
Master of Science in Electronics
June 2011
Per Gunnar Kjeldsberg, IET
Lars Aurdal, Cisco

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Tone mapping in video conference
systems

Erik Strømme

Problem Description

Student: Erik Strømme

Title: Tone mapping in video conference systems

Problem: Problem description
Supervisor: Lars Aurdal, Cisco Systems Norway
Subject teacher: Per Gunnar Kjeldsberg, Professor NTNU

Video signals from digital video cameras have a limited bit depth and a thus a
limited dynamic range available. However, a particular scene might require a much
higher dynamic range. This causes either dark regions in the image (if not too
many pixels are to be saturated), or saturation in high-light regions in case the
dark regions are exposed at a higher level.

One way of improving this is to introduce a global tone-mapping function, i.e.
a mapping that takes input signal values and maps them to new output values.
Typically, this mapping would boost dark areas in case the scene shows a lot of
contrast. So-called local tone-mapping takes this one step further by using different
mapping functions in different regions of the image depending on what the image
looks like locally. Local tone-mapping will require some analysis functionality to
support this local adaptation.

The task is a continuation of an autumn project and includes a literature re-
search phase to explore different solutions, then simulations of the selected approach
followed by an implementation on real time hardware (FPGA). The implementa-
tion is likely to involve the use of some kind of histogram function in the FPGA,
implementation of some robust real-time logic to determine a suitable global tone-
mapping curve and finally implementation of the actual tone-mapping function in
FPGA. Global tone-mapping should be considered before local tone-mapping.

Abstract

Normal sensors are able to only capture a limited dynamic range. In
scenes with large dynamic range, such as situations with both dark indoor
and bright outdoor parts, the image will get either over- or under exposed if
the exposure is not perfect.

Producing high dynamic range (HDR) images will capture the full dy-
namic range of the scene. There are two main ways of producing HDR images.
One combines multiple exposures with a low dynamic range (LDR) sensor.
Another is to use a sensors which are able to capture a higher dynamic range,
so called wide dynamic range sensors.

Multiple exposures with a single low dynamic range sensor, is not suitable
for real time video because this technique have large problems with move-
ment. Wide dynamic range sensors only require one exposure, but these have
difficulties in normal situations were LDR sensors are sufficient.

A type of algorithms called tone mapping are used to reduce the high
dynamic range image to fit the limitations of normal monitors. Simulations
show that using these algorithms on low dynamic range images will change
the illumination of the scene, solving the problem.

Tone mapping algorithms presented in the literature are software algo-
rithms. Two groups of algorithms exist; local and global tone mappers. Local
algorithms are time consuming, and require large amounts of memory. They
are not suitable for real time implementations since they rely on filtering op-
erations for each pixel. Global algorithms, does not rely on filtering and are
less time consuming. A precomputed curve is used to map the pixels to new
values. This makes the global algorithms more suitable for video.

A reduced tone mapping system is presented. This reduction results in a
segmented curve, which drastically reduces the memory required for defining
the curve. It also makes it feasible to control temporal changes. The reduced
system has been successfully implemented, achieving sufficient frequencies to
be part of a real time system.

Preface

This master thesis is the final part of the Master of science degree in electronics
at NTNU. The purpose of this thesis was to continue the project conducted in the
autumn of 2010 regarding tone mapping.

I would like to thank my supervisors, Professor Per Gunnar Kjeldsberg at
NTNU and Lars Aurdal from Cisco Systems Norway. I would also like to thank the
rest of the camera group at Cisco Systems, especially Ronny Randen, for a very
valuable discussion on the selected algorithm and the implementation. Finally, I
would like to thank my colleague Thor Arne Brandsvoll for interesting discussions
throughout the semester.

Trondheim, June 19, 2011

Erik Strømme

v

Contents

Contents

List of abbreviations i

1 Introduction and motivation 1

2 The image 4
2.1 The sensor . 4

2.1.1 Noise . 5
2.1.2 Color capturing . 6

2.2 Dynamic range . 7
2.3 High Dynamic Range images and video 10

2.3.1 Multiple exposure . 10
2.3.2 Wide dynamic range sensors 13
2.3.3 Piecewise linear sensor . 14

2.4 Displaying HDR images and video 15

3 Tone mapping algorithms 16
3.1 Gamma correction function and sRGB 17
3.2 Global tone mapping algorithms . 17

3.2.1 Tone reproduction for realistic images 19
3.2.2 Histogram equalization . 19
3.2.3 Adaptive logarithmic tone mapping 21
3.2.4 Adaptive tone mapping . 22

3.3 Local tone mapping algorithms . 23
3.4 Color handling in tone mapping . 26
3.5 Exploiting temporal properties . 27

4 Evaluation and choice of tone mapper 27
4.1 Algorithm decision . 28

4.1.1 Local Algorithms . 28
4.1.2 Global algorithms . 29

4.2 Selected algorithm . 31
4.3 Proposed system for implementation of algorithm 32

4.3.1 Reducing the curve . 34
4.3.2 Temporal properties . 36
4.3.3 Extent of histogram . 37

5 Results and discussion 38
5.1 Home office . 38

5.1.1 Histogram . 39
5.1.2 Tone mapping curves . 39
5.1.3 Resulting images . 40

5.2 Student room . 41
5.2.1 Histogram . 42
5.2.2 Tone mapping curves . 42

vii

Contents

5.2.3 Resulting images . 43

5.3 Sofa . 45

5.3.1 Histogram . 46

5.3.2 Tone mapping curves . 46

5.3.3 Resulting images . 47

5.4 Reading place . 50

5.4.1 Histogram . 51

5.4.2 Tone mapping curves . 52

5.4.3 Resulting images . 53

5.4.4 Comparison of local and global algorithm 56

5.5 Summary of discussions . 57

5.5.1 Tone mapping . 57

5.5.2 Global or local . 58

5.5.3 Tone mapping in video . 58

6 Implementation details 59

6.1 Calculating the coefficients . 60

6.2 Histogram . 61

6.3 Tone mapper . 64

6.3.1 Tone mapping on or off . 65

6.4 Implementation results . 66

6.4.1 RGB to Y . 67

6.4.2 TMA . 67

6.4.3 TMB . 67

6.4.4 Luminance modifier . 68

6.4.5 Reducer . 68

6.4.6 Buffer . 68

6.4.7 Histogram implementation 68

6.4.8 Bus interface . 69

6.4.9 Verification . 69

7 Conclusion 71

8 Future work 73

References 74

A XYZ and Yxy 79

B Reinhardts photographic tone mapper 81

C Array divider 82

D RTL view 83

viii

Contents

E VHDL code 84
E.1 Package . 84
E.2 Top level . 87
E.3 rgb2ychan . 90
E.4 TMA . 91
E.5 TMB . 93
E.6 Lum modifier . 94
E.7 Reducer . 100
E.8 Buffer . 101
E.9 Histogram . 102
E.10 Memory interface . 104
E.11 Test bench . 106

E.11.1 Test bench for top level . 108

F Simulations of VHDL modules 116
F.1 rgb2ychan . 116
F.2 TMA . 117
F.3 TMB . 118
F.4 Array divider . 119
F.5 Buffer . 120
F.6 Memory interface . 121
F.7 Reducer . 123

G Matlab code for generating test vectors 124

ix

Contents

List of abbreviations

Page
APS - Active pixel sensor 13
ASIC - Application Specific Integrated Circuit 27
CAM - Camera Appearance Model 27
FPGA - Field Programmable Gate Array 28
FPS - Frames Per Second 8
LDR - Low Dynamic Range 10
HDR - High Dynamic Range 10
HDRi - High Dynamic Range image 4, 10
HVS - Human Visual System 24
SNR - Signal to Noise Ratio 13
WDR - Wide Dynamic Range 13

i

1 Introduction and motivation

1 Introduction and motivation

Humans are able to distinguish an incredible range and variety of colors in a natural
scene. Since the earliest times it has been a quest to reproduce scenes for later. This
reproduction was dependent on two main factors, where the first was the quality
of the medium and the other the skill of the artist. One of the earliest examples
is paintings in caves showing hunters and animals. The use of these can only be
speculated on, but from a scientific point of view the paintings were done on a
crude medium with only the most basic form of paint. This gave the painters few
colors, or range of colors, to work with. As history progressed, painters increased
the range of colors to work with and the quality of the medium. This gradually
forced a shift from where the end result was dependent on the materials, to the
skill of the painters.

With the invention of the photography the problem moved slightly towards the
equipment. Before the digital era, photographers had to manually process each
photo for the best result. This was more about choosing how the light should be
represented. One way of doing it was with the zone system [1, 2, 3, 4]. Here the
photographer selected the mid gray level, while the rest of the picture was mapped
relative to this. This was based on the realization that the immediate surroundings
of sections in the image influence how that section is experienced.

Perfectly reproducing a real world scene is a very difficult task which depends on
many factors. The two most obvious factors today which prevent this, is the quality
of the camera and the monitor. The quality of the camera is mainly depending on
the image sensor and how many colors the image sensor can sense. The quality
of the monitor depends on how many pixels the display has and how many colors
each pixel can show.

In the modern digital world it has become possible to save pictures digitally.
One important result of this is that it is possible to store more color variations
than it is possible to show. The amount depends on the image sensor used to make
the image. Algorithms to compress these images to a viewable range can be called
image reproduction or tone mapping algorithms.

The earliest tone mapping algorithms were made for compressing high dynamic
range (HDR) computer generated images to a viewable range [5]. Common for this
type of image processing is that all details in the scene, such as the reflectance and
transparency, are known.

With developments in sensors, production of HDR images of natural scenes
became possible. The problem with this case compared to artificial HDR is that
there is no information about the physical properties of the scene. This reduces
the amount of information that the tone mapping algorithms have to work with.

Spivak et. al [6] summarized the overall high dynamic range imaging task to
two stages. The first is to capture the scene in high dynamic range which would
prevent loss of details. This would then be followed by post processing with tone
mapping algorithms to be viewable on a normal computer screen.

Algorithms designed for video is not common. The reason for this is that video
recording in high dynamic range is almost nonexistent. Also, if a high dynamic
range video is to be compressed to a lower range, simply using algorithms for image

1

1 Introduction and motivation

processing is possible in a post production phase.

Video conferences have some unique challenges compared to normal video. The
biggest difference is that there are requirements on how much delay there can be.
If the delay is to large, the experience will degrade substantially.

One specific problem for video is scenes with challenging light conditions. Typ-
ical examples of this are scenes with both indoor and outdoor parts. The normal
sensors are not able to capture the full range of light, and will choose an exposure.
The exposure might be technically correct, but might results in a focus on parts of
the scene which are not interesting. Typically, the indoor part of the scene might
be casted very dark compared to the outdoor part. This will greatly reduce the
subjective quality of the scene.

Using high dynamic range video would solve this since the video would then be
able to capture both the indoor and outdoor part. The problem then would be how
to view the video. HDR monitors are gradually becoming available [7], and these
are able to display the HDR video and images. However, most monitors have a
very limited dynamic range, and a processing step is necessary to reduce the HDR
content to fir the limitations of this. This is known as tone mapping. Another use
of tone mapping algorithms is to change the brightness of the scene. The problem
with video conferences in this regard, is that it should be real time. This limits
how much post processing can be done.

This report will first look at how an image is created in chapter 2. This is a
natural start, since a video is basically a series of images taken in rapid succession.
Here, it is natural to start looking at how the basic image sensor works, but also
on some state of the art image sensors. Aspects such as noise removal and demo-
saicing will be briefly discussed as they are vital parts of any image pipeline. This
will be followed by a discussion on what high dynamic range images are and how
these differ from low dynamic range images. Different solutions to generating high
dynamic range images will be presented. Special interest will be taken in how this
can be implemented in a real time video system.

Chapter 3 is about tone mapping algorithms. There are two broad categories of
tone mapping algorithms, global and local algorithms. From the first group, global
tone mappers, several algorithms will be presented. These algorithms are more
suitable for a real time implementation (see chapter 4) than the local algorithms.
A summary of some of the most important and representative local algorithms will
be presented. A more detailed discussion of these can be found in [8].

Chapter 4 contains a more in depth look into the constraints and limitations of
using a tone mapper in real time on an FPGA. Here a selected algorithm will be
discussed. A system for reducing the algorithm to better fit the constraints of the
FPGA will be presented here.

Simulation results is presented in chapter 5. Here a number of practical situ-
ations will be compared, with tone mapping both on and off. How the reduction
influences the results will be discussed here. The goal of this chapter will be to
justify tone mapping visually.

The next chapter, chapter 6, will present the implementation of the reduced
tone mapper. Various choices related to the implementation will be discussed here.

2

1 Introduction and motivation

The report will be concluded in chapter 7.
The last chapter will outline directions for future work with tone mapping in

real time video conferences. The main step here will be to test the tone mapping
on a video or video system.

Main contributions of this thesis:

* Evaluation of HDR for video.

* System for reducing global algorithms to fit FPGA constraints.

* Implementation of a real time reduced tone mapping system.

3

2 The image

2 The image

Tone mapping is specifically designed for processing High Dynamic Range images
(HDRi). However, it is important to have a basic understanding of how normal
low dynamic range images are made, and the limitations of these. This chapter
will therefore be dedicated to how the image is created.

First a general image sensor will be discussed. This is to show the overall design
which is shared by most image sensors. This will include a brief overview of noise
sources and how color is captured. Both aspects are very important in how the
image is perceived.

This will be followed by a discussion on dynamic range. The dynamic range of
a sensor is one of many different characteristics for image sensors. Some common
challenges in traditional photography will be discussed here, since these are relevant
for both dynamic range and HDRi.

The next section will concern HDRi. This is a technique which is designed to
solve some of the challenges of traditional photography. There are a number of
different ways to produce HDRi, and some of these will be discussed here. The
drawbacks of the techniques and how well they could work in a real time video will
also be discussed.

2.1 The sensor

The first step of creating an image is to record the scene. This is done by measuring
the visible light reflected by the scene.

Digital circuits capable of measuring the light of a scene arrived with the digital
era. Many different photo detector architectures exist, but they all have in common
that they are able to transform incident photo flux to photo current [9]. An example
of a photo detector design can be seen in Figure 1.

Figure 1: This is a photo detector operating in direct integration. Charge collected is
gathered across the diode capacitance CD. At the end of the integration time, the charge
is either directly read out or directly converted to voltage and then read out. Figure from
[9].

The total sensor is basically a matrix of photo detectors. During exposure,
charge will be accumulated by each photo detector (Across CD in Figure 1) based
on how much light the photo detector is exposed by. The result is an electronic
representation of the scene in black and white. This is then combined with analog
to digital converters to produce a digital representation of the scene.

4

2 The image

Figure 2: A general image pipeline. The pipeline sequence varies between manufacturers.
Figure from [10]

Figure 2 shows all the processing steps which are necessary to produce an image.
The sequence of the processing steps varies from manufacturer to manufacturer.
The mosaic pattern seen in the sensor, aperture and lens block, is a bayer filter.
This is one way of producing color images, and will be discussed in the section
about Color capturing. The demosaic block is related to the bayer filter. This step
will use the raw sensor data, or bayer data to produce a color image.

Humans are able to understand white objects, even if the object emits light
with wavelengths technically not white. White balance is a step which tries to
emulate this, by changing the values produced. One way of doing this is to assume
that the maximum value in the image represents white. This value should then
be scaled up so the digital representation is maxed. All other values in the image
should be scaled with an equal amount [10].

2.1.1 Noise

An image sensor pipeline with noise sources is shown in Figure 3. How much each
of these sources contribute to the end sum of noise vary between sensors. The read
out rate and how the pixels are designed are just some of the aspects which affect
the amount of noise. Noise will be visible in the image, and too much will reduce
the quality of the image. The goal is therefore to reduce the noise as much as
possible.

Dark current is considered to be one of the defining characteristics of an image
sensor [9]. This indicates how much current flows through each photo detector when
they are not exposed to any illumination. The amount of dark current greatly affect
the quality of the image in low light conditions [12, 11].

There is a series of additional noise sources, as seen in Figure 3. Tempera-
ture, exposure time and read out rate will all affect how much noise each source
contributes. This makes it very difficult to remove all noise.

There have been a great deal of research done in how to remove noise, known as
denoising [13]. Denoising algorithms can be done both in pre and post processing
of the image.

Denoising in video sequences is closely related to denoising for images. The

5

2 The image

Figure 3: Figure showing the noise sources in an image pipeline. These sources are
commonly summarized when discussing and working with noise removal. Figure from
[11].

difference is that video sequences will have an additional temporal dimension as
well. This dimension can be used in many ways to remove some of the random
noise. One very simple algorithm is to take the average of two consecutive frames.
This has many downsides, so more advanced techniques specific for video have been
developed [14].

2.1.2 Color capturing

Humans perceive light with different wavelengths as color. The eyes contains cones
which allow us to do this [15]. There are three types of cones, short, medium and
long. These differ in which wavelengths they sense, and correspond to wavelengths
which we experience as blue, green and red.

An image sensor can be said to capture only different amounts of light. The
most common way of measuring color in digital photometry is with a bayer filter
[16] that can be seen in Figure 4. There are other types of color filters used, but the
bayer filter is the most common. Different types differ either in the distribution of
filters or different filters altogether, like CYGM (cyan, yellow, green and magenta).
The principles behind are the same, but the properties change somewhat with
different filters. In a bayer filter, a red, green and blue filter is used to sample the
light with different wavelengths.

A photo detector covered in a red filter will only let red light pass through,
sensing how much red light is received by that photo detector. Green will only
let green light through, and blue only blue light. Here red, green and blue are
understood as light with wavelengths corresponding to what we humans perceive
as red, blue and green. Figure 5 shows the spectral response of one sensor using a
bayer filter.

After capturing an image with a sensor using a bayer filter, a series of steps are
necessary to compute the color image.

The most important step, which is directly related to the bayer filter, is called
demosaicing. Here the raw bayer data from the image is transformed to a proper
image. Each raw bayer pixel only represent one color, so one way of doing this is to
interpolate between groups of four Bayer pixels. The resulting average would then

6

2 The image

Figure 4: A bayer filter. Here the gray blocks are the photo sensing pixels, while the
colored blocks are filters. The photo sensing pixels are only able to sense light, not dis-
tinguish colors. Using a bayer filter will thus enable it to sample color, although the total
resolution will be reduced. Figure from wikimedia, File:Bayer pattern on sensor.svg

Figure 5: Spectral response of a CMOS sensor using an RGB bayer filter. This response
is specific for this particular sensor. Other sensors have different responses. Figure from
[17]

represent the pixel for that section in the image. There are many more advanced
ways of doing this, some which are discussed by Xiu et. al [18].

Another step is color correction. This step is specific to a given type of image
sensor. It will counter the variations of the image sensor and return an independent
version of the image. In the color correction step, the colors are modified to counter
variations of the sensor type and the filters.

2.2 Dynamic range

Dynamic range is a ratio between the largest and smallest measurable quantity of
a varying quantity. Typically, the dynamic range is either represented as a ratio,
as seen in Figure 6, or a decibel value.

The dynamic range of a camera is the ratio of the highest detectable non saturat-
ing photo current to its smallest detectable photo current. The smallest detectable
photo current is limited by the dark current and the fixed pattern noise [19, 20, 9].

7

2 The image

Figure 6: Illustration of how large dynamic range humans can perceive compared with
a CRT monitor and the natural world. The numbers here are just for illustrating the
differences. The human eye are capable of an extremely large dynamic range, but not at
the same time. Figure from [21]

Examples of dynamic range in decibel can be found in data sheets of sensors.
One example is found in the data sheet to Kodak’s KAF-09000 image sensor [22].
Here the dynamic range is given to be 84 dB. Other sensors have different dynamic
ranges, for example the older KAC-3100 image sensor [23] which has a dynamic
range of 48 dB. Higher dynamic range indicate that the sensor is capable of captur-
ing a larger variety of light in the scene compared to a sensor with lower dynamic
range.

These sensors are good examples on how different sensors have different uses.
The KAF-09000 sensor only has a frame rate of 0.4 frame per second (fps), while
the KAC-3100 sensor has 10 fps. This difference will greatly affect how much noise
there is in the sensor. In general, higher frame rate will increase the noise [11],
affecting the lower bound of the dynamic range.

It is also interesting to look at the difference between the KAC-3100 and KAC-
5000 [24] sensors. Here the KAC-5000 model has a higher dynamic range, despite
a bigger sensor. The higher dynamic range can be traced to the smaller read noise
reported. This read noise is defined as the total temporal noise in dark, and it is
the quantity Kodak use when calculating the dynamic range.

Both Yang et. al [19] and Gammal et. al [9] pointed out that dynamic range
alone does not correspond well to the image quality. Another important factor is
the signal to noise ratio (SNR). This quantity indicates how good the quality of
the signal is. Extending the dynamic range at a cost of decreased SNR is possible
as discussed by Yang et. al, but it will reduce the quality of the image.

Exposure

One parameter often seen in photography is exposure time. Varying this will change
how long the sensor will measure the light of the scene.

The practical aspect of this in regards to the dynamic range can be seen in
Figure 7. The dynamic range is unchanged, but the darkest and brightest points
are changed equally by changing the exposure time.

By increasing the exposure time, the integration time of the sensor will be

8

2 The image

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300
Showing long exposure and short exposure

Illumniation in scene

O
ut

pu
t r

an
ge

Long exposure
Short exposure

Figure 7: This illustration shows how changing the exposure time will change the focus
of a scene. The horizontal axis indicates how much light there is, while the vertical axis
indicates how the corresponding light will be represented in the image. The horizontal part
of the long exposure around 250 indicates that the sensor has gone into saturation. This
means that light above this will be indistinguishable. However, details in the range of 0 to
300 will not be visible for the image taken with short exposure.

increased. This means that the sensor will be given longer time to gather light
before the sensor is read and reset. Typically, for dark scenes the exposure time
should be long to capture as much light as possible. For a bright scene on the other
hand, the exposure time should be low to prevent saturation of the sensor.

Figure 8: This figure illustrates the difference between an overexposed image (left) to an
underexposed image (right). Images from Fattals image library.

Setting the exposure time too low will result in an underexposed image, as can
be seen on the right part of Figure 8. Setting it to high on the other hand will
result in an overexposed image. Here details in bright regions will be saturated.

9

2 The image

2.3 High Dynamic Range images and video

The difference between high dynamic range (HDR) images and low dynamic range
(LDR) images is a bit diffuse. A common misconception is that the bit depth alone
defines the difference. In the book by Reinhard et. al [25] about High dynamic
range imaging, one definition is proposed. The main difference given here is that
LDR images are images which are output-referred, while HDR images are scene
referred. Therefore, HDR images will be able to capture all the light variations of
a scene [26].

This definition implies that LDR images can be viewed without any processing,
while HDR image will have to be processed in some way. This is a result of normal
monitors having a low dynamic range, and algorithms used for this are called tone
mapping algorithms [7].

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300
Showing combination of long exposure and short exposure

Range of a scene

O
ut

pu
t r

an
ge

Long exposure
Short exposure
HDR combination

Figure 9: This illustration shows how an HDR image will have a larger dynamic range
than images with short and long exposure. The larger dynamic range for HDRi will allow
it to store more information about the scene. A note here is that HDR images usually
is normalized to 0,1 and represented in a floating point format to cover all the small
variations.

HDR images have two main sources. The first and most common are computer
generated images. This technique is a result of powerful graphical processing units
which are able to render artificial scenes with clearly defined details about light
and reflection in a scene.

The other source is real world HDR images. There are many techniques used
to produce these. One is to capture a series of images of a scene with different
exposures. These can later be combined, giving an HDR image.

2.3.1 Multiple exposure

Images

The first, publicly available, method for generating high dynamic range images
(HDRi) was presented by Debevec and Malik [27] in 1997.

10

2 The image

Figure 10: This figure illustrates how images of a scene with different exposures will
look. Combining these images will give an HDR image which will have a bigger dynamic
range than a single exposure. Images from Fattals image library.

In their paper they assume that the camera response curve is unknown. This
means that they first have to develop an algorithm that is able to find this curve.
The assumption made is that the system is an analog film camera, so the response
curve will be non-linear. They present a solution to find the curve by taking a
number of different pictures of the same scene while varying the exposure. These
pictures should be aligned under the constant light conditions, so that a given pixel
will represent the same section in all the exposures. An example of this can be
seen in Figure 10. It is possible to find the camera response curve with as few as
two exposures if this constraint is maintained. The accuracy of the camera curve
however, will increase with the number of exposures.

lnEi =

∑
w(Zij)(g(Zij)− ln4ti)∑

w(Zij)
(1)

In their paper they use the camera curve to produce an HDRi image. This can
be seen in equation 1. Here g is the camera response function and Zij is pixel value
number j in exposure i. 4ti is the exposure of image i. The result of this will be a
linear HDRi image.

In the algorithm by Debevec and Malik more weight is given to a pixel with
values closer to the middle. This is realized by w(Zij) in the equation. This results
in more focus on the middle part of the available dynamic range, where most of
the information is assumed to be.

Video and movement

In principle, making a video sequence in HDR is just the same as making an HDR
image. The problem is that by nature, video is made for capturing movement.
Simply using the basic HDR production will therefore introduce an effect known
as ghosting.

Ghosting is an effect which will arise if there is movement between the exposures.
For example, if a person moves between the exposures, a ghostly outline will be
present. This effect can be seen in Figure 11. Larger movement between two
exposures will result in a more visible ghosting effect, which drastically reduce the
subjective experience of the scene. Moving the camera between two frames will
also produce this effect

Kang et al. [29] presented a system for capturing HDR video. The first step is
to film a sequence while varying between long and short exposure for every second

11

2 The image

Figure 11: The ghosting effect. The top three images are from a sequence of ten images
which were used to make the HDR image shown at the bottom. (Figure from [28])

frame. Essentially, this rely on the same concept as presented by Debevec and Malik
[27], but the camera response curve is assumed to be known. An implementation of
this would therefore be concerning how the different exposures are combined. The
problem with this is the ghosting effect, so the authors propose a system to prevent
this. In the post process production of the HDR sequence they incorporate both
backward and forward temporal filtering for a given frame while relaxing of the
transformation of the radiance map compared with the algorithms of Debevec and
Malik. The central frame is then mixed with the two modified temporal adjacent
frames.

Ways to remove the ghosting effect have been proposed by many authors [28,
30, 31]. These typically make use of extensive edge detection and temporal filtering
to remove the ghost effects. As a result of this, HDR video requires extensive post
processing. This makes it virtually useless for a real time application, unless frame
delays and frame buffers are acceptable.

Multiple sensors

This subgroup is based on the same principle as multiple exposures HDRi. The
goal of this approach is to remove ghosting effects by making the capturing of the
scene more efficient and consistent. In this type of solution, two (or possibly more)
image sensors are used to capture the scene with different exposure times. Since
two sensors are used, one can capture the scene with long exposure, while the other
capture with a short exposure. By overlapping the timings of these, so that the
short exposure is timed to be in the last part of the long exposure, ghost free HDRi
can be made.

Systems based on this approach were discussed as early as 1993 by Ginosar et.
al [32] in their patent application. Here a number of sensors were to be used instead
of varying the exposure of one sensor. The actual image processing would then use
the same principles as in the multiple exposures with one sensor technique.

12

2 The image

2.3.2 Wide dynamic range sensors

There are many ways of extending the dynamic range, and one is to produce better
circuits with lower noise levels. This will extend the lower bound of the dynamic
range. Another is to expand the maximum measurable light which the sensor is
able to detect. These sensors are called wide dynamic range (WDR) sensors. They
have limitations to the dynamic range, so they can not produce images which are
perfectly scene referred (HDRi). The dynamic range they are able to capture is
larger than normal sensors, so they are called WDR instead to distinguish them
from normal LDR sensors and HDR images.

