too restrictive relationship between eigenmodes. As can be
seen from figure 6.9, this is especially true for low frequencies, which also have the
highest participation factors. The claim of too restrictive correlation relationship is
justified by the similarity between the RS-TH plot of the SRSS and CQC methods,
as using a correlation coefficient which is equal to one only for interaction with itself,
and zero elsewhere is indeed the SRSS method.
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Figure 6.9: Nodal moments of the time history analysis plotted against those of
the response spectrum analysis, using the SRSS method.

Generally speaking, with reference to appendix E, it is apparent that the SRSS and
CQC method predict a structural response whose mean coincides reasonably well
with the time history analysis. On the other hand, the response has a larger spread,
resulting in an underestimation of response in large parts of the structure. This
spread is increasing for nodes with larger loads. Contrarily, the absolute sum of
peak values provides a smaller spread, but its mean is a poorer approximation of
the time history analysis, though erring on the conservative side. This behaviour is
exemplified by figure E.2.

It is obvious that the use of the SRSS and CQC method for the considered structure
is not viable, as the response is generally underestimated. The absolute summation is
impractical to use due to the large overestimation. The inevitable conclusion is that
a response spectrum analysis fails to predict the response of the considered structure
accurately, and because of this, time history analyses should be used instead.
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6.2 Effect of plasticity

The material model derived in chapter 3 will be applied to the time history analyses,
but the effects of elastic stiffness degradation will be included as a separate study.
This is prefaced by a simple investigation of the behaviour of the material model.

6.2.1 Numerical Study: Material model

In order to comprehend the workings of the relations derived in chapter 3, a nu-
merical study in Abaqus[29] of the behaviour of a single, linear shell element is
undertaken. The model is shown in figure 6.10, where it is seen that the left and
bottom edges are restrained from horizontal and vertical motion respectively, while
load is applied by the prescribing of displacement at the right and upper edges.

Figure 6.10: Simple model used for numerical study of the constitutive models.

Necessary parameters of the material model, in addition to those specified for B45
concrete in Eurocode 2, are given in table 6.2 and are selected based on recommended
values in the Abaqus manual[31]. This is done because a detailed study on the
optimal values is deemed unnecessary for the task at hand.

Table 6.2: Concrete material parameters.
Symbol Value Description
Kc

2
3 -

ε 0.1 Eccentricity
ψ 31◦ Dilation angle
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First off, the element is modelled without reinforcement and subjected to cyclically
applied loads, in such a way that the yield surface is charted at various degrees of
plasticity. This is shown in figure 6.11, where it is seen that for the initial yielding,
represented by the blue curve, the Drucker-Prager yield surface is recreated for
biaxial compression stress states. It has the form of an ellipse, as it is basically a
modification of the von Mises yield surface, as shown in equation 3.5. In the other
three quadrants, the effects of the alterations in equation 3.6 come into play, creating
a lower resistance here, and thus creating a discontinuous slope at the transition
points. The uniaxial yield stress in compression is found where the curve crosses
the negative x- and y-axis. Equivalently, the uniaxial yield stress in tension is found
where the curve crosses the positive axes - as it should be. It is also observed that
the yield surface is symmetric about the equibiaxial stress line, which is intuitively
reasonable, as it would be non-physical if pulling on one edge of the element gives a
different response than pulling on the other.
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Figure 6.11: Yield surface created by a single shell element for different plastic
strains.

For a plastic strain of p = 0.1% it is seen that the yield surface has expanded in the
third quadrant, where biaxial compression takes place. This indicates hardening, in
accordance with equation 3.11. Contrarily, in the first quadrant, the yield surface
shows a decline. This results from plastic stress evolution, as no hardening takes
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place, but instead a severe softening.

At p = 0.2%, represented by the red curve, one can see how softening starts taking
place in the third quadrant, as the yield surface has declined relative to the surface
representing p = 0.1%. It is also noticed that the tensile resistance is negligible,
which is by design.

The conclusion is that the expansion or contraction of the yield surface does indeed
follow the hardening rules. This implies that the tensile resistance is monotonically
decreasing after the stress at which initial cracking occurs, while in compression
initial hardening takes place, followed by softening towards failure. In a dynamic
analysis, where stresses fluctuate between compression and tension, such a model
brings a certain degree of realism to the analysis as both regimes are described in a
consistent manner.

To investigate the effect of the reinforcement, the element of figure 6.10 is subjected
to uniaxial, time dependent loading. This is done by assigning the modulated si-
nusoidal displacement shown in figure 6.12 to the right edge of the element. The
same amount of reinforcement is placed in both the vertical and horizontal direction.
Further, the reinforcement is placed symmetrically in the cross section, with cover,
diameter and spacing as chosen in section 4.2. An illustration of the reinforcement
placement is shown in figure 4.4. From this, hysteresis curves are made such that
the response of the material is visualized.
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Figure 6.12: Displacement of the left edge of the element shown in figure 6.10.
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The results are shown in figure 6.13, where it is seen how the resistance of the
material without reinforcement corresponds to the yield surfaces in figure 6.11. For
the first period of displacement, the material behaves linearly in compression. First
yielding occurs during the second period, followed by further yielding in the third
period. In tension, the concrete quickly loses its capacity until only the artificial
residual remains - represented by a levelling off of the tensile response in the third
period.

The inclusion of reinforcement gives similar results in compression as with only con-
crete. In tension however, a noticeable difference is observed. The softening caused
by the tensile resistance declination, as shown in the hysteresis curve of the element
without reinforcement, is negated by an elastic response of the reinforcement.
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Figure 6.13: Hysteresis curves for a single shell element, both with and without
reinforcement. Plotted for three periods of a modulated sinusoidal
loading.
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6.2.2 Seismic analysis

Applying the concrete material model of chapter 3, with parameters from table 6.2
and reinforcement from section 4.2, it is now possible to more accurately describe the
structural behaviour, relative to a purely elastic analysis. Contour plots of maximum
envelope von Mises stress when plasticity is considered are shown in figure 6.14.

(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.14: Contour plots of the maximum envelope von Mises stress of the four
return periods considered. Units are in Pascal.

By comparing figure 6.14 with figure 6.1 it is seen that the results for the plastic
analysis are generally lower than for the elastic analysis. This seems reasonable as
the structure becomes more ductile as yielding takes place.
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The plastic dissipation taking place in the structure for a given return period is
shown in figure 6.15.
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Figure 6.15: Plastic dissipation for yielding in compression.

An interesting obeservation is that figure 6.14a shows lower peak stress than figure
6.1a in spite of figure 6.15 showing no signs of plastic dissipation. This effect is
explained by the reinforcement layers, which alters the material properties of the
element, and serves to more evenly distribute the stresses, rather than localising
them. It is noted though that the difference between figure 6.1a and 6.14a is small,
which is reasonable.

Comparing the other three return periods of figure 6.14 to their elastic counterparts,
it is seen that stresses are on average lower by a few Megapascals. Furthermore,
the peak values shown in the contour plots of figure 6.1, which are concentrated to
a spatial distribution of a few nodes, are filtered off by the yielding of the struc-
ture. Comparing the reduction of peak stresses with the plastic dissipation plots
of figure 6.15, it is seen that the amount of reduction agrees with the amount of
dissipation. Noting also, that areas in which the largest degree of stress reduction
takes place - marked in red on the contour plots of figures 6.1 and 6.14 - are so
highly concentrated that they are hardly visible. From this it can be concluded
that while there are limited areas that experience large excursions into the plastic
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domain, most of the structure does not, even for the 10 000-year earthquake. This
implies that the elastic approximation adequately and conservatively describes the
structural response without producing an impractical overestimation. Further evi-
dence of this is provided in table 6.3, where the equivalent eigenfrequencies to those
of the elastic structure are calculated as a linear perturbation after the earthquake
has taken place, thus providing a measure of the change in geometry and stiffness.
The term equivalent eigenfrequncies is used here as they are not the real eigenfre-
quencies of the structure, which are determined from the elastic model, but rather a
distortion of them due to plastic deformations. They are however evaluated as such
because they give insight into the extent of influence a given earthquake has on the
structure.

