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FPGA based noise reduction in video cameras

Master’s thesis, circuits and systems design, TFE4915

Thor Arne S. Brandsvoll
Department of Electronics and Telecommunications,
Norwegian University of Science and Technology

Abstract

Video noise is an important issue even in modern camera sensors. The trend of
higher resolutions and more FPS makes real time video processing in general a
difficult task. In this study, the goal was to find a fast video denoising algorithm,
which can be implemented on an FPGA without using an exaggerated amount of
its available resources. A selection of algorithms were therefore reviewed, varying
from some of the most basic to some of the most acknowledged. One of them, the
Yaroslavsky filter, was selected because of its simple approach to the well recog-
nized method of using only the most similar and close neighbor pixels in the av-
erage and noise removal process. Three modifications to the original Yaroslavsky
was proposed, and implemented in Matlab for simulations. The first, and maybe
most important modification, was to extend the algorithm from the spatio, to
the spatio-temporal domain. This modification makes the algorithm something
more than a image denoising algorithm applied on each independent frame in a
video. The temporal extension utilizes the correlation between pixels in succes-
sive frames. The second modification was to introduce fuzzy thresholds, instead
of the binary thresholds in the original Yaroslavsky. This makes the algorithm
more adjustable, so it can mimic the more advanced Bilateral filter. The third
modification proposed, was to make the Yaroslavsky capable of removing impulse
noise. The original Yaroslavsky filter would in case of impulse noise, not detect
any similar neighbor pixels, and thus leave it alone. The proposed modification
was to introduce median filtering in such cases. The modified Yaroslavsky algo-
rithm have been tested in Matlab, and compared with the original Yaroslavsky,
as well as with the algorithm proposed in the preliminary project work. The
simulation results showed that the proposed modified Yaroslavsky achieved the
best results. VHDL was therefore used making an FPGA implementation of the
algorithm. The proposed implementation consists of five components, and has
four pipeline stages. The implementation was simulated in Modelsim to ensure
correct manner of operation. It was then synthesized for an Altera Cyclone III
FPGA, using both Quartus and Synplify. The highest clock frequency achieved
was 87.7MHz, using 1044 logic elements, 345 registers, and 5 DSP blocks.

iii





Preface

This master’s thesis was written as the finishing part of my Master of Science
degree in electronics, with specialization in digital electronics, at the Norwegian
University of Science and Technology in Trondheim. The purpose of this thesis
is to test and propose a video denoising method suitable for running in real time
on an FPGA.

I would like to thank my supervisors Post Doc. Lars Aurdal at Cisco Systems
Norway and Professor Per Gunnar Kjeldsberg at the Department of Electronics
and Telecommunications, for guidance throughout the semester. I would also like
to thank the rest of the camera group at Cisco Systems Norway for two fine weeks
with close follow up at their offices in Lysaker. Last but not least, i would like
to thank my fellow student Erik Strømme for numerous of valuable discussions.

Trondheim, June 20, 2011

Thor Arne S. Brandsvoll
brandsvo@stud.ntnu.no

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Denoising approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Obtaining colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Video quality measurement . . . . . . . . . . . . . . . . . . . . . . 9
1.5 The human visual system . . . . . . . . . . . . . . . . . . . . . . . 12

2 Previous work 17
2.1 Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Gaussian blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Anisotropic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Yaroslavsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Bilateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Non-local means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Algorithm complexity . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Temporal extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Color handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Project work algorithm 27
3.1 Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Disadvantages and improvements . . . . . . . . . . . . . . . . . . . 30

4 Modified Yaroslavsky filtering 33
4.1 Neighborhood size . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Thresholds and weights . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Matlab implementation . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Matlab simulations 39
5.1 Synthetic data (full reference) . . . . . . . . . . . . . . . . . . . . . 39
5.2 Real world data (no reference) . . . . . . . . . . . . . . . . . . . . 48

6 Hardware implementation 53
6.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



7 Discussion 61

8 Conclusion 65

9 Future work 67

References 68

Appendix A Figures a-1

viii



1 Introduction

1 Introduction

Video cameras have become very popular over the last years, even cell phones
usually have video cameras integrated. With High-Definition (HD) video becom-
ing popular, one might think that video noise does not longer exist. Quite the
contrary, the hunger for higher resolution has caused the physical pixel size in
camera sensors to shrink, making them more vulnerable for noise. Noise reduc-
tion has therefore been a topic of intensive research. The research has led to
several good de-noising algorithms for both still pictures and video, which suffers
from the same problem of pixel scaling. Not all of these denoising algorithms are
suitable for Video Conferences. An important requirement in such systems is low
latency, as a few hundred milliseconds in total delay makes the conversation flow
jagged and unnatural. This real time constraint is particularly hard to meet for
HD video, as more pixels must be processed, excluding the most complex algo-
rithms. The algorithm must also be suitable for an FPGA with limited available
resources, as it also contains other parts of the video processing pipeline. The
main contributions in this work is modifications to the Yaroslavsky filter with
belonging Matlab and VHDL implementations and simulations.

The remainder of this thesis is structured as follows. Fundamental principles
of noise and video are given in Chapter 1. A review of denoising algorithms,
from the most basic to the important new developed, is given in Chapter 2. A
summary of the algorithm developed in the initial project work is given in Chapter
3. Modifications to a well known algorithm, the Yaroslavsky filter, is given in
Chapter 4. The project work algorithm is compared with the original and the
modified version of the Yaroslavsky filter with Matlab simulations in Chapter 5.
A hardware implementation of the modified Yaroslavsky algorithm is proposed
in Chapter 6. The work is discussed and concluded in Chapter 7 and 8. Future
work is discussed in Chapter 9.

1.1 Noise

Noise is unwanted imperfections and errors in images produced by photo and
video cameras. Poor image quality does not only degrade visual quality, but also
affects sub-processing like compression. There are many different types of noise,
and even more noise causes. Noisy images have always been a problem, and
several de-nosing algorithms have therefore been proposed. The problem with
many of these algorithms is that they are made to remove only one type of noise.
In the real world, images are affected by several noise types at the same time.
Another problem with many algorithms, is that they, in addition to removing
noise, also blur the image, or can cause ghosting. This is especially a problem
when the video contains fast movements. Besides, all the problems are even more
severe in a real-time scenario like a video-conference. At a scenario like this, the

FPGA based noise reduction in video cameras 1



1 Introduction

Figure 1.1: Photon Shot Noise. From left to right: λ = 1, 10, 100 [3]

algorithm must be run in real-time, a speed set by the number of frames per
second.

1.1.1 Noise sources

Today’s image sensors are mainly built using two different technologies, CMOS
(Complimentary Metal-Oxide Semiconductor) and CCD (Charged-Coupled De-
vice), with CMOS rapidly becoming the dominant technology. Some of the most
important noise sources existing in both technologies [1, 2] are:

Noise sources

• Photon shot: Because light is quantified by nature, there exists an un-
avoidable uncertainty in the number of photons collected by each pixel.
This is an increasing problem with the shrinkage of pixel size. The num-
ber of photons is known to follow the Poisson distribution, Equation 1.3,
where λ is the expected number of photons for a given exposure time. For a
large number of photons, the Poisson distribution comes close to the Gaus-
sian distribution, Equation 1.1, so the photon shot noise can in good light
conditions be modeled as White Gaussian Noise (WGN).

• PRNU (Photo-Responsive Non-Uniformity): The pixels in the im-
age sensor have different sensitivity to light, simply because of process vari-
ations. Producing identical pixels becomes harder and harder with the
technology scaling. PRNU is therefore also an increasing problem with the
shrinkage of pixel size.

• DCNU (Dark-Current Non-Uniformity): Regardless if photons are
collected by the pixel or not, a small current is produced due to random
generation of free electrons. Different pixels produce a different amount
of so called dark current, and the amount generated is highly temperature
dependent.

2 Thor Arne S. Brandsvoll



1 Introduction

Figure 1.2: Main sources of noise in a CMOS imaging pipeline (4T pixels) [2]. Most
of them are not examined further in this work.

• Pixel defects: Some pixels generate extremely high levels of dark-current.
So called hot pixels will rapidly saturate, and end up as a white dot in the
image. Some pixels will always read the minimum value, and are called
”Dead pixels”. They end up as a black dot in the image [4].

There are also a lot of variables affecting the amount of noise produced. Some of
the most important factors are:

Noise affecting variables

• Light conditions

• Motive

• Exposure time

• Sensor temperature

1.1.2 Noise modeling

Real image noise models often consist of simple models added together. Some
important noise models are given next.

Noise models

• White Gaussian: This is a widely used model. It is even used when it is
only marginally applicable, because of its mathematical tractability in both

FPGA based noise reduction in video cameras 3
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the spatial and the frequency domain. The spectrum of a Gaussian random
variable is a constant, containing all frequencies in equal proportions. The
term white noise, is a carryover from the term white light, which contains
nearly all frequencies of the visible light in equal proportions. The proba-
bility density function (PDF) of a Gaussian random variable, z, is given by
Equation (1.1), and shown in Figure 1.3.

p(z) =
1√
2πσ

e
−(z−µ)2

2σ2 (1.1)
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Figure 1.3: Gaussian distribution with standard deviation, σn = 6, and mean, µn = 0

Approximately 70 % of the pixels will not differ more than one standard
deviation, σn, from the correct pixel value.

• Impulse: Pixels affected by impulse noise have the same pixel value in
every frame, independent of the true pixel value. This value is typically
saturated, e.g. 255 or 0 in an 8-bit image caused by dark current or a pixel
defect. The pixel can get different colors, depending on the pixel placement
in the color filter array (see Chapter 1.3). The PDF is given by Equation
(1.2) and shown in Figure 1.4.

p(z) =











Pa for z = a

Pb for z = b

0 otherwise

(1.2)

If Pa and Pb are approximately equal, and a is a high and b is a low value,
the impulse noise is sometimes referred to as salt and pepper noise, because
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Figure 1.4: Impulse distribution with Pa = 0.25 for a = 0, and Pb = 0.75 for b = 255

of the white and black spikes it will cause in a gray scale image. If Pa or
Pb is 0, the impulse noise is called unipolar. If none of them are zero, the
impulse noise is called bipolar. Examples of Gaussian and impulse noise
are shown in Figure 1.6.

• Poisson: Useful for modeling Photon Shot Noise. The Probability Mass
Function of the Poisson distribution (PMF) is given by Equation (1.3) and
shown in Figure 1.5.

p(k, λ) =
λke−λ

k!
(1.3)

1.2 Denoising approaches

There are roughly two different methods of denoising. The first and most straight-
forward method is to approach the problem in the standard pixel domain. An
early review of pixel domain methods are given in [6], where noise filters for dy-
namic image sequences (of which video sequences is a special case) are divided
into four groups. The second method is to approach the problem in a transform
domain. A popular transform domain is the wavelet coefficient domain. The
focus in this work will be on pixel domain methods, as they are most used in
practice.

