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Abstract

Mid-infrared laser diodes have been fabricated and tested, and semiconductor ma-
terials related to mid-infrared lasers have been characterized by X-ray diffraction
(XRD).

The temperature dependent lattice constant of Aly9Gag 1 As,Sb;_,, GaSb, AISb
and InSb have been examined using XRD measurements. For Aly9Gag.1As,Sb;_,,
GaSb and AlSb, the lattice constants were measured for temperatures up to 546°C,
while for InSb it was examined up to 325°C. For AISb, also the temperature de-
pendent Poisson ratio was determined. It was found that the thermal expansion of
Al-containing layers above room temperature was higher than previously reported.
An expression for the lattice matching condition for Aly9Gag 1 As,Sb; _, epilayers
on GaSb substrates as a function of temperature was presented. For GaSb, it was
found that the work of Bublik et al. [1] provided accurate data for the temperature
dependent lattice constant, and either our data or Bublik et al. [1]’s data should be
used. The measurement technique was validated by measuring the lattice constants
of Si and GaAs, where our measured values were found to be in agreement with
previously published values. For AISb it was found that the thermal expansion
was larger than previously reported in the literature. For InSb it was found that the
lattice constant near room temperature was larger than previously reported, and the
thermal expansion above 100°C was larger than previously reported.

Laser material was grown using molecular beam epitaxy (MBE). The grown
samples were processed into Y-junction laser diodes. The lasers were etched using
inductively coupled plasma reactive ion etching (ICP-RIE) and photoresist (PR)
ma-N 440 was spun on and baked for use as electrical insulation. The insulation
layer was etched using reactive ion etching (RIE) to uncover the top of the etched
lasers for contacting. It was found that a O,/CF4 etch gave the best uniformity of
the insulation layer. The lasers were contacted and tested.

The Y-junction lasers were characterized using power measurements for op-
tical power, multimeters for diode voltage, Fourier transform infrared (FTIR) for
spectral measurements, and an infrared camera for near and far field measure-
ments. The measurements suggested that the curved waveguide did not guide the
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light, most likely due to a low refractive index contrast. This was later supported by
scanning electron microscope (SEM) measurements, which showed an etch depth
of 1.4 um, much lower than the etch target of 1.9 pm.

The Y-junction waveguides were simulated using the beam propagation method
(BPM). Based on 2D BPM simulations, it was found that an effective refractive in-
dex contrast of at least 0.03 is required for guiding light in a curved waveguide for
our dimensions, and that waveguide roughness due to processing is less impor-
tant. The simulations support the findings from the laser measurements, and fur-
ther suggest that a deeper etch is required for functioning Y-junction laser diodes.
Suggestions for improvements to the manufacturing mid-infrared laser diodes are
presented.
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Chapter 1

Introduction and Motivation

The monitoring of gaseous species is of importance in environments where poi-
sonous or otherwise harmful gases are present. Measuring the spectral absorption
of gases enables accurate detection of a predefined gas even at low gas concentra-
tions. A good selectivity of a specific gas species can be achieved using this tech-
nique, provided no other gas species absorb radiation at the same wavelengths. In
fig. 1.1 the gas absorption lines of CO, CH4 and H,S are shown together with the
atmospheric absorption of water and CO;.

By measuring the absorption of radiation at wavelengths where water and CO,
don’t absorb, the presence of these gases can be determined from their spectro-
scopic signature. The gas concentration can be found by measuring the attenuation
of a laser diode beam intensity on a detector. The laser wavelength is then contin-
uously tuned across the absorption line, and the attenuation of the beam intensity
is used to determine the gas concentration. This is referred to as tunable diode
laser (absorption) spectroscopy (TDLS) [2]. Such a laser diode based system has
the potential to be very compact, since the laser diodes are usually just a few mm
long. A packaged laser diode is shown in fig. 1.2.

In this work, the focus is on fabricating GaSb-based tunable laser diodes in
the 2 to 2.5 um wavelength range utilizing junction structures. GaSb-based laser
diodes can cover wavelengths from about 1.6 to at least 3.7 um [3], by using alloys
of Al, Ga, In, As and Sb. This allows for TDLS systems in the atmospheric win-
dows between 2 and 2.5 um and above 3.5 um. It is also compatible with standard
cleanroom processes, enabling processing of the material into devices with critical
dimensions in the pm and sub-pm range.
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Figure 1.1: The absorption lines of CO (black), CHy (green) and H»S (red) in the
mid-infrared compared to atmospheric absorption lines of CO, and H,O (blue).
To avoid atmospheric absorption, TDLS in the mid-infrared is usually performed
between 2 and 2.35 um, and between 3.5 and 4 um. The data is from the high-
resolution transmission molecular absorption database (HITRAN) 2004 [4].



Figure 1.2: A photograph of a packaged laser diode, showing its small size.
The actual laser diode is usually only a few mm long, and it is placed behind the
window of the laser package. This photograph is downloaded from Wikimedia
Commons [5].

History: The fabrication of GaSb-based laser diodes goes back to the 80’s, with
the first InGaAsSb/AlGaAsSb laser grown by liquid phase epitaxy (LPE) pub-
lished in January 1980 by Kobayashi et al. [6], lasing at 1.8 um. This technique
has some fundamental problems related to the required thermal equilibrium condi-
tions; it limits the amount of In that can be incorporated in the InGaAsSb core due
to the miscibility gap [7]. It also causes problems for AlGaAsSb layers, where a
limited incorporation of As limits the maximum Al content in the layers to about
2040%.

The first InGaAsSb laser grown by molecular beam epitaxy (MBE) was pub-
lished in 1985 by Tsang et al. [8], where the benefits of this non-equilibrium
growth technique were demonstrated, by avoiding the miscibility gap problems
experienced in thermal equilibrium. It also has other benefits, such as the mini-
mum possible layer thickness, enabling growth of quantum wells (QWs).

There are other material systems that can also be used for mid-infrared lasers,
such as I'V-VI lead salts and II-VI CdHgTe based lasers. However, current research
suggests that the I1I-Vs are best suited [9]. There has been a lot of research on mid-
infrared laser diodes, and a recent update on the field can be found in chapter 5 in
Coleman et al. [9], which includes reviews of lasers based on all of these material
systems (II-VIs, III-Vs, and IV-VIs).

AlGaAsSb/GalnAsSb soon became an obvious choice for growing the laser
structures due to GalnAsSb’s low band gap required for mid-infrared lasing, and
AlGaAsSb’s low refractive index required for light confinement in the waveguide.
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The preferred substrate, GaSb, has a very high refractive index', which prevents it
from being used as a part of the waveguide design in these lasers.

The AlGaAsSb/GalnAsSb type-I laser is the most commonly used structure
for lasing at wavelengths close to 2 um. For wavelengths above ~2.7 pum, the
valence band offset (VBO) of the AIGaAsSb/InGaAsSb material system is too low
to confine holes and electrons in the same layer [10]. To reach longer wavelengths,
several techniques have been used, such as type-II and interband/quantum cascade
lasers (ICL/QCL). Type-II lasers have shown promising results in the wavelength
range 2.6-3.5 um [10], where type-I traditionally have not been usable due to the
lack of VBO. However, in recent years the type-1 AlGalnAsSb/GalnAsSb-based
lasers have shown promising results with room temperature (pulsed) lasing up to
3.73 um [3]. For even longer wavelengths, ICL have shown good performance
between 3.4 and 4.2 um [11].

While growth of the laser diode structures is an essential part of manufacturing
laser diodes, it is also important to process the laser material into working devices.
Tunable single-mode laser design can be achieved by several techniques, and the
most common techniques used are distributed bragg reflector (DBR), distributed
feedback (DFB) and vertical (external) cavity surface-emitting lasers (V(E)CSELSs).
Since the 80’s, many groups have been and are still researching these TDLS laser
diodes. The following references are a selection of their publications in order to
get an overview of the different group’s main foci. There are too many groups that
have worked on GaSb-based lasers to list all of them, and only the major groups
are presented here:

In the early 90’s a lot of work on MBE-grown AlGaAsSb/InGaAsSb based
laser diodes was performed by Lincoln Laboratory (H. K. Choi, S. J. Eglash,
G. W. Turner et al.) at Massachusetts Institute of Technology, on improving the Al-
GaAsSb/InGaAsSb laser structure. Some of their main topics include laser diodes
with high power [7, 12], low-threshold [13], and tapered waveguides [14]. Other
lasers in the 2-3 pm range [15, 16] were also fabricated. They also increased the
Al-content of the AlGaAsSb cladding from the value of 20-40% obtained in LPE
[17] to 50 [16]-75% [17] and ended up at the 90% [18] Al commonly used today,
which is important for increased optical and electrical confinement in the laser
structure.

Other advances by various groups in the 90’s were the introduction of strain
in the quantum wells to reduce the Auger recombination and other nonradiative
recombination mechanisms [19]. In the 2000’s there is still ongoing research on
GaSb-based laser diodes:

M. C. Amann et al. at Walter Schottky Institut (Technische Universitidt Miinchen)

! An overview of material parameters, such as refractive indices, band gaps and band offsets, can
be found in appendix A.



have been working on VCSELSs [20, 21] and long-wavelength mid-infrared lasers.
They have fabricated type-I lasers beyond 3 um wavelengths using quinternary
AlGalnAsSb barriers [3, 22], including the first publication of this laser structure
[23].

G. Belenky and L. Shterengas et al. at Stony Brook University have been
researching high power 2.3 um lasers [24, 25] and type-I lasers above 3 um wave-
lengths using quinternary barriers [26, 27].

J. R. Meyer, 1. Vurgaftman, and W. W. Bewley et al. at Naval Research Lab-
oratory have been researching "W type-II lasers [28], especially for use in ICLs
[29, 30]. These structures are then used for fabricating DFB lasers [31], including
lasers utilizing photonic crystals [32, 33].

J. A. Gupta et al. at Institute for Microstructural Sciences with the National
Research Council of Canada have been working on DFB lasers for gas sensing
between 2.3 and 3.5 um [34, 35]. They have also worked on the AllnGaAsSb
quinternary barriers, with lasing above 3 pm at room temperature [36].