Table 6.3: Equivalent eigenfrequencies after the earthquake of a given return pe-
riod has taken place.
Mode TR = 475 TR = 1000 TR = 3000 TR = 10 000

[years] [years] [years] [years]
1 2.6782 2.6766 2.6769 2.6709
2 3.1046 3.1038 3.1038 3.0988
3 3.1046 3.1040 3.1042 3.0999
4 4.0577 4.0566 4.0565 4.0504
5 4.0577 4.0573 4.0573 4.0532
6 4.7203 4.7189 4.7189 4.7036
7 5.6773 5.6763 5.6765 5.6745
8 6.4945 6.4934 6.4932 6.4870
9 6.5419 6.4936 6.4942 6.4915
10 6.5626 6.5418 6.5412 6.5389
11 6.5626 6.5624 6.5617 6.5585
12 6.5906 6.5625 6.5621 6.5604
13 6.6690 6.5905 6.5899 6.5877
14 6.7618 6.6688 6.6681 6.6656
15 6.7618 6.7616 6.7609 6.7584

Table 6.3 shows that no change to the number of decimals used occur for the 475-
year earthquake, meaning that this column is identical to table 6.1, except that the
double eigenfrequencies are explicitly given. Looking at the higher return periods,
it is seen that the symmetric eigenfrequencies are lost, but even so the difference
from the real eigenfrequencies - as given by the elastic structure - are negligible.

6.2.3 Effect of cracking

An additional effect is included to the plasticity model, namely cracking. This is
done by introducing a rudimentary damage evolution parameter, dt which takes
into account cracking in tension. There is assumed that no cracking takes place
for concrete in compression. The chosen relationship for dt can be looked upon as
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a normalized inverse of the post-cracking stress-strain relationship in tension, with
dt = 0 at initial cracking, and increasing linearly until dt = 0.99 at a plastic strain
of p = 0.2%.

(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.16: Contour plots of the maximum envelope von Mises stress, considering
cracking. The units are in Pascal.

Comparing figure 6.16 with figure 6.14 shows no change in the maximum envelope
stresses of the structure for neither of the return periods, except for the 10 000-year
earthquake in figure 6.16d. Here it is seen that the stresses are generally equal for
large parts of the structure, however signs of cracking induced stress concentrations
show in the middle of the shaft. In order to investigate the extent to which cracking
has taken place in the structure, contour plots of the damage evolution parameter
are shown in figure 6.17.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.17: Contour plots of the damage evolution parameter, dt.

Figure 6.17 shows that the 475-year earthquake causes no cracking, owing to the
low seismicity of the North Sea. This verifies figure 6.15 which demonstrates that
the structure remains elastic for this particular earthquake. Comparing the 1000-
and 3000-year earthquakes of figure 6.17b and 6.17c respectively shows that the
1000-year earthquake produces very similar, if not larger degrees of tensile damage
than the 3000-year earthquake. This is however not a mystery, and as previously
discussed, it is caused by simulation error in the 1000-year earthquake, as well as the
jump in return period not being large enough to produce uniquely larger 3000-year
earthquakes. The 10 000-year earthquake is influenced the most by tensile damage,
as is also predicted by the plastic dissipation in figure 6.15. Furthermore, this
explains the stress concentrations of figure 6.16d, as their location correspond with
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the areas of the most severe cracking. It is seen that the damage evolution parameter
of figure 6.17d exceeds one - as marked in red. This is caused by numerical error in
the averaging of integration point values, and should instead be viewed as dt = 0.99,
implying that the structure has lost all its stiffness in these areas. Physically, this
represents large cracks, which only the reinforcement keeps together. Finally, the
equivalent eigenfrequencies after the earthquake has passed are given in table 6.4.

Table 6.4: Equivalent eigenfrequencies after the earthquake of a given return pe-
riod has taken place.
Mode TR = 475 TR = 1000 TR = 3000 TR = 10 000

[years] [years] [years] [years]
1 2.6782 2.6766 2.6730 2.6654
2 3.1046 3.1036 3.1001 3.0808
3 3.1046 3.1038 3.1009 3.0843
4 4.0577 4.0563 4.0493 4.0248
5 4.0577 4.0569 4.0527 4.0289
6 4.7203 4.7182 4.7113 4.6865
7 5.6773 5.6758 5.6715 5.6592
8 6.4945 6.4930 6.4866 6.4727
9 6.5419 6.4932 6.4899 6.4754
10 6.5626 6.5416 6.5349 6.5371
11 6.5626 6.5622 6.5546 6.5555
12 6.5906 6.5623 6.5569 6.5582
13 6.6690 6.5903 6.5838 6.5857
14 6.7618 6.6687 6.6617 6.6641
15 6.7618 6.7614 6.7543 6.7563

No big surprises reveal themselves from table 6.4. An additional reduction of the
equivalent eigenfrequencies are observed, which is reasonable as the structural stiff-
ness is reduced by the elastic stiffness degradation. Comparing with table 6.1 it is
seen that the differences are still small even with cracking taking place. Moreover,
the stress envelopes show negligible changes from the purely plastic model of figure
6.14, so it can be concluded that the elastic stiffness degradation such as it has been
included here, is an unnecessary complication of the analysis of the massive concrete
structure evaluated.
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6.3 Effect of surrounding water

It is apparent that large errors are made when the surrounding water is neglected
in the structural analysis, but even so the basis for comparison is a model where
this is the case. The fluid is therefore treated as a complicating factor, in the same
manner as plasticity is in section 6.2. Efforts have been made to investigate how
much difference the inclusion of surrounding water makes on the response of the
structure. This is done by applying both methods described in section 3.3.

6.3.1 Evenly distributed added mass

The outer surfaces of the structure has had its mass increased in accordance with
equation 3.21. Unfortunately, there is further need for simplification, in addition to
those discussed in section 3.3.1. In figure 3.3 are shown the available geometries for
which the added mass coefficient is known. For the shaft, figure 3.3a seems to be
appropriate, although only valid for slender structures. It does however imply that
the influence of the caisson below on the flow of water around the shaft is neglected.
The selected added mass coefficient is thus CA = 1.51.

The caisson provides a larger challenge than the shaft in terms of finding an appro-
priate added mass coefficient. Figure 3.3b is of a similar geometry and predicts an
added mass coefficient of CA = 0.68, but is restricted to quadratic cross sections
in the direction of flow. Furthermore, water is not allowed to flow beneath the
structure, as it is placed firmly on the seabed. The shaft serves as an additional
obstruction which cannot be taken into account. In the following, the choice has
been made to use the added mass coefficient of an equivalent quadratic cross sec-
tion, with sides equal to the width of the caisson. This is conservative, as the actual
projected area perpendicular to the flow of water has one fourth of the height. To
account for the fluid only being able to flow around three sides of the structure, a
larger added mass coefficient has been selected, resulting in a value of CA = 1.00.

Fluid displacement due to vertical motion has been ignored, as its influence is as-
sumed to be small. Furthermore, the addition to gravity forces on the roof of the
caisson would severely distort the results there.

64



The eigenfrequencies calculated with the effects of water show a significant change,
which is expected by looking at equation 3.21 as the large surface of the structure
creates a monumental added mass effect. They are shown in table 6.5, where it is
seen that the first eigenenfrequency differs from that given in table 6.1 by approxi-
mately 0.6Hz, with the difference increasing for increasing modes. As the structure
was initially very stiff, larger seismic loads are expected by the inclusion of water in
the analysis. This is seen by comparing the change in eigenfrequencies to the mean
response spectra of figure 5.5, noting that the increase in periods is in the direction
of the spectrum peaks - thus predicting an increase in response.

Table 6.5: Unique eigenfrequencies with added mass.
Mode Frequency

[Hz]
1 2.0054
2* 2.4640
3 3.4862
4* 3.5908
5 4.0747
6 4.0793
7* 4.0853
8 4.1651
9* 4.2108
10 4.2859

* Double eigenfre-
quencies

Figure 6.18 shows contour plots of the maximum von Mises stress of the structure. It
is observed that the stress fields are similar to those of figure 6.1, which is reasonable
as the structure is assumed filled with water of equal height as the surrounding water
level. This means that the surfaces onto which the added mass is applied are already
influenced by an artificial mass caused by the internal water, such that the mode
shapes do not change radically.

By comparing with figure 6.1 it is seen that the seismic response with the addition
of mass is not quite as black and white as previously expected. For instance, the
10 000-year earthquake produces on average a response which is lower when water
is included than when it is not. The peak values are of little significance for the
global response because of their limited spatial distribution. Furthermore, they are
a result of the elastic approximation, and cannot be assumed realistic, as is verified
by figure 6.14, where the more accurate material model provides a response which
does not include such localised peak values.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.18: Contour plots of the maximum envelope von Mises stress with sur-
rounding water modelled as additional mass. Units are in Pascal.