FPGA based noise reduction in video cameras 5



1 Introduction

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

p

Figure 1.5: Poisson distribution with λ = 1, 5, 10

(a) Original pattern (b) Gaussian noise (c) Impulse noise

Figure 1.6: Gaussian and impulse noise [5]
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Intensity Filter

Motion Estimator

Noisy Input Sequence Filtered Output Sequence

Figure 1.7: Standard approach for motion estimation [6]. Both previous filtered im-
ages, and future images can be used for estimating motion. The filtering intensity is
lowered if motion is detected

1.2.1 Pixel domain

Types of pixel domain denoising filters

• Temporal (1D)

Motion compensated

Non-motion compensated

• Spatio-temporal (3D)

Motion compensated

Non-motion compensated

Spatial (2D, static) is also a third group in the pixel domain, but these filters
are not exploiting correlation between successive images. Each image is therefore
considered independent, similar to a photograph. Temporal and spatio-temporal
noise filters therefore yield better results on video de-noising. Another name for
spatial filtering is 2D filtering, because the image is considered a collection of
pixels along two spatial axes. In temporal filtering, each pixel is considered as a
1D signal, that transverses along the temporal (time) axis, and only correlates
with pixels on this axis, and not with neighbor pixels (2D) in the same frame.
Not surprisingly, spatio-temporal filtering utilize both the two spatial axes, and
the temporal axis (3D). 1D and 2D filtering can therefore be considered as special
cases of 3D filtering.

Fast motions will often be blurred or ghosted when a noise filter is added.
To avoid this, several denoising algorithms implement motion detection, so the
intensity of the filter can be reduced in areas with heavy motion. The quality
of the noise filter depends on the accuracy of the motion estimator, which again
relies on the SNR (Signal-to-noise ratio) in the video. After testing several noise

FPGA based noise reduction in video cameras 7
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filters in the different categories, the conclusion in [6] is that no filter can be
singled out as the solution for all applications.

1.2.2 Transform domain

Transform domain denoising methods first transforms the signal to another do-
main. De-noising is then applied in this domain, followed by an inverse transform
bringing the signal back to the pixel domain. A popular transform domain is the
wavelet coefficient domain, where the different coefficients are associated with
frequencies and time. It is not a complete transform into the frequency domain
as in the Fast Fourier Transform (FFT). The noise coefficients have small val-
ues compared to the signal coefficients, and all the coefficients lower than some
threshold can therefore be cancelled out, and the video can be reconstructed in
the inverse transform without the noise [7]. Other transform domains used for
denoising includes the discrete cosine transform (DCT) [8], first and second gen-
eration bandelet [9], curvelet [10], contourlet [11], and ridgelet [12] transforms.
Hybrids also exists, using methods both in a transform domain, and the pixel
domain. There have been carried out a lot of research on transform domain al-
gorithms lately. It is however clear that most of them are developed for image
processing and that algorithms in the pixel domain is most used in practice. Be-
cause transform domain methods involves a transform and a reverse transform,
a pixel domain method also seems to be the most cost effective choice for a real
time video application.

1.3 Obtaining colors

A common cost effective way of capturing color information is by laying a Color
Filter Array (CFA) over the sensor. Pixels will then get different responses to
different colors (spectral bands) in accordance with the CFA. The array is often
composed of Red, Green, and Blue (RGB) color filters, although other choices of
primary colors exist. A popular arrangement of an RGB colored CFA is the Bayer
pattern. The Bayer pattern consists of 50% green and 25 % red and blue, as shown
in Figure 1.8. More green is used to better collaborate with the response of the
human eye, Figure 1.13. The color image is then reconstructed by estimating the
pixels missing color components using the neighbor pixels in an operation called
demoisaicking. This is important knowledge when working with noise reduction.
An important question is whether to apply the noise reduction before or after
demosaicking, as demosaicking will interfere with the original sensor noise. Some
algorithms even propose to join demosaicking and noise removal [13], as they are
both estimating problems. Most denoising algorithms however, assume the data
to be demosaicked. A simple way of extending some of these algorithms to Bayer
data, is to let them work only with pixels of the same color, although spatial

8 Thor Arne S. Brandsvoll
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Figure 1.8: Bayer pattern. 50 % green and 25 % red and blue

redundancies between different colors exist and is therefore not taken advantage
of. [13, 14]

1.4 Video quality measurement

To compare different denoising algorithms, a standard quality measurement is
needed. When the result is to be viewed by humans, the best measurement is
actually our subjective evaluation. Psychological experiments where a number of
viewers watch a set of videos and rate their quality can be arranged, and a Mean
Opinion Score (MOS) can be derived. This method however, is inconvenient and
time consuming. In addition, the viewers can have a different Quality of Expe-
rience (QoE) [15]. QoE is affected by several conditions, including viewers focus
of attention and video experience, display type and properties, viewing distance
and exterior light and so on. A good mathematical quality measurement should
predict the subjective human perception of the video. In addition to benchmark-
ing, a quality measurement can be used to optimize denoising algorithms and its
parameters. There are three different types of quality benchmarks.

Quality measurement types

• Full reference

• Reduced reference

• No reference

FPGA based noise reduction in video cameras 9
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Most existing methods are full reference, meaning noise free reference data exists.
These methods can do a frame by frame comparison with the denoised version
of the nosy video, and the noise free video. Noise free artificial videos can easily
be made, and noise can be added to make a noisy copy of the video. Adding a
realistic amount of noise requires an advanced noise model, see Chapter 1.1.2.
Noise free real world data however is hard to obtain (if it was not, this work
would be superfluous). Often artificial noise is added to real world videos that
are assumed to be noise free. A scenario where full reference data usually exists,
is in video compression, where the compressed video can be compared with the
uncompressed video.

Reduced reference is when the reference is only partially available, represented
as a number of features. Examples are motion or spatial details.

No reference is when no reference data exists, for instance when the video
comes straight from a video camera. These methods are flexible, but have a large
drawback: The methods can have a hard time distinguishing between noise and
video details. It turns out that designing a no reference metric is a very hard
task [16]. The following methods are full reference measurement types, and some
of the most commonly used quality measures in video denoising.

1.4.1 Mean squared error

The Mean Squared Error (MSE) between two images is the average of the squared
differences in pixel intensity. The definiton is given in Equation 1.4.

MSE =
1

mn

m
∑

i=1

n
∑

j=1

[Iref(i, j)− I(i, j)]2 (1.4)

Where Iref is the intensity of the reference image. The Root Mean Squared Error
(RMSE) is also used, which is the root of the MSE, Equation 1.5

RMSE =
√
MSE (1.5)

1.4.2 Signal to noise ratio

A measure often used in signal processing is the Signal to Noise Ratio (SNR),
which measures the power of a signal compared to the power of noise. SNR is
also a useful metric in image processing. Assuming white noise, the SNR can
be defined as the standard deviation of the image intensity (σi), divided by the
standard deviation of the noise (σn).

SNRwhite noise =
σi

σn

(1.6)
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1 Introduction

The standard deviation of a gray scale image is defined in equation 1.7.

σi =

√

√

√

√

1

mn

m
∑

i=1

n
∑

j=1

[I(i, j)− µi]2 (1.7)

Where µi is the average gray value, Equation 1.8.

µi =
1

mn

m
∑

i=1

n
∑

j=1

I(i, j) (1.8)

A more general definition can be made using the reference data. Expressed in
decibels, this definition is given in Equation 1.9.

SNRdB = 20 log10

(

RMS

RMSE

)

= 10 log10

(

RMS2

MSE

)

(1.9)

Where RMS is the Root Mean Square value, Equation 1.10.

RMS =

√

√

√

√

1

m

m
∑

i=1

n
∑

j=1

[I(i, j)]2 (1.10)

The human brain is an amazingly good denoiser. We are able to see all the image
details even when white noise degrades the image down to an SNR of 2. This is
shown in Figure 1.9. The brain can de-noise video even better. The higher FPS,
the more details are visible as the brain can be said to have a built in temporal
denoising filter.

1.4.3 Peak signal to noise ratio

The most used quality metric used for video noise is perhaps the Peak Signal to
Noise Ratio (PSNR). PNSR is mathematically just a logarithmic presentation of
the MSE. The definition is given in Equation 1.11.

PSNRdB = 20 log10

(

Imax

RMSE

)

= 10 log10

(

I2max

MSE

)

(1.11)

Where Imax is the maximum theoretical value of the intensity, 255 in an 8 bit
image. For a video sequence, the final PSNR value is calculated as the mean of
the PSNR of all the frames. Even though PSNR is expressed in decibels, it is
dimensionless as both the numerator and the denominator are pixel values. PSNR
is popular for several reasons. It is fast to compute, and simple to understand.
Researchers have also developed a familiarity with it over the years. PSNR has

FPGA based noise reduction in video cameras 11
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(a) Original (b) SNR = 18.3 (c) SNR = 2.2

Figure 1.9: The original image has a standard deviation of σi = 55. White noise with
σn = 3 is added to the middle image, giving 18.3 in SNR. White noise with σn = 25 is
added to the right image, giving 2.2 in SNR. Note that all the details are still visible in
the right image [17].

also been criticized as a video quality metric, because it does not necessarily
reflect the perceived quality. This is shown in Figure 1.10. PSNR does not
take spatial relationship between pixels into account, and is just a byte by byte
comparison. It is also meaningless to say that a PSNR value of e.g 30 is good.
PSNR should be used only to compare different algorithms on the same data, as
demonstrated in Figures 1.11 and 1.12.

An important reason why PSNR is still used as a quality metric is the lack of
other good metrics. A better metric should take how the Human Visual System
(HVS) works into account. [15, 16, 18–21]

1.4.4 Method noise

A method for comparing no reference videos, is to look at what the algorithm
removed from the original noisy data. The removed data of two algorithms is
called method noise, and can be analyzed and compared. Optimally, the method
noise should not look like anything else than noise. This would mean that the
algorithm did not remove important details from the image. The removed noise
can therefore help to compare algorithms, in addition to comparing the result
itself. [17]

1.5 The human visual system

The Human Visual System (HVS) is an advanced system, where a lot of research
have been done. It is important to know how the HVS work, so denoising algo-
rithms and quality metrics that better suit the human perception can be created.

12 Thor Arne S. Brandsvoll
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(a) High frequency noise (b) Low frequency noise

Figure 1.10: Both image a and b have the same PSNR. The perceived quality is
however very different. High frequency noise is inserted in the bottom of image a. This
noise is camouflaged by all the details in the rocks and the sea. Low frequency noise is
inserted in the top of image b. The distortions stands out from the smooth sky. [15]

The human eyes are like self cleaning real time cameras with auto focus and
adaptivity to light. They have two types of photo receptors, cones and rods. The
rods are what makes us able to see in the dark. The cones are used in good
light conditions, and makes us able to see colors and fine details. There are three
different types of cones, L-cones, M-cones and S-cones with peak sensitivity at
long (570nm), medium (540nm) and short(440nm) wavelengths, roughly corre-
sponding to red, green, and blue. There are approximately 100 million rods and
5 million cones in the eye, where M-cones and L-cones accounts for the majority
of them.

