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Abstract—This paper presents a method for detecting 

periodic behavior and burst durations in IP traffic observed on 

access links. Periodic behavior in traffic observed on the 

Internet is growing due to the increasing amount of services 

with video components. The method is based on active probing 

and serial correlation of the observed probe packet inter-arrival 

times on the receiver side. Verification of the method is done 

based on an experimental implementation, using both 

controlled lab services and live public services. The services 

used in the experiments are adaptive video streaming based on 

Microsoft Smooth Streaming and Netflix. The results show that 

the method provides accurate results for both the estimator of 

service period and the burst durations. The findings are similar 

both for the controlled lab experiments and the live network 

measurements. The amount of probe traffic required in order 

for the method to perform satisfactory is very moderate.  

 
Index Terms—Periodic traffic patterns, traffic burst 

duration, active probing, serial correlations, adaptive video 

streaming, access links. 

 

I. INTRODUCTION 

The amount of services provided to Internet users around 

the world following an Over-The-Top service delivery model 

is increasing. This model is based on that the involved 

network operators are not taking any active measures in order 

to assure the required Quality of Service (QoS) levels of the 

specific services. Traffic is carried as part of the best-effort 

class and will therefore face obvious challenges in terms of 

being able to meet the end users expectations regarding 

Quality of Experience (QoE). 

The best-effort traffic class on the Internet is a rough place, 

and the handling of traffic is unpredictable. This can lead to 

fluctuations in the experienced QoS metrics with the 

potential of a negative service effect. The engineering 

approach to this with an Over-The-Top perspective is to 

make the services adaptive. The type of adaption required is 

for the service itself to be able to adjust their QoS 

requirements. The case of fixed QoS requirements, e.g. with 

regard to bandwidth or even packet loss ratio would not work 

well in a best-effort network class. 

 The strong growth of services with video components 

over the last years, are predicted to become even stronger in 

the years to come [1]. This success is partly caused by the 

emerging solutions and standard [2] for adaptive video 

streaming. The adaptive nature of these services have proven 

to be very effective, and enabled new business models (e.g. 

Netflix, YouTube) on the Internet for content which earlier 
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was considered impossible to deliver in a best- effort QoS 

class. 

An interesting consequence of the growing amount of 

video services, and adaptive ones in particular – is that the 

traffic patterns on the Internet are changing. This alone is of 

course interesting enough, but in the context of adaptive 

services it may also create some interesting effects. An 

interesting research question arises from this, as it will 

become more and more common that adaptive services must 

adapt according to other adaptive services. Whether this will 

lead to a continued or reduced success in terms of 

effectiveness for this type of services remains to see. 

A. Problem Statement 

The research topic addressed in this paper covers a method 

to detect and characterize services with a periodic behavior 

on access links, by means of active probing. As basis for this 

work we have used adaptive video services, which typically 

embed this behavior. Thus, the method does not address the 

specific recognition of a periodic service as being video or 

something else. The method focuses on detecting the period 

(if any) and also the burst duration of traffic inside each 

period. Further on, a basic evaluation of how much probe 

traffic is needed and also the required sample size is covered. 

The investigated method provides estimates for parameters 

(Tp, Tb) indicated in Fig. 1. The periodic pattern of the video 

service used in the experiments consists of burst and idle 

periods. However, it should be noted that even in the idle 

period there is traffic, but much less than in the burst periods.  

 

Fig. 1. Traffic pattern for a video service. 

 

The value of this work can be viewed as both a general 

contribution to the discipline of service characterization, but 

also as a candidate component of future methods for 

estimating available bandwidth. Obtaining knowledge of 

periodic components in the cross-traffic and also the duration 

of burst periods has a potential of increasing effectiveness 

and accuracy in available bandwidth estimations.  