Extending the dynamic range of a CMOS sensor

Much research has been done in extending the dynamic range of sensors. Spivak
et. al [6] evaluated different solutions of increasing the dynamic range of a sensor
by changing the response function. These are solutions which extend the maximum
brightness which the sensor will be able to detect, thus extending the upper bound
of the dynamic range. The problem is that if the signal to noise ratio (SNR)
increase to much, the quality of the image will decrease despite the increase in
dynamic range. For all the solutions presented, dynamic range, complexity and
SNR were evaluated.

Figure 12: The reference active pixel sensor (APS) used to compare the solutions. iph
is the photocurrent generated during exposure and idc is the dark current. Figure from [6]

The solutions presented can be divided into three different categories; piecewise
- linear, non - linear and frequency based.

The non-linear methods include logarithmic, multi mode and time to saturation
solutions. These solutions had the highest potential increase in the dynamic range
of all the solutions. However, the cost of these was a drastic reduction in sensitivity,
reducing the image quality.

Piecewise linear methods include sensors which use clipping and global and
automatic resets of pixels. These were able to reach high dynamic ranges, as well

13

2 The image

as maintaining high sensitivity. Solutions of this type included multiple captures
on a per pixel level. This method required an increase in number of readouts to
maintain the frame rate, and this would again decrease the SNR.

Frequency based sensors are sensors which measure the time to first saturation
or similar schemes. The dynamic ranges of these were high, but there was a drastic
reduction in sensitivity for low brightness situations. The number of transistors
required for these were much higher than the other methods. A much larger amount
of post processing would also be required.

Common for all the methods is that there will be an increase in the number of
transistors for each pixel. How many varies. This will lead to less effective pixels
for a given area.

Figure 13: The modified pixel used for autonomous reset. iph is the photocurrent gener-
ated during exposure. Figure from [6].

The most interesting method presented is one of the piecewise linear methods
which utilize a local conditional reset. The modification to the reference photo
detector in Figure 12 can be seen in Figure 13. Each photo detector which is
saturated during exposure will be locally reset. The number of resets for each pixel
is stored and reported together with the final pixel value. This solution solves
some of the problems with lack of sensitivity in both bright and dark regions. The
amount of post processing will increase, but not as much as the frequency based
solutions.

2.3.3 Piecewise linear sensor

One available WDR sensor is Kodaks KAC-9681 [33]. This sensor has an optional
non-linear mode which increases the dynamic range. In normal mode the dynamic
range is 62 dB, while the non-linear extends the dynamic range up too 110 dB.
The non-linear mode enable a piecewise linear mode on the sensor which enables
the sensor to measure a higher maximum illumination. The principle can be seen
in Figure 14.

14

2 The image

Figure 14: This figure show in principle the difference between the two modes of KAC-
9681. Figure from application note [33].

The problem of using this scheme is that the number of possible encodings will
not increase. Parts of the scene with illumination between Lbp1 and Lmax will
have a limited amount of possible encodings. It will therefore be a smaller number
of encodings relative to the extended range, compared with the normal curve.

2.4 Displaying HDR images and video

Displaying HDRi on LDR monitors require a reduction in the amount of data.
This is done with tone mapping algorithms. These algorithms will reduce the
high dynamic range content to a lower dynamic range to fit the limitations of the
monitors. If the monitor were able to display the full range of the HDR image,
tone mapping would not be required.

This is shown by Akyüz et. al [7] when they used used the DR37-P HDR display
developed by BrightSide Technology 1 to test if HDR images is preferred over tone
mapped images.

Akyüz et. al tested the preference of three pipeline structures. The most
advanced was the full HDR pipeline with HDR capture and HDR display. The
second pipeline used tone mapping to reduce the HDR image and display it on an
LDR monitor. The third was to simply use a normal pipeline with LDR capture
and LDR display.

The study showed that the full HDR pipeline was preferred over the tone map-
ping. The best LDR image from the sequence used to make the HDR image was
also preferred above the tone mapping. The authors speculated that this result
came because the participants were not used to tone mapped images and preferred
images which appeared more familiar.

1BrightSide Technology was acquired by Dolby in 2007 and renamed Dolby vision

15

3 Tone mapping algorithms

3 Tone mapping algorithms

Using tone mapping on an image is an interesting technique which will enhance
the image. Careful application of this might reveal more details or enhance the
brightness in a scene. Algorithms developed for tone mapping have been designed
to process a high dynamic range (HDR) image to be viewable on a low dynamic
range (LDR) medium. This medium can in principle be anything from a computer
screen to a piece of paper.

Original grey scale image, 128 shades of grey

Grey scale image after linear mapping to 16 shades of grey

Tone mapped image after some arbitrary function, 16 shades

Figure 15: Figure showing how a gray scale image will be tone mapped in two different
ways. Original image on top. Shades goes from 0 to 127 with one column of black pixels
at end to limit the image. In the middle, the scale from the first are simply linearly
transformed. This means that all the new values cover the same number of old values.
The bottom part of the figure show tone mapping with an arbitrary operator. Here the new
values does not cover the same amount of old values. In this particular example, more
weight are given to one of the shades in the middle.

Tone mapping algorithms can also be used as a form of dynamic compression,
going from a high range to a lower range. Because of this, images with a high bit
depth per color can be reduced to a lower bit depth by the same algorithms.

Tone mapping functions can be divided into two large groups, global (spatially
uniform) and local (spatially varying). In the local type, pixels are mapped accord-
ing to local image characteristics. This form can also be called tone reproduction
operators, because in practice an operator is run on each pixel. In the global type,
all the pixels are mapped according to a global curve. Another name for this type is
therefore tone reproduction curve. An example on how different tone mappers will
behave can be seen in Figure 15. Here the top part represent part of an imaginary
image. Tone mapping this image with two different algorithms might return two
different images, as seen in the middle and at the bottom.

Using different algorithms on an image will give different images. There is no
objective measure, except performance, that distinguishes the results. Because of
this, authors tend to use the same set of HDR images to compare algorithms.

Cadik [34] did an extensive review on the different tone mapping techniques.

16

3 Tone mapping algorithms

One very interesting conclusion was that the most important aspects to an observer
is how good the overall image is. Overall quality is a subjective measure that is
shown to be correlated to the quality of color, contrast and brightness.

Ledda et al. [35] tested a number of algorithms on humans. Among the two
most interesting tests were a test where the test subject were asked to rate the
same picture given with different tone mappers next to each other. In the other
test were the subjects were asked to rate pictures without any references. The result
showed that algorithms that performed badly when compared to other algorithms
performed a lot better without any image to refer directly to.

The gamma function will be presented first in this chapter. This is a simple
example of a tone reproduction operator.

A selection of global tone mapping algorithms will be presented in the next
section. This class of algorithms are most relevant for an hardware implementation
(see chapter 4.1.1), so only a short summary of the most important local tone
mapping algorithms be presented next.

Problems related to color treatment in tone mapping will be discussed after
this. Most of the tone mapping algorithms presented here work in the intensity
domain. Intensity is dependent on all three color channels, and changes in this
domain are therefore reflected in all three channels.

3.1 Gamma correction function and sRGB

Gamma correction is not strictly a tone mapping function, but a well known tone
reproduction function to code and decode an image. Originally it was used as a
way to correct the non-linear characteristic between the input electron signal and
the output luminance of CRT monitors [36]. The relation is approximated by a
power function seen in equation 2.

Ψ = ξγ (2)

In this equation, Ψ is the output intensity and ξ is the input signal of either
color channel.

Figure 16 shows the gamma correction function recommended by ITU [37].

sRGB

The gamma function of CRT monitors form parts of the definition of sRGB which
Microsoft and Hewlett Packard presented in 1996 [38]. The idea was to standardize
a set of equations and characteristics, which would make an image to look the same
on all monitors. Before this, manufacturers of both monitors and printers did not
have any standard to follow on how a digital value should be represented.

3.2 Global tone mapping algorithms

All tone mapping functions that can be characterized as global will make a curve
which depends on the image. Each algorithm introduces a certain trade off between

17

3 Tone mapping algorithms

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gamma correction

Input range

O
ut

pu
t r

an
ge

Linear curve
Gamma corrected
Inverse gamma

Figure 16: Showing how the gamma function (red) will correct to non-linearities of the
monitor (green). Starting at the lower left of the rectangle and following this clockwise
show how the gamma function (red) correct the non-linearity of the monitor (green) to
return the original value (blue).

details in dark areas and bright areas. All the pixels are mapped according to the
specific curve. This makes the algorithms very fast if the whole picture is available.

The most computationally expensive part in these algorithms is to calculate the
curve. This type of algorithms will preserve the image characteristics; dark areas
stay dark while bright areas stay bright after tone mapping. Unfortunately, local
differences in contrast might disappear because of the compression.

Figure 17: Two arbitrary examples of tone mapping curves. The vertical axis is the new
dynamic range while the horizontal axis is the original range. The arrows show how a
value in the original image will be mapped too two different values, depending on the tone
mapping curve used.

Figure 17 shows two different curves, a linear curve and an arbitrary curve.
These curves represent different tone mapping algorithms and are examples of how

18

3 Tone mapping algorithms

two global tone mapping curves will result in different images.

3.2.1 Tone reproduction for realistic images

An early tone reproduction algorithm was presented by Tumblin and Rushmeiers
[5] in 1993. In this article they gave an algorithm that could tone map a gray scale
picture to better reflect the proper brightness levels for film and television. The
algorithm they propose is not incorporating color, nor spatial effects. Also, they
have to use clipping for bright images, as the mathematical model for the algorithm
is flawed for these values.

Figure 18: This figure shows one way to define the tone reproduction problem. The
goal of this is to replicate the exact same image of a scene on the display (in principle
any medium) as it looks in the real world. Tone mapping is part of the tone reproduction
operator. (Figure based on figure 1 in [5]).

An illustration of the problem they define can be seen in Figure 18. To be able to
solve this, the authors require that the tone reproduction operator must incorporate
a real world model, an inverse model of the observer and an inverse model of the
display. To fulfill this, they presented three different steps for an algorithm. The
first step is an observer model, which incorporates a basic understanding of the
visual system. An inverse display observer model and an inverse display device
model is then approximated and concenated with the observer model to make the
final tone reproduction operator.

3.2.2 Histogram equalization

The most basic form of tone mapping is linear mapping. This will typically result
in images where the overall brightness and look of the image is conserved.

The opposite is histogram equalized mapping. In histogram equalization, a
histogram over a quantity is made. In tone mapping, the intensity values are used
for the histogram. The intensity is calculated by all three color channels, and
changes here will therefore affect all the three color channels. A mapping is then
made, which aim at making the histogram flat. This mapping is a curve which
will show which new values the old values should be changed too (see Figure 19,
bottom part).

Images tone mapped with histogram equalization will reveal more details, com-
pared with images which are tone mapped with linear mapping. The reason for

19

3 Tone mapping algorithms

this is that in linear mapping, a large amount of pixels might be covered by a
small output range (see Figure 19, top part). This might potentially remove much
information from the image. Also, a large amount of output intensities might be
dedicated to a range which contains few pixels.

Both these problems are solved in histogram equalized mapping. Here the
amount of output intensities for a given range is depending on how many pixels
have values in the range.

Figure 19: Graphs showing the relationship between (a) linear and (b) histogram equalized
mapping. Blue line is the pixel distribution. Horizontal axis is the range of the original
image, while the vertical axis indicates the new range. Each rectangular green block indi-
cate one new level, and all horizontal values covered by one green block is mapped to the
same new level. (Figure from [39]).

Fast tone mapping for HDR images

Jiang Duan and Guoping Qiu present in their paper [40] a fast global tone mapping
function. This algorithm is a good example of how global tone mapping functions
are dependent on histograms. Here they combine linear mapping with histogram
equalized mapping to get the best from both worlds.

A histogram over all the luminance values of the image is first made. This
histogram is then used to divide the possible new levels. Here, a combination of
histogram and linear mapping will be done, depending on one parameter. This
parameter can vary between 0 and 1, where the extreme values are linear mapping
and histogram equalized mapping. Values in between will mix the two mappings.
The authors present 0,5 as a good value for a variety of pictures, but this can be
changed depending on the scene.

Qiu et al. [41] present a slightly different solution to this algorithm. The most
interesting part here is how they divide the histogram. Here they assume that with
linear mapping of the histogram each interval contain a known number of pixels.
By exploiting this they get an equation, which indicates how many pixels each
intervall contain. An iterative process to count through the histogram from each

20

3 Tone mapping algorithms

direction to find the final curve could then be done.

Multicurve

In a later paper, Qiu et al.[42], presented a way to modify the algorithm to incor-
porate local effects. Here the parameter that can be changed is transformed to a
parameter depending on the the average luminance of a given block. They also
propose a further improvement to their original luminance function. By varying
the base of the logarithmic operation they manage to get high luminance values
to be mapped to a wider display range. This will give the image similar contrasts
regardless of the brightness of the scene.

Image Characteristic oriented

Chung et al.[43] removed the parameter all together. They present an algorithm
which by nature is quite similar to Duan and Qius[40] algorithm. They note that
after tone mapping with Duan and Qius algorithm and similar algorithms, the
shape of the histogram will be slightly changed. The image will therefore appear
different.

Fstd =
√
log10(8 + (Lmaxg − Lming)/Diffmm (3)

To counter this, the authors propose an algorithm which will divide the output
values based on the distribution of pixels in the histogram. Equation 3 is used
to calculate what the authors call the population deflection. This indicates if the
populating between Lmaxg and Lming is concentrated.

This is combined with the standard deviation to see if the population is either
concentrated or not. If it is, the range is not divided any more. The part will be
divided into three new parts if the population of the part is not concentrated. Each
part is given the same amount of output codings, so simple linear division is used
inside each part to divide these evenly.

The last algorithm by Chung et al. is interesting because of the lack of param-
eters. The calculations of the standard deviation make it more computationally
expensive than the algorithm presented by Duan and Qiu, but the authors claim
better results when comparing the two.

3.2.3 Adaptive logarithmic tone mapping

Drago et al. [44] present a different global algorithm, called adaptive tone mapping
for HDR images. The motivation is autonomous interactive use which demands a
fast tone mapper.

The main part of this algorithm is its varying logarithm. If an image is mapped
with a low base logarithm, like base 2, it will in general appear bright. The same
image mapped with a higher base logarithm will appear darker, and will therefore
reveal more details in very bright areas.

21

3 Tone mapping algorithms

Ld =
Ldmax ∗ 0.01

log10(Lwmax + 1)

log(Lw + 1)

log(2 + ((Lw

Lwmax
)

log(b)
log(0.5)) ∗ 8)

(4)

Equation 4 shows the main equation in the algorithm. B is the varying parame-
ter and Ldmax is a scalefactor which is used to adapt the output to a given display.
Lw is the average luminance, known as the world luminance for that scene.

Figure 20: Graph showing the resulting tone mapping curve from equation 4 while varying
the bias value. The maximum displayable value is 1 so any values above this is clamped.
Figure from [44]

Figure 20 show how the varying bias will influence the tone mapping function.
An interesting point is how similar it is to the gamma function. This tone mapper
can therefore be seen as an adaptive gamma function. The problem with this algo-
rithm is its complexity, since it includes divisions, multiplications and exponentials
with varying decimal values as seen in equation 4.

3.2.4 Adaptive tone mapping

Cvetkovic et al. [45] developed a tone mapper for high dynamic range video
recorders. Their goal was to design an adaptive gradation correction, which would
enhance image details in dark regions while not compressing the bright regions.
They base this method on a combination of the gamma function and a knee func-
tion. The knee function, as seen in figure 21, will expand the dark area relative to
the bright area. This will reveal more details in the dark area.

The algorithm is a user controlled algorithm for HDR cameras. In these, the
user sets a wanted video level. By using feedback, as seen in Figure 22, the param-
eters of the curve are gradually changed until the wanted video level is reached.
This is measured by the measure and control unit which makes an histogram of the
tone mapped values. The authors define the metric which the wanted video level
is to be measured against as the median of the histogram.

To only enhance interesting details (decided by the wanted video level men-
tioned) neighboring pixels is only changed if they differ above a certain threshold.
This gives the system certain local characteristics.

22

3 Tone mapping algorithms

Figure 21: Different knee functions. Figure 2 from [45].

Figure 22: System overview of how the feedback works. The mapping will be dependent
on the the parameters from the measurement unit. The parameters will be changed until
the wanted video level is reached. Based on figure 4 from [45].

3.3 Local tone mapping algorithms

Using a local tone mapping function on an image will result in a different image
compared with the image using a global function. The reason for this is that
the local algorithms take into account the neighborhood of each pixel when tone
mapping it, thus the name local. Two pixels with equal values placed in different
parts of the image may therefore be enhanced in slightly different ways, depending
on the surrounding pixels. This may reveal, or preserve, more details compared
with global algorithms.

Land and Mccann were some of the first people to study how humans perceive
colors. They developed the Retinex theory [46] which describes how the appearance
of a point is affected by the surroundings. All local algorithms can be said to
descend from the retinex theory.

An example can be seen in in Figure 23. Here, the colors of the gray squares in
the middle will for some people appear different. This is because the eye use the
surroundings of each square to decide how the gray square appears. The actual
color values are identical.

Many types of local tone mapping algorithms exist. Common is that they use
filtering for each pixel to make it dependent on the surrounding pixels. A thorough
presentation of some of these can be found in [8].

23

3 Tone mapping algorithms

Figure 23: Optical illusion. The two gray boxes have the exact same color, but for many
people they appear different. This is because of how the eye adapts to the surroundings of
a point.

HVS matching

One type of algorithms try to emulate how the human visual system (HVS) behave.
If the algorithm emulates the eye correctly when reducing the image, the LDR
image should appear the same as if the original scene was observed. This will
theoretically work if the HDR image contains all the information of the scene. The
problem is that all the details on how the eye work is not known. Also, showing
the resulting LDR image is dependent on a monitor which is not able to display as
much light as the natural scene.

The Visibility matching tone mapper proposed by Ward Larson et. al [47] and
the perceptual tone mapping by Krawczyk [48] are examples of this. Effects such
as glare and how the eye adapt to changing light conditions are incorporated here.
Using these algorithms will produce LDR images which should be close to how we
would see the scene.

Photographic techniques

Other approaches to tone mapping use photographic techniques. Photographic
Tone mapper [4] by Reinhardt et. al does this, by basing it on the zone system by
Adams. The zone system was used by photographers to produce visually pleasing
images. The photographers also used a dodge and burn technique to vary how
bright different parts of the image were. Reinhardt used Gaussian kernels (Figure
24) of different sizes to do an automatic dodge and burn operation. This algorithm
is known to produce images with a very high quality and performs consistently well
when compared to other algorithms.

Filter kernels

Another approach is more technical. Tumblins LCIS [49], Duan and Dorseys fast
bilateral filtering [50] and gradient domain by Fattal et. al [51] base their algorithms
on filter operations. Instead of including HVS they do edge detection to maintain
edges in the image before compressing the dynamic range. This allows them to
bring out a great deal of details, but not necessarily a correct scene as we would
see it. Indeed, Tumblin even mention that the number of details revealed in the

24

3 Tone mapping algorithms

Figure 24: The gauss kernel used by Reinhardt et. al in the Photographic Tone mapper
[4]. This tone mapper uses eight kernels for each pixel with sizes up too eight by eight.

image by the algorithm might make it more suitable for applications where the
number of details are more important.

Figure 25: Illustration on the filtering process done in the Fast bilateral filtering for
HDR images. Figure from [50].

Figure 25 shows the filtering process in the fast bilateral filtering algorithm.
This is done on every pixel, making it a very computationally expensive filtering
process.

Square kernels using global functions

A sub group of local tone mappers are based on running global operators on dif-
ferent segments of an image, giving them local characteristics. Duan et. al [39]
use a simple histogram based tone mapper to tone map each pixels, but limit the
histogram to just cover an area around the pixel instead of the complete image.
Figure 26 shows how this will result in different curves for different pixel. This
requires the global operator to be run on every single pixel, increasing the com-
putational requirements a lot. Kim et. al [52] and suggested ways to reduce this,
without increasing blocking effects.

Using a filter can lead to blocking effects, also known as halo effects. These
effects arise from the sampled region used for the local property. If there is a sharp

25

3 Tone mapping algorithms

Figure 26: Illustration on how different segments of the image will result in different
tone mapping curves. Figure from [39].

border between two regions and a large difference in values from one side to the
other, the effect will arise. This can typically be seen around bright objects in the
scene.

3.4 Color handling in tone mapping

Linear and non linear transformation

Tone mapping can be done on all three color channels separate [53], but these
rely on mathematical equations which is difficult to control. Modern tone mappers
work on the luminance, or intensity range, for the image. The reason for this is
that changes in the intensity domain is reflected on all three color channels

The first step for a tone mapper is to calculate the gray scale image, also known
as the intensity image. This is done with equation 5.

Lin(x, y) = 0.299 ∗R(x, y) + 0.587 ∗G(x, y) + 0.114 ∗B(x, y) (5)

The original factors shown here were first used by Schlick [54]. They can be
traced back too the CIE 1931 colorimetric standard [55]. The factors vary slightly
between authors [40, 4, 56].

The problem which arises from working directly on the luminance is how to go
back to the RGB space while preserving the colors. The most common way is by
the equation 6 introduced by Schlick [54] in 1994. The proof of this can be found
in appendix A.

Cout(x, y) =
Cin(x, y)

Lin(x, y)
∗ Lout(x, y) (6)

R′G′
B′

 =

RG
B

 ∗ Y ′
Y

(7)

26

4 Evaluation and choice of tone mapper

Another way of writing equation 6 is equation 7. Here Y’ indicate the modified
luminance, while Y is the original luminance.

The quantity Y’/Y is problematic, but impossible to circumvent with this color
transform. Using other color spaces is also possible, but these will in general be even
more complex. Akyuz and Reinhard [57] discussed color appearance in high dy-
namic range images. They discussed how using camera appearance models (CAM)
will improve the appearance of HDR images. A problem is that modern CAMs are
complex and require many parameters. The complexity in both parameters and
transforms make these unrealistic for a real time implementation.

3.5 Exploiting temporal properties

Limiting the real time video to video conferences gives one very important advan-
tage; the video stream can be assumed to have a very high measure of temporal
correlation. This means that consecutive frames will be very similar. A general
way of exploiting this characteristic is pointed out by Coria et al.[58]. In their
paper, the authors introduce a concept they call Group Of Pictures, GOP.

Local tone mapping is only done on the first frame. This frame will act as the
reference for the rest of the group. Motion estimation techniques are used between
the next frames to estimate the movement of the blocks. If an exact or similar
block is found, the information from the corresponding tone mapped area in the
reference frame is used. If no similar block is found, a scaled down version of the
image algorithm could be run. This is a way of reducing how many times the local
tone mapper will need to be computed.

Using this approach to tone map a video stream gives the designer possibilities
of using separate algorithms for the frames.

4 Evaluation and choice of tone mapper

Real time video conferences have some special challenges. To get a natural flow in
a meeting, the delay has to be minimal. The natural stops in discussions where
different people talk is difficult to maintain if the delay gets large. This is because
people are used to one amount of silence before talking. This will change in a video
conference. The main sources of delay are transmission delay, but processing delay
for the video stream will also be present. Careful selection of processing algorithms
will minimize this delay.

Another problem is control of parameters. In a meeting with many people the
meeting should be in focus, not tuning the parameters to get a good image. This
would also break the natural rhythm of a meeting if changing light conditions would
require that the parameters would change. Ideally, the system itself would be fully
automatic requiring no parameters.

Demosaicing and denoising are just some of the low level processing, as discussed
in chapter 2, which is done in the camera. There are many ways of implementing
algorithms close to the sensor. One way is to make an Application Specific Inte-
grated Circuit (ASIC) which contains all the processing elements. Another way is

27

4 Evaluation and choice of tone mapper

to use a Field Programmable Gate Array (FPGA). The choices between these are
a question of cost and development time. If the camera is going into large scale
production, ASIC might be a good choice since the cost of development will be
small when spread out on a large number of units. The problem with ASIC is that
it is not possible to change the implemented algorithms later. FPGAs on the other
hand, are very suitable for changing or improving the algorithms.

The evaluation and choice of tone mapper will be made with an implementation
on an FPGA in mind. This allows great flexibility, but limits how much memory the
algorithm can use. HDR video have been discussed (chapter 2.3, but is outside of
the scope of this report to implement. The video stream will therefore be assumed
to be a normal LDR video stream. The difference from HDR is that LDR might
have problems with very bright or very dark scenes, due to problematic exposure.
Using tone mapping on LDR content will change the brightness of the image,
solving some of these problems.

This chapter will evaluate and make a decision on which tone mappers to con-
tinue to work with. The tone mappers chosen here will be based on the feasibility
of implementation and the constraints discussed here.

A detailed discussion of the selected algorithm will follow this. A system to
reduce the algorithm and other similar algorithms will be presented. This will
result in a reduced system which better fits the limitations of an FPGA. This
system is implemented in chapter 6.

4.1 Algorithm decision

HDR images are scene referred, and contain much more information than it is
possible to display on a normal LDR monitor. Just linearly scaling the dynamic
range of HDR images to a lower range is possible, but much information will be lost.
Typically, photographers making HDR images have done much post processing to
get a very special look on the images. This can either be done photography editing
software which has implemented a tone mapping algorithm.

Tone mapping algorithms are designed for reducing the HDR images to LDR.
This allows the images to be displayed on a normal LDR monitor. By using tone
mapping on HDR images the resulting image should be closer to what we would
have seen if we were looking at the same scene. The algorithms can, as discussed
in chapter 3.5, also be used on video.

4.1.1 Local Algorithms

The main problem with local algorithms is how complex they are. These rely on
a series of mathematical operations for each pixel together with a spatial filter
which makes them local. Real time implementations of both Reinhardts photo-
graphic [59] and Fattals Gradient domain [60] tone mappers have been done, but
the implementation require large amounts of both memory and hardware.

Figure 27 show a 5 by 5 filter kernel. The problem with this is that when the
lines gets large, the amount of buffering for filtering a single pixel also get very
large. For the filter in the figure, a total of 4 lines and 5 pixels need to be buffered

28

4 Evaluation and choice of tone mapper

Figure 27: A 5 by 5 filter kernel. The black indices indicate positions relative to the
center pixel, while the red letters indicate the number of the pixel relative to the first pixel
in the filter kernel. K is the length of one line.

for one kernel. For the next pixel, pixel (i+1, j) most of the buffer can be reused.
If the filter kernels required become larger, even larger buffers are required.

This problem comes from the fact that the algorithms are designed for post
processing in software. The time used for calculating a complex mathematical
function for each pixel is therefore not a concern. The buffering seen in figure 27
is not a problem either, since the whole image is already available.

Because of this, local algorithms will not be used for implementation. How-
ever, Reinhardts Photographic tone mapper will be used for simulation purposes
to compare with the other algorithms. A description of the algorithm can be found
in appendix B.

4.1.2 Global algorithms

Global algorithms are different from local algorithms in that they do not use any
spatial filters. By not using this they loose the local properties and become global
instead. This makes them more feasible for a realistic real time implementation,
since the amount of memory required is greatly reduced.

Yout = TM(Yin) (8)

Equation 8 show the fundamental equation for global tone mappers. The algo-
rithms use a mathematical function on each pixel. The new values can in principle
be pre calculated, since a mathematical operation is used on all pixels. Pixels with
the same value will be mapped to the same new value.

Some algorithms, like adaptive logarithmic tone mapping (chapter 3.2.3), only
rely on one equation. This equation is controlled by a series of parameters, which
makes it very advanced.

Another series of algorithms are based on histograms (chapter 3.2.2). The
algorithms use a histogram over the image to form a curve which the values should
be mapped with. The different algorithms vary in how they do this and how
many parameters they require. One algorithm by Chung (chapter 3.2.2) relies

29

4 Evaluation and choice of tone mapper

on statistical properties of the histogram. No parameters are required, but the
complexity behind the calculation rise.