The reason for the lower structural response when water is included is illustrated
in appendix F, where a comparison of response spectra and participation factors
are shown. It is seen that by the inclusion of water, the participation factors with
significant contributions are shifted to frequencies for which the structural response
is lower. Because of this, the ground accelerations of the 10 000-year earthquake
are mitigated to a greater extent than without water. The 3000-year earthquake
shows the opposite trend. By looking at figure F.3, it is seen that several of the
participation factors are shifted towards local peaks in the response spectrum, such
that the structural response is greater. Furthermore, the added mass increases the
inertia of the structure. This results in an increase in stresses. It also implies that
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for the stresses to decrease, the reduction in acceleration will have to cancel out the
increase in inertia. The 475- and 1000-year earthquake analyses are also worse off
by the presence of water, but to a lesser degree.

6.3.2 Numerical study: Infinite elements

The pressure wave formulation derived in section 3.3.2 is applied by Abaqus as
an acoustic interaction with the structure. The radiation damping is then caused
by the transfer of momentum from the structure, which generates pressure waves
that propagate through the acoustic medium. The use of such an approach in
a finite element analysis introduces the problem of reflection at the boundaries.
If the domain of the acoustic medium is not large enough, reflected waves could
affect the structure, and thus introduce spurious loads. To reduce the volume of
water necessary to achieve an accurate solution, infinite elements have been used,
which are elements that simulate the conditions of a half-space by extending the
fluid domain numerically with polynomials[30]. This implies that infinite elements
constitute absorbing boundaries, such that incoming waves are not reflected. The
behaviour of these elements, as well as the acoustic medium, consisting of solid
elements, is investigated by letting a pressure wave propagate through a channel,
which is supposed to extend to infinity.

(a) t = 1 ms

(b) t = 30 ms

(c) t = 0.1 s

Figure 6.19: Wave propagation through an acoustic medium, with infinite ele-
ments on the left end.
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Figure 6.19 shows the results of the numerical study, where waves are shown prop-
agating through the acoustic medium, towards the infinite elements on the left
end. The density of the water was set to ρ = 1025 kg/m3 and a bulk modulus of
B = 2.2 GPa was used. The duration of the simulation was 0.1 s. It is seen that
as the waves reach the left end, most of the energy is dissipated, giving the illusion
that the waves continue through. Standing waves are observed, suggesting reflec-
tion, however the pressure amplitudes are much lower than for the incoming waves
so the accuracy is deemed adequate.

6.3.3 Acoustic-structure interaction

A better approximation for the fluid-structure interaction is the modelling of the
fluid within which the structure is oscillating. This is done by using an acoustic
medium that surrounds the structure. The properties of the fluid were set to ρ =
1025 kg/m3 and B = 2.2 GPa. Figure 6.20 shows the structural model submerged
in a cylinder of the acoustic medium, consisting of solid elements. The diameter of
the cylinder is 120 meters, meaning that the smallest distance from the structure
to the fluid boundary is approximately 18 meters. Needless to say, such an analysis
is quite computer intensive, and in order to reduce the analysis time, the element
size is radially increased towards the infinite element fluid boundary, with the finest
element mesh immediately surrounding the structure.

Figure 6.20: Finite element model for the fluid-structure interaction.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.21: Contour plots of the maximum envelope von Mises stress with sur-
rounding water modelled as acoustic elements. Units are in Pascal.

Figure 6.21 shows the von Mises maximum envelope curves for the structural-
acoustic analysis. Once again, the results are plagued with a few points that show
improbably high stresses. These points are once again ignored, based on previous
arguments. Otherwise, it is seen that the stresses are generally quite similar to the
added mass method, suggesting that the simplified approach is reasonably accu-
rate. This is especially true for the 3000- and 10 000-year earthquake. Looking at
appendix F it is seen that the interaction with the acoustic medium causes the sig-
nificant participation factors to occur for small periods, and thus escape the peaks of
the response spectrum. This results in lower accelerations experienced by the struc-
ture than with water omitted, however as previously mentioned, the added inertia
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due to the surrounding water cancels out this beneficial effect, and even increases
stresses slightly for the 10 000-year earthquake.

The eigenfrequencies are given in table 6.6.

Table 6.6: Unique eigenfrequencies with added mass.
Mode Frequency

[Hz]
1 1.8533
2a 2.1466
2b 2.1473
3 2.2033
4a 3.6422
4b 3.6424
5 4.0168
6a 4.3950
6b 4.3957
7 4.6032
8 4.7546
9a 4.9165
9b 4.9388
10 4.9411

The most notable about table 6.6 is perhaps that additional modes are included.
The reason for this is that the eigenfrequencies are no longer double, and in order
to keep the table consistent with table 6.1, these previous pairs are given the same
mode number, and separated alphabetically instead. It is believed that this effect
is caused by numerical error, as the structure is still symmetric. Furthermore, the
differences are so small that the most likely explanation is that they represent the
same mode. Comparing table 6.6 to table 6.5 gives credibility to the analysis, as
it is seen that the eigenfrequencies are similar, with the acoustic-structural analysis
predicting slightly lower frequencies for the lower modes, but eventually surpassing
the dry analysis as the modenumber increases. An exception is the third mode, which
is significantly lower for the acoustic-structural analysis - for unknown reasons.

6.4 Effect of soil

The influence of the foundation upon which the structure rests is a highly com-
plex subject due to the fact that soil properties rarely lend themselves to analytical
relationships. Furthermore, the material behaviour leads to great variation in prop-
erties, even for the same soil types, and because of this, laboratory testing of samples
from the area in question is necessary if one is to even have a chance at establishing
realistic results. A geotechnical survey is beyond the scope of this thesis, and soil pa-

70



rameters will be assumed based on typical values. Because of this, no sophisticated
material model will be attempted, instead, an elastic soil layer is used.

6.4.1 Soil springs

A simplified approach is used, in which the structure is assumed to stand on an
elastic halfspace. This is represented by springs and dashpots which connects each
node in the caisson floor to a reference node, where the earthquake accelerations are
applied. This is shown in figure 6.22.

Figure 6.22: Foundation of the structure, where 484 springs and dashpots individ-
ually connects each node to a reference point, where the earthquake
is applied.

Analytical expressions for the static stiffness and damping constants for a rigid
circular footing is used, thus ignoring the frequency dependency of these coefficients.
These are given in equation 6.2[36],[18]. Such a model is usually applied for single
degree of freedom systems, but is averaged here over all nodes in the bottom slab.

Kx = 8GR
2− ν

Ky = 4GR
1− ν (6.1)

C = 4.6
2− ν ρVsR

2

In equation 6.2, R is the radius of the footing, ν = 0.3, ρ = 2000 kg/m3 and Vs are
the Poisson ratio, mass density and shear wave velocity of the soil, respectively. G
is the shear modulus of the soil, and is given as
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G = ρV 2
s (6.2)

To ease the modelling, no distinction has been made between the damping con-
stant in vertical and horizontal directions, although this is obviously the case. Fur-
thermore, the circular footing is assumed inscribed into the square footing of the
structure, which implies a radius of R = 30 m.

Soft soil

Previous investigations have revealed that the topmost soil layer at the site of the
structure consists of sand[13]. It is assumed that the underlying sand is quite dense
based on the weight of the structure, which leads to a selection of shear wave velocity
as Vs = 180 m/s. A huge spread in applicable shear wave velocities have been
found, owing to the empirical nature of geotechnics, however the chosen value is in
accordance with Eurocode 8. Maximum envelope von Mises stress contour plots are
shown in figure 6.23.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.23: Contour plots of the maximum envelope von Mises stress when un-
derlying, soft, soil is represented by springs and dashpots. Units are
in Pascal.

Marked in gray on the contour plots of figure 6.23 are shown irrepresentatively
large stresses at around 30 − 40 MPa for all return periods. These occur because
of the mathematically constrained bottom slab and are artificial. A real structure
would not be attached to the ground in such a way as is done here, and because
of this, these stresses should be ignored. In the rest of the structure however, it
is observed that the soft soil has the same effect as base isolation, as the structure
hardly feels the earthquake at all. From a modelling point of view, this is a natural
result, as springs have been used. The realism of such a result is debatable, however
the results do align with the general statement that structures resting on soft soil
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often experience a beneficial effect, with an increase in its influence with increasing
stiffness[36].

