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Problem Description
The objective of this project is to investigate possible improvements to the XMEGA AVR® Event
System. This will entail a study of different implementation alternatives for the Event System, and
the proposed solutions will be analyzed with respect to overall system and implementation costs.
The study will also include an analysis of the proposed Event System architecture with regards to
programmability versus cost.
 A selected solution for the AVR® must be implemented using Verilog, and if time allows, the
solution will be tested with a realistic system test.

Considering implementation and overall system costs, the following topics will be of primary
focus:

-  Low implementation costs, especially emphasizing area and power consumption.
-  Cost effective design with respect to routing of signals.
-  Reuse of existing peripherals, and if possible improve their integration with the proposed
solution for the AVR® Event System.
-  Cost effective design with respect to tool support.
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assuming that the reader is familiar with basic circuit design at university level and with Verilog 

constructs and syntax.  On an included CD all Verilog design files, workspaces, testbenches and test 

setups will be available for further inspection. In addition, schematics and address tables are included 

to define how the test model used for behavioral Asynchronous Event System verification is 

connected at a detailed level. The address tables and in-depth architectural drawings included on the 

CD are particularly useful when examining chapter 10.  
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Abstract 
 

To ensure effective peripheral communication on their new AVR® XMEGA microcontroller platform, 

Atmel has included a peripheral resource known as an Event System. Through the submitted 

research from this thesis, new solutions for Event System implementations have been investigated 

and a selected solution has been has been designed in Verilog and synthesized for the Xilinx Spartan 

3 XC3S1000 FPGA. 

 

To find inspiration for developing new and cost effective Event System solutions with 

programmability features, an extensive literature study in the fields of FPGA related design and 

asynchronous circuit design was accompliced. After proposing two Event System solutions featuring 

programmable routing with a centralized I/O-processor and CPLD-elements, a decision was made to 

focus on an asynchronous Event System solution. Interesting features like a pipelined high-speed 

interconnect structure and possibilities for power saving due to natural power down capabilities 

where two of the reasons for this focus. Another factor was the academic value of researching if a 

programmable asynchronous routing structure was applicable for microcontroller implementation, 

and especially to see if such an implementation could be realistic and beneficial for the AVR® XMEGA 

or AVR®32. Increased asynchronous focus made it a natural choice to restrict the work towards 

physical FPGA implementation in order to provide a thorough research and develop a good 

Asynchronous Event System model.  

 

The first focus for each of the proposed Event System solutions was to develop a new and cost 

effective routing facility, designing custom switch elements to fit the developed programmable FPGA 

inspired routing topology. After giving increased attention to the Asynchronous Event System, LUT 

elements implemented in an asynchronous handshake environment was included to perform logical 

computations on events. By reusing elements from existing peripherals to include and interconnect 

LUTs, a powerful computation environment was introduced. 

 

To verify the Asynchronous Event System model and featured asynchronous principles, a Verilog 

model of the Asynchronous Event System Routing Network including global and local routing 

resources and a custom asynchronous LUT for event computation was designed.  Simulation results 

verify the Asynchronous Event System model’s behavior, and give notions on the system capacity. 

Synthesis towards the Xilinx Spartan 3 XC3S1000 FPGA was done to check physical implementation 

size, and make sure a synthesizable design was developed.  

 

Estimated area results approximates an asynchronous Event System to about 5555 NAND gate 

equivalents without computational LUT elements, and from 6418 NAND equivalents with 2 

interconnected 4-LUTs to 11413 NAND gates with a full range of 24 interconnected 4-LUTs. Size 

increase compared to the current Event System is 23% larger for a non-computational version, and 

from 43% to 154% larger for 2 and 24 included 4-LUTs respectively. Included in the size increase is 

programmable routing demanding 924 bits for global and local routing only, and 1724 bits for full 

programmability with 24 4-LUTs. Simulations show a possibility for transporting up to 32 events 

concurrently, which is an increase of four times the current Event System capacity. Performance 

evaluations put the developed Asynchronous Event System from 6.5 – 1.6 times faster than the 

current Event System estimated for 90nm – 350nm processes. Considering HERN area estimations, a 

simple I/O-processor alternative consumes 3150 NAND gates included programmable routing. A 

CERN solution featuring one CPLD MCB for each Port / TC peripheral requires 5308 NAND 

equivalents. All area estimations are based on developed architectural drawings, and are estimated 

according to the Atmel’s 35k9 in-house process, thereby not representing a synthesized result.  
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- 1 - Introduction 

1 Introduction 

1.1 About This Thesis 

The demands for functionality integrated on a microcontroller have rapidly increased since the 

introduction of the first RISC architectures. The dominant factors pushing the development towards 

more and more aggressive processes are demands for smaller circuit size, faster computation speed 

and decreased power consumption. Demands in these areas become more prominent as more and 

more advanced portable devices are introduced, trying to accelerate performance while decreasing 

in size. As a response to these demands Atmel has developed the AVR® XMEGA microcontroller 

platform, introducing the Event System as a new invention in the microcontroller domain. Making it 

possible to route and process signals known as events from internal peripherals without the use of 

CPU, DMA or interrupt resources [6], the Event System leads on in a new era of power saving 

computation systems.  

 

In order to make the AVR® XMEGA a powerful microcontroller when it comes to handling peripheral 

and I/O related resources, the Event System features a dedicated Event Routing Network with 

connections to peripherals and I/O-pins on the chip. Maintaining such an extensive communication 

using a minimum of CPU resources has proved to be a valuable addition to all systems relying on 

heavy I/O traffic and extensive peripheral communication.  

 

Although innovative and in many ways groundbreaking, the XMEGA Event System is implemented 

with limited resources for logical event computations and mostly offer a routing facility for peripheral 

events and signals. This thesis aims at researching possible improvements to the original Event 

System [6] by developing a more flexible infrastructure for event transportation, and increase the 

functionality with regards to event computation while still maintaining low power consumption. 

Such a research is valuable, because if successful, more advanced event operations can be performed 

on the XMEGA microcontroller involving a minimum of additional resources from the CPU.   

Through an extensive literature study, different techniques to ensure a cost effective Event System 

solution both with regards to power consumption, programmability and routing of signals will be 

investigated. Focused research areas include FPGA topologies for routing, programmable 

computational elements like Look-Up-Tables and asynchronous circuit design. With some of these 

elements as part of a new Event System solution, the goal is to develop a new benchmark for flexible 

routing and programmable computational power seen in a commercial microcontroller Event 

System. 

 

To ensure cost effectiveness of the selected implementations, a cost analysis of all proposed Event 

System solutions is an important part of this study. Of special interest is the influence of a new Event 

System design on the existing tool chain, and a brief overview of suggested alterations and additions 

to the existing tools will be given along with the cost analysis. The analysis itself will contain cost 

factors like area, power consumption, ease of use, programmability and testability to ensure a 

complete evaluation of all Event System solutions.  
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To prove the concept of the new Event System, a selected solution should be designed in Verilog and 

synthesized towards a target FPGA platform. Main design focus is given to a new routing 

infrastructure, but elements offering logical computations for events are also interesting candidates 

from a design perspective. Simulations will be used for behavioral verification of a selected Event 

System solution. Conclusions based on both simulation results and cost- and architectural analysis 

will clarify the future of the selected solution as a realistic Event System alternative for the XMEGA 

microcontroller. Researched aspects of all proposed Event System solutions will be examined at the 

lower abstraction levels, mostly concerning hardware.  

Higher abstraction levels including development of software is not a part of this thesis, and the 

suggested tool improvements will be the only analysis superficially concerning this level of 

abstraction.  
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1.2 Thesis Contributions and Layout 

The following points will summarize the contributions from this thesis: 

 

• Three novel concept architectures for a new Event System solution with programmable 

interconnects. 

• Custom designed programmable switch blocks for full routing flexibility operating in an FPGA 

inspired environment. 

• An asynchronous Event System solution with full asynchronous event distribution in a 

pipelined hierarchical routing topology designed for microcontroller implementation. 

• Asynchronous event computation with LUTs included in existing Port / TC peripherals.  

• Performance and area analysis of all proposed solutions. 

 

Considering layout, this thesis is partitioned into four main sections consisting of several subsections. 

Section 1 will give necessary background theory and put the presented work into the context of 

other research in the same area. Section 2 presents all proposed Event System solutions, and section 

3 explains aspects related to simulation results of a selected Event System solution and summarizes 

synthesis results. Section 4 concludes the report by showing performance and area related cost 

factor estimations for all solutions. Aspects regarding market related cost factors and tool 

improvements are also included in section 4, along with the final conclusion and discussion.  
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2 The AVR® XMEGA Event System 

The Event System is a unique distribution system for handling peripherals interconnected on a 

microcontroller. This section will provide the background needed to understand the purpose of the 

Event System, how it works in practice and why it is a useful addition to the AVR® XMEGA 

microcontroller family where it is implemented. The last subsections will give a brief overview of why 

an increased functionality and flexibility considering the Event System is desirable, and how this 

master thesis will contribute in that area of research. 

2.1 Event System Functionality and Construction 

The continuous fight for lower power consumption, increased functionality per cost and flexible 

means of inter peripheral communication on a microcontroller drives the development of more 

subtle and advanced microcontroller subsystems. With the introduction of the Event System the 

AVR® XMEGA responds to these demands. Basically the Event System is a communication facility for 

inter peripheral communication, also offering a set of features which can be distributed by the same 

communication infrastructure. An event is issued when a peripheral changes its current state, and 

the different features available are controlled by the peripherals receiving the event. Feature 

examples include possibilities for event decoding and filtering. The routing of events is handled by 

the Event Routing Network (ERN), connecting to most of the available peripherals. Figure 2.1 shows 

which peripherals that can take part in event transactions. For more detailed descriptions on each 

peripheral, the reader is referred to the XMEGA A manual [6]. 

 

 
Figure 2.1: All peripherals connecting to the ERN [6] 

By using events to trigger actions in the peripherals, functionality can be achieved without the use of 

CPU, DMA or interrupt resources. This achievement is one of the chief motivations for the Event 

System, along with the fact that the ERN is available for routing arbitrary signals from all connected 

peripherals. Connecting the Ports together with dedicated Timer/Counter (TC) modules provides 

processing of signals sent by I/O-pins, with the possibility of utilizing the ERN as a distributor of 

external clock- and decoded data signals. A note to the presented event notation considers the 

strobe register mentioned in the XMEGA manual [6]. The strobe register represents the functional 

equivalent of the clock bit used for event description in this thesis. This means that in the XMEGA 

manual, an event channel will not be described in terms of ev_d and ev_c wires, as this represents a 

more practical model. The functionality is however equivalent for both notations. 
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2.1.1 Events and the Event Channel  

As mentioned in the previous section an event is referred to as a state change in a peripheral 

observable as either a signaling event or a data event. A signaling event holds no information, and 

merely informs selected peripherals that an event has occurred in some other peripheral.  

A data event contains some additional information, for instance a decoded sequence of bits or a 

clock signal [6]. Each event is described by a combination of two bits, called the event clock bit and 

the event data bit. Each bit is distributed on one wire, and the Event Channel is therefore 

constructed of the ev_c (clock) and ev_d (data) wires. 

 

When an event is received at a peripheral, it is interpreted in accordance with the applied register 

settings and by the event bit combination. The interpretation is peripheral specific, but an example 

from [6] considering the TC peripheral is included in table 2-1. A note to the table is that the strobe 

bit notation is used, instead of the clock bit notation.  

 

 
Table 2-1: TC event interpretation [6] 

It is important to emphasize that the event notation presented specifically for the Event System is 

developed by Atmel, and must not be confused with the notation used for general events presented 

in scientific literature. In this thesis events distributed on the Event System will follow the Atmel 

notation presented in this chapter. 

2.1.2 Event Routing Network  

All event distribution is maintained by the ERN. To determine which event should be received in 

which peripheral, a set of eight MUXes are connected to eight global event distribution channels as 

described in section 2.1.1. All possible Event channels from all peripherals are connected to all 

MUXes, providing full routability between peripherals. Figure 2.2 shows the ERN. 
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Figure 2.2 : Event System Routing Network between peripherals [6]. 

Each MUX is controlled by a channel select register CHXMUX[7:0], and the global event channels 

connect to all peripherals available for the specific XMEGA. It is important to note that not all 

XMEGAs contain all peripherals.  

2.2 Why Use an Event System?   

It is a fact that with the introduction of the Event System to the XMEGA microcontroller family, new 

costs as well as new functionality was introduced. A consideration of these factors is therefore 

important when determining additions to the existing Event System.  

The biggest achievement of the Event System technology is independency of CPU, DMA and 

interrupts during event distribution. This independency means less power consumption during 

transfer, and makes the XMEGA a powerful microcontroller when handling peripheral data transfer 

and control. Another benefit is that the CPU can be used to execute other instructions while the 

Event System is operating. Connecting to all available peripherals the ERN can also be used as a 

routing network for external I/O- signals on the microcontroller, and distribute these at a lower cost 

than using data- or I/O bus transmission. 

 

The current Event System described in [6] uses the ERN merely as a facility for routing a signal from a 

transmission point A to a destination point B. No logical operations can be done on events during 

transfer, and when an event is issued it will remain in its original form until it reaches the target 

destination. As can be concluded, the current ERN is a rather area expensive routing facility which 

offers a limited flexibility when it comes to event channel routability and connectivity.  
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This fact is a result of limiting the ERN to only global event distribution, and the locality of peripherals 

with more extensive need for local communication is not considered. With these benefits and 

drawbacks as basis, a more specific outline of the research contributed by this master thesis can be 

given. 

2.2.1 Improvements to the Event System  

As mentioned in the introduction the focus of this thesis will mainly be to make the Event System 

more flexible and powerful regarding handling of events during transfer, while maintaining minimal 

power consumption. The challenge is to achieve these goals while still maintaining a reasonable 

complexity of the system to limit new additions to the existing tool chain, and also keep the 

associated cost profitable compared to the offered functionality.  

 

To ensure that events can be routed arbitrarily between peripherals at both a global- and a more 

local level between neighboring peripherals, a new routing facility will be introduced. Inspired by 

FPGA topologies, this routing facility will feature fully programmable routing of event channels and 

represent a hierarchical solution for increased functionality. Custom designed switches will be 

introduced for the routing system to make it intuitive and simple for the user. 

 Another FPGA feature that will be investigated is the use of Look-Up-Tables (LUTs) for logical event 

computation. In this way the Event System can not only distribute events, but also compute all logical 

operations on the events. Such functionality allows more advanced patterns of events to exist, 

enabling possibilities for more sophisticated peripheral operation. While still maintaining the low 

power demands of the original Event System, these are powerful additions.  

The proposed solutions are also developed for easy tool chain adaption. 

 

An important comment to the developed Event System solutions is that the XMEGA A manual [6] 

defines the architecture used as basis for the new Event System designs. This means that smaller 

XMEGA devices will not contain all peripherals described in the presented research, but this imposes 

no limitations on adding the equivalent functionality.  
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3 Asynchronous Design Techniques: Implementations and 

Challenges 

Asynchronous circuit design is a domain not usually applied when constructing microcontroller 

circuits. Some of the proposed research for the Event System includes a wide variety of asynchronous 

elements and design techniques not earlier used in the presented context. This section will provide the 

fundamentals for understanding how asynchronous implementations can be beneficial, present 

common challenges of implementation and explain the basic circuit elements. The first subsections 

will consider asynchronous design in general and focus on benefits and challenges using presented 

design techniques. Protocols and encodings used to provide asynchronous handshake facilities are 

discussed next, before this chapter is completed by explaining basic asynchronous circuit elements 

and a simple asynchronous pipeline.  

3.1 Asynchronous Circuit Models 

With no clock driving the signaling procedure in asynchronous circuits, notations of how to handle 

delays in different circuit elements like wires and gates need to be determined. The different 

assumptions made about these delays characterize each circuit model based on their corresponding 

delay model [29]. Here only the most common models and the ones relevant for this thesis will be 

presented. 

 

Delay-Insensitive (DI) circuit models 

DI circuits impose no timing assumptions, and therefore allow arbitrary gate and wire delays [29].  

If arbitrary delaying a circuit’s inputs and outputs does not produce an output hazard or alter the 

sequence of involved tokens, the circuit can be classified as delay insensitive [13]. Another definition 

used in [22] classifies a circuit as delay-insensitive if it can function correctly with arbitrary gate and 

wire delays. The delay is considered unbounded with the delay bond of 0 < tdelay < ∞ in both wires 

and gates [22].  This assumption requires completion detection for all signals in a DI-circuit, normally 

meaning two-phased handshaking with request/acknowledge signals. Using DI-models could derive 

timing benefits in datapath circuits, but the needed redundancy to ensure correct data transfer 

leaves DI-circuits little used in practice. Also mentioned in [22] is that only a small class of circuits, 

mostly constructed by Müller C-elements, can be classified as DI-circuits. 

 

Speed-Independent (SI) circuit models 

This model assume that all wire delays are negligible compared to gate delays which are considered 

unbounded [13] [29].  SI-models are impractical in designs where wire delay dominates the logic 

delay, as is often the case for FPGAs. The SI assumption could also be difficult when considering I/O 

and off-chip signals with long transmission wires. These drawbacks are a result of the SI-assumption, 

where operating with ideal zero-delay wires are not realistic in practical circuits [22].  The SI-model is 

however more practical than pure DI-models, mostly because of the reduced need of costly 

redundancy.  

 

Quasi-Delay-Insensitive (QDI) circuit models 

QDI- models depend on DI-assumptions considering wire and gate delay [13] [22], but partitions wire 

delays into critical and non-critical delay. Critical wire sections arise if a signal is forked into several 

branches, and the QDI assumption is that the difference in arrival time between different branches 

are smaller than the minimum gate delay. Delay in non-critical wire sections are considered 

unbounded. The forks forming the critical wire segments are called isochronic forks [13] [22] [29].  

The QDI circuit model will be used for all of the asynchronous designs considered in this thesis. 

 Figure 3.1 provides an example of a small QDI circuit. 
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Figure 3.1 : Simple QDI example [13]. 

This circuit is considered QDI because even if the AND-gate will begin processing when the first input 

arrives, the second input will arrive before the AND-gate commits a transition. This is the important 

property of QDI assumptions, and accomplished because the fork is isochronic. Another observation 

with this property in mind is that the QDI assumption is not valid if the AND-gate is replaced with an 

XOR-gate. This is because the output is different when one input change compared to when neither 

or both inputs change, creating an output hazard. 

3.2 Hazards Associated with Asynchronous Designs 

Many benefits can be associated with an asynchronous design, but there are also some problems 

present that will not occur if a synchronous design is used instead. Problems related to glitches in 

signals due to asynchronous behavior are addressed as hazards, and a good overview is presented in  

[13] and [22].Examples of a typical hazard encounter is when a state machine is implemented 

asynchronously. Due to internal delays in logic elements, false glitches with non-valid values can be 

produced during a signal transition. An important remark from [22]  is that in a stable state an 

asynchronous circuit does not produce any glitches. Only in the dynamic state can glitches be 

produced.  

A modified example from [13] can be seen in figure 3.2, illustrating multiple hazards. All logic 

elements are assumed to have a delay of one unit for signals. 

 

 
Figure 3.2: Circuit with hazards [13]. 

Static Hazards 

The first hazard problem is created by an input-wire with fan-out, where one of the fan-out wires is 

connected to an inverter and the other directly to another logic gate constructing a non-isochronic 

fork. The state (A,B,C) = (1,1,1) gives an output value of “1”, and a change to the state (A,B,C) = 

(1,0,1) should leave the output value unchanged. However, due to the delay in the inverter (marked 

red), the AND-gate marked 1 will consider the input as false before the AND-gate marked 2 becomes 

true. Therefore the value “0” will propagate to the output instead of the correct “1”, producing a 

temporary glitch. A glitch like this is categorized as a static-1 hazard. A similar glitch when the output 

should be “0”, but produces a momentary “1”, is called a static-0 hazard. These hazards are relatively 

simple to remove for small circuits, and logic transformations with a Karnaugh map minimizing 

overlapping terms are often sufficient. An example on how to use such techniques in practice is 

provided in [30], during the design of a hazard free Müller C-element.  

 

Dynamic Hazards 

Dynamic-hazards are created when a single transition i.e. 1→0 should take place, but instead 

multiple transitions 1→0→1→0 occur due to glitches.  Such hazards are usually encountered if 

multiple inputs change to produce a new output, and the delay to some gate is greater for one of the 

input wires. Dynamic-hazards can be removed in the same fashion as static-hazards [13].   

Figure 3.3 shows a dynamic-hazard example presented in [22]. 
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 Figure 3.3: Examples of dynamic hazards. Desired transition (left).Hazardous transition (right)  [22] 

 

The Karnaugh map optimization technique is only valid and useful when one input is allowed to 

change at a time. If multiple input changes, a hazard free operation is no longer guaranteed. This fact 

makes dynamic hazards troublesome, and the only safe way of dealing with such hazards is to 

enforce that only one input change at a time. 

3.2.1 Metastability 

While most of the static- and dynamic hazards encountered by asynchronous signaling can be 

removed with optimization techniques and smart design, the hazards categorized as meatastability-

hazards can never be fully removed and will always be present in the interface between synchronous 

and asynchronous logic. The definition used in [23] describes metastability as the state encountered 

when an asynchronous signal arrives such that the receiving synchronizer latch is not allowed enough 

time to stabilize before the output value is clocked. In [25] it is stated that a synchronization failure 

occurs when a Flip-Flop (FF) with logically undefined outputs is sampled. Practically this means 

violating the setup and hold constraints provided by the latch. An incorrect output may be produced 

and introduce faults to the circuit, in worst case participating in circuit failure. If the synchronizer 

latch receives the asynchronous signal within the time it takes for the latch to stabilize its output, 

then no fault is produced. An example from [25] illustrates some important principles of metastable 

behavior.  

In figure 3.4 δE denoted the critical window, and 

tsu,k is the critical D-FF setup time. If the timing 

constraint tsu,k is violated during the critical 

window δE, the D-FF output will be unresolved, or 

in a metastable state, after a given decision time 

tE. Expressing δE as a function f(tE), a distribution 

for metastability can be derived. Parameters 

included in tE are FF dependent.  

See [25] for details. 
Figure 3.4: Critical trigger window [25] 

Clearly the biggest problem with metastability is the potential for a normally functional circuit to 

suddenly produce a faulty output. Metastability-hazards are also very hard to find during testing, 

therefore synchronizers must be produced in such a way that the probability of introducing a meta-

stable state to a circuit element is satisfyingly low. The hazard is avoided if the setup- and hold 

periods for synchronizers are never violated [23]. 

 

Several papers  [24] [25] [26] introduce different techniques to encounter metastability issues. 

In [24] Ran Ginosaur analyzes several synchronizers proposed in recent years, and emphasizes their 

problems and how to solve them. In addition a secure two-stage D-Flip-Flop is presented to 

synchronize data transferred between two domains using a bundled data protocol with 

request/ackowledge. A custom synchronizer is constructed in [26], not relying on Flip-Flops but 

relying on filter stages to filtrate out the metastability issue. This construction is designed to operate 

under QDI assumptions, and synchronizes a single-rail signal with an associated control signal to a 
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dual-rail output. In [25] a double D-Flip-Flop formation is used for synchronization, making this one of 

the most accepted synchronizers in literature. 

 

 
Figure 3.5: Two-Flop synchronizer for a Four-phase Bundled data protocol [24] 

Figure 3.5 shows a principle sketch of a two-flop synchronizer considered in [24]. The bundled data 

request and acknowledge procedures are controlled by two simple state machines implemented on 

the transmitting and receiver side.  For a four-phase dual-rail protocol a different interface would 

have to be implemented. An overview of asynchronous transfer protocols are given in section 3.4. 

 

For the two-flop solution presented in [24] a MTFB (Mean Time Between Failures) are calculated to 

be 10204 years using conservative numbers in a System-on-Chip setting with two different clock 

domains. Dealing with totally asynchronous domains distributed with a uniform probability function, 

where the phase of the system clock and arriving data is uncorrelated, the chance of encountering a 

metastable state is higher than for synchronous domains where it is possible to sample a signal 

without encountering metastable behavior [53]. A two-flop synchronizer experiment with 

asynchronous domains conducted in [25] reveals an MTFB of 9.5 years in the worst case scenario. 

Both of the above examples show prospects of construction good synchronizer circuits based on the 

two-flop design philosophy.   

3.3 Benefits and Challenges Considering Asynchronous Designs 

In modern circuit construction synchronous design- and layout methodologies dominate the market, 

leaving several aspects of asynchronous circuit design more an area of research than an area of 

manufacturing.  There are several reasons for this, but the most accepted factors are poor Electronic 

Design Automation (EDA) - and Computer Aided Design (CAD) - tools support together with 

completely different design methodologies than synchronous designs [13] [29]. However, the 

benefits could be potentially large considering an asynchronous implementation for specific systems. 

In [13] Scott Hauck presents a general overview which will be partly presented in the next 

subsections. 

3.3.1 General Benefits 

Timing and performance 

As presented in section 3.1 asynchronous circuits have no assumptions of clock driven timing. This 

factor eliminates the need for a clock tree, and the problem of clock skew between signals arriving in 

different parts of a circuit. Synchronous systems must take clock skew under consideration, and 

often slow down the circuit performance to meet clock skew demands. Synchronous circuits also 

need to wait for all computations to finish before latching a result, leading to worst-case timing 

performance. Asynchronous systems can sense when a computation is finished, and therefore allows 

average-case timing assumptions. Timing issues considering global timing is not present in 

asynchronous systems, in contradiction to synchronous systems where the critical path determines 

the highest clock speed achievable. This fact is beneficial in systems where rarely used portions of 

the design need to be optimized in order to meet the demands created by the critical path for a 
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synchronous design. In [29] it is emphasized that asynchronous systems utilize new and aggressive 

process technologies better than synchronous designs, because of direct adaption to new delay 

conditions. This enhances performance compared to synchronous circuits, where variable factors as 

a result of production inaccuracy must be taken into account when determining the clock frequency. 

This is also an example of asynchronous circuits` adaptability properties. 

  

Power consumption and environment adaption 

Synchronous designs need to toggle the clock lines in all parts of the circuit, not only the parts used 

in a current computation. With applied CMOS technology this leads to a lot of switching in unused 

transistors, resulting in unnecessary power consumption. An asynchronous design involves more 

activity during a computation due to applied handshaking, but unused parts of the circuit will not 

consume energy because of toggling. In [1] this is referred to as event-driven energy consumption. 

 

Changes in the surrounding environment are critical for synchronous circuits, where a worst case 

assumption in the changing of factors must be taken into account. The robustness represented by 

asynchronous circuits is gained by automatic adaptability to the changes occurred, and thereby 

utilizing the new conditions as much as possible [1].  For a purely asynchronous computation of 

mutual exclusion metastability is not an issue, since a response from a circuit part in a metastable 

state can delay for an arbitrary length of time without jeopardizing the reception at the receiving 

element. In a synchronous system guaranteed mutual exclusion is subject to a bounded delay, and 

can fail if a metastable state occurs. The same factor also favors asynchronous circuits when dealing 

with inputs from the outside world, which by nature can be considered asynchronous. 