Other algorithms also work on the histogram, but use a parameter to control
how the algorithm calculate the curve. The fast tone mapping by Duan and Qiu
(chapter 3.2.2) is a good example of this. This algorithm relies on simple operations,
but requires one parameter. Variants of this which require less operations have also
been presented (chapter 3.2.2).

Delay

To calculate a curve for a frame, the whole frame is required. This is problematic
for a real time implementation, since it will incur a frame of delay. This can be
circumvented by using an older, precalculated, curve on the new frame. This is
similar to the temporal filtering described in chapter 3.5. By using a precalculated
curve, the tone mapping of each pixel can be done very fast. The idea can be seen
in Figure 28.

Figure 28: Showing how an old curve can be used to tone map a frame, while the frame
is used to calculate a curve which is to be used later.

Ideally, the quantity which the tone mapper are relying on will have thresholds
which prevent it from changing too much between each frame. Krawczyk [48]
discussed how the human eye uses temporal adaption to adapt to changing light
condition. Based on this, two different thresholds can be used. One will prevent
the image from getting bright to fast, while the other will prevent the image from
getting dark to fast. Changes in the tone mapping should then appear more natural.

The chosen algorithm will be the one proposed by Duan and Qiu, Fast Tone
mapping. This rely on simple equations which has some interesting properties by
mixing histogram equalized mapping and linear mapping.

[Lmin, C1,0], [C1,0, C0], [C0, C0,1], [C0,1, Lmax] (9)

Equation 9 is a small example on how one curve, or set of values, is defined.
Here the original range between Lmin and Lmax is remapped to four distinct values.
Values between Lmin and C1,0 are mapped to the same value. Values in range C1,0

too C0 are mapped to another value and so on. This can also be an example on
how a set of precomputedd values are used.

There is one problem with precalculating a curve and that is that it has to
be stored. Equation 9 together with Figure 29 is an example of this. Here there
are only four available ranges, so it require three distinct points to store how the
ranges are divided, C1,0, C0 and C0,1. How much memory it requires is depending

30

4 Evaluation and choice of tone mapper

Figure 29: Equation 9 can define this curve. Horizontal axis indicates incoming value,
while vertical axis indicates outgoing values. Value between for example C1,0 and C0 are
mapped to the same value.

on how many points which are used and how the implementation is done. All the
algorithms which use a histogram discussed in chapter 3.2.2 divide the available
output codings into 256 different values, requiring 255 distinct points to be defined.

4.2 Selected algorithm

The algorithm proposed by Duan and Qiu (chapter 3.2.2) is based on a histogram
over the intensities in the image. The goal of this algorithm is to divide the his-
togram into 256 different bins which each indicate one output level. An example of
this can be seen Figure 29. In this figure, only four output intensities are defined.
The size of each bin is defined by a parameter, α which vary from 0 to 1. When it
is 0, the mapping is linear, while it is 1 it result in a histogram equalized mapping
(see chapter 3.2.2).

C0 =
Lmax + Lmin

2
+ α(β0 −

Lmax + Lmin
2

) (10)

Equation 10 shows the equation with parameters for the first iteration of the
image. Here β0 indicate the value which divide the population in the sub histogram
between Lmax and Lmin in two equal parts. Lmax and Lmin is the maximum and
minimum values of the sub histogram. For the first iteration, these correspond to
the maximum possible and minimum possible value of the histogram.

[Lmin, C0], [C0, Lmax] (11)

Equation 11 shows how the curve is defined after the first iteration. Now, two
new sub histograms can be defined. One is between Lmin and C0 and the other is
between C0 and Lmax. If the algorithm were to just divide the output range into
two, values which fall inside one of these sub histograms would be mapped to the
same value.

C1,0 =
C0 + Lmin

2
+ α(β1,0 −

C0 + Lmin
2

) (12)

31

4 Evaluation and choice of tone mapper

C0,1 =
Lmax + C0

2
+ α(β0,1 −

Lmax + C0

2
) (13)

Equation 12 and 13 show the next iteration of the algorithm. Here equation 12
is dividing the sub histogram between Lmin and C0. β1,0 is now defining the value
which split this sub histogram in two equal parts. Equation 13 is doing the same
thing for the sub histogram from C0 and Lmax.

[Lmin, C1,0], [C1,0, C0], [C0, C0,1], [C0,1, Lmax] (14)

Equation 14 shows how the curve is stored after the first three iterations. The
algorithm continues until it has divided the histogram into 256 different parts.
Each range will then correspond to one output intensity.

The algorithm has some interesting properties. It is a mix between histogram
equalization and linear mapping. Both of these are interesting. Histogram equal-
ization will reveal details which might get lost in linear mapping.

The problem with this algorithm is that it is quite complex to calculate the
new curve. In their paper, they run equation 12 255 times to find all the values
which form the curve. β will vary for each iteration depending on the result from
the previous iteration and this is the biggest problem with this algorithm.

Two more problems are related to the curve itself. Equation 14 shows how it
is defined with four distinct values. For each incoming pixel, a search would be
required to find which bin it is related too. One way would be to do implement a
binary search. Another would be to realize the curve as a look up table. Using the
incoming values as indexes, the associate new output value could be stored for very
fast retrieval. The size of the incoming values and the number of possible output
value would decide how large this table would be required to be.

The second problem with using a curve is how to implement limits to temporal
changes. The curve should only gradually change from one frame to another. If
the curve changes too much from one frame to another, the appearance of the
image would also change. If the curve first increases before decreasing, flickering
(large intensity changes) will appear. Therefore, it is essential that a real time tone
mapper have some sort of limitations on how much the curve can change on a per
frame basis.

4.3 Proposed system for implementation of algorithm

One possible solution is to combine aspects from the different algorithms presented
in chapter 3.2. The goal is to design a tone mapper which would be more suitable
for a real time hardware implementation. The problems require solutions are:

• Few parameters

• Versatile for different situations

• Suitable for limiting temporal variations

• Suitable for an hardware implementation

32

4 Evaluation and choice of tone mapper

In chapter 3.2.2, an automatic algorithm proposed by Liu et. al were discussed.
The algorithm itself is quite similar to the one described by Duan and Qiu (dis-
cussed in chapter 4.2 and 3.2.2). To remove the parameters, they use advanced
mathematical operations to decide how large each segment can be. If one segment
covers less than a given amount of the population, the curve in this segment will
be linear. On the other hand, if it contains more than this amount, the segment
will be divided into smaller segments.

Qiu et. al (chapter 3.2.2) also suggested mathematical equations which were
used to divide the histogram. By using these, they reduced the time it would take
for the curve to be defined. Assumptions on how much population each range
would cover gave them the equations.

The two ideas, to set a minimum amount of population for a given range and
use linear mapping for this range together with equations to find the range, is very
interesting. This can be used as a foundation for a tone mapping system, which
will use a limited number of lines, or segments to define the tone mapping curve.
Each segment can be reduced to equation 15, the equation for a linear graph.

Y = aX + b (15)

To define the curve, a set of coefficients for each segment will be enough. In
addition, each segment would require a minimum and maximum value to limit the
extent of the segment. This greatly reduces the memory required for storing the
curve if the number of segments is kept low. This makes it more realistic and prac-
tical to implement. The equation itself is suitable for an FPGA implementation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

input values

ou
tp

ut
 v

al
ue

s

Piecewise plot with 8 segments compared to histogram equalization

Figure 30: Graph comparing piecewise curve (red) with full histogram equalization (blue)
for a population with normal distribution. Blue curve practically use 255 segments, while
red curve use three.

Figure 30 shows a comparison of two different curves. Blue curve shows a full
curve for histogram equalization. This curve use 255 different bins, or segments,
which correspond to possible output intensities for an arbitrary situation. The red
curve only uses 8 segments. Each of these segments has been defined to cover 12%

33

4 Evaluation and choice of tone mapper

each of the population. This is the same as histogram equalization, since each
segment in histogram equalization also cover a given amount of population. In
this case, each output value from the histogram equalized curve will cover 1/255
% of the population. Because of this, each segment of the reduced curve will start
and end on the histogram equalized curve. For example, the first segment, which
covers 12% of the population, will start at 0 and end at the point on the curve of
the histogram equalized which also covers 12%. This is at output value 30.6 in this
curve.

This can be also be demonstrated by extending the number of pieces and com-
paring the resulting curves to a curve from histogram equalization, as seen in Figure
31. Each segment of the proposed algorithm will start and stop on the proposed
curve if the reduced curve is based on the same algorithm.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Incoming values

O
ut

go
in

g
va

lu
es

Comparison between proposed tone mapper and histogram equalized mapping

Histogram equalized
Proposed, 2 segements
Proposed, 4 segments
Proposed, 8 segments

Figure 31: Graph showing a comparison between histogram equalization and reduced
versions with varying number of segments. Each segment covers the same amount of
population. Based on histogram of sofa image discussed in section 5.3.

Figure 31 shows how reducing the curve will lead to a less detailed curve. This is
to be expected, since the information about the curve is drastically reduced. Using
another algorithm than histogram equalization is also possible. In practice, any
algorithm which defines a tone mapping curve can be used instead. The algorithm
would then first be run, and then reduced to a segmented version.

4.3.1 Reducing the curve

The general way of producing the reduced curve would be to first run the main
algorithm, which would produce the full tone mapping curve. A defined subset of
the points would be picked from the algorithm. Figure 32 shows a section of the
complete curve and how it is defined by a series of points. Incoming values will be
mapped to the closest point.

From the full curve, a set of seven points is required to define each segment.
Figure 33 shows the seven points which will be used in the reduction. The last

34

4 Evaluation and choice of tone mapper

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

40

45

50
Section of tone mapping curve from homeoffice image

Incoming values

O
ut

go
in

g
va

lu
es

Figure 32: Graph showing a small section of the curve used to tone map the home office
image. Notice that it is essentially built of a series of points. Points located between two
points will either be mapped to the higher or lower value, based on how it is implemented.

point is simply the highest possible value. These are based on how each segment
should start and end. Here, dividing the output intensities into eight parts which
correspond to eight segments is used. Each segment will thus cover one eighth of
the output intensities.

The next step, after receiving the seven points is to interpolate between them.
Linear interpolation is the easiest way, and will result in linear segments between
the points. This will also result in a curve defined by linear segments, which is
advantageous for an implementation.

Figure 34: Relations between the values deduced from the histogram for an arbitrary
segment and settings of the tone mapper. X values are deduced from the full curve. Y
values are based on settings of the reducer. Xprev is defining the end of the previous
segment, while Xcurr define the limit of the current segment. Both Yprev and Ycurr are
values which can be controlled. The current coefficients will define the red line.

Figure 34 shows the basic situation before interpolating between two points.
Yprev and Ycurr are values which indicate the extent of the current segment.

35

4 Evaluation and choice of tone mapper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
Tone mapping curve from homeoffice image

Incoming values

O
ut

go
in

g
va

lu
es

Figure 33: Reducing a full tone mapping curve to eight segments require seven points,
shown here as black circles. The points correspond to output intensities which divide the
output intensities into 8 segments.

These are defined by the settings of the tone mapper. Xprev and Xcurr are points
deduced from the full curve. These indicate where the segment should start and
end.

Y = aX + b (16)

The values in Figure 34 are required to produce the coefficients for the current
line (red in the figure). Interpolating with linear interpolation will result in equation
16 which defines the line. Yprev is b, so only a is missing from the equation.
Equation 17 shows the equation which will be required to find the a paramter for
each segment.

a =
Y curr − Y prev
Xcurr −Xprev

(17)

The a, b, and Xprev would then be sent to the tone mapper. Xprev will be
used to denote the lowest value which each segment cover.

Using more advanced interpolating technique will produce curves which are
closer to the full tone mapping curve. This would make each segment be defined
by more parameters and more advanced mathematical operations. Simulations
show that using linear interpolating is sufficient to produce results on par with the
full curve.

4.3.2 Temporal properties

Each segment which form the tone mapping curve is defined by its relative max-
imum value, as seen in Figure 35. This makes it very suitable for extending the

36

4 Evaluation and choice of tone mapper

algorithm to consider temporal changes. By limiting how much the maximum of a
segment can change, large changes of the curve can be prevented. Figure 35 shows
two curves for different frames. Blue is the current curve, while red/purple are the
next curve. Purple is the true curve, but this might result in large changes from
frame to frame. Limiting the increase would return the red curve instead.

Figure 35: Graph demonstrating how the blue curve from one frame changes to the red
curve for another frame. The maximum value of segment 2 has moved to the right, result-
ing in a different curve. Purple shows the change which would happen if the maximum of
segment 2 increase more.

4.3.3 Extent of histogram

The histogram which this is based on will only use the middle 98% of the input
intensities. As with all the histogram based algorithms, it is assumed that the
histogram reflect which parts of the scene are interesting. Exluding the lowest and
highest 1% will remove outliers from affecting the histogram. More of the output
intensities will therefore be dedicated to the assumed interesting part of the image.
If a scene has appear very bright (see section 5.1 for an example) excluding the top
1% will in remove the influence of burnt out regions. It is assumed that there will be
no relevant information for this range, indicating that any interesting information
will be located in other parts of the histogram. The algorithm will then aim to
distribute the output intensities in such a way that the parts of the histogram with
more population will get more output intensities. The same can be said for very
dark images (section 5.2), where it is assumed that information below 1% of the
intensities is of no interest.

37

5 Results and discussion

5 Results and discussion

This chapter will discuss how tone mapping can improve images with difficult light
conditions. Each section use one image to illustrate how changes in the tone mapper
affect the result. The algorithm uses is the selected algorithm discussed in section
4.2 and the reduced version of this discussed in section 4.3.

A comparison between the global tone mapper and Reinhardt’s photographic
tone mapper is done in section 5.4.4. Here the best result of the tone mapping with
the global algorithm will be compared to a local tone mapper.

A summary of the most important considerations when selecting and imple-
menting a global tone mapper can be found in section 5.5. More implementation
specific considerations are discussed in chapter 6.

The matlab code for generating these images can be found on the accompanying
DVD.

5.1 Home office

Figure 36: Home office: Person holding up a Macbeth Color chart. This scene has a
large window which is common for some offices. On a sunny day like this, the indoor part
of the scene will be very dark relative to the outdoor part of the scene.

Figure 36 shows an image called home office. This scene is showing a person holding
up a Macbeth color chart in front of a large window on a sunny day. Because of
the window, the person and the indoor environment appear dark. This is a typical
problem which might happen in meeting rooms or offices with large windows. The
goal of tone mapping in this case will be to make the indoor area appear brighter.

38

5 Results and discussion

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

50

100

150

200

250

300

350
Histogram, intensities from 0.01 to 0.99

Intensities

N
um

be
r

of
 s

am
pl

es

Figure 37: Histogram for home office. This histogram disregards 1 % of the smallest
and 1 % of the biggest values in the image. Horizontal axis indicate intensities, which
correspond to values between 0.01 and 0.99

5.1.1 Histogram

Figure 37 shows the histogram of the intensities for the home office image. 15 % of
the image have intensities above 0.99 and therefore falls outsidede the histogram.
Intensities above 0.99 % is assumed to be burnt out. 12 % of the total number
of pixels falls below 0.01 which is the smallest value that will be counted in the
histogram. Both groups are outliers, and it is assumed that there is no interesting
information in this area.

By looking at the histogram, the most interesting parts of the scene appear to
be in the low range where most of the remaining pixels are clustered. In the image,
this corresponds to the indoor area in shadow.

5.1.2 Tone mapping curves

Figure 38 shows ten curves (red, blue and eight cyan) generated with Duan and Qius
tone mapper and a black curve which is a reduced version of histogram equalization.

When alpha is increased, Duan and Qius tone mapper resemble more histogram
equalization. The blue curve has a very steep increase for the low values. This will
result in many possible output values given to a small range of incoming input
values. This is not surprising, since a large amount of the pixels is located in the
lower end of the intensity range (Figure 37). The blue curve corresponds to alpha
1 with Duan and Qius tone mapper. Decreasing alpha with steps of 0.1 will give
the cyan curves. When alpha is 0 the resulting curve is equivalent to the red linear
curve.

The black curve is the resulting curve from reducing histogram equalization to
segments covering 10 %, 80 % and 10 % of the population in the histogram. The

39

5 Results and discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
Tone mapping curves for homeoffice image

Incoming values

O
ut

go
in

g
le

ve
l

Figure 38: Tone mapping curves for home office. The red lines indicate linear mapping,
while the blue line indicate histogram equalized mapping. Horizontal axis indicate incoming
values, while the vertical axis indicate outgoing values. The black curve is generated by
reducing the histogram equalized curve, while the others are from Duan and Qius fast tone
mapper with varying parameters.

first segment is quite steep, approximating Duan and Qius tone mapper, while the
rest of the curve is linear. The segment covering 80% ends at outgoing level 200.
From here, all the curves from Duan and Qius tone mapper are almost equal.

5.1.3 Resulting images

Figure 39 shows how changing the parameter of Duan and Qius algorithm will result
in different focus of the scene. The lower right is tone mapped with the proposed
algorithm, and it can be placed somewhere between the alpha 0 and alpha 1 image
in focus.

Varying alpha more will result in images which can be placed between the two
images at the top when comparing the distribution of intensities in the scene. A
set of images with alpha varying from 0 to 1 in increments of 0.1 can be found on
the accompanying DVD.

40

5 Results and discussion

Figure 39: Showing four different tone mapped versions. Top left, alpha 0 (equal to
original). Top right, alpha 1. Lower left, alpha 0.5. Lower right, proposed algorithm.

5.2 Student room

Figure 40: Figure showing an example of a dark room.

Figure 40 shows a very dark scene with a single light source. This is an interesting
example, since it is much darker than the home office image.

41

5 Results and discussion

5.2.1 Histogram

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

200

400

600

800

1000

1200

1400

1600
Histogram, intensities from 0.01 to 0.99

Intensities

N
um

be
r

of
 s

am
pl

es

Figure 41: Histogram for student room.

Figure 41 shows the histogram for the student room. The histogram show how
dark the image actually is. With outliers defined as 1% of the lowest and highest
values, only 6% of the total pixels will be contained in the histogram.

5.2.2 Tone mapping curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
Tone mapping curves for student office image

Incoming values

O
ut

go
in

g
le

ve
l

Figure 42: Tone mapping curves for student room. The red curve is linear mapping,
while the blue curve is histogram equalized mapping. Horizontal axis indicates incoming
values, while the vertical axis indicates outgoing values. The black line is the curve from
the reduced tone mapper, while the others are from Duan and Qius fast tone mapper with
varying alpha.

Figure 42 shows the tone mapping curves for the student room image. The
spread for Duan and Qius tone mapper with different parameters is very large
here. Alpha equal 1 will have a very steep curve at the start. This is not surprising

42

5 Results and discussion

when the histogram is studied. The reduced tone mapper show how each segment
will start and end on the curve which it is reduced from.

5.2.3 Resulting images

Figure 43: Top left, alpha 0 (equal to original). Top right, alpha 1. Lower left, alpha
0.5. Lower right, reduced alpha 1 curve with three segments.

Figure 43 shows four results from tone mapping. The raw image which was used
has not been denoised. This is mainly a problem when going back to RGB and
can be seen in the lower left part of the scene. The image was taken with very
short exposure, which prevents the image sensor from collecting a lot of photons,
resulting in a very dark image. In the dark area, there will be a lot of small
variations in how many photons are collected.

In the original image the noise is not visible. This is because the noise is
indistinguishable from the surroundings and disappears when the image is linearly
reduced. When the image is tone mapped, the pixels are essentially multiplied by
a factor. This will lead to noise being multiplied. Small variations from noise will
essentially be multiplied by a factor. This results in colored dots across the image
since the noise is varying across the image.

This can be countered by increasing the value which limits the influence of
outliers. If this value is increased to 4%, the noise will disappear as seen in the
right version of Figure 44. The reason for this however, is that the areas filled
with noise are almost not changed. Figure 45 shows how changing the lower bound

43

5 Results and discussion

Figure 44: Showing how changing the lower bound on outliers affect the result when tone
mapping with alpha 0.5. Left image, lower limit is 0.01% of the intensities. Right image,
lower limit is 0.04 % of the intensities.

outlier affects the result of Duan and Qius with alpha 1. Noise is still more evident
here, and this follows from the new tone mapping curve seen in Figure 46.

Figure 45: Showing how changing the lower bound on outliers affect the result when
using Duan and Qius tone mapper with alpha 1. Left image has lower bound 1% while
right image has lower bound of 4%

A large amount of low values in the histogram seen in Figure 41 will be removed.
As a result of this, the dark areas will not have any influence on the histogram,
resulting in drastic changes of the curves as seen in Figure 46.

44

5 Results and discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
Tone mapping curves for student office image

Incoming values

O
ut

go
in

g
le

ve
l

Figure 46: Curves after limiting the histogram from 4% too 99% of input intensities.
Stippled curves are curves with 1% lower bound. Red curve is for Duan and Qius tone
mapper with alpha 1. Black curve is the reduced tone mapper. Blue line is linear mapping.

5.3 Sofa

Figure 47: Image dominated by windows on a sunny day. This makes the indoor, and
the presumed interesting area, very dark.

Figure 47 shows a scene which appear very dark. The reason for this is that it is
dominated by the large outdoor window on a very bright day.

45

5 Results and discussion

5.3.1 Histogram

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000
Histogram, intensities from 0.01 to 0.99

Intensities

N
um

be
r

of
 s

am
pl

es

Figure 48: Histogram for sofa image.

Figure 48 shows the histogram for the sofa image. The bright outdoor area have no
influence on the histogram, as can be seen by the very flat curve for higher values.
This again will result in a curve defined by the darker area which is contained in
the histogram.

5.3.2 Tone mapping curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
Tone mapping curves for sofa image

Incoming values

O
ut

go
in

g
le

ve
l

Figure 49: Comparing linear curve (red), histogram equalized curve (blue), 3 segmented
histogram equalized curve (black) and alpha 0.5 from Duan and Qius algorithm.

Figure 49 shows a comparison of four different curves. The black curve is a reduced
version of histogram equalization. It is not surprising, similar to the histogram

46

5 Results and discussion

equalization. Varying the parameter of Duan and Qius algorithm will move the
cyan curve towards the linear mapping, red, or the blue histogram equalized map-
ping. The one shown here has alpha equal to 0.5.

5.3.3 Resulting images

Figure 50: Top left, alpha 0 (linear mapping equal to original). Top right, alpha 1
(histogram equalization). Lower left, alpha 0.5. Lower right, reduced histogram curve.

Figure 50 shows a comparison of tone mapping the image with varying curves. The
top left image is the original. With histogram equalization, at top right, the indoor
area is much more visible. Unfortunately, the outdoor area gets washed out here.
In this situation, Duan and Qius tone mapper with 0.5 will be the best solution,
since the buildings in the outdoor does not get washed out. This image is a good
trade off between indoor and outdoor visibility.

Changing the number of segments which the histogram equalized curve should
use will not affect the outdoor result. The problem can be seen in Figure 51. Despite
increasing the number of segments from three which was used in the bottom right
part of Figure 50, the curve stays quite similar. This can be seen in Figure 52.

47

5 Results and discussion

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Incoming values

O
ut

go
in

g
le

ve
l

Tone mapping curves for sofa image

Histogram equalized
Reduced, 2 segements
Reduced, 4 segments
Reduced, 8 segments

Figure 51: Top left, alpha 0 (linear mapping equal to original). Top right, alpha 1
(histogram equalization). Lower left, alpha 0.5. Lower right, reduced histogram curve.

Figure 52: Top left, alpha 1 (full histogram equalization). Top right, two segments.
Lower left, four segments. Lower right, 8 segments.

The images in Figure 52 are tone mapped with the curves from Figure 51. They
are very similar, which is not surprising when examining the curves. The curves
are all reduced versions of one curve.

48

5 Results and discussion

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Tone mapping curves for sofa image

Incoming values

O
ut

go
in

g
le

ve
l

Duan and Qiu: alpha 0.5
Duan and Qiu: alpha 1
Alpha 0.5 reduced too 8 segments
Alpha 1 reduced too 8 segments

Figure 53: Graph showing two different tone mapping curves from Duan and Qiu, and
the reduced versions. Notice that the reduced alpha 1 curve (black) differ more from the
alpha 1 curve (red) than the reduced alpha 0.5 curve (blue) compared to the alpha 0.5
curve (cyan). The reason for this is that alpha 0.5 is a more linear curve than the alpha
1 curve.

Figure 53 shows a comparison of the full curves from Duan and Qius algorithm
and the reduced curves with eight segments. The full alpha 0.5 curve has a linear
component and reducing this curve will result in a curve which is very similar. The
alpha 1 curve (histogram equalization) differs much more compared to its reduced
curve. This is because the histogram equalized is not influences by any linear
components.

Figure 54 shows tone mapping with the curves in Figure 53. The difference
between the top images is very small, despite the large difference of the reduced
and full curve when alpha is 1. This can be traced to the histogram of the image,
Figure 48, where there are very few pixels with high values. The biggest difference
of the curves is also in this area. Pixels will be mapped differently, but there are
simply not enough to be noticeable.

The bottom images in Figure 54 is very similar as well. This is not surprising,
when looking at the curves in Figure 53. The full curve and reduced curve for
alpha 0.5 is almost identical, and the result will then be almost identical as well.

49

5 Results and discussion

Figure 54: Comparison of tone mapping with full curves from Duan and Qius algorithm
and reduced curves. Top left: Alpha 1, full curve. Top right: Alpha 1, reduced curve. Bot-
tom left: Alpha 0.5, full curve. Bottom right: Alpha 0.5, reduced curve. These examples
show that it is very difficult to distinguish between tone mapping with the full curves and
the reduced curves.

5.4 Reading place

Figure 55: Reading place

50

5 Results and discussion

Reading place, Figure 55 is another image which can be considered to have difficult
light conditions.

5.4.1 Histogram

Figure 56: Two histograms over the intensities between 0.01 and 0.99 in the reading
place image. Left have 100000 bins, while the right have 500

Figure 56 shows how changing the number of bins used to make the histogram
affect the histogram. The histograms are made by using the histc function in
matlab. If a value falls between the defined edges for each bin, it will be counted
in that bin.

The first observation made in Figure 56 is that the shape of the histogram is
maintained. Naturally, in the histogram which use only 500 bins each bin cover
more values and will thus contain more samples when compared to the histogram
with 100000 bins.

[Lmin,
Lmin + 1

500
] (18)

[Lmin,
Lmin + 1

100000
] (19)

Equation 18 shows how many values the first bin cover in the small histogram.
Equation 19 shows how many values the first bin cover in the large histogram. This
means that the first bin of the small histogram cover the same range as 200 bins
in the large histogram.

51

5 Results and discussion

5.4.2 Tone mapping curves

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Tone mapping curves for reading place image

Incoming values

O
ut

go
in

g
le

ve
l

0.02 0.04 0.06 0.08 0.1 0.12

20

40

60

80

100

120

Tone mapping curves for reading place image

Incoming values
O

ut
go

in
g

le
ve

l

Figure 57: Left: Showing how the number of bins in the histogram is reflected on the full
tone mapping curve. Green is result from alpha 0.5 with large histogram. Black is how
the curve ends up with the smaller histogram. Blue alpha 0.5 with the small histogram.
Blue covers red which is the curve with alpha 0.5 with the large histogram. Right: Zoomed
in on the low range

Figure 57 shows how full tone mapping curves with alpha 1 and alpha 0.5
change when the number of bins in the histogram is reduced. The most noticeable
difference is found for the alpha 1 curves, green and black. This can be seen in the
right part of the figure, which is zoomed in on the low range.

Alpha 1 corresponds to histogram equalization, and this curve is therefore very
dependent on the histogram. Essentially, increasing the number of bins in the
histogram will result in a more accurate histogram. This will result in a more
accurate curve, since there are more bins to choose from when limiting the curve.
Each bin corresponds to one specific value of input intensities. This is seen with
the smooth increase in values for the green curve in the figure.