B. Research Approach 

The chosen approach for investigating the suggested 

method of detecting periodic behavior and burst duration, is 

by means of experiments in a controlled lab environment and 

a real network with public services. In the lab environment 
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we use an adaptive video streaming service based on the 

Smooth Streaming platform from Microsoft, while in the live 

network we are accessing a the public Netflix service. The 

required background load in the lab environment is provided 

by means of a CBR type traffic source. The complete 

measurement setup will be further described in Section V.  

C. Paper Outline 

The structure of this paper is as follows. Section II 

provides an overview of related work; Section III provides 

the relevant characteristics of adaptive video streaming as 

captured by passive measurements; Section IV describes our 

method of detecting periodic traffic patterns and burst 

duration by means of active probing; Section V describes our 

hybrid passive and active measurement setup; Section VI 

presents the results based on the active probing and compares 

them with the passive measurements; Section VII presents 

our conclusions and an outline of future work is given in 

Section VIII.  

 

II. RELATED WORK 

The study of phenomena’s observed in Internet service 

usage and traffic patterns generated are done in different 

ways. Quite often the phenomenon of interest is required to 

be studied over time in order to obtain sufficient information. 

In such cases, the tools and methods available for analyzing a 

discrete set of time-ordered data (i.e. time series) are quite 

useful [3]. For the purpose of detecting periodic components 

in traffic pattern and the duration of such, estimators for serial 

correlation [4], [5] (also known as autocorrelation) are known 

to be very efficient.  

In the area of available bandwidth estimations along a 

network path, there are many different approaches to how 

this can be done using active probing techniques [6], [7]. The 

active probing results in a time series of observations, such as 

changes in delay components [8]. These observations are 

then used as input to the respective algorithms for estimating 

the available bandwidth. There are many challenges of 

performing such estimations in an accurate manner [9], 

among which neglecting the burstiness of cross-traffic is one. 

Among the more recent methods in this domain, the approach 

described in [10] is quite interesting. It aims at estimating 

available bandwidth in real-time and does this by applying a 

filter-based method. The idea of using filtering as part of the 

continuous processing of collected observations in our own 

work is inspired by this. 

Especially on access links, the traffic patterns observed are 

dominated by burst components. The reason for this is 

composed by different factors. First of all, the strong 

dominance of TCP based applications [11] has been shown to 

generate traffic bursts in short time scales [12]. This follows 

directly from the TCP protocol behavior in terms of timeout 

events and congestion avoidance. Another important factor 

which leads to bursty traffic is the strong dominance [1], [13] 

of services with video components. In our previous work [14] 

we studied the packet inter-arrival time distributions for this 

type of services, and suggested a new method to achieve a 

shaping effect. The typical traffic pattern observed when 

video services are present has the signature of periodic 

components, containing a number of bursts. 

With regard to the correlation structures in a time series of 

observed delay components, it has been shown [15] that the 

TCP protocol tends to generate traffic patterns with this 

property in sub-second time scales. In addition, the nature of 

services used also contributes to correlation structures in the 

time scale of seconds. The authors of [16] showed that they 

were able to detect Skype traffic by investigating correlation 

between traffic bursts in network traffic traces. A similar 

effect was shown in [17] where the focus was on video 

services. 

A more general study of how correlation structures in 

traffic patterns can be obtained either through sampling or 

active probing is presented in [18]. In this, estimators for 

correlations of network traffic are described and 

experimental results presented. The estimators are applicable 

for both samples based on passive and active monitoring. 

In our earlier work [19], [20], we studied the behavior and 

characteristics of adaptive video streaming from different 

perspectives. Further on, in our work in press [14] we 

presented a new method for achieving a traffic shaping effect 

for adaptive video streaming, without involvement from 

network components.  

 

III. CHARACTERISTICS OF VIDEO STREAMING SERVICES 

The periodic nature of an adaptive video streaming service 

is given by the repeated requests for the next segment in a 

video stream, at a specific quality level.  