A. N. Baranov, A. Joullié, and E. Tournié et al. at Centre d’Electronique et
de Micro-Optoélectronique de Montpellier (CEM2) have been working on DFB
[37] and Fabry-Perot [2, 38] lasers for TDLS, in addition to V(E)CSEL [39-41],
type-1I [42] and type-III [43] lasers.

A series of review articles on mid-infrared laser diodes have been written, and
Coleman et al. [9] (2012), Joullié and Christol [10] (2003) and Choi [44] (1996)
provide valuable information with regards to the evolution of the GaSb-based mid-
infrared lasers at different stages of development.

While the laser diodes are primarily designed for TDLS, they have also been
suggested as lasers for telecommunication purposes. Fluorine-based optical fibres
have reduced attenuation for longer wavelengths compared to silica based fibres,
and were expected to replace today’s fibres. This change of optical fibers has not
yet happened due to problems producing the fibres, and the main focus remains
on TDLS. However, recent advances in hollow-core photonic-bandgap fibres of-
fering a 31% reduction in latency and a wide bandwidth (160 nm @ 1550 nm)
suggests that sub-0.2 dBm/km fibres utilizing 2 pm tunable laser diodes are realis-
tic [45]. This could again increase the interest in mid-infrared laser diodes for use
in telecommunications.

Remaining challenges: The push into the 3 to 4 um wavelength range is impor-
tant for gas detection applications, and the material technology still needs more
work. AlGalnAsSb has enabled type-I lasers in this wavelength range, due to the
increased hole confinement in GalnAsSb wells with A1GalnAsSb barriers, as com-
pared to AIGaAsSb barriers. Wavelengths of 3.73 pm [3] pulsed and 3.44 um [27]
continuous wave (CW) at room temperature have been demonstrated. However,
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the material has not been fully characterized with regards to its electrical and opti-
cal properties, which are important for proper design of laser diodes utilizing this
material. The wavelengths reachable by type-I lasers are continuously increasing
upwards towards 4 um, while for ICL they are increasing downwards [11, 30] to-
wards 3 um. InAs/AISb QCL lasers can reach the whole range, but only in pulsed
mode [9].

Laser processing also needs more work, and research on tunable laser struc-
tures is still ongoing. Most of the research in laser structures is towards DFB and
VCSEL structures [9]. Furthermore, the high reactivity of AlIGaAsSb with oxygen
makes it unsuitable for lasers utilizing regrowth [35], which is a common prac-
tice for creating widely tunable telecommunication lasers [46]. With the use of
regrowth, a wide variety of widely tunable laser structures can be implemented
[46].

Adamiec et al. [47] have demonstrated tuning from 1.7 to 2.4 um in a single
laser by varying the pressure in a liquid pressure cell from O to 19 kbar. Kruczek
et al. [48] have demonstrated 85 nm tuning using an external cavity QCL, and
Koslowski et al. [49] have demonstrated 80 nm tuning using binary superimposed
gratings. While widely tunable GaSb-based laser diodes have been demonstrated,
most of the work has been towards DFB structures. These lasers have a high
side-mode suppression ratio (SMSR) (>30 dB) [9], but usually at a limited tuning
range. While a high SMSR is important for trace gas sensing, manufacturing lasers
that can be widely tuned enables the use of a single laser in gas detection systems
for several different gases. Fabricating such lasers reduces the number of different
lasers required, reducing costs relating both to the fabrication the laser diodes, and
to the implementation and servicing the gas sensor systems. More work towards
creating widely tunable laser diodes is therefore beneficial.

Virtual substrates and layers composed of GalnSb, AlInSb and InAsSb allows
for laser diodes at even longer wavelengths, where InAsSb can reach wavelengths
towards 9 um [50]. Lasers lasing at 3 um grown on (Al)GalnSb metamorphic lay-
ers have already been demonstrated [51]. In addition, growth on GaAs and Si are
interesting for future applications, where GaSb-based devices could be integrated
into a Si platform [9, 52] to bridge the gap between Si-based electronics and III-V
semiconductor photonics [53].

The beam quality of the laser diodes are also poor, with a highly divergent
beam [54], requiring relatively sophisticated solutions to collimate the beam. This
problem can either be overcome by using VCSEL, or by improving the waveg-
uide design of the lasers [54]. A particular problem is the high refractive index
contrast between the AIGaAsSb separate confinement heterostructure (SCH) and
the AlGaAsSb cladding layers, which should be solved by waveguide design or
change of materials. With regards to the VCSEL, these laser diodes have their



own problems, relating to the limited tuning range [54].

Our work: A working TDLS system will need a laser diode, a path for interact-
ing with the gas, a detector and a setup for signal processing. This work focuses on
the light source, the mid-infrared laser diodes”. For gas sensing one needs a laser
with a well defined wavelength, which can be easily tuned over the absorption line
of the gas. In a gas detection system, the laser diode should in fact not only be
used to measure the total attenuation, but also the wavelength-dependent attenua-
tion. The laser will in this case work as a tunable monochromatic lightsource for a
limited-range spectrometer.

Other groups focus mainly on gratings to achieve the wavelength selection
(DFB, DBR, VCSEL). We have chosen to focus on junction structures to achieve
the wavelength tunability. Junction lasers offer easier processing, but have a com-
plex waveguide junction structure and reduced SMSR, however, they should be
sufficient for gas detection. The SMSR can also be improved upon at a later stage
if necessary, for example by adding gratings or a third waveguide to the structure
[46]. Most other widely tunable monolithic laser structures benefit from passive
tunable gratings and phase sections, requiring regrowth of the laser structure [46].
Epitaxial regrowth of GaSb-based laser diodes is currently not feasible due to the
reactive nature of AlGaAsSb [35, 57, 58], used for cladding layers, making Y-
junction laser diodes an interesting alternative.

Though much characterization of the semiconductor structures used for laser
growth has been performed, most of the structural information is based on room-
temperature or near-room-temperature measurements. Previous studies in our group
suggests that improved crystalline quality can be achieved by lattice matching epi-
layers at growth temperature [59], which is especially important for thick epilay-
ers. The availability of an X-ray Diffractometer (XRD) with a temperature stage
has enabled us to examine the above room temperature thermal expansion of the
thick epilayers of the laser structure, the cladding layers. In paper I in chapter 8,
the temperature dependent lattice constant of the most common cladding layer al-
loy for GaSb-based lasers, Alg.99Gag.10As,Sb;_y, has been characterized [60]. We
have also examined and updated, where necessary, the thermal expansion and tem-
perature dependent lattice constant of binary semiconductors that are important
for mid-infrared laser growth, namely GaSb [61], AlSb [62], InAs [63], GaAs [64]
and InSb [65]. These studies are presented in the papers II-IV in chapter 8. Good
knowledge of the thermal expansion is important for optimizing growth conditions
and strain in the laser structure. This research is valuable for all structures using

ZWhile actual gas detection is beyond the scope of this thesis, Werle [55] and Werle et al. [56]
cover the steps involved in realizing a gas detection system based on TDLS, which may be useful
for the interested reader.
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alloy semiconductors made up of Ga, Al, In, As and Sb where a high crystalline
quality is required. This can be pseudomorphic, metamorphic?, or other struc-
tures where the lattice constants and thermal expansions of the different layers are
important for strain balancing and determining critical thicknesses at growth and
room temperatures. Pseudomorphic and metamorphic structures are used for e.g.
lasers [67], detectors [50] and high-electron mobility transistors (HEMT) [68].
Strain control is in general important for thick structures such as high quality
cladding layers [60], and highly strained QWs in laser structures [69].

The main goal of this work is the development of widely tunable laser diodes
for trace gas sensing. For the implementation of these lasers, the Y-junction waveg-
uide structure was chosen. The potential benefit of these lasers is cheaper process-
ing; while grating based lasers such as DFB and DBR usually require sub-pum
precision and resolutions for processing the gratings, the critical dimension of the
Y-junction laser is about 1-3 um, which is attainable with contact photolithogra-
phy. A reduction in production complexity will in most cases reduce the costs and
increase the yield.

To create Y-junction laser structures, many steps are needed; MBE growth of
the laser structures, cleanroom processing to create the devices, and additionally a
proper setup to test the lasing properties of the devices. A large part of this work
has focused on X-ray diffraction (XRD), which is an important characterization
technique for controlling the crystalline quality and strain of the MBE-grown laser
structures.

In chapter 2 the laser theory is presented, followed by a presentation of the
material properties and material system in chapter 3, in addition to the character-
ization of these materials. In section 3.3 the XRD characterization technique is
presented, which is central to all the papers in this work. Chapters 4 to 7 cover
the growth, processing, testing and simulations of the junction laser diodes, re-
spectively. The relevant theory and techniques are presented first, followed by the
results on a chapter-by-chapter or section-by-section basis. The included papers
can be found in chapter 8. Finally the conclusion and suggestions for improve-
ments and further work are presented in chapter 9.

3 A pseudomorphic layer refers to a fully strained layer on top of a substrate of a different lattice
constant. For a metamorphic layer the lattice constant also differs from the substrate, but the layer is
fully relaxed to its bulk state [66].



Chapter 2

Laser Theory

Light amplification by stimulated emission radiation (Laser) refers to the gener-
ation of light by the stimulated emission mechanism. For semiconductor lasers
excited electrons in the conduction band can be stimulated by a photon to recom-
bine into the valence band, creating a copy of the original photon. This process is
called stimulated emission, and it is the central mechanism allowing lasers to work
[46]. To achieve lasing, you need three basic “ingredients”:

A gain medium A material that amplifies the light transmitted through it, allow-
ing for stimulated emission. A gain medium is defined by its power gain g, so
that

I(z) =1(0)e**,g > 0. (2.1)

for a beam propagating in the z-direction. I(z) is the light intensity at position
z. In an electrically pumped laser diode, the spontaneous emission starts the stim-
ulated emission above the so-called threshold current, where the injected electric
current induces an optical gain that equals the losses in the cavity.