Table 6.7: Unique eigenfrequencies with soft soil springs.
Mode Frequency

[Hz]
1 2.5962
2* 3.4024
3* 3.9681
4 4.5212
5 5.5637
6 5.7023
7* 5.7280
8 5.9308
9* 6.3733
10 5.7757

* Double Eigenfre-
quencies

The eigenfrequencies of the system, as shown in table 6.7, show little difference for
eigenmodes that mainly involve the perturbation of the shaft, with respect to the
constrained base case. For the caisson however, the difference in eigenfrequencies
is significant - which is obvious as the bottom slab is resting on springs rather
than firm ground, thus reducing the overall stiffness and increasing the period of
vibration. Not included here are intermittent eigenmodes which are generated by
the interaction with the springs.

Hard soil

The structure is so stiff that even if it was placed directly on solid rock, soil-structure
interaction could have a great deal of influence. Because of this, an instance in which
the structure is placed on hard soil, with a shear wave velocity of Vs = 800 m/s is
tested. The stress contours are shown in figure 6.24.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.24: Contour plots of the maximum envelope von Mises stress when un-
derlying, hard, soil is represented by springs and dashpots. Units are
in Pascal.

With respect to the soft soil, the stresses observed by the structure is increased
by the increased stiffness of the underlying soil, however the results are still very
beneficial compared to the base case. It is expected that the seismic loads increase
as the springs stiffen, however the spring stiffness should be stiff enough to result
in a response similar to those of the structure on an infinitely stiff foundation. This
is not the case. Equivalently, the eigenfrequencies should also increase, which they
do, as can be seen in table 6.8. It should be noted that both in table 6.7 and 6.8,
the mode numbering does not represent the actual order of modes, but instead the
given eigenmode is chosen such that its mode shape corresponds with that of the
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base case, making them comparable.

Table 6.8: Unique eigenfrequencies with hard soil springs.
Mode Frequency

[Hz]
1 2.5420
2* 2.5963
3* 3.7046
4 4.5214
5 5.5656
6 5.58613
7* 6.0599
8 6.1195
9* 6.3561
10 5.9921

* Double Eigenfre-
quencies

The simplicity of the model used to describe the underlying soil results in a math-
ematical, and perhaps trivial result that the structural loads are reduced when the
previously fully constrained boundary conditions are relaxed.

6.4.2 Direct method

A more accurate approach for the treatment of soil-structure interaction is attempted
next. This is known as the direct method, where the underlying soil and the structure
is modelled using the finite element method. To this end, a 50 meter thick soil layer
was modelled, below which the earthquake was applied. To avoid the influence of
edge effects, the width of the soil layer was extended 50 meters beyond the sides of the
structure on each side, thus giving it a volume of 50 · 160 · 160 meters. Surrounding
the soil layer are infinite elements, which serve to hinder reflection at the outer
boundaries, along the same lines as described in section 6.3. The resulting model is
shown in figure 6.25.
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Figure 6.25: Finite element model of the structure resting upon a soil layer.

The massiveness of the model used requires the use of a rather coarse mesh. In
this regard, the horizontal expansion of the generated waves have been deemed less
important than the vertical, and because of this, twice as large elements have been
used horizontally as vertically, giving the soil layer a thickness of 10 solid elements.

The material is assumed fully elastic, with an elasticity modulus determined by

Es = 2(1 + ν)G = 2(1 + ν)ρV 2
s (6.3)

Material damping of the soil layer has been applied, and a damping ratio of ξ = 1%
appears to be appropriate[28]. Furthermore, stiffness proportional Rayleigh damping
is applicable[20], wherein the first significant eigenfrequency has been used.

With a proper soil layer now defined, it is possible to express the eigenfrequencies
of the soil for transverse motion as

fh = Vs
4H (2n− 1) (6.4)

where H is the thickness of the layer and n is the mode number. Equivalently, the
first eigenfrequency for longitudinal motion is given as

fv = Vp
4H =

√
2(1− ν)
1− 2ν fh (6.5)

Appendix F.2 shows the soil amplification, which results from the elastic layer, plot-
ted as a ratio between acceleration response spectra on soil and rock respectively.
Here, the values fs and fh represents the first analytical eigenfrequency of the rel-
evant motion for soft and hard soil respectively. It is seen that for the transverse
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motion, this eigenfrequency, given in equation 6.4, fits quite well with the ampli-
fication peaks for all return periods, and for both soft and hard soil. The peaks
corresponding to the higher modes are more difficult to resolve, and are not shown.
For the longitudinal motion, i.e. as caused by pressure waves, the analytical expres-
sion shows less correlation with the peaks of the amplification plot, but even so,
the results are somewhat reasonable, as can for instance be seen in figure F.6. In
general, the results are better for the soft soil than for the hard soil with respect
to longitudinal motion. Such a result serves to verify the finite element model, and
makes sure that it behaves as expected.

Table 6.9 shows the ten first eigenfrequencies of the soil layer without the structure
present.

Table 6.9: Soil layer eigenfrequencies.
Mode Soft soil Hard soil

[Hz] [Hz]
1 0.81126 3.6056
2 0.84178 3.7412
3 1.0204 4.5350
4 1.0922 4.8541
5 1.1920 5.2979
6 1.2539 5.5730
7 1.4446 6.4204
8 1.4763 6.5614
9 1.5315 6.8066
10 1.5671 6.9650

The first transverse eigenfrequency for the two soil types are f softh = 0.9 Hz and
fhardh = 4.0 Hz respectively, and show good agreement with the first mode. It is
observed that the eigenfrequencies of the finite element model is not quite as discrete
as the analytical formulas dictate. However, by looking at the mode shapes of
appendix A, it is seen that for the lower modes, with eigenfrequencies close to fh,
the transverse vibration dominates. The first longitudinal eigenfrequency of the two
soil types are given as f softv = 1.7 Hz and fhardv = 7.5 Hz, and as the eigenfrequencies
of the finite element model approaches these values, it is observed from appendix A
that longitudinal modes of vibrations starts being influential. These results imply
that the coarse mesh used is indeed adequately refined for the purpose of this study.
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Soft soil

The use of the direct method in modelling the underlying soil layer results in similar
stresses as with the use of springs. This is shown in figure 6.26.

(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.26: Contour plots of the maximum envelope von Mises stress when un-
derlying soil is soft, and represented by finite elements. Units are in
Pascal.

It is seen that for the 475-year earthquake, stresses are generally lower than for the
springs, but the differences are small. The same can be said for the other earthquakes
as well. The floor of the caisson is subjected to unrealistically high stresses also for
this analysis. The reason is that the structure is modelled as fully constrained onto
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the soil with only the bottom slab as the contact surface, which is not the case for
real structures, and because of this, these stresses are ignored. It is noticed that the
artificial stresses are lower than for the spring foundation, which seems reasonable
as the direct method improves upon the realism of the model.

Hard soil

Increasing the soil stiffness also increases the seismic loads, as is obvious, and can be
seen in figure 6.27. A comparison with figure 6.1 shows that the stresses approach
the base case from below as the soil stiffness increase. Using the stiffness of solid
rock, by assuming a shear wave velocity of Vs = 800 m/s, shows that the stresses are
only slightly reduced. The soil springs however, do not appear to converge towards
the results for an infinitely stiff foundation. Instead they suggest significantly lower
stresses, as can be seen in figure 6.24. This results in a poor, unconservative approx-
imation to the full on finite element modelling of the direct method, and is therefore
deemed inapplicable - at least in the manner in which it is implemented here. See-
ing as the results agree better for the soft soil, it is believed that the discrepancies
between the two methods are caused by reduced accuracy in the kinematic coupling
of the simplified spring method. Here, both torsion and rocking are ignored, as
the motion of the structure is fully controlled by displacement of a single reference
point. The direct method does not suffer from such a simplification, and as the soil
is stiffened, and motion at the top of the soil layer due to the ground accelerations
becomes more violent, the results start to differ.
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(a) TR = 475 years (b) TR = 1000 years

(c) TR = 3000 years (d) TR = 10 000 years

Figure 6.27: Contour plots of the maximum envelope von Mises stress when un-
derlying soil is stiff, and represented by finite elements.

Due to interaction with the soil layer, the eigenmodes are mostly concerned with the
deformation of the soil, creating rocking, torsion and translation of the structure.
Because of this, the eigenfrequencies for this model is not comparable to the base
case. However, the eigenfrequencies for the soil-structure system - for both soft and
hard soil - are given in table 6.10, with the ten first eigenmodes given in appendix
A.
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Table 6.10: Eigenfrequencies of the soil-structure system.
Mode Soft soil Hard soil

[Hz] [Hz]
1 0.56143 2.4952
2 0.56294 2.5018
3 0.56305 2.5021
4 0.56332 2.5033
5 0.56935 2.5300
6 0.57486 2.5543
7 0.57776 2.5678
8 0.58160 2.5845
9 0.58863 2.6073
10 0.58953 2.6159

It is noticed that the soft soil results in lower eigenfrequencies than the hard soil,
which is reasonable as the as the stiffness is equivalently lower. Looking at the
eigenmodes in appendix A, it is seen that the soft soil results in perturbation of
the caisson, with the rest of the structure subjected to rigid body motion. This
corresponds with the generally low stresses of figure 6.26, as well as the high stresses
in the bottom slab. With the structure resting upon the hard soil, more of the
structure is involved, with mode shapes that begin to resemble those of the structure
on infinitely stiff foundation. This is especially apparent for the ninth mode shape,
which relates to the first mode of the base case.