The rods and cones are not uniformly distributed. The highest density of
cones is in the middle of the retina, causing a higher resolution and better capa-
bility to see details and color where the observer fixates. This spot is called the
fovea and is about 0.5 mm in diameter. This could be bad news for denoising in
video conferences where a typical scenario is a face in front of a static background.
The observer will fixate on the face, and will therefore be more sensitive for noise
in this area. Unfortunately, the face, or the mouth, will often be moving so that
temporal filtering cannot be applied, causing more noise to be visible in the area
where the observer is the most sensitive for noise. A contrast sensitivity function
(CSF) is given in the Appendix, Figure A.1, and shows what contrast is needed to
distinguish small spatial differences. The HSV spatial contrast sensitivity peaks

FPGA based noise reduction in video cameras 13
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Figure 1.11: PSNR and bitrates for a compression algorithm used on two different
data sources. According to the PSNR values, the quality of the video with the squared
markers is always better than the quality of the video with the triangle markers for all
bitrates. [18]
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Figure 1.12: Perceived quality and bitrates for the same compression algorithm used
on the same data as in Figure 1.11. The perceived quality is better for the video with
the squared markers on low bitrates, and better for the video with the triangle markers
on higher bitrates. This is not what the PSNR suggested in in Figure 1.11. This shows
that PSNR should not be used to compare algorithms over different video data. [18]
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Figure 1.13: Human cone response curves. The eye is very responsive to wavelengths
corresponding to green light, which is partially covered by all three types of cones. This
knowledge helped developing the Bayer pattern. [22]

at 3 cycles per degree (CPD), and declines more rapidly at higher than lower
spatial frequencies. Spatial frequencies higher than 40 CPD is undetectable for
humans, even at the highest contrast. Similar graphs for chroma (color) com-
ponents would have shown a lower sensitivity peak than for the luminance. If
the color space used in the video is of this type, the most important plane to
denoise is the luminance plane, e.g the Y-plane in YUV video. This is also the
reason why the chroma components (U and V) are allowed reduced bandwidth,
e.g. 4:2:2 chroma subsampling. [16]
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Figure 1.14: The distribution of rods and cones. The fovea is in the middle of the
retina and have the highest density of cones. Humans therefore have higher resolution
where they fixate. [5, 23]

Figure 1.15: A typical video conference scenario. Two people will fixate on each
other’s faces, and will perceive it with larger resolution. This is also where movement is
most likely to occur (moving lips, eyes...), so temporal filtering cannot always be applied.
Hence, there will be more noise present, where it is also easiest perceived. Hand gestures
are also likely to be fixated on, and suffers from the same problem.
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The algorithms presented are some of the most well known in the field of denois-
ing. These are algorithms also used in image processing, and are presented this
way for simplicity. They do operations in a sub image, with a size set by the
pixel neighborhood. The sub image has several names like kernel, mask, filter or
window. The kernel is moved over the image, so that the whole image is pro-
cessed. When the kernel is linear, e.g., average or Gaussian filtering, this process
is similar to a convolution, which can easily be computed in the Frequency do-
main. The kernel is therefore sometimes referred to as a convolution mask, even
if it is not a linear kernel, e.g., median or bilateral filtering. The algorithms can
generally easily be extended for image sequences, as shown in Chapter 2.9.

2.1 Average

The most basic noise removal technique is average filtering. Most noise removal
algorithms involves some sort of averaging, and average filtering is the most
pure averaging technique of them all. It replaces all pixels with an average of
surrounding pixels. The number of pixels that are averaged can vary. A standard
number is 9, where a 3x3 square of pixels is used. Another standard number is 25,
where a 5x5 mask is used. Masks with an even number of pixels on the side, like
4x4, can hardly be used as they do not contain a middle pixel with surrounding
neighbor pixels. An example of the weights in a 3x3 mask is given in Matrix 2.1.
The shape does not need to be squared, and another popular shape is a diamond
shape. A 5x5 diamond shaped is shown in Matrix 2.2. It is important that all
the weights add up to 1 so the result is not biased. If the sum of the weights were
higher than 1, it would result in a brighter image, and a darker image if the sum
was lower than 1. In pure average filtering, all the weights of the closest pixels
are the same, and the pixels in the rest of the image are 0. [5]

W =
1

9





1 1 1
1 1 1
1 1 1



 =





0.1111 0.1111 0.1111
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111



 (2.1)

W =
1

13













0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0













(2.2)
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2.2 Median

Median filtering replaces the middle pixel with the median of its neighbors. Ex-
treme values caused by impulse noise will effectively be removed, without having
any effect on the filtered result. Median filtering is therefore better than aver-
aging for removing impulses, because an extreme value could have a great effect
on the average. It can be computationally heavy, as finding the median involves
sorting of values. But optimizations can be done, e.g., only sort the lowest half
of the values to find the middle value. Consider the example of intensity values
in Matrix 2.3.





73 73 124
74 120 122
79 119 255



 (2.3)

The sorted result is 73, 73, 74, 79, 119, 120, 122, 124, 255 and the median is 119.
119 will then be the new median filtered value of the middle pixel (with the old
value 120). The impulse, 255, does not have any effect on the result. The edge
between the left 70- and the right 120- values is also kept sharp. [5]

2.3 Gaussian blur

Gaussian blur or Gaussian smoothing was proposed by Dennis Gabor in the
sixties. He was the winner of the Nobel prize in physics in 1971 for the invention
of optical holography, and he has been awarded the IEEE Medal of honor. A
Gaussian filter is a filter whose impulse response, h, is a Gaussian function,
Figure 1.3, where σs controls the amount of blur. Gaussian filtering in images,
Gaussian blur, replaces a pixel with a weighted average of surrounding pixels,
where the weights are based on the distance from this pixel. Because an image is
a collection of discrete values, the weights are based on a discrete approximation
to the Gaussian function. In theory, all the pixels in the image would contribute
to this average, but the values are usually calculated in a small mask with 3x3 or
9x9 pixels. As σs becomes large, this mask approaches the average mask, where
all pixels have equal weight. Matrix 2.4 shows an example of a Gaussian mask
with size 3x3, and σs = 0.5. The matrix is symmetrical, and the weights decrease
with the distance from the middle, and the values add up to 1. [17, 24]

Ws =





0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113



 (2.4)
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2.4 Anisotropic

Gaussian blur filters equally in all directions, and is therefore isotropic. It will
smooth out edges, as it will smooth out plane areas. Anisotropic (Gaussian)
filtering tries to avoid this by smoothing only in the direction orthogonal to the
gradient. The gradient represents where the image goes from low to high values
(dark to bright), i.e., an edge. Anisotropic filtering thus uses samples from the
edge for averaging the edge itself. A simple approximation of the image gradient
can be found by the well known Sobel operator, using Matrices 2.5, to detect the
changes in the x and y direction respectively.

Gx =





−1 0 1
−2 0 2
−1 0 1



 Gy =





−1 −2 −1
0 0 0
1 2 1



 (2.5)

Other gradient operators also exist, e.g., a recently proposed noise robust operator
by Pavel Holoborodko, Matrices 2.6.

Gx =





−1 −2 0 2 1
−2 −4 0 4 2
−1 −2 0 2 1



 Gy =













−1 −2 1
−2 −4 −2
0 0 0
2 4 2
1 4 1













(2.6)

The gradient magnitude and direction can then be found by equation 2.7 and
2.8.

|G| =
√

Gx
2 +Gy

2 ≈ |Gx|+ |Gy| (2.7)

θ = arctan

(

Gy

Gx

)

(2.8)

[5, 17, 25, 26]

2.5 Yaroslavsky

Average filtering smooths out noise by taking the average of neighbor pixels.
Yaroslavsky filtering also calculates the average of neighbor pixels, but only if
they have a similar intensity. It defines two neighborhoods, one with all pixels
close in distance, the other one with pixels close in intensity. The average of the
pixels existing in both neighborhoods is then calculated. The distance neighbor-
hood is actually just a defined maximum border of the intensity neighborhood.
Yaroslavsky proposed two different ways of finding the pixels with similar inten-
sity, either by K-Nearest-Neighbors (KNN), where k usually is 5 or 6 in a 3x3
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mask, or by all the neighbors with a difference not exceeding an upper and lower
lower bound. In the first case, the neighborhood was called KNV, for K Nearest
Values. In the latter case, it was called EV for Evaluated Values. The Yaroslavsky
filter can therefore be summarized as the average of the KNV-neighborhood or
the average of the EV-neighborhood. The KNV implementation is the most ro-
bust of the two implementations, but finding the KNV-neighborhood involves
sorting, and is therefore a lot more computationally expensive than finding the
EV-neighborhood. [17, 27]

2.6 Bilateral

Bilateral filtering is a developed version of the Yaroslavsky neighborhood filter,
where weights are also assigned to the neighbors dependent on how close they are
in both distance and intensity. The bilateral filter was first invented by Smith
and Brady [28] with the name SUSAN, acronym for Smallest Univalue Segment
Assimilating Nucleus. It was later presented by Tomasi and Manduchi [29], re-
named as the bilateral filter, which is now the most common name. Bilateral,
meaning two sided, comes from the fact that both distance and pixel values are
utilized. By this definition, the Yaroslavsky filter can also be said to be a bilat-
eral filter. The penalty function, or the weights, are calculated using Gaussian
distribution, instead of a step function as in Yaroslavsky filtering. The bilateral
filter is in a way similar to Gaussian blur, the same way Yaroslavsky filtering
is similar to average filtering. The weight of the spatial distance, Ws, is given
in Equation 2.9. The weight of the radiometric distance (intensity difference) is
given in Equation 2.11.

Ws = e
−

d2

2σ2
s (2.9)

Where d is the distance from the middle pixel in the mask (0,0).

d =
√

x2 + y2 (2.10)

Wr = e
−

(I(0,0)−I(x,y))2

2σ2
r (2.11)

σs and σr control the decay of the spatial and radiometric weights accordingly,
see Chapter 2.3. The final weight is then found by multiplying the two weights
together. The final weight must be normalized, so all the weights in the mask
add up to 1.

W = Ws ∗Wr = e
−( d2

2σ2
s
+ (I(0,0)−I(x,y))2

2σ2
r

)
(2.12)
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A bilateral filter where the middle pixel is excluded from the averaging process
has also been proposed, [28]. If the middle pixel is far from the other pixels in
intensity (an impulse), the denominator in the normalization process will then
be zero. When this happens, median filter is used, and the impulse is removed.
[30]. The bilateral filter have become popular and received a lot of researchers
attention. This have led to new variations and speed optimizations.