A waveguide is a structure that traps and guides the light in certain directions.
By placing the gain medium inside a waveguide, a good overlap between the gen-
erated light and the gain medium is ensured.

A resonator In order to select the wavelength at which stimulated emission is
achieved, a method of selection is needed. By creating a resonator around the gain
medium using two mirrors, one on each side of the cavity, the allowed wavelengths
can be controlled.

A semiconductor laser diode cavity is sketched in Fig. 2.1.

9
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Figure 2.1:  Sketch of the principle of a laser cavity which consists of a gain
medium (green), resonator (grey) and a waveguide (blue). Spontaneous emission
represented by isotropic and colorful arrows, while guided stimulated emission is
represented by blue arrows. The resonator is formed by mirrors M; and M, and
the gain is due to recombination of electrons and holes between the excited level
E> and ground level E|.

In this chapter these aspects of a laser structure are treated. The electrical
and optical confinements required for the gain medium and the waveguide are
considered in section 2.1. The resonator and laser properties are then treated in
section 2.2, followed by an overview of implementations of the laser diode. The
materials and material properties used to make the lasers are the topics of chapter 3.
Note that for some figures the laser sample Sb 142 is used for illustrations. This is
the sample structure used for the lasers processed and tested in this work.

2.1 Confinement

To achieve lasing, confinement is important; both confinement of the light in the
laser cavity, but also of the charge carriers, i.e. the electrons and holes. QWs are
often used to confine electrons and holes, while optical confinement is achieved by
waveguides, both of which are treated in this section.

2.1.1 Quantum wells

Quantum wells (QWs) refer to a structure where a material with a smaller band
gap Ej is placed between two layers of higher band gaps, resulting in a potential
well. By making this layer thinner than the de Broglie wavelength of the particles
(typically 15 nm [46]), they will be confined and bound by the layer interfaces. The
confinement increases the particles energy above E. and below E, for conduction
and valence bands respectively, as illustrated in fig. 2.2. The bandgap energy is
defined by E; = E. — E,.

AFE is the energy difference between the barrier and the well, which relates to
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Figure 2.2: QW from the laser structure for sample Sb 142. Well material is
Gag 7351n0.265A80.1Sbg 9, while the barrier is Al 25Gag75AS0.02Sbggg. Here, the
well width w is 12.5 nm. Energies related to the conduction band electrons are
denoted by E,, while holes in the valence band are denoted by E,.

the conduction bands for electrons and the valence bands for holes. The confine-
ment energy E in a QW cannot be expressed analytically, but can be found from
the solution of eq. (2.2) [70] using the boundary condition from BenDaniel and
Duke [71] including the effective masses required for current conservation:

L(AE—E ,
tan @ _ % Symmetric wave 02
g m*_(ni%E_ 7 Antisymmetric wave

Here, w is the width of the QW, mj, and m; are the well and barrier effective
masses, respectively, and 7 is the reduced Planck constant.

The width w and height AE determines the confinement energy of the well,
where reducing w or increasing AE increases E. The resulting recombination en-
ergy will be Eg ,, + E. + Ej, where E ,, is the band gap of the well material, and
E, and Ej, are the solution for £ in eq. (2.2) for electrons and holes, respectively.

As shown in fig. 2.2, AE is different for electrons and holes. This is determined
by the conduction band and valence band offsets (conduction band offset (CBO)
and VBO), and AE is not determined by the band gap energy E, directly. The CBO
and VBO will be treated in section 3.1.4.

For laser structures, it is common to utilize more than one QW to provide a
better overlap with the optical field. This is referred to as multiple quantum wells
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(MQW). The wells are often separated so that the confinement wave functions for
each well don’t overlap. This separation should be in the (low) tens of nanometers.

2.1.2 Waveguides

When a ray of light is transmitted from one medium to another with a different op-
tical density, it refracts at the interface. The optical densities are usually described
by their refractive indices n, and the refraction is described by Snell’s law [72]

nysin@) = nysin}, (2.3)

as illustrated in fig. 2.3. Since we are interested in the light propagating along the
interface instead of across it, it is useful to define 8; , = 90° — 6’172:

nycos0; = nycos O, 2.4)

In the case of a wave propagating from an optically dense medium 2 to a less
dense medium 1, n, > n;, we get a phenomenon called total internal reflection
(TIR). This occurs for angles 8, where eq. (2.4) cannot be satisfied, i.e. cos8, <
cosB. = nj/ny. Below this critical angle 8., all light is reflected back. Using a
three-layer stack, as shown in fig. 2.3, we can trap the light, thereby creating a
waveguide. The middle layer is commonly called the core, while the outer layers
are referred to as the cladding layers.

A useful entity is the numerical aperture (NA). The NA represents the diver-
gence of the light when it leaves the waveguide and it is defined as

NA = 19 $inOmax = n28in0, = y/n3 —n?, (2.5)

where O« is the exit angle for the rays travelling at the critical angle 0., see
fig. 2.3.
We can also define an effective refractive index

Neff = N COS O, (2.6)

where n| < nerr < np. For rays propagating parallell to the interfaces (6,) we have
negf = Ny, and it decreases towards n; as the angle 6, approaches 6..

Single transversal mode waveguides

When the waveguide thickness is comparable to the wavelength A/ng of the light
in the medium, light cannot be treated as rays, but must be treated as waves [72].
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m

Figure 2.3: A sketch of a three layer slab waveguide. Here n, > n;, which leads to
total internal reflection for angles 6, < 6. ng surrounds the waveguide, usually air
which has small refractive index. When light rays exits the waveguide, the large
difference in refractive indices between n, and n leads to significant refraction at
the interface.

The waveguiding properties are then solved using Maxwell’s equations with ap-
propriate boundary conditions. The effective refractive index neg of a mode is then
related to the amount of light in the core and the cladding of the waveguide.

The light will be bound to the core, but an evanescent field in the cladding can
make up a significant part of the optical field. For an optical field with an effective
refractive index neg and a wavenumber

21
B= et = kones 2.7

the solutions for the field distribution in each layer of a 1D slab waveguide for a
transverse electric (TE) mode in the y-direction E, = E(x) exp(— jBz) are [46]

E;(x) = Ajexp [gi(x —x;)] + Biexp [—qi(x — x;)]. (2.8)

Here A; and B; are the coefficients of the field components in layer i travelling
in the positive and negative x-directions, respectively, for the layer starting at x;

and where
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For neg < n;, gq; becomes imaginary and we get a sine-cosine solution for £;,
while negr > n; gives a real exponential solution. I.e. we get a bound mode in the
core, which is analogous to the ray description of angles less than the critical angle
in the previous section.

In most cases it is preferable to use simulation software to determine the prop-
erties of the waveguide, e.g. Lights [73]. Calculations of the transversal mode of
1D slab waveguides based on simplified slab structures of our laser structure can
be found in appendix B.

Leaky modes

If a layer outside the designed waveguide has a refractive index njayer > ey, it is
possible for the bound mode to radiate into this layer, and the mode is referred to
as a leaky mode. If the cladding layer is not sufficiently thick, a portion of the
electrical field can radiate into this layer. A simulation of such a laser is shown in
fig. 2.4.

If the substrate is sufficiently transparent, this can lead to substrate modes
which can be reflected back into the waveguide from the substrate backside and
cause interference [74].

The light refracted into the substrate will have an angle 8y, expressed by [75]!

. /.2 2
g sub _ k() nsub Neff o nzub -1 (2 10)

tan Ogyp, = = ,
B konegt Nef>

For a GaSb-based laser with ngp, = 3.8 and ne = 3.45, this angle would be
around 25°. It should be noted that this is above the critical angle (6.) of approxi-
mately 15° for the GaSb-air interface.

2.2 Laser

After achieving electronic confinement of the gain medium and optical confine-
ment of the laser light, it is important to control the light, by forming a resonator
across the laser structure. This is usually achieved by inserting mirrors on each
side of the cavity, causing a resonance in the structure at certain wavelengths.

For the simplest laser structure, the Fabry-Perot laser, this is achieved by cleav-
ing the semiconductor material to induce a resonator, where only certain wave-
lengths are allowed to resonate in the cavity [46, 72]. This principle can be ex-
tended further, by using two coupled resonators, connected by a Y-junction in the

INote that Bogatov et al. [75] has defined g = w/k(z)nfub — Bz, which is ig; in eq. (2.9), i.e. the
sign inside the square root is opposite in the article.
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Figure 2.4: Simulation of the optical field in a leaky mode laser. It can be seen
that the high refractive index of the substrate (between -4 and -2.2 um in the fig-
ure, where a superlattice is introduced to the laser structure) makes it difficult to
completely confine the mode within the waveguide core if the refractive index of
the cladding is too high or the cladding thickness is insufficient. Simulated using
Lights [73].
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waveguide [46]. Other techniques include Bragg gratings, where the mirrors are
constructed to only allow reflections for certain wavelengths [46].

In the following section the Fabry-Perot lasers will be introduced, with theo-
retical aspects relevant for most lasers. This is followed by a short presentation of
the Y-junction laser and then some other laser structures are mentioned.