3.3.2 Drawbacks and Challenges 

The benefits mentioned in section 3.3.1 do not come unconditionally, or asynchronous systems 

would probably have a larger share of the commercial market for electronic circuits. As mentioned 

the lack of good EDA- and CAD tools support are a major contributor to the synchronous dominance. 

Current tools do not support an asynchronous design flow at all, or yields unoptimized designs [13].  

Especially for FPGA systems it is difficult to map an asynchronous description using conventional 

tools to a clocked FPGA architecture, without altering the mapping software [4]. The work presented 

in [30] emphasize how ordinary place and route tools are not applicable for creating hazard free 

designs, even if an optimized and hazard free rtl model are targeted for FPGA implementation. One 

problem is that isochronic forks must be balanced by the synthesis tool for QDI-circuits, a feature not 

supported by tools designed for synchronous layouts. The proposed solution in [30] is therefore to 

design and hand map a library of asynchronous cells for implementation, and interface this library 

towards the existing place and route tools.  

 

In practice this means that asynchronous designs are hard to do in ad hoc fashion, and that the 

designers must pay a lot of attention to the dynamic behavior of the system in order to avoid the 

hazards presented in section 3.2 [13]. In the context of the Event System hazards involving 

metastability can become prominent because of the interface towards synchronous peripherals. This 

fact leads to the issue of testing and verification of asynchronous systems, which usually cannot be 

done with conventional Scan Testing. Some comments on testing can be found in section 4.2.  
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3.4 Asynchronous Handshake Protocols 

Considering FPGA implementations, the need for a powerful routing facility is always one of the most 

prominent issues. 

If asynchronous routing facilities are to be successfully implemented, some mechanism for assuring 

that the asynchronous signals reach their appointed destination must be taken into consideration. 

This section will give an overview of the most common protocols used to implement such facilities, 

and also compare the different protocols when it comes to power consumption, signal overhead and 

ease of implementation. According to [2] there are two groups of handshake protocols that are 

usually considered for asynchronous circuits; 4-phased protocols and 2-phased protocols. These 

protocols are often used as either 2- or 4-phased bundled data (2/4-PBD) protocols or 4-phased dual-

rail (4-PDR) protocols  [22].  

3.4.1 Two- and Four-Phase Bundled Data Protocols 

Bundled-data protocols use an additional two wires per signal to ensure a correct handshake 

procedure in addition to the data wires. As depicted in figure 3.6 (left) the extra wires perform 

request and acknowledge services. If a 4-PBD protocol is used, signal levels on the request(req) and 

acknowledge(ack) wires during a transfer are used to secure correct handshaking. Figure 3.6 (center) 

shows the transition pattern for a four-phase protocol, with two req/ack comparisons for each data 

value transmitted on the channel.  

 

 
Figure 3.6: Signal transitions: Bundled-data channel (left). Four-phase protocol (center),  Two-phase protocol (right) [20] 

The 2-PBD protocol uses a similar but simpler handshaking scheme. Here only one req/ack is 

accomplished for each data transfer, making this protocol similar to that used in synchronous 

designs. The wire overhead is the same as for a four-phase protocol, and a description of the signal 

transitions is given in figure 3.6 (right). 

 

As mentioned in [2] and [16] both protocols suffer from worst case timing behavior due the timing 

assumption that the data must be valid when a request is issued. Due to different delays in the 

req/ack and data wires the timing violation “data before request” can occur if the delay differences 

are not taken into consideration. To always make the timing assumption valid, the req signal should 

use a matched delay that is larger than the senders computation delay for data plus some margin  

[16]. 

 

One of the benefits of bundled-data protocols are only a small logic- and wire overhead when 

implemented. As figure 3.6 shows, the original data lines are used for data transfer, adding only two 

additional wires per channel for req/ack procedures. Thus the total wire overhead is n + 2 for n data 

wires per channel. Another benefit described in [2] is the possibility of utilizing reduced signal 

transition activity on the data wires, thereby reducing the associated energy consumption.  
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3.4.2 Four-Phase Dual-Rail Protocol  

The 4-PDR protocol combine the encoding of data and request by using two wires to represent one 

data bit. Since the request for data is encoded in the signaling process on the data lines, the only 

extra wire needed to represent the handshake mechanism is an acknowledge wire [2] .  

Figure 3.7 illustrates the signals needed in a transfer. In [1] an enable wire is used instead of an 

acknowledge wire to provide the handshaking. Enable is the inverse of acknowledge, and the 

implementation needs less logic to provide handshake facilities.  

 

Comment    d1                 d0 

Empty     0                    0 

Valid “0” bit     0                    1 

Valid “1” bit     1                    0 

Not used     1                    1 
Table 3-1: Four-phase dual-rail signal encoding 

That the protocol is four-phased indicates that two signal transitions of req/ack are performed during 

one data transfer. To obtain a unique encoding of the data signals, similar bit values for both data 

wires at the same time does not encode a valid bit value. In practice this means that only one data 

wire can change value at the same time, in order for the transition to be considered legal. Table 3-1 

indicates the bit encoding used in 4-PDR protocols. Figure 3.7 (left) shows the Dual-Rail channel with 

an acknowledge wire providing handshake, while figure 3.7 (right) shows the signal transitions during 

a handshake procedure.     

 

 
Figure 3.7: Dual-Rail handshaking. Dual-rail channel (left), 4-PDR protocol (right) 

One clear drawback of this method is the addition of one extra wire for each original wire sending 

data bits in a channel, and also the extra ack wire. Compared to the n+2 extra wires needed by a 4-

PBD protocol, the 4-PDR protocol needs 2n+1 wires, representing a significant wire overhead. 

However, due to the encoding of request and data by two wires, the 4-PDR protocol is insensitive to 

delay differences between data and request wires. This is an advantage over the 4-PBD protocol, and 

represents an increased robustness against timing errors caused by different delays in the circuit 

[22]. More complex handshaking circuits for the 4-PDR protocol requires more logic gates than 

implementations using 4-PBD, and since one of the data wires always will represent a signal 

transition, reduced switching activity cannot be exploited. The effect is generally higher power 

consumption than bundled-data protocols [2] . 

 

To indicate that a handshake is completed a non-code word known as a spacer must be transmitted 

to the receiving handshake element, before the next valid data token is transmitted. Typically the 

value {00} on both data rails is used as a spacer, and the signaling protocol for dual-rail circuits is in 

this case denoted Return-To-Zero handshake protocol [1] [33].  A point emphasized by [29] is the 

assumed condition that two consecutive data tokens are separated with a spacer. This is important 

because data validity by examining the data wires can only be certain if spacers are inserted.  
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Transmission pattern using the 4-PDR protocol 

To show how the protocol is executed in the constructed FPGA pipeline from  [1] with the usage of 

WCHB-elements in the switch blocks, a simple example can be illustrated in figure 3.8. 

 

 
Figure 3.8: Simple 4-PDR transition example 

The red sequence marks the initial sequence, when stage N receives the reset token, or spacer, from 

stage N-1. Stage N+1 has the data token from stage N on its inputs when stage N receives the reset. 

Because Te from stage N+1 is set to “0” when data is received, Te is set to “1” when the reset token 

arrives. The pipeline state indicate that stage N is free for a new data token arrival on one of its rails, 

while stage N+1 is busy until it receives the reset token from stage N. The blue and green sequences 

indicate another token transaction. The protocol applies to both dual-rail lines, not only Rd1 as used 

in the example. The WCHB element used to illustrate the handshake procedure is described in 

section 3.5.2. Instead of the conventional ack signal usually applied in 4-PDR protocols, an enable 

signal representing the logical inverse of an ack is used in the pipeline. As in the pipeline from [1] an 

enable signal will be used in the proposed Asynchronous Event System solution. 
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3.5 Asynchronous Circuit Elements 

Asynchronous circuits contain certain elements that are not found in synchronous circuit design. In 

this section synchronization elements for asynchronous signals will be discussed, emphasizing areas 

of use and different implementation alternatives for each element. The descriptions given in 

subsequent sections will provide the basis for further argumentations as to choosing the right 

synchronization architecture for different Event System solutions. First the most basic of all 

asynchronous elements will be described: the Müller C-element. Constructed by Müller C-elements 

buffer elements for asynchronous pipelines, copy-elements and a basic Micropipeline structure will 

be presented in the subsequent sections. 

3.5.1 The Müller C-element  

Much research has been done on the C-element and its design in order to achieve the most efficient 

implementation layout when it comes to power consumption and hazard avoidance. Several papers 

address this matter, among them [22] [30] [31], proposing different solutions for handling these 

challenges.  

Figure 3.9 and figure 3.10 shows two implementation variants proposed by [30] and [31].  

 

 
 

 

 

 

 

 

 

 

 
Figure 3.9: Hazard free Müller C-element [30]. 

 

 
Figure 3.10: AND / NOR- tree implementation of Müller C-element [31]. 

Basically a Müller C-element is either used to join signal transitions or for completion detection in 

asynchronous circuits. This functionality includes stateholding in pipelined circuits, for instance 

encountered in asynchronous FPGAs awaiting handshake signals from one or multiple sources [1] 

[13] [27] [28] [30] [31]. C-elements are also the fundamental circuit element in Sutherland’s 

Micropipeline [40]. Functionally the C-element is equivalent to the SR-latch, but it can handle the 

unbounded delay assumptions used in QDI circuits and other asynchronous circuit models, a trait not 

achievable by an SR-latch. When both inputs are “1” the output of a C-element is “1”. If both inputs 

are “0” the output is “0”. For input combinations “10” or 01” for a two input C-element the previous 
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output value will be transmitted. It is this property that makes the C-element unique when joining 

multiple acknowledge signals after a completed transition [28].   

3.5.2 Asynchronous Buffer Elements – WCHBs and PCHBs 

Weak-Condition Half-Buffer (WCHB) 

To provide correct handshaking for each pipeline stage a WCHB is one possible solution, and is used 

as the preferred handshake and pipeline element in [1]. 

The implementation considered is designed for use together with the 4-PDR protocol described in 

section 3.4.2, and the logic elements constructing the WCHB-element are illustrated in figure 3.11. 

The rail notation for Rd1 and Rd0 indicates that both rails are data rails received by the WCHB, where 

Rd1 indicates the valid “1”-rail and Rd0 indicates the valid “0”-rail. Td-rails behave accordingly, only on 

the transmitting side of the WCHB. Te and Re are transmitted and received enable respectively. 

 

 
Figure 3.11: WCHB pipeline element detail [1] 

The term half-buffer means that a handshake must be completed on the transmitting side of the 

buffer, before it can begin on the receiver side. This fact can also be seen in figure 3.11 

since the output of each C-element is dependent on the signal Re, which is the received enable signal 

from the instance receiving data transmitted by the WCHB.  This is in perfect accord with the transfer 

protocol described in [1].  The benefit of such a handshake structure is that a token traveling 

between the buffer elements can never be overwritten by proceeding tokens. A half-buffer 

implementation means that every consecutive data token travelling in the pipeline is separated by a 

spacer, as explained in section 3.4.2. Applying the Return-To-Zero (RTZ) protocol with 4-phased 

signaling, one data token is allowed for every second buffer element separated by a {00} spacer [29]. 

Half-buffers yield small implementation area compared to a full-buffer pipeline stage, where 

handshakes at the transmitting and receiving end can be overlapped for increased signal speed [1]. 

The benefit of using a WCHB as a buffer-element is due the few signal transitions to complete the 

handshake, making it the fastest QDI-buffer because of the short cycle time [16].  

WCHB-elements are not optimized for logical computations, and are therefore typically used in the 

setting of a pipeline buffer stage or a copy-element. 
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PreCharge Half-Buffer (PCHB) 

The PCHB is another pipeline buffer element, but with other functional properties than the WCHB. 

PCHBs are built on pull-down stacks of transistors used for token computations, and are therefore 

more optimized than WCHBs to be used in circuits where more complex operations than buffering 

are required. Typical examples from  [1] and  [27] use PCHBs in logical computation elements like 

asynchronous LUTs. In addition to the pull-down computation stack a similar handshake facility as in 

a WCHB is included, using the same dual-rail interface for all handshakes. This fact makes mixing of 

WCHBs and PCHBs trivial, allowing for more optimized element construction. Yahya et Al. have some 

conclusions on this subject in [35], showing potential of increased circuit speed with an optimal 

mixture of WCHBs and PCHBs in the computational pipeline. Figure 3.12 illustrates the PCHB used in 

[1].  

 

 
Figure 3.12: PCHB handshake element [1] 

One possible problem occurs when constructing larger computation elements in PCHB fashion: the 

pull-down stack of transistors gets to complex, and the created noise affects other parts of the 

system. Alternative solutions are presented in literature, both in [1] and [27], dealing with the 

potential noise problem. The principle of precharge circuits connected to pipelines is explained in 

[38]. For a simple illustration, a dual-rail AND gate implemented as a PCHB element is shown in  

figure 3.13. 

The PC-signal at a chosen stage N is the precharge signal, and it is received 

from stage N+1 in the pipeline. When stage N+1 has completed its 

computation, the completion detection signal is used to precharge stage N 

via the PC-signal. Precharging ensures that stage N cannot compute data 

tokens until stage N+1 is finished, implementing the same half-buffer 

functionality as a WCHB element. The stacking problem is due to the n-

stacks which can be depicted in figure 3.13. As the computational block 

becomes more advanced, the stack size increases rapidly. This problem is 

partly solved in [27], and examined in chapter 9.2.2.    

 

A more in depth study of different PCHB implementations can be found in 

 [39]. 
 

Figure 3.13: Simple AND gate as PCHB implementation [38] 
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3.5.3 The Copy-element  

Section 3.1 described some of the most common models used when dealing with asynchronous 

design and how a circuit is characterized by its associated delay-model. When it comes to forking of 

signals, asynchronous designs differ significantly from synchronous designs due to the handshake 

mechanisms employed in each channel. It is important to consider that for an asynchronous system 

the splitting of a wire containing a token must maintain handshake mechanisms with all destinations. 

Another consideration is that to preserve the delay-insensitivity property of a QDI system, the 

handshake signals must be synchronized in some way  [28]. Practically this means that a wire cannot 

be split in an asynchronous design, as it can when dealing with wires in synchronous systems, 

without introducing an extra element known as the copy-element. 

Figure 3.14 (left) shows a basic sketch of the copy scenario for a two-input copy element, and figure 

3.14 (right) gives a more detailed view of a basic copy-element [28]. A copy-element for an 

Asynchronous Event System will be designed according to figure 3.14 (right) because of its simplicity. 

 

 
Figure 3.14: Copy scenario for two receivers (left), Copy element detail (right) [28] 

A different copy element design is used in  [1], where WCHB-elements are used together with a 

network of C-elements to wait for all received enable signals after the forking of a signal. This 

solution is specially designed to be used in custom logic blocks for asynchronous FPGA structures, 

with a switch element as destination. This makes the solution rather area consuming, and will not be 

considered for implementation in an asynchronous Event System. 

The implementation in figure 3.14 from [28] uses C-elements combined with MUXes, and a select 

signal to make it optional if one or several destinations are desired in the forking procedure. This 

implementation is simple, and suited for use in circuits where the data token only needs to be forked 

to a limited number of destinations.  

Both the implementations considered relay on the QDI circuit model, not constructing any isochronic 

forks of importance for the circuit delay.  
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3.6 Asynchronous Pipelines 

Many asynchronous interconnect structures, especially those constructed for FPGA implementations 

[1] [27], rely on pipelining of various granularities to construct high-speed circuits with high 

throughput. These properties of asynchronous pipelining are interesting for an asynchronous Event 

System implementation, and an overview is provided, emphasizing terminology and some 

implementation considerations. 

3.6.1 Properties of Asynchronous Pipelines 

Asynchronous pipelines are defined in literature as a collection of concurrent hardware processes 

that communicate through message passing channels  [1]. These channels are also known as 

handshake channels, and the performance of the pipeline is highly dependent on the efficiency 

offered by the applied handshake protocol [36]. Utilizing this factor has led to the development of 

pipelines with higher throughput  [38], culminating with Ultra-High-Speed pipelines [37]. These types 

of pipelines anticipates the arrival of certain events to speed up the handshake, but is not considered 

as an alternative in this thesis. Therefore the focus will be considering pipelines using a 4-PDR 

protocol with QDI delay assumptions. 

 

Messages sent in the pipeline channels are addressed as tokens. Applying the definition from  [36], 

the tokens containing data are called evaluation tokens, while the tokens resetting the handshake 

are called reset tokens. Tokens are passed between pipeline stages in accordance with the applied 

handshake protocol. Pipeline granularity controls the performance in terms of the speed tokens can 

propagate through the pipeline. This property is called slack-elasticity, and means that changing the 

pipeline depth to increase speed in any channel will not alter the correctness of the original system. 

Clocked systems are not slack-elastic since changing local pipeline depths arises the need for retiming 

of the whole system  [1].  

 

Another terminology which is used for asynchronous pipelines is linear and non-linear pipelines. 

A linear pipeline is defined as the simplest pipeline structure, containing no split or merge of token 

channels [36]. Non-linear pipelines on the other hand can contain elements for split and merge.  

In this thesis only linear-pipelines will be considered. 
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3.6.2 Sutherland’s Micropipeline 

Ivan Sutherland introduced the Micropipeline in his Turing Award lecture in 1989  [40], but the 

descriptions given in this section is derived from  [13]. The basic architecture can be depicted in 

figure 3.15. The control circuit features interconnected C-elements, where the propagation of a 

signal entering the pipeline replicates that of a FIFO-queue. If the pipeline is waiting for a 

transmission to commence out of the pipeline, signals already in the pipeline will be held at the 

stages before the output by the C-elements. Adding registers controlled by the control signals, the 

micropipeline datapath is constructed. If blocks for logical computation are added between the 

registers, the pipeline can be utilized for pipelined logical computation. The delay blocks in figure 

3.15 are added to specify the delay encountered by the computational blocks. All delay blocks reflect 

the worst-case delay of the slowest computational block. In this context the micropipeline delivers 

worst-case performance.  

 
Figure 3.15: Micropipeline architecture [41]  

One acknowledged benefit of the micropipeline structure is the elasticity which can be accomplished. 

Being non-clock dependent, data can arrive in the pipeline at arbitrary times for computation. This is 

one of the reasons for the popularity of the micropipeline design structure. Problems include the 

performance and the testing of the pipeline. One stuck-at fault in the pipeline will halt the forward 

progress of the entire circuit, revealing asynchronous testing as a challenge even in simple circuits. 

[41].  
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4 Analysis and Testing of Asynchronous Linear-Pipelines 

In addition to the introduction of new circuit elements and a need for new design- and test 

methodologies combined with specialized synthesis tools, asynchronous circuits also differ from 

synchronous circuits considering performance and delay analysis. This is still a relatively new area of 

research, and a proposed model will be used for estimated performance evaluation of an 

asynchronous Event System solution. The asynchronous solution presented for the Event System uses 

a linear-pipeline structure, and this chapter will provide the necessary background to understand the 

challenges and principles behind performance measurements in these structures. A small section 

considering testing of asynchronous systems will be included to put focus on techniques applicable for 

testing an asynchronous Event System solution.    

4.1 Performance Analysis in Asynchronous Linear-Pipelines 

Analyzing the performance of an asynchronous system, for instance a pipeline, is complicated by two 

factors: There exist no easy way of partitioning the system, and the fact that the system is self-timed 

[35]. Self-timed behavior complicates performance evaluation by making the performance 

dependent on relative delay values in the different pipeline stages, values which can be different for 

each stage if computational elements exist in each stage [35]. The result is that performance analysis 

based on average delays is not accurate, even though asynchronous systems can compute in average 

time instead of worst-case time [13].  

 

A method called Token Vector Delay Model (TVDM), developed by Yahya et. Al in  [35] [36] , use 

vectors of latency pairs in each pipeline-stage to represent the delay properties introduced by 

computational elements in the pipeline. The vector pairs represent delays formed by an arbitrary 

mathematical function for some chosen statistical distribution.   

 

The proposed asynchronous solution for the Event System use WCHB buffers in the pipeline as 

described in section 3.5.2. To understand the analysis principles of the TVDM, the token pattern of a 

WCHB element must be analyzed. Valid tokens in the pipeline consist of an Evaluation Token (Eval) 

containing data or information and a Reset (Rest) token, also referred to as a spacer. Using the 4-PDR 

protocol for sending data the token pattern is as described in section 3.4.2 , meaning that for a 

WCHB the total delay consist of a Token Vector (TV) pair [Teval,Treset]  [35]. This token pair represents 

differences in the computation time for the eval and reset tokens, along with latencies in the pipeline 

and other fixed and variable delay factors. All latencies specify TV pairs for each pipeline element, 

building the fundamentals for analytical modeling when combined with the actual circuit model of 

the pipeline.  

 

To present the right TV equations, the TVDM model rely on dependency graphs modeling the 

pipeline behavior. Additional background for such analysis is provided by [36] and [22]. The model 

used to describe an asynchronous pipeline is depicted in figure 4.1 (left), while the dependency graph 

used to provide the analytical model is given in figure 4.1 (right) . The pipeline is modeled with a 

functional block used for pipeline computation, while the register acts as a buffer element for the 

tokens. The time it takes for a buffer stage to completely process a data pattern consisting of both an 

eval and a reset token is denoted Total Cycle Time (TCT). According to [22] determining the TCT is the 

same as determining the longest simple cycle in the dependency graph, or the cycle with the longest 

accumulated circuit delay without containing any sub-cycles. Equations for TCT in each pipeline stage 

can be derived from the dependency graph in figure 4.1 (right). Even though asynchronous processes 

can trigger concurrently, there is always a main synchronizer event.  
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For a WCHB element this event comes from each C-element output, and is denoted C↑ and C↓ for 

an eval transition and a reset transition respectively. For the next equations C↑ is considered the 

main synchronizer event. See  [36] for more details. 

 

The maximum latency traveling from C↑ to C↓ is given by the equation: 

Max [(F↑,C↑,Ack↓, C↓), (Ack↓,C↓,F↓,C↓)] according to the associated dependency graph. 

From C↓ and back to C↑ the delay equation is: Max [(F↓,C↓,Ack↑, C↑), (Ack↑,C↑,F↑,C↑)] 

according to the dependency graph. The total cycle time associated with proceeding and preceding 

pipeline stages for a WCHB is given by: 

 

TCTnWCHB = MAX[ (TF(n+1)↑+TC(n+1)↑+TAck(n+1)↓+TC(n)↓), (TAck(n)↓+TC(n-1)↓+ TF(n)↓+TC(n)↓)] +  ( Eq. 4.1 ) [36] 

      MAX[ (TF(n+1)↓+TC(n+1)↓+TAck(n+1)↑+TC(n)↑), (TAck(n)↑+TC(n-1)↑+ TF(n)↑+TC(n)↑)]. 

 

 

 
Figure 4.1: Pipeline model (left), WCHB dependency graph (right). [35] 

Other approaches to performance analysis use statistical methods to obtain performance parameters 

for asynchronous circuit structures. All papers considering statistical methods include more process 

variable parameters in their computations than the TVDM method, like gate variability for adjacent 

transistors [45], variable threshold voltages and channel lengths  [44] and spatial correlation effects 

in the silicon die [43]. All performance and delay models used in the three mentioned papers rely on 

computationally heavy Monte Carlo analysis, and require good knowledge of the implemented 

circuit. Such analyses are therefore not considered an alternative in this thesis, and the simpler 

dependency graph analysis will be considered for the Asynchronous Event System. A more general 

analysis using Markov Chains is provided by McGee et Al. in [46].  

4.2 Test Generation for asynchronous pipelines 

Testing asynchronous pipelines and other asynchronous computational structures is perhaps the 

most pressing research area for asynchronous logic.  As accurate testing of an Asynchronous Event 

System solution is beyond the scope of this thesis and will be considered an area of future research, 

only some references towards research on asynchronous testing will be provided.  

 

The work presented by King et Al. in  [41] proposes simple testing techniques for Sutherland’s 

micropipeline mentioned in [40], and C-element tree structures. Asynchronous elements are treated 

as atomic FSMs, so that test patterns can be conducted for each FSM. Using a scan latch in each 

pipeline stage, scan testing closely related to synchronous testing is managed with high fault 

coverage and low area overhead. 

In [37] methods for stuck-at fault- and handshake testing in Ultra-High-Speed pipelines are proposed. 
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5 Description of FPGA and CPLD Architectures  

The asynchronous elements and design methodologies presented in section 3 bring some challenging 

design aspects into the microcontroller domain. To fully utilize the different techniques a new routing 

structure is proposed for the Event System, building on an FPGA inspired topology.  

This section will provide background information on both synchronous and asynchronous FPGA 

designs, and highlight some interesting FPGA features for the Event System. The first subsections will 

present some common FPGA topologies and notions, including some custom circuit elements specially 

developed for asynchronous FPGA architectures. To show similarities and differences, synchronous 

techniques are compared to asynchronous techniques in some of the settings. 

One of the proposed solutions for the Event System considers the use of CPLD architectures. A brief 

overview especially emphasizing CPLD design developed by Atmel is therefore provided, also 

introducing some general CPLD design considerations. 

5.1 FPGA Topologies  

Whether synchronous or asynchronous FPGA topologies are under consideration, the basic structure 

regarding routing resources and connectivity are basically the same. The topologies considered in 

this section concerns SRAM FPGAs because of its common use and well investigated architectures. 

  

Segmented Routing 

This is an Island-style routing topology, meaning that each logical computation block in the FPGA is 

surrounded by routing resources. Another name also used for such topologies is symmetrical [15]. 

Routing segments are connected with wires of different lengths, where short wires accommodate 

local communication and longer wires connects to fewer switch blocks to provide global routing 

resources with less delay. Local wires connect to more global structures using switch blocks to 

emulate global connections, giving large programmability for the overall system [34]. Figure 5.1 (left) 

indicates segmented routing.  

   
Figure 5.1: Segmented Routing (left) and hierarchical routing (right)  [34] 

 

Hierarchical Routing 

This routing method considered in  [15] [34] routes within a cluster of logical elements at the lowest 

hierarchical level, with direct connections within this cluster. At the boundaries of each cluster are 

switch blocks connecting the local segments to the next hierarchical level, making the local clusters 

accessible to each other. Applying a hierarchical routing topology could be beneficial for circuits 

where the locality of certain logic groups are dense, achieving better density and performance  [14]. 

The method is however relying on a good placement to utilize the local communication. Figure 5.1 
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(right) shows the principle of hierarchical routing. Research committed by Aggarwal et. Al  [15] 

indicates that compared to symmetrical FPGAs, hierarchical solutions can give a reduced cost with 

regards to area because of reduced switch count. 

5.2 FPGA Switch Block Design 

Much of the area consumed by an FPGA, regardless if it is an asynchronous or a synchronous FPGA, is 

used for routing resources. According to [34] only 10% of the total FPGA chip area is used for logic 

cells, the rest for routing resources. This fact makes the switch element one of the most crucial 

components in an FPGA design [3] [17]  [19] and therefore optimizing the design of switch elements 

are important if high throughput, small area and short delays are to be obtained [18]. The switch is 

defined as the element connecting horizontal and vertical channels on the routing network, and 

usually has a uniform number of input/output channels connected to each side. Another important 

aspect of the switch element design is the routability aspect. Research on this area has according to 

[3] shown that if three switches are connected to one input/output terminal, a near maximum of 

routability is achieved. Practically this means that a terminal connects to three other terminals for 

signal distribution. 