2.6.1 Separable bilateral filter

The separable bilateral filtering method presented in [31] can be executed in a
fraction of the time of the traditional bilateral filter. The weights are determined
by Gaussian functions. The Gaussian filter can be separated, i.e., first filtered
in the x-direction, then in the y-direction. Two simple 1D filters are faster than
one advanced 2D filter. This will not produce the exact same result, but it will
be almost as good as the full 2D kernel implementation. The result has been
reported to be satisfying on edges and uniform areas, but can introduce streak
artifacts on textured regions. [32]

2.6.2 Local histograms

Another bilateral algorithm is based on the neighborhood histogram. Each bin
in the histogram says how many pixels that have a given intensity value, and
the result can be calculated from this information. The method is fast, because
two close neighborhoods share almost the same histogram. As the kernel moves
across the image, some pixel values are removed from the histogram, and others
are added, so the histogram is updated for the next neighborhood. The result
can introduce artifacts on sharp edges, but they can be removed by iterating the
filter three times. The final result will not be exactly the same as the full kernel
implementation of the bilateral filter, but it will not contain any artifacts. [33]

2.6.3 Piecewise linear / Bilateral grid

In the piecewise linear method, a 2D gray scale image is represented in a 3D way
by something named a Bilateral grid. In this domain, bilateral filtering is obtained
by Gaussian blur in a simple linear convolution. Because an O(n2) convolution
like Gaussian blur in the pixel domain becomes an O(n) multiplication in the
frequency domain, and the transform and inverse transform have the complexity
O(n log n) and order of one in complexity can be gained. Because the bilateral
filtering is not a simple convolution, the set of possible intensity values is made
into segments, and a linear filter is computed for each segment. Because the grid
is down sampled, the algorithm deals with less data, and is therefore fast. This
algorithm has also proven to be effective on GPUs because of the 3D grid. For
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color images however, a 5D grid is required. This method was also used in a
single input multiple data (SIMD) implementation on a digital signal processor
(DSP) for color video. [34–37]

2.7 Non-local means

The NL-means algorithm tries to take advantage of the high redundancy in nat-
ural images, i.e., every small window has similar windows in the same image.
Similar windows are often next to each other, but can also occur far from each
other. NL-means searches for similar small windows inside a larger search win-
dow, which can be as large as the whole image. In an implementation of the
NL-means algorithm in [38], a search window of 21x21 pixels is used, and a work
window of 7x7 pixels. All the pixels with a similar 7x7 neighborhood inside the
21x21 neighborhood are then used for a weighted average. The neighborhood
similarity is computed using the Euclidean distance of the intensities between
the work windows. The final pixel value is a weighted average of the pixels with
the most similar neighborhoods, where the weights are calculated using Gaussian
distribution with the Euclidean distance as variable, Equation 2.13.

Wnl = e
−

[(I(p1)−I(q1))+...+(I(pn)−I(qn))]2

2σ2
r (2.13)

Where pn and qn are pixels in different image patches in the search window. The
result needs to be normalized.

2.8 Algorithm complexity

An important aspect of the algorithms is their complexity. Several speed opti-
mizations have been proposed to the bilateral filter. A recent paper even proposed
methods on how to make the complexity in constant time O(1) [39]. A summary
of the complexities is given in Table 2.1. The table shows how the computation
grows as the kernel radius, r, increases. However, only small radii is needed in
denoising. Larger radii can be used to create other effects like blurring. More
important issues are latency and FPGA resource requirement.

2.9 Temporal extension

To remove noise more aggressively, the mask defining spatially close pixels can be
extended in size to include more samples, e.g., use a 5x5 instead of a 3x3 mask.
This will probably include more of both equal and different pixels. If the mask is
instead extended in the temporal direction, so that the mask is transformed from
a 2D to a 3D mask, there is a larger probability that more of the equal pixels
will be added if the motive is the same in both frames (no motion). Therefore
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Table 2.1: Algorithm complexity

Complexity
Brute force bilateral/Yaroslavsky filter O(Sr2)
Separable bilateral filter O(Sr)
Local histogram bilateral filter O(S log r)

Piecewise linear bilateral filter O(S + 256S
r2σr

)

Non-local means O(Sr2r2w)

a motion detector could decide to turn off temporal filtering in case of motion,
and on if there has not been any motion. This would however require additional
logic. The denoising algorithms that also checks radiometric distance, i.e., the
Yaroslavsky, Bilateral and NL-means, do not need an extra motion detector.
If there have been motion, these algorithms will not use pixels from previous
frames anyway, as the radiometric distance will be too large. These algorithms
can therefore be said to have a built in motion detector. An important question
is how far the mask should be extended in the temporal domain. Equal pixels is
most likely to be found in the frames closest to the current frame. It is therefore
not adequate to extend it several frames back in time. In addition, each additional
frame requires extra memory and more pixels to be computed. The mask can
theoretically also be extended ahead in time, as equal pixels are also likely to be
found there, but this is not recommended in a real time system, as it increases
the latency dramatically. [34]

2.10 Color handling

The radiometric distance makes most sense in gray scale data, where it can be
measured as the difference of two pixel values. In color data, a pixel does not
have just one value, it has three. There are different ways to represent color, as
explained in Chapter 1. One way of measuring the radiometric distance on RGB-
data is on the three color planes individually. A pixel will then get three distance
values, and the noise filtering is applied on the three planes individually. Only
pixels with the same color value are then averaged together, in correlation to the
radiometric distance of the specific color. Another way to handle color data, is
to measure the radiometric distance by calculating the Euclidean distance. All
three RGB values will then contribute to a mutual radiometric distance. This will
avoid color values from the same pixel ending up in different similarity groups.
An experiment in [32] compares a bilateral filter implementation on individual
RGB-planes, and on the RGB-planes jointly. The results are given in Figures 2.1,
2.2, and 2.3, and shows that processing the planes jointly gives the best result,
but processing the planes individually is faster.
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Figure 2.1: The original image

Figure 2.2: This image is bilateral filtered on individual RGB-channels. The cross is
more faded than in Figure 2.3, where the bilateral filtering is done on the color planes
jointly. This type of fading is called color bleeding as the cross can be said to bleed color.

Figure 2.3: This image is bilateral filtered on the RGB-channels jointly. The result is
better than filtering on the RGB-channels individually, Figure 2.2, but it is also more
computationally expensive.
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Another way of handling color is using a different color space than RGB.
There are a numerous of different color spaces that can be used to represent
color images. A color space where one of the channel represents a gray scale
image, and the two other channels represents color information can be useful,
as the noise filtering can be successfully applied on just the first channel. Noise
filtering typically comes early in an imaging pipeline, and using another color
space than RGB would mean doing a conversion in color space, which can be a
computational heavy task. Other color spaces are therefore not further explored.
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3 Project work algorithm

The project work led to a new algorithm inspired by a number of complex al-
gorithms [40–53]. These algorithms often consisted of several filter options, and
some logic choosing the best option. The project work algorithm was chosen so
that the simplest and best methods in the reviewed algorithms could be united in
an as simple as possible algorithm, capable of handling most scenarios well. The
project work algorithm therefore consisted of several simple components, which
together made an advanced algorithm. Its mode of operation is given in Chapter
3.1. The full project report is available in [54].

3.1 Mode of operation

The algorithm consists of three different detectors; a motion detector, an impulse
detector, and an edge detector. These three detectors will choose between five
different filtering techniques for the pixel being processed. The five filtering tech-
niques are median filtering, average filtering, temporal filtering, average temporal
filtering, and no filtering. The decision diagram is shown in figure 3.1.

Impulse Detector

Motion Detector

Edge Detector Edge Detector

Median Filter No Filter Average Filter Temporal Filter Temporal Average Filter

Motion Not Motion

Impulse Not Impulse

Edge Not Edge Edge Not Edge

Figure 3.1: The algorithm decision diagram
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3.1.1 Motion Detection

The motion detector is used to detect motion and avoid averaging in the temporal
domain in areas with motion. Averaging two or more frames where an object
has moved, causes the object to leave a trail in the filtered result, which is why
temporal averaging must be avoided in such areas. The motion detector used, is
loosely based on the motion detector in [40]. One of the differences is using the
current and one previous frame, instead of two previous frames. This makes the
detector less complex, and saves a lot of memory. Another difference is using a
value calculated from neighbor pixels using Matrix 3.1, instead of a single pixel.

1

36





1 2 1
2 24 2
1 2 1



 (3.1)

If the absolute difference between two corresponding pixels in the previous filtered
image and in the current weighted average pixel is greater than a fixed threshold,
the pixel is marked as a moving pixel in a binary mask. The middle weighted
average mask refuses heavy noise in a neighbor pixel to affect the pixel in process
too much, but still eliminates some of the false motion positives caused by noise.
If an equal weighted average mask would have been used instead, noise in one of
the corners would have the weight 1/9 instead of 1/36, and could potentially cause
all of its neighbor pixels incorrectly to be classified as motion. The same matrix
is also used for average filtering (so the result does not need to be recomputed in
this case), where the matrix moderates the effect of blurring. Anyhow, noise still
causes a lot false positives, so the next step is to remove them from the binary
mask. This is done with morphological opening.

3.1.2 Impulse Detection

A weakness with the motion detector, is actually one of its key features. Because
all single motion pixels are removed, a sudden case of salt or pepper noise ends
up being classified as non-motion, causing the pixel to be temporal filtered. This
will tone down the effect of a sharp impulse, but will not remove it. Actually, if
the impulse had been detected as motion, the result would have been even worse.
The impulse detector therefore detects single pixels differing extremely from the
previous frame, so they can be properly dealt with.

The impulse detector checks if the absolute difference between the previous
filtered frame, and the current unfiltered frame is greater than a fixed threshold.
This threshold is a lot higher than the threshold used in the motion detector. A
binary mask of the result is created. Then if there are more than two 1’s in a
3x3 window in the binary mask, it is not impulse noise, and the 1’s are removed
from the binary mask.
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Note that this method also detects two neighbor pixels, a couplet, impaired by
impulse noise. Couplets are difficult to remove, and a key driver to high volume
image sensor yield [2]. It also removes dead pixels that have the same value in
every frame, and not only a sudden impulse. The dead pixel will be replaced
in the filtering process. The impulse detector will then in the next frame see a
transition from a filtered pixel to a dead pixel, and filter the dead pixel again,
and so on.

3.1.3 Edge Detection

The edge detector is used to detect edges, or more accurately, variability and
details in the image. One of the problems is to distinguish between details and
noise, so the noise can be removed from the edges. Another problem is to remove
the noise without making the edges smooth and indistinct. In [41] the variance,
σ2, and a threshold is used to extract edges. In [42] the median absolute deviation
and a threshold is used to extract edges. The median absolute deviation is a
robust variance estimator, and works for highly corrupted images. The method
in the presented algorithm uses standard deviation, σ, and a threshold to extract
edges and make a binary mask of edge pixels. A better solution for an FPGA
implementation in future work might be to use the method in [43], or variance
instead of standard deviation, which is basically the same thing. For the Matlab
simulation anyhow, local standard deviation is much easier to implement and
produces good results.

3.1.4 Median filtering

All impulses detected by the impulse detector are median filtered. The 3x3 me-
dian filter replaces the pixel being processed with the median of the pixel and its
eight neighbors. This will effectively remove impulses like salt and pepper noise.
An advantage of filtering impulses with median filtering, especially compared to
spatial or temporal average filtering, is that the impulse will be replaced by an
actual pixel in the 3x3 working window, and not by a made up value where the
impulse might have a huge influence. The median filter is therefore known to be
edge preserving.