2.2.1 Fabry-Perot laser

The Fabry-Perot laser (FPL) is the easiest structure to understand, and its principles
are important for all types of lasers. Some of its main properties will be treated
here. This section is based on the theory presented in Buus et al. [46] A more
complete treatment of the fundamentals of laser theory can be found in ch. 2 in
Buus et al. [46]

The gain inside a FPL can be expressed by gesr = I'g,, where g, is the gain in
the active medium, the MQW, and I" is the confinement factor in the wells, i.e. the
overlap between the optical field intensity, |E|?, and the MQW. This results in a
net gain

&net = Zeff — Oy, (2.11)

where ; is the internal optical losses.
The propagation, or field distribution, along the cavity in the z direction is
expressed by exp (£ jB*z), where the complex propagation constant is

B* = kofter -+ j%. 2.12)

In steady-state conditions, the field must reproduce itself at a reference point
7 = zp after a full cavity round-trip, over a distance 2L, where L is the cavity length.
Mathematically, this can be described by

rirpexp(—2jB°L) =1, (2.13)

where r1 > are the mirror amplitude reflection coefficients and assumed real. This
round-trip oscillation condition can be rewritten as

2jB*L+ o4, L = 2jmN, (2.14)

where N is the mode number and o, are the mirror losses

1 1

Oy = — In ——
" 2L RRy’

(2.15)
where R; = r,-2 is the reflectance. Solving for the real part of eq. (2.14) we get the
equation

—&netL + 04, L =0 (2.16)
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which we can rewrite as
Ig,—o;,—0o, =0 2.17)

where o, are the mirror losses.
The roundtrip condition, the imaginary part of eq. (2.14), can be rewritten for
the allowed wavelengths, or the longitudinal modes;

2nese(Av)L

Ay = tfl(vN) (2.18)
and the longitudinal mode spacing can be approximated to
Al =My — Ayt =~ M (2.19)
m — "N N+1 — 2ng7effL‘ .
Here

dn

Ng eff = net(Ay) — Ay et ) (2.20)
dA |,

which accounts for dispersions in the material and waveguide, leading to differ-
ences in the (effective) refractive index for different wavelengths A. The effective
refractive index derived from the longitudinal mode spacing is therefore not the
same as g found from solving the transversal mode.

When the lasing conditions are fulfilled, the longitudinal mode with the highest
gain will start to lase, determined by the gain curve. When lasing occurs the gain
saturates and eq. (2.17) is fulfilled. This is referred to as “gain-clamping”, and the
excess pumping of the gain material leads to an increase in the output power of the
laser.

The gain curve can in most cases be assumed to be Gaussian in shape. The
Fabry-Perot resonator modes can be described by [72, 76]:

1

!l = ———— 2.21

1+ Fsin? (TN) 2D
1

I = ——— (2.22)

1+ Fsin” (BL)
1

I = — (2.23)

1+ F sin” (kong efrL)
4R
F = 2.24

where R is the reflectance of the mirrors and / is the light intensity in the resonator.
ng eff 18 used instead of nefr to account for dispersion. A calculated gain curve with
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superposed Fabry-Perot modes is shown in fig. 2.5. For a FPL the SMSR, i.e. the
difference in peak power for the dominating and the competing mode, is usually
limited to about 20 dB [46], depending on the position of the peak of the gain
curve relative to the Fabry-Perot modes.

Sub-threshold spectra

For currents just below the threshold current density, j;;, required for stimulated
emission, one can achieve transparency conditions. This is the case when the spon-
taneous emission is high enough for light propagating in the waveguide, fulfilling
the round-trip requirement, but not high enough to support stimulated emission.
Here, the spontaneous emission excited into the waveguide (at an angle 6 < 0,.)
can be observed at the facets.

Such sub-threshold spectra gives information about both the gain medium and
the FP resonator. It is possible to extract information about the material gain using
e.g. the Hakki-Paoli method [78]. An example of a measured sub-threshold spectra
is shown in fig. 2.6. In the literature these spectra can also be referred to as the
amplified spontaneous emission or superradiance spectra.

Tuning mechanims

Tuning of the lasing wavelength is usually achieved by changing the effective re-
fractive index, leading to a change in the optical path length. This leads to changes
in the resonator modes. For FPL the wavelength will then be tunable across a FP
mode spacing, at which point the neighbouring FP mode becomes the mode with
the highest gain, and the wavelength jumps back to the original lasing wavelength.
There are three main tuning mechanisms for tuning the refractive index in laser
diodes [46]:

The free-carrier plasma effect (FCPE) is the most used tuning mechanism in
telecommunication lasers, where free carriers leads to a change in the refractive
index by an increment An. FCPE originates from two effects; due to the polariza-
tion of the free carriers from the injected electrons and holes on each side of the
gain material, and due to a shift in the absorption edge of the gain material. The
resulting change An is given by [46]

242
An—_ Eh <]+1>N (2.25)

8ncineg \m, my

where e is the elemental charge, n is the refractive index of the layer, m, and
my, are the electron and hole effective masses, respectively. Here N is the carrier
concentration.
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Figure 2.5: Top: Fabry-Perot modes for R = 0.8, ng off = 3.8, L = 1 mm calculated
from section 2.2.1. Middle: A Gaussian gain curve. Bottom: Fabry-Perot modes
and their relative gains. When the lasing condition is fulfilled, the mode at A = 2.35
um will dominate, and the laser will lase at this wavelength. Note that while the
mirror reflectivities for GaSb-based lasers are usually close to R = 0.3, the gain
in the laser cavity will result in a narrowing of the Fabry-Perot modes [77]. To
account for this narrowing, R was chosen to be 0.8 in these figures.
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Figure 2.6: Measurement below (40 mA) and above (44 mA) the threshold current
density for a 1 mm long 2.5 um wide FPL. The dominant longitudinal mode has
been cropped in the bottom plot to show the intensity distribution for the side-
modes. The threshold current density, j;;, is close to 1.6-1.8 kA/cm?, which is
quite high.
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The change in the wavelength, assuming only that the MQW contribute to the
change in refractive index An, will be

I'-An

Ng eff

AL =L

o —N. (2.26)

The carrier concentration N is related to injected current density j by [46]

j=ed (N/t,+BN*+CN’) (2.27)

where T, is the recombination lifetime for Shockley-Read Hall (defects and
impurities), d is the thickness of the tuning region, B is the band-to-band recombi-
nation rate and C is the Auger recombination rate”. So the increase in N decreases
with increasing current, meaning that FCPE tuning is most efficient at low cur-
rents. For telecommuncations lasers this effect typically can achieve a tuning of
up to -8 nm, with a An of -0.04 with a tuning speed of up to 100 MHz [46].

The quantum confined stark effect (QCSE) is based on reverse biasing of a
QW. By introducing an electric field across the QW, the electrons and holes be-
come displaced in the wells, and it also reduces the confinement recombination
energy. This also modifies the refractive index for wavelengths close to the con-
finement recombination energy, typically by -0.01 to -0.001 [46]. This change is
small, but the mechanism is extremely fast, allowing for tuning speeds in excess
of 10 GHz [46].

Thermal tuning is a tuning mechanism where, due to heat, the refractive index in
the material changes. In addition, the gain curve will shift to longer wavelengths.
For telecommunications lasers, the shift of the gain curve is about 0.5 nm/K, while
the shift for single-mode lasers (with Bragg gratings) is about 0.1 nm/K, and the
change in the refractive index is around 0.01 for typical telecommunication laser
structures [46]. It is also the only tuning mechanism where the change in A and n
are positive. For parasitic heating in FCPE or QCSE, thermal tuning will reduce
the efficiency of those tuning mechanisms.

2.2.2 Y-junction laser

The Y-junction laser is an interferometric laser structure that uses the combination
of two Fabry-Perot cavities, see fig. 2.7, to manipulate the gain for each longitudi-
nal Fabry-Perot mode and thus increases the tuning range.

2The recombination rates will be presented in section 3.1.2 on page 26.
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Ly
Figure 2.7: The Y-junction laser waveguides. To achieve 50-50 splitting of the
light, the Y should be symmetric. Here the two arms have the lengths L. + L, for
the straight waveguide and L. + L, for the bent waveguide, and AL =L, — L. L., L
and L, are the lengths of the common, straight and bent sections, respectively.

The beating between the two Fabry-Perot cavity modes gives a beating wave-
length ALy, or free spectral range, of [46]

}\(2
Ay = ——— 2.28
Y an’eﬂ‘AL’ ( )
which induces a modulation to the cavity gain by a factor Cy ()
ALy — ng(A)L
Cy (A) = cos? oML = s (M)Ls (2.29)

A

where np, and n; are the refractive indices in the bent and straight sections, respec-
tively. L, and L, are the lengths of the bent and straight sections, respectively, see
fig. 2.7. This increases the maximum tunable range from AA for FPL, to Ay in
the Y-junction laser, with an increased SMSR, as shown in fig. 2.8.

A Y-junction laser will have an inverse relationship between SMSR and tuning
range (o< 1/AL) since the (slowly varying) modulation between two neighbouring
longitudinal modes is less, as expressed by eq. (2.29). One solution is to use
a three-armed junction laser instead of two [46]. The laser can then be widely
tunable by using a short AL; to increase the tuning range, while using a long AL,
to reduce the SMSR.

The benefits of the Y-junction laser are that there is no need for regrowth and
less processing steps than for a grating-based laser. Drawbacks include the slow
beating of the FP modes from the cavities.

For bent waveguides the refractive index contrast between the core and cladding
required for proper guiding is higher than the requirement for straight waveguides.
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Typically the index contrast must be doubled from about An ~ 0.01-0.02 to 0.03—
0.05. See chapter 7 (page 91) for more details regarding waveguiding in bent
waveguides.

2.2.3 Other tunable laser structures

Tunable laser diodes are usually tuned by means of changing the effective refrac-
tive index ncgr, thus changing its optical cavity length. The mechanisms used for
changing the effective refractive index are the FCPE, the QCSE and thermal tuning
[46]. By themselves, these mechanisms only give a continuous tuning up to about
10 nm.

By combining these mechanisms with structures that enhances the wavelength
selectivity and tunability, such as periodic structures (DBR, DFB) or interferomet-
ric structures (Mach-Zender or junction structures), the tunability can be greatly
enhanced and multimode behaviour reduced. This can lead to a tuning range of
more than 100 nm, depending on the structures used, and around 50 nm for Y-
lasers [46].

2.2.4 Gas detection lasers

For gas detection purposes, a continuously tunable laser is important, and must be
able to tune across the absorption line in question. The linewidths of these spectral
lines are pressure dependent.

Werle [55] has written extensively about the requirements for high resolution
gas detection using TDLS. It is important that the laser is able to be continuously
tuned across the entire linewidth of the gas. This can usually be performed by a
combination of temperature and electric tuning. The temperature tuning is slow,
but can be used to position the laser wavelength to the absorption line, while elec-
tric tuning is used to scan the absorption line rapidly, preferably up to 10 MHz
scan speed to reduce the laser noise [56].