 

Fig. 2. Passive measured burst durations for MS smooth streaming 

 

The passive measured burst periods for quality levels at 

3/4/5Mbps over the access capacity range from 10-50Mbps 

are shown in Fig. 2. The segment request interval (Tp) used in 

the experiments for the MS Smooth Streaming [21] based 

service is between 1.6 and 2.4 sec. The interval granularity 

available in the specific solution was 0.1s, which gave five 

different Tp scenarios available for use in the experiments. 

Only a selection of this is shown in Fig. 2 for the different 

video stream quality levels and access capacity levels. 

For the public Netflix service used in our experiments, we 

did not have the opportunity to create a similar wide range of 

scenarios as for the MS Smooth Streaming service. The 

obvious reason for this would be that it was a live service, and 

Netflix resources were not involved in our research. The 

characteristics of the Netflix streaming were studied in depth 

in [22], and significant differences between Netflix and MS 

Smooth Streaming solution are described. Relevant to our 

work are their findings that the Netflix streaming uses two 
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TCP connections and also that the request intervals relates to 

data volumes rather than duration.  

For a specific movie, accessed from Netflix in both their 

stated HD quality and also as non-HD the passive measured 

burst periods by using TCPdump (cf. Fig. 8) are presented in 

Fig. 3. 

 

Fig. 3. Passive measured burst period durations for Netflix 

 

In order to get a view on the traffic pattern generated by 

Smooth Streaming and Netflix in a scenario with a minimum 

of constraints, we measured the average burst periods using 

100Mbps access capacity. In Table I the results obtained for 

all available video quality levels are presented. It should be 

noted that the Netflix service may be subject to some 

limitations outside of our control as it resides outside of the 

lab environment. 

  

     

 

 
     

       

As a consequence of the Netflix request intervals being 

decided by data volumes, rather than playback time – the 

periodic nature of this streaming type could be questioned. 

The effect of using multiple TCP session is also interest in 

this regard. In Fig. 4, the estimated probability density 

functions (pdf) for passively measured time gaps between 

successive HTTP GET messages, per TCP session and 

combined are shown. The pdf estimations are based on 

measurement of the request intervals for the Netflix-HD 

movie at 30Mbps access. 

 

Fig. 4. Estimated PDF for Netflix period durations 

It is interesting to see that each of the two TCP sessions has 

a location in their distribution around 8 seconds. They also 

seem to multimodal, with peaks in additions to the 

dominating one at 8sec. When the traffic from the two 

sessions is studied together as they appear on the wire, we get 

a distinct shift in the distribution. The location for the 

combined pdf is around 4sec. This indicates that the TCP 

sessions are interleaved in such a way that a periodic pattern 

could be expected to have a period lower than each of the 

TCP sessions. 

 

IV. METHOD 

The method used in order to detect and estimate periodic 

behavior and burst duration of traffic on an access link is by 

mean of active probing, and a serial correlation at different 

lags for the times series of processed probe packet 

inter-arrival times. 

A. Probe Traffic Generation  

The probe traffic is generated according to trace files with 

configurable packet size and inter-packet times. The 

specification of the probe traffic is assumed known to the 

receiver. Further on, the receiver must be able to tell the 

difference between a probe packet received and any other 

traffic, and also that it is able to timestamp the received 

packets. As illustrated in Fig. 5, the time between probe 

packets sent is noted tin and the measured inter-arrival times 

between consecutive probe packets at the receiver side is 

noted tout,i. The time between packet pairs is noted tgap.  

 

Fig. 5. Packet-pair based probe traffic. 

Depending on the cross-traffic profile, the receiver may 

see either an increase or decrease in the probe packet spacing 

(∆ti). Recognizing that even cross-traffic during the tgap 

periods may impact the tout,i samples it leads us towards some 

kind of processing of the samples before using them further. 