That the green and black alpha 1 curves differ more than the red and blue
curves, which are made with alpha 0.5, because the alpha 1 curves are more de-
pendent on the histogram. They will be more affected by changing the size of the
histogram.

Figure 58 shows how the number of bins in the histogram are reflected on the
reduced curves. These are almost identical, and apparently not influenced by the
changes in the histogram. These curves were made by a reduced implementation
the Duan and Qiu algorithm. Instead of running it until all 255 points are found,
only the seven first points are used to define the curve.

The right part of Figure 58 shows more clearly how the different histograms
affect the curve. The green curve is made with the large histogram, while the black
is made with the small histogram. The difference is small, because the curves are
only defined by seven points. As discussed in chapter 4.2, the algorithm divides the
whole histogram into smaller sub histograms. The divisions will be less accurate

52

5 Results and discussion

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
Tone mapping curves for reading place image

Incoming values

O
ut

go
in

g
le

ve
l

0.07 0.08 0.09 0.1 0.11 0.12

185

186

187

188

189

190

191

192

193

194

195

Tone mapping curves for reading place image

Incoming values
O

ut
go

in
g

le
ve

l

Figure 58: Left: Reduced curves and how they are affected by reducing the number of
bins in the histogram. Green and black are curves from alpha 1, while red and blue are
curves from alpha 0.5. Right: Zoomed in on one of the points where a new segment start.

when the number of bins are smaller, and for each division the difference will grow.
This is because each bin in the histogram with a small number of bins cover a much
larger range of values.

5.4.3 Resulting images

Figure 59: Image A: Full curve with large histogram. Image B: Full curve with small
histogram. Alpha 1

Figure 59 and 60 shows how reducing the histogram affects the results when
tone mapping with alpha 1. The results in Figure 59 differ the most. This is not
surprising, considering the alpha 1 curves in Figure 57. Using the smaller histogram
results in some portions of the image getting darker, compared to the one using
the full histogram.

53

5 Results and discussion

Figure 60: Image A: Reduced curve with large histogram. Image B: Reduced curve with
small histogram. Alpha 1

Figure 61 shows how the changes of the histogram affect the images when they
are tone mapped with alpha 0.5. The differences between using a small and large
histogram is not noticeable. This is not surprising, since the tone mapping curves
of alpha 0.5, shown in Figure 57, is very similar.

Figure 61: Image A: Full curve with large histogram. Image B: Full curve with small
histogram. Image C: Reduced curve with large histogram. Image D: Reduced curve with
small histogram. Alpha 0.5 in all images.

54

5 Results and discussion

Figure 62: A: Original. B: Duan and Qius mapper with alpha 0.5. C: alpha 1 (histogram
equalized). D: three segments, limited by 20% and 80%. E: alpha 1 reduced to 8 even
segments. F: Alpha 0.5 reduced to eight segments. The histograms for these images use
100000 bins.

These images show that limiting the number of bins in the histogram is a
possibility that will not reduce the qualitiy. The reduced tone mapping curve
works very well with the reduced histogram. Reducing the size of the histogram
will reduce the required memory for storing the histogram on the FPGA.

55

5 Results and discussion

5.4.4 Comparison of local and global algorithm

This section show comparisons of results when tone mapping with Reinhardt’s tone
mapper (described in appendix B) and Duan and Qius tone tone mapper.

Figure 63: Left image is tone mapped with Duan and Qius algorithm with alpha 1. Right
image is tone mapped with Reinhardt’s photographic tone mapper.

Figure 63 shows how the home office image changes when it is tone mapped
with a local tone mapper. The only main difference in this image is in the outdoor
part, where there is a slight increase in details.

Figure 64: Left image is tone mapped with Duan and Qius algorithm with alpha 0.5.
Right image is tone mapped with Reinhardt’s photographic tone mapper.

Figure 64 shows a comparison between tone mapping with the selected global
algorithm and the local algorithm. This is an example on how the increase in details
might reduce the subjective experience. The right hand image is tone mapped with
the local algorithm, and it has a small increase in details for the outdoor area. This
increase shows more details than the global version.

56

5 Results and discussion

Figure 65: Left image is tone mapped with Duan and Qius algorithm with alpha 1. Right
image is tone mapped with Reinhardt’s photographic tone mapper.

Figure 65 shows how the very dark student room image is tone mapped. This
is an example of how local algorithms might introduce halo effects. The lamp has
a very pronounced dark ring along the edge. This is because this area is a sharp
boundary between the dark surroundings and the very bright inside of the lamp.
Tuning of the parameters might change this.

Figure 66: Left image is tone mapped with Duan and Qius algorithm with alpha 0.5.
Right image is tone mapped with Reinhardt’s photographic tone mapper.

Figure 66 shows how the outdoor area of the sofa image contains slightly more
details. Other than that, the image looks very similar.

5.5 Summary of discussions

5.5.1 Tone mapping

This chapter shows some common situations where tone mapping could be used
to change the intensities of the scenes. The tone mapping algorithms are designed
for reducing high dynamic range image to fit the limitations of low dynamic range
monitors. It would be part of the post processing if the sensors of the system were
changed to sensors with extended range.

57

5 Results and discussion

Another use of tone mapping algorithms is to change the brightness of a scene.
This solves the main problem of the difficult light situation, by more evenly dis-
tributing the light across the scene. For the images shown here, this results in a
brighter indoor area compared to the original images.

5.5.2 Global or local

The main problem of using a global tone mapping curve is that it can not distinguish
between what is outside and inside. In a video conference situation with difficult
light conditions, the indoor part where the participants are should be made more
bright while not changing the outdoor part.

Using a local algorithm, as seen in section 5.4.4 will theoretically solve this,
by including information on the surroundings of each pixel. The examples shown
here show a slight increase in details in the outdoor area in all the images, but not
enough to be very noticeable. The problem with halo effects can be seen in Figure
65.

Using a global algorithm, but incorporating local effects could be one solution
to this. Different global curves could be generated for different parts of the image.
One way would be to detect the pixels which correspond to the outdoor part.
These pixels could then be used to generate one curve, while the indoor part could
generate another curve. This requires detection of the outdoor part which is very
difficult.

A more practical approach would be to divide the image into smaller parts,
giving some locality to the pixel in each part. However, this will lead halo effects if
pixels bordering each other are tone mapped with curves that differ to much. The
complexity of implementing a global algorithm which varies based on the location in
the image, will rise significantly compared to using a global curve for the complete
image.

5.5.3 Tone mapping in video

As discussed in chapter 4.1.1, using local algorithms for tone mapping in a video
situation is very difficult. The main problem is the delay incurred by the kernels
and the memory required for buffering the lines. The other problem is related to
maintaining temporal consistency. Changes of the scene should only be gradually
propagated from one frame to another to prevent large changes between consecutive
frames. If an area or pixel change to much, a flickering effect will appear. This
reduces the subjective experience and is also very problematic for other parts of the
system. To prevent the flickering the whole tone mapped framed will be buffered.
Each new tone mapped pixel must then be compared to the previous pixel to limit
how much it can change.

Global algorithms are much more suitable for real time video, as discussed
in section 4.1.2. The delay incurred by using one of these is much smaller when
compared to a local tone mapper. The problem of how to control temporal changes
is reduced to limiting how much the curve can change each time it is updated.
Another option is to keep the curve constant after the tone mapping is turned on.

58

6 Implementation details

In this solution, the curve would only be calculated once. The problem with this
is that large changes in the scene will not be reflected.

The curve can be calculated in parallel with one frame and then used for the
next frame. This leads to no additional delay for calculation the curve. The only
delay then will be the actual tone mapping based on the curve. How to update the
curve, and store curve is problematic, because the curve require much data to be
clearly defined. this is further discussed in chapter 6.

6 Implementation details

A top level illustration of a global tone mapper can be seen in Figure 67. This
figure shows the most important parts of a tone mapper, and will look the same
despite changing the tone mapper.

Figure 67: System outline with the most important parts of the tone mapper implemen-
tation. The tone mapping operator is denoted Tm. No delays are shown here, but the R,
G and B channels are required to be delayed as long as it takes for their relative Y value
to be processed.

Figure 67 shows a general system outline. Changing the tm operator will re-
flect changes of tone mapper. The other parts are necessary to maintain color
consistency and are invariant to the actual tone mapper used.

The sequence of operations required to tone map an image is:

1. Calculate the intensity value of each pixel

2. Calculate the tone mapping curve:

(a) Make a histogram of the luminance values

(b) Calculate the curve

3. Tone map the image

4. Calculate the new colors

Tone mapping a video stream is essentially the same. As discussed in chapter
3.5, the curve of one frame can be used on the next frame. This will allow the
tone mapper to calculate a new tone mapping curve in parallel to the actual tone
mapping. Figure 68 shows an overview of this. The curve used for the current
frame, number i, use the previous curve, number i - 1, for tone mapping.

59

6 Implementation details

Figure 68: System outline of operations for tone mapping a video stream. Notice that the
previous curve is used to tone map the image, while the current curve is being calculated

This chapter will discuss implementation specific choices related to the imple-
mentation of the proposed tone mapping system, discussed in chapter 4.3. The
reduced system is very versatile and it is more suitable for an FPGA implementa-
tion than a full tone mapper.

The first section will discuss how and where the coefficients could be calculated.
This is the most important decision, since it will affect the rest of the system.

Section 6.2 is used to discuss how the histogram can be implemented. This dis-
cussion is based on the results from section 5.4. It was shown that the calculations
of the curve is very dependent on the histogram, so it is an important part of the
system.

How the coefficients are used in the tone mapper is discussed in section 6.3.
There are two distinct ways of doing this and they will be compared here.

Section 6.4 will summarize the implementation results and describe each com-
ponent separately. The specific VHDL code for all the modules can be found in
appendix E and on the DVD. This also include matlab code for generating test
vectors for test benches to each module.

6.1 Calculating the coefficients

The tone mapping algorithm selected will calculate the full curve based on the
histogram. The curve will then be reduced to a segmented version. Different
algorithms will return different values. To reduce the curve, only a limited number
of points are required. These will correspond to values which limit each segment.
The procedure for this reduction is described in section4.3.

There are three ways of implementing this. The first is to implement the cal-
culation of both the full curve and the reduction in dedicated hardware. This will
lead to fast calculations of both the curve and the reduced curve.

The other way is to move the calculations to a coprocessor. This allows resource
sharing with other parts of the system when the coefficients are not calculated.
Most of the time, no calculations will be done because the coefficients are only
required at the start of each frame, and will not be updated until the next frame.

A mix between these two is also an option. The problem here would be how to
transfer the full curve to the reducer. A common way of communicating with the
coprocessor is through a bus, but transferring the whole curve across the bus will

60

6 Implementation details

severely clog it.
Implementing the calculation of both the full curve and the reduced curve will

be done in a coprocessor. This allows for close interaction between calculation of
the full curve and the reduced curve. The code for calculating this will be left for
future work, since it has to be adapted to the final system. A memory interface
will instead be implemented to make the tone mapper able to communicate with
the coprocessor across a system bus.

6.2 Histogram

The tone mapper chosen is based on a histogram. When a frame is complete, the
calculation of the coefficients can start. This practically means that the curve can
only be updated at the beginning of a frame. The proposed tone mapper relies on a
set of coefficients, so the constraint implies that the coefficients have to be constant
for the duration of the frame. Updating the curve will therefore be required to
happen between two frames, and the coefficients will need to be calculated before
this. Calculations of the coefficients can start when the histogram is complete.
More information can not be added to the histogram when the calculations have
started.

Updating the histogram

Each calculated intensity pixel should be added to the histogram. The problem is
when to stop updating the histogram, so that the calculations can start.

One way it to assume that the processor will be able to complete the calculations
during the vertical synchronization. By doing this, the curve will only be delayed
by one frame, since the histogram will be complete once the frame is finished.

Figure 69: Doing calculations in parallel to the frame will require a histogram buffer
seen here. Arrows with D indicate operations done between frames. The curve will in this
setup be delayed by two frames.

Another way is to relax the requirements of how delayed the tone mapping
curve can be. The calculations of the new curve can be done in parallel to the next
frame, resulting in two frames of delay for the curve (one to store the histogram and
one to calculate). The problem with this is that a buffer for the histogram would

61

6 Implementation details

be required to prevent the histogram from being overwritten after the calculations
have started as seen in Figure 69.

The third option is to only update the curve every third frame. This would allow
the histogram to be based on one frame. The histogram would then be frozen for
the next frame during the calculations. At the beginning of the third frame the
curve would be updated. This is similar to the situation shown in Figure 69 except
that the histogram buffer would not be required.

The fourth option is to start the calculations of the next curve during the
last lines of the current frame. The histogram would then be frozen after the
calculations start. In this setup, the last lines of a frame would not have any
influence on the histogram. These lines would then be assumed to contain little to
no information which would drastically influence the curve.

The last option would be to calculate the coefficients on a host system, and
transfer the coefficients back to the tone mapper. It is assumed that the tone
mapper is deep in the image pipeline, so the outgoing data will be tone mapped
if the tone mapping is turned on. This makes it impossible for the host computer
to make a new curve, unless the tone mapping is turned off for one frame. A new
histogram made by the host will be based on data which is already tone mapped.

Size of histogram

How large to make the histogram is one very important decision. There are two
problems with having a large histogram. The first is that it the algorithms will
use more time to calculate the curve with a large histogram. The second is that it
requires memory to store.

The size of the histogram was discussed in section 5.4. The size of the histogram
will affect how the curve is calculated. However, it is shown that reducing the
histogram to only 500 bins affect the reduced tone mapper less than it does for the
full curve.

It can be assumed that the video will be full HD, 1920 pixels in each of the
1080 lines. This correspond to a total of 2 million pixels. Counting all pixels in one
register will require 21 bit. Each bin of the histogram should therefore be 21 bits
to cover for the worst case scenario. The other option is to use less bits, but then
overflow detection would be required to prevent the bins from wrapping around.
The transfer itself can be done in two ways. The most easy would be to give each
bin in the histogram a separate address. The other would be to use on address for
the histogram. Each clock cycle which this is enable would transfer the lowest bin,
and shift the rest of the histogram. Reading out the complete histogram would
take equal amount of time, but this approach would use less addresses to read it.

Transferring the histogram

Using a smaller histogram also makes it practical to transfer the whole histogram
across the communication bus. Limiting the histogram to 500 bins, as done in
section 5.4, would enable the histogram to be transferred in 500 packets. Each
packet would then correspond to one bin. Another possibility would be to reduce

62

6 Implementation details

Figure 70: Showing how the histogram is shifted each time it is accessed. The column
correspond to accesses, and the red bins will be read out on each access. Only one of the
original bins are remaining after four accesses.

Bin number Decimal value Binary value
0 335298 0101 0001 1101 1100 0010
1 401016 0110 0001 1110 0111 1000
2 466734 0111 0001 1111 0010 1110
3 532452 1000 0001 1111 1110 0100

Table 1: Showing the smallest values in the first four bins in the histogram.

the size of each bin until two bins can be transferred with one packet. This would
halve the number of packets sent across the bus.

How to access each bin can be done in two ways across the bus. One would
be to give each bin a separate address. This would result in 500 addresses being
reserved for the histogram. Another would be to use only one address and access
the histogram as a stack, as seen in Figure 70. Each access to the histogram address
would shift the histogram by one. This is more complex than using 500 addresses,
but would reduce the number of addresses used.

Limiting the bins

In the simulations, only intensity values between 0.01 and 0.99 were included in the
histogram. The intensities are calculated as 25 bit numbers in the implementation.
The smallest Y will be 0, while the biggest will be 33529860. This means that
the biggest value counted in the histogram should be 33194561, while the smallest
should be 335298. Using 500 bins indicate that each bin should cover 65719 values.

These number are a bit unfortunate, because in terms of binary they are very
irregular, as seen in table 1. Each incoming value have to be compared to all the
bin delimiters to find where it should be placed.

This can be countered by choosing a bit more convenient values. In the original
histogram, each bin covers 65718 values. Changing this to 65536 would make the
limiting values more convenient, since increasing each bin by this will make the
delimiting values more systematic. Table 2 compares the binary values of the two

63

6 Implementation details

Decimal value Binary value
65718 1 0000 0000 1011 0110
65536 1 0000 0000 0000 0000

Table 2: Binary values

Bin number Decimal value Binary value
0 196608 011 0000 0000 0000 0000
1 327679 100 0000 0000 0000 0000
2 393215 101 0000 0000 0000 0000
3 458751 110 0000 0000 0000 0000

Table 3: Showing the smallest value in the first four bins in the modified histogram.

numbers.
By choosing the smallest and biggest value differently, a very systematic set of

numbers to limit each bin can be made. This can be seen in table 3. Here, the last
16 bit of the 25 bit incoming values does not need to be compared. For example,
if bits 19 too 17 of the incoming pixel is 101, the pixel will be counted in bin 1,
since it is smaller than the minimum of bin 2 and equal or bigger than the smallest
value in bin 1.

Using table 3 reduces the problem from comparing 25 bits to comparing 9 bits.
9 bits is to be expected, since 9 bits are required to access 500 positions. The 9
most significant bits can then be used to indicate which bin in the histogram to
increase by one.

6.3 Tone mapper

The chosen tone mapper is based on a piecewise linear curve (see section 4.3).
Figure 71 shows the essence of the algorithm.

Figure 71: Showing a piecewise linear curve with three segments.

64

6 Implementation details

Each segment is based on equation 20, and the coefficients of this is calculated
beforehand.

Y ′ = aY + b (20)

There are two distinct ways of implementing equation 20. The first is to pre-
computed all the possible output values and put them in a look up table. This is
required for full size algorithms like Duan and Qius algorithm to define the curve.
Using a look up table will lead to minimal delay, based on how large the table is.
The two problems with this is the size of the table and how to update the table.

The other way is to use the fact that the curve is piecewise linear. Regardless
of the number of lines, each line can be condensed to the simple equation as seen in
equation 20. The incoming value will then need to be placed in the correct segment
first, and then the correct coefficient can be used.

Y ′ = (Y − Ysegx) ∗ ax + bx (21)

Equation 21 shows the complete equation for line segment x. Here Ysegx is the
maximum value of the previous segment. In Figure 71 this is the Y’ value at the
red lines, indicating different segments.

The pseudo code for the the tone mapping will be:

for Number of lines - 1 do
Find segment which contain Y, segX

end for
Coefficients for segX: aX, bX, YseqX

Calculate: (Y - YseqX) * aX + bX = Y’
Return Y’

This is the strength of the proposed system from an implementation point of
view. Other tone mappers which rely on a curve will essentially need to be imple-
mented with a large look up table, while the segmented version can use resources
on the FPGA to be calculated for each pixel.

The implementation will therefore be done with the mathematical operations.
All the coefficients will be stored in the tone mapper. It will be pipelined in two
parts, where the first will calculate delta Y (Y - YseqX) based on which segment it
belong to. It will transfer this value together with the corresponding aX and bX to
the next stage. The second and last pipeline stage will calculate the new Y value,
(Y’).

6.3.1 Tone mapping on or off

Simply bypassing the whole tone mapper when it off too reduce the delay will
change the delay of the system. This is unfortunate for a video system, because
the throughput and delay should be maintained.

65

6 Implementation details

One options is too turn off the calculations of the Y value. This would reduce
the switching inside the tone mapping module. The modifying value would then
have to be set to one, too prevent changes. The incoming RGB values could then
be sent through the tone mapper with constant delay.

Another way would be to set the delimiting values should to maximum. This
will force all the values to be tone mapped with the coefficients in the first segment.
Setting this segment to one for alpha and zero for beta will not change the Y value.
The modifier for each pixel will then be 1 and the pixels will then not be changed.
This option will be used in the implementation.

6.4 Implementation results

The proposed tone mapper was implemented in VHDL for a general FPGA. Eight
modules were implemented and tested. The buffers and the reducers are identical,
and were thus simply replicated multiple times. The code for the top level design
can be found in appendix E.2 and a figure showing the rtl view of the system can
be found in appendix D.

The design was synthesized for the Cyclone III EP120 FPGA. This is the largest
of the cyclone III FPGAs. It has over 200000 logic elements, and 396 embedded
18 x 18 multipliers.

Without retiming With retiming
Frequency 198.9 MHz 198.9 MHz

Logical elements: 32146 32166
Registers: 26383 (21 %) 26485 (21 %)

Table 4: Results from synthesizer

Table 4 show a summary of the results from the synthesizer. These were
achieved by using Synplify Pro C-2009.06.

A significant amount of the registers used are because of the histogram. It was
implemented with full buffering, so the 500 bins of 21 bit each account for 21000 of
the registers. Implementing the histogram in another way, as discussed in section
6.2, would therefore reduce the number of registers significantly.

The maximum frequency achieved is more than enough for real time video.
Critical paths were mainly removed by increasing the number of stages for the
complete pipeline. The final delay will be 53 cycles from a set of pixels enter the
system until they are tone mapped and returned. Most of the delay come from the
divider which is implemented as a pipelined non restoring array divider. Changing
this to a look up table instead would reduce the delay by 38 cycles. This would
lead to a very interesting trade off, because using fewer cycles to find the luminance
modifier will require less buffering of the original RGB values.

Table 4 show how the results change with and without retiming. Using retiming
will in general improve the frequency by scheduling operations so that each stage

66

6 Implementation details

has an equal size 2. In this particular case, no improvement is made to the clock
frequency, but the number of registers and logical elements are increased slightly.
This suggest that some retiming has been done to make each stage similar in length.

The following sections contain brief descriptions of the implementation of each
module. The specific VHDL code can be found in appendix E and on the accom-
panying DVD. Simulation waveforms are located in appendix F.

6.4.1 RGB to Y

The rgb2ychan module takes the incoming RGB triplet and transforms it to Y, or
luminance, with equation 22. The multiplications and summarization is a potential
critical path if it is done in one cycle. Therefore, it is pipelined so that the mul-
tiplications is done in parallel in one cycle before they are summarized the next.
The code for this module can be seen in appendix E.3.

Y chan = red ∗ 1742 + green ∗ 5858 + blue ∗ 591 (22)

These coefficients are based on the CIE colorimetric for calculating the XYZ
triplet. Only the coefficients for Y are used, and those are multiplied by 8192 and
limited to 13 bit.

Y is also sent out of the top level entity. This is to make it available for adaption
to the rest of the system for calculations of the tone mapper.

6.4.2 TMA

TMA is the first part of the tone mapper itself. This module receives the segmented
curve from the memory interface and the delimiters which limit the extent of each
segment. Using two cycles, each incoming value is placed in its proper segment.
This is done by subtracting the incoming Y value from all the delimiter values.
This is done in the first cycle. The next cycle checks the most significant bit of
the results from the subtractions. The first subtraction which does not lead to
a negative number indicates which segment the value belongs to. Calculation of
delta Y is then conducted before this value and the coefficients for the segment is
sent to the next module, TMB. Code for this can be found in appendix E.4.

6.4.3 TMB

Y ′ = deltaY ∗A+B (23)

TMB is the second part of the tone mapper. This module is also pipelined,
realizing equation 23. In the first cycle, the incoming value delta Y multiplied by
the incoming alpha. Alpha is 13 bit large, where the last eight bit corresponds to
the decimal part of the number. DeltaY is divided by 256 before the multiplication
to limit how large the numbers can get. Beta is added in the next cycle. Values
above 226 − 1 will be set to 226 − 1. This code can be found in E.5.

2Retiming will move registers so that there is a more even amount of operations in each cycle.
Typically, a very long critical path will then be spread out on a number of cycles by moving the
registers. This might lead to an increase in the number of registers required.

67

6 Implementation details

6.4.4 Luminance modifier

As discussed in chapter 3.4 equation 24 is required to find how much each pixel
have been modified. This is by far the biggest operation done on every pixel.
The division is implemented as an array divider (discussed in appendix C). This
results in a large combinational divider. Using one cycle through it is not an option
because the critical path would be to long. This divider is therefore pipelined into
40 stages, each corresponding to one coefficient of the result.

lummod =
Y ′

Y
(24)

The new luminance is multiplied by 12 bit (4096) to align it with the original
luminance. This results in the large division. However, only the 17 last bit of the
coefficient are interesting. This is to limit how much each pixel might be maximally
changed with. 12 of these 17 bits correspond to decimal numbers.

An alternative to implementing the divider in hardware is to realize it as a look
up table. This will reduce the delay to only two cycles, but requires memory to do.
The code for the array divider can be found in appendix E.6.

6.4.5 Reducer

Equation 25 shows the equation which should be done on each color channel (C is
either R, G or B) to get the new image. This is implemented with a multiplication.
The module will then limit the output to eight bits. The code for this can be found
in appendix E.7.

C ′ = C ∗ lummod (25)

6.4.6 Buffer

A FIFO buffer was implemented to buffer the original value of RGB and the orig-
inal Y value until it is needed. This is done with a simple array structure which
propagates the incoming values down in an array. The last array element will send
the data too the output. The size of the array reflects how many clock cycles the
elements should be delayed by. This is controlled by simple generic constructs.
The code can be seen in appendix E.8

6.4.7 Histogram implementation

The histogram was implemented with buffering of the histogram. Other possibil-
ities of doing this is discussed in section 6.2. Each bin is 21 bit large, which is
enough to count the entire frame. The histogram is buffered in the bus interface.
The code can be found in appendix E.9.

68

6 Implementation details

Address Content
0-7 Alpha values for segment 0-7
8-15 Beta values for segment 0-7
16-22 7 delimiting values

23 Control register: d0 update curve, d1 store histogram
24 - 524 Histogram bins

Table 5: Bus addresses used to load curve in top level, offset 0

6.4.8 Bus interface

The calculations of the coefficients will be done either in a coprocessor or an em-
bedded processor. One way for a coprocessor to communicate is on a bus, so a bus
interface was implemented. This will handle loading of the coefficients from the
coprocessor and transfer of the histogram back to the processor. Each bin of the
histogram has one specific address. This results in 500 addresses being reserved for
the histogram. There are alternatives to this, as discussed in section 6.2. Table 5
shows the addresses used to access different parts of the system when the ofset is
equal to zero.

The sizes of the coefficients are 13 bit for alpha and 25 bit for beta. The
delimiting values used for limiting each segment are 25 bit large, the same as Y.
The data bus is assumed to be 32 bit large, so one packet is required for each beta
and delimiting value. Two alpha values can be transported in one packet, but for
ease of implementation each packet is constrained to one alpha. One address is
also dedicated to controlling the tone mapper. The code can be found in appendix
E.10.

After no more values are to be loaded into the histogram, the storehist signal
goes high. This will switch the current histogram into the buffer too save it. The
buffered histogram will be available until the next time the storehist signal goes
high.

6.4.9 Verification

A matlab script for running histogram equalization was written. This was done us-
ing only integers, which makes it suitable for verification. An option was included,
which allowed the results of each step to be written out too text files in binary
form. The matlab can be seen in appendix G.

Test benches were written for each component. These read the values which
were used in the calculation in matlab and the expected result. The values were
used to excite the components, and the result was measured against the expected
result.

The following messages are examples of what will be printed if there is an
discrepancy between the result from the module and the expected result stored in
the test vector:

** Warning: Calculation done wrong.

69

6 Implementation details

T_Y: 0 while expected value is: 95743 according to testfile

Time: 50 ns Iteration: 0 Instance: /m00300_tb_rgb2ychan

** Warning: Calculation done wrong.

T_Y: 95743 while expected value is: 123096 according to testfile

Time: 90 ns Iteration: 0 Instance: /m00300_tb_rgb2ychan

These specific messages are a result of testing the rgb2ychan module with only
one cycle of delay, while it use two. The test bench should start checking the
outputs after two cycles, not after one as it does in this case. Simply changing the
test bench to start checking after two cycles solves this specific case.

The module only have one output. Other modules with more outputs will have
similar checks on all the output signals.