6.5 Vibration characteristics

For the 10 000-year earthquake, an attempt has been made to identify damping
caused by the inclusion of plasticity, as well as the radiation damping of the sur-
rounding water. This is done by comparing the energy dissipation to that of an
equivalent elastic model with a spectrum of known damping ratios. The artificial
damping is applied by use of mass proportional Rayleigh-damping, using the first
eigenfrequency to find α from equation 2.7. Mass proportional damping has been
chosen over a stiffness proportional equivalent because in the case of plasticity, the
stiffness is changed, which results in a global damping that is not velocity propor-
tional. It is realised that the dissipated energy by the investigated phenomena not
necessarily are velocity proportional either, and as such, these results are highly
speculative. On the other hand, the equivalence of energy does provide at least a
notion of the physics involved. The results are shown in figure 6.28.
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Figure 6.28: A comparison of energy dissipated from plasticity and to the sur-
rounding water, with energy dissipated by viscous damping.

Abaqus presents energy as a cumulative quantity, which means that energy is dis-
sipated only when the slope is non-zero in figure 6.28. This also implies that no
damping due to plastic dissipation occurs after approximately 6 seconds. The high-
est contribution to energy dissipation caused by the surrounding water takes place
in this time period as well, however a slight increase is also observed after 6 seconds.

Looking at the plastic dissipation, it is seen that the energy is dissipated in two steps,
at around 2.5 and 5 seconds. In-between, no energy is dissipated. It is seen that
the amount of plastic dissipation taking place in each step is approximately equal to
that of a viscous damping of ξ = 1%, however as it is not continuously dissipated,
an average viscous damping ratio over the first 6 seconds could be estimated as
ξ = 0.5%. For the radiation damping it is seen that the dissipated energy lies
between the energy dissipated by a viscous damping ratio of ξ = 1% and ξ = 3%,
and as such one can estimate the radiation damping as approximately ξ = 2% for
the time period up until 6 seconds.

It should be noted that while the comparison of dissipated energy from the modelled
phenomena to that of an equivalently viscous damped structure may not be entirely
realistic, the results are brought further away from reality by the simplicity of the
models used. This is especially true for the plastic dissipation, as the real energy
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dissipation of damaged concrete is much more complex than is assumed here, and
may result in an entirely different damping effect. The same can be said for the
fluid-structure interaction.

The displacement of the top of the shaft has been examined for all analyses per-
formed. Due to the large amounts of data generated, only results for the 10 000-year
earthquake is presented here, and given in figures 6.29-6.32, with the rest of the re-
sults available in appendix C. Comparison is made with the base case, which is the
elastic analysis without surrounding water. Figure 6.29a shows the shaft displace-
ment for the plastic material model. It is observed a substantially lower amplitude
than for the elastic model. Especially noticeable amplitude reductions are found
where plastic dissipation takes place, as can be seen in figure 6.15. It shows how
yielding of the structure absorbs the largest displacements. At the beginning and
towards the end of the analysis, the displacements are similar to those of the base
case, which is reasonable as the loads are in the elastic regime here. The analy-
sis with cracking included shows similar displacements as with the plastic model,
however the amplitudes are slightly higher. This is reasonable as the same material
model has been used, but the stiffness degradation causes larger displacements.

With the presence of water, the added mass method produces interesting results,
shown in figure 6.30. A period elongation can be observed, although faint. At the
beginning of the motion, the vibration of the shaft relates to the base case, however,
at approximately the same time as the peak ground accelerations occur, the added
mass method leads to an almost complete cancellation of displacements. This can
be explained by the larger mass of the shaft, which increases its inertia, and thus
requires longer time to accelerate. At this point, the ground accelerations fluctuate
too quickly for the structure to be able to gain any momentum in a given direction.
As the period of strongest ground accelerations have passed, the displacements be-
come more in line with the base case again, which is reasonable as the change in
acceleration slows down, and the structure has time to react. The same trend is
seen for the acoustic-structural interaction, in figure 6.30b. The displacements are
similar to the base case at the beginning of the motion, and reduced as the highest
ground accelerations are imposed. As the earthquake begins to die out, however, the
shaft presents with a different envelope of displacement, with a noticeably longer
period. This is caused by the resistance of the acoustic medium, and is intuitively
reasonable, as period elongation is expected by the inclusion of surrounding water.

For the analysis where the structure is resting upon soft soil, it is seen from figure 6.31
that large displacements of the top of the shaft occur. This motion is characterised
by long periods. This is as one would intuitively expect, as the soil layer acts as
springs, regardless of modelling method - be it explicitly as springs or as an elastic
soil layer. The structure is then given some leeway, rather than being forced to
follow the oscillations of the earthquake. This causes larger displacements, as the
structure can continue in a given direction for an extended amount of time, before
eventually being dragged along by the elastic foundation. It is noticed that the
direct method results in slightly larger displacements, as rocking of the structure is
taken into account. For the hard soil, given in figure 6.32, discrepancies between
the two methods are seen in the shaft displacement. The spring foundation method
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provides larger displacements and a slightly larger vibration period, consistent with
the lower stresses in figure 6.24. The direct method predicts lower displacements
for the majority of the earthquake, but with higher seismic loads. The reason for
this is that significant eigenmodes of the soil-structure system consists of modes of
vibration where the top of the shaft remains immobile, and plate bending in the
middle of the shaft takes place instead, generated by rigid body motion of the rest
of the structure. This is shown in appendix A.
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Base case
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Base case
Cracking

(b)

Figure 6.29: Relative displacement of the top of the shaft: Plasticity.
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Base case
Water: Added mass

(a)
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Base case
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(b)

Figure 6.30: Relative displacement of the top of the shaft: Surrounding water.
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Base case
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Base case
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(b)

Figure 6.31: Relative displacement of the top of the shaft: Soft soil.
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Base case
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Base case
Hard soil: Direct method

(b)

Figure 6.32: Relative displacement of the top of the shaft: Hard soil.
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Looking at the remaining results in appendix C, it is first of all noticed that the ver-
tical vibrations oscillate about an equilibrium line which is displaced from the initial
configuration. This is caused by the weight of the structure for which equilibrium is
established before onset of vibratory motion, such that the structure settles slightly.
This effect is greater for the soil springs and elastic layer analyses, as the tower
is additionally displaced with respect to the outer walls of the caisson, to which
the displacement is relative. This is caused by the increased weight in the middle
of the structure due to the shaft. It is indeed this motion which causes the large
increase in displacements shown in, for instance, figure C.15b. The motion consists
of rigid body motion of the shaft, combined with flexural bending of the caisson,
thus producing the large stresses in the bottom slab - an effect which is especially
prominent in the soft soil analysis. The results from the other return periods are
quite similar to those discussed in this section, however it is interesting to observe
the soft soil analysis for the 475-year earthquake, shown in figure C.3, where it is
seen that the earthquake at the base of the structure is almost completely damped
out by the soil layer, thus exemplifying the isolating effect the low shear stiffness
has on the structure.
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7 Conclusion
Seismic analysis of offshore concrete structures is a difficult subject, and several im-
portant challenges one is likely to encounter have been discussed. These difficulties
span from theoretical complexity to numerical implementation and include lack of
experimental verification as a complicating factor. The latter is especially problem-
atic as nonlinear analyses bring with them the burden of proof with respect to their
realism.

In this thesis, the starting point has been a simplified geometry of a part of a typical
offshore concrete structure. The purpose has then been to axiomatically establish
a thorough analysis of the phenomena pertaining to offshore seismic analysis. This
was done by first establishing characteristic earthquakes for increasing return peri-
ods such that the effects of their increase in size could be compared. These return
periods were chosen to be 475, 1000, 3000 and 10 000 years. In the process of deter-
mining appropriate earthquakes for these return periods, a statistical basis of 964
earthquakes were gathered within an estimation area slightly off the southwestern
coast of Norway. The magnitude as a function of frequency of occurrence was found
to follow Gutenberg-Richter’s law for magnitudes larger than Mmin = 2. This is
important because it proves the completeness of the earthquake catalogue used, as
well as providing a probability function for use with earthquake simulation.