Figure 5.2 (left) shows a typical switch block consisting of eight switch points, denoted S, while figure 

5.2(right) describes in more detail a design model of a multi-directional switch point where each pass 

transistor is controlled by an SRAM cell. 

 

 
Figure 5.2:  Switch block with eight switch points (left), Switch point model (right) [3] 

 

There are two switch types which are mainly considered for different FPGA architectures; subset 

switch blocks [3] [17] [18] and universal switch blocks [19] [20]. These architectures will be more 

carefully considered during the subsequent sections.   

The principle of construction is the same for synchronous or asynchronous designs considering 

switch blocks, except that asynchronous switch blocks must contain logic elements to provide 

handshaking if used in pipelined applications. This is described in [1].  

Optimizing switch blocks is a rather complex layout procedure, and therefore this chapter is mostly 

considered for orientation, meaning that the techniques presented will not be applied to the switch 

blocks constructed for the Event System. It is however important to be aware of different 

optimization techniques, and the fact that a simple switch design not necessarily reflects an optimal 

one.  Compared to a either a synchronous or asynchronous FPGA, a routing architecture for the 

Event System will not contain many switch blocks, hence careful optimization can be considered too 

resource consuming for a prototype version.  
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5.2.1  Switch block design for synchronous FPGAs 

Since most FPGAs developed today are synchronous, papers addressing switch block design [3]  [17]  

[18]  [19]  [20] are considering synchronous FPGAs as the fundamental structure. This section will 

give a brief overview of the most important aspects of effective switch design, and the most 

commonly used switch types. Only subset switchblocks will be considered for Event System 

implementation for presented solutions relying on FPGA inspired routing topologies. 

  

Subset switch blocks 

The papers  [3] and  [17] by Schmit et Al. investigate effective layout of subset switch blocks, and 

some heuristics are proposed in order to compute the placements of switch points in order to create 

the best possible layout for a given number of input/output terminals. The switch block illustrated in 

figure 5.2 represents one of the least efficient layouts, because all switch points are stationed on a 

diagonal with reference to each other. Usually this layout presents an unoptimized Euclidean 

distance between two switch points; hence optimization heuristics can be applied. The optimization 

technique presented is based on permutation matrices satisfying certain equations using the 

modulus operator. A superficial example for 8 switch points is illustrated by the optimal permutation 

matrix in figure 5.3 (left) directly translated to an initial placement with optimal Euclidian distance 

between switch points figure 5.3 (centre). figure 5.3 (right) is the final and optimized switch block 

layout for eight switch points, showing significant differences from the diagonal layout in figure 5.2. 

Note that the position of each “1” in the permutation matrix indicates an initial switch point 

placement on the grid. 

 

 
Figure 5.3: Optimal permutation matrix (left), initial placement (center), optimal switch block (right)  [3] 

 

Universal Switch Blocks 

This switch block class represents switch blocks with inherited isomorphic properties and symmetric 

wiring topology [20]. The isomorphism property refers to identical routing capacity for two 

isomorphic switch blocks, meaning that if the terminals of a switch block M can be relabled to the 

terminals of another switch block M’, they can be considered isomorphic. An example presented in 

[20] uses a symmetric switch module as basis for constructing isomorphic alternatives of this block. 

Figure 5.4 presents this example. All these switch blocks will be universal by the presented 

definitions.  

 Experimental results from [19] and [20] show considerable savings in area compared to for instance 

subset switch blocks, when 100% routability is demanded.  
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Figure 5.4: Symmetric switch block (a), isomorphic blocks of a (b-d). [20] 

5.2.2 Switch Block Design for Asynchronous FPGAs 

Most of the developed commercial FPGA designs consider synchronous FPGAs, and some designs like 

MONTAGE  [4] [21] implements asynchronous architectures by porting clocked FPGA architectures to 

an asynchronous circuit implementation. The works presented in [1]  [32] investigates pipelined 

FPGAs built from pipelined asynchronous circuits, not considering a clocked environment.     

 

The main difference in switch block design compared to synchronous circuits is that wires for 

handshake must be provided by each switch point in the switch block. An experiment conducted in  

[1] states that pipelined switch blocks deliver superior performance when the routing distance is 

long, mainly because of the series resistance encountered by the signal when passing many pass- 

transistors in an unpipelined environment. The proposed switch block design is therefore 

constructed of two WCHBs for each switch point, providing a fine-grained pipeline structure with 

high throughput. Figure 5.5 shows a fine grained pipelined switch point. 

 

 

 
Figure 5.5: Fine grained pipelined switch point, with two WCHBs for each switch point [1] 

A switch design inspired by this layout will be developed for an asynchronous Event System solution. 

5.3 Asynchronous LUT and Logic Block Design 

In most conventional FPGAs the Look-Up Table (LUT) is the basic block when it comes to 

implementing programmable logic functionality. According to [34] the LUT has proved to be the best 

alternative for supplying programmable logic, and it is programmed by the configuration bitstream 

provided by the synthesis tool. This chapter will only consider SRAM-programmable LUTs for 

asynchronous architectures, which are applied in the Asynchronous Event System. The benefits of 

using SRAM technology in this context is large programmability, with the drawback of larger area 

when implementing the memory cells, and the need for some RAM-device to hold the configuration 

bits [14].  The LUT is often part of a larger structure known as logic block, where output selection, 

carry logic and bypass functions are included. For orientation a good overview of different 

synchronous logic block implementations spanning a variety of vendors is given in  [14]. 

 

In order to utilize the potential of asynchronous circuits, custom LUT designs have been presented in 

different papers focusing on how the LUT can be interfaced to proper handshake logic. The design of 

the entire logic block includes the handshake logic needed to operate in asynchronous environments. 
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A solution from  [1] uses highly pipelined logic blocks, and the LUT is implemented using a PCHB 

computation- and handshake environment. A sketch of the logic block can be seen in figure 5.6. 

 

 
Figure 5.6: Asynchronous Logic Block [1] 

The differences from synchronous implementations feature the output copy element, conditional 

unit and token source / sink blocks. Output copy elements are needed to ensure correct handshake 

with all elements receiving the logic block output. The conditional unit offers split and merge 

functionality for tokens, while the source and sink produce and consume tokens to generate tokens 

at reset and consume undesignated tokens. All facilities within the logic block are different from 

synchronous implementations, making this a custom design process. The functional unit block in 

figure 5.6 contain the LUT and carry logic similar to that found in synchronous implementations. The 

difference is that each functional unit is implemented with either a PCHB or WCHB handshake 

environment dependent on the level of logic computation needed. The logic block from [1] can be 

seen in figure 5.7.  

 

 
Figure 5.7: Asynchronous Functional Block [1] 

Traditional PCHB implementations can suffer from noise problems because of a rather complex pull-

down stack of transistors, and also size overhead for the associated implementations [1] [27]. 
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A solution to this problem is presented by Mahram et Al. in [27] where the complicated transistor 

stack used for dual-rail computation is simplified by making the computation inside the functional 

block in a single rail environment. Handshake signals are still considered dual-rail. Figure 5.8 

illustrates the building blocks of the computation block, with handshake elements. 

 

 
Figure 5.8: Modified PCHB computation circuit  [27] 

A more in depth analysis of this block is presented in chapter 9.3.1, where a modified version is used 

for logical computation in the Asynchronous Event System solution. Another point to emphasize is 

that the PCHB handshake environment can be used in many logical computation elements and not 

only with 4-LUTs as in the example. 

5.4 CPLD Architectures 

As an alternative to logical computation using FPGAs, Complex Programmable Logic Devices (CPLDs) 

are another good option. CPLD architectures are known for their ability to outperform FPGAs when it 

comes to speed  [5] and for its capability to implement glue-logic [42]. According to [42] circuits 

which can exploit AND/OR gates and not consume large numbers of flip-flops are good candidates for 

CPLD implementation. Finite State Machines (FSMs) are examples of such circuits. 

Building on the basic logic blocks from SPLDs (Simple PLD), CPLDs offer a high level of predictability 

when implementing logic. Partitioned into several SPLD-like blocks the speed-performance of the 

total implementation becomes more predictable.  

 

SPLDs form the basic building blocks for CPLD architectures. The SPLD architecture can be 

implemented as either PLA (Programmable Logic Array) or PAL (Programmable Array Logic). Both 

methods use planes of AND- and OR-logic, whereas the PAL structures only allow programmability of 

the AND-plane, PAL structures allow programmability for both the AND- and OR-planes. The 

structures considered in this chapter only feature FLASH programmable solutions. 
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Figure 5.9 shows a basic PAL programmable 

architecture. To show how a CPLD is constructed, the 

Altera Max 7000 explained in  [42] will be used as an 

example. The basic architecture of the Max 7000 series 

feature a Programmable Interconnect Array (PIA), which 

can route any of the Logic Array Blocks (LABs) to a 

selected I/O-pin or other LABs. The basic architecture 

can be depicted in figure 5.10 (1), showing the top level 

connection of LABs. Each LAB can be viewed as a 

complex SPLD structure, consisting of interconnected 

macrocells as shown in figure 5.10 (2). 

 

 
Figure 5.9: PAL architecture [42] 

The macrocells in figure 5.10 (3) can connect to all wires distributed on the PIA, and consists of 

programmable product terms constructed by an AND-plane. A product term select matrix feeds the 

desired term into an OR gate connected to flip-flops. Selecting the appropriate product term, any 

logical expression featuring the selected input wires can be realized.    

 

 
Figure 5.10: Altera Flex 7000 architecture (assembled from [42]) 

5.4.1 Atmel CPLD Architecture 

Applying some of the benefits mentioned in the previous section to a CPLD based Event System 

architecture could enhance the flexibility and computational power of the system. Atmel delivers 

several high performance CPLDs, and reusing elements of these architectures in an Event System 

context can produce a powerful implementation alternative for the Event System, also providing 

great time-to-market potential. The architecture under consideration is the ATF1508RE CPLD from 

Atmel [7]. Providing large routing flexibility, small pin-to-pin propagation delay and up to 40 product 

terms handled for each macrocell, the architecture delivers state of the art CPLD performance. 

Another useful feature is direct interconnecting between Logic Block neighbors.    
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Architectural details can be depicted in figure 5.11, concerning both the top level architecture and 

macrocell details. The Bus wires feeding into the AND-structure are selected from the Global Bus, 

and 40 wires connect to each macrocell using a switch matrix. The Global Bus includes foldback 

signals from all Logic Cells as well as all I/O signals. Having the possibility for cascaded coupling, up to 

40 logical terms can be computed by connecting all 8 Logic Blocks in cascade.  

Compared to figure 5.10 there are some similarities in the fundamental architectural buildup of the 

macrocells. The AND-plane uses the same connectivity in both implementations, feeding into an OR-

gate and flip-flops. Although slightly differently implemented, possibilities for interconnecting 

macrocells and distributing foldback signals are also present in both architectures.  

 

 

 
Figure 5.11: Atmel ATF1508RE architecture and macrocell detail [7] 
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6 Asynchronous VS Synchronous Event System Design 

The previous sections have provided the background for considering different solutions for the Event 

System, and also discussed some of the differences between synchronous and asynchronous 

implementations. This section considers the two design paradigms as alternatives for the Event 

System, revealing the gains and losses of applying the different design methods in the AVR® XMEGA. 

Factors which will be evaluated at a superficial level in this chapter, but considered in depth in 

chapter 11 and 12, include system costs, circuit complexity, performance and size, tools support and 

functionality.   

6.1 Synchronous Design Considerations  

6.1.1 Drawbacks with a Synchronous Event System Design 

Most microcontroller systems rely on a synchronous design flow, omitting the problems for EDA- and 

CAD tools support often experience by asynchronous systems. However, as the processes used in 

current circuit technology become increasingly aggressive passing 65nm and beyond, the 

uncertainties in the production makes it difficult to calculate clock frequency with sufficient 

precision. To compensate for this inaccuracy more variable factors must be taken into consideration 

when calculating the clock frequency, slowing down the clock speed significantly. An example from  

[29] shown in figure 6.1 illustrates this problem. 

 

 
Figure 6.1: Parameters for determining a safe clock cycle duration [29] 

As can be seen, variable factors constitute about 120% of the total clock cycle compared to the actual 

computation time. To compensate for the variable factors encountered in more aggressive 

processes, more accurate analytical timing models combined with statistical models is a possible 

solution. Papers considering variable factors in the manufacturing process includes  [43] [44] [45], all 

emphasizing different aspects of predictability difficulties. Although this illustrates a general scenario, 

the Event System will be part of this development as well and suffer from the same unfortunate 

constraints.  

 

Another design consideration related to the clock is distribution of the clock tree to meet timing 

requirements, setup- and hold timing constraints and minimize the clock skew. Normally these 

challenges are met by the design tools employed by each manufacturer, but as the process size 

decreases and new processes are introduced the tools must be updated to cope with new timing 

requirements. This complicates the process of fully utilizing the new technology instantly.  

 Possibly penalizing the achievable circuit speed, a weakness in robustness and adaptability 

considering synchronous circuits is reveled at the same time.  

Synchronous systems are not robust against delay variations, and are therefore considered Delay-

Sensitive or bounded-delay systems [13].  
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DS systems do not have the same adaptability as asynchronous systems towards changes in external 

conditions, and must therefore always expect worst case behavior. Handling events which are by 

nature asynchronous, increased performance could be achieved by utilizing these properties. 

 

When considering low power, synchronous designs have a disadvantage compared to its 

asynchronous counterpart. All components connected to clock lines will toggle their transistors for 

each cycle, even in parts of the circuit not currently used in a computation. Although the Event 

System operates with minimal use of CPU resources, it is subject to unwanted energy consumption 

due to clock toggling even in idle operation. 

6.1.2 Benefits of a synchronous Event System design 

Even with some commonly accepted drawbacks, the benefits of designing a system in synchronous 

fashion could balance the scales. Most manufacturers have a well developed tool flow ranging from 

complicated design tools to synthesis- and layout tools, utilizing the available process technology as 

much as possible. Synchronous circuits are efficiently designed using well defined methodologies 

approved by all designers. Standard cell libraries developed for each process is available, yielding 

smaller designs and limits the need for extensive custom design. A direct consequence is a reduced 

time-to-market because of fast design development.  

 

Most of the commercially available microcontroller- and peripheral systems are synchronous, which 

makes interfacing easy without having to deal with the metastability issue present when interfacing 

synchronous and asynchronous systems. In the Event System context this would mean that 

interfacing a new design into the existing AVR® XMEGA design would be much more trivial. Well 

developed test environments ensure verification and full compatibility with scan testing. 

6.2 Asynchronous Design Considerations 

6.2.1 Why Consider an Asynchronous Implementation? 

Section 3.3 gave an overall review of possible benefits and drawbacks of asynchronous design. 

In the context of the Event System it is clear that some benefit could be gained by an asynchronous 

implementation.  

 

First of all the tendency of decrease in process size continues, yielding more aggressive processes. 

With no need for considering the clock limitations depicted in figure 6.1, utilizing a new process 

would be much easier in the asynchronous domain. Increased size to due to handshake elements 

would also be masked because of smaller gate size, giving synchronous designs less advantage in this 

area as well. Increased signal speed means increased processing, and with the additional 

functionality developed for the Event System during this thesis the computational power as well as 

the distribution power could be increased with an asynchronous implementation. Considering highly 

pipelined solutions, the gap in signal speed compared to a synchronous version could increase even 

more. According to scaling theory a size decrease of 50% compared to the previous technology is 

possible for digital logic [49]. 

 

Events are defined as asynchronous happenings at some instant in time, and could be distributed 

naturally with an asynchronous routing network. Using such a facility would inherit all the robustness 

of QDI circuits, adapting to changing circuit conditions with ease. The most interesting asynchronous 

trait for the Event System is natural power down capabilities, which should decrease the associated 

power consumption compared to the current Event System. An exact decrease factor is hard to 

derive without a prototype or explicit implementation knowledge, but according to papers, among 

them [1] and [13], a decrease should be expected. 
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6.2.2 Drawbacks of an Asynchronous Implementation 

The lacking support of a good design flow and tools optimized for constructing asynchronous designs 

are one of the chief reasons for postponing the thought of an asynchronous Event System. In a 

marked where rapid development is necessary the asynchronous design flow would slow down 

design efficiency, resulting in longer time-to-market than a synchronous alternative. Developing a 

custom set of design tools and standard cell libraries for asynchronous logic would make the design 

cost to high compared to the immediate gain. To support new features the tools produced by 

software designers must also be altered, adding another cost factor to the total tool cost. A related 

design cost include re-training of engineers for an asynchronous designflow.   

  

It is a common conception that testing and verification makes up about 70% of the total design time. 

Considering the challenges associated with asynchronous testing, the time spent on testing and 

verification would be further increased.  
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7 Hierarchical Event Routing Network with I/O Processor 

The first design attempt for a new Event System implementation emphasizes changing the routing 

structure fundamentally, introducing an FPGA-inspired routing topology. To control the execution of 

events an Event I/O processor is considered, connecting to all peripheral instances.  

In the following sections the design will be presented, along with an overviews of costs, size and its 

feasibility as a solution for the AVR® XMEGA. 

7.1 Features 

- Programmable routing featuring FPGA switch blocks 

- Pseudo-hierarchical routing topology to exploit local communication 

- Programmable I/O-processor for flexibility and processing power 

- Logical operations on events through the I/O- processor 

7.2 System Architecture 

The Hierarchical Event Routing Network (HERN) architecture consist of a three level hierarchical 

routing principle inspired by hierarchical FPGA routing as presented in section 5.1. Figure 7.1 

illustrates the partitioning of hierarchical levels, where level 0 consists of one Port/TC and its 

associated peripherals, level 1 of two neighboring Port/TC blocks connected by routing or an ADC, 

DAC, DMA peripheral and level 2 is level 1 blocks connected via the I/O processor.  

 

ADCx

DMA

RTC

clksys

Port / TCC

Port A/B

I/O processor

DACx

Port / TCD

Port / TCE Port / TCF

Level 1

Level 1

Level 1

Level 1

Level 1

Level 0 Level 0

Level 0 Level 0

Level 1

Level 1

Level 1

Level 2

  
Figure 7.1: Hierarchical level partitioning for the HERN 

Communication on level 0 is denoted local, communication on level 1 is denoted as regional and 

communication on level 2 is considered global. To ensure routing flexibility, programmable switches 

make up the interface between different hierarchical levels. This principle is more explained in detail 

in figure 7.2. Port A/B is not included in figure 7.2, but would be coupled directly to the I/O-

processor. The global wires connect to all of the global peripherals like in the original Event System, 

and the wires are directly interconnected to the I/O-processor. 
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Figure 7.2: HERN regional and local overview from Port / TC side 

With an I/O-processor in the center containing Event System functional blocks like QDECs [6] and 

filters along with added computational logic for event processing, the HERNs regional and local 

hierarchical levels provide good routing capacity. Main routing directions are split in two, using bi-

directional switches instead of the multidirectional switches usually applied in FPGAs. This is for 

simpler switch design, and easier control and determination of the event flow. Each switch is custom 

made for its purpose and hierarchical level. Local switches have a capacity for 4 event channels in 

each direction, while regional switches have a capacity for 8 event channels. At a global scope 

between the I/O-processor and ADC / DAC peripherals 8 event channels are used in each direction, 

providing double the global capacity of the original Event System. All event channels use the event 

notation from section 2, and will consist of the same ev_c and ev_d wires. 

 

The idea of applying the hierarchical routing structure to the Event System has its background in the 

system concept called Multifunctional Timer I/O unit (MTIO) [8], preceding the Event System. As the 

name MTIO indicates, I/O-pins and TC modules communicate locally to enhance peripheral 

functionality. Applying the same principle of communication between Ports and TC-modules gives 

more resources for local signal routing, making the HERN suitable for extensive handling of I/O-

signals and events at the local- and regional communication level. The switch block colors indicate 

different block types, and equivalent NAND gate count for each switch block can be viewed in 

appendix A 16.2-1 - A 16.2-4. The appendixes focus on the asynchronous switch block which will be 

introduced in section 9, but a synchronous alternate gate count is also given because both the 

synchronous and asynchronous switch block designs rely on the same template. 

Figure 7.2 with an associated gate count is provided by appendix A 16.1-1. 
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7.2.1 Architectural Considerations 

Switch Blocks based on SRAM technology 

When constructing the basic routing facility of the HERN, the decision of choosing programmable 

switch blocks instead of the conventional MUX solutions for routing was the first major design 

decision to be made. The switch block solution was chosen to be consistent with the pseudo-

hierarchical FPGA topology applied, and to import the concept of programmability to the routing 

network in addition to the I/O-processor. Another trait is that SRAM-cells are size effective if 

implemented from the Atmel standard-cell library [10], enabling design of area efficient switch 

blocks. According to [11] an SRAM based solution gives increased flexibility over a MUX-based 

solution, although the solution is slightly more area consuming. The decision to use SRAM-based 

switch blocks required a lot of custom designed switch elements for different numbers of 

input/output event channels, depending on the hierarchical level of operation for the switch block. 

The connection block mentioned in [11] used to connect input/output pins to the routing channel in 

standard FPGAs are considered a peripheral dependent implementation, and is therefore not 

mention as a part of the HERN routing architecture. Keep in mind that the HERN is FPGA inspired, 

and not a general FPGA topology.  

 

Interconnections 

The decision to be made at this level is considering hardwired direct connections in some portions of 

the system, at the cost of a reduced number of programmable connections. Although  [11] states 

that careful placement of hardwired interconnects can increase performance, the HERN is 

constituted only of programmable interconnects. The reason is a probable increase in area and less 

flexibility considering the overall routing [11]. Wanting to maximize programmability and flexibility 

with the HERN solution, a decision involving only programmable interconnections was applied. 

7.3 The I/O Processor – Computational Power and Flexibility 

The computational- and processing power of the HERN is centered in a custom designed I/O 

processor. Some of the benefits gained by such a centralized processing solution include 

programmability by applying a unique instruction set for event distribution, centralized processing 

logic yields smaller area for these elements compared to if implemented in each peripheral and 

logical operations on events can be delivered by the I/O-processor. Implementing state-machines for 

operation on event-chains is also possible with some associated memory, adding a powerful feature 

for processing events in a longer sequence without interference from the CPU. Implementing FSM 

functionality would continue the FSM heritage suggested by the MTIO system [8].  

 

However this amount of flexibility and computational power comes with a high cost. Even a simple 

I/O-processor inflicts a significant increase in circuit size and power consumption. Evaluating the fact 

that the AVR® XMEGA is an 8/16 bit microcontroller, this will not be cost effective compared to the 

performance offered. This fact is strengthened by previous research performed by Atmel, drawing 

the conclusion that using existing process technology, such an implementation is not cost effective 

[9]. 

 

An obvious reason for considering a processor based alternative for the Event System is chiefly 

motivated by the available degree of programmability. Given the proper instruction set, the 

processor could manage advanced computations on transmitted events allowing for advanced 

peripheral operations. Of course the associated power consumption would increase with a dedicated 

processor, especially regarding dynamic consumption, and the consumed amount would further 

increase if more advanced functionality was added to the I/O-processor.   
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7.3.1 Area Estimations and Programmable Bit Count 

This section will provide some estimation on expected HERN area in terms of NAND equivalents, 

chiefly based on appendixes A 16.2-1 - A 16.2-4 for switch block area, and appendix A 16.1-1 for total 

area. Considering estimated size for an I/O-processor, previous research by Atmel [9] puts a basic 

I/O-processor at 2200 NAND gates including routing and shared memory with the main CPU. An 

advanced I/O-processor cost approximately 6000 NAND gates, also with shared memory. These 

numbers are released with the courtesy of the Atmel Corporation. Have in mind that the estimated 

area does not consider routing area in terms of wires and additional memory to provide 

programming bits to each switch block. These factors will be included in section 12 where all 

proposed Event System solutions are compared. The NAND gate count is for logic area only. Table 

7-1 provides a gate count overview for different HERN alternatives. 

 

Domain Switch type 

#CHIn/#CHOut 

# SRAM 

transistors  

switch 

block 

Gate count 

per 

element 

[NAND] 

Number 

of switch 

blocks 

Total 

gate 

count 

[NAND] 

Local 8x2/8x1 64 7.5 8 60 

     

Regional 8x3/8x1 192 22 8 176 

8x2/8x2 256 29 4 116 

Total     352 

Simple 

I/O 

  2200  2552 

Medium 

I/O 

  3500  3852 

Advanced 

I/O 

  6000  6352 

Table 7-1: Measured NAND equivalents for HERN routing and I/O-processor 

Because of increased programmability for an applied HERN solution, an amount of bits must be 

provided by memory to configure the routing network. Included in the same appendixes as gave the 

area estimations are also the bits required to program each switch block. Table 7-2 summarizes the 

results. 

 

Domain Switch type 

#CHIn/#CHOut 

Required 

programming 

bits 

Number 

of switch 

blocks 

Total bit 

amount 

Local 8x2/8x1 4 8 32 

    

Regional 8x3/8x1 24 8 192 

8x2/8x2 32 4 128 

Total    416 
Table 7-2: HERN required programming bits 

A note to table 7-2 is that extra registers for the I/O-processor is not considered, only bits connected 

to routing. 
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7.4 Conclusions regarding the HERN 

Because of the size and resource issues regarding the I/O-processor, a full solution for the HERN was 

not developed or considered at a more detailed level than in figure 7.2. The total implementation 

was regarded too resource consuming with the available process technologies based on previously 

mentioned Atmel research. Attempting this kind of design for the Event System reveals some 

potential, and also the need for further research in the area of using a dedicated processor to control 

microcontroller sub-systems. Such a research is considered beyond the scope of this thesis. A note to 

the area and power issue is that with subtle designing, the solution could be a candidate for the 

AVR®32 Event System which represents a more advanced microcontroller structure. 

 

Despite the resource issue, some of the proposed routing architectures and solutions were 

considered worthy of further development. The hierarchical topology is applied to the Event System 

design proposal in section 9, but in a slightly refined version. Ideas considering programmable 

switches using SRAM technology are also further developed, and presented in section 9.2.5 along 

with appendix 16.2. Although not the first choice for an XMEGA Event System implementation, the 

HERN can be considered a good first design attempt for a routing infrastructure. 
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8 A CPLD and Bus Based Solution for Event System Routing 

This section will present the architecture and design of a CPLD based I/O - and event-processing 

solution. To form a new solution for the Event System the hierarchical routing legacy of the HERN was 

further developed, but replacing the I/O-processor with blocks of CPLD logic in each Port / TC module. 

A discussion on benefits of using CPLD architectures as an alternative to classic FPGA architectures 

are included, along with a description on how the solution can be integrated with the existing 

peripherals. Finally some conclusions on the proposed design are presented.  

8.1 Features 

- Bus based routing for fast and deterministic event transfer 

- Utilization of local connectivity between peripherals through cascaded CPLD Macrocell 

Blocks. 