3.1.5 Average filtering

The average filter replaces the pixel with a weighted average generated by the
Matrix (3.1). The matrix gives pixels closer to the middle pixel higher weight,
while the middle pixel has a weight equivalent to 6/9 of the total weight. The
four closest pixels have a weight equivalent to 2/9, and the four corner pixels
have a weight equivalent to 1/9. The middle pixel has the highest weight to keep
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the blurring of details at a minimum, while still doing noise reduction. If more
aggressive noise reduction is wanted, an average filter with equal weights can be
used. Keep in mind that real world data will not be severely degraded by noise.

3.1.6 Temporal filtering

Temporal filtering is used when edges are detected, and motion is not detected.
The temporal filter takes 1/2 of the current pixel, and 1/2 of the previous filtered
pixel. This method is presented in [40], and is stated mathematically in Equation
(3.2). It effectively removes noise without blurring edges.

ffiltered(x, y, t) =
1

2
[fcurrent(x, y, t) + ffiltered(x, y, t− 1)] (3.2)

3.1.7 Temporal average filtering

This filter is almost the same as the temporal filter in 3.2, but it has an important
difference. It takes 1/2 of the output from the weighted average matrix (Matrix
3.1) and 1/2 of the previous filtered image. This way it removes more noise than
the regular temporal filter, but will still keep some details. It is mathematically
stated in Equation 3.3.

ffiltered(x, y, t) =
1

2
[faveraged(x, y, t) + ffiltered(x, y, t− 1)] (3.3)

3.2 Disadvantages and improvements

3.2.1 Motion detector robustness

The static thresholds assumed a certain noise level, and the results were good for
videos with this certain quality. The problem arise when the video quality varies.
There can be both dark and bright areas in a video, with accordingly more noise
in the dark areas. If more powerful noise occurred than what the motion detector
was set for, noise would be detected as motion, and temporal filtering would be
turned off. The power of temporal filtering would then not be utilized when it
actually was the most needed. If the motion threshold was widened, so that
powerful noise would not be detected as motion, the result would be worsened in
video with little noise. This would happen because actual motion would not be
detected. In other words, the motion detector was not robust enough.

In an attempt to fix this problem, fuzzy thresholds were introduced. The
weight of the previous frame is then higher when the differences of the pixels are
small (high probability of static pixels), and vice versa. The peak performance
decreased in some situations, since fuzzy thresholds sometimes includes pixels
that should have been cut, but with a low weight. A small improvement can also
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(a) Previous frame (b) Current frame

Figure 3.2: An edge in a 3x3 mask. The project algorithm would ignore similar
neighbor pixels, averaging only the center pixel in time (t) and (t-1), or in this example
use no averaging at all because of the motion.

be made to Matrix 3.1, as dividing by 32 is more hardware friendly than dividing
by 36. This can easily be achieved by lowering the weight of the middle pixel to
20 from 24.

3.2.2 Edge handling

Another problem is how the algorithm handled edges. If an edge was detected, the
algorithm would either (temporal) filter the middle pixel with the time delayed
version of the same pixel, or use no filtering at all in case of motion. This method
worked well for avoiding blurring and ghosting, but it unfortunately also avoided
efficiently noise removal in such cases. Consider the edge in Figure 3.2. The
algorithm would not do any filtering at all because of the motion, when there are
9 similar pixels in the current and previous frame that could have been used.
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4 Modified Yaroslavsky filtering

The original Yaroslavsky noise filter as described by Leonid P. Yaroslavsky, looks
for similar pixels inside a given spatial neighborhood. The manner of operation is
roughly the same as the bilateral filter, but it is also simpler since pixels can only
be assigned the weight 0 or 1. It can be implemented on an FPGA in a straight
forward and simple way, and have high potential of achieving both low latency
and resource usage, which is the reason it is preferred over the bilateral filter.
The optimization techniques available for the bilateral filter could be interesting,
even though some of them was reported to introduce small artifacts. In addition,
it was also not always clear how the optimizations can be applied to (color) video.
The best place to start is therefore the easily understandable Yaroslavsky filter.

Three simple modifications to the Yaroslavsky filter is also proposed. First, it
should be extended to the temporal domain by also checking for similar pixels in
the previous frame. More frames could also be added, but there is a substantial
memory overhead for each one. Second, instead of comparing with just one
threshold, several thresholds should be used. Neighbor pixels are then categorized
in similarity groups based on how equal the intensities are. The neighbor pixels
are then not just averaged altogether as in the original Yaroslavsky filter. Weights
are given to the pixels based on the similarity group they are in. A higher
weight is assigned to pixels in the group defined by the lowest threshold. A
weighted average is then calculated. Assigning different weights to pixels based
on radiometric distance is also used in bilateral filtering. The weights in bilateral
filtering is calculated for each pixel using Gaussian distribution. The modified
Yaroslavsky filter uses predefined weights for each similarity group, and therefore
avoids a calculation of the weight as in bilateral filtering, but still imitates the
weighted average function. The third and last modification is to let the median
filtering overrule the other filtering when most of the neighbor pixels exceed the
largest threshold.

The proposed modifications to the Yaroslavsky algorithm are a result of the
project work, and further reading and development. Comparing the modified
Yaroslavsky to the project work algorithm shows that they actually have the
same functions. Where the project algorithm had a separate motion detector,
edge detector, and an impulse detector, the modified Yaroslavsky algorithm have
these three modules incorporated in just one.

4.1 Neighborhood size

The original and the modified Yaroslavsky algorithm checks a number of pixels for
similarity. This number is bounded by the neighborhood size. The most similar
pixels is likely to be found closest to the middle pixel. At the same time, a larger
neighborhood size implies more samples which could lead to a better average.
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A larger neighborhood also implies more computation. As an example, consider
Figure 4.2. The project work algorithm would detect both motion and an edge,
and therefore do no filtering at all. The modified Yaroslavsky takes the similar
pixels from both the current and the previous image, and ignores the different ones
(from the other side of the edge). A full 3x3 window (N8 neighborhood, [5]), and a
diamond shape (N4 neighborhood, [5]) is simulated in Chapter 5. The simulations
show that the performance gain of the largest neighborhood is not overwhelming,
and actually have worse results on the synthetic video in some cases, because of
the test videos low resolution and fine detailed grid. The extra computation of
a larger neighborhood is therefore not defended, and the diamond shaped N4

neighborhood is proposed as shown in Figure 4.1 as it provides good results with
minimal computation. Note that the N4 neighborhood in the previous frame is
actually of five pixels because of the previous value of middle pixel itself. The
notation used for the whole neighborhood is therefore N4,5. Thus, the highest
number of pixels that can be averaged is ten. The lowest number of pixels that
will get averaged is three, i.e., if more than 7 of the neighbors are not similar at
all, the pixel is an impulse and is median filtered. However, if the trend of higher
resolution continues, a larger neighborhood is probably needed.

4.2 Thresholds and weights

The threshold and weight values are (compared to the neighborhood size and the
actual number of thresholds and weights) variables that can easily be changed on
an FPGA, as long as the values are within certain limits. As shown in Chapter
6, a practical limit for the weights is 4 bit, or between 0 and 15. The weights
and thresholds can be set to mimic the bilateral filter, with a (more) discrete
Gaussian distribution. The optimal thresholds and weights depend on several
variables, e.g., level of details and noise in the video. It should be possible to find
good thresholds and weights for a specific camera if its noise model is known, but
it might require some trial and error. Universal thresholds and weights, optimal
for all scenarios do not exist.

4.3 Matlab implementation

The first operation in the Matlab implementation of the modified Yaroslavsky
algorithm is to check the input for the resolution (rows and columns), number of
planes (color or gray scale video), and number of frames. All the frames of a low
resolution video can be handled at the same time. To keep the memory usage
low, only one frame should be sent to the algorithm when the video is of high
resolution. A small script reads one frame at a time, and writes the result to an
output file, in this case.
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4 Modified Yaroslavsky filtering

Figure 4.1: The neighborhood size chosen. It is the four closest pixels in the current
frame (N4), and the five closest in the previous frame. The highest number of pixels
possible in the average process is therefore ten.

(a) Previous frame (b) Current frame

Figure 4.2: An edge in a 3x3 mask.

(a) Previous frame (b) Current frame

Figure 4.3: The pixels used for averaging when the neighborhood size is N4,5 as shown
in Figure 4.1 and the image is Figure 3.2, are marked with blue. The algorithm will
average the two blue pixels in the previous frame with the three blue pixels in the current
frame. The weights will be equal because the neighbor pixels are exactly the same as the
middle pixel. If a pixel was similar, but not equal, it would have gotten a lower weight.
If it had been the full N8,9 neighborhood, all 9 gray pixels in Figure 4.2 would have been
averaged.
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The algorithm can now start processing the pixels. The intuitive way of
doing this, is by making two nested for loops that process the pixels one by one.
Because Matlab prefers working with matrices, and because a frame is nothing
else than a large matrix, there is a faster way of processing the pixels. The first
operation in the modified Yaroslavsky algorithm is to find the difference between
a pixel and its neighbors. This operation is achieved by first padding the input
symmetrically using the function padarray from the Matlab Image Processing
Toolbox. To find the difference between the pixel and its (e.g.) left neighbor, a
sub image of the padded image is then extracted. This sub image is shifted one
position (to the left) and is as large as the original image. A matrix containing the
difference between all the pixels in the original image and their left neighbors is
then extracted by subtracting the sub image from the original image, and taking
the absolute value of this result. This operation is done for every neighbor, so
4 matrices are obtained from the current frame, and 5 from the previews frame,
if the neighborhood size is as proposed in Chapter 4.1. Matlab code for this
operation is given in Listing 1.

Listing 1: Matlab code for extracting a matrix containing the difference values between
a pixel and its left neighbor.

padded image=padarray ( image ( : , : ) , [ 1 , 1 ] , ’ symmetric ’ ) ;
im a g e l e f t s h i f t e d=padded image ( 2 : rows+1, 1 : columns ) ;
d i f f e r e n c e l e f t=abs ( image ( : , : ) − i m a g e l e f t s h i f t e d ( : , : ) ) ;

All pixels in the difference image are then compared with four thresholds, and
four binary masks for each neighbor are made. These binary masks determine
the similarity group for the given neighbor pixel. They are mutual exclusive and
collectively exhaustive, i.e., for a given pixel, only one of the four binary masks
will have a 1, the others will have a 0, as a pixel must be in one similarity group.
There is also a similarity group for the (dissimilar) pixels who exceed the highest
threshold. Matlab code for this operation is given in Listing 2.