The lasers should typically have optical power in the mW range, good SMSR
of more than 30 dB [46], and full-width at half maximum (FWHM) less than the
gas absorption lines, which are typically in the 0.01 nm-range (0.03 nm for HF
[34]), depending on pressure and the different molecules. Thus, for scanning a
single absorption line, a continuous scan range of 1 nm is usually sufficient.

While a gas detection laser is only required to be tuned a few nm across an
absorption line, a wide tuning range means that the same laser can be utilized for
many types of gases, and the requirements for the design can be relaxed if the
wavelength can be tuned during use. This includes the growth of the structure,
regarding layer thicknesses and compositions of the layers.
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Figure 2.8: From the top, 1: Fabry-Perot modes for R = 0.8, n, ¢t = 3.8 (blue) and
3.80112 (green), and L = 1 mm and 1.03 mm. The modes were calculated from
eq. (2.23). 2: The overlap of the Fabry-Perot modes, i.e. “Mode 1 x Mode 2”. By
changing the refractive index in one or both of the resonators, the peak wavelengths
can be shifted. The tuning range is then significantly increased compared to the
FPL. 3: Gaussian gain curve. 4: The gain for the Y-junction structure (green)
compared to the Fabry-Perot modes (blue) of a single resonator cavity. The SMSR
is improved for the junction structure.



Chapter 3

Material system

For laser fabrication it is important to choose a suitable material system. The most
important criterion is the wavelength, which is predefined by the relevant gases to
be detected. It is then important to choose a material system that can easily be
converted into a laser, and preferably it should be possible to widely tune the laser
to enable measurements of several gases. The important features include both the
electrical and the optical properties. Other material characteristics, such as how
easy the material can be manufactured into a laser, are also important.

This chapter aims to describe the important material parameters with respect
to creating a laser diode. Section 3.1 gives an introduction to the key material pa-
rameters and topics relevant for laser diodes is given. The choice of an AlIGaAsSb
/ GalnAsSb layered structure on top of a GaSb substrate is then presented and ex-
plained, followed by a presentation of relevant characterization techniques used for
this work. The characterization of the lattice constant is emphasized in section 3.3,
which is the topic for papers I-IV in chapter 8.

3.1 Introduction to material properties

This section is meant as an introduction to the important parameters and topics
which should be considered when choosing materials for fabricating laser diodes
utilized for gas sensing.

3.1.1 Overview of important parameters

The most important parameters for laser diode materials are:

Crystal structure The different layers must be epitaxially compatible. For thin
film growth this means that the lattice constant must be approximately the same in
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the different layers and that the crystal structure is the same, or very similar.

Band structure E,, VBO and CBO are important for the confinement of charge
carriers. For the gain material the band gap must be direct to allow for a high
radiative recombination rate. The band gap energy is crucial to manufacture laser
diodes emitting light at a chosen wavelength. Furthermore, the band gaps of the
surrounding layers must be larger, to allow for confinement of charge carriers in
the quantum wells. A sketch of some of the important aspects of the band structure
are given in fig. 3.1.

Optical properties The materials must have refractive indices which support a
waveguiding structure. Apart from the gain material, the materials must be trans-
parent, a requirement fulfilled by the band gap requirement. The waveguiding
properties of the laser structure were treated in section 2.1.2.

Electrical properties The structures should have high electrical mobility and it
should be easy to dope the layers surrounding the active layers by incorporating
electrically active impurities. This is important for injecting electrons and holes
into the gain material. It must be easy to metallize the top and bottom layers for
connecting the device to an external current source.

Chemically and mechanically stable The materials must be chemically stable
for processing and operation. It must be possible to handle the sample material
and lasers without breaking them, requiring mechanical strength.

Growth conditions The optimal growth temperatures for the different constituents
should be about the same; if the growth temperature is too low, the atoms will eas-
ily incorporate, leading to a rough surface, is it too high, the atoms will evaporate
from the sample surface without incorporating.

3.1.2 Recombination mechanisms

The recombination mechanisms in a semiconductor are usually organized by the
number of particles involved in the process. Recombination mechanisms include
the impurity-related recombination, which is usually proportional to the number
of charge carriers 7, the band-to-band recombination proportional to n%, and the
Auger processes proportional to 7°. The mechanisms are illustrated in fig. 3.2.
For the radiative recombination needed for lasing, light can be generated from
recombination related to impurities or band-to-band recombination between the
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[111] [000] [001]
S >
L r X

Figure 3.1: A sketch of the band structure (i.e. dispersion relation) annotated
with important terms. The bands can have valleys in several crystallographic di-
rections, which represent the propagation directions of the electrons or holes. & is
the electron or hole wavenumber, which is related to the momentum of the charge
carrier. Examples of L, I and X valleys are shown for the conduction band. I
is here the valley at [000], i.e. the electron is almost at rest, for the X-valley the
electrons move in one of the 6 [001] directions, and for the L-valley they move
along one of the 8 [111] directions. LH refers to the light hole band and HH to the
heavy hole band in the valence band, both centered at the I"-point. E, is shown for
a direct bandgap semiconductor where the bandgap is between the I'-point in the
conduction band and LH and HH, in some cases referred to as the Er for indirect
semiconductors, where E, # Er.
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Figure 3.2: Recombination mechanisms. For laser diode applications, the band to
band mechanism is preferred. Impurity recombination usually arises from doping,
while Auger is a recombination mechanism where the excess energy is transferred
to a third particle instead of a photon.

conduction band and valence band. For laser diodes the band-to-band recombina-
tion is the desired mechanism, and the impurity and Auger recombination mecha-
nisms should be suppressed. For infrared lasers, the band gap of the gain material
is considered small and Auger recombination is a significant mechanism, since
the intrinsic carrier concentration n; increases with decreasing E,. The current
density required for lasing will increase when the Auger recombination becomes
more dominant. It has been shown that for lasers lasing at 2.3 um, Auger strongly
affects the threshold current density j;;, above 60°C, and at lower temperatures for
longer wavelengths [79] where the Auger recombination increases exponentially
[54].

The recombination rate can be approximated by a polynomial function [46, 80]

R(n) = " 1B2+Cnd 3.1)
TSRH

1 1 1 1

- = — + 3.2)
Teff TSRH  Trad  TAug

1 1

— = —— +Bn+Cn? (3.3)
Teff TSRH

where Tgry is the nonradiative Shockley-Read-Hall impurity-related recombi-
nation lifetime, B is the band to band recombination coefficient, C is the Auger
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recombination coefficient. T4 is the radiative band-to-band recombination life-
time, Taug is the Auger recombination lifetime, and Tegr is the effective combined
recombination lifetime.

3.1.3 Effects of strain

Strain will influence the shape of the band structure, in addition to the quality of the
epitaxial growth and mechanical strength. Compressive strain leads to a separation
of the LH and HH, see fig. 3.1, pushing the LH down and HH up, resulting in a
bandgap Er defined by the I"-valley in the conduction band and HH in the valence
band. Tensile strain will result in a band gap defined by LH instead of HH. Due
to the reduced dimensionality from 3D to 2D introduced by the QW structure, the
Zinc blende point group symmetry is broken. From the selection rules for optical
recombination, HH then only supports TE mode, while LH supports both TE and
transverse magnetic (TM) modes [81-83].

In addition to the symmetry considerations, the TE mode has higher optical
transverse confinement and facet reflectivity [46, 83], reducing its optical losses in
a laser structure. Using a large compressive strain has shown to be beneficial for
the gain properties, and a large compressive strain of InGaAsSb QW has shown
increased output power and low threshold current density [69].

3.1.4 Band alignment at interfaces

In addition to the band gap, the band offsets are also of importance, shown in
fig. 3.3. When semiconductors of different band offsets and band gaps are con-
nected, the electrical and optical properties will be affected by the alignment of
the bands and fermi levels. The band alignments for the electrons and holes at
heterojunctions are referred to as the CBO and the VBO, which are important pa-
rameters for creating QWs.

In fig. 3.3 top plot we can see an illustration of different types of heterojunc-
tions. Between GaSb and AlSb, we see the type-I heterojunction, where electrons
in the conduction band and holes in the valence band would both be confined in
GaSb. Between AISb and InAs, we see the type-II behaviour, where the electron
and hole confinements are in different layers. The band alignment of InAs and
GaSb is called a type-IIb or type-III, where the conduction band edge is lower in
energy in one material than the valence band of the other material. Other impor-
tant parameters such as strain and refractive indices are shown in the middle and
bottom plots in fig. 3.3, respectively.
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Figure 3.3: Illustration of the structure parameters for the 6.1 A family of

semiconductors — GaSb, AlSb and InAs. The top plot illustrates that the three
types of heterojunctions is achievable; GaSb/AISD is type-I, InAs/AlSb is type-II
and InAs/GaSb is type-III. References for the material data can be found in ap-
pendix A. The misfit relates to strain and stress for layers, and it is here given by
e = (agasp — ai)/a;, where q; is the bulk lattice constant for the different binaries.
Here, e relates to the misfit relative to GaSb. For the refractive index the solid line
is the data from Gonzalez-Cuevas et al. [84] used in appendix A, while the dashed
line are the references found in table 3.1.
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3.1.5 Gas properties

While gas detection is beyond the scope of this thesis, it is important to be aware
of the gas properties, as they influence the important laser characteristics.

In fig. 1.1 some gas absorption lines are shown, and their relation to atmo-
spheric absorption. For lasers to be used in atmospheric conditions such as in
factories, open spaces, buildings etc., it is not only important to know the available
absorption lines of the gas, but also the wavelengths for which we avoid absorption
from water and CO,.

Some of the important atmospheric windows, i.e. wavelengths transparent in
air, are located from 2-2.4 um and from 3.5-4.2 pm.