B. Processing of Received Probe Traffic  

In order to simplify the analysis part we found that a basic 

filtering mechanism for the observed tout,i values was very 

efficient. The purpose of this is to filter out only those tout,i 

values with a clear indication of that significant cross-traffic 

has occurred during the corresponding time interval. The 

filtering approach is based on using a cumulative moving 

average CMi (cf. Eq. 1) of the tout,i samples, rather than the 

known probe packet spacing tin as basis for deciding whether 

a sample indicates cross-traffic or not. 

𝐶𝑀𝑖 =
𝑡𝑜𝑢𝑡 ,1+𝑡𝑜𝑢𝑡 ,2+ …+𝑡𝑜𝑢𝑡 ,𝑖

𝑖
                   (1) 

 

The time series Tout of observed tout,i values is then passed 

through the filter (cf. Eq. 2) using the calculated CMi value as 

input. The resulting time series is noted TF and contains 

elements noted tf,i.  

                 ∀ 𝑡𝑜𝑢𝑡 ,𝑖 ∈  𝑇𝑜𝑢𝑡  
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TABLE I: PASSIVE MEASURED BURST PERIODS AT 100MBPS

Burst Period 2Mbps 3Mbps 4Mbps 5Mbps

Smooth Streaming

with Tp=2.0s
- na - 0.07s 0.09s 0.12s

Netflix 0.13s 0.21s - na - - na -



𝑖𝑓 𝑡𝑜𝑢𝑡 ,𝑖 > 𝐶𝑀𝑖  𝑡ℎ𝑒𝑛  𝑡𝑓,𝑖 = 𝑡𝑜𝑢𝑡 ,𝑖                (2) 

 𝑖𝑓 𝑡𝑜𝑢𝑡 ,𝑖 ≤ 𝐶𝑀𝑖  𝑡ℎ𝑒𝑛  𝑡𝑓,𝑖 = 𝐶𝑀𝑖  

 

The elements of the time series TF is then used as input to 

computation of lag-s serial correlation Xs (cf. Eq. 3). For the 

sake of reducing computation time, and also the time required 

to detect and estimate period and burst duration, the 

maximum lag investigated should be set to a reasonable level. 

The chosen level should match a threshold in time, which 

reflects the highest potential period of interest to us. 

𝑥𝑠 =
 (𝑡𝑓,𝑖−𝑡𝑓   )(𝑡𝑓,𝑖+𝑠−𝑡𝑓   )𝑁−𝑠
𝑖=1

   𝑡𝑓,𝑖−𝑡𝑓    
2

 𝑁
𝑖=1

                   (3) 

In our case, since the probe packets are equally spaced in 

time, the lag value s directly maps over to time by simply 

multiplying it with the probe packet period. 

C. Analyzing Output from Serial Correlation 

The output of lag-s serial correlation of the time series TF 

gives a new time series consisting of correlation values Xs. 

Our method of detecting and estimating period and burst 

duration in the video streaming services used in the 

experiments is based on inspection of the Xs values. To 

demonstrate the strengths of this approach, we would first 

like to present a graphical view of the serial correlation of a 

theoretical discrete signal Fi (cf. Fig. 6) with a period of 300. 

 

Fig. 6. Theoretical discrete periodical signal 

This signal can also be represented as a time series 

consisting of a repeating pattern of length 300 with values of 

either 0 or 1. When the lag-s serial correlation is computed 

for this, we get an output as shown in Fig. 7. 
 

 

Fig. 7. Serial correlation for theoretical signal 

From investigating the graphical view of the serial 

correlation we can clearly see the period of the original signal 

indicated by the peak correlation value at lag 300. We can 

also see the width of 100 for the sub-period in the original 

signal which contains the three spikes. These capabilities of 

the serial correlation are well described in [5], and we will 

use this as basis for analyzing our measurement results for the 

purpose of validating our method. 