Finding where the mistakes are if only the top level is tested is difficult and
time consuming. Testing each module of the system separately is a way of to verify
that each module function correctly. A test bench for the top level module was
also written to verify that the system as a whole was working correctly. The test
bench for the RGB to Y module can be found in appendix E.11. The other test
benches follow the same structure as this one.

70

7 Conclusion

7 Conclusion

Sensor level solutions for extended dynamic range

Meeting rooms or offices often have windows. This is very difficult for cameras
because of the large dynamic range of the scene on sunny days. One option is to
extend the dynamic range of the sensors and use a Wide dynamic range sensor.

Another option is to produce high dynamic range images with multiple expo-
sures. Unfortunately, multiple exposures will be required. Realizing this with one
normal sensor is prone to effects like ghosting (section 2.3.1) which will drastically
reduce the quality of the image. Using two sensors with overlapping exposure times
is an option which will solve this, but the required hardware is doubled.

Using advanced sensors which are able to capture multiple exposures on a per
pixel basis is interesting. The additional hardware compared to multiple sensors
are very low. However, there will be a drastic increase in the complexity of the
required post processing. This is problematic for real time video, and would require
additional hardware.

Tone mapper

Another solution to the problems of difficult light conditions is to use tone mapping
to redistribute the intensities in the scene. Simulations shown in chapter 5 that
using a global algorithm is an effective way to solve difficult light conditions.

Global tone mappers are most suitable for real time video. These make a curve,
which is then used to tone map each frame. The amount of data which define the
whole tone mapping curve is too large to be practical for an FPGA implementation.
A solution to this is presented here, in section 4.3. This system first reduces the
curve to a limited number of segments, before transferring it to the tone mapper.
Comparisons between tone mapping with a full global algorithm proposed by Duan
and Qiu (discussed in section 4.2) and the reduced version, shows that the quality
of the images with the reduced curve is on par with the full curve. The simulation
results can be seen in chapter 5.

The number of parameters for controlling the curve should be kept low. Ideally,
turning the tone mapper on or off should be enough to improve the image. The
problem is that varying situations require different parameters, as seen in chapter
5.

Implementation

The amount of data requires to define the whole curve is reduced to just storing the
coefficients of each segment. This reduction makes it feasible to implement a tone
mapper on an FPGA without using all the available resources. The implementation
is also independent to the actual algorithm used to find the full curve. This would
be hidden to the tone mapper in the reduction system, as seen in Figure 72.

The curve will be calculated either in a coprocessor or an embedded processor.
This requires adaption to the final system, and is left for future work. This solution
allows close interaction with other parts of the system during the calculation of the

71

7 Conclusion

Figure 72: Illustration on how the curve is hidden from the tone mapper. The tone
mapper will only see the reduced information about the curve.

curve. Important considerations here are how often to update the curve and by
how much. The proposed reduction system is only defined by a limited number of
points. This makes it very suitable for limiting how much the curve can change
from frame to frame, as discussed in section 4.3.2.

This implementation allows the global algorithm to be easily changed later.
Doing the calculations in a coprocessor or embedded processor will allow the tone
mapping to be done in conjunction with other parts of the system. This will allow
resource sharing, so that other calculations can be done when the coefficients are
not calculated.

A bus interface was implemented to enable the module to communicate with a
processor. This interface handles both the updating of the curve, and the transfer
of the histogram to the processor.

How large the histogram is will affect the resource usage and how it can be
transferred to the coprocessor. How reducing the size histogram was discussed in
section 5.4.2. Here it was shown that the reduced tone mapping system works
well with a smaller histogram. A histogram using 500 bins have been implemented
based on this discussion.

The histogram is buffered too prevent it from being overwritten. This doubles
the number of registers required for the histogram. Alternative ways of implement-
ing this, discussed in section 6.2 will reduce the memory required.

The tone mapper was successfully implemented, reaching a maximum frequency
of 198.1 MHz. This is sufficient for tone mapping each pixel real time. The delay
through the tone mapper is 53 clock cycles, where 40 are incurred by the divider.
Changing the divider to a look up table will reduce the delay substantially, but
increase the memory required for the implementation.

The implementation makes it possible to do tone mapping in real time, as well
as controlling the temporal changes of the curve.

72

8 Future work

8 Future work

Implementing a multiple sensor system to achieve a higher dynamic range would
be very interesting. This will reduce some of the problems that exist with WDR
sensors. There are two main uses for this, one would be to have the same exposure
time for both sensors. Combining the two images would then reduce the noise.
Setting the two sensors to different exposure times could be used to make an image
with a higher dynamic range. This could either be always on or just turned on
when the scene has difficult light conditions.

Changing from the global tone mapper to a global algorithm with local varia-
tions could be interesting. The difficulty would be to control the temporal changes
between frames. The memory required will increase by how local each curve is.
The extreme version is to use a separate curve for each pixel. This would require
more memory than a frame buffer. Then a more advanced local algorithm could
be used instead.

Using a graphical processing unit (GPU) in the pipeline might make a local
algorithm more feasible. GPU’s are designed with large frame buffers. This has
been used in one graphical technology demo called Lost Coast by valve software
[61]. They used computer generated HDR and local tone mapping in real time to
simulate how light behave. The data used are much more detailed than what can be
deduced from real images, but it is interesting and is show that local tone mapping
could work for real time if enough memory and processing power is available.

Possible advances in sensors should be followed, especially sensors like the piece-
wise linear sensor. This type does not reduce the encodings used for dark areas.
Other sensor types should also be evaluated. Sensors which are able to adjust the
response curve on the fly are especially interesting.

Future work related to the tone mapper could also take into account the lim-
itations of the monitor that will show the video. This is most interesting if the
camera system is to be used with one specific type of monitors. The tone mapper
could then be adapted to better fit the sensor data to the monitor. The maximum
brightness of the monitor should influence how the maximum value of the sensor
is processed.

73

References

References

[1] A. Adams. The Camera. Little, Brown and Company, 1980.

[2] A. Adams. The Negative. Little, Brown and Company, 1981.

[3] A. Adams. The Print. Little, Brown and Company, 1983.

[4] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photo-
graphic tone reproduction for digital images. ACM Trans. Graph., 21:267–276,
July 2002.

[5] J. Tumblin and H. Rushmeier. Tone reproduction for realistic images. Com-
puter Graphics and Applications, IEEE, 13(6):42 –48, November 1993.

[6] A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht. Wide-dynamic-range
cmos image sensors;comparative performance analysis. Electron Devices, IEEE
Transactions on, 56(11):2446–2461, ”November” 2009.

[7] Ahmet Oǧuz Akyüz, Roland Fleming, Bernhard E. Riecke, Erik Reinhard, and
Heinrich H. Bülthoff. Do hdr displays support ldr content?: a psychophysical
evaluation. ACM Trans. Graph., 26, July 2007.

[8] Erik Strømme. Tone mapping in video conferences. Project report, 2010.

[9] A. El Gamal and H. Eltoukhy. Cmos image sensors. Circuits and Devices
Magazine, IEEE, 21(3):6 – 20, ”May-June” 2005.

[10] R. Ramanath, W.E. Snyder, Y. Yoo, and M.S. Drew. Color image processing
pipeline. Signal Processing Magazine, IEEE, 22(1):34 – 43, jan. 2005.

[11] R.D. Gow, D. Renshaw, K. Findlater, L. Grant, S.J. McLeod, J. Hart, and
R.L. Nicol. A comprehensive tool for modeling cmos image-sensor-noise per-
formance. Electron Devices, IEEE Transactions on, 54(6):1321 –1329, 2007.

[12] K. Irie, A.E. McKinnon, K. Unsworth, and I.M. Woodhead. A technique
for evaluation of ccd video-camera noise. Circuits and Systems for Video
Technology, IEEE Transactions on, 18(2):280 – 284, February 2008.

[13] A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms,
with a new one. Simul, 4:490–530, 2005.

[14] Thor Arne Brandsvoll. Fpga based noise reduction in video cameras. Project
report, 2010.

[15] Gerald H. Jacobs. Evolution of colour vision in mammals. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 364(1531):2957–2967, 2009.

[16] Bryce E. Bayer. Color imaging array. Patent application, 1976. Number Color
imaging array, Filling data 3 march 1975, issue date 20 july 1976.

74

References

[17] Kodak. Color correction for image sensors. Application note to image sensors
from Kodak’s webpage, 2008.

[18] X. Li, B. Gunturk, and L. Zhang. Image demosaicing: a systematic survey.
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Se-
ries, volume 6822 of Presented at the Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference, January 2008.

[19] David X. D. Yang and Abbas El Gamal. Comparative analysis of snr for
image sensors with enhanced dynamic range. In in Proceedings of SPIE, pages
197–211, 1999.

[20] Y. Bandoh, Guoping Qiu, M. Okuda, S. Daly, T. Aach, and O.C. Au. Re-
cent advances in high dynamic range imaging technology. In Image Process-
ing (ICIP), 2010 17th IEEE International Conference on, pages 3125 –3128,
”September” 2010.

[21] Kate Devlin. A review of tone reproduction techniques. Technical Report
CSTR-02-005, Department of Computer Science, University of Bristol, Novem-
ber 2002.

[22] Kodak. Kaf-09000 image sensor. kodak.com, 2010.

[23] Kodak. Kac-03100 image sensor. kodak.com, 2006.

[24] Kodak. Kaf-5000 cmos image sensor. kodak.com, 2006.

[25] Erik Reinhard, Greg Ward, Suanta Pattanik, Paul Debevec, Wolfgang Hei-
drich, and Karol Myszkowski. High Dynamic Range Imaging: Acquisition,
Display and Image-Based Lightning. Morgan Kaufmann, 2 edition, 2010.

[26] The eye and high-dynamic-range vision. In Bernd Hoefflinger, editor, High-
Dynamic-Range (HDR) Vision, volume 26 of Springer Series in Advanced
Microelectronics, pages 1–12. Springer Berlin Heidelberg, 2007.

[27] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance
maps from photographs. In ACM SIGGRAPH 2008 classes, SIGGRAPH ’08,
pages 31:1–31:10, New York, NY, USA, 2008. ACM.

[28] E.A. Khan, A.O. Akyuz, and E. Reinhard. Ghost removal in high dynamic
range images. In Image Processing, 2006 IEEE International Conference on,
pages 2005 –2008, October 2006.

[29] Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard Szeliski.
High dynamic range video. ACM Trans. Graph., 22:319–325, July 2003.

[30] K. Jacobs, C. Loscos, and G. Ward. Automatic high-dynamic range image
generation for dynamic scenes. Computer Graphics and Applications, IEEE,
28(2):84 –93, March 2008.

75

References

[31] T. Jinno and M. Okuda. Motion blur free hdr image acquisition using multiple
exposures. In Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference on, pages 1304 –1307, October 2008.

[32] Ran Ginosar, Oliver Hilsenrath, and Yehoshua Zeevi. Wide dynamic range
camera. Patent application, 1993. Number 5144442, Filling data 21 nov 1991,
issue date 1 sep 1992.

[33] Kodak. Kaf-9618 cmos image sensor. kodak.com, 2007.

[34] Martin Cadk. Perceptually Based Image Quality Assessment and Image Trans-
formations. PhD thesis, Czech Technical University in Prague, 2008. Chapter
4.

[35] Patrick Ledda, Alan Chalmers, Tom Troscianko, and Helge Seetzen. Evalu-
ation of tone mapping operators using a high dynamic range display. ACM
Trans. Graph., 24:640–648, July 2005.

[36] Naoya Katoh, Tatsuya Deguchi, and Roy S. Berns. An accurate characteriza-
tion of crt monitor (i) verifications of past studies and clarifications of gamma.
Optical Review, 8:305–314, 2001. 10.1007/s10043-001-0305-0.

[37] ITU-R. Recommendation itu-r bt.709-5. Technical report, International
Telecommunications Union, 1993-2002. -5 is the current version published
in 2002.

[38] Michael Stokes, Matthew Anderson, Srinivasan Chandasekar, and Ricardo
Motta. A standard default color space for the internet - srgb. Technical
report, Microsoft and Hewlett-Packard, November 1996.

[39] Jiang Duan, Marco Bressan, Chris Dance, and Guoping Qiu. Tone-mapping
high dynamic range images by novel histogram adjustment. Pattern Recogni-
tion, 43(5):1847 – 1862, 2010.

[40] Jiang Duan and Guoping Qiu. Fast tone mapping for high dynamic range
images. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, volume 2, pages 847 – 850, August 2004.

[41] Guoping Qiu, Jian Guan, Jian Duan, and Min Chen. Tone mapping for hdr
image using optimization a new closed form solution. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, volume 1, pages 996 –999,
2006.

[42] Min Chen and Guoping Qiu. A multicurve tone mapping operator for the
display of high dynamic range image and video. In Visual Media Production,
2007. IETCVMP. 4th European Conference on, pages 1 –7, November 2007.

[43] Chun Hung LIU, Oscar C. Au, P.H.W Wong, and M.C.Kung. Image charac-
teristic oriented tone mapping for high dynamic range images. In Multimedia
and Expo, 2008 IEEE International Conference on, June 2008.

76

References

[44] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive logarithmic
mapping for displaying high contrast scenes. Computer Graphics Forum,
22(3):419–426, 2003.

[45] S.D. Cvetkovic and P.H.N. Klijn. Adaptive tone-mapping transfer functions
for high dynamic range video cameras. In Consumer Electronics, 2008. ICCE
2008. Digest of Technical Papers. International Conference on, pages 1 –2,
January 2008.

[46] Edwin H. Land and John J. McCann. Ligthness and retinex theroy. Journal
of the Optical Society of America, 61(1), 1970.

[47] G.W. Larson, H. Rushmeier, and C. Piatko. A visibility matching tone repro-
duction operator for high dynamic range scenes. Visualization and Computer
Graphics, IEEE Transactions on, 3(4):291 –306, October 1997.

[48] Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel. Perceptual
effects in real-time tone mapping. In Proceedings of the 21st spring conference
on Computer graphics, SCCG ’05, pages 195–202, New York, NY, USA, 2005.
ACM.

[49] Jack Tumblin and Greg Turk. Lcis: a boundary hierarchy for detail-preserving
contrast reduction. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’99, pages 83–90, New York,
NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[50] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-
dynamic-range images. ACM Trans. Graph., 21:257–266, July 2002.

[51] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high
dynamic range compression, 2002.

[52] Joung-Youn Kim, Lee-Sup Kim, and Seung-Ho Hwang. An advanced con-
trast enhancement using partially overlapped sub-block histogram equaliza-
tion. Circuits and Systems for Video Technology, IEEE Transactions on,
11(4):475 –484, April 2001.

[53] Jack John Erwin Tumblin. Three methods of detail-preserving contrast re-
duction for displayed images. PhD thesis, Georgia Institute of Technology,
1999.

[54] Christophe Schlick. Quantization techniques for visualization of high dynamic
range pictures. pages 7–20. Springer-Verlag, 1994.

[55] T Smith and J Guild. The c.i.e. colorimetric standards and their use. Trans-
actions of the Optical Society, 33(3):73, 1931.

[56] Wei-Ming Ke, Tsun-Hsien Wang, and Ching-Te Chiu. Hardware-efficient vir-
tual high dynamic range image reproduction. In Proceedings of the 16th IEEE
international conference on Image processing, ICIP’09, pages 2665–2668, Pis-
cataway, NJ, USA, 2009. IEEE Press.

77

References

[57] Ahmet Oguz Akyuz and Erik Reinhard. Color appearance in high-dynamic-
range imaging. Journal of Electronic Imaging, 15(3):033001, 2006.

[58] L. Coria and P. Nasiopoulos. Using temporal correlation for fast and highde-
tailed video tone mapping. In Imaging Systems and Techniques (IST), 2010
IEEE International Conference on, pages 329 –332, July 2010.

[59] Firas Hassan and Joan Carletta. An fpga-based architecture for a local tone-
mapping operator. Journal of Real-Time Image Processing, 2:293–308, 2007.

[60] Lavanya Vytla. A real-time implementation of gradient domain high dynamic
range compression using a local poisson solver. Master’s thesis, University of
Akron, USA, 2010.

[61] Gary McTaggart, Chris Green, and Jason Mitchell. High dynamic range ren-
dering in valve’s source engine. In ACM SIGGRAPH 2006 Courses, SIG-
GRAPH ’06, New York, NY, USA, 2006. ACM.

[62] Hugh S. Fairman, Michael H. Brill, and Henry Hemmendinger. Color Research
& Application, 22(1):11–23, 1997.

[63] Hugh S. Fairman, Michael H. Brill, and Henry Hemmendinger. How the cie
1931 color-matching functions were derived from wright-guild data. Color
Research & Application, 22(1):11–23, 1997.

[64] M. Eitz. High dynamic range imaging and tonemapping. http://user.cs.tu-
berlin.de/˜eitz/hdr/, 2007.

78

A XYZ and Yxy

A XYZ and Yxy

Yxy is based on the CIE1931 color standard [55], and is very simple [62].
Y is here defined as the luminance of a point, while x and y contain the chro-

matic, or color, of the point. Increasing Y, while leaving x and y constant will
make the point brighter while the colors are maintained.XY

Z

 =
[
M
] RG
B

 (26)

To go from RGB to Yxy, an intermediate step through XYZ needs to be done.
XYZ were defined by CIE in 1931 together with RGB and Yxy. XYZ form the
basis of all other color spaces [62, 63].

This first step is a simple matrix multiplication, as seen in equation 26. Big
letters in these equations indicate values in XYZ space. Here M indicate a 3x3
matrix.

Y = Y

x =
X

X + Y + Z
(27)

y =
Y

X + Y + Z

Going back to RGB from Yxy first involve inverse transform of equation 27
which can be seen in equation 28.

X =
x

y
Y

Y = Y (28)

Z =
1− x− y

y
Y

However, the only quantity that change during tone mapping is Y, denoted Y’.
This simplifies equation 28 to equation 29.

X =
Y ′

Y
X

Y = Y ′ (29)

Z =
Y ′

Y
Z

Equation 29 shows some interesting points. The complete transform to Yxy
space is shown to be redundant when only Y is changed. The equation also show

79

A XYZ and Yxy

some similarities with equation 6 commonly used. The saturation constant has
disappeared because it is no longer necessary.RG

B

 =
[
M
]−1 XY

Z

 (30)

Transformation back to RGB is shown in equation 30. M−1 is the inverse matrix
used in the transform from RGB to XYZ. Without any changes to XYZ, the colors
should therefore be the same.R′G′

B′

 =
[
M
]−1 X Y ′

Y

Y Y ′

Y

Z Y ′

Y

 =

RG
B

 ∗ Y ′
Y

(31)

The quantity Y’/Y can be directly multiplied into RGB since the transforma-
tions from RGB to XYZ and back are linear. This can be seen in equation 31.

Using the full transformations will give negative numbers and divisions by 0.
This is circumvented by setting the RGB triplet to 0 where the incoming Y is 0.
If no changes were done to the Y channel, RGB will be multiplied with 1, so color
consistency will be maintained if RGB is linear.

80

B Reinhardts photographic tone mapper

B Reinhardts photographic tone mapper

Reinhardts photographic tone mapper [4] is known to produce consistently good
result in a variety of situations. It is based on the zone system [1, 2, 3] which were
used by photographers before the digital era to change how images looked. Here,
the photographers used an automatic dodge and burn operation to either increase
or decrease the light of certain parts of the scene.

Ri(x, y, s) =
1

π(αis)2
exp(−x

2 + y2

(αis)2
) (32)

Vi(x, y, s) = L(x, y)⊗Ri(x, y, s) (33)

The tone mapper proposed by Reinhardt use eight different Gaussian filter ker-
nels, equation 32 and 33, to simulate the dodge and burn operation. The smallest
kernel is 1 by 1 pixel large. Each size increase by a factor of 1.6 and the largest
kernel is therefore 42 by 42 large.

The goal is to find the biggest of these which have a fairly even distribution of
luminance. The s parameter in both equation 32 and 33 denote the scale.

V (x, y, s) =
V1(x, y, s)− V2(x, y, s

2φa/s2 + V1(x, y, s)
(34)

All eight results, with varying s, of this equation is compared to find the biggest
area around each pixel with equation 33. Here, V1 is the center function, while V2
is the surround function. Essentially, V1 is set to V2 when the scale is increased
one.

|V (x, y, sm)| < ε (35)

Equation 35 is the used to iterate through all the different size to find the
biggest scale which is still less than ε

Ld(x, y) =
L(x, y)

1 + V1(x, y, sm(x, y))
(36)

Equation 36 is the final equation. This takes the biggest kernel relative to ε
and tone map each pixel.

This algorithm was implemented at TU Berlin in 2007 [64]. The code from this
source is changed slightly and modified to achieve better running times.

81

C Array divider

C Array divider

Figure 73: Structure of a non restoring array divider. Each cell is similar to the one
shown at the bottom left. Red path show the critical path.

The array divider is one structure which is used for division in hardware. Figure
73 shows the structure together with the critical path. The most obvious way
of speeding up the division is to pipeline it. This can be done by producing one
quotient each clock cycle. The structure would then be divided into horizontal
slices with registers between.

Implementing each cell by itself forces the synthesizer to realize the cells com-
binational. An observation that can be made here, is that each horizontal line of
cells is actually a ripple carry adder. If the previous quotient was 1, the divisor is
xored, and the carry in is set too 1. This is the same operation which is done when
calculating the 2’s complement of the divisor.

Each line of the array can therefore be implemented as an adder. If the previous
quotient was 1, the divisor should be inverted before adding it. The carry in will
then be 1, which complete the 2’s complement calculation. The other input to the
adder is simply the shifted version of the remainder from the previous line.

By implementing each line as an adder, the synthesizer will be given more room
to optimize the additions. The synthesizer can then use FPGA specific functions
to speed up the implementation. Tests shows that implementing each cell as a
shown in Figure 73 results in a max frequency of about 50 MHz, slightly faster
than solving the division combinational. The critical path will also be through the
divider. Implementing the divider with adders instead, will move the critical path
away from the divider.

Looking at Figure 73, an alternative way of pipelining it can be suggested. By
using the principles of carry select adders, each line can be calculated with both
situations of quotients. This allows the structure to be pipelined vertically instead
of horizontally. The critical path will be drastically reduced, but it will require
twice as much hardware.

82

D RTL view

D RTL view

Figure 74: Showing the RTL view of the implemented system.

83

E VHDL code

E VHDL code

E.1 Package

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Package containing component declarations and other declarations

-- used in m00300

7 --

-- Function:

9 -- void

--

11 -- Parameters:

-- void

13 --

--@author: Erik S tr mme

15 -------------------------

17 LIBRARY IEEE ;
USE IEEE . s t d l o g i c 1 1 6 4 . a l l ;

19 USE IEEE . numer ic std . a l l ;

21 package m00300 pkg i s

23 ----------

-- Register memory map

25 constant m00300 ofset : i n t e g e r := 0 ;

27 ---------

-- Types:

29 --Hist size from 3 ("11") because first value is limited by 11.

type histogram i s array (i n t e g e r range <>) o f s t d l o g i c v e c t o r (20
downto 0) ;

31
type segmentX i s record

33 alpha : unsigned (12 downto 0) ; --Rise

beta : unsigned (24 downto 0) ; --Vert ofset

35 end record ;

37 type segmentarray type i s array (INTEGER range <>) o f segmentX ;
type d e l im i t e r a r r a y i s array (INTEGER range <>) o f unsigned (24 downto

0) ;
39 ------------------------

-- Components:

41
component m00300 topleve l i s

43 port (
clk m : in s t d l o g i c ;

45 reset m : in s t d l o g i c ;

47 Rchan in : in s t d l o g i c v e c t o r (11 downto 0) ;
Gchan in : in s t d l o g i c v e c t o r (11 downto 0) ;

49 Bchan in : in s t d l o g i c v e c t o r (11 downto 0) ;

84

E VHDL code

51 --Memory interface

Mi write : in s t d l o g i c ;
53 Mi read : in s t d l o g i c ;

Mi adr : in s t d l o g i c v e c t o r (15 downto 0) ;
55 Mi wrdata : in s t d l o g i c v e c t o r (31 downto 0) ;

Mi rddata : out s t d l o g i c v e c t o r (31 downto 0) ;
57

Rchan out : out s t d l o g i c v e c t o r (7 downto 0) ;
59 Gchan out : out s t d l o g i c v e c t o r (7 downto 0) ;

Bchan out : out s t d l o g i c v e c t o r (7 downto 0)
61) ;

end component ;
63

component m00300 memcontroll i s
65 port (

c l k : in s t d l o g i c ;
67 r e s e t : in s t d l o g i c ;

69 M write : in s t d l o g i c ;
M read : in s t d l o g i c ;

71 M adr : in s t d l o g i c v e c t o r (15 downto 0) ;
M wrdata : in s t d l o g i c v e c t o r (31 downto 0) ;

73 M rddata : out s t d l o g i c v e c t o r (31 downto 0) ;
--For histogram

75 M sto r eh i s t : out s t d l o g i c ;
M hist : in histogram (3 to 502) ;

77
--For curve:

79 M segX : out segmentarray type (0 to 7) ;
M delim : out d e l im i t e r a r r a y (0 to 6) ;

81 M update : out s t d l o g i c

83
) ;

85 end component ;

87 component m00300 histogram i s
port (

89 c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;

91 s t o r e h i s t : in s t d l o g i c ;
ychan : in s t d l o g i c v e c t o r (24 downto 0) ;

93 h i s t : out histogram (3 to 502)
) ;

95 end component ;

97 component m00300 rgb2ychan i s
port (

99 c l k : in s t d l o g i c ;

101 R chan : in s t d l o g i c v e c t o r (11 downto 0) ;
G chan : in s t d l o g i c v e c t o r (11 downto 0) ;

103 B chan : in s t d l o g i c v e c t o r (11 downto 0) ;

105 Y chan : out s t d l o g i c v e c t o r (24 downto 0)
) ;

107 end component ;

85

E VHDL code

109 component m00300 TMA i s
port (

111 c l k : in s t d l o g i c ;
yinp : in s t d l o g i c v e c t o r (24 downto 0) ;

113
updatesegs : in s t d l o g i c ; --High when loading

115 segment inp : in segmentarray type (0 to 7) ; --Segment data (alpha

beta)

de l im inp : in d e l im i t e r a r r a y (0 to 6) ;
117

segment out : out segmentX ; --Alpha and beta for deltay

119 yde l ta : out s t d l o g i c v e c t o r (24 downto 0) --Deltay

) ;
121 end component ;

123 component m00300 TMB i s
port (

125 c l k : in s t d l o g i c ;
segmentin : in segmentX ;

127 DeltaY : in s t d l o g i c v e c t o r (24 downto 0) ;

129 Yout : out s t d l o g i c v e c t o r (25 downto 0)
) ;

131 end component ;

133 component m00300 lummodifier i s
port (

135 c l k i n : in s t d l o g i c ;
r e s e t i n : in s t d l o g i c ;

137
Ychan old : in s t d l o g i c v e c t o r (24 downto 0) ;

139 Ychan new : in s t d l o g i c v e c t o r (25 downto 0) ;

141 Cmod : out s t d l o g i c v e c t o r (16 downto 0)
) ;

143 end component ;

145 component m00300 reducer i s
port (

147 c l k : in s t d l o g i c ;

149 chan in : in s t d l o g i c v e c t o r (11 downto 0) ;
lum mod : in s t d l o g i c v e c t o r (16 downto 0) ;

151
chan out : out s t d l o g i c v e c t o r (7 downto 0)

153) ;
end component ;

155
component m00300 buf fer i s

157 g ene r i c (inpwidth : natura l :=24; --Size of input/output

delayed : natura l :=1) ; --Delayed: How many clks the output

should be delayed with

159 port (
c l k : in s t d l o g i c ;

161
i n v e c t o r : in s t d l o g i c v e c t o r (inpwidth − 1 downto 0) ;

86

E VHDL code

163 out vec to r : out s t d l o g i c v e c t o r (inpwidth − 1 downto 0)
) ;