Unfortunately, the earthquake catalogue was not nearly large enough to provide suf-
ficient data to find appropriate return period parameters, thus forcing the use of ex-
trapolation. This was done by simulating 50 000 uniformly distributed earthquakes
within a radius of 100 km from the structure. There are two sources of error which
significantly influence the results. Firstly, the recordings of the catalogue were not
evenly distributed throughout the estimation window, which creates a bias towards
the closer earthquakes and introduces error. Secondly, the attenuation of seismic
energy means that an earthquake occurring far away dissipates before it reaches
the structure. The simulation of earthquakes within the limited radius solves these
issues, while resting upon the assumption that the derived relations are valid also
there.

Triplets of peak ground acceleration, distance and magnitude were simulated for each
of the 50 000 earthquakes using the attenuation relationship of Dahle & Bungum with
a normally distributed error term, thus yielding a distribution of peak ground accel-
erations at the site of the structure, for which order statistics was performed. Such
an approach falls victim to the lack of recordings available in the North Sea. The
attenuation relationship is general, and ideally one would establish an attenuation
relationship for the investigated site, thus taking local geology into account. How-
ever, even if that was a possibility there is hardly any easily available information of
the geology of the site in question. Other sources of error is the order statistics ap-
proach, which assumes that the input consists of the largest earthquake for a given
year. This is not the case. Instead, all 964 earthquakes were used, thus making
the probabilities less accurate. This is amended by only using the largest simulated
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values in the regression analysis, but in doing so, the solution becomes dependent
upon that fraction. While order statistics only give the characteristic PGA-value,
the other two parameters were selected by picking simulated earthquakes according
to figure 5.4. This provides only a rough estimate. Even with these errors, a re-
markable correspondence with the seismic zonation maps used by the design codes
are found. It can then be concluded that the probabilistic extrapolation approach
used herein provides a decent estimate of the seismic hazard in the considered area.

Having determined three parameters which are assumed to define a return period,
these were used to select appropriate earthquake accelerograms. No such accelero-
grams are available for the North Sea, and instead the European Strong-Motion and
PEER databases were used. For each return period, ten accelerograms were selected
and a mean response spectrum generated. A comparison with Eurocode 8 showed
that the 475-year mean response spectrum shows similarity between the equivalent
design spectrum, which is natural as most of the recordings were from buildings
on solid rock. This does however mean that the local geology of the investigated
area is not considered, nor was it expected to. The comparison does show that the
determined mean response spectra are not unrealistic, and produce sufficiently good
results if only a rough estimate is sought, which was the case for this study.

Recorded earthquake accelerograms vary greatly in both their duration and shape,
which made it difficult to compare the results between return periods. Because
of this, earthquake accelerograms were simulated, by using a recorded response
spectrum for a given return period as a target for iteration. The mean response
spectrum was not used for this purpose, as it would generate time histories with
unrealistic frequency content. Even so, complete realism was not attained, as the
simulation process introduced spurious peaks in the Fourier spectrum. This was
particularly the case for the 1000-year earthquake, which resulted in the 1000- and
3000-year earthquake response to be similar. Another contributing factor to this
was that the jump in return period between them was not large enough to create
uniquely larger 3000-year earthquakes.

The basis for comparison was an elastic incarnation of the investigated structure,
with no surrounding water present, but with internal water included as an increase
in mass. The time series analysis revealed for the 10 000-year earthquake that peak
stresses occur which are significantly larger than the mean response of the structure.
These are a result of the elastic approximation and are unrealistic, as proven by the
more accurate material model used, which filters them off.

An evaluation of the response spectrum method was performed. This was done by
using the absolute sum of peak values, SRSS and CQC methods, with the parame-
ters used for comparison being the nodal moments and shear forces. The 475-year
earthquake was worst off with respect to conservatism, with all three methods yield-
ing unconservative results. The absolute sum of peak values provided the smallest
extent of areas with unconservative results, but these areas had the largest nodal
loads. On the other hand, the degree of unconservatism was small, and the loads
caused by the 475-year earthquake were of such low magnitude that the absolute
sum of peak values was deemed applicable.
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The absolute sum of peak values produce conservative results for the three other
return periods, but the other two methods yield very unconservative results - also
for the 475-year earthquake. The SRSS method was expected to do so, as it assumes
no correlation between modes. This is inappropriate for 3D models, as the eigenfre-
quencies are usually closely packed. The CQC method uses random vibration theory
to establish a correlation between modes and was expected to yield better results.
This was not the case however, and instead the structural response was almost iden-
tical to the SRSS method. The reason for this was found to be the correlation factor,
which in this case did not describe the relationship between nodes. Rather, it was
discovered that the correlation factor was reduced to zero too fast - especially for
the lowest eigenfrequencies where the participation factors were largest. This caused
only the autocorrelation to remain, converging the CQC method towards the SRSS
method as the results show.

On average the absolute sum of peak values is less accurate than the other two as
it converges around an overly conservative result, although with little spread. CQC
and SRSS have means which agree nicely with the time history analysis, but as the
loads increase, the spread in results do also, which makes them unattractive. These
observations were found for all earthquakes and return periods considered, which
makes it apparent that the response spectrum method is an inappropriate analysis
tool for the investigated structure.

A material model which includes reinforcement and plasticity was applied to the
structure, and its influence on the results were investigated. It was seen that the
stresses were generally lower than for the elastic analysis by a few Megapascals, in
other words no great difference. As previously mentioned, the plastic material model
does not produce large, concentrated peak values, as the yielding of the structure
does not allow it, thus giving a peak stress value which more closely corresponds
with stresses observed in large parts of the structure. The plastic dissipation for
the four return periods show that only the 10 000-year earthquake produce a non-
negligible excursion into the plastic domain, although yielding takes place also for
the 1000- and 3000-year earthquakes. The 475-year earthquake remains elastic.
Such a result is reasonable due to the low seismicity of the North Sea, the large
dimensions of the structure and the neglect of simultaneously acting external loads.
These results correspond with the stress difference between the elastic and plastic
material models, with a larger difference occurring for the larger return period. Most
of the structure remains elastic, or nearly so, for all analyses. This result is reflected
in the equivalent eigenfrequencies, calculated after the structure had been subjected
to an earthquake, showing negligible differences - thus proving that little geometry
or stiffness change has taken place.

The effect of cracking was included as a sub-study of the plastic material model,
where the elastic stiffness of the structure was allowed to degrade in tension. Its
implementation had little effect on the lowest three return periods, but led to no-
ticeable stress concentrations at the areas of most severe cracking for the 10 000-year
earthquake. The occurring stresses were also slightly reduced with respect to the
pure plasticity model, suggesting further increase in ductility. No cracking took
place for the 475-year earthquake, which is as expected as the imposed ground ac-
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celerations were quite small. The calculated eigenfrequencies after the cracking took
place show further reduction, but the difference from the pristine, elastic structure
is still negligible. The conclusion is that the use of a plastic material model, both
with and without cracking, is unnecessary, as the structural response remains very
close to that of an elastic model, which provides a great advantage with respect to
analysis time.

The effects of surrounding water were investigated by comparing with analyses where
water was omitted. Two methods of modelling water were tested. The first made
use of the simplification that Morison’s equation was applicable, although the struc-
ture is nowhere close to being slender. Furthermore, the added mass coefficients of
steady current were used, ignoring the frequency dependence caused by the oscil-
latory motion. These coefficients themselves were subject to speculation, as values
for appropriate geometries were hard to come by. The added mass was evenly dis-
tributed over surfaces submerged in water, thus introducing additional error as the
added mass also occurs in the wake of the structure for a given motion. Finally,
the drag force is ignored, as motivated by the large volume of the structure, making
wave generation a more likely source for energy dissipation.

The inclusion of water by means of added mass serves to reduce the eigenfrequencies,
and this reduction is significant. The modal participation factors are also shifted,
which causes a lower response in the 10 000-year earthquake, and a larger response
in the 3000-year earthquake. A higher response is also observed in the 475- and
1000-year earthquakes, but to a lesser degree.