V. MEASUREMENT SETUP 

The hybrid active and passive measurement setup used for 

performing the experiments related to this paper contains 

several components, ranging from the client side over to the 

server side as shown in Fig. 8. On the client side the video 

service is accessed by a dedicated Windows based PC, while 

the client receiving the probe traffic is a separate Linux based 

PC. On the server side, we have the dedicated Microsoft 

Smooth Streaming server and also the probe traffic generator 

For the purpose of access to the live Netflix service, the lab is 

connected to the Internet.  The access network part consists of 

commercial off-the shelf products which give access to 

useful functions for controlling bandwidth similar to those 

used in commercial networks. 

 

Fig. 8. Hybrid active and passive measurement testbed 

The CBR traffic source is based on the Click Modular 

Router [23], which is a simple solution for generating basic 

types of traffic. The probe traffic sender and receiver which 

are used for the active measurements are based on the 

CRUDE/RUDE tool [24], which has the required capabilities 

of generating traffic pattern based on trace files. The 

TCPdump node is used to provide the actual characteristics of 

the services by means of passive measurements, as presented 

in Section III. These characteristics serve as basis for 

verifying the effectiveness and accuracy of the method we are 

studying. 
 

VI. RESULTS 

The results to be presented in this section cover both 

experiments with Smooth Streaming in a lab environment, 

and similar experiments using the live Netflix service. The 

results for the controlled lab service is more elaborate than 

the Netflix service. The characteristics for both services 

captured by means of passive measurements (cf. Section III) 

should be used as reference point when considering the 

following results. 

In the presentation of serial correlation results for the probe 

traffic inter-arrival times, the lag parameter has been 

converted to time for the sake of making the results easier to 

read. The lag to time conversion follows directly from the 

probe period used. 

A. Smooth 5Mbps Streaming on 100Mbps Access 

The scenario with potential of having the most burst 

oriented traffic is the scenario with full access speed 

(100Mbps) and a single service active using any one of the 

available Tp values between 1.6s and 2.4s. As we can see 

from Fig. 9, the computed serial correlations using the 

method described in Section IV gives very distinct peaks at 

the expected locations, i.e. at the Tp values being used.  
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Fig. 9. Period detection by active probing 

For this scenario, our method for detecting the periodic 

nature in the video traffic is quite accurate. The peaks are 

easy to detect both by means of graphical views and by pure 

computation. 

When we focus in on the lower range of the time axis, we 

also see the presence of serial correlation between probe 

packet IAT observations within a burst (cf. Fig. 10). The Tb 

values based on passive measurements from Table I have 

been included in the illustration, for each of the Tp cases. 

We observe that the serial correlation goes to zero at the 

point where we have reached the burst duration. The match 

between the passively measured Tb values, and those 

indicated by the points where the serial correlation reaches 

zero are very close.  

 

Fig. 10. Estimated burst duration by active probing 

In this scenario, both the graphical view and a 

computational approach would be able to present estimators 

for Tb based on the output from serial correlation Xs. 

B. Smooth 5Mbps Streaming on 25Mbps Access 

In the majority of scenarios investigated, the access 

capacity represents a limiting factor with regard to potential 

burst rate for the video stream. These are the cases where the 

access speed is lower than the interface speed on the video 

server side. This could be considered as the typical scenario 

in a real use case.  

In Fig. 11, the serial correlation results obtained when 

using a 25Mbps access are shown. For the sake of clarity, 

only Xs output when using two different Tp values (2.2 and 

2.4) are shown.  

The peaks in correlation values for the two Tp cases (2.2s 

and 2.4s) are quite clear. The side lobes surrounding the 

center peak are in line with the correlation results for the 

theoretical signal as shown in Fig. 6 and 7. The side lobes 

indicate that the main burst period contains sub-burst periods 

within it. These sub-bursts could be associated with the 

underlying TCP mechanisms carrying the HTTP 

encapsulated video stream.  When we focus in on the lower 

range of the time axis (cf. Fig. 12) we see the same type of 

side lobes with decreasing peak value.  