Listing 2: Matlab code for finding the similarity group of the left neighbors. The lowest
threshold is T1, and the highest is T4

s im i l a r i t y g r o u p 1 l e f t =( d i f f e r e n c e l e f t <=T1 ) ;
s im i l a r i t y g r o u p 2 l e f t =( d i f f e r e n c e l e f t >T1)&( d i f f e r e n c e l e f t <=T2 ) ;
s im i l a r i t y g r o u p 3 l e f t =( d i f f e r e n c e l e f t >T2)&( d i f f e r e n c e l e f t <=T3 ) ;
s im i l a r i t y g r o u p 4 l e f t =( d i f f e r e n c e l e f t >T3 ) ;

When all the similarity groups for all the neighbor pixels have been found, a
matrix containing the normalize constants can be made. The total number of
neighbor pixels in the different similarity groups must then first be added, re-
sulting in four new matrices, that added together will be the total number of the
neighbors (9). Each of these four matrices now contains the number of pixels in
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each similarity group. The Matlab code for this operation is shown for similarity
group 1 in Listing 3.

Listing 3: Matlab code for adding together the total number of pixels in similarity group
1 for all neighbors.

s im i l a r i t y g r ou p 1 t o t a l = ( s im i l a r i t y g r o u p 1 l e f t + . . .
+ s im i l a r i t y g r o up 1 r i g h t + s im i l a r i t y g r oup1 t op + . . .
+ s im i l a r i t y g r oup1 bo t tom + s im i l a r i t y g r oup1 ( t−1) l e f t + . . .
+ s im i l a r i t y g r oup1 ( t−1) r i gh t + s im i l a r i t y g r oup1 ( t−1) top + . . .
+ s im i l a r i t y g r oup1 ( t−1)bottom + s im i l a r i t y g r oup1 m idd l e ( t −1)) ;

The values in these four matrices are then multiplied with their respective weights
and added together to a single matrix, containing the normalizing constant for
each pixel. This operation is shown in Listing 4.

Listing 4: Matlab code for making a matrix with each pixels normalize constant. The
weight for similarity group 1 is W1.

normal i z ing cons tant = ones ( [ rows colums ] ) ;
normal i z ing cons tant = ( normal i z ing cons tant .∗W center + . . .
+ W1.∗ s im i l a r i t y g r ou p 1 t o t a l + W2.∗ s im i l a r i t y g r o up 2 t o t a l + . . .
+ W3.∗ s im i l a r i t y g r ou p 3 t o t a l ) ;

The weighted average can now be calculated and normalized by dividing each
value with the corresponding value in the normalizing constant matrix. This is
shown in Listing 5.

Listing 5: Matlab code for computing the weighted average.

r e s u l t = (W1.∗ s i m i l a r i t y g r o u p 1 l e f t .∗ im a g e l e f t s h i f t e d + . . .
+ W2.∗ s i m i l a r i t y g r o u p 2 l e f t .∗ i m a g e l e f t s h i f t e d + . . .
+ W3.∗ s i m i l a r i t y g r o u p 3 l e f t .∗ i m a g e l e f t s h i f t e d + . . .
+ W1.∗ s im i l a r i t y g r o up 1 r i g h t .∗ im ag e r i g h t s h i f t e d + . . .
+ . . . ) . / normal i z ing cons tant ;

The final step is to overwrite the invalid values, where most of the neighbor pixels
exceeded the highest threshold. This is done by first making a binary mask of
these invalid pixels, and then performing median filtering on the corresponding
pixels, overwrite the weighted average. The median filter is implemented using
the medfilt2, which is another function in the Image Processing Toolbox. It takes
the median of the N8 neighborhood, and does not consider the pixels in the
previous frame. The Matlab code for this operation is given in Listing 6.

Listing 6: Matlab code for overwriting invalid pixels

med i an f i l t e r mask = s im i l a r i t y g r ou p 4 t o t a l > 7 ;
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r e s u l t = r e s u l t . ˜∗ med i an f i l t e r mask + . . .
+ med f i l t 2 ( image ( : , : ) , ’ symmetric ’ ) . ∗ med i an f i l t e r mask ;

This final result is now saved, as the a previous image, so it is available for the next
input image. Only two loops are used in the algorithm; the first loops through the
number of planes, and the second loops through the number of frames. All the
pixels are processed at the same time with matrix operations, which is preferred
by Matlab.
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(a) Frame 1 (b) Frame 5 (c) Frame 10

Figure 5.1: The synthetic video used. The white disc moves around in circles over the
grid

5 Matlab simulations

The modified Yaroslavsky algorithm has been implemented in Matlab for sim-
ulation, as shown in Chapter 4.3. It can take a long time optimizing different
algorithms for each test data. The algorithm variables are therefore not changed
for the different test data and the robustness is therefore also tested. The empha-
sis in the presented simulation results, is on the synthetic data, as comparable
numbers can easily be generated, since there exists a noise free full reference copy
(Chapter 1.4. This might be a drawback, as the algorithms are ultimately to be
used on real world data. The results from the synthetic data should however cor-
relate with the results from real world test data to some extent. The algorithms
have also been tested on real world data, but the results can only be compared
subjectively. Also note that the figures have to be large in order to be compared,
as the differences is on a pixel level.

5.1 Synthetic data (full reference)

The synthetic test video shows a white disc moving in circles over a background
of variable brightness and a grid, Figure 5.1. The video can force unveiling of
unwanted effects like blurring of the grid, and the white disc leaving traces. It has
been tested with various amounts of motion, and various amounts of noise. The
Matlab simulation time has also been noted. Figure 5.2 shows a still picture of
the video with added noise. Salt and pepper noise degrades 1 out of 1000 pixels,
and Gaussian white noise with mean 0, and standard deviation 6 (and a pixel
range [0 255]) degrades all pixels. Since the noise was added synthetically, a full
reference video exists, and the PSNR (Chapter 1.4.3) of the noisy video can be
calculated. The added noise resulted in a PSNR of 32 dB. The gain can later be
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Figure 5.2: Gaussian and impulse noise corrupted video with PSNR = 32dB. This is
the same as Figure 5.3 (b), but in larger scale for comparison purposes.

calculated for different algorithms.

The result from the original project work algorithm was very good on parts of
this synthetic test. The PSNR gain on 7.2 dB is second best compared with the
other algorithms. The problem is that it is not robust enough, which is shown
in Table 5.1. The performance drops drastically in case of heavy noise. The
original idea was that the thresholds should be modified for different scenarios
with different noise types. Cameras do have different and known noise models
which supported this idea. Still, various light levels means various noise level, so
that several thresholds would be needed for the same camera, which is the reason
why a version of the project algorithm with fuzzy thresholds was developed. The
greatest problem with using only one (binary) threshold in the motion detector,
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(a) 35 dB (b) 32 dB (c) 25 dB

Figure 5.3: The synthetic videos used. Different noise intensities are added, giving a
lower PSNR where most noise is added.

is that temporal filtering would be completely turned off, when it in some cases
was most needed. This would happen if heavy noise fooled the motion detector
to believe there was motion, and then turn temporal filtering off.

When the project work algorithm was fitted with fuzzy thresholds in the mo-
tion detector, the results on the synthetic video are always under the performance
of the original project algorithm. This is somewhat surprising, as the modified
(with fuzzy thresholds) Yaroslavsky does better than the original Yaroslavksy.
This can however in some sense be explained for the synthetic videos with the
highest PSNR. The original binary thresholds are near to optimal in detecting
motion for this data and will cut out most of the noise, while the fuzzy thresholds
will blend in a bit of noise in the result. Perhaps should the fuzzy thresholded
project algorithm have been more adjusted. Also note that the project algorithm
both with and without the fuzzy thresholds leaves the black impulse in the white
disc, Figures 5.4 and 5.5.

The original Yaroslavsky does a good performance especially on the high noise
data. On the 25dB data, this algorithm achieves the best PSNR gain of all. This
is because all pixels have equal weight, which is good when there is a lot of noise.
The result on the test data with little noise is however the least good, as the equal
weight causes a lot of unwanted blurring. The results of the original Yaroslavsky
algorithm are actually computed using the modified Yaroslavsky algorithm, by
setting the weights equal. This version of the original Yaroslavsky is therefore
also a bit modified, as it is extended to the temporal domain, and has a median
filtering options, but not the fuzzy thresholds. This means that the proposed
modified Yaroslavsky algorithm is capable of the same PSNR gain as the original
Yaroslavsky.

The proposed algorithm (N4,5) achieves the best performance on the two
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Figure 5.4: The result after filtering 5.2 with the project work algorithm. The result is
good, but it did not manage to remove the ipulse in the white disk. PSNR gain = 7.2dB

videos with highest quality. The reason why it does better than the same algo-
rithm, but with a larger neighborhood (N8,9) is probably because of the grid in
the video which is just one pixel thick. The diamond shaped neighborhood in the
proposed algorithm matches this very well compared to the larger neighborhood.
The algorithms should therefore have been tested on several different synthetic
videos, as the N8,9 version is likely to outperform the N4,5 in other scenarios.

42 Thor Arne S. Brandsvoll



5 Matlab simulations

Figure 5.5: The result after filtering 5.2 with the project work algorithm with fuzzy
thresholds. The result is generally worse than the original project algorithm, but looks
possibly smoother in motion areas. PSNR gain = 5.4dB
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Figure 5.6: The result after filtering 5.2 with the original Yaroslavsky N4,5 filter. The
grid has been heavily blurred, which affects the result. It have in contrast to the project
algorithms removed all the impulses in this frame. PSNR gain = 6.1dB
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Figure 5.7: The result after filtering 5.2 with the proposed algorithm, modified
Yaroslavsky N4,5. This is the best result achieved for this test video. All impulses
are also removed in this frame. PSNR gain = 7.8dB

FPGA based noise reduction in video cameras 45



5 Matlab simulations

Figure 5.8: The result after filtering Figure 5.2 with the proposed algorithm, modified
Yaroslavsky with N8,9 neighborhood. The grid is more blurred than with the smaller
neighborhood. This might be improved by adjusting thresholds. All the impulses are also
removed in this frame. PSNR gain = 6.1dB
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Table 5.1: PSNR gain for videos with different noise levels (video quality). The algo-
rithm thresholds are not changed. Keep in mind that the original Yaroslavsky algorithm
is just the same as the modified Yaroslavsky, but with equal thresholds. The proposed
algorithm is therefore able to achieve the best result on all the videos.

Video quality 25.4dB 31.5dB 34.5dB

Project 2.6dB 7.2dB 7.5dB
Project fuzzy 2.0dB 5.4dB 6.0dB
Yaroslavsky N4,5 6.3dB 6.1dB 4.5dB
Modified Yaroslavsky N4,5 4.4dB 7.8dB 8.2dB
Modified Yaroslavsky N8,9 4.5dB 6.1dB 5.5dB

Table 5.2: PSNR gain for videos with different amounts of motion. The disk speed
varies as number of frames to do a complete circle, i.e., lower numbers means more
motion. Video quality is fixed to 31.5dB. All of the algorithms achieve better results
when there is less motion, meaning that they all have a working motion detector. This
result also correlates to Figure 1.7 which shows that the motion detector controls the
filtering intensity. Also note that the proposed algorithm even achieves better results
with high amounts of motion, than any of the other algorithms with low amounts of
motion.