165 end component ;

167 component m00300 arraydiv ider
g en e r i c (s i z e : i n t e g e r :=8) ;

169 port (c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;

171 div idend : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;
d i v i s o r : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

173 quot i ent : out s t d l o g i c v e c t o r (s i z e − 1 downto 0)
) ;

175 end component ;
end package m00300 pkg ;

code/m00300 pkg.vhd

E.2 Top level

2 -- Thesis: Tone mapping in video conferences

--

4 -- Description:

-- Toplevel interface for Tone mapper

6 --

-- Function:

8 -- Connecting all the components

--

10 -- Parameters:

-- none

12 --

--@author: Erik S tr mme

14 -------------------------

16 l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

18 use IEEE . numer ic std . a l l ;
use work . m00300 pkg . a l l ;

20
en t i t y m00300 topleve l i s

22 port (
clk m : in s t d l o g i c ;

24 reset m : in s t d l o g i c ;

26 Rchan in : in s t d l o g i c v e c t o r (11 downto 0) ;
Gchan in : in s t d l o g i c v e c t o r (11 downto 0) ;

28 Bchan in : in s t d l o g i c v e c t o r (11 downto 0) ;

30 --------Memory interface

Mi write : in s t d l o g i c ;
32 Mi read : in s t d l o g i c ;

Mi adr : in s t d l o g i c v e c t o r (15 downto 0) ;
34 Mi wrdata : in s t d l o g i c v e c t o r (31 downto 0) ;

Mi rddata : out s t d l o g i c v e c t o r (31 downto 0) ;
36 --------------------------------------

87

E VHDL code

Rchan out : out s t d l o g i c v e c t o r (7 downto 0) ;
38 Gchan out : out s t d l o g i c v e c t o r (7 downto 0) ;

Bchan out : out s t d l o g i c v e c t o r (7 downto 0)
40) ;

end en t i t y m00300 topleve l ;
42

a r c h i t e c t u r e s t r u c t o f m00300 topleve l i s
44 -------------------------------------

--------Interconnecting signals

46
s i g n a l C segX : segmentarray type (0 to 7) ;

48 s i g n a l C delim : d e l im i t e r a r r a y (0 to 6) ;
s i g n a l C update : s t d l o g i c ;

50
s i g n a l TMA segment : segmentX ;

52 s i g n a l TMA deltay : s t d l o g i c v e c t o r (24 downto 0) ;
s i g n a l TMB ychan : s t d l o g i c v e c t o r (25 downto 0) ;

54 s i g n a l TM mod : s t d l o g i c v e c t o r (16 downto 0) ;

56 s i g n a l s t o r e h i s t i : s t d l o g i c ;
s i g n a l h i s t i : h istogram (3 to 502) ;

58 -------------------------------------

--------Delay signals:

60 s i g n a l Ychan org , Ychan org delayed : s t d l o g i c v e c t o r (24 downto 0) ;
s i g n a l RGB input , RGB delayed : s t d l o g i c v e c t o r (35 downto 0) ;

62 s i g n a l Rchan delayed , Gchan delayed , Bchan delayed : s t d l o g i c v e c t o r
(11 downto 0) ;

64 begin

66 RGB input <= (Rchan in & Gchan in & Bchan in) ;
Rchan delayed <= RGB delayed (35 downto 24) ;

68 Gchan delayed <= RGB delayed (23 downto 12) ;
Bchan delayed <= RGB delayed (11 downto 0) ;

70
RGBbuffer : component m00300 buf fer

72 g ene r i c map(36 , 48)
port map(c l k => clk m ,

74 i n v e c t o r => RGB input ,
ou t ve c to r => RGB delayed) ;

76
Histogram : component m00300 histogram

78 port map(c l k => clk m ,
r e s e t => reset m ,

80 s t o r e h i s t => s t o r e h i s t i ,
ychan => Ychan org ,

82 h i s t => h i s t i) ;

84
TM ychan : component m00300 rgb2ychan

86 port map(c l k => clk m ,
R chan => Rchan in ,

88 G chan => Gchan in ,
B chan => Bchan in ,

90 Y chan => Ychan org) ;

92 TM buffer : component m00300 buf fer

88

E VHDL code

g ene r i c map(25 , 6)
94 port map(c l k => clk m ,

i n v e c t o r => Ychan org ,
96 ou t vec to r => Ychan org delayed) ;

98 TM parta : component m00300 TMA
port map(c l k => clk m ,

100 yinp => Ychan org ,

102 updatesegs => C update ,
segment inp => C segX ,

104 de l im inp => C delim ,

106 segment out => TMA segment ,
yde l ta => TMA deltay) ;

108
TM partb : component m00300 TMB

110 port map(c l k => clk m ,
segmentin => TMA segment ,

112 DeltaY => TMA deltay ,
Yout => TMB ychan) ;

114
TM lummod : component m00300 lummodifier

116 port map(c l k i n => clk m ,
r e s e t i n => reset m ,

118 Ychan old => Ychan org delayed ,
Ychan new => TMB ychan ,

120 Cmod => TM mod) ;

122 TM reduce R : m00300 reducer
port map(c l k => clk m ,

124 chan in => Rchan delayed ,
lum mod => TM mod,

126 chan out => Rchan out) ;

128 TM reduce G : m00300 reducer
port map(c l k => clk m ,

130 chan in => Gchan delayed ,
lum mod => TM mod,

132 chan out => Gchan out) ;

134 TM reduce B : m00300 reducer
port map(c l k => clk m ,

136 chan in => Bchan delayed ,
lum mod => TM mod,

138 chan out => Bchan out) ;

140 TM memory : m00300 memcontroll
port map(c l k => clk m ,

142 r e s e t => reset m ,
M write => Mi write ,

144 M read => Mi read ,
M adr => Mi adr ,

146 M wrdata => Mi wrdata ,
M rddata => Mi rddata ,

148 M sto r eh i s t => s t o r e h i s t i ,
M hist => h i s t i ,

89

E VHDL code

150 M segX => C segX ,
M delim => C delim ,

152 M update => C update) ;
end a r c h i t e c t u r e ;

code/m00300 toplevel.vhd

E.3 rgb2ychan

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Component for finding luminance from RGB triplet.

--

7 --

-- Function:

9 -- Transform RGB to Lum

--

11 -- Parameters:

-- None

13 --

--@author: Erik S tr mme

15 -------------------------

l i b r a r y i e e e ;
17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use IEEE . numer ic std . a l l ;
19 use work . m00300 pkg . a l l ;

21 en t i t y m00300 rgb2ychan i s
port (

23 c l k : in s t d l o g i c ;

25 R chan : in s t d l o g i c v e c t o r (11 downto 0) ;
G chan : in s t d l o g i c v e c t o r (11 downto 0) ;

27 B chan : in s t d l o g i c v e c t o r (11 downto 0) ;

29 Y chan : out s t d l o g i c v e c t o r (24 downto 0)
) ;

31 end en t i t y m00300 rgb2ychan ;

33 a r c h i t e c t u r e s t r u c t o f m00300 rgb2ychan i s
constant c o e f f 1 : natura l := 1742 ;

35 constant c o e f f 2 : natura l := 5858 ;
constant c o e f f 3 : natura l := 591 ;

37
s i g n a l Ychan calcRed : unsigned (25 downto 0) ;

39 s i g n a l Ychan calcGreen : unsigned (25 downto 0) ;
s i g n a l Ychan calcBlue : unsigned (25 downto 0) ;

41 s i g n a l Ychan calcsum : unsigned (25 downto 0) ;

43 begin

45 Ychan calcsum <= (Ychan calcRed) + (Ychan calcGreen) + (Ychan calcBlue
) ;

90

E VHDL code

47 c locked : p roce s s (c l k)
begin

49 i f (r i s i n g e d g e (c l k)) then
Ychan calcRed <= (r e s i z e (unsigned (R chan) ,13) ∗ c o e f f 1) ;

51 Ychan calcGreen <= (r e s i z e (unsigned (G chan) ,13) ∗ c o e f f 2) ;
Ychan calcBlue <= (r e s i z e (unsigned (B chan) ,13) ∗ c o e f f 3) ;

53
Y chan <= s t d l o g i c v e c t o r (Ychan calcsum (24 downto 0)) ;

55 end i f ;
end proce s s ;

57 end a r c h i t e c t u r e ;

code/m00300 rgb2ychan.vhd

E.4 TMA

2 -- Thesis: Tone mapping in video conferences

--

4 -- Description:

-- Module for tone mapping luminance.

6 -- See my thesis

--

8 -- Function:

-- First tonemapping module (out of two)

10 -- This will only find which segment it should use.

-- Also , this component will update the segments into registers

12 --

-- Parameters:

14 -- none

--

16 --@author: Erik S tr mme

18
l i b r a r y i e e e ;

20 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

22 use work . m00300 pkg . a l l ;

24 en t i t y m00300 TMA i s
port (

26 c l k : in s t d l o g i c ;
yinp : in s t d l o g i c v e c t o r (24 downto 0) ;

28
----Loading new segments:

30 updatesegs : in s t d l o g i c ; --High when loading

new segments

segment inp : in segmentarray type (0 to 7) ; --Segment data (

alpha beta)

32 de l im inp : in d e l im i t e r a r r a y (0 to 6) ; --Delimiter (YsegX)

34 segment out : out segmentX ; --Alpha and beta

for Deltay sent to part 2 of TM

yde l ta : out s t d l o g i c v e c t o r (24 downto 0) --Deltay

91

E VHDL code

36) ;
end en t i t y m00300 TMA;

38

40 a r c h i t e c t u r e s t r u c t o f m00300 TMA i s

42 --Clocked inputs:

s i g n a l d e l im inp r eg : d e l im i t e r a r r a y (0 to 6) ;
44 s i g n a l segment inp reg : segmentarray type (0 to 7) ;

s i g n a l update s eg s r eg : s t d l o g i c ;
46 s i g n a l y inp reg : s t d l o g i c v e c t o r (24 downto 0) ;

48 s i g n a l d e l im i t e r i n , d e l im i t e r ou t : d e l im i t e r a r r a y (0 to 6) ;
s i g n a l segmentarray in , segmentarray out : segmentarray type (0 to 7) ;

50
s i g n a l segment out de l : segmentX ;

52 s i g n a l y d e l t a l : s i gned (25 downto 0) ;
s i g n a l y inp reg d : s t d l o g i c v e c t o r (24 downto 0) ;

54

56 type comp arr i s array (i n t e g e r range <>) o f s i gned (25 downto 0) ;
s i g n a l comparevector , comparevector d : comp arr (0 to 6) ;

58 s i g n a l comparevector MSBs : s t d l o g i c v e c t o r (6 downto 0) ;
begin

60
with comparevector MSBs s e l e c t

62 y d e l t a l <= signed (’ 0 ’ & y inp reg d) when ”1111111” ,
comparevector d (0) when ”1111110” ,

64 comparevector d (1) when ”1111100” ,
comparevector d (2) when ”1111000” ,

66 comparevector d (3) when ”1110000” ,
comparevector d (4) when ”1100000” ,

68 comparevector d (5) when ”1000000” ,
comparevector d (6) when othe r s ;

70
with comparevector MSBs s e l e c t

72 segment out de l <= segmentarray out (0) when ”1111111” ,
segmentarray out (1) when ”1111110” ,

74 segmentarray out (2) when ”1111100” ,
segmentarray out (3) when ”1111000” ,

76 segmentarray out (4) when ”1110000” ,
segmentarray out (5) when ”1100000” ,

78 segmentarray out (6) when ”1000000” ,
segmentarray out (7) when othe r s ; --"000000";

80
segmentarray in <= segment inp reg when update s eg s r eg = ’1 ’ e l s e

segmentarray out ;
82 d e l im i t e r i n <= de l im inp r eg when update s eg s r eg = ’1 ’ e l s e

d e l im i t e r ou t ;

84 compare : f o r i in 0 to 6 generate
comparevector (i) <= signed (’ 0 ’ & y inp reg) − s igned (’ 0 ’ &

de l im i t e r ou t (i)) ;
86 end generate compare ;

88 msbs : f o r i in 0 to 6 generate
comparevector MSBs (i) <= comparevector d (i) (25) ;

92

E VHDL code

90 end generate msbs ;

92
c locked : p roce s s (c lk , d e l im i t e r i n , segmentarray in , yinp)

94 begin
i f (r i s i n g e d g e (c l k)) then

96 --Clocked inputs:

update s eg s r eg <= updatesegs ;
98 segment inp reg <= segment inp ;

d e l im inp r eg <= de l im inp ;
100

y inp reg <= yinp ;
102 y inp reg d <= yinp reg ;

104 --Registers:

segmentarray out <= segmentarray in ;
106 d e l im i t e r ou t <= de l im i t e r i n ;

108 comparevector d <= comparevector ;

110 --Clocked outputs:

yde l ta <= s t d l o g i c v e c t o r (y d e l t a l (24 downto 0)) ;
112 segment out <= segment out de l ;

end i f ;
114 end proce s s ;

end a r c h i t e c t u r e ;

code/m00300 TMA.vhd

E.5 TMB

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Module for tone mapping luminance.

--

7 -- Function:

-- Second tonemapping module (out of two)

9 -- This will calculate the output value depending on which segment

input

-- it get from part 1 of tone mapper.

11 --

-- Parameters:

13 -- None

--

15 --@author: Erik S tr mme

17
l i b r a r y i e e e ;

19 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

21 use work . m00300 pkg . a l l ;

23 en t i t y m00300 TMB i s

93

E VHDL code

port (
25 c l k : in s t d l o g i c ;

segmentin : in segmentX ;
27 DeltaY : in s t d l o g i c v e c t o r (24 downto 0) ;

29 Yout : out s t d l o g i c v e c t o r (25 downto 0)
) ;

31 end en t i t y m00300 TMB ;

33
a r c h i t e c t u r e s t r u c t o f m00300 TMB i s

35
s i g n a l Ycalc1 , Ycalc2 : unsigned (30 downto 0) ;

37 s i g n a l Y ugs inp : unsigned (16 downto 0) ;
s i g n a l be ta de layed : unsigned (24 downto 0) ;

39
begin

41
Y ugs inp <= unsigned (DeltaY (24 downto 8)) ;

43
c locked : p roce s s (c l k)

45 begin
i f (r i s i n g e d g e (c l k)) then

47 beta de layed <= segmentin . beta ;
Ycalc1 <= r e s i z e ((segmentin . alpha ∗ Y ugs inp) , 31) ;

49 Ycalc2 <= Ycalc1 + beta de layed ;

51 --Clock outputs

i f (s t d l o g i c v e c t o r (Ycalc2 (30 downto 26)) = ”00000”) then
53 Yout <= s t d l o g i c v e c t o r (Ycalc2 (25 downto 0)) ;

e l s e
55 Yout <= (othe r s => ’1 ’) ;

end i f ;
57 end i f ;

end proce s s ;
59 end a r c h i t e c t u r e ;

code/m00300 TMB.vhd

E.6 Lum modifier

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Component for finding how much each pixel should be modified with.

-- Probably going to change the divider here

7 --

-- Function:

9 -- Ynew / Yold = Cmod

--

11 -- Parameters:

-- None

13 --

--@author: Erik S tr mme

94

E VHDL code

15 -------------------------

17 LIBRARY i e e e ;
l i b r a r y i e e e ;

19 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

21 use work . m00300 pkg . a l l ;

23 en t i t y m00300 lummodifier i s
port (

25 c l k i n : in s t d l o g i c ;
r e s e t i n : in s t d l o g i c ;

27 Ychan old : in s t d l o g i c v e c t o r (24 downto 0) ;
Ychan new : in s t d l o g i c v e c t o r (25 downto 0) ;

29
Cmod : out s t d l o g i c v e c t o r (16 downto 0)

31) ;
end en t i t y ;

33
a r c h i t e c t u r e s t r u c t o f m00300 lummodifier i s

35
s i g n a l Cmod max : s t d l o g i c v e c t o r (20 downto 0) ;

37 s i g n a l Cmod ful l : s t d l o g i c v e c t o r (37 downto 0) ;

39 s i g n a l Ychan new extended : s t d l o g i c v e c t o r (37 downto 0) ;
s i g n a l Ychan old extended : s t d l o g i c v e c t o r (37 downto 0) ;

41 begin

43 a r r ayd i v i d e r : component m00300 arraydiv ider
g en e r i c map(38)

45 port map(c l k => c l k i n ,
r e s e t => r e s e t i n ,

47 div idend => Ychan new extended ,
d i v i s o r => Ychan old extended ,

49 quot i ent => Cmod ful l) ;

51
Ychan new extended (37 downto 12) <= (Ychan new) ;

53 Ychan new extended (11 downto 0) <= (othe r s => ’0 ’) ;
Ychan old extended (37 downto 25) <= (othe r s => ’0 ’) ; --padding

55 Ychan old extended (24 downto 0) <= Ychan old ;

57 Cmod max <= (othe r s => ’0 ’) ;
Cmod <= Cmod ful l (16 downto 0) when Cmod max = Cmod ful l (37 downto 17)

e l s e (o the r s => ’1 ’) ;
59

--

61 --

--process (clk)

63 --begin

-- if(rising_edge(clk)) then

65 -- --Cmod_full <= unsigned(Ychan_extended) / unsigned(

Ychan_old_extended);

-- end if;

67 --end process;

69 end a r c h i t e c t u r e ;

95

E VHDL code

code/m00300 lummodifier.vhd

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Pipelined Array divider. Delay is the same as size plus one.

--

7 -- Reference

-- Computer Architecture: Algorithms and hardware designs

9 -- by Behrooz Parhami

-- http ://www.ece.ucsb.edu/~ parhami/text_comp_arch.htm

11 --

-- Function:

13 -- Dividend / Divisor = Quotient

--

15 -- Parameters:

-- size : how many bits dividend and divisor is.

17 --

--@author: Erik S tr mme

19 -------------------------

21 LIBRARY i e e e ;
l i b r a r y i e e e ;

23 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

25 use work . m00300 pkg . a l l ;
use work . m00300 div ider pkg . a l l ;

27
en t i t y m00300 arraydiv ider i s

29 g ene r i c (s i z e : natura l := 8) ;
port (

31 c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;

33 div idend : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;
d i v i s o r : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

35
quot i ent : out s t d l o g i c v e c t o r (s i z e − 1 downto 0)

37) ;
end en t i t y m00300 arraydiv ider ;

39
a r c h i t e c t u r e s t r u c t o f m00300 arraydiv ider i s

41
type rem array i s array (i n t e g e r range <>) o f s t d l o g i c v e c t o r (s i z e −

1 downto 0) ;
43 s i g n a l rem out : rem array (s i z e − 1 downto 0) ;

45 s i g n a l q u o t i e n t s l i c e s o u t : s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;
--signal quotient_slices_in : std_logic_vector(size - 1 downto 0);

47

49 type datapacket t i s r ecord
d i v i s o r : s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

51 div idend : s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;
rem in : s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

96

E VHDL code

53 -- rem_out: std_logic_vector(size - 1 downto 0);

-- quotient_slices_out : std_logic;

55 q u o t i e n t s l i c e s i n : s t d l o g i c ;
quo t i en t s : s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

57
end record datapacket t ;

59 type da tapacke t t a r r ay i s array (i n t e g e r range <>) o f datapacket t ;

61
s i g n a l packet in , packet out : da tapacke t t a r ray (0 to s i z e − 1) ;

63

65 s i g n a l d i v i s o r i npu t , d iv idend input , quot i ent output :
s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

67

69 begin

71
---Load pipe:

73 packe t in (0) . d i v i s o r <= d i v i s o r i n pu t ;
packe t in (0) . d iv idend <= div idend input ;

75 packe t in (0) . rem in (s i z e − 2 downto 0) <= (othe r s => ’0 ’) ;
packe t in (0) . rem in (s i z e − 1) <= div idend input (s i z e − 1) ;

77 packe t in (0) . q u o t i e n t s l i c e s i n <= ’1 ’ ;
packe t in (0) . quo t i en t s <= (othe r s => ’0 ’) ;

79 --This results in one load stage.. Can be done better probably.

81 g e n e r a t e s l i c e s : f o r i in 0 to s i z e −1 generate
s l i c e x : component m00300 d i v i d e r s l i c e

83 g ene r i c map(s i z e)
port map(

85 d i v i s o r i n => packet out (i) . d i v i s o r ,
quot in => packet out (i) . q u o t i e n t s l i c e s i n ,

87 r ema i n d e r s l i c e i n => packet out (i) . rem in ,
r ema i nd e r s l i c e ou t => rem out (i) ,

89 quot out => q u o t i e n t s l i c e s o u t (i)
) ;

91 end generate g e n e r a t e s l i c e s ;

93
l o ad quo t i e n t s : f o r i in 0 to s i z e − 2 generate

95 packe t in (i +1) . quo t i en t s <= packet out (i) . quo t i en t s (s i z e −2 downto 0)
& qu o t i e n t s l i c e s o u t (i) ; --Shift in new quotients.

packe t in (i +1) . q u o t i e n t s l i c e s i n <= qu o t i e n t s l i c e s o u t (i) ; --

Propogation of quotients --Same same.

97 end generate l o ad quo t i e n t s ;

99 propogate rems : f o r i in 1 to s i z e − 1 generate
packe t in (i) . rem in (s i z e −2 downto 0) <= rem out (i −1) (s i z e − 1 downto

1) ;
101 packe t in (i) . rem in (s i z e −1) <= packet out (i −1) . d iv idend (s i z e−1− i) ;

end generate propogate rems ;
103

propogate packe t cons tant s : f o r i in 1 to s i z e − 1 generate
105 packe t in (i) . d iv idend <= packet out (i − 1) . d iv idend ;

97

E VHDL code

packe t in (i) . d i v i s o r <= packet out (i − 1) . d i v i s o r ;
107 end generate propogate packe t cons tant s ;

109

111 quot i ent output <= packet out (s i z e −1) . quo t i en t s (s i z e − 2 downto 0) &
qu o t i e n t s l i c e s o u t (s i z e −1) ;

113
c l o ck i ng : p roce s s (c lk , r e s e t) i s

115 begin
i f (r i s i n g e d g e (c l k)) then

117 i f (r e s e t = ’1 ’) then

119 r e s e t l o o p : f o r i in 0 to s i z e −1 loop
packet out (i) . d iv idend <= (othe r s => ’0 ’) ;

121 packet out (i) . d i v i s o r <= (othe r s => ’0 ’) ;
packet out (i) . rem in <= (othe r s => ’0 ’) ;

123 packet out (i) . q u o t i e n t s l i c e s i n <= ’0 ’ ;
packet out (i) . quo t i en t s <= (othe r s => ’0 ’) ;

125 end loop r e s e t l o o p ;
e l s e

127 --Registers:

packet out <= packe t in ;
129

--Clocking input:

131 d i v i s o r i n pu t <= d i v i s o r ;
d iv idend input <= div idend ;

133 quot i ent <= quot i ent output ;
end i f ;

135 end i f ;
end proce s s ;

137 end a r c h i t e c t u r e ;

code/m00300 arraydivider.vhd

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- One line of array divider.

-- This returns the remainder and quout of current line.

7 -- Both should be propogated.

--

9 -- Function:

--

11 -- Parameters:

-- size : how many bits dividend and divisor is.

13 --

--@author: Erik S tr mme

15 -------------------------

17
l i b r a r y i e e e ;

19 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

21 use work . m00300 pkg . a l l ;

98

E VHDL code

use work . m00300 div ider pkg . a l l ;
23

en t i t y m00300 d i v i d e r s l i c e i s
25 g ene r i c (s i z e : natura l := 8) ;

port (
27 d i v i s o r i n : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

quot in : in s t d l o g i c ;
29 r ema i n d e r s l i c e i n : in s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;

r ema i nd e r s l i c e ou t : out s t d l o g i c v e c t o r (s i z e − 1 downto 0) ;
31 quot out : out s t d l o g i c

) ;
33 end en t i t y m00300 d i v i d e r s l i c e ;

35 a r c h i t e c t u r e s t r u c t o f m00300 d i v i d e r s l i c e i s

37
s i g n a l add r e su l t : unsigned (s i z e downto 0) ;

39 s i g n a l d i v i s o r c a l c , q u o t i e n t i n c a l c : unsigned (s i z e −1 downto 0) ;
s i g n a l r ema i n d e r s l i c e i n c a l c : unsigned (s i z e − 1 downto 0) ;

41 begin

43
--Flip remainder in:

45 f l i p : f o r i in 0 to s i z e −1 generate
r ema i n d e r s l i c e i n c a l c (i) <= r ema i n d e r s l i c e i n (s i z e−1− i) ;

47 end generate f l i p ;

49 f l i p r em : f o r i in 0 to s i z e −1 generate
r ema i nd e r s l i c e ou t (i) <= add r e su l t (s i z e−1− i) ;

51 end generate f l i p r em ;

53
-- remainder_slice_out <= std_logic_vector(add_result(size - 1

downto 0));

55

57 d i v i s o r c a l c <= unsigned (not (d i v i s o r i n)) when quot in = ’1 ’ e l s e
unsigned (d i v i s o r i n) ;

q u o t i e n t i n c a l c (s i z e −1 downto 1) <= (othe r s => ’0 ’) ;
59 q u o t i e n t i n c a l c (0) <= quot in ;

add r e su l t <= (d i v i s o r c a l c) + (’0 ’& unsigned (
r ema i n d e r s l i c e i n c a l c)) + qu o t i e n t i n c a l c ;

61 quot out <= add r e su l t (s i z e) ;

63 end a r c h i t e c t u r e ;

65 -- Under this is original design with controlled FA blocks

--architecture struct of m00300_divider_slice is

67 --signal quotput_slice : std_logic_vector(size downto 0);

--

69 --

--procedure onecell

71 --(signal co, s : out std_logic;

--signal r, d, ci , q : in std_logic) is

73 --begin

-- co <= (r and (d xor q)) or (r and ci) or ((d xor q) and ci);

75 -- s <= r xor d xor q xor ci;

99

E VHDL code

--end onecell;

77 --

--

79 --

--begin

81 --quot_out <= quotput_slice (0);

--quotput_slice(size) <= quot_in;

83 --

--oneslice : for i in 0 to size - 1 generate

85 -- onecell(

-- quotput_slice(i),

87 -- remainder_slice_out(i),

--

89 -- remainder_slice_in(i),

-- divisor_in(size - 1 - i),

91 -- quotput_slice(i+1),

-- quot_in);

93 --end generate oneslice;

--end architecture;

code/m00300 divider slice.vhd

E.7 Reducer

2 -- Thesis: Tone mapping in video conferences

--

4 -- Description:

-- Component for multiplying one of the RGB channels with the lum

modifier.

6 -- One component per channel

--

8 -- Function:

-- Multiply channel by lum mod.

10 -- Set to max if it is out of bounds.