For gas detection it is important to measure an isolated absorption line free
from absorption by other species. By decreasing the pressure from 1 atm to 0.1
atm a reduction in the FWHM of the absorption line is about a factor 8 [85], which
will increase the selectivity without a large reduction in the peak absorption. At
lower pressures, however, the peak absorption will decrease due to the reduction of
molecules available for absorption [55]. It is also preferable to be able to tune the
laser across the whole absorption line for maximum amplitude, so a gas detection
system operating at atmospheric pressure will require a wider tuning range. Ex-
pected FWHM for gases are around 0.1-0.25 nm [35, 85] for absorption close to a
3 um wavelength, which can be reduced below 0.05 nm by decreasing the pressure
to 0.1 atm [85]. It is important for high sensitivity that the spectral linewidth of the
laser is less than the linewidth of the absorption line.

3.2 The 6.1 A family

The semiconductors made from the alloys of group III and group V elements of
the periodic table are very interesting for electro-optical applications. They have
mostly direct bandgap, which gives a high rate of spontaneous emission compared
to the group I'V semiconductors such as Si and Ge with indirect bandgaps.

From the I1I-V semiconductors comprised of Al, Ga, In, As and Sb, the alloys
of AISb, GaSb and InAs are of particular interest for mid-infrared laser diodes,
where you in theory can reach wavelengths up to at least 3.73 um [3] while keeping
the lattice constant more or less constant, which is important for epitaxial growth.
They exhibit a zinc blende (ZB) lattice structure, see fig. 3.4. The lattice constant
then refers to the distance between nearest corners of the ZB unit cell, and not
to the distance between nearest atoms (even of the same element). The group III
atoms bond to the group V atoms and vice versa in the ZB structure. The typical
size of the unit cell for alloys of AlGalnAsSb is shown in fig. A.1.

For III-V semiconductors, Ga-V and Al-V usually give closely matched lat-
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Figure 3.4: Zinc blende (ZB) crystal structure (left). The group III elements
(black) bonds to the group V elements (white) to build up the crystal. The lattice
parameter ag refers to the ZB unit cell, and not to the nearest neighbour distance.
On the right, the crystal planes (100), (010) and (001) for the planes referring to
the x, y and z-directions, respectively.
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Table 3.1: Room temperature parameters for the binaries of the 6.1 A family of
II-V semiconductors. Eg, VBO and CBO are taken from Vurgaftman et al. [86],
and are given for 300K. Note that the sources used for the refractive index n here
are different from those used in fig. A.3.

Parameter AlSb GaSb InAs

E, (eV) 2.386 (X) 0.812 (I') 0.417 ()

VBO (eV) -0.41 -0.03 -0.59

CBO (eV) 1.976 0.809 -0.173

n 3.23[87](0.7eV)  3.846[88] (0.5eV) ~3.5[89](0.5¢eV)
ao (A) 6.1358 [62] 6.0968 [61] 6.0583 [90]

tice constants, as shown in figs. A.1 to A.4. The close matching can be seen for
GaAs/AlAs and GaSb/AISb, while the In-V have an increased lattice constant and
lower band gap. For laser wavelengths above 2 um, it can be seen that A1Sb/GaSb
combined with InAs has a great coverage of wavelength. The lattice constants
and thermal expansion coefficients of the binaries are the topics of papers II-1V in
chapter 8.

An important feature of most of the I1I-V semiconductors is that they have a di-
rect band gap, which is important for radiative recombination, while indirect band
gap semiconductors such as Si and Ge require a phonon, i.e. a lattice vibration,
to allow for optical recombination. Such two-particle processes will have a much
lower probability, making indirect band gap semiconductors unsuited for electro-
optical devices. Some III-V semiconductors do, however, have indirect band gaps,
typically in Al-containing structures. The alloys that have direct and indirect band
gaps are shown in fig. A.1 on page 134.

For choosing a suitable substrate, the requirements stated in section 3.1 should
be fulfilled. Usually only binary semiconductors are available for substrates. From
the requirements of optical and electrical confinement, the substrate should have a
low refractive index and large bandgap. From these requirements AlSb is the best
choice, as shown in table 3.1.

However, due to its high sensitivity to oxidation [91] in air, it is unsuitable
for epitaxial growth. Shibata et al. [92] measured, by Rutherford Backscattering
Spectroscopy, that AlSb exposed to air will oxidize a 15 nm thick oxide layer
within minutes, and it will continue to oxidize at a mean rate of 1.4 nm/hr for
at least 100 nm, at which point the layer was completely oxidized. Most wafer
producers sell substrates made of GaSb and InAs, but not AISb [93-97].

The intermediate refractive index of InAs would make it a better choice than
GaSb within the 6.1 A family. However, due to the VBO and CBO band align-
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ments, it is not suitable for electronic confinement, and GaSb is usually the best
suited substrate material despite its high refractive index.

For creating the waveguide and gain medium for the 2-2.4 um atmospheric
window, the alloys Ga,In;_,As,Sb;_, and Al,Ga;_,As,Sb;_, are considered the
best options. The following sections examine some of the important aspects of
these alloys, with respect to laser diode structures.

3.21 GayIn;_,As,Sb_,

GalnAsSb is an important quaternary alloy for the gain material in mid-infrared
laser diodes. Grown on GaSb substrates, it can reach wavelengths from about 1.5
um (GaSb) up to at least 3.73 um [3]. As seen in figs. 3.3 and A.4, the incorporation
of more InAs lowers E,, VBO and CBO. This can be problematic for proper hole
confinement in the QW for wavelengths longer than about 2.7 um [10].

Recombination mechanisms and rates For p-type InGaAsSb layers with a band
gap of 0.55 eV (2.25 um), the recombination coefficients used in eq. (3.1) have
been measured to be B = (3+£1.5) x 107! cm3/s and C = (1+£0.4) x 10728 cm®/s
[80]. The Auger recombination coefficient C is considered the same for npp and
nnp three particle Auger processes in antimonide-based materials [80]. These
values suggest lifetimes for radiative and Auger recombination of about 300 and
1000 ns, respectively, for N = 1 x 10! cm~3 and 30 and 10 ns, respectively, for
1x10%em—3,

3.2.2 AlGa;_,As,Sb;_,

The low refractive index and large bandgap ensures that AlIGaAsSb lattice-matched
to GaSb provides both optical and electrical confinement, making it the best op-
tion in the 6.1 A family for providing necessary confinement in mid-infrared laser
diodes.

Previous work in our group suggests that the best crystalline quality of these
fairly thick (typically 1.5-3 pum) epitaxial cladding layers is achieved by lattice
matching at growth temperature [59]. The determination of the growth tempera-
ture lattice matching composition for Al 9Gag.1 AsySb_, is the topic of paper I in
chapter 8.

Band structure and electrical properties The conduction band structure of
Al,Ga;_,As,Sb;_, is quite complex. Li et al. [98] have investigated the charge
carrier concentration for Te-doped and almost fully relaxed Al,Ga;_,Asg.03Sbg.97
layers grown on GaAs, to determine its suitability for GaSb-AlSb-based optoelec-
tronic devices. It was concluded from low carrier concentrations, as measured by
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Hall measurements (see section 3.4.2), that the conduction band minimum changes
from I'" to L around x = 0.25, and from L to X around x = 0.6-0.7, and that the
conduction band minimum is in the X valley for all higher concentrations.

Furthermore, Li et al. [98] show results with high ionization energies for the
(n-type) charge carriers around these cross-over points, and the thermal donor ion-
ization energies were 216 meV for x = 0.24 and 343-438 meV for x =0.69-0.71,
while they were 9.7 and 6.9 meV for x = 0.14 and x = 0.45, respectively. The
thermal ionization energy for Al,Ga;_,Asp.03Sbg.97 for x > 0.7 slowly decreases
for increasing x, and the carrier concentration for x = 0.83, the highest value of x
measured, was just as good as for x = 0.45 at room temperature. The measured
carrier concentrations at these compositions were about 10'® cm™3, compared to
less than 10'® cm™3 for x = 0.7 for the same Te incorporation.

Polyakov et al. [99] grew Al,Ga;_,As,Sb;_, on GaAs for compositions close
to lattice-matched to GaSb (at room temperature). For Te-doped n-type AlGaAsSb
with x equal to 0.5, 0.75, and 1 (AlAsg 03Sbo.g2), they measured thermal ioniza-
tion energies of 160, 230 and 120 meV, respectively, which differs from Li et
al. [98]. However, both papers suggest high ionization energies for Te-doped n-
type AlGaAsSb at the L-X cross-over point for x somewhere between 0.6 and 0.8.
Polyakov et al. [99] also point out that Be (p-type) doping up to about 10'® cm~—3
resulted in thermal ionization energies of 8-9 meV for x = 0.5 and 1.

In summary, AlGaAsSb lattice matched to GaSb has a conduction band struc-
ture not ideal for n-type electrical properties, and compositions with x close to 0.24
and 0.6-0.8 should be avoided in doped layers. For p-type layers these problems
do not exist.

Chemical properties Miya et al. [100] have investigated Al,Ga;_,AsSb layers
lattice matched to InAs (grown on GaAs substrates) for x = 1, 0.8, 0.6 and 0.
They found that the oxidation rate decreases with decreasing Al content, where the
layer with an Al content of 60% oxidized at about 1/10th the speed of the 80% Al
content layer by measuring the volumetric expansion of the oxidized layers due to
the oxygen. They found that the oxidation does not stop after more than 200 days.
As stated previously, Shibata et al. [92] measured, by Rutherford Backscattering
Spectroscopy, that AlSb exposed to air will oxidize a 15 nm thick oxide layer
within minutes, and it will continue to oxidize at a mean rate of 1.4 nm/hr for at
least 100 nm. This suggests the Al content should be reduced as much as possible
with regards to oxidation, and that exposure to air must be minimized. Reducing x
from 1 to 0.9 enhances the stability against oxidation [101].

Due to the required low refractive index, a high Al content is necessary. Since
AISb should not be used due to the heavy oxidation, and layers with x ~ 0.75 is
not suitable for electrical transport in n-type layers, and x = 0.9 is usually chosen
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as an intermediate solution.

3.3 X-ray Diffraction

X-ray diffraction (XRD) is a technique for characterizing atomic crystal structures
by using the interference properties of light.