The second method used in the application of water interaction was an explicit
model of the medium within which the structure oscillates. This was done by an
acoustic-structural interaction, under the assumption that the pressure changes are
small. Such an approach is more accurate than Morison’s equation, as no slender
approximation is necessary, no added mass coefficients need be found and radiation
damping is included. On the other hand the analysis time is larger. Significant
alteration of the eigenfrequencies is found, however a resemblance with the eigen-
frequencies determined with the added mass method is observed - suggesting that
the approach is reasonable. The significant modal participation factors are mostly
found for low periods, thus reducing the accelerations experienced by the structure
- as can be seen from the comparisons of participation factors and response spectra
in appendix F. However, due to the increase in inertia, the introduction of water
generally ended up being detrimental, with a few exceptions.

A soil-structure analysis was performed, where two methods were tested - a simplified
spring foundation, and a full on finite element analysis where a 50 meter thick, elastic
soil layer was modelled beneath the structure. The two methods agreed for the soft
soil analysis, and predicted a significant reduction in seismic loads. It is however
suspected that such a method does not represent reality, as a real structure cannot
merely be placed atop a sand layer and be expected to behave as if standing on
springs. At the very least, a much more sophisticated model, taking into account
the upheaval of the sand and perhaps liquefaction needs to be considered if one is to
trust the results for such an analysis. With the structure modelled as resting upon
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hard soil it is seen that the two models do not agree, with the spring foundation
giving much lower stresses than the infinitely stiff case. The elastic soil layer on
the other hand, predicts almost the same results as the base case, which seems
reasonable. It is believed that the spring foundation is a poor approximation when
the influence of the ground accelerations on the structure become larger, as this
model does not take into account rocking or torsional motion. The soft soil model
served to almost entirely isolate the structure from the ground accelerations, and
because of this the problem approaches a quasi-static analysis, in which case the
two models gave similar results - which is only reasonable as the spring foundation
does indeed describe the static stiffness of the soil.

It has been the purpose of this thesis to provide a reference case, where several
physical phenomena one encounters in the analysis of offshore concrete structures is
investigated. This has been done by introducing a level of complexity which is high
enough to evaluate their influence on the solution, but not so much that the results
are obscured. At the same time, and where applicable, an evaluation of simplified
approaches has been undertaken, thus providing results which the author hopes is
of interest both for the practising engineer, and the academic.
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A Eigenmodes
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A.1 Eigenmodes of the structure

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure A.1: Eigenmodes of the base case.
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A.2 Eigenmodes of the soil

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure A.2: Eigenmodes of the elastic soil layer.
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A.3 Eigenmodes of the soft soil-structure system

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure A.3: Eigenmodes of the soft soil-structure system.
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A.4 Eigenmodes of the hard soil-structure system

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure A.4: Eigenmodes of the hard soil-structure system.
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B Earthquakes
B.1 Recorded earthquakes

This section contains all information gathered from the two databases. A prefix on
the earthquake ID of NGA means that the recorded accelerogram has been collected
from PEER, and no prefix describes an earthquake collected from ESD.

Table B.1: TR = 475 years
475

ID M d PGA Soil type
[km] [m/s2]

25 3.31 11 0.610 Alluvium
552 4.23 8 0.645 Soft soil
576 4.20 15 0.599 Stiff soil
702 3.40 15 0.627 Unknown
2001 3.30 3 0.603 Stiff soil
NGA109 4.37 10 0.594 Rock
NGA1903 4.53 24 0.595 Rock
NGA2048 4.27 7 0.708 Rock
NGA1967 4.92 32 0.658 Rock
NGA2030 4.90 20 0.753 Rock

Table B.2: TR = 1000 years
1000

ID M d PGA Soil type
[km] [m/s2]

7 4.32 16 1.080 Alluvium
446 4.90 5 1.090 Stiff soil
5669 4.80 24 1.160 Soft soil
6893 4.80 4 1.160 Stiff soil
7934 4.80 18 1.060 Rock
59 5.20 27 1.247 Rock
NGa116 4.70 2 1.114 Rock
NGA262 4.80 8 0.972 Rock
NGa1958 4.92 10 1.248 Rock
NGA195 5.01 12 1.140 Rock
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Table B.3: TR = 3000 years
3000

ID M d PGA Soil type
[km] [m/s2]

347 5.60 40 1.782 Stiff soil
665 5.70 23 1.796 Rock
982 5.40 9 1.869 Rock
5079 5.40 6 1.702 Rock
363 5.60 27 1.846 Rock
NGA50 5.30 13 1.965 Rock
NGA233 5.69 9 1.749 Rock
NGA397 5.18 12 1.200 Rock
NGA1670 5.20 9 2.016 Rock
NGA205 5.01 9 1.881 Rock

Table B.4: TR = 10 000 years
10000

ID M d PGA Soil type
[km] [m/s2]

200 6.90 65 2.509 Rock
1726 6.30 30 2.644 Soft soil
5485 4.24 6 2.540 Unknown
414 5.90 11 2.670 Stiff soil
6093 5.20 16 2.601 Stiff soil
228 6.20 33 2.652 Stif soil
NGA222 5.40 10 2.476 Rock
NGA547 5.77 11 2.796 Rock
NGA243 5.70 14 2.403 Rock
NGA683 6.00 13 2.527 Rock
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B.2 Spectrum comparison

Below is shown a comparison of the chosen recorded earthquake response spectrum,
with the mean response spectrum, for each return period.
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Figure B.1: TR = 475 years
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Figure B.2: TR = 1000 years
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Figure B.3: TR = 3000 years
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Figure B.4: TR = 10 000 years
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B.3 Fourier spectra of simulated accelerograms

The Fourier spectrum for the simulated accelerograms are shown below.

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

f [Hz]

F
ou

ri
er

am
p
li
tu
d
e

Figure B.5: TR = 475 years
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Figure B.6: TR = 1000 years
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Figure B.7: TR = 3000 years
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Figure B.8: TR = 10 000 years
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C Shaft displacement
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(a) Added mass: Horizontal
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(b) Added mass: Vertical
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(c) Acoustic: Horizontal
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Figure C.1: TR = 475 years
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(a) Hard elastic layer: Horizontal
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(b) Hard elastic layer: Vertical
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(c) Hard soil springs: Horizontal
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(d) Hard soil springs: Vertical

Figure C.2: TR = 475 years
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(a) Soft elastic layer: Horizontal
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(b) Soft elastic layer: Vertical
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(c) Soft soil springs: Horizontal
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(d) Soft soil springs: Vertical

Figure C.3: TR = 475 years

116



0
5

10
15

−
4

−
3

−
2

−
101234

x 
10

−
3

T
im

e
[s
]

Displacement[m]

 

 

B
as
e
ca
se

P
la
st
ic

(a) Plasticity: Horizontal
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(b) Plasticity: Vertical
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(c) Cracking: Horizontal
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(d) Cracking: Vertical

Figure C.4: TR = 475 years
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(a) Added mass: Horizontal
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(b) Added mass: Vertical

0
5

10
15

−
10−

8

−
6

−
4

−
202468

x 
10

−
3

T
im

e
[s
]

Displacement[m]

 

 

B
as
e
ca
se

W
at
er
:
A
co
u
st
ic

m
ed

iu
m

(c) Acoustic: Horizontal
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(d) Acoustic: Vertical

Figure C.5: TR = 1000 years
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(a) Hard elastic layer: Horizontal
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(b) Hard elastic layer: Vertical
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(c) Hard soil springs: Horizontal
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(d) Hard soil springs: Vertical

Figure C.6: TR = 1000 years
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(a) Soft elastic layer: Horizontal
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(b) Soft elastic layer: Vertical
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(c) Soft soil springs: Horizontal
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(d) Soft soil springs: Vertical

Figure C.7: TR = 1000 years
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(a) Plasticity: Horizontal
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(b) Plasticity: Vertical

0
5

10
15

−
0.

01

−
0.

00
8

−
0.

00
6

−
0.

00
4

−
0.