--

12 -- Parameters:

-- None

14 --

--@author: Erik S tr mme

16 -------------------------

l i b r a r y i e e e ;
18 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

use IEEE . numer ic std . a l l ;
20 use work . m00300 pkg . a l l ;

22 en t i t y m00300 reducer i s
port (

24 c l k : in s t d l o g i c ;
chan in : in s t d l o g i c v e c t o r (11 downto 0) ;

26 lum mod : in s t d l o g i c v e c t o r (16 downto 0) ;

28 chan out : out s t d l o g i c v e c t o r (7 downto 0)
) ;

30 end en t i t y m00300 reducer ;

100

E VHDL code

32
a r c h i t e c t u r e s t r u c t o f m00300 reducer i s

34 s i g n a l c h an f u l l : unsigned (28 downto 0) ;
s i g n a l chan s e l : s t d l o g i c v e c t o r (7 downto 0) ;

36
s i g n a l mula : unsigned (11 downto 0) ;

38 s i g n a l mulb : unsigned (16 downto 0) ;
begin

40
chan s e l <= s t d l o g i c v e c t o r (c h an f u l l (23 downto 16)) when (c h an f u l l

(27 downto 24) = ”0000”) e l s e (o the r s => ’1 ’) ;
42 c h an f u l l <= mula ∗ mulb ;

44 c locked : p roce s s (c l k)
begin

46 i f (r i s i n g e d g e (c l k)) then
mula <= unsigned (chan in) ;

48 mulb <= unsigned (lum mod) ;

50 --Register output:

chan out <= chan s e l ;
52 end i f ;

end proce s s ;
54 end a r c h i t e c t u r e ;

code/m00300 reducer.vhd

E.8 Buffer

2 -- Thesis: Tone mapping in video conferences

--

4 -- Description:

-- Pipeline element with variable delay and variable size

6 --

-- Function:

8 -- Delay the input by DELAYED clk ’events

--

10 -- Parameters:

-- inpwidth = size of inputs

12 -- delayed = depth of buffer

--

14 --@author: Erik S tr mme

16 LIBRARY i e e e ;
USE i e e e . s t d l o g i c 1 1 6 4 .ALL;

18 USE i e e e . numer ic std .ALL;
USE work . m00300 pkg . a l l ;

20
en t i t y m00300 buf fer i s

22 g ene r i c (inpwidth : natura l :=24; --Size of input/output

delayed : natura l :=1) ; --Delayed: How many clks the output

should be delayed with

24 port (

101

E VHDL code

c l k : in s t d l o g i c ;
26

i n v e c t o r : in s t d l o g i c v e c t o r (inpwidth − 1 downto 0) ;
28 ou t vec to r : out s t d l o g i c v e c t o r (inpwidth − 1 downto 0)

) ;
30 end en t i t y m00300 buf fer ;

32 a r c h i t e c t u r e s t r u c t o f m00300 buf fer i s

34 type de layar ray i s array (0 to delayed − 1) o f s t d l o g i c v e c t o r (
inpwidth − 1 downto 0) ;

36 s i g n a l a r r i n , a r r ou t : de layar ray ;
begin

38

40 gen ar rays : f o r i in 1 to delayed−1 generate
a r r i n (i) <= ar r ou t (i −1) ;

42 end generate gen ar rays ;
a r r i n (0) <= in v e c t o r ;

44 ou t vec to r <= ar r ou t (delayed−1) ;

46 c locked : p roce s s (c l k)
begin

48 i f (r i s i n g e d g e (c l k)) then
a r r ou t <= a r r i n ;

50 end i f ;
end proce s s ;

52
end a r c h i t e c t u r e ;

code/m00300 buffer.vhd

E.9 Histogram

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Component for collecting Y in a histogram.

--

7 -- Function:

-- Count Y in proper index

9 --

-- Parameters:

11 -- None

--

13 --@author: Erik S tr mme

15
l i b r a r y i e e e ;

17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;

19 use work . m00300 pkg . a l l ;

102

E VHDL code

21 en t i t y m00300 histogram i s
port (

23 c l k : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;

25 s t o r e h i s t : in s t d l o g i c ;
ychan : in s t d l o g i c v e c t o r (24 downto 0) ;

27
h i s t : out histogram (3 to 502)

29) ;
end en t i t y m00300 histogram ;

31
a r c h i t e c t u r e behavior o f m00300 histogram i s

33 s i g n a l ychan r : s t d l o g i c v e c t o r (8 downto 0) ;
s i g n a l s t o r e h i s t r : s t d l o g i c ;

35 s i g n a l h i s t i n c u r r , h i s t o u t c u r r : histogram (3 to 502) ;

37 begin

39 --Add registered Y to hist:

--Smallest value to count is 3 ("11") , so hist is shifted.

41 addinc : f o r i in 3 to 502 generate
h i s t i n c u r r (i) <= s t d l o g i c v e c t o r (unsigned (h i s t o u t c u r r (i)) + 1)

43 when ychan r = s t d l o g i c v e c t o r (to uns igned (i , 9))
e l s e h i s t o u t c u r r (i) ;

45 end generate addinc ;

47 h i s t <= h i s t o u t c u r r ;

49 c locked : p roce s s (c l k) i s
begin

51 i f (r i s i n g e d g e (c l k)) then
i f (r e s e t = ’1 ’) then

53 --Reset everything

r e s e t l o op : f o r i in 0 to 499 loop
55 h i s t o u t c u r r (i +3) <= (othe r s => ’0 ’) ;

end loop ;
57 e l s e

--Register inputs:

59 ychan r <= ychan (24 downto 16) ;
s t o r e h i s t r <= s t o r e h i s t ;

61 --Register outputs:

i f (s t o r e h i s t r = ’1 ’) then
63 l o c a l r e s e t : f o r i in 0 to 499 loop

h i s t o u t c u r r (i +3) <= (othe r s => ’0 ’) ;
65 end loop ;

e l s e
67 h i s t o u t c u r r <= h i s t i n c u r r ;

end i f ;
69 end i f ;

end i f ;
71 end proce s s ;

end a r c h i t e c t u r e ;

code/m00300 histogram.vhd

103

E VHDL code

E.10 Memory interface

2 -- Thesis: Tone mapping in video conferences

--

4 -- Description:

-- Bus interface

6 --

-- Function:

8 -- Recieving data from the bus if the adress is apropriate.

--

10 -- Parameters:

-- None

12 --

--@author: Erik S tr mme

14 -------------------------

16 l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

18 use IEEE . numer ic std . a l l ;
use work . m00300 pkg . a l l ;

20
en t i t y m00300 memcontroll i s

22 port (
c l k : in s t d l o g i c ;

24 r e s e t : in s t d l o g i c ;
--External Interface:

26 M read : in s t d l o g i c ;
M write : in s t d l o g i c ;

28 M adr : in s t d l o g i c v e c t o r (15 downto 0) ;
M wrdata : in s t d l o g i c v e c t o r (31 downto 0) ;

30 M rddata : out s t d l o g i c v e c t o r (31 downto 0) ;
M sto r eh i s t : out s t d l o g i c ;

32
--Internal interface:

34 M hist : in histogram (3 to 502) ;
M segX : out segmentarray type (0 to 7) ;

36 M delim : out d e l im i t e r a r r a y (0 to 6) ;
M update : out s t d l o g i c

38) ;
end en t i t y m00300 memcontroll ;

40
a r c h i t e c t u r e s t r u c t o f m00300 memcontroll i s

42
---Register signals:

44 s i g n a l M update in , M s t o r eh i s t i n : s t d l o g i c ;
s i g n a l s egX arr in , s egX arr out : segmentarray type (0 to 7) ;

46 s i g n a l d e l a r r i n , d e l a r r o u t : d e l im i t e r a r r a y (0 to 6) ;

48 ---Signals:

s i g n a l M write d , M read d : s t d l o g i c ;
50 s i g n a l M adr d : s t d l o g i c v e c t o r (15 downto 0) ;

s i g n a l M wrdata d : s t d l o g i c v e c t o r (31 downto 0) ;
52 s i g n a l ad r e s s i n r ang e : s t d l o g i c ;

s i g n a l M hist d , M his t d in : histogram (0 to 499) ;
54

constant m00300 la s t adre s s : i n t e g e r := m00300 ofset + 523 ;

104

E VHDL code

56 begin
ad r e s s i n r ang e <= ’0 ’ when t o i n t e g e r (unsigned (M adr d)) >

m00300 la s t adre s s or t o i n t e g e r (unsigned (M adr d)) < m00300 ofset
e l s e ’ 1 ’ ;

58 -------Load alpha and beta:

l o a d l o g i c : f o r i in 0 to 7 generate
60 s egX ar r i n (i) . alpha <= unsigned (M wrdata d (12 downto 0)) when

ad r e s s i n r ang e = ’1 ’ and t o i n t e g e r (unsigned (M adr d)) = (
m00300 ofset + i) and M write d = ’1 ’

e l s e s egX arr out (i) .
alpha ;

62 s egX ar r i n (i) . beta <= unsigned (M wrdata d (24 downto 0)) when
ad r e s s i n r ang e = ’1 ’ and t o i n t e g e r (unsigned (M adr d)) = (
m00300 ofset + 8 + i) and M write d = ’1 ’

e l s e s egX arr out (i) .
beta ;

64 end generate l o a d l o g i c ;

66
--------Load delimiting values:

68 l o ad d e l s : f o r i in 0 to 6 generate
d e l a r r i n (i) <= unsigned (M wrdata d (24 downto 0)) when

ad r e s s i n r ang e = ’1 ’ and t o i n t e g e r (unsigned (M adr d)) = (
m00300 ofset + 16 + i) and M write d = ’1 ’

70 e l s e d e l a r r o u t (i) ;
end generate l o a d d e l s ;

72
M update in <= ’1 ’ when ad r e s s i n r ang e = ’1 ’ and t o i n t e g e r (unsigned (

M adr d)) = (m00300 ofset + 23) and t o i n t e g e r (unsigned (M wrdata d
)) = 0 e l s e ’ 0 ’ ;

74 M s t o r eh i s t i n <= ’1 ’ when ad r e s s i n r ang e = ’1 ’ and t o i n t e g e r (
unsigned (M adr d)) = (m00300 ofset + 23) and t o i n t e g e r (unsigned (
M wrdata d)) = 1 e l s e ’ 0 ’ ;

M hi s t d in <= M hist d ;
76

c locked : p roce s s (c lk , r e s e t)
78 begin

--Clocking registers:

80 i f (r i s i n g e d g e (c l k)) then
M write d <= M write ;

82 M read d <= M read ;
M adr d <= M adr ;

84 M wrdata d <= M wrdata ;

86 i f (r e s e t = ’1 ’) then

88 r e s e t l o op : f o r i in 0 to 7 loop
segX arr out (i) . alpha <= (othe r s => ’0 ’) ;

90 segX arr out (i) . beta <= (othe r s => ’0 ’) ;
M segX(i) . alpha <= (othe r s => ’0 ’) ;

92 M segX(i) . beta <= (othe r s => ’0 ’) ;
M update <= ’0 ’ ;

94 end loop r e s e t l o op ;

96 r e s e t l o op2 : f o r i in 0 to 6 loop
M delim (i) <= (othe r s => ’1 ’) ;

98 d e l a r r o u t (i) <= (othe r s => ’1 ’) ;

105

E VHDL code

end loop r e s e t l o op2 ;
100

h i s t l o op : f o r i in 0 to 499 loop
102 M hist d (i) <= (othe r s => ’0 ’) ;

end loop h i s t l o op ;
104

e l s e
106 segX arr out <= segX ar r i n ;

d e l a r r o u t <= d e l a r r i n ;
108

M sto r eh i s t <= M sto r eh i s t i n ;
110 M update <= M update in ;

M segX <= segX ar r i n ;
112 M delim <= d e l a r r i n ;

114 --Buffer histogram:

i f (M s t o r eh i s t i n = ’1 ’) then
116 normal ize : f o r i in 0 to 499 loop

M hist d (i) <= M hist (i + 3) ;
118 end loop normal ize ;

e l s e
120 M hist d <= M hist d in ;

end i f ;
122

-------Write histogram:

124
i f (a d r e s s i n r ang e = ’1 ’ and M read d = ’1 ’) then

126 M rddata (20 downto 0) <= M hist d (t o i n t e g e r (unsigned (
M adr d))−24) ;

M rddata (31 downto 21) <= (othe r s => ’0 ’) ;
128 e l s e

M rddata <= (othe r s => ’0 ’) ;
130 end i f ;

end i f ;
132 end i f ;

end proce s s ;
134 end a r c h i t e c t u r e ;

code/m00300 memcontroll.vhd

E.11 Test bench

All the test benches follow the same structure seen here.

LIBRARY i e e e ;
2 USE i e e e . s t d l o g i c 1 1 6 4 .ALL;

USE i e e e . numer ic std .ALL;
4 USE work . m00300 pkg . a l l ;

6 use i e e e . s t d l o g i c t e x t i o . a l l ;
use std . t e x t i o . a l l ;

8
ENTITY m00300 TB rgb2ychan IS

10 END m00300 TB rgb2ychan ;

12 ARCHITECTURE behavior OF m00300 TB rgb2ychan IS

106

E VHDL code

14 s i g n a l T clk : s t d l o g i c := ’ 0 ’ ;
s i g n a l T R : s t d l o g i c v e c t o r (11 downto 0) :=(o the r s => ’0 ’) ;

16 s i g n a l T G : s t d l o g i c v e c t o r (11 downto 0) :=(o the r s => ’0 ’) ;
s i g n a l T B : s t d l o g i c v e c t o r (11 downto 0) :=(o the r s => ’0 ’) ;

18 s i g n a l T Y : s t d l o g i c v e c t o r (24 downto 0) ;

20 constant c l k p e r i o d : time := 40 ns ;
constant num delay : i n t e g e r := 2 ;

22 BEGIN
dut : component m00300 rgb2ychan

24 PORT MAP(
c lk => T clk ,

26
R chan => T R ,

28 G chan => T G,
B chan => T B ,

30
Y chan => T Y

32) ;

34 c l k p r o c : p roc e s s
begin

36 T clk <= not T clk ;
wait f o r c l k p e r i o d /2 ;

38 end proce s s ;

40 e x c i t e p r o c : p roce s s
f i l e f i l e r e d : t ex t open read mode i s ” ve c t o r s \m00300 red . txt ” ; --

12 bit

42 f i l e f i l e g r e e n : t ex t open read mode i s ” ve c t o r s \m00300 green . txt ” ;
f i l e f i l e b l u e : t ex t open read mode i s ” ve c t o r s \m00300 blue . txt ” ;

44
va r i ab l e l i n e r e d , l i n e g r e en , l i n e b l u e : l i n e ;

46 va r i ab l e red , green , b lue : s t d l o g i c v e c t o r (11 downto 0) ;

48 begin
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

50 whi l e not e n d f i l e (f i l e r e d) loop
READLINE(f i l e r e d , l i n e r e d) ; --Dump line into L

52 READLINE(f i l e g r e e n , l i n e g r e e n) ;
READLINE(f i l e b l u e , l i n e b l u e) ;

54
READ(l i n e r e d , Red) ; --Next argument into red

56 READ(l i n e g r e en , Green) ;
READ(l i n e b l u e , Blue) ;

58
T R <= Red(11 downto 0) ; --Assign value to interface

60 T G <= Green (11 downto 0) ;
T B <= Blue (11 downto 0) ;

62
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

64 end loop ;
wait ;

66 end proce s s ;

68

107

E VHDL code

v e r i f y du t : p roce s s
70 f i l e f i l e y c h a n : t ex t open read mode i s ” ve c t o r s \m00300 ychan . txt ” ;

--25 bit

va r i ab l e l i n e ychan : l i n e ;
72 va r i ab l e ychan ver : s t d l o g i c v e c t o r (24 downto 0) ;

74 begin
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

76 de lay loop : f o r i in 1 to num delay loop
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

78 end loop de lay loop ;

80 whi l e not e n d f i l e (f i l e y c h a n) loop
wait f o r c l k p e r i o d /4 ;

82 READLINE(f i l e y chan , l i n e ychan) ;
READ(l ine ychan , ychan ver) ;

84
a s s e r t T Y = ychan ver

86 r epor t ” Ca l cu la t i on done wrong . T Y : ” & Integer ’ image (
t o i n t e g e r (unsigned (T Y))) & ” whi l e expected value i s : ”

& Integer ’ image (t o i n t e g e r (unsigned (ychan ver))) & ” accord ing
to t e s t f i l e ”

88 s e v e r i t y warning ;

90 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
end loop ;

92 wait ;

94 end proce s s ;
end a r c h i t e c t u r e ;

code/m00300 TB rgb2ychan.vhd

E.11.1 Test bench for top level

1 -------------------------

-- Thesis: Tone mapping in video conferences

3 --

-- Description:

5 -- Testbench for m00300_topleve

--

7 -- Function:

-- Testing the module to see if it works.

9 -- Do visual comparison test to see if T_Xchan_outs are

-- according to test file. This will be changed if the

11 -- divider is changed.

--

13 --

-- Parameters:

15 -- none

--

17 --@author: Erik S tr mme

19
LIBRARY i e e e ;

21 USE i e e e . s t d l o g i c 1 1 6 4 .ALL;

108

E VHDL code

USE i e e e . numer ic std .ALL;
23 USE work . m00300 pkg . a l l ;

25 use i e e e . s t d l o g i c t e x t i o . a l l ;
use std . t e x t i o . a l l ;

27
ENTITY m00300 TB TOPLEVEL IS

29 END m00300 TB TOPLEVEL ;

31 ARCHITECTURE behavior OF m00300 TB TOPLEVEL IS

33 s i g n a l T clk : s t d l o g i c := ’ 0 ’ ;
s i g n a l T re s e t : s t d l o g i c := ’ 0 ’ ;

35 s i g n a l T Rchan in : s t d l o g i c v e c t o r (11 downto 0) ;
s i g n a l T Gchan in : s t d l o g i c v e c t o r (11 downto 0) ;

37 s i g n a l T Bchan in : s t d l o g i c v e c t o r (11 downto 0) ;

39 s i g n a l T Rchan out : s t d l o g i c v e c t o r (7 downto 0) ;
s i g n a l T Gchan out : s t d l o g i c v e c t o r (7 downto 0) ;

41 s i g n a l T Bchan out : s t d l o g i c v e c t o r (7 downto 0) ;

43 s i g n a l T m read : s t d l o g i c ;
s i g n a l T m write : s t d l o g i c := ’ 0 ’ ;

45 s i g n a l T m adr : unsigned (15 downto 0) ;
s i g n a l T m data : unsigned (31 downto 0) ;

47 s i g n a l T m rddata : s t d l o g i c v e c t o r (31 downto 0) ;

49 s i g n a l TB segmentarray : segmentarray type (0 to 7) ;
s i g n a l TB del imter array : d e l im i t e r a r r a y (0 to 6) ;

51 s i g n a l TB setupcomplete : s t d l o g i c := ’0 ’ ;
s i g n a l TB histogram : histogram (0 to 499) ;

53 s i g n a l TB starthistogramcheck : s t d l o g i c := ’0 ’ ;

55
constant c l k p e r i o d : time := 40 ns ;

57 constant num delay : i n t e g e r :=50;

59 BEGIN
dut : component m00300 topleve l

61 port map(
clk m => T clk ,

63 reset m => T reset ,

65 Rchan in => T Rchan in ,
Gchan in => T Gchan in ,

67 Bchan in => T Bchan in ,

69 Mi write => T m write ,
Mi read => T m read ,

71 Mi adr => s t d l o g i c v e c t o r (T m adr) ,
Mi wrdata => s t d l o g i c v e c t o r (T m data) ,

73 Mi rddata => T m rddata ,

75 Rchan out => T Rchan out ,
Gchan out => T Gchan out ,

77 Bchan out => T Bchan out
) ;

109

E VHDL code

79

81 c l k p r o c : p roc e s s
begin

83 T clk <= not T clk ;
wait f o r c l k p e r i o d /2 ;

85 end proce s s ;

87 e x c i t e p r o c : p roce s s
f i l e f i l e a l p h a : t ex t open read mode i s ” ve c t o r s \m00300 alpha . txt

” ; --13
89 f i l e f i l e b e t a : t ex t open read mode i s ” ve c t o r s \m00300 beta . txt ”

; --25

f i l e f i l e d e l i m : t ext open read mode i s ” ve c t o r s \
m00300 segde l imter . txt ” ; --25

91
f i l e f i l e r e d : t ex t open read mode i s ” ve c t o r s \m00300 red . txt ” ;

--12

93 f i l e f i l e g r e e n : t ex t open read mode i s ” ve c t o r s \m00300 green . txt ”
; --12

f i l e f i l e b l u e : t ex t open read mode i s ” ve c t o r s \m00300 blue . txt ” ;
--12

95

97 va r i ab l e l i n e a l pha , l i n e b e t a , l i n e d e l im , l i n e y i n p : l i n e ;

99 va r i ab l e alpha : s t d l o g i c v e c t o r (12 downto 0) ;
v a r i ab l e beta : s t d l o g i c v e c t o r (24 downto 0) ;

101 va r i ab l e d e l im i t e r : s t d l o g i c v e c t o r (24 downto 0) ;

103 va r i ab l e counter : unsigned (2 downto 0) := ”000” ;

105 va r i ab l e l i n e r e d , l i n e g r e en , l i n e b l u e : l i n e ;
v a r i ab l e v red , v green , v b lue : s t d l o g i c v e c t o r (11 downto 0) ;

107
va r i ab l e v adr e s s : i n t e g e r :=0;

109 begin

111 T Rchan in <= (othe r s => ’0 ’) ;
T Gchan in <= (othe r s => ’0 ’) ;

113 T Bchan in <= (othe r s => ’0 ’) ;
T m read <= ’0 ’ ;

115 T m write <= ’0 ’ ;
T m adr <= (othe r s => ’0 ’) ;

117 T m data <= (othe r s => ’0 ’) ;

119
r e s e t l o op1 : f o r i in 0 to 6 loop

121 TB del imter array (i) <= (othe r s => ’1 ’) ;
end loop ;

123

125 r e s e t l o op : f o r i in 0 to 7 loop

127 TB segmentarray (i) . alpha <= (othe r s => ’0 ’) ;
TB segmentarray (i) . beta <= (othe r s => ’0 ’) ;

129 end loop ;

110

E VHDL code

131
READLINE(f i l e d e l im , l i n e d e l im) ;

133 whi le not e n d f i l e (f i l e d e l i m) loop
READLINE(f i l e d e l im , l i n e d e l im) ;

135 READ(l i n e de l im , d e l im i t e r) ;
TB del imter array (t o i n t e g e r (counter)) <= unsigned (d e l im i t e r) ;

137 counter := counter + 1 ;
end loop ;

139 counter := ”000” ;

141
whi l e not e n d f i l e (f i l e a l p h a) loop --Load segments:

143 READLINE(f i l e a l p h a , l i n e a l p h a) ;
READLINE(f i l e b e t a , l i n e b e t a) ;

145
READ(l i n e a l pha , alpha) ;

147 READ(l i n e b e t a , beta) ;

149
TB segmentarray (t o i n t e g e r (counter)) . alpha <= unsigned (alpha) ;

151 TB segmentarray (t o i n t e g e r (counter)) . beta <= unsigned (beta) ;

153
counter := counter + 1 ;

155 end loop ;

157 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
T re s e t <= ’1 ’ ;

159 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
T re s e t <= ’0 ’ ;

161 ---------- setup complete.

wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
163 --Random traffic on the buss conncetion:

T m write <= ’1 ’ ;
165 T m adr <= to uns igned (79 , 16) ;

T m data <= to uns igned (79 , 32) ;
167 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

T m write <= ’1 ’ ;
169 T m adr <= to uns igned (79 , 16) ;

T m data <= to uns igned (79 , 32) ;
171 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

T m write <= ’1 ’ ;
173 T m adr <= to uns igned (79 , 16) ;

T m data <= to uns igned (79 , 32) ;
175 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

T m write <= ’0 ’ ;
177 T m adr <= to uns igned (79 , 16) ;

T m data <= to uns igned (79 , 32) ;
179

--Start loading data:

181 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
l o a d s t u f f : f o r i in 0 to 7 loop

183 T m write <= ’1 ’ ;
v ad r e s s := i + m00300 ofset ;

185 T m adr <= (to uns igned (v adres s , 16)) ;
T m data (31 downto 13) <= (othe r s => ’0 ’) ;

111

E VHDL code

187 T m data (12 downto 0) <= (TB segmentarray (i) . alpha) ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

189 end loop ;

191 loadbeta : f o r i in 0 to 7 loop
T m write <= ’1 ’ ;

193 T m adr <= (to uns igned ((i + m00300 ofset +8) , 16)) ;
T m data (31 downto 25) <= (othe r s => ’0 ’) ;

195 T m data (24 downto 0) <= (TB segmentarray (i) . beta) ;

197 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
end loop ;

199
l oadde l : f o r i in 0 to 6 loop

201 T m write <= ’1 ’ ;
T m adr <= (to uns igned ((i + m00300 ofset + 16) , 16)) ;

203 T m data (31 downto 25) <= (othe r s => ’0 ’) ;
T m data (24 downto 0) <= (TB del imter array (i)) ;

205 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
end loop ;

207
T m write <= ’1 ’ ;

209 T m adr <= to uns igned (79 , 16) ;
T m data <= to uns igned (79 , 32) ;

211 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
T m write <= ’1 ’ ;

213 T m adr <= (to uns igned ((m00300 ofset + 23) , 16)) ;
T m data <= to uns igned (0 , 32) ; --Update curve

215 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
T m write <= ’0 ’ ;

217 T m adr <= (othe r s => ’0 ’) ;
T m data <= (othe r s => ’0 ’) ;

219 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

221
TB setupcomplete <= ’1 ’ ;

223 wait u n t i l (T clk ’ event and T clk = ’1 ’) ; --

225 whi le not e n d f i l e (f i l e r e d) loop
READLINE(f i l e r e d , l i n e r e d) ;

227 READLINE(f i l e g r e e n , l i n e g r e e n) ;
READLINE(f i l e b l u e , l i n e b l u e) ;

229 READ(l i n e r e d , v red) ;
READ(l i n e g r e en , v green) ;

231 READ(l i n e b l u e , v b lue) ;

233 T Rchan in <= v red ;
T Gchan in <= v green ;

235 T Bchan in <= v blue ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

237 end loop ;

239 --Image complete. Store the histogram:

T m write <= ’1 ’ ;
241 T m adr <= (to uns igned ((m00300 ofset + 23) , 16)) ;

T m data <= to uns igned (1 , 32) ; --Store histogram

243 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

112

E VHDL code

T m write <= ’0 ’ ;
245 T m adr <= (to uns igned (0 , 16)) ;

T m data <= to uns igned (0 , 32) ;
247 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

--Wait four cycles for buffering of histogram.