A crystal can be expressed mathematically by its lattice vectors, which de-
scribe the spacing and orientation of atoms relative to their neighbouring atoms.
When the crystal structure and extinction rules are known, the available crystal
reflections can be determined and measured.

For laser diodes, substrates with a (001) surface is almost exclusively used, and
the following treatment is for (001)' ZB substrates and thin films (see fig. 3.4).

The in-plane and out-of-plane lattice constants a, and a, are related then to the
bulk lattice constant ag by [102]

a; +% - ay
ag= —————
X
where = 2Cj2/Cy;. Cy1 and Cj; are the elastic constants for the epilayer material.

For fully strained epilayers, the in-plane lattice constant, a,, will be the same
as the substrate lattice constant, ag,,. Using Bragg’s equation

3.4)

2dsin(0) =\ (3.5)

VYR S &
d= 7 —+— (3.6)
Ay az

we can determine the lattice constants by measuring the Bragg reflection angle
0. Here / and k are the Miller indices in the in-plane directions X and y, and
[ is the Miller index out of the plane in the z-direction. To determine the ZB
crystal lattice parameters a, and a,, which are the in-plane and out-of-plane lattice
constants, respectively, there are a few techniques commonly used. In our case,
ay is assumed equal to a, since they are both equivalent in-plane lattice constants.
In sections 3.3.1 to 3.3.3, the techniques used to determine the lattice parameters
a, and a, are explained. These techniques form the foundations for the papers
presented in chapter 8. A series of XRD measurements are shown in fig. 3.5,
which is a useful reference for the following techniques.

where

1001), (010) and (100) are all equivalent with regards to the crystal symmetry. For XRD, the
surface normal is usually defined in the z-direction, i.e. (001).
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For all XRD measurements presented in this work, a Bruker AXS D8 Discover
X-ray diffractometer with a Gobel mirror for collimated Cu-K, radiation and a V-
groove to achieve high intensity Cu-Ky; radiation has been utilized. The X-ray
wavelength for Cu-Kg is A = 1.5406 A, and the beam FWHM is specified to
be 0.007° for Si(111) [103]. The system allows for a sample rotation angle and
detector angle from -10 to 148°. All temperature dependent measurements were
performed in a “DHS 900 domed hot stage”, which allows for XRD measurements
at temperatures from room temperature up to 900°C in a controlled atmosphere
[104, 105].

3.3.1 Comparative technique

The lattice parameters of the substrate are often considered to be known. By com-
paring the angular offset of the thin film layer reflection peak with the substrate
peak, the lattice parameter can be determined. Typically the 004 symmetric reflec-
tion is used, due to its high intensity and easy alignment (symmetric reflections
only require alignment of the rotation of 6 and the tilt angle, while asymmetric
reflections also require alignment of the azimuthal sample rotation).

It is, however, important to note that this only works for layers above a certain
thickness and/or sufficient peak separation. Wie [106] suggests that the product of
the layer thickness & and the out-of-plane strain €, 2 X €, should be greater than
5 A for using this method. Here

. L +Vvap— asup Nzao_asub (3.7)

I-v  agu Asub

€1

where V is the Poisson ratio (typically close to ! /3 in our materials), ag is the thin
film layer bulk lattice constant and ag,, is the substrate lattice constant. If this
criteria is not fulfilled, a simulation tool should be used to determine the lattice
parameters/composition of the layer. This requirement also applies to Bond’s and
Fatemi’s methods.

For the comparative method to work, the layer must be fully strained, so that
the in-plane lattice constant a, is identical for the substrate and epilayer. The out-
of-plane lattice constant a, can then be determined from eq. (3.4), by using the
fact that the substrate angle Og,p is known. Any offset due to sample mounting or
miscut can then be ignored.

This technique is in most cases adequate for determining the composition and
strain of epilayers.
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3.3.2 Bond’s method

For absolute determination of the lattice constants, Bond’s method [107] from the
60’s can be used. By measuring planes in so-called positive and negative geome-
tries, the lattice constants can be determined.

By exchanging the position of the source and detector, any zero offsets due to
sample mounting, errors in the theta drive angle etc. are cancelled. We can then
extract 20 from the measured angles ), .. :

O+ = O, 4 —AOL (3.8)

where
Aoy = J,(tan0 + cotm ) (3.9

is the correction due to refraction of the x-ray beam at the sample surface [108]
and B, is the sample rotation offset. The refractive index is given by 1 — 8, 2. See
fig. 3.6 for an overview of the angles used in the calculations. The relationship
between the measured angles ®,, + and the sample surface angle w.. is

O+ = O+ £ Oy (3.10)

for Bond’s method.
20 is then determined from the following equations:

Oy, — = G—GOff—r (3.11)
Oy 4 = 0+ 0o +7 (3.12)
Wy, — + Oy = 26 (3.13)

where 7 is the angle between the sample surface and the measured plane; for a
(001) surface it can be found from [61]

1 lay
\/(h2 +k?)a? +1%a,?

Note that any offset due to miscut of the sample will give an additional contri-
bution to the refraction at the sample surface. The change in angle due to miscut
will not be corrected by this method. This is of importance for reflections with low
incidence or exit angles (small ®,, +). Generally these reflections are avoided for
accurate determination of the lattice constant.

T=coS (3.14)

ZFor AlSb, GaSb and InAs, 8, is approximately 1.18 x 107>, 1.54 x 107>, and 1.57 x 102
respectively. [109]
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Sample holder

Figure 3.6: Illustration of the angles measured or determined from asymmetric
reflection measurements. . are the angles between the sample surface and the
measured plane. o, + refers to the externally measured angles, and includes the
offset, B¢, of the measurement. T is the angle between the sample surface and the
measured plane. The sample surface is here assumed to be parallel to the surface
plane (usually (001)). Any deviation between the sample surface and the surface
plane is referred to as the “miscut”; its contribution is usually included in the offset
angle Oo¢r. The measured angles my, + are then used to determine the Bragg angle
0.
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3.3.3 Fatemi’s method

Another alternative for absolute determination of the lattice constants is Fatemi’s
method [108, 110]; in Fatemi’s method the source and detector positions are not
exchanged, so B¢ is not cancelled. Instead, B¢ is removed mathematically, which
requires one extra measurement compared to Bond’s method. It’s worth noting that
to minimize error sources, the lattice parameters 4 and k are usually kept identical
for all measurements, i.e. the sample azimuthal rotation is fixed. This reduces the
instrument parameters varied, and usually only leaves a variation in the sample
rotation angle ® and detector angle 26.

While Bond’s method requires an XRD which can preferably move the de-
tector angle, 26, close to 360°3, Fatemi’s method can do all measurements for
0,20 < 180°.

For tilted planes we then get the equations (after refraction correction):

Oy, — = 0400 —7T (3.15)
O 4 = 0400+ 7 (3.16)
O + Oy = 2(6 + O (3.17)
Op,— — Oy = 2T (3.18)

For Fatemi’s method we have @ + = ®+ 4 Oyt (not £0,4r), since we do not
exchange the position of the X-ray source and detector as in Bond’s method, but
instead measure the reflections from the equivalent planes (h,k,l) and (-h,-k,I).

Using these measured angles and correcting for refraction and offset O, the
in-plane and out-of-plane lattice constants a, and a, can be determined for (001) sub-
strates using [61]

V212
PR L (3.19)
2sin(0)sin(T)
and
B IA
4= 2sin(0) cos(t)

The difference between Bond’s and Fatemi’s methods is illustrated in fig. 3.7.

(3.20)

3.4 Other characterization techniques

In addition to XRD it is also important to characterize the optical and electrical
properties. The gain medium is characterized by photoluminesence, while the
electrical properties are investigated by Hall measurements.

3The detector must be able to move at least an angle 26 in both clockwise and counterclockwise
directions, and the sample must be able to move 180° — . _ , as shown in fig. 3.7.
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Figure 3.7: Illustration of XRD measurement of 226 reflection on GaSb(001)
using Fatemi and Bond’s methods. In Bond’s method, the source, detector and
sample are moved from positive to negative angles to eliminate the sample offset
Ooff by exchanging the position of the source and detector. This is achieved by
moving the detector to an angle —26, and the sample to an angle 180° — ®. In
Fatemi’s method the offset must be removed mathematically, and requires an extra
measurement from another reflection.

3.4.1 Photoluminescence

photoluminescence (PL) is the process where you produce optical recombination
in a material or structure by exciting it with electromagnetic waves. By pumping
the material with a light source, typically a laser, with photon energies hv > E,,
electrons are excited from the valence band to the conduction band. The electrons
will after some time, typically tens of ns, recombine through one of the recombi-
nation mechanisms described in section 3.1.2. If the recombination is radiative, it
can be measured by a spectrometer, producing PL.

For semiconductors the resulting light gives information about the bandgap
energy E,, or for quantum wells the confinement energy. It can also be used to
determine doping binding energies by performing low temperature PL.

This information is crucial for designing lasers for gas detection, where the
wavelength must match the absorption line of the gas to be measured.

3.4.2 Hall Measurements

The Hall effect is an important effect which can be used to determine the doping
concentration in semiconductors. It is a product of the Lorentz force, which states
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that [111]

F =+e(E+vxB). (3.21)

where F is the force vector, e is the elemental charge which is —e for electrons and
e for holes, v is the vectorial speed of the charge and B is the magnetic field vector.
The force in the y-direction F; is then

Fy = +e(Ey —v,B.). (3.22)

For electrons the charge is —e and the speed v, is in the opposite direction
of E,, while for holes the charge is e and v, follows E,. In a Hall measurement,
a electrical field E, is induced by sending a current through the structure, and a
magnet is set up with a magnetic field in the z-direction. The charge carriers will
then feel a force F}, until the induced perpendicular electrical field E, reaches
equilibrium so that

E, = v,B.. (3.23)

The current is J, = v,ep for holes [111], where P is the hole carrier concentra-
tion, and we get
J:B,

where Vj is the voltage across the Hall bar, and w is the width. By using a known
current J, and a known magnetic field B,, the carrier concentration can be de-
termined by the amplitude of V,, and the doping type is determined by the sign,
positive for p-type, and negative for n-type.
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Figure 3.8: Illustration of a Hall bar. The dark structure is the doped semiconduc-
tor, placed on top of an insulating substrate.