00
20

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

T
im

e
[s
]

Displacement[m]

 

 

B
a
se

ca
se

C
ra
ck
in
g

(c) Cracking: Horizontal
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(d) Cracking: Vertical

Figure C.8: TR = 1000 years
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(a) Added mass: Horizontal
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(b) Added mass: Vertical
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(c) Acoustic: Horizontal
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(d) Acoustic: Vertical

Figure C.9: TR = 3000 years
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(a) Hard elastic layer: Horizontal
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(b) Hard elastic layer: Vertical
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(c) Hard soil springs: Horizontal
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(d) Hard soil springs: Vertical

Figure C.10: TR = 3000 years
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(a) Soft elastic layer: Horizontal
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(b) Soft elastic layer: Vertical
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(c) Soft soil springs: Horizontal
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(d) Soft soil springs: Vertical

Figure C.11: TR = 3000 years
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(b) Plasticity: Vertical

0
5

10
15

−
6

−
4

−
202468

x 
10

−
3

T
im

e
[s
]

Displacement[m]

 

 

B
a
se

ca
se

C
ra
ck
in
g

(c) Cracking: Horizontal
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(d) Cracking: Vertical

Figure C.12: TR = 3000 years
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(a) Added mass: Horizontal

0
5

10
15

−
12

−
10−

8

−
6

−
4

−
20246

x 
10

−
3

T
im

e
[s
]

Displacement[m]

 

 

B
a
se

ca
se

W
at
er
:
A
d
d
ed

m
a
ss

(b) Added mass: Vertical
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(c) Acoustic: Horizontal
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(d) Acoustic: Vertical

Figure C.13: TR = 10 000 years
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(a) Hard elastic layer: Horizontal
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(b) Hard elastic layer: Vertical
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(c) Hard soil springs: Horizontal
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(d) Hard soil springs: Vertical

Figure C.14: TR = 10 000 years
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(a) Soft elastic layer: Horizontal
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(b) Soft elastic layer: Vertical
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(c) Soft soil springs: Horizontal
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(d) Soft soil springs: Vertical

Figure C.15: TR = 10 000 years
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(a) Plasticity: Horizontal
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(b) Plasticity: Vertical
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(c) Cracking: Horizontal
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(d) Cracking: Vertical

Figure C.16: TR = 10 000 years
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D Capacity checks
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D.1 Utilization ratios

The following pages show utilization ratios for the omnipresent reinforcement mesh
of 2φ20s150, as well as the concrete in compression and shear.

Horizontal Reinforcement of shaft, Outer Face
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Figure D.1: Maximum = 5%
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Horizontal Reinforcement of shaft, Inner Face

Figure D.2: Maximum = 4%
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Vertical Reinforcement of shaft, Outer Face
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Figure D.3: Maximum = 14%
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Vertical Reinforcement of shaft, Inner Face
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Figure D.4: Maximum = 14%
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Concrete compression of shaft, Outer Face

49

23

9

10

9

9

10

49

22

9

49

9

10

9

9

10

49

22

9

49

21

9

10

9

29

9

10

49

9

49

16

9

10

9

27

9

10

49

16

9

Figure D.5: Maximum = 14%
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Concrete compression of shaft, Inner Face
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Figure D.6: Maximum = 14%
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Concrete shear compression of shaft
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Figure D.7: Maximum = 14%
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Horizontal Reinforcement of Lower Walls, Outer Face
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Figure D.8: Maximum = 14%
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Horizontal Reinforcement of Lower Walls, Inner Face
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Figure D.9: Maximum = 14%
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Vertical Reinforcement of Lower Walls, Outer Face
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Figure D.10: Maximum = 18%
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Vertical Reinforcement of Lower Walls, Inner Face
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Figure D.11: Maximum = 23%
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Concrete compression of Lower Walls, Outer Face
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Figure D.12: Maximum = 36%
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Concrete compression of Lower Walls, Inner Face
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Figure D.13: Maximum = 36%
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Concrete shear compression of Lower Walls
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Figure D.14: Maximum = 53%
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Horizontal Reinforcement of Caisson Floor, Bottom
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Figure D.15: Maximum = 11%

Horizontal Reinforcement of Caisson Floor, Top
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Figure D.16: Maximum = 11%
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Vertical Reinforcement of Caisson Floor, Bottom
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Figure D.17: Maximum = 8%

Vertical Reinforcement of Caisson Floor, Top

9
9

9

9
9

5

5
9

9

8

9
9

Figure D.18: Maximum = 9%
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Concrete compression of Caisson Floor, Bottom
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Figure D.19: Maximum = 8%

Concrete compression of Caisson Floor, Top
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Figure D.20: Maximum = 8%
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Concrete shear compression of Caisson Floor
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Figure D.21: Maximum = 95%

Horizontal Reinforcement of Caisson Roof, Top
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Figure D.22: Maximum = 61%
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Horizontal Reinforcement of Caisson Roof, Bottom
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Figure D.23: Maximum = 50%

Vertical Reinforcement of Caisson Roof, Top
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Figure D.24: Maximum = 61%
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Vertical Reinforcement of Caisson Roof, Bottom
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Figure D.25: Maximum = 51%

Concrete compression of Caisson Roof, Top
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Figure D.26: Maximum = 29%
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Concrete compression of Caisson Roof, Bottom

13

20

19

19

20

13

23

23

20

27

27

20

24

27

18

19

18

27

24

19

18

18

19

18

5

18

19

18

18

19

24

27

18

19

18

27

24

20

27

27

20

23

23

13

20

19

19

20

13

Figure D.27: Maximum = 27%

Concrete shear compression of Caisson Roof
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Figure D.28: Maximum = 100%
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D.2 Shear reinforcement
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Figure D.29: Placement of φ14s250s250 in the caisson roof.
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Figure D.30: Shear reinforcement utilization ratios.
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E Response Spectrum Evaluation
This appendix concerns itself with the comparison of response spectrum and time
history analysis and is supplementary to section 6.1.2. Used in comparison are the
nodal moments and shear forces. Due to the symmetry of the structure, moments
and forces are given only for one of the horizontal principle axes.

E.1 1000-year Earthquake

(a) Absolute sum of peak values (b) CQC.

(c) SRSS.

Figure E.1: Ratio plots of moments.
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(a) Absolute sum of peak values.
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(b) CQC.
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(c) SRSS.

Figure E.2: RS-TH plots of moments.
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(a) Absolute sum of peak values (b) CQC.

(c) SRSS.

Figure E.3: Ratio plots of shear forces.
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(a) Absolute sum of peak values.
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(b) CQC.
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(c) SRSS.

Figure E.4: RS-TH plots of shear forces.
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E.2 3000-year Earthquake

(a) Absolute sum of peak values (b) CQC

(c) SRSS

Figure E.5: Ratio plots of moments.
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(a) Absolute sum of peak values.
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(b) CQC.
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(c) SRSS.

Figure E.6: RS-TH plots of moments.
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(a) Absolute sum of peak values (b) CQC

(c) SRSS

Figure E.7: Ratio plots of shear forces.
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(a) Absolute sum of peak values.
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(b) CQC.

0 200 400 600 800
0

100

200

300

400

500

600

700

800

Time History [kN]

R
es
p
on

se
S
p
ec
tr
u
m

[k
N
]

(c) SRSS.

Figure E.8: RS-TH plots of shear forces.
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E.3 10 000-year Earthquake

(a) Absolute sum of peak values (b) CQC.

(c) SRSS.

Figure E.9: Ratio plots of moments.
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(a) Absolute sum of peak values.
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(b) CQC.
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(c) SRSS.

Figure E.10: RS-TH plots of moments.
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(a) Absolute sum of peak values (b) CQC.

(c) SRSS.

Figure E.11: Ratio plots of shear forces.
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(a) Absolute sum of peak values.
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(b) CQC.
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(c) SRSS.

Figure E.12: RS-TH plots of shear forces.
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F Environmental effects
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F.1 Presence of water

In the following, the effects of surrounding water are illustrated by a comparison
of participation factors and response spectra for the different return periods. Note
that the response spectra are scaled, such that only their shapes are relevant.

0 0.1 0.2 0.3 0.4 0.5
T [s]

S
A

∣ ∣ ∣
Γ

m
a
x

S
A
,m

a
x

∣ ∣ ∣

 

 

Without water

0 0.1 0.2 0.3 0.4 0.5
T [s]

S
A

∣ ∣ ∣
Γ

m
a
x

S
A
,m

a
x

∣ ∣ ∣

 

 

Added mass

0 0.1 0.2 0.3 0.4 0.5
T [s]

S
A

∣ ∣ ∣
Γ

m
a
x

S
A
,m

a
x

∣ ∣ ∣

 

 

Acoustic elements

Figure F.1: TR = 475 years
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Figure F.2: TR = 1000 years
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Figure F.3: TR = 3000 years
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Figure F.4: TR = 10 000 years
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F.2 Soil amplification
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Figure F.5: TR = 475 years, Horizontal
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Figure F.6: TR = 475 years, Vertical
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Figure F.7: TR = 1000 years, Horizontal
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Figure F.8: TR = 1000 years, Vertical
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Figure F.9: TR = 3000 years, Horizontal
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Figure F.10: TR = 3000 years, Vertical
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Figure F.11: TR = 10 000 years, Horizontal
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Figure F.12: TR = 10 000 years, Vertical
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