- Integrated and connected CPLD-blocks in each Port / TC – peripheral for logical processing of 

incoming events. 

- Using Atmel`s original CPLD design allows for simpler integration with existing peripherals 

- Extensive handling of I/O signals through the CIOBus 

8.2 System architecture  

The routing structure used for the CERN (CPLD Event Routing Network) adopts the hierarchical 

description used for the HERN in section 7.2. However, the programmable FPGA routing solution is 

substituted by a bus solution similar to the one used to connect Logic Blocks in  [7].   
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Figure 8.1: CERN architectural overview 

Figure 8.1 shows the connectivity between different peripherals using a Global Event Bus (GEB). The 

GEB is considered the primary routing facility for events between all peripherals. To enhance 
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performance between I/O Ports and TC modules, the CIO (CPLD I/O) Bus is introduced as an 

extended version of the currently implemented I/O bus [6]. 

 

The CIOBus consists of 32 event channels for specific I/O usage, and is also used to connect the CPLD 

MCBs (CPLD Macrocell Blocks) forming a CPLD network for logical computation between the  

Port / TC modules. A more detailed connection scheme can be seen in figure 8.2, where a regional 

CERN view is provided. The regional level of the hierarchy features Port / TC modules connected to 

the CIOBus, and connections from different CPLD MCBs. Local level connectivity features connections 

between a Port and its associated TC modules and an included CPLD MCB. Also considered a local 

connection is the cascade link provided between neighboring CPLD MCBs. This connection is included 

to secure a fast transfer of progressed events at a local level, without needing access to the CIOBus. 
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Figure 8.2: CERN architecture regional view 

Each Port provides connectivity for eight I/O-pins accessible for the CPLD MCB either through direct 

connection with the Port or as selected channels from the CIOBus. 
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8.2.1 CERN Local Level Architectural Description 

In the ATF1508RE 16 macrocells are provided for each logic block, as shown in figure 5.11. At the 

local hierarchy in the CERN one modified macrocell represents the basic CPLD MCB. Each MCB can be 

expanded with additional interconnected macrocells if increased computational power is needed. 

The construction is illustrated in figure 8.3, also providing details on the interconnect structure of 

each macrocell. Not illustrated are the changes to internal connections for the macrocells 

computational logic and connection to the I/O pins.  

 

 
Figure 8.3: CPLD MCB detail showing internal connectivity 

Figure 8.3 provides information on differences in input wires compared to the ATF1508RE. Wires 

from the original global bus described in  [7] are substituted with wires from the CIOBus and Port / 

TC wires. A total of 56 wires connect to the switch matrix, which selects ten of these and produces 

the complement value in addition. Connecting to the PTMUX is the original AND-structure from 

ATF1508RE, with the addition of a set of wires from the adjacent CPLD MCB constellation. These four 

wires are included to connect CPLD MCBs during Event Computation, avoiding access to the CIOBus. 

With a total of 4 macrocells the CERN offers powerful capacity when it comes to handling I/O-signals 

as well as events. Because of the size issues discussed in section 8.5 the basic CERN architecture will 

only include one CPLD MCB with one included macrocell in each Port / TC peripheral. With a rich 

access to cascaded and bus distributed signals, a wide variety of product terms can be realized 

making this architecture powerful despite the modest number of computational cells. 

8.3 Why Consider CPLD Based Processing? 

Using architectural elements from the ATF1508RE one obvious reason to use CPLD based technology 

instead of FPGA technology is possible reuse of existing library elements from Atmel. This will greatly 

reduce implementation time compared to constructing new libraries of custom made FPGA 

elements. Reducing time-to-market for a proposed Event System solution, this factor may weigh 

heavy considering the economical aspect of system development. Some re-design must be 

considered in order to interface existing peripheral connections, but the amount of re-design is 

potentially smaller than for a custom FPGA design.  

 

Considering functionality, there are also benefits using a CPLD based interconnect structure to form a 

routing and computational environment for the Event System. As mentioned in section 5.4 CPLDs can 

offer greater performance in terms of computational speed compared to FPGA structures. 

Connecting Logical Blocks with fast busses, the CERN could outperform an FPGA based routing 

topology. As mentioned in background theory the macrocells in the Logic Blocks consists of an 
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AND/OR-plane especially suitable for implementing FSMs [42] and logical expressions in the Sum-of-

Products form. This architectural layout is perfect in terms of the adaptability needed to maintain 

flexibility with regards to routing for the Event System, while at the same time offer powerful 

facilities for logic computations. Implementing chains of events similar to the FSMs used in the MTIO 

system [8] would enable advanced peripheral operation with the possibility for reduced power 

consumption compared to the current Event System.  

 

In terms of area and logic density the FPGA has a benefit over the CPLD using multiple logic levels 

with a smaller number of fan-in gates, to construct more compact logic than the two-level AND/OR 

plane used by most CPLDs [14]. However, the flexibility offered by FPGA style implementations is not 

demanded by the Event System, making a CPLD solution very competitive in this area as well.  

8.4 Changes to Existing Peripherals 

One benefit of using CPLD based processing for events and I/O signals, is the reduced need for 

changes to existing peripherals. A CPLD MCB block is added as an independent addition to a Port / TC 

constellation, and can almost be considered as an extra peripheral for these modules. The concept is 

illustrated in figure 8.2. In this way each CPLD MCB is modified to fit into the existing peripheral 

context, and not vice versa. Of course some extra synchronization and signaling procedures must be 

included in the existing modules, but in general these changes can be regarded as non-complex and 

small. 

 

Although the peripheral blocks in themselves will feel only slight changes considering CPLD additions, 

there is a need for more memory to feature the programmability aspect of the implementation, and 

provide configuration memory for implemented FSMs. The same memory could also be used to alter 

CPLD parts of the Event System by reprogramming the running configuration. More details on this 

are mentioned  [7].     

8.5 Area Estimations and Programmable Bit Count 

To compare the CERN to other proposed Event System solutions, estimations on both area and the 

amount of bits needed to configure the architecture is important. Because the CERN is not the 

chosen architecture for further development, the methods used to obtain area estimations are 

included in appendix 16.4. In this section only the logic area expressed in NAND equivalents will be 

presented. Total chip area including additional logic for interfacing and routing wires is included in 

section 12. Table 8-1 gives the required overview of logic area consumed if one CPLD MCB is included 

in each Port / TC peripheral. 

 

Domain # Pass 

transistors  

# SRAM cells  Gate count 

per element 

[NAND] 

Number 

of 

elements 

Total gate 

count 

[NAND] 

Input Switch 

Matrix 

(sparse) 

224  224 175 4 700 

Product 

Terms (full) 

700 700 586  4 2344 

Macrocell 

logic 

  130 4 520 

Total     3564 
Table 8-1: CERN estimated gate count for one CPLD MCB in each Port / TC peripheral 

Table 8-2 shows the total amount of configuration bits needed to program the basic CPLD MCB 

architecture, with one macrocell block in each Port / TC peripheral. 
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Domain # SRAM cells # configuration 

bits 

Number of 

elements 

# Total configuration bits 

Input Switch 

Matrix (sparse) 

224 224  4 896 

 

Product Terms 

(full) 

700 700 4 2224 

Macrocell logic    0 

Total    3120 
Table 8-2: Amount of configuration bits for one CPLD MCB in each Port / TC peripheral 

A note to table 8-2 is that bits needed to program the internal macrocell logic with MUXes and the 

Product Term Allocation MUX are supported by registers, and does not influence the rewritable 

FLASH bit count. 

8.6 Conclusions for a CPLD Based Solution 

Relying on well known and developed bus technology, the CERN offers great prospects of fast 

interfacing with the existing Event System. However the results obtained from table 8-1 and table 8-2 

outline some limitations to a CPLD based solution. Requiring a rather large amount of programming 

bits, for instance 7 times the amount required of the HERN, it is clear that routing resources consume 

much area and will require a considerable amount of FLASH memory for more advanced solutions. 

Such a solution is not cost effective and further analysis on the switch matrix and product term 

allocation crossbar design is recommended to decrease the configuration bit overhead. 

 

Relying on technology already incorporated in the Atmel library, modifications should yield design-

time benefits over developing new FPGA inspired solutions. Also acknowledging the benefits of easy 

FSM implementation and seamless integration with existing peripherals, the CERN architecture 

stands out as a potential direction for future Event System development.  
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9 The Asynchronous Event System  

The following sections will describe important features of the proposed solution for an asynchronous 

routing network for the Event System. The main features of the routing network will be listed, along 

with a detailed description of the components used as building blocks for network services. A new 

encoding scheme for events is also proposed in order to seamlessly integrate events into an 

asynchronous distribution model. To include LUTs for logical event computation, both new peripheral 

functionality and how this functionality should be implemented into existing peripherals is discussed. 

The last sections will include some remarks on cost associated with an asynchronous implementation, 

and also give some conclusions on the feasibility of the proposed solution.   

9.1 Features  

 

- Fully asynchronous routing of events and other signals using the Asynchronous Event System           

Routing Network. 

- Pipelined switches for fast transfer of data tokens. 

- Local Port/TC event wires for fast event generation and minimal delay for local events. 

- Potential savings in power consumption due to event driven consummation. 

- Programmable routing and LUTs represents large flexibility and possibilities for self-programming of 

the system functionality. 

- 4-Phased Dual-Rail encoding for hazard free routing operation and delay-insensitivity. 

-  Dedicated inter-peripheral wires for connecting LUTs effectively    

 

9.2 Routing Network Description 

9.2.1 General description  

In order to secure a flexible and powerful routing facility, a hierarchical solution built on an FPGA 

inspired routing topology is proposed. The solution is inspired by the HERN explained in section 7.2, 

but with a different hierarchical solution. In this case hierarchical means parting the routing 

resources in a global- and local routing network, omitting the regional level, and FPGA inspired points 

to the fact that programmable SRAM based switches perform the actual routing. This structure is 

applied in an effort to utilize the locality of certain modules and the fact that these modules tend to 

have a significant need for local event communication.  

 

The Asynchronous Event System Routing Network (AESRN) considers all communication between 

peripherals like ADC, DMA and Port/TC peripherals as global communication. Global connections are 

performed by the Asynchronous Global Event Routing Network (AGERN). Local communication is 

defined as event communication between different Port/TC constellations, or inside one 

constellation, and is provided by the Asynchronous Local Event Routing Network (ALERN). Figure 9.1 

illustrates the hierarchical structure in more detail.  

As depicted in the figure the local transition path for events makes it easy for a selected event to 

quickly be transported at a local level, with the possibility to be routed globally at the same time. This 

feature enables easy duplication of events, triggering different actions in different peripherals. 

 

The AESRN routing facility consist of uni- and bi-directional switches instead of the multi- directional 

switches usually applied in FPGA systems. The benefits of this structure are switch modules of lesser 

complexity than switches applying multi directional routing schemes, and an easier determination of 

the event flow itself. Each switch is pipelined for fast event flow and applies a handshake protocol 

based on 4-PDR logic for encoding of the event signals.  
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The protocol is enforced by multiple buffers in each switch, also providing fine-grained pipeline 

possibilities. A similar switch structure is used in [1].  Details considering switch blocks and WCHB 

token-buffers are presented in section 5.2 and 3.5.2. 

 

 
Figure 9.1: Illustration of the AESRN employing a hierarchical routing structure connected by switch blocks. 

Due to the 4-PDR encoding, each bit transferred on an arbitrary routing channel is represented by 

two wires, and one additional wire is used to provide the correct handshake procedure in the form of 

an enable signal.  

 

The architecture shown in figure 9.1 has a capacity of 8 event transactions concurrently in each 

direction at the global level using the AGERN. At the local level 12 channels can be routed arbitrarily 

to all ports or TCs via the ALERN, while also maintaining the sending and receiving of events on 8 

global channels. The Asynchronous Functional Event Routing Network (ALFERN) is an alternative to 

the ALERN structure. It is designed for more flexible LUT integration and can route 8 unique event 

channels, but in a more flexible manner than the ALERN. ALFERN and ALERN design considerations 

are handled in the following sections.  

 

Because of the bi-directional routing scheme, a peripheral can easily both receive and send an event 

at the same time, and switching technology ensures that each event channel can connect to all 

peripherals, regardless of which peripheral the event is issued from.  
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9.2.2 The Asynchronous Local Event Routing Network 

The idea of implementing a dedicated ALERN is inspired by the system preceding the current Event 

System, the MTIO unit [8] and the proposed HERN solution. As mentioned in section 7.2 a 

hierarchical structure is also implemented to support fast event transportation between different 

Port/TC constellations, in addition to maintain fast connectivity between LUTs provided by TC buffer 

registers when this option is selected. This LUT-feature is explained in section 9.3. 

 

 
Figure 9.2: ALERN routing structure. Numbers indicate Event Channels. 

The ALERN structure is identical for all featured Port/TC blocks on the specific XMEGA. Distribution of 

local events on the ALERN is maintained by the yellow central switch. Each of the twelve local routing 

channels connects to the switch, distributing all locally generated events to all Port and TC 

peripherals. Each Port/TC block also contains a switch like the one marked in blue on figure 9.2 , 

were each peripheral is allowed to issue one event on the local channel for that particular Port or TC 

block. This also implies that each of the port and TC peripherals has its own unique local distribution 

channel. In practice this means that the blue switch can be considered a solid connection to the 

ALERN, but controlled by programmable pass transistors and WCHBs to ensure correct handshaking.  

For details considering each switch type, the reader is referred to appendix 16.2. 

 

The extra resources used to implement the ALERN, both with regards to programming bits and gates, 

are the most critical arguments when discussing if the ALERN should be implemented as a part of the 

event system, or if the AGERN is sufficient to provide all event services. However, the flexibility 

offered by the ALERN concerning functionality between ports and TC blocks should not be 

underestimated, and was one of the important aspects considered in the MTIO-system [8]. Apart 

from the offered flexibility, the ALERN has some disadvantages as well. The amount of local events 

from each peripheral is limited to only one, and the local distribution system breaks with the 

partitioned two-way routing employed in the AGERN. In addition, connecting LUTs are not trivial as 

they will reside in different TC-modules, with only limited accessibility through the local distribution 

network. Therefore a more functionally advanced local routing facility would be beneficial, with a 

simpler interface than the ALERN.  
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9.2.3 The Asynchronous Local Functional Event Routing Network 

The new local routing network is called Asynchronous Local Functional Event Routing Network 

(ALFERN), developed specifically for increased local communication, allowing a Port/TC constellation 

to have eight local channels for event reception, and two channels for sending of events. The ALFERN 

is also developed in order to communicate with a Timer Counter Combined Functional Block (TCCFB), 

instead of two separate TC modules. In this way internal communication within the TCCFB can 

connect the registers as a small LUT network, while the ALFERN connects all Port/TCCFB blocks into a 

larger LUT network. 

Communication between two neighboring Port/TCCFB blocks is favored with four direct 

communication channels on the ALFERN. Figure 9.3 illustrates the new routing network, and further 

details can be viewed in appendix A 16.1-2 and A 16.1-3.  

 

 
Figure 9.3: ALFERN overview, supporting the addition of TCCFBs 

One featured change from the previous ALERN is a more prominent use of copy-elements to fork 

desired signals to multiple destinations, making duplication of events easier. Another feature is that 

the ALFERN is parted in two separate directions like the rest of the AESRN, not uni-directional as the 

ALERN, providing better architectural consistency.  

Section 9.3.2 will examine connections and internal Event Channel distribution inside TCCFBs more 

closely. 

 

 

 

 

 

 



 

 

- 53 - The Asynchronous Event System 

9.2.4 Choice of handshake mechanism  

To support a completely asynchronous transfer protocol there is a need for mechanisms preserving 

correct handshaking and hazard avoidance during signal transfer. As described in section 3.4 

different protocols can be adapted in order to preserve handshaking consistency. According to  [2] 

only the three protocols mentioned in section 3.4 are worth implementing. The choice for the 4-PDR 

protocol is mostly due to the signals ev_d and ev_c forming the event channel in the original Event 

System. By using the original wires with a slightly modified encoding scheme to fit dual-rail encoding, 

overhead due to extra wires are minimized. 

 

Since the original event is encoded by a combination of the bit pattern on these two wires, a direct 

adoption to the 4-PDR protocol can be made with the only addition of an enable wire for each 

channel. This wire provides the needed handshaking facilities. 2- and 4- phased bundled protocols 

were considered, but the delay discussion featured in section 3.4 tilted the scales in favor of a 4-PDR 

protocol implementation.  

 

Another factor favoring a 4-PDR solution is its common use in asynchronous FPGA architectures, 

especially in [1]  [27], with scientifically proved results.  Analysis methods for handshake element 

performance using the featured protocol is considered in [36], enabling the possibility for using the 

same methods to analyze the proposed asynchronous solution [35].  

 

9.2.5 Asynchronous Event Channel and Pipelined Switches 

The Event Channel used in the current Event System consists of the signals ev_d and ev_c, as 

described in section 2. Due to the introduction of an asynchronous transfer protocol which must be 

supported by each channel, there is a need for additional signals to ensure correct handshaking.  As 

mentioned in the previous section, the 4-PDR approach is used to utilize the fact that the event 

system operates with the two wires ev_d and ev_c to encode an event.  

Thus the only overhead represented by the proposed event channel is an additional enable wire for 

each channel, and some extra logic to provide the handshaking mechanism.   

Since the request signal is encoded in the data signal itself, there is no need for a conventional 

req/ack protocol. This handshake mechanism is substituted by a more subtle enable signal telling the 

sender and receiver when the sending of data tokens can take place. The differences between the 

original- and the proposed event channel can be seen in figure 9.4. 

 

 
Figure 9.4:  (a): Signals in the original event channel, (b): Signals in the proposed event channel using 4-PDR encoding 

To connect channels distributing the events and handshake signals, the AESRN uses pipelined 

switches. Featuring one pipeline element for each switch point, the event channel in the AESRN 

represents a fine-grained pipeline. According to [1] and [15] fine grained pipelining yields a very high 

throughput, making rapid distribution of events possible.  

A similar pipelined structure is used in the total asynchronous FPGA architecture presented in [1], but 

the AESRN implements these facilities in a new context using a totally different FPGA based routing 

topology.  
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As shown in figure 5.2 each switch block consist of a number of switch points, depending on how 

many channels which are distributed through that particular switch block. Because of the bi- or uni-

directional routing schemes used in the AESRN, a custom switch layout is presented for all the 

different switch types introduced to the network. The proposed switch blocks can be studied in 

appendix 16.2. Each switch point consists of a WHCB-element, as described in section 3.5.2.  This 

element provides all the needed handshaking facilities and the buffer capacity for one token needed 

by the pipeline at that switch point. Figure 9.5 (left) shows the design of a custom switch point 

including one WHCB-element, for illustration purposes notated as Synch Buffer because of its 

functionality in the circuit.  

 

 
Figure 9.5: Bi-directional WCHB switch point (left). Switch block input / output directions (right) 

A typical bi-directional switch block used in the AESRN consists of eight channels in each direction, 

and therefore needs to implement eight WHCB-elements, one for each switch point, to preserve the 

pipelined structure. The handshake procedure between receiving and transmitting WHCB-elements 

must be completed for one event token, before the next can arrive at the buffer. Combined with the 

4-PDR protocol the result is a robust transfer scheme for events. This is an important ability of the 

proposed solution considering some of the vital services provided by the event system. The 

comparison of WCHB and PCHB elements is covered in section 3.5.2. Being smaller in logic area and 

optimized for less advance token computations than PCHBs, WCHBs are the preferred elements for 

pipeline switch blocks in the AESRN. 

  

Using the applied uni- or bi-directional switches instead of the usual multi-directional switches 

implemented in most FPGA architectures shows its simplicity in the context of figure 9.5 (left). 

Since each WHCB-element are only allowed to provide handshaking service with one particular 

source per data token transfer, only one event channel can be operated by one switch point at the 

same time. The consequence is that one SRAM cell can control all three pass transistors in one 

channel, saving significant area concerning RAM cell implementation and introducing a simpler 

programming interface due to fewer programmable bits.  

If forking of signals are practiced at some sources, with a switch point as destination for each branch, 

a copy-element act as one signal source for each WCHB-element and combines the handshake 

signals into a single signal. In this way one WCHB-element seemingly never communicates with more 

than one element directly, although the multiple elements are part of the transaction. For instance 

copy-elements are used actively in the ALFERN distribution network described in figure 9.3. 
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9.2.6 Event Decoding 

Due to the usage of 4-PDR encoding, an event must be encoded in a different way than in the original 

event system. As presented in chapter 2 each peripheral interpret an event in accordance with the 

combined bit pattern presented by the ev_c and ev_d wires. In order to provide consistency with the 

4-PDR protocol, both wires are now interpreted as one event bit instead of representing two 

separate bits. In the proposed encoding scheme two proceeding event bits encode either a positive 

event or a negative event, or signals that a special event has occurred. A longer sequence of event 

bits represents different types of special events. Usually this pattern should start with the event bit 

combination signaling a special event, in order for a peripheral to uniquely identify what event type it 

will receive. If a peripheral receives “1” as the first event bit, the event type is either a positive or 

negative event. If the first event bit is “0” a special event of some sort can be expected, normally 

represented by a longer bit sequence. This method varies slightly from the representation used in [6], 

but contains the same functionality and flexibility considering different event types. 

 

Table 9-1 presents the new event encoding scheme, and how the different bit combinations of the 

wires ev_c and ev_d is interpreted as an event bit.  

 

ev_c ev_d Event bit Comment 

0 0 None Not valid for encoding 

0 1 0 Special Event 

1 0 1 Event Occurred 

1 1 None Not valid for encoding 
Table 9-1:  4-Phased Dual-Rail protocol and Event bit coding 

 

Figure 9.6 gives a more detailed description of the event bit and how it is interpreted by a peripheral.  

 

Binary Coding
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Figure 9.6: Encoding of different event types 

As the figure indicates, a positive event is encoded by the event bit sequence 11, a negative event is 

encoded 10 and a special event is encoded 00 with usually some proceeding bits. The toggle event 

explained in [6] and [8] is supported by some peripherals, and is encoded by a longer sequence of 

Event bits. One possible encoding is the one used in the figure, “0011”.  
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9.3 Changes to Existing Peripherals 

In order for each peripheral to communicate and operate effectively with the AESRN, some changes 

must be made to the existing Event System interface. The most prominent changes that must be 

applied to all peripherals are the implementation of a handshaking interface towards the AESRN. 

This section will also describe some of the increased functionality characteristics for some 

peripherals, and the logic needed to support these functions. TC-blocks will be especially considered, 

explaining how they can be improved to support new functionality like implemented LUTs. 

9.3.1 Changes to original Timer/Counter peripherals 

One of the basic principles of the MTIO-system [8] was to give extra functionality to the TC blocks in 

order to efficiently process I/O signals at a local level, and use the results to control operations in 

other peripherals via the Global Event Routing Network (GERN). Some of this functionality was 

sacrificed in the development of the event system [6] but the flexibility provided by programmable 

switches in the AESRN provides the fundamentals for improving the functionality currently 

implemented and adding new features.  

One of the proposed features is to use internal registers in each TC peripheral to implement 3- or 4-

LUTs, and use the ALERN as a routing facility for communication between the LUTs. An important 

remark to this solution is that the TC modules operate independently, and are not considered TCCFBs 

which are only supported by the ALFERN and will be explained in section 9.3.2.  

 

The four TC-blocks used in the original event system have the ability of double buffering associated 

with each Capture and Compare (CC)-register. These registers are denoted CCXBUF, and for each of 

the maximum four CC-channels in a TC module a buffer register is present for use when buffering 

new capture- or compare- values. TC0 has four CC-channels and includes four CCXBUF registers, while 

TC1 includes two buffer registers of 16 bits each. Since all CCXBUF registers can be used 

independently of its corresponding CC register, and be accessed via the I/O bus, each register can 

implement unique 16bit functionality when unused for buffering. The register can be programmed to 

hold the functionality of a 4-LUT or two 3-LUTs only implementing some additional handshake 

computation logic and a 16:1 MUX. Figure 9.8 shows the proposed solution, in the form of a modified 

PCHB handshake environment. The combined computation environment and register will be denoted 

as a Timer Counter Computational Block (TCCB). If all the needed routing facilities are considered 

together with the TCCB, the combined block is denoted Timer Counter Functional Block (TCFB) which 

is described in section 9.3.2. The implementation is based on some of the principles presented in 

[27], described in background theory section 5.3.    

 

TCCB Functional description: 

The extra logic used for the LUT implementation is to provide a valid and hazard free  

handshake mechanism and computation environment. Four selected channels routed by the ALERN 

connects to an Input Valid logic block , containing four 2-input XOR elements connected a tree of C-

elements in order to make sure that all inputs have arrived with a valid dual-rail value before any 

further logic processing is allowed. The proposed implementation of the Input Valid block is 

illustrated in figure 9.7. As described in table 9-1 the signal ev_c is 

deciding whether the arriving event bit is encoded as a “0” or “1” by 

the dual-rail wires.  Therefore the ev_c wire for each channel controls 

the input to the MUX selecting LUT outputs. A possible problem arising 

is that a non-valid {00}-spacer value selects an output from the LUT, 

but because of the Input Valid block the LUT output will never be 

transmitted if this occurs. This is because a “00”  

value fed into an XOR will generate a “0”, causing the C-element to 

hold and not set the input_v signal in figure 9.8 to “1”.   
Figure 9.7: The input valid block 
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Since the implemented dual-rail protocol always returns to the “00”-input position after a handshake 

procedure, the Input Valid block will always be reset for each transition. 

 

To create a dual-rail output from the 16:1 MUX, the output signal is split in two rails using an inverter 

on one of the rails. In order to secure the handshake procedure with the receiving and transmitting 

circuit, asynchronous latches are used, triggered by an enable signal controlled by handshake 

elements.  One of the modifications from [27] is the addition of inverters on the ack signals in order 

to create the enable signal used in the AESRN.  The latches will only fire when all input values are 

valid, and the LUT has finished its computation. The latch is reset by the handshake mechanism 

connected to the receiving buffer, or by a global reset. The TCCB in figure 9.8 forks its LUT output in 

two dual-rail branches, and an appropriate two-input copy-element is placed to receive the R_eA and 

R_eB signals from receiving elements.  

 

To control the trigging of each CCXBUF register, the “write enable” signal used in [6] to trigger the 

register are now combined with a new LUT_enable bit which can be set for each register 

independently. These bits are XORed so that the conflict of both bits set at the same time cannot 

occur.All registers can bypass the LUT circuitry, and operate directly with the associated CC register 

as normal, when buffer functionality is required.  
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Figure 9.8: Register implementing 4-LUT fuctionality and handshake logic as a TCCB 

Since enable-triggered latches are used, there are some timing issues involved. The timing conditions 

are presented in [27], and will only briefly be reviewed here. The first timing constraint involves the 

two latches and their respective setup-times. From an input arrives at the Input Valid block, there 
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must be a delay compensation between the computation of the LUT and the Input Enable result. A 

difference here can make the latches trigger an invalid result.  

 

Suggested measures to prevent hazards are appropriate transistor sizing, or adding a small buffer 

after the inverter connected to Latch_2 in the figure. The hold constraints of the latches are met 

because of the handshake mechanisms between sending and receiving pipeline stages, which means 

that the received enable signal only will represent an acknowledge when the output of the latches 

are deemed valid. For other timing constraints the reader is referred to [27].  