Disk speed [frames/360◦] 30 60 120

Project 7.0dB 7.2dB 7.4dB
Project fuzzy 5.2dB 5.4dB 5.5dB
Yaroslavsky N4,5 6.0dB 6.1dB 6.2dB
Modified Yaroslavsky N4,5 7.6dB 7.8dB 7.9dB
Modified Yaroslavsky N8,9 5.9dB 6.1dB 6.2dB

Table 5.3: Matlab simulation time for a 120 frames 256x256 gray scale video. Even
though the simulation time on a Matlab implementation of an algorithm does not neces-
sarily correlate well with the performance of an FPGA implementation, the results will
give a hint. Because the original Yaroslavsky is simulated as the extended Yaroslavsky
with equal thresholds, they have the same simulation time. In reality, the original
Yaroslavsky would be faster. Also note that all the Yaroslavsky versions simulates faster
than the project work algorithms.

Simulation time
Project 23.1s
Project fuzzy 32.2s
Yaroslavsky N4,5 10.3s
Modified Yaroslavsky N4,5 10.3s
Modified Yaroslavsky N8,9 15.8s
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5.2 Real world data (no reference)

The real world test data are 1920x1080 full HD video. Video quality cannot
be fully determined by watching the video frame by frame, and the results are
preferably to be viewed digitally. Because no noise free copy of the real world
data exists (no reference), the PSNR gain cannot be calculated. The results must
therefore be compared subjectively. Only a few examples of the test scenarios,
and the results of the proposed algorithm is given as figures in this text. An
example of the method noise is also given. Only a selection of the results are
available digitally in the Appendix, as the amount of data is substantial. Just a
second of an uncompressed video in 1920x1080p60 format takes 3*60*1920*1080
bytes, or 356MB. This gives a bitrate of 356MB/s or almost 3Gbit/s (the maxi-
mum uncoded transfer rate of the bus interface SATA revision 2.0 is 2.4 Gbit/s,
taking 8b/10b encoding into account [55]), underlining the problem of real time
denoising. Watching 1920x1080p60 videos without lag on a regular computer,
might require the whole video to be pre-loaded in the computers memory (e.g.,
by using a RAM disk). It is also clear that testing different videos with dif-
ferent algorithms using different parameters will rapidly exceed the capacity of
e.g., a 4.7GB DVD. More content could be fitted if the data was allowed to be
compressed, but the compression would affect the result and make videos in-
comparable. An interesting benchmark would be to measure the bytes saved by
compressing a noisy video and a denoised video, but this is beyond the scope of
this master’s thesis.
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Figure 5.9: Test scenario 1.

Figure 5.10: Test scenario 2.
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Figure 5.11: Top left part of test scenario 1, Figure 5.9.

Figure 5.12: Top left part of test scenario 1, when it has been filtered with the proposed
algorithm, modified Yaroslavsky N4,5. The noise have been blurred, but edges are kept
sharp. Note that the red impulse in the black square has been emphasized, because the
impulse originally spans over several pixels.
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Figure 5.13: A zoomed in version of test scenario 2.

Figure 5.14: A zoomed in version of test scenario 2, when it has been filtered with the
proposed algorithm, modified Yaroslavsky N4,5. The image is smoother with less noise,
while edges and details are kept sharp.
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Figure 5.15: Denoised version of test scenario 3.

Figure 5.16: The method noise of test scenario 3. This is what the algorithm has
removed. It looks mostly just like noise, even though some details are visible, and thus
have been removed from the image.
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Figure 6.1: Two lines of the incoming frame must be buffered. The bottom pixel in
the 3x3 diamond shaped kernel is the incoming pixel. The algorithm thus introduces a
minimum delay of two lines.

6 Hardware implementation

When the Matlab simulations had proven the strength of the algorithm, it was
written in VHDL for an FPGA implementation. Only the core functions of
the algorithm is implemented, i.e., the computation of a weighted average from
an input of ten 8 bit values. A flag is raised to signal for median filtering,
but the median filter itself is not modeled (a median filter is available as an
Altera Megafunction [56]). The logic controlling the pixel input and keeping
track of lines and frames, as well as handling the frame border cases is also not
modeled. One way of handling the border cases, is to pad the frame symmetrically
i.e. to make a copy of the frame border, and put this copy outside the original
border. A frame typically comes from the sensor serially, pixel by pixel. A whole
frame of the previous filtered result must be stored in external memory. This
is 1920*1080=2073600 values for each plane in full HD video, or about 6MB.
In addition, two lines of the current unfiltered frame must be buffered. This is
2*1920=3840 values for full HD video, or 4kB. An explanation of why these two
lines must be stored is given in Figure 6.1. The modeled logic is divided in five
different modules. A reset function is included in all of them. Only the two IEEE
packages std logic 1164 and numeric std are used. A signal flow chart is given in
Figure 6.3.

6.1 Implementation details

Five pixels from the frame buffer, four pixels from the line buffer, and the incom-
ing pixel are first sent to a module that finds the absolute value of the difference
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Figure 6.2: Input pixel labels. The current frame middle pixel which is being filtered, is
labeled px 3 and will be replaced by the output. This Figure shows how the input signals
in Figures 6.4 and 6.5, and the VHDL code examples, should be interpreted.

between the middle pixel and the others. This operation is done by first bit
extending the 8 bit pixel value with a 0, and cast to a signed value. All the
values corresponding to neighbor pixels are then independently subtracted from
the value corresponding to the middle pixel, and the absolute value is found. The
extra bit is then removed, and the difference values are sent to the next module
(as 8 bit std logic vectors). The bit extension is necessary to handle negative
results in the subtraction correctly. The operation is shown for PX 1 in Listing
7.

Listing 7: VHDL sample code for PX 1 in the first module.

TEMP PX DIFFERENCE 1 := s t d l o g i c v e c t o r ( abs ( s i gned ( ’0 ’&PX 1)
−s i gned ( ’0 ’&PX 3 ) ) ) ;

PX DIFFERENCE 1 <= TEMP PX DIFFERENCE 1(7 downto 0 ) ;

The second module compares these nine difference values with the thresholds from
the parameter register. It is also convenient to bind weights from the register to
the pixels after the similarity group has been found, and count the number of
group 4 pixels in case of an impulse. This is shown in Listing 8.

Listing 8: VHDL sample code for PX 1 in the second module.

i f (UNSIGNED PX DIFFERENCE 1 <= UNSIGNED THRESHOLD 1) then
PX 1 WEIGHT <= WEIGHT 1;

e l s i f (UNSIGNED PX DIFFERENCE 1 > UNSIGNED THRESHOLD 1) and
(UNSIGNED PX DIFFERENCE 1 <= UNSIGNED THRESHOLD 2) then
PX 1 WEIGHT <= WEIGHT 2;

e l s i f (UNSIGNED PX DIFFERENCE 1 > UNSIGNED THRESHOLD 2) and
(UNSIGNED PX DIFFERENCE 1 <= UNSIGNED THRESHOLD 3) then
PX 1 WEIGHT <= WEIGHT 3;

e l s i f (UNSIGNED PX DIFFERENCE 1 > UNSIGNED THRESHOLD 3) then
UNSIGNED NUMBER OF GROUP 4 PX := UNSIGNED NUMBER OF GROUP 4 PX +1;
PX 1 WEIGHT <= ”0000”;
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end i f ;

Nine weights corresponding to the nine neighbor pixels and the weight of the
center pixel are then sent to the third module, a multiply accumulator which
multiplies the weight with the corresponding pixels, and adds the result of all
pixels together. This intermediate result needs to be normalized before it is valid.
If the weights are restricted to be a 4 bit value (0-15) and if the pixel values
are 8 bit (0-255), this intermediate result will be a 16 bit value at maximum.
log2(10 ∗ 15 ∗ 255) = 15.2. The weights are added together to find the normalize
constant, in the fourth component, which also checks if more than seven (or
another number from the parameter register) pixels are group 4 pixels, and raises
a flag to signal for median filtering in such cases. The weights added together
will at maximum be an 8 bit value, log2(10 ∗ 15) = 7.2. The 16 bit intermediate
result and the 8 bit normalization constant then matches a 16 by 8 bit divider
nicely, in the fifth component. The output from the divider is the final result,
unless median filtering must be applied. Every component (Figure 6.3), except
the fourth, accounts for a pipeline stage. The result will therefore be ready on
the fourth clock cycle. The circuit can be divided in even more pipeline stages
to achieve a higher clock frequency. A good example is the multiply accumulate
component which multiplies 10 values and adds the results all together in just one
clock cycle. This operation can easily be divided into several pipeline stages. The
best performance is generally achieved when all the pipeline stages are equally
fast. This is something to keep in mind, so that no components are divided in
unnecessarily many pipeline stages, which will only increase the latency.

6.2 Simulation results

The components have been simulated independently and together in Modelsim
6.5e. The clock is set to 50 MHz in the simulation, or a clock cycle of 20ns. The
computation in every component happens synchronously on the rising clock edge.
Scenarios with both plausible and extreme input values are tested. Two example
waveforms of the algorithm’s standard operation is given in Figures 6.4 and 6.5.
Figure 6.4 shows that the correct result is computed on the given input, and
how the do median flag is raised when the output is invalid at 140ns when the
middle pixel is 63, and all other pixels are 255. Figure 6.5 shows how changing
the thresholds and adjusting the weights affects the output, even though the pixel
input is the same. When the thresholds are widened, the high values 30 and 31
are included in the average and the output jumps from 15 to 19. The thresholds
are then set back to default, and weights are changed instead, so that only the
weight of the center pixel counts. This correctly causes the output to be the
same as input px 3. When the asynchronous reset signal goes high at 150ns, the
output is immediately set to 0.
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6 Hardware implementation

Table 6.1: Synthesis summary. The algorithm should be divided in more pipeline stages
to achieve a higher maximum clock frequency.

Logic elements Registers DSP blocks fmax

Quartus 1587 303 0 35.0 Mhz
Synplify 1131 296 5 35.5 Mhz
Synplify w/ retiming 1044 345 5 87.7 Mhz

6.3 Synthesis results

The design was synthesized in both Quartus 11 and Synplify Pro C-2009 for
the Altera Cyclone III (EP3C5F256C6) FPGA. The Cyclone III family is a low
cost FPGA family from 2007, based on a 65nm process. It is suitable for both
image and video processing applications. Synplify Pro has an option of doing
retiming in the synthesis which can be used to optimize the clock period. This
option actually made the clock frequency 2.5 times as high and freed up 87 logic
elements, at the cost of 49 registers. The critical path (Figure A.2) through
the multiply accumulator-component, which multiplies and adds ten numbers in
just one clock cycle, and takes up 625 logic elements (Quartus Synthesis). This
operation could easily be optimized for both area and performance by using the
multiply-accumulate Megafunction, which is an Intellectual Property (IP) block
from Altera [56]. Another component that could easily be optimized using a
Megafunction, is the divider. The five DSP blocks used in the Synplify synthesis,
are actually 18x18 bit multipliers used as ten 9x9 bit multipliers, which saves some
logic elements compared to the Quartus synhtesis. The highest clock frequency
achieved was 87.7Mhz. According to FPGA specialists at Cisco Systems, a clock
frequency of at least 150Mhz should be aimed for. This ought to be achievable
with some effort in optimizing the design. The synthesis results are summarized
in Table 6.1.
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7 Discussion

Video noise is by no means a solved problem. Modern high resolution camera sen-
sors with high frame rates have only made the problem harder, as the data rates
have become tremendous. The bitrate of uncompressed 1920x1080p60 video is al-
most 3Gbit/s. A lot of computation can therefore be saved by using a color space
with a luminance channel like YUV. Because the human eye is more sensitive to
luminance than chrominance, denoising can be limited to the luminance plane,
thereby reducing the denoising data amount to about 1Gbit/s. Even though
YUV is common in imaging pipelines, because the bandwidth can be reduced
because of chroma subsampling, it is usually only available late in the imaging
pipeline. Denoising should however be an early stage in the imaging pipeline,
because other stages will be more effective on denoised data. And in the earliest
stages of the imaging pipeline, only the raw image format from the image sensor
is available. This usually means mosaicked RGB data. If the algorithm is to work
with mosaicked data, it must select only neighbor pixels representing the same
color, meaning that the neighborhood will be more spread in accordance with
the CFA. If the algorithm is to work with already demosaicked RGB data, the
simplest way is to process the planes individually. This can cause color bleeding
as shown in Figures 2.2 and 2.3. A more sophisticated method is therefore to
calculat the Euclidean distance where all three planes contribute to a mutual dis-
tance. The Matlab and VHDL implementation are however based on individual
demosaicked planes.