249 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

251 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

253

255 --Start to read the histogram:

TB starthistogramcheck <= ’1 ’ ;
257 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

259 r e a d h i s t l o o p : f o r i in 0 to 499 loop
T m read <= ’1 ’ ;

261 T m adr <= (to uns igned ((m00300 ofset + 24 + i) , 16)) ;
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

263 end loop ;
T m read <= ’0 ’ ;

265 wait ;
end proce s s ;

267
v e r i f y du t : p roce s s

269 f i l e f i l e n ew r ed : t ex t open read mode i s ” ve c t o r s \m00300 new red .
txt ” ; --8 bit

f i l e f i l e n ewg r e en : t ex t open read mode i s ” ve c t o r s \m00300 new green
. txt ” ; --8 bit

271 f i l e f i l e n ewb l u e : t ex t open read mode i s ” ve c t o r s \m00300 new blue .
txt ” ; --8 bit

f i l e f i l e h i s t o g r am : text open read mode i s ” ve c t o r s \
m00300 histogram top . txt ” ; --21 bit

273 va r i ab l e l ine newred , l ine newgreen , l i n e newb lue : l i n e ;
v a r i ab l e l i n e b i n s : l i n e ;

275 va r i ab l e b ins : s t d l o g i c v e c t o r (20 downto 0) ;
v a r i ab l e counter : unsigned (8 downto 0) := ”000000000” ;

277 va r i ab l e newred ver , newgreen ver , newblue ver : s t d l o g i c v e c t o r (7
downto 0) ;

279
begin

281 whi le not e n d f i l e (f i l e h i s t o g r am) loop
READLINE(f i l e h i s t o g r am , l i n e b i n s) ; --Dump line into L

283 READ(l i n e b i n s , b ins) ; --Next argument into red

TB histogram (t o i n t e g e r (counter)) <= bins ; --Assign value to

interface

285 counter := counter + 1 ;
end loop ;

287
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

289 setupde lay : whi l e (TB setupcomplete = ’0 ’) loop
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

291 end loop setupde lay ;

293 de lay loop : f o r i in 1 to num delay loop
wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

113

E VHDL code

295 end loop de lay loop ;

297 whi le not e n d f i l e (f i l e n ew r ed) loop
wait f o r c l k p e r i o d /4 ;

299 READLINE(f i l e n ewr ed , l i n e newred) ;
READLINE(f i l e n ewgr e en , l i ne newgreen) ;

301 READLINE(f i l e n ewb lu e , l i n e newb lue) ;

303 READ(l ine newred , newred ver) ;
READ(l ine newgreen , newgreen ver) ;

305 READ(l ine newblue , newblue ver) ;

307 a s s e r t T Rchan out = newred ver
r epo r t ” Ca l cu l a t i on done wrong . T Rchan out : ” & Integer ’ image (

t o i n t e g e r (unsigned (T Rchan out))) & ” whi l e expected value
i s : ”

309 & Integer ’ image (t o i n t e g e r (unsigned (newred ver))) & ” accord ing
to t e s t f i l e ”

s e v e r i t y warning ;
311

a s s e r t T Gchan out = newgreen ver
313 r epor t ” Ca l cu la t i on done wrong . T Gchan out : ” & Integer ’ image (

t o i n t e g e r (unsigned (T Gchan out))) & ” whi l e expected value
i s : ”

& Integer ’ image (t o i n t e g e r (unsigned (newgreen ver))) & ”
accord ing to t e s t f i l e ”

315 s e v e r i t y warning ;

317 a s s e r t T Bchan out = newblue ver
r epo r t ” Ca l cu l a t i on done wrong . T Bchan out : ” & Integer ’ image (

t o i n t e g e r (unsigned (T Bchan out))) & ” whi l e expected value
i s : ”

319 & Integer ’ image (t o i n t e g e r (unsigned (newblue ver))) & ” accord ing
to t e s t f i l e ”

s e v e r i t y warning ;
321 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

end loop ;
323 wait ;

end proce s s ;
325

v e r i f y h i s t : p roc e s s
327 va r i ab l e h i s t c oun t e r : unsigned (8 downto 0) := ”000000000” ;

begin
329 whi le (TB starthistogramcheck = ’0 ’) loop

wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
331 end loop ;

wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
333 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;

h i s t c oun t e r := (o the r s => ’0 ’) ;
335 check : f o r i in 0 to 499 loop

wait f o r c l k p e r i o d /4 ;
337

a s s e r t TB histogram (i) = T m rddata (20 downto 0)
339 repo r t ”Something wrong with the histogram , po s i t i o n ” &

Integer ’ image (i) & ”## Actual : ” & Integer ’ image (t o i n t e g e r
(unsigned (T m rddata))) & ” ## Expected : ”

& Integer ’ image (t o i n t e g e r (unsigned (TB histogram (i))))

114

E VHDL code

341 s e v e r i t y warning ;
h i s t c oun t e r := h i s t c oun t e r + 1 ;

343 wait u n t i l (T clk ’ event and T clk = ’1 ’) ;
end loop ;

345 wait ;
end proce s s ;

347
end a r c h i t e c t u r e ;

code/m00300 TB toplevel.vhd

115

F Simulations of VHDL modules

F Simulations of VHDL modules

F.1 rgb2ychan

In
pu

t

0
23

35
48

51
60

74
92

10
5

13
9

16
3

14
9

12
9

19
27

39

0
9

10
25

30
31

32
37

47
55

64
60

63
66

8
9

19

0
5

6
5

2
0

5
4

9
11

18
9

6
10

8

O
ut

pu
t

0
95

...
1.

..
2.

..
2.

..
2.

..
2.

..
3.

..
4.

..
5.

..
6.

..
6.

..
6.

..
6.

..
83

...

14
00

 n
s

16
00

 n
s

18
00

 n
s

20
00

 n
s

In
pu

t

cl
k

r_
ch

an
0

23
35

48
51

60
74

92
10

5
13

9
16

3
14

9
12

9
19

27
39

g_
ch

an
0

9
10

25
30

31
32

37
47

55
64

60
63

66
8

9
19

b_
ch

an
0

5
6

5
2

0
5

4
9

11
18

9
6

10
8

O
ut

pu
t

y_
ch

an
0

95
...

1.
..

2.
..

2.
..

2.
..

2.
..

3.
..

4.
..

5.
..

6.
..

6.
..

6.
..

6.
..

83
...

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
06

:5
6:

03
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 75: Simulation of rgb2ychan

116

F Simulations of VHDL modules

F.2 TMA
In

pu
t

95
74

3
12

30
96

23
36

12
26

75
37

27
16

22
29

19
76

34
56

54
43

85
45

50
74

64
62

23
69

64
19

27
63

92
50

{{
25

59
}

{0
}}

 {
{8

19
1}

 {
33

55
44

3}
}

{{
11

8}
 {

18
38

59
96

}}
 {

{0
}

{0
}}

 {
{0

}
{0

}}
 {

{0
}

{0
}}

 {
{0

}
{0

}}
 {

{0
}

{0
}}

{3
35

54
4}

 {
80

53
06

}
{3

35
54

43
1}

 {
33

55
44

31
}

{3
35

54
43

1}
 {

33
55

44
31

}
{3

35
54

43
1}

O
ut

pu
t

0
95

74
3

12
30

96
23

36
12

26
75

37
27

16
22

29
19

76
10

11
0

10
30

01
17

19
20

{2
55

9}
 {

0}
{8

19
1}

 {
33

55
44

3}

25
59

81
91

0
33

55
44

3

+
5

16
00

 n
s

18
00

 n
s

In
pu

t

cl
k

yi
np

95
74

3
12

30
96

23
36

12
26

75
37

27
16

22
29

19
76

34
56

54
43

85
45

50
74

64
62

23
69

64
19

27
63

92
50

up
da

te
se

gs

se
gm

en
t_

in
p

{{
25

59
}

{0
}}

 {
{8

19
1}

 {
33

55
44

3}
}

{{
11

8}
 {

18
38

59
96

}}
 {

{0
}

{0
}}

 {
{0

}
{0

}}
 {

{0
}

{0
}}

 {
{0

}
{0

}}
 {

{0
}

{0
}}

de
lim

_i
np

{3
35

54
4}

 {
80

53
06

}
{3

35
54

43
1}

 {
33

55
44

31
}

{3
35

54
43

1}
 {

33
55

44
31

}
{3

35
54

43
1}

O
ut

pu
t

yd
el

ta
0

95
74

3
12

30
96

23
36

12
26

75
37

27
16

22
29

19
76

10
11

0
10

30
01

17
19

20

se
gm

en
t_

ou
t

{2
55

9}
 {

0}
{8

19
1}

 {
33

55
44

3}

al
ph

a
25

59
81

91

be
ta

0
33

55
44

3

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
06

:5
8:

44
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 76: Simulation of TMA showing the loading of the segment coefficients.

117

F Simulations of VHDL modules

F.3 TMB
In

pu
t

{2
55

9}
 {

0}
{8

19
1}

 {
33

55
44

3}

25
59

81
91

0
33

55
44

3

95
74

3
12

30
96

23
36

12
26

75
37

27
16

22
29

19
76

10
11

0
10

30
01

17
19

20

O
ut

pu
t

0
95

45
07

12
28

32
0

23
33

80
8

26
74

15
5

27
15

09
9

29
17

26
0

16
00

 n
s

17
00

 n
s

18
00

 n
s

19
00

 n
s

In
pu

t

cl
k

se
gm

en
tin

{2
55

9}
 {

0}
{8

19
1}

 {
33

55
44

3}

al
ph

a
25

59
81

91

be
ta

0
33

55
44

3

de
lta

y
95

74
3

12
30

96
23

36
12

26
75

37
27

16
22

29
19

76
10

11
0

10
30

01
17

19
20

O
ut

pu
t

yo
ut

0
95

45
07

12
28

32
0

23
33

80
8

26
74

15
5

27
15

09
9

29
17

26
0

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
07

:3
2:

46
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 77: Simulation of TMB showing the loading of the segment coefficients.

118

F Simulations of VHDL modules

F.4 Array divider
In

pu
ts

34
35

33
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

O
ut

pu
ts

1
35

17
11

8
7

5
4

T
es

t b
en

ch

34
35

33
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

1
35

17
11

8
7

5
4

22
50

00
00

 p
s

23
00

00
00

 p
s

In
pu

ts

t_
cl

k

t_
re

se
t

t_
di

vi
de

nd
34

35

t_
di

vi
so

r
33

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19

O
ut

pu
ts

t_
qu

ot
ie

nt
1

35
17

11
8

7
5

4

T
es

t b
en

ch

tb
_d

iv
id

en
d

34
35

tb
_d

iv
is

or
33

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19

tb
_q

uo
tie

nt
1

35
17

11
8

7
5

4

E
nt

ity
:m

00
30

0_
tb

_a
rr

ay
di

vi
de

r
 A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 T

hu
 J

un
 1

6
18

:2
3:

43
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 78: Simulation of array divider, using eight bit vectors. This is just a small part
of the test bench.

119

F Simulations of VHDL modules

F.5 Buffer
In

pu
t

0
1

2
3

4
5

6
7

8
9

10

O
ut

pu
t

0
1

2
3

4
5

6
7

8
9

10

In
te

rn
al

{0
00

00
00

0}
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

6
7

8
9

10

+
5

60
0

ns
80

0
ns

10
00

 n
s

12
00

 n
s

In
pu

t

t_
cl

k

t_
re

se
t

t_
in

p
0

1
2

3
4

5
6

7
8

9
10

O
ut

pu
t

t_
ou

tp
0

1
2

3
4

5
6

7
8

9
10

In
te

rn
al

ar
r_

ou
t

{0
00

00
00

0}
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

{0
...

(0
)

0
1

2
3

4
5

6
7

8
9

10

(1
)

0
1

2
3

4
5

6
7

8
9

10

(2
)

0
1

2
3

4
5

6
7

8
9

10

(3
)

0
1

2
3

4
5

6
7

8
9

10

(4
)

0
1

2
3

4
5

6
7

8
9

10

(5
)

0
1

2
3

4
5

6
7

8
9

10

(6
)

0
1

2
3

4
5

6
7

8
9

10

(7
)

0
1

2
3

4
5

6
7

8
9

10

E
nt

ity
:m

00
30

0_
tb

_b
uf

fe
r

 A
rc

hi
te

ct
ur

e:
st

ru
ct

 D
at

e:
 S

un
 J

un
 1

9
07

:3
6:

17
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 79: Simulation of the buffer. Here it is tested with 10 cycles of delay. The values
to be buffered iterates from 1 to 10.

120

F Simulations of VHDL modules

F.6 Memory interface

0
79

0
1

2
3

4
5

6
7

8
9

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0

0
79

...
...

...
0

...
...

0
...

...
33

55
44

31
...

0

0 ...
{0

}
{0

}
{2

55
9}

 {
0}

...
{0

}
{0

}
{8

19
1}

 {
0}

{8
19

1}
 {

33
55

44
3}

...
{0

}
{0

}
{1

18
}

{0
}

{1
18

}
{1

83
85

99
6}

...
11

11
11

11
11

11
11

11
11

11
11

11
1

00
00

00
10

10
00

...

...
11

11
11

11
11

11
11

11
11

11
11

11
1

00
00

01
10

00
10

...

0.
00

 n
s

40
0

ns
80

0
ns

12
00

 n
s

cl
k_

m

re
se

t_
m

m
i_

w
rit

e

m
i_

re
ad

m
i_

ad
r

0
79

0
1

2
3

4
5

6
7

8
9

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0

m
i_

w
rd

at
a

0
79

...
...

...
0

...
...

0
...

...
33

55
44

31
...

0

m
i_

rd
da

ta
0

se
gm

en
t_

in
p(

0)
...

{0
}

{0
}

{2
55

9}
 {

0}

se
gm

en
t_

in
p(

1)
...

{0
}

{0
}

{8
19

1}
 {

0}
{8

19
1}

 {
33

55
44

3}

se
gm

en
t_

in
p(

2)
...

{0
}

{0
}

{1
18

}
{0

}
{1

18
}

{1
83

85
99

6}

de
lim

_i
np

(0
)

...
11

11
11

11
11

11
11

11
11

11
11

11
1

00
00

00
10

10
00

...

de
lim

_i
np

(1
)

...
11

11
11

11
11

11
11

11
11

11
11

11
1

00
00

01
10

00
10

...

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
06

:4
5:

55
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 80: Simulation of the buffer: This show how a segmented curve is loaded into the
arrays. Only the loading of three segments are shown here. At the end, when update goes
high, the arrays are loaded into TMA.

121

F Simulations of VHDL modules

In
pu

t

0
1

0

0
23

0
24

25
26

27
28

29
30

31
32

33
34

35
36

37

O
ut

pu
t

0
12

9
10

8
20

13
5

4
7

4
2

92
00

 n
s

96
00

 n
s

10
00

0
ns

In
pu

t

cl
k_

m

m
i_

w
rit

e

m
i_

re
ad

m
i_

w
rd

at
a

0
1

0

m
i_

ad
r

0
23

0
24

25
26

27
28

29
30

31
32

33
34

35
36

37

O
ut

pu
t

m
i_

rd
da

ta
0

12
9

10
8

20
13

5
4

7
4

2

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
07

:5
5:

30
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 81: Simulation of the buffer: This show how the histogram is read out of the tone
mapper. Showing the first few reads out of 500.

122

F Simulations of VHDL modules

F.7 Reducer
In

pu
t

0
23

35
48

51
60

13
10

71
40

83
4

40
87

2
40

91
9

40
94

1
40

94
3

40
92

4

O
ut

pu
t

0
14

21
29

31

In
te

rn
al

0
93

91
82

14
30

52
0

19
64

11
2

20
87

99
1

20
88

09
3

13
10

71
40

83
4

40
87

2
40

91
9

40
94

1
40

94
3

33
00

 n
s

34
00

 n
s

35
00

 n
s

In
pu

t

cl
k

ch
an

_i
n

0
23

35
48

51
60

lu
m

_m
od

13
10

71
40

83
4

40
87

2
40

91
9

40
94

1
40

94
3

40
92

4

O
ut

pu
t

ch
an

_o
ut

0
14

21
29

31

In
te

rn
al

ch
an

_f
ul

l
0

93
91

82
14

30
52

0
19

64
11

2
20

87
99

1
20

88
09

3

m
ul

b
13

10
71

40
83

4
40

87
2

40
91

9
40

94
1

40
94

3

E
nt

ity
:m

00
30

0_
tb

_t
op

le
ve

l
A

rc
hi

te
ct

ur
e:

be
ha

vi
or

 D
at

e:
 S

un
 J

un
 1

9
07

:0
6:

57
 W

. E
ur

op
e

D
ay

lig
ht

 T
im

e
20

11

R
ow

: 1
 P

ag
e:

 1

Figure 82: Simulation of the reducer. In this example, the reduction of the red pixel is
shown. Lum mod is 25 bit large, but reduced 8 bit before the multiplication.

123

G Matlab code for generating test vectors

G Matlab code for generating test vectors

%%

2 % Thesis 2011: Tone mapping in video conferences

%

4 % Bit level implementation of proposed tone mapper

% Requires imageprocessing package for matlab

6 %

%@Author Erik Str m me

8 %%%

c l e a r ;
10 c l c ;

12 % Generating test vectors for VHDL testbenches

% Coordinates for parts of image used in testing:

14 y s t a r t = 2467 ;
y end = 2479 ;

16 x s t a r t = 3583 ;
x end = 3597 ;

18 % Enabletxt = true to generate vectors

enab l e tx t = true ;
20 %%Remove gamma , normalize and limit to 12 bit.

22 im1 = double (imread (’ studentroom . t i f f ’)) . / 65536 ;
%im1 = srgb2rgb(double(imread(’homeoffice.tif ’))./65536);

24
RGB = f l o o r (im1 .∗4095) ; %% Limit to maximum 12 bits.

26 RGB(RGB > 4095) = 4095 ;
%%

28 i f (enab l e tx t)
f i g u r e ; imshow(im1 (y s t a r t : y end , x s t a r t : x end , :) , []) ;

30
redchan = dec2bin (RGB(y s t a r t : y end , x s t a r t : x end , 1) , 12) ;

32 greenchan = dec2bin (RGB(y s t a r t : y end , x s t a r t : x end , 2) , 12) ;
bluechan = dec2bin (RGB(y s t a r t : y end , x s t a r t : x end , 3) , 12) ;

34 s i z e o fma t r i x = s i z e (redchan) ;

36 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 red . txt ’ , [redchan , e ndo f l i n e] , ’ d e l im i t e r ’ , ’ ’ ,

’ newl ine ’ , ’ pc ’) ;
38 dlmwrite (’ m00300 green . txt ’ , [greenchan , e ndo f l i n e] , ’ d e l im i t e r ’ ,

’ ’ , ’ newl ine ’ , ’ pc ’) ;
dlmwrite (’ m00300 blue . txt ’ , [bluechan , e ndo f l i n e] , ’ d e l im i t e r ’ , ’ ’

, ’ newl ine ’ , ’ pc ’) ;
40 c l e a r v a r s redchan greenchan bluechan

end ;
42 %%%

44 %% RGB too Y:

Ytransform = f l o o r ([0 . 2 1 2 6 7 2 9 ; 0 . 7151522 ; 0 . 0721750] .∗ 8192) ;
46

%Ychan now require 25 bit.

48 Ychan = RGB(: , : , 1) .∗ Ytransform (1) + RGB(: , : , 2) .∗ Ytransform (2) + RGB
(: , : , 3) .∗ Ytransform (3) ;

50 %%

i f (enab l e tx t)

124

G Matlab code for generating test vectors

52 Ychanbin = dec2bin (Ychan(y s t a r t : y end , x s t a r t : x end) , 25) ;
s i z e o fma t r i x = s i z e (Ychanbin) ;

54 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 ychan . txt ’ , [Ychanbin , e ndo f l i n e] , ’ d e l im i t e r ’ , ’

’ , ’ newl ine ’ , ’ pc ’) ;
56

58 %%%% Specific for the histogram:

%Smallest value: 11 0000 0000 0000 0000

60 sma l l e s t = bin2dec (’ 11 ’) ;
b i g g e s t = bin2dec (’ 111110110 ’) ;

62 zeb in s = l i n s p a c e (sma l l e s t , b igges t , 500) ;
va lue s = f l o o r (Ychan(y s t a r t : y end , x s t a r t : x end) /65536) ;

64 z e h i s t = h i s t c (va lue s (:) , z eb in s) ;

66 histogrambin = dec2bin (z eh i s t , 21) ;
s i z e o fma t r i x = s i z e (histogrambin) ;

68 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 histogram top . txt ’ , [histogrambin , e ndo f l i n e] , ’

d e l im i t e r ’ , ’ ’ , ’ newl ine ’ , ’ pc ’) ;
70 c l e a r v a r s va lue s

c l e a r v a r s z eb in s
72 c l e a r v a r s z e h i s t

c l e a r v a r s histogrambin
74 c l e a r v a r s Ychanbin

end ;
76 %%

%% Make histogram:

78 %zebins = (0.01:1/65535:0.99) .*33554432; %2^25 %% 65537 bins

zeb in s = (0 . 0 1 : 1 / 5 0 0 : 0 . 9 9) .∗33554432 ; %2^25 %% 502 bins

80 zehistogram = h i s t c (Ychan (:) , z eb in s) ;

82
%% Define number of segments and range of each segment:

84 zpop = [0 , 0 . 10 , 0 . 90 , 1] ;
zeqpointspop = [0 , 0 . 10 , 0 . 90 , 1] ;

86 zva lue = zpop .∗ sum(zehistogram) ;

88 zeqpo in t s = double (f l o o r (2ˆ25 .∗ zpop))+1;

90
%% Producing a reduced histogram equalization curve:

92 % Find segment delimiters:

94 zpo in t s = ze ro s (s i z e (zva lue)) ;
zpo in t s (1) = 0 ;

96 zpo in t s (end) = 2ˆ25−1;

98
akkumz = 0 ;

100 zva lu epo in t e r = 2 ;
f o r i =1: l ength (zehistogram)

102 akkumz = zehistogram (i) + akkumz ;
i f (akkumz >= zvalue (zva lu epo in t e r))

104 zpo in t s (zva lu epo in t e r) = zeb in s (i) ;
z va lu epo in t e r = zva lu epo in t e r + 1 ;

106 end ;

125

G Matlab code for generating test vectors

108 i f (zva lu epo in t e r == length (zpop))
break ;

110 end ;
end ;

112 %%%

%% Calculate coefficents for hardware:

114 alpha = ze ro s ([1 l ength (zpop) −1]) ;
beta = ze ro s ([1 l ength (zpop) −1]) ;

116 segx = ze ro s ([1 l ength (zpop)]) ;

118 f o r i =1: l ength (segx)
segx (i) = f l o o r (zpo in t s (i)) ; %25 bit -Related to the size of Ychan

120 end ;

122 f o r i = 1 : l ength (zpop)−1
de l tax = (zpo in t s (i +1) − zpo in t s (i)) ;

124 alpha (i) = (zeqpo in t s (i +1) − zeqpo in t s (i) − 1) . / de l tax ;

126 maxincrease = 31 . 9961 ; %Max for (5+8) bits.

i f (alpha (i) > maxincrease)
128 alpha (i) = maxincrease ;

nextbeta = de l tax ∗maxincrease + zeqpo in t s (i) ;
130 zeqpo in t s (i +1) = nextbeta ;

end ;
132 end ;

134 f o r i = 1 : l ength (zpop)−1
beta (i) = f l o o r (z eqpo in t s (i) − 1) ; %25 bit -Related to the size of

Ychan

136 end ;

138 alpha = f l o o r (alpha .∗256) ; %Extend to 13 (5+8) bits

140 i f (enab l e tx t)
Alphabin = dec2bin (alpha , 13) ;

142 Betabin = dec2bin (beta , 25) ;
s i z e o fma t r i x = s i z e (Alphabin) ;

144 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 alpha . txt ’ , [Alphabin , e ndo f l i n e] , ’ d e l im i t e r ’ , ’

’ , ’ newl ine ’ , ’ pc ’) ;
146 dlmwrite (’ m00300 beta . txt ’ , [Betabin , e ndo f l i n e] , ’ d e l im i t e r ’ , ’ ’ ,

’ newl ine ’ , ’ pc ’) ;

148 Segxbin = dec2bin (segx , 25) ;
s i z e o fma t r i x = s i z e (Segxbin) ;

150 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 segde l imter . txt ’ , [Segxbin , e ndo f l i n e] , ’

d e l im i t e r ’ , ’ ’ , ’ newl ine ’ , ’ pc ’) ;
152 c l e a r v a r s Alphabin Betabin Segxbin

end ;
154

%% Visual test of curve:

156 test lum = 0 : 2 : 2 ˆ 2 5 ;
te s t segmentos = ze ro s (s i z e (test lum)) ;

158 f o r i =1: l ength (segx)−1;
te s t segmentos (test lum>=segx (i)) = i ;

126

G Matlab code for generating test vectors

160 end ;

162 t e s t cu rv e = ((alpha (tes t segmentos)) .∗ (test lum − segx (tes t segmentos))
. / 256) + beta (te s t segmentos) ;

%% Calculate new lum:

164 segmentos = ze ro s (s i z e (Ychan)) ;
%Find which segment each pixel belong in

166 f o r i =1: l ength (segx)−1;
segmentos (Ychan>=segx (i)) = i ;

168 end ;

170 de l tay = Ychan − segx (segmentos) ;
newlum = ((alpha (segmentos)) .∗ f l o o r (de l tay . /256)) + beta (segmentos) ;

172
%Newlum can be max 2^26-1

174 % Bigger alpha => Smaller beta , Bigger beta => Smaller alpha

newlum(newlum > 2ˆ26−1) = 2ˆ26−1;
176

i f (enab l e tx t)
178 Segmentosbin = dec2bin (segmentos (y s t a r t : y end , x s t a r t : x end)−1,

4) ;
Newlumbin = dec2bin (newlum(y s t a r t : y end , x s t a r t : x end) , 26) ;

180 s i z e o fma t r i x = s i z e (Segmentosbin) ;
e ndo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;

182 dlmwrite (’ m00300 segment . txt ’ , [Segmentosbin , e ndo f l i n e] , ’
d e l im i t e r ’ , ’ ’ , ’ newl ine ’ , ’ pc ’) ;

dlmwrite (’m00300 newlum . txt ’ , [Newlumbin , e ndo f l i n e] , ’ d e l im i t e r ’ ,
’ ’ , ’ newl ine ’ , ’ pc ’) ;

184 c l e a r v a r s Segmentosbin Newlumbin

186 de l tayb in = dec2bin (de l tay (y s t a r t : y end , x s t a r t : x end) , 25) ;
s i z e o fma t r i x = s i z e (de l tayb in) ;

188 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
dlmwrite (’ m00300 deltay . txt ’ , [de l tayb in , e ndo f l i n e] , ’ d e l im i t e r ’ ,

’ ’ , ’ newl ine ’ , ’ pc ’) ;
190 c l e a r v a r s de l tayb in

end ;
192 %%%%%

%% Calculate lum modifier

194 lum modi f i e r = f l o o r ((newlum .∗4096) . /Ychan) ;
lum modi f i e r (i snan (lum modi f i e r)) = 1 ;

196 %Need to limit how many bits lum_modifier can be. Lets say

% 17 bits (5 + 12), essentially saying max mod is

198 lum modi f i e r (lum modi f ier >131071) = 131071;

200 i f (enab l e tx t)
Ychanbin = dec2bin (lum modi f i e r (y s t a r t : y end , x s t a r t : x end) , 17)

;
202 s i z e o fma t r i x = s i z e (Ychanbin) ;

e ndo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;
204 dlmwrite (’ m00300 lum modif ier . txt ’ , [Ychanbin , e ndo f l i n e] , ’

d e l im i t e r ’ , ’ ’ , ’ newl ine ’ , ’ pc ’) ;
c l e a r v a r s Ychanbin

206 end ;
%%

208 %% Multiply with image to find the new image:

newimageHW = zero s (s i z e (RGB)) ;

127

G Matlab code for generating test vectors

210 newimageHW(: , : , 1) = f l o o r ((RGB(: , : , 1) .∗ lum modi f i e r) . / (1 6 .∗4096)) ;
newimageHW(: , : , 2) = f l o o r ((RGB(: , : , 2) .∗ lum modi f i e r) . / (1 6 .∗4096)) ;

212 newimageHW(: , : , 3) = f l o o r ((RGB(: , : , 3) .∗ lum modi f i e r) . / (1 6 .∗4096)) ;

214 newimageHW(newimageHW > 255) = 255 ;
f i g u r e ; imshow(uint8 (rgb2sRGB(newimageHW./255) .∗255) , []) ;

216
i f (enab l e tx t)

218 redchan = dec2bin (newimageHW(y s t a r t : y end , x s t a r t : x end , 1) , 8) ;
greenchan = dec2bin (newimageHW(y s t a r t : y end , x s t a r t : x end , 2) , 8)

;
220 bluechan = dec2bin (newimageHW(y s t a r t : y end , x s t a r t : x end , 3) , 8) ;

s i z e o fma t r i x = s i z e (redchan) ;
222 endo f l i n e = repmat (’X ’ , s i z e o fma t r i x (1) , 1) ;

dlmwrite (’ m00300 new red . txt ’ , [redchan , e ndo f l i n e] , ’ d e l im i t e r ’ ,
’ ’ , ’ newl ine ’ , ’ pc ’) ;

224 dlmwrite (’ m00300 new green . txt ’ , [greenchan , e ndo f l i n e] , ’
d e l im i t e r ’ , ’ ’ , ’ newl ine ’ , ’ pc ’) ;

dlmwrite (’ m00300 new blue . txt ’ , [bluechan , e ndo f l i n e] , ’ d e l im i t e r ’
, ’ ’ , ’ newl ine ’ , ’ pc ’) ;

226 c l e a r v a r s redchan greenchan bluechan
end ;

code/verification/implementation.m

128