9.3.2 The Timer Counter Combined Functional Block 

In order to offer a higher rate of flexibility, an alternative to keep the original TC1 / TC0 structure is to 

merge the TC-blocks and create a Timer Counter Combined Functional Block (TCCFB). The TCCFB 

includes all previous TC functionalities, but also provides the possibility for being interconnected as a 

LUT network allowing logic computation of events at a local block level. Introducing an internal 

DIRECT signal for each TCCFB block, fast logical computations based on event bits are possible, and 

the result can be routed on both the ALFERN and the AGERN. All signals available on the ALFERN and 

AGERN can be used as inputs and outputs to the TCCFB. In this section the TCCB from section 9.3.1 

will be modified with some additional routing resources, and hence be denoted TCFB in this section. 

 

General TCCFB Description 

 

Figure 9.9 shows a block schematic overview of the overall TCCFB system, while figure 9.10 depicts a 

more detailed view of one TCFB connected to a buffer register, and the internal connection of 

different TCFBs. The original CCXBUF buffer registers for TC0 and TC1 explained in [6] are used, with 

extra logic to handle computation, routing and handshake. For improved LUT functionality an 

internal signal called DIRECT is added for each TCCFB, only valid inside that block, but with the 

possibility to be routed both on the ALFERN and AGERN networks. There exists one DIRECT signal for 

each TCFB inside the TCCFB as can be seen in figure 9.10. TCFBA to TCFBD are formed based on 

registers from TC0, while TCFBE and TCFBF are constructed of registers provided by TC1. 

 

 
Figure 9.9: Overview of the TCCFB, showing involved TCFBs and signal connections 
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Not all TCFBs can be addressed by all AGERN, ALFERN and DIRECT event wires. For the special 

registers CCCBUFH/L and CCDBUFH/L only found in the original TC0-block, AGERN[3:0] and ALFERN[3:0] 

can be used as input to the Logic Block out of the eight possible AGERN and ALFERN wires. The 

registers CCABUFH/L and CCBBUFH/L are accessed with AGERN[7:4] and ALFERN [7:4]. All four registers 

can be accessed by all DIRECT signals. For TCLBs supported by TC1 registers, only ALFERN and DIRECT 

wires can be used as LUT input.  These restrictions are maintained in order to limit the amount of 

routing required, while still making almost any logic combination of events possible.  

 

To prevent handshake violations in places where signals are forked, copy-elements are used in all 

such junctions. 

 

Description of the Timer Counter Functional Block 

 

The handshake and input/output blocks are the same as in the solution presented section in 9.3.1, 

but now supporting DIRECT signals between TCFBs and a more sophisticated routing scheme for 

ALFERN and AGERN signals. The new internal routing structure is maintained to make a more 

complete network of internal LUTs, interfaceable to all input and output signals from the AESRN. 

Each TCLB has its own Input Valid block as shown in figure 9.10, using programmable switches to 

transfer signals correctly both to the LUT-inputs and the Input Valid block. These switches are un-

pipelined, since the handshake mechanism is provided by the TCFB itself. As described in section 

9.3.1 only the ev_c wires are valid for LUT input, while both ev_c and its corresponding ev_d wire are 

needed as input for the Input Valid block to validate all input values. This fact employs the same 

SRAM-cells to manage both the ev_c switch, the ev_d switch destined for the Input Valid-block and 

the t_e-switch transmitting enable signals to the correct receiver. 

 

 
Figure 9.10:  Internal view of a TCFB 

Considering the output, each TCFB has its own dedicated DIRECT wire and can also connect to a 

selected AGERN or ALFERN wire.  

The receiving handshake mechanism for Re_internal and R_e_external is the same as the one 

presented in figure 9.8. 
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Scenario description  

 

First it is assumed that the ALFERN is used to route events to the LUT, for instance implemented in 

the CCxBUFH/L register. Four different event bits are issued from different peripherals (which 

practically means four different events), or from four IO-pins on one of the ports. The event bits are 

routed to the correct TC peripheral using the AGERN, and the bits are processed by the Input Valid 

block. For illustration purposes the LUT is implemented to only issue a “1” if all input bits are “1”. 

This is equivalent to the fact that four events must occur before the output will give a valid “1”. In all 

other cases the output will be “0”.  When the condition occurs, the latches will receive the single rail 

output from the LUT as a dual-rail input because of the splitting of the single rail signal by en inverter. 

Latch_1 will send a “1” to the output valid, while latch_2 will send a “0”. This output is valid, and 

together with the input enable signal an enable will be produced to trigger the latches and route the 

values to channel outputs. The Input_ack circuit will produce a “1” to verify the ack, and the inverter 

makes this a valid enable signal after the convention used in the AESRN. The “0” sent to the 

transmitting buffers signals that the received data is under processing. The transmitting buffers set 

their outputs to “0”, issuing a reset token or spacer. This causes the Input_valid block to issue a “0”, 

resetting the enable signal for the LUT environment and, a “1” will be transmitted as the enable 

signal to receiving buffers elements telling that more data can be sent. 

 

9.4 Hazards 

Section 3.2 gives an overview over the most common hazards in the asynchronous design domain, 

and will form the fundamental knowledge for dealing with the hazards in the AESRN. 

Being a completely asynchronous system, the AESRN can in theory suffer from all the hazards 

mentioned in section 3.2, but in practice the only real hazard problem is concerning metastability. 

By using hazard-free Müller-C elements for the handshaking buffers, static and dynamic hazards 

concerning signal transitions are eliminated. The Müller-C element is the most important component 

in the AESRN considering routing resources, because of its prominent role in the WCHB pipeline 

elements. The proposed design for a hazard-free Müller-C element is presented in section 3.5.  

  

The other hazard directly concerned with the routing and handshake procedure is the “data before 

request”- hazard described in section 3.2. The applied 4-PDR encoding of the events introducing the 

new event bit makes sure that the timing hazard will never happen in the AESRN.  

 

 Since the AESRN in the context of the XMEGA will be implemented as an asynchronous distribution 

system with an interface to the peripherals synchronous domains, the metastability hazard will be an 

important implementation issue. For prototype and concept purposes the two-flop synchronizer 

mentioned in section 3.2.1 should provide a safe, simple and reliable architecture for controlling 

hazards connected to metastability. Since the AESRN pipeline implements WCHB buffers enforcing 

the 4-PDR protocol, the two-flop solution from figure 3.5 can be modified in terms of state machine 

implementation. Only on the synchronous receiver side are state machines needed, and they must 

enforce the same 4-PDR protocol as used in the buffers. Sending data into the pipeline can occur at 

arbitrary times because of the QDI dependent construction. Because each WCHB element 

implements a 4-PDR protocol, synchronizers are only needed in the interface between event 

channels transmitting data to the synchronous XMEGA peripheral environment.    
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9.5 AESRN Measured Gate Count and Programmability Cost   

The architectural measurements presented in this section are derived from the architectural concept 

drawings, and do not represent a synthesized gate count. Synthesis results are reviewed in section 

10.5, and are mostly considered for orientation. Appendix 16.2 provides the detailed sketches for 

each custom switch block, and a measured gate count for each individual block.  

 Appendix A 16.1-2 - A 16.1-5 shows the complete setup of switch blocks in the AESRN, and an 

equivalent NAND-gate count for each section. Table 9-2 and table 9-3 summarize routing resources 

based on these appendixes. The gate count results for a full Asynchronous Event System 

implementation, including full range of computational TCCFB functionality are presented in  

Table 9-4 - Table 9-6. Architectural drawings for these tables are featured in appendix  

A 16.1-6 - A 16.1-8. In section 12 the total area will be compared to the HERN and CERN solutions, 

and area associated with routing and additional logic will be added. 

 

Domain Switch type 

#CHIn/#CHOut 

# SRAM 

transistors  

switch 

block 

# WCHB 

transistors  

switch 

block 

Gate count 

per switch 

block 

[NAND] 

Number 

of switch 

blocks 

Total 

gate 

count 

[NAND] 

 

AGERN 

8x2/8x2 288 240 117 14 1638 

8x2/8x1 144 240 101 8 808 

      

 

ALERN 

8x3/8x1 216 240 109 8 872 

12x1/3x1 324 90 68 4 272 

3x1/1x3 45 90 35 4 140 

Total      3730 
Table 9-2: Overview over resources used to implement the AGERN and ALERN, measured in NAND equivalents 

Domain Switch type 

#CHIn/#CHOut 

# SRAM 

transistors  

switch 

block 

# WCHB 

transistors  

switch 

block 

Gate count 

per switch  

block 

[NAND] 

Number 

of switch 

blocks 

Total 

gate 

count 

[NAND] 

 

AGERN 

8x2/8x2 288 240 117 14 1638 

8x2/8x1 144 240 101 8 808 

      

 

ALFERN 

8x3/8x1 216 240 109 8 872 

Copy 

element 

  22.67 14 317 

8x2/8x1 144 240 101 2 202 

Total      3837 
Table 9-3: Overview over resources used to implement the AGERN and ALFERN, measured in NAND equivalents 

Domain Computation 

Logic 

Gate Count 

[NAND] per TC  

LUT 

Number of  

TC LUTs 

Total gate count 

[NAND] 

TC LUT Handshake 42 24 1008 

LUT + latch 38 24 912 

Total  80  1920 
Table 9-4: Estimated NAND gate equivalents for Timer Counter LUTs 
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Domain Computation 

Logic 

Gate Count 

[NAND] per TCFB 

Total gate count 

[NAND] 

TCFB TC LUT 80 80 

Switches 50 50 

Total  130 130 
Table 9-5: Estimated NAND gate count for Timer Counter Functional Block 

 

Domain Computation 

Logic 

Gate Count 

[NAND] per TCCFB 

Number of  

TCCFBs 

Total gate count 

[NAND] 

TCCFB TCFBs 780 4 3120 

CEs 227 4 908 

Total  1007  4028 
Table 9-6: Estimated NAND gate count for Timer Counter Combined Functional Block 

The biggest overhead when it comes to gate equivalents is due to the WCHB pipeline buffers in the 

switches. SRAM cells are relatively small units when implemented from the standard cell library, and 

contributes only to about 25% of the total size. The measured NAND equivalent for a WCHB element 

like the one shown in figure 3.6 is approximately 10.05.  

A simple calculation example for a switch block connecting 32 channels (8 channels on each side) 

creates a need for 8 WCHBs, costing 80.4 NAND gates. Implemented as a uni-directional switch  

8 SRAM cells plus associated pass transistors are needed, equivalent to approximately 24.12 NAND 

gates or 25% of the total area contribution.  

Routing area and area for additional logic is not considered in this section, but will be included in 

chapter 12 when comparing the Asynchronous Event System with the other proposed solutions.  

 

Much of the gate overhead is due to the fine-grained pipelining, with WCHB pipeline elements in 

each switch point in every switch. This is a tradeoff in terms of system performance, since a coarser 

grained pipeline suffers from a lesser data transfer- and computation rate [1]. With the present 

structure event bits can be sent for every handshake transition, which ensures superior distribution 

capacity.  

 

Supporting routing from an arbitrary peripheral to all other peripherals, the proposed AESRN 

requires a rather large amount of programming bits.  The current AESRN constructed of AGERN and 

ALFERN needs 924 bits to control all the programmable switches due to the applied SRAM 

technology, and these bits will in most cases need to be supplied by FLASH memory. A full ALFERN 

implementation with TCCFBs requires approximately 1724 bits to be fully programmed with full 

range of LUT functionality. The estimated size overhead due to configuration bits will be fully 

explained in chapter 12.  

 

Domain # FLASH Programming bits 

AGERN Port / I/O side 256 

AGERN ADC / DAC side 320 

ALERN 348 

TC LUT 0 

Total 924 
Table 9-7: AESRN programming bits with ALERN without LUT functionality 

 

 



 

 

- 63 - The Asynchronous Event System 

Domain # FLASH Programming bits 

AGERN Port / I/O side 256 

AGERN ADC / DAC side 320 

ALFERN Logic 208 

Copy Elements 40 

TCCFB TCFB (24 instances) 600 

Copy elements  160 

Total 1724 
Table 9-8: AESRN programming bits with ALFERN and TCCFBs 

9.6 Conclusions for the Asynchronous Event System 

Considering area the Asynchronous Event System will have a disadvantage compared to a 

synchronous solution because of the extensive handshake logic. WCHB elements used for token 

buffering occupy 75% of the switch block area, and only 25% are used by SRAM related logic like 

memory and pass transistors. The benefit of fine-grained pipelining is increased performance, which 

will be further analyzed in section 11. Relative cost increase is therefore an application specific 

factor, depending on the desired speed versus area ratio. Non-clock driven timing is also a bi-product 

of the cost increasing handshake elements, and must be included when important benefits are 

discussed. With no need for a complex clock-tree layout could be simplified, and both static and 

dynamic power consumption should be reduced because the circuit will only consume power in 

circuit areas taking part in a computation. Also supporting a more flexible routing structure than the 

current Event System, more events can be distributed concurrently with reduced latency for local 

events between Port/TC - peripherals. Computational LUT-elements are implemented inside existing 

Port/TC peripherals for added computational properties for events. 

 

All mentioned benefits are good additions to an Event System, but does not come unconditionally. 

Increased area is one important factor, but complexity when it comes to development, testing and 

tool-chain addition are other costs which to some extent will be increased by introducing the 

Asynchronous Event System. Hazard issues when interfacing with the synchronous peripherals adds 

to the complexity, making it unrealistic to believe in an asynchronous Event System as a “near-

future” Event System candidate. 

 

With this conclusion in mind, the next sections will shed further light on benefits and drawbacks of 

an asynchronous Event System, and analyze the developed Verilog model as well as performance and 

market related cost factors. Only with these calculations in mind a proper conclusion on the 

feasibility of a fully asynchronous solution can be derived. 
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10 Implementation, Simulation and Synthesis of the AESRN 

This chapter considers the implementation aspects of key elements regarding an asynchronous Event 

System. Although a realistic implementation is beyond the scope of this thesis, a Verilog model 

illustrating important functional properties of the AESRN has been designed, simulated and 

synthesized for the Xilinx Spartan XC3S1000 FPGA. The following subsections will describe important 

design issues, simulation results and how the AESRN is programmed for a constructed event 

distribution scenario. Concluding this chapter are some remarks on synthesis results for the Spartan 3 

FPGA. 

10.1 Designing an AESRN Verilog Model 

In a microcontroller environment the scenario of distributing events through programmable switches 

adopting an asynchronous transfer protocol with pipelining illustrates a new concept. To understand 

how the event distribution should be handled in such an environment, a Verilog model providing 

basic distribution and computational functionality was designed. The model features a fully 

programmable version of the Port/TC side AGERN and fully programmable ALFERN with simple 

TCCFB LUT functionality. The purpose of the designed model is to show basic AESRN functionality, 

and a full range of programmable functions is therefore not included. Figure 10.1 shows the scenario 

entitled to the design. 

 

 
Figure 10.1: AESRN design scenario 

A Verilog testbench interacts with the model as the ADC/DAC-peripheral side of the AGERN, along 

with providing I/O signals to the port and interact with the ALFERN. Since only one Port / TCCFB 

constellation is constructed for test purposes the testbench works as all excluded Port / TCCFB 

instances for the AGERN. One 3-input LUT is constructed inside the TCCFB block, and receives input 

events from both the ALFERN and AGERN through the TCCFB interface. LUT results can be distributed 

on the same connections. Copy elements for the ALFERN are not included in figure 10.1, but exist in 

the model as described in figure 9.3. Extending the Verilog model to include several Port / TCCFB 

constellations is trivial, but is excluded from the model to maintain simplicity.  
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10.1.1 Simulation Issues 

As many papers have claimed, among them [13], designing systems in the asynchronous domain is 

quite a difficult challenge compared to synchronous system design. The author experienced this fully 

when trying to test the different modules, because of the simulation programs notion of time. When 

operating in an environment with no clock to synchronize the signals, the simulator does not 

propagate in time. All asynchronous transitions are simulated in the same real-time instant using 

deltacycles. Concurrent processes are simulated at the same deltacycle, and the next time the 

process is evaluated the deltacycle count is incremented by one. The consequence is that simulation 

results do not appear on the waveform, since there is no actual notion of time. 

 

To overcome this problem a clock is used in the testbench to synchronize inputs to the test 

environment, while all handshakes are completed during the clock cycle. Since these handshakes are 

completed on a deltacycle basis, they will always finish before the clock checks the conditions for the 

next valid input. Conditional if/else-statements are used to control the handshake procedure from 

the testbench when interacting with pipeline elements. One stage of the handshake process is 

completed for each clock cycle, meaning that from one data token enters the pipeline to the next 

data token enters, a duration of two clock cycles have passed. Also using an additional delay in the 

WCHB elements of 5ns to verify the token flow in the pipeline, the testbench provides a good notion 

of the model’s behavior. 

 

Another issue it is very important to emphasize is that glitches are very hard to detect during 

simulation. Glitches due to dynamic circuit behavior have yet to be detected, although it is very 

probable that they exist. This fact exposes a weakness in the simulation model making it hard to 

verify a circuit module although the simulated behavior is seemingly correct. 

10.2 Design of Asynchronous Circuit Elements in Verilog 

10.2.1 Designing a Müller C-element 

As explained in section 3.5.1 the Müller C-element is the most basic circuit element in most 

asynchronous designs. A Verilog model of this element has therefore been constructed for the 

AESRN, inspired by the solution presented in  [30] and figure 3.9. Based on the theoretical 

assumptions from  [30], this is a hazard free implementation as long as the 4-PDR handshake 

protocol is enforced correctly. Simulation results for the C-element are presented in appendix A 

16.3-1 and the Verilog code can be viewed in appendix B.2. 

 

10.2.2 WCHB Design 

Figure 3.11 is the model inspiring the WCHB Verilog design. The differences include a reset signal to 

initiate the WCHB with its internal C-elements in each pipeline stage, and therefore a 2-input MUX is 

connected to the ev_c, ev_d and t_e outputs, and instead of an inverting C-element, two inverters 

are positioned before the t_e AND-gate on each input wire. To properly reset the WCHB, t_e from 

each pipeline stage must be “0” along with all outputs at reset. When reset is completed, t_e must 

be set to “1” from the first stage in each pipeline branch in order to propagate through all pipeline 

elements. This construction arise the need for a “setup after reset” timing condition, meaning that no 

transmission can begin in the pipeline before t_e has propagated through the longest interconnected 

path. All WCHBs in different switch blocks are constructed in this way, and this condition is of course 

enforced by all testbenches used in the design. 
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Each WCHB element is also bound by the 4-PDR handshake protocol described in section 3.4. 

Appendix A 16.3-2 shows a detailed block schematic with internal signals, and the Verilog code is 

presented in appendix B.2. Simulation results for a typical WCHB distribution is featured in appendix 

A 16.6-2. 

10.2.3 Copy Element Design 

A functional copy-element design is important in the ALFERN architecture. Inspired by the simple 

design presented in section 3.5.3, the element design is simple and intuitive with no reset or 

handshake protocol implemented. Each copy-element is configured by 4 bits, to indicate if the t_e 

signal is controlled by one connected receiver, or two connected receivers through a C-element. For 

the ALFERN design, each copy element can only communicate with 8 receivers with its 4 inputs. 

Important for correct circuit usage is the fact that two copy-elements cannot be interconnected 

because they lack 4-PDR handshake circuitry. Copy-elements employ a 4-PDR interface to act as an 

interface element between one sender and two receivers, making sure that the issued output is 

confirmed by each receiver. This role is in perfect accord with figure 3.14. A detailed block schematic 

with internal signal names as used in the Verilog model can be depicted in appendix A 16.3-4, and 

the Verilog code in appendix B.2. Figure 10.11 gives an example of simulated behavior. 

10.2.4 Asynchronous LUT Design 

Because of its custom design nature and complex internal circuitry, the asynchronous LUT was the 

most challenging circuit element to design. To illustrate asynchronous LUT computation and maintain 

simplicity, the LUT is designed as a 3-LUT featuring 8 bits to program the functionality. 

Using the LUT architecture from figure 9.8, the design is almost identical with the exception of some 

extra signals for synchronization purposes. Implemented as a part of a TCCFB, the LUT interacts with 

the environment through the TCCFB. The dynamic behavior of asynchronous circuits is very dominant 

in the LUT, where all signal transitions are controlled by other asynchronous signals. A corresponding 

Verilog model can be studied in appendix B.2, and simulated behavior is shown in figures figure 10.7 

and figure 10.10. 

10.2.5 Switch Block Design 

As the most complex of the low-level architectural elements in the AESRN, some features of the 

custom made bi-directional switch block should be explained. The essential element is the custom 

designed bi-directional switch point illustrated in appendix A 16.2-4. Since eight event channels are 

supported by each switch block, eight switch points providing routing flexibility constitutes the whole 

block. Each switch point consists of a WCHB element interconnecting with the input and output wires 

of the switch block according to the configuration bits. One-hot encoding is used to configure the 

connections between input and output channels to maintain an intuitive programming interface. 

The code constructing a switch block is found in appendix B.2, and simulation results can be seen on 

all figures including AGERN simulation results among them figure 10.5. An architectural model with 

internal signals is included in appendix A 16.3-3. 
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10.3 Simulation Results 

In order to simulate the whole Verilog model of the AESRN as a complete distribution system, two 

test scenarios involving all the designed modules were constructed for test purposes. As an extension 

to the textual description, figure 10.2 and figure 10.3 will give additional details. On these figures 

only connections used in the scenario is shown to maintain simplicity. Configuration of all switch 

blocks and computation elements are done by reading the configuration from file, and program each 

configuration register via the testbench. For further instruction on how to program the developed 

test system the reader is referred to chapter 11.4. All simulations are done with Active HDL v. 7.2 

student edition from Actel.   

 

Scenario 1: The TCCFB LUT in Port/TCCFB C is programmed to make a logical AND operation on three 

incoming events. Two events are sent on the AGERN, where the event on Event Channel 0 is issued 

from Port A/B via switch 7 and the event on Event Channel 1 is issued from Port E via switch 3. The 

third event is distributed locally on the ALFERN from CELow, and received by the TCCFB. The answer 

from the LUT is sent on the AGERN to its destination in Port A/B. Figure 10.2 illustrates the scenario 

in more detail. 

The blue wire represents the event issued from Port A/B, red wire the event from Port E via switch 3, 

yellow wire for the ALFERN distributed event and the green wire is the result of the LUTs 

computation. 

 

 
Figure 10.2: Event distribution scenario 1 

Scenario 2: While scenario 1 focused on AGERN distribution, scenario 2 will only distribute events 

using the ALFERN. Two events are received on ALFERN Event channels 0 and 2 through the CELow copy 

element. The other event is distributed on ALFERN Event Channel 6 through CEHigh. All events are 

received on the ALFERN inputs of the TCCFB. The LUT is programmed to do a logical AND of all inputs, 

and send the answer on Event Channel 2 to the CEOut copy element. The forking from CEOut will 

produce outputs on the ALFERN output event channels 2 and 6. Red, yellow and blue wires indicate 

the incoming events, while the green wire indicates LUT computation result. 
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Figure 10.3: Event distribution scenario 2 

10.3.1 AGERN Simulation Results 

Scenario 1:  

Part 1: Transmitting the events to the Port / TCCFB (Figure 10.4) 

 

 
Figure 10.4: AGERN event flow for transmission of events to Port /TCCFB in scenario 1 

• Point 1: The event on Event Channel 0 is issued from Port A/B, and received on the southern

   input of switch 7. At the same time the second AGERN event is issued from  

   Port/ TCCFB E and received on the northern input of switch 3. 

• Point 2: Both events have propagated to its desired output destination in switch 2 for 

  distribution to Port/TCCFB C, and are received on the southern input. The value “3”

  on switch 2 input line in figure 10.4 show that both Event channel 0 and 1 are 

 received. 

• Point 3: After a simulated logic delay of 5ns in the switch, the events are sent to 

  Port / TCCFB C. Also notice that after each event, a {00}-spacer is issued to reset the

  pipeline stage. This is according to the 4-PDR protocol. 
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Part 2: Handshake between switches (Figure 10.5) 

This part of the event transaction is rather overwhelming in terms of signal amount. An example is 

therefore illustrated using AGERN switches 6, 2 and 5. The signaling procedure is according to the 4-

PDR protocol, and is similar for all elements involved in a transaction. Appendix 16.6 gives additional 

examples of handshakes, and provides greater details.  

 

 
Figure 10.5: Selected AGERN switches performing handshak 

• Point 1:  Relationship between r_e and t_e signals. At reset switch 6 receives a high enable 

   on Event Channel 0 and 1 from switch 2 on r_e_E. This means that events can be

   sent to switch 2 on these channels. T_e_S from switch 2 signals which southern

   inputs switch 6 can send to. 

• Point 2:  Events received on switch 6 is sent to switch 2 on Event Channel 0 and 1 on the

   eastern output after a simulated logic delay. The t_e signals for the corresponding

   input channels are set to “0” to signal that data is received. This is illustrated by

   t_e_N and t_e_S. 

• Point 3:  When switch 2 receives the events from switch 6 on its southern input ev_c_in_S, 

    t_e_S is set low for those channels after a delay. This response from switch 2 is 

    received on switch 6 on its corresponding r_e_E channels.  

 

Distributions scenario 2 gives no additional information considering AGERN behavior, and is 

therefore omitted. 
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10.3.2 ALFERN Simulation Results 

Scenario 1: 

Part 1: Receiving events from AGERN and CELow (Figure 10.6) 

 

 
Figure 10.6: ALFERN event distribution to TCCFB 

• Point 1: Since the ALFERN distributed event is issued concurrently with the AGERN event, 

   and travels directly to the CELow, it is received first on Event Channel 2 by       

   ev_c_in_LUT. Also notice the forking aspect on CE channel 0 and 4, where CE     

   channel 0 is connected to the receiving TCCFB ALFERN inputs. 

• Point 2: The two events distributed on the AGERN arrive, causing the TCCFBs internal LUT

   to start processing. T_e_LUT is set low to indicate reception and the AGERN in 

   switch receives this indication on r_e_E. 

• Point 3:  The LUT inputs on ev_c_in_LUT indicate “111”, meaning that the LUT computes the

    input combination to a logical “1” output. This is indicated on ev_c_out_LUT. Notice

    that even if the ALFERN input from CELow has lingered on the input a long time

    before the AGERN events arrived, it was not a valid condition for the LUT to start 

    computing. 
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Part 2: LUT Operation (Figure 10.7) 

 

 
Figure 10.7: LUT operation on incoming events 

• Point 1:  When all inputs are received on ev_c_in_LUT, the XOR outputs will go high if the

    input combination is a valid “10” or “01” encoding for ev_c and ev_d inputs. 

    Input_valid is set high to validate the current input combination. When only the 

   ALFERN was received the other inputs where “0”, indicating a non-valid input. 

• Point 2:  Since the input is valid, the LUT_output will be “1” according to the AND    

   functionality implemented in this scenario. Input_enable goes high to show that 

   the LUT is processing, trigging the latch_enable signal such that the LUT_output

   can propagate to the latch_output. Notice that input_enable is inverted when sent 

   out of the LUT, to follow the signal protocol used in all other elements. 