 

Fig. 11. Period detection by active probing 

 

 

Fig. 12. Estimated burst duration by active probing 

Following the same approach as for the 100Mbps access 

case, i.e. searching for the point in time when Xs reaches zero 

is not enough in this case. The analysis must take all the lobes 

into consideration, and look for Xs reaching zero after the last 

side lobe. Obviously, this works well based on the graphical 

view of Xs but could introduce some challenges in a pure 

computational approach. However, the potential level of 

precision in burst duration estimation is quite good. 

C. Netflix Streaming on 25Mbps and 100Mbps Access 

Measurements using the Netflix live stream in both 2Mbps 

and 3Mbps quality levels were done, over the full range of 

access capacity levels. The findings were similar for all 

access capacity levels, except for at the highest level of 

100Mbps. In the presentation of the results (cf. Fig. 13) we 

only show the output from the serial correlation for the 

3Mbsp stream, when using access capacities of 25Mbps and 

100Mbps. 

The difference in Xs output noticed at 100Mbps access, is 

that we instead of a single peak around 4sec get two peaks 

surrounding this value. Although not studied in depth, the 

source of this dual peak output is most likely the presence of 

two TCP sessions. At the highest access level, it seems as if 

the combined traffic pattern generated by the TCP sessions 

changes nature. This could be further studied by means of e.g. 

estimated probability density functions, but this is considered 

outside of the scope for this paper. 
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Fig. 13. Period detection by active probing 

In order to see if we are able to detect the burst duration for 

a Netflix stream using two TCP sessions, we focus on the 

lower range of the time axis for the Xs output (cf. Fig. 14). 

The average values for the real burst durations at 25Mbps and 

 

 
Fig. 14. Estimated burst duration by active probing 

The Xs output for both 25Mbps and 100Mbps access 

indicate burst durations of respectively 0.48s and 0.25s. 

These estimates are a little bit high, but keeping in mind that 

we are probing the aggregate of two TCP sessions, the results 

are quite promising. 

D. Active Probing Rate 

The amount of probe traffic required in order to detect and 

estimate the period and burst durations in an accurate manner 

is of interest and concern. The default probe pattern used in 

our experiments (cf. Fig. 5) was a sequence of 100 byte 

packet pairs, with a fixed 0.5ms gap between the packets (tin) 

and 6.1ms gap between the packet pairs (tgap). This gives a 

probe packet rate of 300pps, corresponding to about 240Kbps. 

However, it is important to note that it takes 2 probe packets 

(cf. Fig. 5) to produce one sample input to the computation of 

Xs. Thus, the probing rate is half of the probe packet rate. 
To study the effect of changing the amount of probe traffic, 

we performed experiments with probe packet rates down to 

160pps and up to 700pps (cf. Fig. 15), by changing the gap 

between packet pairs (tgap). The findings for both the video 

service in lab and Netflix were similar, thus we only present 

the results for Netflix on a 25Mbps access link as illustration. 

By investigating the serial correlation output Xs for Netflix 

(3Mbps level) for the purpose of detecting the period, both 

the lowest and highest probe packet rates give the same result. 

The period is detected to be around 4sec, as indicated by the 

peak in the Xs plots. The main difference between the plots 

used to detect the period is that a higher probe packet rate 

gives a smoother curve but at the same a less distinct peak. 

 

Fig. 15. Period detection, High/Low probing 

Focusing in on the lower range of the time axis for the Xs 

output for respectively high and low probe packet rates (cf. 

Fig. 16), we see that the same conclusion can be drawn with 

regards to burst duration based on high and low probe packet 

rates. However, the higher probe packet rate seems to 

indicate a higher value for burst duration than the lower. The 

average value for burst duration, captured using passive 

measurement (cf. Section III) for Netflix operating at 3Mbps 

quality level in our measurements was 0.45sec per TCP 

session. Thus, both the higher and lower probe packet rates 

give an estimate for the burst duration which is somewhat 

high, i.e. between 0.55-0.65s.  