It is obvious that blindly using of the simplest of the reviewed algorithms, e.g.
Gaussian blur, will not provide good results. As shown in the project work [54],
these are basic methods that must be combined with motion detectors or such,
so the filtering can be reduced in certain areas of the frame. This is also true
for the more advanced algorithms, such as the modified Yaroslavsky algorithm,
but in this case the motion estimation is embedded as it will only use similar
pixels in the averaging process anyways. If there has been motion in some of the
pixels, they will not be similar, and the problem is solved. Because less pixels will
be used for averaging in such cases, the total filtering intensity will be lowered.
This is true for all the simulated algorithms, and is shown in Table 5.2. They
all achieve a better PSNR when there is less motion, which is in accordance with
Figure 1.7 (standard approach for motion estimation).

Comparing the modified Yaroslavsky with the project work algorithm, the
project work algorithm used more resources to divide pixels into motion, edge,
and impulse groups. The final filtering could then be carried out in a simpler way,
as the normalization constant could be fixed to e.g., 2 or 32, which can be carried
out by simple shift operations in the FPGA. The modified Yaroslavsky also has
logic for handling edges, motion, and impulses, but these functions have been
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7 Discussion

more incorporated so that the total resource usage is less than for the project
work algorithm. It is also more flexible with respect to weights, and handles some
cases better, as shown in Figures 3.2 and 4.3. As a matter of fact, all of the most
advanced and well recognized algorithms reviewed, Yaroslavsky, Bilateral, and
NL-means, have a variable normalizing constant, meaning that the division can
not happen by shift operations.

Comparing the modified Yaroslavsky with the original Yaroslavsky algorithm,
there have been done three modifications. The first modification is to extend the
neighborhood to the spatio-temporal domain, which makes it more of a video
denoising algorithm, rather than an image denoising algorithm applied on video.
This is the most important extension, as pixels will be more averaged over time.
A temporal function is necessary for all video denoising algorithms, and a pure
spatial (2D) noise filter is actually not considered a video denoising algorithm at
all, as described in Chapter 1.2 (Denoising approaches). The original Yaroslavsky
is also spatio-temporal extended when compared with the modified Yaroslavsky
in the simulations, as a pure spatial implementation of it would undoubtedly
perform a lot worse.

The second modification was to introduce fuzzy thresholds, so different weights
can be applied to pixels accordingly. This is actually the only modification differ-
entiating the modified from the original Yaroslavsky in the simulation chapter.
According to Table 5.1, this modification adds several dB gain for videos of higher
quality. When the test video is of low quality, with a lot of noise, the original
Yaroslavsky achieves better results. The reason for this is that the thresholds
in the modifications have not been adjusted for the lower quality video. In all
fairness, the original Yaroslavsky could have been adjusted to the higher quality
videos as well, but the possibility of making adjustments is larger in the modified
version. It is also a well known case that the Bilateral filter is more advanced
and performs better than the Yaroslavsky filter. This second modification tries
to mimic this superiority without being too costly in terms of computation.

The third modification is also an important one. The original Yaroslavsky
has no detection of impulse noise, and an impulse will actually not be dealt
with at all. This happens because no neighbors will be similar, so that only the
middle pixel itself contributes to the filtered result. The detection of impulse
noise can easily be implemented, but the following median filtering will require
an not insignificantly amount of resources in an FPGA solution. The best way to
implement the median filter, is probably by using the 2D median filter available
as a MegaCore function in the Altera Video and Image Processing Suite [56].

Two different neighborhood sizes were simulated in Matlab. Surprisingly
enough, the smaller N4,5 scored better the larger N8,9 neighborhood, despite its
higher complexity and therefore also simulation time. However, the extra pixels
available in the N8,9 neighborhood is further away from the middle pixel, which
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can be a problem for fine details such as the grid in the synthetic video. Never-
theless, if the thresholds had been more strict, this would not matter. Another
somewhat strange result, is that the project work algorithm did worse with fuzzy
thresholds, whereas the Yaroslavsky with fuzzy thresholds did better. This might
also be a problem with the thresholds. Setting the optimal thresholds is actually
a general problem with most denoising algorithms, as it depends on the amount
of noise in the video.

As shown in Chapter 1.4, another general problem, is how to compare video
quality and denoising algorithms. As shown in Chapter 1.4, there are no algo-
rithms that can predict the human perception of video qualities perfectly, es-
pecially not for no reference videos. Despite the drawbacks of PSNR, and the
fact that more universal methods have been proposed, these have yet to gain
popularity.

The FPGA implementation of the algorithm can make use of some optimiza-
tions. A reset signal is included in all the individual components. This is probably
unnecessary as long as the denoising algorithm, seen as a single component in
a larger system, has it. The four staged pipeline was a simple implementation
from a designers point of view, and a good starting point for further optimiza-
tions. If the goal of the clock frequency is 150MHz, with a throughput of one
pixel each clock cycle, the implementation should be divided in more pipeline
stages. Putting into perspective, two lines must be buffered anyways, meaning
3840 clock cycles for full HD video. Four clock cycles is then just a drop in the
bucket of the total latency. The gain of register retiming certainly shows great
improvement potential.
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The goal of this study was to find a fast video denoising algorithm, which could be
implemented on an FPGA without using an exaggerated amount of its available
resources. The proposed modified Yaroslavsky with the N4,5 neighborhood size
has proven to fulfill this goal. It is a spatio-temporal algorithm which handles
motion, edges, and impulses well. It was implemented in Matlab using matrix op-
erations and avoiding loops. Synthetic and real world Matlab simulations showed
that the proposed algorithm performed overall better than the project work algo-
rithm and the original Yaroslavsky algorithm, with high PSNR gains and a low
computational complexity. There are no universal weights and thresholds, but a
good starting point is to mimic the more advanced Bilateral filter.

The core functions of the algorithm was implemented in VHDL and simulated
in Modelsim with belonging test benches. It was synthesized for the low cost Al-
tera Cyclone III FPGA, using Quartus and Synplify. The algorithm required only
a small part of the FPGA’s available resources. The maximum clock frequency
achieved was 87.7MHz, with a four staged pipeline. The pipeline can easily be
divided in more stages to achieve a higher clock frequency. The total delay was
four clock cycles in the pipeline, as well as the two lines of the frame that must
be buffered if the frame is received and processed pixel by pixel.
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9 Future work

A natural step further is to load the system on an actual FPGA, and connect it
with a camera. This will require some further development so the specific video
stream can be handled properly. The thresholds and weights will also need to be
optimized for the specific camera. The VHDL code can also be more optimized,
first of all by dividing the modules in more pipeline stages so a higher clock
frequency is achieved. Second, by utilizing convenient Altera Megafunctions.

Another improvement to the algorithm, is to utilize the Euclidean distance
as a function of all three planes. This would however introduce additional com-
plexity. It could also be interesting to explore if the optimizations developed for
the Bilateral filter could be translated to the modified Yaroslavsky.

Another interesting future work, would be to combine demosaicking into the
algorithm, as these are similar operations, so that the total complexity of demo-
saicking and denoising can be lowered.

The computational power of FPGAs seems to increase in line with the de-
mand of higher resolutions and frame rates. This means that the most powerful
algorithms like the NL-means, not can be utilized before there is a break in this
demand, so the FPGAs get the time to catch up.
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[9] A. Maalouf, P. Carré, B. Augereau, and C. Fernandez-Maloigne, “Bandelet-
Based Anisotropic Diffusion,” in Image Processing, 2007. ICIP 2007. IEEE
International Conference on, vol. 1. IEEE, 2007, pp. I–289.

[10] B. Saevarsson, J. Sveinsson, and J. Benediktsson, “Combined wavelet and
curvelet denoising of SAR images,” in Geoscience and Remote Sensing Sym-
posium, 2004. IGARSS’04. Proceedings. 2004 IEEE International, vol. 6.
IEEE, 2004, pp. 4235–4238.

[11] B. Song, L. Xu, and W. Sun, “Image denoising using hybrid contourlet and
bandelet transforms,” in Proceedings of the Fourth International Conference
on Image and Graphics. IEEE Computer Society, 2007, pp. 71–74.
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Appendix A Figures

A digital appendix is also attached, and includes Matlab and VHDL code for the
modified Yaroslavsky algorithm, together with example results.
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Figure A.1: A Contrast sensitivity function. The contrast increases from left to right,
and the spatial frequency increases from the bottom to the top. If the human perception
of contrast was only dependent on the actual contrast in the image, the alternating
black and white bars would appear to have equal length. As the perception of contrast
is also dependent on the spatial frequency (the width of the bars) the bars seems longest
somewhere in the middle of the image, dependent on the view distance. Because this
area changes with view distance, it shows a property of the HSV, and not a property
of the figure itself. Similar graphs for chroma components shows that humans are less
sensitive to chroma, meaning the luminance has first priority in denoising.
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Figure A.2: The critical path. It appears in the multiply-accumulate component.

a-3


	Abstract
	Preface
	Contents
	Introduction
	Noise
	Denoising approaches
	Obtaining colors
	Video quality measurement
	The human visual system

	Previous work
	Average
	Median
	Gaussian blur
	Anisotropic
	Yaroslavsky
	Bilateral
	Non-local means
	Algorithm complexity
	Temporal extension
	Color handling

	Project work algorithm
	Mode of operation
	Disadvantages and improvements

	Modified Yaroslavsky filtering
	Neighborhood size
	Thresholds and weights
	Matlab implementation

	Matlab simulations
	Synthetic data (full reference)
	Real world data (no reference)

	Hardware implementation
	Implementation details
	Simulation results
	Synthesis results

	Discussion
	Conclusion
	Future work
	References
	Appendix Figures