• Point 3:  The latch output is routed to ev_c_out_LUT, and all outputs are reset when the

    receiving component confirms the reception by setting it t_e signal low, also setting

    r_e_LUT low. The transaction is complete when r_e_LUT goes high.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

- 73 - Implementation, Simulation and Synthesis of the AESRN 

Part 3: Transmitting the LUT output (Figure 10.8) 

 

 
Figure 10.8: Handling the LUT output on the ALFERN 

• Point 1:  The LUT output from ev_c_out_LUT is first transmitted through the TCCFB 

 containing the LUT without adding delay, and received on the southern input 

 ev_c_in_S of the switch connecting to the AGERN. 

• Point 2:  To acknowledge the received LUT result, t_e_S is set low from the output switch. 

   This causes r_e_LUT to go low, resetting LUT signals internally. 

• Point 3:  When the ALFERN output switch has sent the result to AGERN switch 1 for further 

   transmission on the AGERN, r_e_W goes low for the output switch until AGERN 

   switch 1 has transmitted the result to the next pipeline stage. This completes the 

   transactions concerning ALFERN circuit elements. Since the AGERN distribution with 

   the result has the same distribution pattern as in figure 10.4, no further details are

  given. 

 

Scenario 2:  

Part 1: Receiving inputs from ALFERN input Event channels (Figure 10.9) 

 

• Point 1:  Input is received on CELow on Event channels 0 and 2. Because both CEs interact with

   the testbench, the t_e_CE signal is set low 20ns after the received input. This delay 

   is equivalent to one clock period. Input and handshake conditions are the same for 

   both CELow and CEHigh. 

• Point 2:  Since no logic delay is added for the CE outputs, they are received at the    

    ev_c_in_TCCFB instantly after being issued from each CE. Note that the value   

    transmitted from each CE is correctly received. 

• Point 3:  Detail of TCCFB handshake towards input CEs. Note that when the inputs are    

   received, the t_e_TCCFB signals set low corresponds with the receiving input    

   channels. TCCFB input channels [15:8] are reserved for ALFERN inputs. 
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Figure 10.9: ALFERN event reception via copy elements 

Part 2: LUT Computation (Figure 10.10) 

 

 
Figure 10.10: LUT computation 

• Point 1:  In contradiction to figure 10.7 where the LUT inputs are received at different time

   instances, all inputs are received simultaneously in scenario 2. Input_valid goes 

   high immediately after the inputs are received. T_e_LUT is set low after a delay. 

• Point 2:  Latch_enable is set high to latch out the LUT outputs , which propagates to the

    output after a logic delay. 

• Point 3:  When the transmitting CEs send the “0”-spacer to reset the transmission, t_e_LUT

    is set high to signal that the LUT is ready to accept more inputs.    
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Part 3: Transmitting LUT result on the ALFERN (Figure 10.11) 

 

 
Figure 10.11: Interaction between TCCFB and Copy element 

• Point 1:  TCCFB output on ev_c_out_TCCFB is received on ev_c_in_CE on channel 2. 

• Point 2:  Forking of the input to ALFERN output Event channels 2 and 6. 

• Point 3:  When the CE sets its t_e_CE for the corresponding outputs low, this is received

   by r_e_TCCFB to finish the handshake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
- 76 - Implementation, Simulation and Synthesis of the AESRN 

10.4 Programming the AESRN 

10.4.1 Description of a Plausible Event Distribution Scenario 

This example is constructed in order to fully utilize the routing potential of the AGERN, and get some 

notion of the AGERNs capacity and flexibility during a realistic event distribution scenario. Table 10-1 

describes the active event channels from each of the peripherals involved in the transactions. Since 

the numbering [7:0] is used for an Event Channel, the same system will be adapted to table 10-1. The 

Event Channel color is used to identify the path of each event according to figure 10.12 and figure 

10.13. 

 

Peripheral  

[Source] 

Event 

Channel 

Event Description  Channel 

Color  

Peripheral 

[Destination] 

Port / TC C 0 IO pin used as clock input  Port / TC E 

Port / TC C 1 Generated by TC overflow  Port / TC E 

Port / TC D 2 CC Channel A  Port / TC F 

Port / TC D 3 CC Channel B  Port / TC F 

Port / TC E 4 Trigger ADC conversion by counter  Global (ADC1) 

Port / TC E 5 Trigger DAC conversion by counter  Global(DAC) 

Port / TC F 6 TC overflow  Global (DMA) 

Port / TC F 7 Trigger conversion by TC CC chan A.  Global (ADC2) 

Global (DAC) 4 Conversion Complete  Port / TC D 

Global (ADC) 5 Conversion Complete  Port / TC D 

Port A 1 Pin Event  Port B 

Port B 2 Pin Event  Port A 
Table 10-1: Description of multiple events routed together on the AGERN 

 The switch block layout in appendix A 16.2-4 represents the cross switch used in the AGERN with 16 

input channels and 16 output channels. In the current implementation a switch block is not 

programmable in the sense that Event Channel 1 as input can connect to Event Channel 4 and use 

this as output. The firm consistency of the switch block routes input channel 1 from a chosen input 

direction to output channel 1 in a chosen direction.  

The situation described in table 10-1 represents the maximum capacity of the AGERN in the output 

routing direction, because each event passes through switch 5 using all its input and output channels. 

Figure 10.12 and figure 10.13 illustrate this further. Of the global input channels half of the capacity 

is used, but due to routing transactions including switch 6 much of the internal capacity is already 

used. This can also be depicted in figure 10.13 (right). 

 

Although table 10-1 does not present the smartest scheme when it comes to using the full capacity in 

all global directions, twelve events are routed simultaneously from a variety of sources to different 

destinations. The original event system presented in [6] had a maximum capacity of eight events 

simultaneously, which gives the AGERN a capacity increase of four events compared to the original 

Event System for this scenario. With full utilization this increase numbers eight events to global 

peripherals, but would require a different routing scheme. Figure 10.12 illustrates possible 

connections between the switches.  

Ordinary wire connections not in use to distribute events according to table 10-1 are black, while the 

colored wires represent wires taking part in an event transaction.  
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Figure 10.12: Graphical representation of event scenarios 

Connected with figure 10.13 (left) it will be possible to follow the route of each event from source to 

destination. The peripheral on the leftmost side marks the source of the event, and the peripheral on 

the rightmost side marks the destination. Associated to table 10-1 and figure 10.12 each colored wire 

represent two event channels, since two neighboring channels always have the same source- and 

destination peripheral in this example. The reason is to make it easier to translate the figures, while 

still maintaining the principle of programming the AGERN for arbitrary event distribution. 

 

 
Figure 10.13: Event distribution pattern (left), Allocated switch channels (right) 

To further illustrate the allocation of different event channels for each switch, figure 10.13 (right) 

shows which wires are allocated for which event for each of the involved switches.  

Since each input connects to an output with the same number, the table is valid for both input and 

output allocation for each switch.  As figure 10.13 (right) depicts, Sw5 and Sw7 are using all of their 

input and output channels and will each become the limiting factor of capacity if further events 

should be issued in their direction. Note that not all internal connectivity is used, for instance on 

switches 2 and 3. 
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10.4.2 Switch Block Configuration 

Using the constructed event distribution scenario from table 10-1, the AGERN must now be 

programmed in order to connect the switch blocks correctly.  Remembering that each switch block 

consists of eight switch points after the manner presented in appendix A 16.2-4 four bits are used to 

program each switch point. Because memory cells are used to control pass transistors for data- and 

handshake signals, one-hot encoding is used when connecting inputs to the desired output. With the 

applied encoding scheme 32 bits are needed to program one switch block. To illustrate the 

programming procedure, switch 5 from figure 10.12 can be used as an example. A more detailed 

image of switch 5 can be seen in Figure 10.14 while the encoding scheme for each switch block is 

presented in table 10-2. 

 

 
Figure 10.14: Detailed view of the events routed by switch block 5 

 

Source Destination Encoding sequence 

Ev_N_chX Ev_W_chX 0001 

Ev_N_chX Ev_E_chX 1000 

Ev_S_chX Ev_W_chX 0010 

Ev_S_chX Ev_E_chX 0100 
Table 10-2:  Encoding sequence of 4 bits for each switch point within the switch block 

The programming bit sequence of 32 bits is divided into eight 4 bit blocks, where the Event Channel 

notated 0 holds bit positions [3:0] and Event Channel 7 holds positions [31: 28].  Using figure 10.14 as 

the illustrating example, the two red wires representing event channels Ev_N_ch0 and Ev_N_ch1 

should be routed towards Ev_E_ch0 and Ev_E_ch1. Using table 11.2, this means that both switch 

points must be programmed with the sequence “1000” for programming bit positions [3:0] and [7:4]. 

If the same method is used to program the other switch points as well, the programming bit 

sequence for switch 5 will be similar to table 10-3. Note that this encoding does not represent the bit 

pattern required by the architectural model in appendix 
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A 16.2-4, which would require a “1” bit to control both input and output event channels. The applied 

one-hot encoding is used for simplicity, and does not introduce any functionality restrictions towards 

the actual model. 

 

 
Table 10-3:  Complete programming sequence for the configuration of switch 5 

It is important to emphasize that only routing channels pairs in the same direction is used to simplify 

the example, and provide a complete and manageable overview. Single events could be routed on 

any channel in any direction if it was necessary.  

 

To fully utilize the AGERN capacity, an example distributing 24 events on the AGERN is included in 

appendix 16.7 with illustrating figures and the configuration bit table. In this example all 16 GLOBAL 

wires are used, along with 8 events distributed between neighboring Port-peripherals on the AGERN. 

10.5 Synthesis of the AESRN 

To verify the model designed for an AESRN implementation, a synthesized version aimed at an 

implementation for the Xilinx Spartan 3 XC3S1000 was constructed with Synplify Pro 8.9 from 

Synplicity. The Spartan FPGA-platform was chosen because it is used as FPGA on the Suzaku S-

platform by Atmark Techno [54]. With an embedded µBlaze soft-processor running a µClinux Linux 

core and possibilities for direct register operation for test programs through the OPB (On Board 

Peripheral)-Bus, this is a powerful device for prototype testing.  

 

Since the synthesis results for the target FPGA platform does not in any way mirror a realistic 

microcontroller implementation size, this chapter can be considered for orientation only. The 

synthesis results for all constructed modules can be viewed in appendix 16.5 and some comments on 

synthesis problems and issues will be featured in this section.  

 

The most interesting thing about synthesizing asynchronous logic with stateholding capabilities is the 

error messages issued as synthesis warnings from Synplify Pro. With a loop connecting the output of 

a C-element to the inputs, a combinational loop is constructed. A combinational loop is not wanted in 

synchronous designs, and so a large amount of warning messages appear for all designs involving C-

elements. These messages can altogether be ignored, even though they possibly represent a problem 

when it comes to physical FPGA implementation. Remembering the theory from sections 3.3 and 

6.2.2, most synchronous synthesis tools do not support delay measurement functions for 

asynchronous models. Practically this means that each combinational loop that is constructed on the 

FPGA have an unknown delay, which makes it impossible to guarantee a correct behavior. Also 

remembering the QDI- delay model assumptions relying on balanced isochrnoic forks, there is no way 

to be sure that such delays have been balance by the synthesis tool.  

These delay uncertainties mean that even though all modules are synthesizable, their physical 

behavior on the FPGA cannot be accounted for when delays in critical wire sections remain unknown.   

 

Commenting on the actual synthesis results, it is notable that the seemingly large design is very 

densely implemented on the Spartan FPGA. Using 8% of the available LUT area when the whole 

AESRN example explained in section 10.1 it cannot be categorized as an area consuming design.  
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11 Performance Analysis of Proposed Solutions 

This chapter presents estimated performance of each Event System solution in terms of operating 

speed. Special focus is concentrated on analyzing the Asynchronous Event Systems performance. 

Being an asynchronous routing facility, the AESRN provides a challenge considering analysis of the 

system performance. By applying experimental analysis techniques to the AESRN pipeline it is possible 

to derive some measurement on the pipeline’s performance. Exploiting the fact that the AESRN 

pipeline includes no computational elements, as is the case for many micropipeline constructions, 

measurements are simplified. HERN and CERN solutions are analyzed using datasheets and expected 

performance factors. 

11.1 Analyzing HERN performance 

The HERN performance is solely dependent on how the I/O-processor is implemented. With a simpler 

architecture than the AVR® CPU it should be possible to run at a higher clock rate than the CPU, and 

still maintain reasonable power consumption. Expected performance is below the 128MHz maximum 

frequency for the implemented Event System, but double the AVR® frequency, 64MHz, is expected 

with careful design.  

11.2 Analyzing CERN performance 

The CPLD Event Routing Network rely on architectures developed by Atmel, and so performance 

analysis have been made of the CPLD architecture providing basis for CERN’s computational MCB 

elements. Estimated operation speed for the ATF1508RE CPLD is 333MHz running at 3.3V [7]. Using 

the peripheral clock of the XMEGA A1 [6] as reference, which can operate at 2-4 times the AVR® CPU 

speed of 32MHz, a peak performance of 128 MHz at operating voltage 1.6V  is expected.  

This means operating both the CIOBus and GEB at 128 MHz, making sure that an event is received 

within one peripheral clock cycle. Although Atmel’s CPLD structures can tolerate higher velocities, 

power consumption is an issue reducing the operating voltages and hence operating speed. 

Expected performance for the CERN solution is therefore the same as the peripheral clock speed. 
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11.3 Analyzing AESRN performance 

11.3.1 Formal Equations for AESRN Pipeline 

The methods describing the analysis flow is covered in background theory section 4.1, and described 

in  [36] by Yahya et Al. figure 11.1 illustrates the difference between the computational pipeline used 

in [36], and the token buffer pipeline used in the AESRN. 

 

 
Figure 11.1: Conventional Computational pipeline (top) [35], AESRN token buffer pipeline (bottom) 

 The token buffer property omits the functional blocks used for computation, removing the variable 

functional block delay from the performance equation. Since it is the functional blocks in each 

pipeline stage which introduces the most crucial variable delay, the pipeline equations for analysis is 

simplified.  Using dependency graphs to derive the pipeline equations, the AESRN token buffer 

pipeline can be modeled like in figure 11.2. The graph communicates the same behavior as the 4-PDR 

protocol, but makes behavioral analysis simpler.   

 

Some transitions in an asynchronous pipeline can trigger concurrently, making it hard to analyze the 

correct behavior. As explained in section 4.1, there is always a main synchronization event to control 

behavior of proceeding events. For a WCHB element like the one on figure 3.11, this synchronization 

event is issued from each C-element as the transition C↑ and C↓ in figure 11.2. Using the proposed 

method from  [36] and section 4.1 to analyze the unfolded dependency graph, and considering C↑ as 

the main synchronizer event, the following equations describe the Total Cycle Time (TCT) of a WCHB-

element at stage N in the AESRN pipeline.  

 

 
Figure 11.2: Unfolded dependecy graph for AESRN pipeline 
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Considering the main synchronizer event C↑, the transition delay is  

MAX [(C↑,Te↓,C↓),(Te↓,C↓,C↓)] for the transition C↑ to C↓. Transition delay back from C↓ to 

C↑ is given by MAX [(C↓,Te↑,C↑),(Te↑,C↑,C↑)].  Presented with a more specific delay notation 

considering both preceding and proceeding buffer stages, TCT for a random buffer stage N can be 

derived: 

 

TCTnWCHB = MAX[ (TC(n+1)↑+TTe(n+1)↓+TC(n)↓), (TTe(n)↓+TC(n-1)↓+TC(n)↓)] +                    Eq.   (10.1) 

      MAX[ (TC(n+1)↓+TTe(n+1)↑+TC(n)↑), (TTe(n)↑+TC(n-1)↑+TC(n)↑)]. 

 

The colors in eq. 10.1 represent the delay pattern described in figure 11.2, with stage 3 as C(N)/T(N) . 

Equation 10.1 is consistent with equation 4.1, but modified to only consider token buffer pipelines 

without computational elements. Notice that both the eval and reset token is included for TCT 

measurement in eq. 10.1. Since the AESRN, including the ALFERN or ALERN solutions, does not 

contain any split or merge of handshake channels, the linear equations are applicable for the whole 

pipeline structure. 

 

In order to obtain appropriate delay measurements for each pipeline stage, values obtained through 

scientific research and presented in literature was investigated. As pointed out in  [43] [44] the delay 

factors for each process technology are many, leading to large statistic variance. 

Considering 90nm process technology the delay for a NAND gate is used as basis for estimated delay 

computations. Since an AND gate is used in the WCHB, NAND gate delay and inverter gate delay will 

together figure as an AND delay estimator. The largest value for separation distance and load 

capacitance derived from the measurements in  [43] are used to obtain “worst-case” values for 

NAND gate delay. The presented conditions for the obtained measurements are close to the AESRN 

conditions, with respect to fan-out of NAND gates and hence the load capacitance for each gate. The 

selected NAND-delay is for VDD = 0.8V in the 90nm process. Delays for C-elements are approximately 

derived from these numbers. 

11.3.2 AESRN Pipeline Performance 

To calculate NAND and inverter delays for process technologies not specifically presented in papers, 

an approximation from Intel’s research in  [49] declaring an estimated reduction factor of 0.7, or 

30%, in decrease of gate delay from one process generation to the next. The same factor is used for 

calculations in  [47].Conducting a simple test to see how relevant this approximation is, the delay 

numbers for an inverter gate measured in different process technologies presented in  [48] are used. 

Results of the comparisons can be viewed in table 11-1. The difference factor is the reduction in 

delay compared to the preceding technology.  

 

Process techonology Inverter delay  [48] Difference factor 

600nm 165ps - 

350nm 95ps   0.58 

250nm 67ps 0.71 

180nm 47ps 0.70 

130nm 33ps 0.71 

90nm 22ps 0.71 

65nm 15ps 0.71 
Table 11-1: Scaling of inverter delays in different technologies 

Since the delay factor follows the approximation from  [49], it will be used to derive approximate 

performance parameters for the AESRN using different process technologies. Because the delay 

numbers derived for the NAND-gate in  [43] represents conditions most similar to the AESRN, this 

delay number is used and scaled to fit preceding technologies. Table 11-2 gives an overview of the 
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measured results. Also bear in mind that a scaling factor of 0.7 represents the worst-case value from 

table 11-1. 

 

Delay 

contributor 

Delay 90nm  Delay 

130nm  

Delay 

180nm 

Delay 

250nm 

Delay 

350nm 

Delay 

600nm  

τNAND 
50ps  [43] 70ps 100ps 142ps 202ps 290ps  

τINV  [48] 
20ps 33ps 47ps 67ps 95ps 165ps 

τAND = τNAND + 

τINV 

70ps 103ps 147ps 209ps 297ps 455ps  

τC-el 
100ps 140ps 200ps 284ps 404ps 580ps 

τTe = τAND +τINV 
 90ps 136ps 194ps 276ps 392ps 620ps 

τC = τC-el   100ps 140ps 200ps 284ps 404ps 580ps 

TCTnWCHB 600ps 832ps 1.19ns 1.68ns 2,4ns 3.56ns 

Data token 

frequency 

1.66 GHz 1.2 GHz 840 MHz 595 MHz 417 MHz 281 MHz 

Event delay 

2xTCTnWCHB 

1.2ns 1.66ns 2.38ns 3.24ns 4.8ns 7.12ns 

Event 

frequency  

833MHz 600MHz 420MHz 247MHz 208.5MHz 140.5MHz 

Table 11-2: Measured TCT and frequency for AESRN pipeline 

Using these approximated values inserted into Eq. 10.1, selected TCTs for a WCHB at stage n in the 

pipeline is: 

 

TCTnWCHB = MAX[300ps,300ps]+MAX[300ps,300ps] = 600ps.  [90nm] 

TCTnWCHB = MAX[1780ps,1780ps]+MAX[1780ps,1780ps] = 3.56ns. [600nm] 

 

Both parts of the equation will give the same value, since no logical computation is included to 

provide different delays for each stage, and all other delays are equal for each stage. 

This gives an estimated frequency of 1.66 GHz for tokens travelling in the pipeline for a 90nm 

process, and 281 MHz for a 600nm process. For results concerning other process technologies, see 

table 11-2.   

 

As may be pointed out there exist LUTs as a part of the total Asynchronous Event System pipeline if 

TCCFBs are included. As long as LUTs reside inside the peripherals, they are not considered a part of 

the distribution pipeline, and an event issued from a LUT is considered a peripheral originated event 

rather than a computational originated pipeline event. This assumption makes the estimations from 

table 11-2 valid for the whole pipeline structure even with the presence of computational elements. 
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11.4 Comments on analysis and results 

Since the AESRN pipeline is a fine grained pipeline with no logical computation between each 

pipeline element, the only delays consist of gate- and wire delay enabling tokens to propagate fast 

through the pipeline.  

 

Compared to the fine grained high-speed pipelines in  [38] which can reach a TCT of 1.18ns using a 

600nm CMOS process, and include functional blocks for computations as well, the assumption for the 

AESRN could prove valid. Also keep in mind that the calculations in section 11.3.2 used worst-case 

delay assumptions from [43].  The asynchronous pipelined FPGA designed by Teifel et Al. [1] include 

computational logic blocks with LUTs, and reaches a peak speed of 400MHz using a 250nm CMOS 

process. A refined architecture using an 180nm CMOS process is presented in [32], reaching a peak 

speed of 700MHz.  

Considering these circuit speeds, and removed computational logic, the AESRN pipeline should reach 

much higher distribution speed. All the other pipelines considered from literature are also using a 

dual-rail computation and transfer interface. 

 

 Acknowledging the fact that all the variable delay parameters connected to aggressive processes 

presented in  [43] [44] [45] must be taken into account, the computed values for the AESRN should 

be considered for orientation only. With no knowledge of how an implementation would look like on 

the silicon level, accurate measurements are hard to derive. 
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12 Event System Cost Factors and Tools overview 

When designing a new system it is always important to evaluate the costs associated with the new 

system design. This chapter will evaluate the costs for the proposed Event System solutions, and 

compare them to the costs generated by the current Event System. 

All solutions feature some degree of programmability not before encountered by the existing tool 

chain. Trying to visualize how programmability features can be integrated in the tool flow and show 

how the user easily can use the new features and interact with the GUI, the last section is dedicated 

to this purpose.  

12.1 Introduction to AVR® XMEGA Size Factors 

 

Important notice 

 

Important library and process related numbers and data used for calculations in section 12.2 contains 

sensitive process information related to the Atmel 35k9 process [10], and is therefore included in a 

restricted appendix B.1. The numbers presented in appendix B.1 will form the basis for the 

calculations in section 12.2.1 - 12.2.3.  

Some important size factors for area estimations are included in appendix table B-1. The tables in 

section 12.2.1- 12.2.3 only include NAND equivalent sizes for all modules, partitioned into logic area, 

additional logic and total area. Logic area is the area directly estimated from architectural drawings, 

without including interface logic, extra memory or routing area occupied by wires.  Additional logic 

consists of FLASH memory, logic used for interface, synchronization or signaling purposes and extra 

routing logic because of the FPGA inspired topology. It will be specified for each of the Event System 

solutions how much extra logic is included for different purposes. 

 

For detailed size information related to die-occupation in mm2 and additional area information, the 

reader is referred to appendix B.1. Tables from table 12-2 - table 12-5 can be viewed with full area 

information in appendix tables B-2 – B-5. 
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12.2 Cost Overview and Performance Evaluation 

Each of the proposed Event System solutions HERN, CERN and AESRN have their strengths and 

weaknesses compared to each other. This section evaluates the cost of each implementation with 

respect to performance in important areas. To compare each solution, table 12-1 presents a grading 

system were red means poor performance, yellow means average performance and green means 

good performance. This table will provide the basis for a more detailed discussion. 

 

Event System solution  HERN CERN AESRN 

Performance factor 

Implementation Size    

Circuit Speed    

Power Consumption    

Programmability    

Computational power    

Ease of Use    
Table 12-1: Cost gradation of performance factors 

12.2.1 HERN Performance Evaluation 

Area Estimation 

Referring to table 7-1 for a measured NAND gate count for different I/O-processor solutions and 

applying these gate counts to the approximated numbers presented in appendix B.1, a detailed area 

estimate can be derived. Table 12-2 estimates the total NAND equivalent area for different HERN 

solutions including additional logic. 

 

Domain NAND eq. 

logic 

NAND eq. 

additional 

Logic 

Total 

NAND 

equivalents 

Simple 

I/O 

2552 598 3150 

Medium 

I/O 

3852 798 4650 

Advanced 

I/O 

6352 1173 7525 

Table 12-2: Estimated HERN area 

For the HERN solution additional logic consist of 10% extra for routing area, 5% extra for interface 

related logic and 500 bit of FLASH memory to hold configuration bits for included switch blocks. All 

extra logic percentage is related to the NAND equivalent logic from table 7-1. More detailed 

estimation can be found in appendix table B-2. Estimated gate count for each I/O-processor 

alternative includes shared memory with the AVR®, and no extra area is added for this purpose. 

 

Compared to the current Event System implementation medium a HERN solution is about the same 

size in terms of NAND equivalents. The increase for an advanced I/O-processor is 67%, while the 

simplest I/O-processor gives an area decrease of 43% with the proposed architecture. 
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Computation Speed 

 The limiting factor for performance is the amount of consumed energy associated with the I/O-

processor. This is considered an application specific choice, depending on the functionality range 

wanted for the specific XMEGA. With good power-down design, a clock speed between 64 MHz and 

128 MHz should be achievable depending on the simplicity of the processor, offering about the same 

computation speed as the current Event System with a maximum peripheral distribution speed at 

128 MHz, or four times the AVR® CPU clock frequency [6]. 

 

Energy Consumption and Programmability 

Including a separate I/O-processor will increase the power consumption compared to the Event 

System. Depending on the selected implementation of either a simple, medium or advanced 

processor alternative, the associated energy consumption will increase accordingly. With no accurate 

numbers to achieve a good estimation the probable increase factor remains an unknown variable.  

With the possibility of adding instruction sets for increased functionality at need, the I/O-processor 

offers good programmability features. 

12.2.2 CERN Performance Evaluation 

Area Estimation 

Based on the estimations for logic area from appendix table B-1, a more complete CERN area model 

including logic area occupied by routing wires, additional interface logic and FLASH memory can be 

derived than the one presented in table 8-1. Table 12-3 summarizes the total area estimations for 1 

and 2 CPLD MCBs included in each Port / TC peripheral. 

 

# CPLD 

MCBs 

NAND equivalents 

logic 

NAND eq. additional logic  Total NAND 

equivalents 

4 3564 1744 5308 

8 6428 4087 10515 
Table 12-3: CERN area estimations 

With 2 CPLD MCBs in each Port / TC peripheral the amount of additional FLASH memory to store 

configuration bits have reached 1kB, which makes the CERN solution expensive considering memory 

usage. Area consumed by switches, memory cells and wires dominate the logic area, especially if 

compared to table 8-1. The area overhead related to routing and configuration bit resources are 

approximately 57% with 2 CPLD MCBs implemented in each Port/TC peripheral. This fact reveals a 

potential weakness with using PLA blocks as Event System computational blocks: Without careful 

planning of routing the memory usage grows to rapidly as more computational blocks are added.  