 

Fig. 16. Estimated burst duration, High/Low probing 

Keeping in mind that the Netflix stream contains two TCP 

sessions, and that the active probing is influenced by both of 

these the results for burst duration detection are considered 

quite good. 

E. Sample Size 

When performing probing of real traffic it is important to 

reach a state where estimators for the parameters of interest 

can be presented as fast as possible. In our case, where serial 

correlation on a time series of observed packet pair gaps is 

performed, we are concerned about how long the time series 

must be in order for our estimators of both period and burst 

duration to appear. Obviously, detecting a periodic pattern in 

a time series requires us to at least study a time series of 

length greater than the repeating pattern.  

A range of experiments were performed for the video 

streams available (Smooth Streaming and Netflix) over the 

full range of access capacities. As illustration of the findings, 
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100Mbps (Ref. Section III) are indicated at 0.45s and 0.21s. 



the results for 5Mbps Smooth Streaming on a 25Mbps access 

is shown in Fig. 17. 

The findings for this specific case was that a sample size of 

about 10sec was required in order to get a clear peak in the Xs 

output at the correct time value (Tp=2.0). If the sample size 

was reduced to only 5 seconds, the peak in Xs output is shifted 

down to 1.65 seconds, which is not correct.  

 

Fig. 17. Period detection for different sample sizes 

The minimum sample size varies depending on the type of 

video stream and access capacity, but in all scenarios 

investigated in our work a sample size of 10 seconds of probe 

traffic was sufficient for detecting both period and burst 

duration. 

 

VII. CONCLUSIONS 

The results from our experimental evaluation of the 

suggested method for detection of periodic behavior and 

burst duration in cross traffic on access links are considered 

quite promising. The use of video as the cross-traffic service 

component in our experiments strengthens the significance of 

our findings due to the popularity of such services on the 

Internet. 

The use of serial correlation as a tool for analyzing a time 

series of observations is clearly a strong approach for the 

purpose of detecting periodic behavior. In all our experiments, 

the match between results from passive measurements 

(TCPdump) and active measurements (probing) have been 

very good. This applies to both the Smooth Streaming lab 

service, and also the live Netflix service. In the lab scenario, 

the addition of CBR background traffic does not change these 

findings. 

Analyzing the output of the serial correlation in order to 

estimate the burst duration is more challenging when the 

access capacity is reduced, and the side lobes of the serial 

correlation appears. In these cases, a certain error margin 

should be expected. However, it is clear that the information 

is available in the serial correlation output. 

The amount of probe traffic required for the method to 

perform well is considered to be acceptable. The experiments 

showed that using probe rates down to 128Kbps gave both 

period and burst information with reasonable accuracy. The 

results also showed that probing too much did not improve 

the accuracy to such an extent that it should be considered 

worth the additional bandwidth. 

The required sample size for the method to give estimators 

for period and burst duration was only subject for a basic 

evaluation. However, even in this domain the initial findings 

were positive. A required sample size of around 10 seconds 

does not directly qualify the method for all purposes. 

However, one should keep in mind that the periodic 

components of the services used were in the order of seconds. 

Therefore, it remains an open issue how fast this type of 

method can be expected to operate. 

 

VIII. FUTURE WORK 

The use of a more complex cross-traffic mix than just 

video services and CBR traffic is interesting to study. How 

well our method performs in such cases is an open issue and 

should therefore be investigated further. 

Finding the optimal probe traffic pattern (packet pairs, 

packet trains etc.) was not subject for study in our work. 

There is most likely room for further improvements if this 

topic is investigated in more depth. 

In the analytical part of our work we have relied a lot on 

the manual interpretation of graphical views of the output 

from serial correlation. If the method is considered for real 

implementation, some more work must be done in order to 

develop a more computational oriented approach.  

Using this type of cross-traffic characterization as our 

method provides is also considered interesting to use as input 

to algorithms for available bandwidth estimations. We plan to 

investigate this topic for the purpose of developing a new 

method of performing available bandwidth estimation by 

means of stratified probing. 
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