Additional logic includes 10% for routing because of increased bus-capacity, 5% for related interface 

logic and up to 1kB of extra FLASH memory. A full overview is given in appendix table B-3. 

 

Computation Speed 

Using PLA blocks with predictable delay, deterministic event distribution should be possible. The 

original ATF1508RE architecture operates with 5ns pin-to-pin propagation delay, a delay that is more 

likely to decrease than increase with the simpler CERN architecture. 5ns delay gives an estimated 

computation speed of 200MHz, which is about 1.5 times faster than the maximum speed of 128MHz 

offered by the XMEGA peripheral clock. Expecting a maximal event propagation delay of 2 AVR® CPU 

clock cycles of 32MHZ [6], this demand is easily met by the CERN. 

 

Energy Consumption and Programmability 

As a direct result of the large memory requirement depicted in table 8-2, CERN programmability is 

excellent and makes it possible to compute almost any product term combination on incoming 

events. Energy consumption would increase compared to the current Event System because of larger 

area occupation and more memory cells.   
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12.2.3 AESRN Performance Evaluation 

Area Estimation 

The implementation cost associated with the AESRN in terms of equivalent NAND gates can be 

viewed in table 9-2, table 9-3 and table 9-6. 

Approximated numbers from appendix B.1 are used for detailed area estimations. If only the routing 

facilities of the AESRN is under consideration, the equivalent gate count is 3730 NAND equivalents 

for an ALERN dependent solution, and 3837 NAND equivalents for an ALFERN solution according to 

table 9-2 and table 9-3. Combining results from table 9-3 - table 9-6 gives the full implementation 

size, including a full range of 4 TCCFB blocks containing 24 4-LUTs contained within 24 TCFBs. Table 

12-4 summarizes Asynchronous Event System area, and presents total area estimation in terms of 

NAND equivalents. A more detailed overview is presented in appendix table B-4.  

 

Domain NAND equivalents 

logic 

NAND eq. 

additional logic  

Total NAND 

equivalents 

AGERN + 

ALERN 

3730 1695 5425 

AGERN + 

ALFERN 

3837 1718  5555 

AGERN + 

ALFERN + 4 

TCCFBs 

7865 3548 11413 

Table 12-4: AESRN size overview 

Even though the number derived for estimated logic area includes Atmel’s standard routing and 

SRAM estimations presented in appendix B.1, an additional 10% have been added for extra routing 

because of the FPGA inspired topology. Other additional logic includes glue-logic, synchronizers and 

Event Channel selectors in peripherals. 25% has been added for this purpose, along with 0.125 – 

0.250 kB of FLASH memory to store configuration bits for switch blocks and LUTs. 

 

To illustrate the impact of TCFBs on the Asynchronous Event System size, numbers from table 9-5 can 

be used to conduct an estimation. Table 12-5 shows how a varying number of TCFBs influence the 

total area in terms of NAND equivalents. For a full overview the reader is referred to appendix table 

B-5. Note that the number of TCFBs also corresponds to the number of 4-LUTs with associated 

routing. Extra area occupied by Copy-elements inside each TCCFB will be added to the NAND 

equivalent logic as a factor of the total number of TCFBs after the formula: 

TCFBsTCFBs

TOT

CE,TOT
N

24

908
N

TCFBs#

NAND
⋅=⋅ .   

 

# TCFBs NAND equivalents 

logic 

NAND eq. 

additional logic 

Total NAND 

equivalents 

0 3837 1718 5555 

2 4173 2245 6418 

4 4509 2351 6860 

8 5181 2446 7627 

12 5853 2827 8680 

16 6525 3065 9590 

24 7865 3548 11413 
Table 12-5: TCFB impact on the Asynchronous Event System circuit size 
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Compared to the current Event System the functionally equivalent Asynchronous Event System is 

about 23% larger and a fully functional LUT version 154% larger in terms of NAND equivalents.  

The fully functional LUT version is large mainly because an increased amount of additional logic and 

routing resources. Two TCFBs can be included for an overhead of 43%, 4 TCFBs for 52% size increase, 

while 8 TCFBs require about 69% total area overhead compared to the Event System.  

 

Pipeline distribution speed 

 According table 12-1 the AESRN is graded with good performance and power consumption.  

Performance results derived from table 11-2 estimates the event frequencies for different process 

technologies. The XMEGA peripheral clock can operate at a clock speed of 2-4 times the CPU clock 

speed of 32MHz [6], which makes the AESRN pipeline offer 6.5- 1.6 times faster event rate for the 

process range from 90 – 350nm compared to the XMEGA peripheral clock at 128MHz. Implemented 

in 600nm technology the Asynchronous Event System offers about the same performance as the 

peripheral clock speed used in the current Event System.  

 

Although the rate tokens and events can enter the pipeline with are higher than offered by the 

original Event System, delays connected to the number of pipeline stages must also be taken into 

consideration.  According to figure 9.1 the maximum amount of switches an event can encounter 

during global AGERN transportation is 7 switches for event transportation from an arbitrary Port / TC 

peripheral to a DAC / ADC peripheral. The maximum latency for an event traveling through the 

pipeline is given in table 12-6.  

 

# Switch Blocks  

/ Process 

3 4 5 6 7 

Delay 600nm 31.36ns 28.48ns 35.6ns 42.72ns 49.84ns 

Delay 350nm 14.4ns 19.2ns 24ns 28.8ns 33.6ns 

Delay 250nm 10.08ns 13.44ns 16.8ns 20.16ns 23.52ns 

Delay 180nm 6.48ns 8.64ns 10.8ns 12.96ns 16.56ns 

Delay 130nm 4.98ns 6.64ns 8.3ns 9.96ns 11.62ns 

Delay   90nm 3.6ns 4.8ns 6ns 7.2ns 8.4ns 
Table 12-6: Latency for events traversing switches 

Table 12-6 is useful when analyzing if the assumption that an event is received in a peripheral with a 

maximum latency of two CPU clock cycles after it is issued is valid in the AESRN [6]. Two CPU clock 

cycles corresponds to ns
Hz

5.622
1032

1
6

=⋅

⋅

, which is a demand being met by the Asynchronous 

Event System solution for all process technologies mentioned in table 12-6. 

 

Energy Consumption and Programmability 

Power consumption is only an issue in parts of the circuit participating in an event computation. This 

enables natural power down abilities for the AESRN at all times, making it less energy consuming 

than the original Event System. To find a scaling factor is difficult, because no average power 

consumption for the XMEGA is released in [6].  

 

Programmability features are excellent, requiring 1764 bits for a fully programmable version with 

good computational power due to 24 4LUTs implemented in TCCFBs. Practically this means logical 

operations on up to 24 events concurrently, which is more than the global capacity of the AGERN. 

If both AGERN and ALERN / ALFERN resources are used at full capacity, 24 AGERN + 12/4 ALERN 

/ALFERN events can travel the pipeline concurrently. This is over 3 times the original Event System 

capacity of 8 events concurrently. 

Ease of use is achieved through intuitive routing and easy programmability.   



 
- 92 - Event System Cost Factors and Tools overview 

12.3 Associated Cost Challenges 

When considering the costs of an implementation not only costs related to size and power 

consumption in terms of gates and energy usage are relevant. Costs tied to time-to-market, new 

settings for production equipment, development of test strategies, design cost, costs related to new 

tools and development software and so on are at least as important when looking at the big picture. 

An overview of costs regarding synchronous versus asynchronous implementations can be viewed in 

chapter 6, and this chapter will add more economical factors to the cost equation. Because it is hard 

to give good estimates to these cost factors, this section can be considered as a superficial overview 

putting the proposed Event System solutions in a marketing perspective.  

 Table 12-7 summarizes the most vital cost factors for a new design considered for manufacturing, 

and rates the proposed Event System Solutions from low- to high cost increase in different cost 

areas. 

 

Event System Solution HERN CERN AESRN 

Cost factor 

Process development    

Design Cost    

Time-to-market    

Test development    

Tool chain additions    

User software    
Table 12-7: Cost gradation of associated cost factors 

The process development factor indicates if the implementation size of the solution could benefit 

from a more aggressive process technology. Both the CERN and AESRN demand a rather large area 

according to table 12-3 and table 12-4, and a more aggressive process technology would make the 

implementations more beneficial in terms of consumed chip area according to scaling theory [49].  

 

Design Costs are potentially large for an AESRN design due to the factors mentioned in sections 3.3 

and 6, and also considerable for the HERN I/O-processor.  An AESRN implementation will also suffer 

from test development overhead, due to the asynchronous environment testing. New methods for 

testing would have to be developed, along with test tools adding to the total cost. HERN and CERN 

solutions can to a larger extent rely on conventional testing methods using well-known architectural 

elements. 

 

Time-to-market is very important for a profitable release. CERN reuses much of existing Atmel CPLD 

technology, and is therefore considered the solution with best time-to-market potential. The AESRN 

will take time to develop, especially since new libraries for standard cells must be developed, and has 

the worst time-to-market potential of the solutions. HERN’s custom I/O-processor represents the 

medium time-to-market alternative, and is also slightly more advanced than the CERN.     

Tool-Chain additions are an important cost factor, and sorts under the time-to-market parole. For an 

AESRN solution this cost is considered high. Large programmability features means that a new 

mapping and allocation software should be implemented, customized for the Asynchronous Event 

System. Even though the routing structure itself is rather intuitive, the programmability feature is a 

new introduction to the whole tool development process. For the HERN a lighter programmability 

means less advanced tools, and interfacing with an I/O-processor should be familiar for the existing 

tool chain.  

 

User software is needed to make the systems intuitive and easy to use. All solutions represent a 

relatively intuitive structure, and should impose few problems for the experienced designer. 
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12.4 Proposed Solution for Graphical Tool Design 

To release the full potential of the new Event System solutions, tools supporting an increased level of 

programmability should be designed. It is not a part of this thesis to construct the applicable tools, 

but an overview of some ideas and concepts are presented to visualize intended use and application 

areas. Since the Asynchronous Event System has been the main area of focus, and partly realized as a 

Verilog model, this section will concentrate on tools for the constructed system. 

 

First of all an interface managing to visualize the two-way routing system applied in the AESRN in an 

intuitive way to the user should be considered. To disconnect the user as much as possible from 

detailed routing decisions, a framework supporting an intuitive GUI could be a possible solution. 

Inspired from the AGERN representation depicted in figure 10.12, the whole AESRN with LUTs could 

be represented graphically, leaving to the user to direct which peripherals should communicate 

with each other over different Event Channels. Determining the best channel allocation is left to the 

routing tool, which must configure the routing network accordingly. Up to 1800 bits are required for 

the full functionality specter provided by AESRN resources, programming a single AGERN Event 

Channel route will need 32x7 = 224 bits to be written. This route represents the longest traversal 

path possible through routers in the presented architecture, and programs a route from a Port / 

TCCFB peripheral to an ADC / DAC peripheral.  

 

One issue always present when considering programmability and routing is increased complexity. For 

a Xilinx Virtex II device the amount of programming bits range from 339kB in the simplest device to 

26Mb in the most advanced device, according to table 26 in [50]. 

Considering an Asynchronous Event System requiring 1.8kb, or 0.25kB, of configuration bits for 

programming full routing and computational LUT functionality, a relatively simple tool should be an 

appropriate solution. With such a tool implemented, the user should have the option if the path 

allocation for each event should be a manual procedure for full custom layout, or if the tool abstracts 

the user from this level by introducing GUI elements generating the correct programming bits when 

representing an allocation.   

  

 
Figure 12.1: GUI example for event routing on the AGERN 

One intuitive GUI solution is presented in figure 12.1. The example is based on the event routing 

scenario from table 10-1, and the reader is referred to section 10.4 for further details. The GUI 

represents all Event System peripherals and AGERN / ALFERN elements at a block schematic level. 

In figure 12.1 the block representing the Port / TCCFB side of the AGERN is abstracted away to show 

all switch details. The maximum level of detail could be presenting all output / inputs for each switch, 
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as in figure 10.14. Showing the selected event routes in highlighted color gives the user the overview 

to determine the event flow.  

 

If all internal connectivity in the AGERN boxes is hidden, the user is left with specifying which 

peripheral should be used as event source, and which peripheral should be used for destination.  

By clicking on the source and destination peripherals the tool determines the best available route, 

and sets up the proper configuration bits for event channel allocation.  

 

In addition to deciding the source and destination peripherals, clicking on the switch blocks enables 

manual routing possibilities between the peripherals. This function makes it possible to pin-point an 

event route, and the tool will generate the proper configuration bits as the route is determined.   

 

 The tool is also responsible for setting the appropriate connections at the peripheral level, such that 

an allocated Event Channel is guaranteed to trigger the determined peripheral actions. Of course 

there must exist a function for full user-programmability, disabling much of the allocation help 

provided by the tool. Being a rather small system, manual routing is absolutely achievable and has 

been practiced by the author in all test cases presented throughout this thesis. 
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13 Discussion 

A choice was made during this thesis to focus on research related to an asynchronous Event System. 

It is therefore natural to discuss the model that was developed to represent the asynchronous 

system, both as an architectural model as a whole, and as a modular system. First of all, the 

suggested routing topology is a custom designed pseudo-hierarchical solution consisting of custom 

designed switch blocks. Each switch block is constructed after a commonly accepted model for switch 

design, and modified to fit into the given routing context. Some uncertainties are brought into the 

picture regarding this design methodology, because none of the proposed switch blocks have been 

designed or tested in previous literature according to the researched source material. In essence 

FPGA technology has been modified and re-designed to fit into a microcontroller environment, and it 

is therefore not certain that the accepted models for FPGA elements proposed in literature remain 

valid. For all the designed elements presented in this thesis, the basic assumption is that a functional 

FPGA model is also valid in terms of IC-design.  

 

To justify such an assumption, it was important to design a Verilog model containing as many 

asynchronous design principles as possible. Through simulations built on exact models of the custom 

designed circuit elements, the system behavior was verified and the fundamental models behaved 

like expected in the test environment. However, simulations alone cannot be considered proof that 

the model is verified, especially considering the simulation issues emphasized in section 10.1.  

A synthesis was therefore conducted to investigate if the circuit model was synthesizable. This was 

indeed the case, but still sufficient proof of complete model verification cannot be considered 

obtained. The reason is the immense complexity of asynchronous circuitry at the layout level. Delay 

matching is a critical issue not easy to replicate in simulations, and as mentioned in section 10.5 and 

in background theory conventional synthesis tools do not support delay matching to the extent 

needed for the proposed asynchronous design. In worst case this could mean that even though the 

designed model behaved correctly according to simulations, it could be hard to construct a working 

physical layout. A direct consequence is that a realistic hazard analysis of the system is not obtained. 

This fact leaves some critical areas open to further research, and makes it difficult to be certain about 

if an Asynchronous Event System is practical for an XMEGA implementation. In depth hazard 

research is therefore considered an important part of future work.  

 

Asynchronous testing is a vast area barely touched in the scope of this thesis.This choice was made in 

order to keep focus on the model and architectural development, and present a result which to a 

greater extent can narrow the search for test methodologies to the ones specifically applicable for 

the model.  Verification by simulation served as proof of the conceptual models, leaving test 

development as a good suggestion for future work. 

  

Uncertainties regarding the developed model are also to some extent reflected in analysis 

considering the asynchronous implementation. Estimated gate count is derived from the 

architectural models under the assumption that these are valid. The most uncertain estimates are 

considering additional logic and routing area consumed by wires. Included in the presented gate 

count are standard numbers used by Atmel for routing area influence, and an additional 10% has 

been added to compensate for the FPGA inspired topology demanding more routing resources. 25 % 

has been added for additional logic like synchronizers, interface-logic and control logic. Since 

developing an asynchronous Event System would require much custom designed elements and new 

standard cell layouts, good area utilization is deemed possible. This includes clustering of SRAM cells 

and effective routing layout, possibly making the area contribution from extra routing and interface 

logic smaller than expected. The implementation area is also dependent on the optimization from 

the synthesis tool, making an exact estimation hard to derive without a physical layout. 
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Estimated results put an Asynchronous Event System with the same feature range as the current 

Event System about 23% larger, using 5555 NAND equivalents including 0.125 kB of additional FLASH 

memory.  An Asynchronous Event System with full range computational functionality featuring 24 

interconnected 4-LUTs for logical computation demands an estimated area increase of 154% 

compared to the current Event System. In terms of NAND gate equivalents, the full range version 

with 0.25 kB extra FLASH memory uses 11413 NAND gates. 

 

Being only a sub-system on the XMEGA microcontroller an increase of 23% in area is considerable, 

and 154% out of the question. To put these numbers in a technology perspective, the scaling theory 

applied for AESRN performance analysis in section 11.3 also estimates a decrease in area of 50% for 

each new process generation [49]. It must be kept in mind that these are only estimated numbers, 

but they give a good indication as to what potential future technologies hold for integrating more 

complex architectures. Scaling theory was also used to estimate the performance of the pipeline 

structure used in the Asynchronous Event System. Numerous references were used to obtain data 

for estimation, and many of these emphasized variable process parameters influencing the final 

result with respect to circuit delay. A reference “worst-case” NAND gate delay was derived from a 

paper applying test conditions similar to the AESRN pipeline. Scaling this number from a 90nm 

process to preceding processes was done by a scaling factor commonly accepted in literature [49]. 

The potential for miscalculations because of process dependent variables is present, and the derived 

numbers should therefore be considered as guidelines for performance rather than absolute reliable 

values. However, compared to other attempts in literature using the same pipeline structures, the 

numbers were consistent enough to be plausible performance results.  

 

Synchronizers interfacing the synchronous peripheral domain are not included in the pure pipeline 

event rate calculations, but will add to the delay when applied for a realistic implementation.  In 

worst case with a two-flop synchronizer the added delay could be as much as two CPU clock cycles. 

Continued research in the field of synchronizers applicable for the Asynchronous Event System is 

therefore essential to come up with reasonable event transportation latency. 

 

Possible savings in power consumption by applying an asynchronous transfer protocol is perhaps the 

most interesting feature offered by an Asynchronous Event System. Unfortunately it is also the 

hardest feature to estimate and predict. With no accurate data considering power consumption or 

energy usage for the Event System [6], measurements are hard to derive even at estimation level and 

would leave these numbers to pure guesswork.  

 

Although being the main focus of this thesis, the Asynchronous Event System is a result of two 

preceding architectural suggestions. First to introduce the concept of programmable routing was the 

HERN solution with embedded I/O-processor. Analysis with respect to size measurement can be 

deemed accurate for the I/O-processor based on earlier Atmel research [9], and for the switch blocks 

the model first discussed in this section was used. According to table 7-1 the proposed HERN routing 

architecture with the simplest I/O-processor developed by Atmel [9] measures 3150 NAND 

equivalent gates, or about 43% smaller than the current Event System. The most realistic alternative 

is a more advanced I/O-processor, which increases the gate count to 4650 NAND. As for the 

asynchronous solution with no computational elements this HERN architecture could be interesting 

for implementation in a more aggressive process. The biggest issue by introducing an I/O-processor is 

perhaps associated energy consumption, which requires careful design optimizations and power 

down capabilities to compete with the current Event System. Analyses on these issues are also hard 

to obtain due to the custom layout required for each processor alternative, and must be associated 

with the applied instruction sets.   
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The second solution relies on CPLD architectural elements, and implements these as an additional 

peripheral unit available to selected Port and TC modules. Even though Atmel’s own CPLD design is 

used as basis, it is very difficult to derive exact estimates for size, performance and power 

consumption. Datasheets used for these estimations does not provide detailed information on these 

areas when scaled to fit an XMEGA implementation, and the estimations should therefore be 

considered strictly as guidelines. The programmability in the CERN solution lies in configuring each 

product term computed by each macrocell.  

By controlling the number of configurable MCBs associated with each Port / TC peripheral, a tailored 

implementation is achievable. Communicating with traditional bus solutions, this solution is the most 

easy to interface into the existing Event System, and is considered the most promising Event System 

solution in a “near-future” development perspective. Suffering from area overhead due to the large 

amount of configuration bits needed to configure the CERN, some work tailoring the proposed 

architecture to an XMEGA implementation is essential before launching the CERN as a new Event 

System. 

 

Common for all proposed Event System solutions is the concept of programmability. Supporting the 

required amount of configuration bits by FLASH memory a limited amount of configuration bits can 

be included at a relatively cheap cost increase. Ranging from approximately 416 configuration bits for 

the HERN solution, 1800 bits for a full range functional AESRN solution and 3120 bits for the smallest 

CERN solution, the amount of programming bits are considerable. Another issue that has not been 

investigated is to determine how programmability should be solved run-time, and how configuration 

bits can be efficiently supported by FLASH. Programmability is a nice feature, and enables the user to 

customize the system to a larger extent than the original Event System. Programmability issues 

include configuration setup-time, extra routing from FLASH memory to the switch block memory cells 

and extra area to hold the configuration bits. Larger area consumed by memory also increases energy 

consumption, which means that it is an application choice to determine the level of programmability 

which is most cost effective. 

 

In terms of meeting the requirements defined in the problem description of this thesis, all proposed 

solutions each represent a unique way to approach the defined problems. Cost effective routing of 

signals is achieved for all solutions, because the extent of available programmability can account for 

the area increase compared to more traditional MUX or bus based solutions. Included is also the 

hierarchical aspect, which in the AESRN simulations indicates less latency than global signals. 

Concerning implementation costs, all solutions are more expensive than the current Event System.  

With increased functionality the cost versus functionality ratio is an application and device 

dependent factor, and all solutions are scalable with respect to event channels and computational 

elements. For instance the AESRN solution can offer increased capacity, performance, flexibility and a 

possible decrease in power consumption. The penalty is larger circuit area, increased design time and 

more complex tools. Peripherals are reused or modified for increased functionality in all solutions. 

Although many of the presented problems have been solved, this section also points out that much 

more work must be done before a new Event System prototype which fundamentally changes the 

existing architecture can be realized.  
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14 Conclusion and Future Work 

14.1 Conclusion 

The research conducted throughout this thesis has resulted in three distinct proposals for new Event 

System solutions; The HERN, CERN and Asynchronous Event System. All solutions have been analyzed 

with respect to estimated performance and area, including an overall cost analysis for non-

measurable cost metrics related to market and development costs. Special focus was given on the 

research needed to develop an asynchronous solution for Event System implementation, and the 

result features a synthesized model of such an Event System designed in Verilog. Simulations used to 

verify the functionality of the Asynchronous Event System have successfully distributed 24 events 

over the global routing network AGERN. Cooperating with the local ALFERN network, a maximum 

capacity of 32 unique events concurrently is achievable, which is four times the capacity of the 

current Event System. According to simulation asynchronous LUT functionality has been included 

according to architectural specifications, promising logic computational elements for events. Fully 

programmable routing has also been simulated, making arbitrary routing possible between 

peripherals. The simulations display relevant test scenarios, and are regarded as proof of the 

asynchronous event distribution concept introduced by the Asynchronous Event System. 

 

Area estimations for Atmel’s 35k9 process indicate a size 23% larger than the current Event System 

for an AGERN/ ALFERN routing system without computational elements. In terms of NAND 

equivalents this equals 5555 NAND gates. An addition of 2 TCFBs with one 4-LUT each increases the 

area overhead to 43% with 6418 NAND gates, while 8 TCFBs demand 69% increase costing 7627 

NAND gates. Estimated performance gain estimates the Asynchronous Event System between 6.5 

and 1.6 times faster than the Event System in pure event transportation rate depending on the 

process technology applied for implementation. Concluding on the estimated numbers, the prospect 

of implementing an asynchronous Event System becomes more achievable as process geometry 

decrease, which according to scaling theory will reduce the gate count by 50% for the next process 

generation. Having experienced the difficulties of asynchronous design, another conclusion indicates 

that more research on specialized synthesis tools and test methods must be initiated before a 

commercial Asynchronous Event System is realistic. An asynchronous Event System is therefore not 

the best solution for a “near-future” Event System.  

 

The HERN and CERN solutions have also been analyzed with respect to area and performance. A 

simple HERN with full range programmable routing is estimated at 3150 NAND gates, while and 

advanced I/O-processor would demand up to 7525 NAND gates. Estimated area compared to the 

Event System is 43% smaller and 67% larger for Atmel’s 35k9 process. A CERN solution with 1 CPLD 

MCB in each Port / TC peripheral occupies 5308 NAND equivalents due to large memory 

requirements. Due to the simple interface towards existing peripherals for the CERN solution, this 

solution shows the best prospects for “near-future” Event System implementation. 
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14.2 Future Work 

To ensure correctness of the asynchronous model, work on developing a library of asynchronous 

elements by handmapping should be an interesting area of research. Mainly targeted for FPGA 

implementation, a full scale realistic test with the Asynchronous Event System as a functional circuit 

could provide valuable data in areas like delay measurements and power consumption. Based on the 

Verilog designs conducted for this thesis, optimizing the given code and fabricate a layout for testing 

purposes should be an achievable task. Only with obtained test data is it possible to verify or discard 

the proposed architecture as a model for future implementation. Reducing the configuration bit 

count could also be achieved by substituting the applied one-hot encoding with a more intricate 

configuration scheme.    

 

Another aspect of continued asynchronous research is applying a new handshake protocol to further 

increase circuit speed. Some of the referenced literature includes research on ultra-fast pipeline 

structures, maintaining higher computation rate than the current 4-PDR handshake protocol. If such 

protocols could be implemented with minimal area overhead compared to the  

4-PDR protocol, it could prove a good addition. Not presenting detailed research in the field of 

hazards associated with asynchronous circuits in the scope of this thesis, continued work in this area 

will be important to conclude further on the feasibility of an asynchronous Event System. Especially 

considering that the synchronizer work presented in  [24] [26] [25] does not consider a 4-PDR 

protocol, but relies on the 4-PBD protocol. Integrating synchronizers as part of the suggested 

implementation work would be a valuable addition to the Asynchronous Event System research with 

respect to total system latency. 

 

As an additional task to more accurate power estimations, the effect of using more aggressive 

process technologies is an alternative area of research. As transistor size decrease, the static power 

consumption increase while dynamic power consumption decrease. Determination of this 

relationship is important to characterize the power benefits offered by an asynchronous solution. 

 

I/O-processor research is also an area of focus, along with developing a more tailored CPLD based 

solution with limited programmability compared to the existing CERN solution. A more in depth 

analysis on which signals that should be included for each CPLD MCB and how many MCBs that are 

needed to implement efficient event computations in each Port / TC peripheral, are good suggestions 

for future work. 

 

By concentrating on the lower abstraction levels of an implementation, this thesis leaves much work 

in the area of tool development to support programmability features, and analyze if programmable 

solutions can be integrated in the tool flow at a reasonable cost at all. How to effectively program all 

configurations and map the connections towards each programmable element is also a future 

challenge. This will include researching effective instruction sets for fast run-time FLASH 

configuration. 
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16.1 Architectural Drawings 

A 16.1-1: HERN Hierarchical Overview 
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A 16.1-2: ALFERN Local View 

 
A 16.1-3: ALFERN Hierarchical View 
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A 16.1-4: AGERN viewed from Port / TC Peripheral side 
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A 16.1-5: AGERN Viewed from ADC / DAC side  
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A 16.1-6: Timer Counter Combined Functional Block Overview 

 

 

 

A 16.1-7: Timer Counter Functional Block Overview 
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A 16.1-8: Timer Counter Computational Block overview 
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A 16.1-9: Ouput Copy Element 
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16.2 Custom switch design 

A 16.2-1: Uni-directional 24 channel input/8channel output  
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A 16.2-2: Uni-directional 12 channel input/ 3x1 channel output 

 

 

 



 

 

- 115 - Appendices 

A 16.2-3: Uni-directional 16 channel input/8 channel output 

 

R

A

M

Rd Td

ReTe

R

A

M

Rd Td

ReTe

Transistor Count:

Total transistor count Switch Element:             30x8 = 240          

Total amount of Pass Transistors: 6x8 = 48

Total amount of SRAM Transistors: 2x6x8 = 96

_____________________________________________________

Total Transistor Count 384 

Total NAND eq. Gate count 101

Total Amount of configuration bits 16

Ev_c_inS[7]

Ev_d_inS[7]

T_eS[7]

Ev_c_outE[6]

Ev_d_outE[6]

Re_E[6]

Synch 

Buffer

Synch 

Buffer

N

S

W E

Ev_d_inW[0]

T_eW[0]

Ev_c_inW[0]

Ev_d_outE[0]

R_eE[0]

Ev_c_outE[0]

Ev_d_inW[7]

T_eW[7]

Ev_c_inW[7]

Ev_d_outE[7]

R_eE[7]

Ev_c_outE[7]

Synchronous gate count (4 channels):

SRAM transistors: 2x6x4 = 48 transistors

Pass transistors (t_e excluded) 4x4  = 16 transistors 

Total: 64 tansistors

NAND equivalents:  8

Amount of configuration bits: 8

 

 

 

 

 

 



 
- 116 - Appendices 

A 16.2-4: Bi-directional 16 channel input/ 16 channel output 
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A 16.2-5: WCHB Design Detail 
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16.3 Verilog Circuit Modules 

A 16.3-1: Müller C-element 

 

A 16.3-2: WCHB element 
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A 16.3-3: Switch Block architectural overview 
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A 16.3-4: Output Copy Element 
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16.4  CPLD Area Estimation 

As mentioned in section 5.4 and chapter 0 the CPLD architecture targeted for implementation is the 

Atmel ATF1508RE architecture. To estimate the equivalent area this CPLD architecture there are 

some important aspects that must be clarified, where the important questions are: How is the switch 

matrix connected to input / output terminals, and how many connections are there in the 

programmable AND-plane? Area occupied by these programmable connections is significant, and 

therefore relevant literature was investigated to answer these questions. Some of the assumptions 

taken in these estimations may not be in accord with the architecture in question, but they are taken 

after the author’s best knowledge. 

 

 A 16.4-1: CPLD Area Contributors  

Designing a crossbar for allocating inputs to a specific number of outputs are important to do in an 

intelligent way for PLA structures, so that unneeded programmable connections can be removed 

from the array to save significant area  [51]. For the area estimations in this thesis only to versions of 

crossbar structures are considered: Full crossbars and sparse crossbars. A simple illustration from 

[51] shows the difference between the crossbar architectures. 

 

 
Figure A 16.4-1: CPLD crossbar architectures [51] 

As can be depicted in the figure, a large saving of switch area can be obtained by using a sparse 

crossbar. According to the scientific work provided by Mark Holland in [52] sparse crossbars can be 

reduced to about 40% of the size of the corresponding full crossbar. Applying this factor to the switch 

matrix featured by the ATF1508RE architecture, an estimated number of switches and SRAM cells 

needed for a specific number of inputs and outputs can be determined. According to [7] all outputs 

from the switch matrix must be available for the programmable AND-plane, and therefore a full 

crossbar is used to estimate programmable switches and SRAM cells for this region. Each macrocell 

has a fixed amount of internal logic, which is estimated by counting the number of different elements 

and apply area according to the Atmel 35k9 standard cell library  [10]. 
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A 16.4-2: CERN Area Estimation      

The architecture used for estimation is shown in figure 8.3. For detail on the size of SRAM standard 

cells used for estimation, the reader is referred to appendix B.2. 

The switch matrix is included in each CPLD MCB to provide the correct input signals to each 

connected macrocell. Assuming a sparse crossbar structure, a 56 input 10 output crossbar will 

consume 5601056 =⋅ pass transistors and SRAM cells to control these transistors. Using the sparse 

crossbar scaling factor of 0.6 as obtained from  [52], the total amount of pass transistors and SRAM 

cells are 224)6.0560(560 =⋅− . Counting pass transistors as SRAM equivalents the crossbar’s 

equivalent gate count is 175 NAND. One sparse input switch matrix will be needed for each CPLD 

MCB, and support an arbitrary number of macrocells.  

 

Each macrocell involves five 5-input AND gates connected to the PTMUX, each connected to a 

programmable AND-plane. The programmable AND-plane is considered a full crossbar for maximum 

amount of programmable connections. As shown in figure 8.3 28 wires are connected to the 

programmable AND-plane, needing 7005528 =⋅⋅  pass transistors and 700 SRAM cells. Measured in 

NAND-equivalents the total count is 586 NAND equivalents. 

 

To calculate logic area the architectural drawings from [7] are used directly, mapping the logic 

elements to NAND equivalents for the 35k9 standard cell library. In appendix B.3 the detailed 

estimation is shown in table B-6. As can be depicted in table 8-1 the final result is 130 NAND gates for 

internal macrocell logic.  

 

Since the exact CPLD macrocell construction is not known, these estimates are meant as guidelines 

only and should not be counted as exact under any circumstances.   
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16.5 Synthesis Results 

C-element: 

 
WCHB-element: 

 
Switch Block: 

 
 

AGERN  network: 

 
Copy-element: 

 
ALFERN network: 

 
AESRN (Test example) : 
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16.6 Simulation Sequences  

A 16.6-1: C-element simulation (Figure A 16.6-1) 

To verify the behavior of the Verilog c-element model a test scenario was constructed. Using a 

testbench model similar to the one described in section 10.1.1, with a testbench clock to synchronize 

test signals, a series of different input combinations was enforced on the C-element. 

For this simulation the negative clk edge is used to issue test signals, but since the C-element is 

asynchronous the choice of clock edge does not matter for test purposes. Signals highlighted in bold 

face are marked in Figure A 16.6-1. 

 

clk 1 2 3 4 5 6 7 8 9 10 11 12 

a_in 0 0 1 1 0 0 1 1 0 0 1 1 

b_in 0 1 0 1 0 1 0 1 1 0 1 0 

s_out 0 0 0 1 0 0 0 1 1 0 1 1 
Table A 1: C-element test sequence 

 

 

 
Figure A 16.6-1: C-element test sequence 

• Point 1: First test sequence after reset condition. Since only one of the inputs are high, the 

  output remains “0”. 

• Point 2: Both inputs are high, setting the internal signal w_2 to “1”. Since the output s_out

  is an OR operation of all internal signals, the “1” propagates to the output. 

• Point 3: Only input b_in is “1”, but since the last output of s_out was “1” internal signals w_3

  is “1”, setting the new output of s_out to “1”. This sequence shows the stateholding

  capabilities of the C-element implementation. 

• Point 4: Both inputs are “0”, representing a reset condition for the C-element. The output is

  also set to “0”. 
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A 16.6-2: WCHB simulation (Figure A 16.6-2 and Figure A 16.6-3) 

Since the WCHB element is a crucial element in all the constructed switch blocks, it is very important 

to understand the behavior of a WCHBs handshake protocol. The 4-PDR protocol used for all 

asynchronous signal transfer in this thesis must be executed with a specific token sequence to ensure 

correct handshaking. In this simulation the rising edge of the clock is used to synchronize test signals. 

The first test scenario enforces the 4-PDR handshake protocol, to maintain correct pipeline 

functionality. To see erroneous behavior of the WCHB element, a test sequence applying an incorrect 

handshake protocol is conducted for test scenario 2. 

 

Scenario 1: 

The applied test sequence can be depicted in Table A 2, where columns in bold face are marked in 

Figure A 16.6-2. 

 

clk 1 3 5 7 9 

ev_c_in 1 0 1 0 1 

ev_d_in 0 1 1 0 0 
Table A 2: WCHB test sequence for scenario 1 

 

 
Figure A 16.6-2: Correct WCHB simulation sequence 

• Point 1: After reset is set high, the WCHB sends its t_e signal to the connected testbench to

  signal that it is ready for receiving data. T_e is always set with an internal logic delay

  used in simulations of 5ns. 

• Point 2: On the next rising clk edge the testbench senses that t_e from the WCHB is “1”, and

  issues an event on ev_c_in. T_e is set low from the WCHB to indicate data reception,

  and an event is sent on ev_c_out after 5ns delay. 

• Point 3: The event is detected by the testbench on the next rising clk edge, and the proper

   zero spacer, or reset token, is issued by the testbench.  When the WCHB receives

   the spacer, the handshake sequence is complete, and t_e is set to “1” to indicate

   that a new data token can be received. 

• Point 4: Both ev_c_in and ev_d_in set to “1” is an invalid input according to 4-PDR signaling

  protocol. However it is only invalid in the sense that decoding of the inputs are not

  valid, and will not cause a circuit failure. Both outputs ev_c_out and ev_d_out are set

  to “1”, and is handled by the testbench as a valid event to ensure proper reset 

  conditions. 
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Scenario 2: 

This scenario follows the same test sequence as scenario 1, but will try to omit the reset token after 

clk = 5 in Table A 2. This violation of the 4-PDR handshake convention will cause the pipeline to jam, 

until a reset token is produced. An example is illustrated in Figure A 16.6-3. 

 

 

 
Figure A 16.6-3: WCHB handshake sequence with errors 

• Point 1: The output is received by the testbench, but no confirming reset token is produced 

   in return.  

• Point 2: The absence of a reset token leaves the WCHB inputs high, and therefore the t_e 

   signal will always be “0” to indicate a busy state. WCHB outputs are also “1”, making

   r_e received from the testbench “0”. This situation is completely locked since both 

   instances think that the other instance is computing, and by definition busy. 

 

If any signal is not set correctly during a handshake, no matter if it is t_e, r_e or some of the input / 

output signals, the same locked situation will occur.  
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A 16.6-3: AGERN handshake simulation (Figure A 16.6-4 and Figure A 16.6-5) 

 
To fully understand how the switch blocks distribute signals, an expanded handshake description is 

given in the coming example. Based on the constructed scenario described in section 10.4, the reader 

is referred to this section for scenario details and descriptions. A delay of 5ns is used for WCHBs 

inside switch blocks, too visualize the signal propagation. 

 

 
Figure A 16.6-4: AGERN handshake sequence between switches 1,3 and 5 

• Point 1:   The northern input channels of switch 5 are connected to the western output 

    channels of switch 1. Therefore t_e_N from switch 5 is equivalent to r_e_W on 

    switch 1. 

• Point 2:   Switch 3 connects its western output channels to switch 5’s southern input    

    channels. The connection is reflected through t_e_S on switch 5, and r_e_W on

    switch 3. 

• Point 3:   Switch 1 receives inputs from Port C on northern input channels 0 and 1, and from

    Port D on southern input channels 2 and 3. These propagate to the western  

    output channels 0-3, and are sent to switch 5. 

• Point 4:   Switch 5 receives the output from switch 1 on it northern inputs, and the western 

    outputs from switch 3 on it southern input. Note that for both switch 1 and switch 

    3 the corresponding t_e channels are set to “0” a 5 ns delay after the input is    

    received. 

• Point 5:   Outputs are issued from switch 5 on both northern and southern outputs, on    

    output channels 0-7 utilizing the full capacity of the switch block. T_e_N and t_e_S

    are set to “0” accordingly, and received on r_e_W  of both switch 1 and switch 3. 

• Point 6:   The first reset tokens arrive one clk cycle after the data tokens, in the test set to

    20ns. The reset token propagates the pipeline in the same manner as the data

    token, resetting all switch blocks for the next transmission. 
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While Figure A 16.6-4 shows a detailed handshake correspondence, Figure A 16.6-5 shows how 

AGERN outputs are delayed in different channels according to how many switch points they 

encounter on their path through the AGERN. 

Figure 10.13 (left) shows the destined path for each event, and the delay is reflected in Figure A 

16.6-5. 

 

 
Figure A 16.6-5: AGERN output delay 

• Point 1:  Output channels from switch 8 have only encountered the equivalent delay of two

    switch blocks, and are produced 10ns after the input events reached the AGERN. 

• Point 2:  Switch 4 delivers outputs that have traveled through 6 switches, and encountered

    an equivalent delay of 30ns, on its eastern output. This is 20ns later than the output

    from switch 8.   
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16.7 AGERN 24 Event Distribution Scenario 

A 16.7-1: AGERN 24 Event Distribution Scenario 

 

 
 

The top figure depicts a possible event distribution scenario for 24 concurrent events on the AGERN. 

Below is the configuration used to program each switch block, in accord with the example from 

section 10.4. The same configuration is also available for demonstration as one of the test setups on 

the included CD. 
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16.8 Appendix C – Scientific Paper 

 

C 16.8-1: Scientific Paper - “Event Control and Programming for Microprocessor Peripheral 

Systems” 
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Event Control and Programming for Microprocessor
Peripheral Systems

Rune André Bjørnerud, Morten W. Lund , Kjetil Svarstad

Abstract—To handle communication between on-chip periph-
erals without interference from CPU, DMA or interrupt re-
sources, the AVR XMEGA microcontroller introduces a periph-
eral resouce known as the Event System. The Event System cur-
rently implemented on the AVR XMEGA offers limited resources
for logical event computation, and can basically be considered an
advanced routing facility for I/O and peripipheral signals. This
work proposes a new Event System solution, trying to enhance
routing flexibility by offering a programmable asynchronous
interconnect topology with pipelined switches, and increased
computational power by using asynchronous LUTs to handle
logical event computations.

I. INTRODUCTION

The AVR XMEGA Event System [4] is designed to operate
in a paripheral rich environment, distributing events between
peripherals with limited involvement of CPU resources using
the Event Routing Network (ERN) as shown in figure 1.
Althoug a power saving resource for the AVR XMEGA, the
Event System is limited to 8 global event channels on the ERN
and offers no functionality for logical operations like AND or
OR on distributed events. This limits the computational power
of the current Event System.

A master’s thesis [11] adresses these limitations by propos-
ing an Asynchronous Event System with a pipelined inter-
connect network known as the Asynchronous Event Sys-
tem Routing Network (AESRN). To ensure full routing
flexibility the AESRN interconnect structure is based on a
pseudo-hierarchical FPGA topology using custom designed
SRAM programmable switches to route events propagating the
pipeline. In [16],[17] Teifel et. Al presentes an asynchronous
pipelined FPGA interconnect structure, where fine-grained
pipelineing is employed in each switch block to ensure high
througput. Hierarchical FPGA topologies as discussed by Ag-
garwal et. Al in [1] promise reduced cost in terms of switching
area compared to segmented routing topologies. Inspired by
elements from these papers, the Asynchronous Event System
proposes a custom designed FPGA-inspired topology designed
to fit a microcontroller implementation. Applying hierarchical
design elements the new routing topology also makes it pos-
sible to utilize local communication between selcted modules
for minimal event latency.

Asynchronous computation is ensured by LUTs imple-
mented in a dual-rail encoded handshake environment, where
two implementation methods is discussed in [16] and [2]. A
modified version of the logic cell discussed in [2] is designed
for the AESRN to provide full asynchronous computation for
events.

Morten W. Lund with Atmel Norway

This paper is structured as follows: Section II will provide
background information on the event notation developed by
Atmel, while section III considers asynchronous logic in gen-
eral especially emphasizing asynchronous pipeline. Section IV
presents the proposed Asynchronous Event System solution,
which will be further analyzed with respect to performance
and area in section V. Section VI concludes this paper and
outlines further work.

Figure 1. Original Event Routing Network [4]

II. THE AVR XMEGA EVENT SYSTEM

Atmel has developed a unique event notation and definition
for the Event System, which will be used to describe event
channels and event flow in the Asynchronous Event System.
The presented notation i strictly applicable for the Event
System used in the AVR XMEGA, and should not be confused
with the general event notation presented in literature.

An event indicates that a change of state has occured
in a peripheral [4]. The two main event types used in the
Event System is the data event and the signaling event. A
signaling event indicates that a peripheral state change has
occured, while a data event can hold additional information.
The event channel consist of two event wires ev_c and ev_d.
The combined bit pattern represented by these two wires
defines the event type received by a peripheral. Each peripheral
can have a different interpretation of a specific event, and
depending on the interpretation of the event different actions
can be triggerd in different peripherals. More details on events
are given in [4],[11].



2

III. ASYNCHRONOUS CIRCUIT DESIGN

The asynchronous design paradigm differs fundamentally
from synchronous design, and a good overview of asyn-
chronous design is given by Scott Hauck in [6] and Jens
Sparsøet. Al in [15]. Some mentioned benefits over syn-
chronous systems include: Better adaptability to new and
more aggressive process technologies due to delay insensi-
tivety properties [16],[14],[15], average-case timing assump-
tions compared to synchronous systems which must consider
worst-case timing performance to meet clock skew demands
and global timing issues [6], lower power consumption due to
event driven consummation [16] and zero power consumption
when in standby [15].

Especially the low-power feature is interesting for a pro-
posed Event System solution, but exploiting the fact that events
are asynchronous by nature[6] could also yield performance
benefits over a synchronous Event System. Some well ac-
cepted drawbacks compared to synchronous circuits are poor
EDA- and CAD tools support [14] and larger circuits due
to redundant handshake elements [15]. One of the biggest
challenges connected to asynchronous circuits are concerning
different types of hazards. Static and dynamic hazards are
covered in [6] and [15], while metastability issues are covered
in [7]. Metastability issues are particularly important to be
aware of considering an Asynchronous Event System, because
it will interface a totally synchronous environment.

A. Asynchronous QDI-pipelines

Since asynchronous timing is non-clock dependent several
timing models exist, but the proposed AESRN only considers
the Quasi-Delay Insensitive (QDI) timing model[6],[14],[15].
With the absence of clock-driven timing, some other means of
synchronization must be implemented. The Müller C-element
[10],[18] is commonly used for this purpose because of it’s
stateholding property. In asynchronous pipelines handshake
protocls are used to obtain synchronization for data elements,
called tokens, propagating the pipeline. According to [8] the
four-phased bundled data (4-BD) protocol or four-phased dual-
rail (4-PDR) protocol is usually considered for asynchronous
circuits. The 4-PDR protocol is used in several pipeline
structures [16],[17],[19], with the benefits of meeting the QDI-
assumptions and thereby offering a natural robustness to delay
variations [15]. Dual-rail encoding operates with two data rails
where the request for data is encoded in the combination
of the two rails, and the acknowledge is sent on a separate
wire. Because the request for data is encoded in the received
token, no timing violations between request and acknowledge
can occur as is the case for the 4-BD protocol [8]. More
information on the choice of handshake protocol is featured
in [11].

Fine-grained pipeline structures rely on token buffer el-
ements in the switch blocks to maintain high throughput
[16],and two common implementations for this purpose is the
Weak-Condition Half-Buffer (WCHB) and PreCharge Half-
Buffer (PCHB) [16],[14],[19]. One possible WCHB imple-
mentation using an enable signal is provided in figure 2.
WCHBs are the smallest and fastest QDI buffer with the

shortest cycle time [5], but a mixture of both PCHBs and
WCHBs in the pipeline can lead to more optimal throughput
[19],[20]. For a more in depth discussion on this topic the
reader is referred to [11],[20].

Figure 2. A possible WCHB element implementation [16]

IV. THE ASYNCHRONOUS EVENT SYSTEM

To utilize the fact that selected Port and Timer/Counter (TC)
peripherals are closely interconnected in the AVR XMEGA
[4], the Asynchronous Event System proposes a pseudo-
hierarchical topology to utilize the frequent communication
between these modules. Partitioned into an Asynchronous
Global Event Routing Network (AGERN) and Asynchronous
Local Functional Event Routing Network (ALFERN) both
local and global communication can occur concurrently with
minimal latency for local event distribution between Port / TC
peripherals. To make the event flow more intuitve to predict a
two-way pipeline structure is applied, meaning that the event
channels are partitioned in two main event flow directions.
This can be depicted in figure 3, where the Port / I/O side of
the developed AGERN is illustrated.

Figure 3. Asynchronous Global Event Routing Network Port / I/O side [11]

Each switch block is custom designed to fit the two-
way routing scheme, with a capacity of 8 event channels
in each direction [11]. Each switch block is constructed by
multiple switch points, each switch point providing token
buffer capacity to maintain a fine-grained pipeline model [16].
Utilizing the fact that an Event Channel in the original AVR
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XMEGA Event System [4] is constructed by the two wires
ev_c and ev_d the 4-PDR protocol is applied for the pipeline
structure to minimize wire overhead. One WCHB is used in
each switch point to provide token buffering, emphasizing
fast token echange and small implementation area. Another
reason to use WCHBs is that the AESRN does not include
computation elements in the pipeline, limiting the need for
more advanced buffer structures like PCHBs.

Figure 4 illustrates a switch point inside the switch block.
SRAM cells hold the configuration for each switch point,
where one SRAM cell control both the event data rails and
the corresponding enable wire for each Event Channel. As
in [16] an enable wire which represents the logical inverse
of the acknowledge is used to yield smaller WCHB circuits.
The switch point illustrated in figure 4 needs 4 bits for
configuration and the whole switch block i configured with
32 bits.

Figure 4. Custom asynchronous switch point and switch block layout

To implement LUT functionality the proposed solution
targets at using buffer registers implemented in each TC
module [4], and use these to hold LUT configurations when
not used for buffering. By combining a 16:1 MUX controlled
by asynchronous inputs and surrounded by handshake logic,
interfacing to the dual-rail protocol applied in the AESRN
pipeline is trivial. One register supporting LUT functionality
with handshake logic and routing is denoted a Timer Counter
Functional Block (TCFB). One Port / TC constallation can
include 6 TCFBs if all buffer registers are used for LUT
functionality, giving a total capacity of 24 TCFBs with one
4-LUTs each. More details on implementation and issues are
given in [11].

V. SIMULATION AND PERFORMANCE RESULTS

A. Verification of the AESRN

Some papers emphasize that the lacking EDA- and CAD
tool support for asynchronous designs yields unoptimized
disigns [6],[14], and how handmapped asynchronous standard
cell libraries [10] or altering of the mapping software [13]
are possible solutions. These well known issues put physical
implementation beyond the scope of the master’s thesis in
[11], making verification by simulating selected asynchronous
distribution principles employed in the AESRN the chosen
method. Simulation of the AESRN pipeline distributing events
using both AGERN and ALFERN resources, also including
logical computation in the asynchronous LUT environment,

was the setting for an applicable test scenario. Sucsessfull
simulations showed a capacity of up to 28 concurrent events
distributed on the AGERN and ALFERN, and that the applied
4-PDR protocol worked as expected in the AESRN pipeline.
The simulations confirm the proposed Asynchronous Event
System model, but does not verify if a physical implementation
is possible. This is partly due to the mapping problems
mentioned above, and partly because run-time configuration
of the routing network by FLASH memory is a physical im-
plementation issue not verifyable by simulation. More details
on these issues are presented in [11].

Figure 5. AESRN pipeline-model and corresponding dependency graph

B. Performance Evaluation of the AESRN Pipeline

To analyze the AESRN pipeline performance, a method
described by Yahya et. Al in [19] and [20] applicable for QDI-
pipelines are modified to fit analysis of the AESRN pipeline.
Relying on analysis of the pipeline dependency graph, it
is possible to derive equations for the Total Cycle Time
(TCT) for each pipeline stage, which is defined as the time
each pipeline stage needs to process a set of one data and
one reset token [19]. Figure 5 shows the AESRN pipeline
model and associated dependency graph. Since the AESRN
pipeline includes no computational elements directly in the
token distribution path, the pipeline model depcited in figure
5 represents a simplified model of the one presented in [19].

Figure 6. Estimated WCHB TCT for differnt process technologies [11]

The equations used to calculate the TCT for a WCHB
element at stage N in the pipeline is featured in [11].

With no accurate data for element delay, a NAND gate
delay obtained by reaserach in [9] using pipeline conditions
close to the AERSRN with respect to element load and fan-
out was used. Scaling theory predicts a decrease of 30%
in element delay for each process generation [3], a number
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independently indicated by inverter delay analyses for different
process technologies in [12]. The worst case numbers for both
NAND-gate delay and scaling factor was used to obtain the
AESRN pipeline performance results in figure 6. With applied
Dual-Rail encoding in the AESRN, a new event notation
presented in [11] now calculates an event from two proceeding
data tokens instead of one single ev_c and ev_d combination.
For this reason the event frequency in figure 6 is half of the
token frequency.

C. Asynchronous Event System Area Estimation

By Employing asynchronous handshake elements in every
pipeline stage of the AESRN, the Asynchronous Event System
will have a size disadvantage over the currently implemented
Event System. Calculations based on architectural drawings
included in [11] priovides an area estimate when the equivalent
NAND-gate count is put in the context of approximated area
numbers provided by Atmel. All area related numbers released
in this section is released with the courtesy of the Atmel
Corporation.

Logic area estimations in table I are equivalent NAND gate
estimations from architectural drawings based on the Atmel
35k9 in-house standard cell library. Additional area includes
extra area for routing resources, synchronizers, glue-logic and
extra FLASH memory to support configuration bits. Total
NAND equivalents sums up both architecural logic area and
additional logic area in terms of NAND equivalents. For more
details the reader is referred to [11].

#TCFBs Logic NAND eq. Add. logic NAND eq. Total NAND eq.
0 3837 1718 5555
2 4173 2245 6418
4 4509 2351 6860
8 5181 2446 7627

12 5853 2827 8680
16 6525 3065 9590
24 7865 3548 11413

Table I
ESTIMATED ASYNCHRONOUS EVENT SYSTEM AREA [11]

VI. CONCLUSION

This paper has provided a concept study of a new Asyn-
chronous Event System, and givs a breif introduction to
the asynchronous design domain. Important concepts of the
AESRN pipeline has been verified through simulations, em-
phasizing switch programmability and event distribution on
both the AGERN and ALFERN networks. Area estimations
put a basic AGERN and ALFERN solution without compu-
tational elements about 23% larger than the original Event
System with its 5555 NAND equivalents, and with 2 included
TCFBs about 43% larger with 6418 NAND equivalents. Con-
sidering future process technologies this is not an unrealistic
alternative in terms of size. Included is also a capacity increase
from 8 events in the current Event System, to 28 events with
the Asynchronous Event System. Performance improvements
range from 6.5 - 1.6 times the original Event System for
event distribution 90nm and 350nm technology respectively.

Future work will include development of a physical model and
tools to handle effective asynchronous synthesis and testing. It
must also be focused on how FLASH memory can be used to
configure the switch blocks run-time, for fully flexible routing.
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