Chapter 4

Growth of Laser Diodes

Making epitaxial thin films is at the core of laser fabrication. The growth of multi-
layer structures is necessary to define both the electrical and optical aspects of the
laser diode. In this chapter the important aspects of laser growth are presented; first
an introduction to epitaxial growth and the importance of managing the strain in
the structure, followed by a description of the growth technique. Finally, the layer
structure of a laser diode is introduced followed by the laser structure of samples
Sb 142 and Sb 145, which is the structure of all lasers tested in this work.

4.1 Epitaxial growth

Deposition or growth is a term used when you apply one material on top of another
(or the same) material. This is usually performed by heating or sputtering one or
both materials and depositing one of them onto the other, either through a melt or
by evaporating one material onto the other.

If the conditions are right, the deposited atoms can bond to the atoms of the
material it is deposited on, effectively continuing to build on the existing crystal
structure. This is called epitaxial growth, and it is an essential part of semicon-
ductor manufacturing. It is important to maintain a crystalline structure with few
defects, as defects will interfere with the operation of the devices. To maintain a
single crystalline phase throughout the whole structure it is therefore important that
the different epitaxial layers, often called epilayers, have the same crystal structure
and interatomic distance. For ZB (001) samples, a mono-layer (ML) of atoms have
a height of ap/2, as can be seen from fig. 3.4. This unit is often used for epitaxial
growth.
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4.1.1 Strain and the critical thickness

The use of strain for improving the properties of the gain material was presented in
section 3.1.2. However, for growing thick epilayers on sample surfaces, it is also
important to maintain a low average strain throughout the whole structure.

If the relaxed lattice constant of a layer does not match that of the underlying
layers and the substrate, it will conform to the in-plane lattice constant a, = agyp,
while the out-of-plane lattice constant a, will increase or decrease depending on
if the strain is compressive (asup < depilayer) OF tensile, respectively. While it is the
stress energy introduced by the lattice mismatch that is important, the change in
the lattice parameters, expressed by the strain, is more easily determined since it
can be measured by XRD. The relation between the bulk lattice constant ay and
the in-plane and out-of-plane lattice constants a, and a; is described by eq. (3.4),
and the in-plane strain is defined by eq. (3.7).

The lattice mismatch will build up a potential stress energy, which at some
point starts to introduce misfit dislocations in the material in order to relax the epi-
layer towards its bulk state [112]. Dislocations are detrimental to electro-optical
devices, and strain balancing is therefore important for laser structures. In addi-
tion, it is also important to note that the thermal expansion of the epilayers are
different, and our research suggests that the crystalline quality is optimum for lat-
tice matching at growth temperature [59]. The thermal expansion of the cladding
layers, the thickest epilayers of the laser structure, is the topic of paper I in chap-
ter 8. Lattice matching of GaSb-based laser structures is often achieved by adding
As to the epilayer, to reduce the lattice constant, as shown in fig. A.1.

The critical thickness refers to the thickness at which the stress-induced en-
ergy is too high to support a fully strained epilayer. The critical thickness of the
main tertiary alloy used for the gain medium, GalnSb, has been investigated by
our group [113]. The data suggests that a GalnSb layer with 1% strain on GaSb
(Gagp.g4Ing 16Sb) has a critical thickness of about 40-60 nm.

4.2 Molecular Beam Epitaxy

Molecular Beam Epitaxy is a technique for growing epitaxial layers from nm to
um thicknesses with high precision and low impurity and defect concentrations.
The rate is typically 1 ML/s, which is about 1.1 um/hr for our material system
(relating to the lattice constant).

By thermal evaporation of the elemental or molecular constituents used in the
grown structure, a wide range of compositions can be grown. However, an opti-
mization of the growth parameters for e.g. AISb may not be the optimal for InAs,
and compromises must be made to minimize defects etc. This is usually achieved
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by finding group V overpressures and a growth temperature compatible with all
of the constituents. The optimum growth temperatures are about 550°C for AlSb,
490°C for GaSb and 420-490°C for GalnAsSb.

A sketch of the main components of the growth chamber is shown in fig. 4.1.
Alloys, such as GaSb, are created by evaporating more than one source material
at a time. The term “molecular beam” relates to a condition where the pressure is
low enough for atoms to travel long distances without colliding with another atom,
referred to as the mean free path. For lengths of about 0.2 m, this condition is
fulfilled for pressures below about 8 x 10~* millibar [112], which is in a vacuum
range referred to as high vacuum. During epitaxial growth on GaSb, the beam flux
pressure at the sample surface is usually around 1 x 10~° millibar, fulfilling the
molecular beam pressure requirement.

However, due to the requirements for low impurity concentrations, the base
pressure should preferably be less than 2 x 10~!! millibar [112], in the ultra-high
vacuum (UHV) range. The base pressure of MBE systems are usually close to
1 x 107'° millibar.

For all samples grown in this work a Varian Gen II Modular molecular beam
epitaxy system has been used. It is capable of growth of III-V semiconductors
containing Al, Ga, In, As and Sb. In addition the system has three dopant sources;
Si, Te and Be. The materials and their placements are shown in fig. 4.2.
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Figure 4.1: Sketch of the MBE chamber, seen from the side (left), behind the
sample (top right) and behind the sources (bottom right). By heating the sample
to an appropriate growth temperature and evaporating source materials in an UHV
environment, thin films can be grown with a precision of about one atomic layer.
The beam flux monitor, which is a pressure gauge, can be rotated into the sample
position and accurate fluxes of the source materials can be determined. Shutters
are used to allow or block the fluxes of the individual sources.
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Figure 4.2: The available source materials in the Varian Gen II Modular molecular
beam epitaxy system used in this work.
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Figure 4.3: A sketch of a laser diode band diagram with focus on its main proper-
ties for laser diodes. The top line is the conduction band, and the lower line is the
valence band. The layers are described in detail in section 4.3.1. The substrate and
buffer improves the crystal quality and uniformity. The grading layers reduce the
diode voltage, while the cladding layers provide optical and electrical confinement.
Furthermore, the core provides an increased refractive index for waveguiding and
further confinement for the charge carriers. The MQW provide the gain for the
stimulated emission radiation.

4.3 Growth of a laser structure

In electrical terms, the grown laser structure can be thought of as a p-i-n diode,
where the p-layer is on top, and the n-layer (including the substrate) is at the bot-
tom, and the active region (SCH and MQW) are undoped for optimum gain. In
optical terms, it is a slab waveguide.

Here, the laser structure is presented, with descriptions of the different epilay-
ers and their functions. The layer structures of samples Sb 142 and Sb 145 are then
shown in fig. 4.4 and table 4.1.

4.3.1 Laser structure

The main components of a semiconductor laser structure are shown in fig. 4.3 and
described below.

Substrate The substrate is the starting point of the laser. Some of the main prop-
erties important for the substrate is that it is sturdy, so that it can be han-
dled without breaking, has a suitable crystal structure with appropriate lat-
tice constant for the epilayers required for the laser structure, and that it is
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suitable for typical growth temperatures. It should also have good electrical
and thermal properties for transport of electrons/holes and heat, respectively.
Preferably it should have a refractive index ng,, < nf to avoid optical leak-
age into the substrate.

Buffer A buffer layer is grown prior to the actual laser structure to improve the
sample surface quality. A series of thin AlGaSb layers in a superlattice is
usually introduced. A superlattice with high Al content is shown to reduce
the sample surface roughness [114], which is important to achieve smooth
interfaces and well defined QWs.

Grading The cladding layers of the laser have a large bandgap to achieve proper
confinement in the core. The purpose of the grading is to improve the elec-
trical properties of the diode by reducing, or smoothing, the barrier for elec-
trons and holes at the heterojunctions. This will usually decrease the series
resistance and diode voltage [19].

Cladding The cladding layers are designed to provide optical and electrical con-
finement of the charge carriers. Important parameters are a low refractive
index ngjad < Mefr, and sufficient conduction and valence band offsets to the
core and MQW. It must also have good electrical conductivity of electrons
and holes by n- and p-type doping, respectively.

Core/SCH The core, or separate confinement heterostructure (SCH), acts as a
core for the optical waveguide and confinement for the charge carriers. While
the MQW usually have a higher refractive index than the cladding, it is too
thin to give a proper confinement of the light. By using SCH layers, the
light confinement is increased, which increases the overlap of the optical
field and the confined electron and hole wavefunctions in the gain material.
This layer is usually undoped to reduce optical losses. With the exception of
the MQW, these layers should have the highest refractive index ngore > Hefr
of the structure, and the CBO and VBO should be intermediate between the
cladding and MQW.

MQW The MQW are the gain material of the structure and the important param-
eters for the well is a bandgap matched to the lasing wavelength. It should
have the lowest CBO and highest VBO in the structure, and it should be opti-
mized to reduce the Auger recombination. This is usually achieved by using
compressive strain to separate light and heavy holes, and band structure en-
gineering to increase the Auger recombination lifetime, such as reducing the
CBO between the barrier and well [115]. If the SCH provides proper elec-
tron and hole confinement, the barrier material is usually the same material.
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Cap The cap is a protective layer, typically of the same material as the substrate.
It might be needed to protect the grown structure from air, and it should be
easy to contact by metallization.

Figure 4.4 and table 4.1 shows the nominal material parameters for laser sam-
ples Sb 142 and Sb 145, which is the structure used for all lasers in this work.
The problem with the GaTe source was most likely due to poor outgassing prior to
Hall measurements. This resulted in a too high carrier concentration in the manu-
factured Hall bars, and a too low GaTe source temperature was used for the laser
diodes.
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Figure 4.4: Visualization of the grown laser structure for sample Sb 142 and Sb
145. Band diagram, misfit e and refractive index n. The different layer composi-
tions are shown and explained in table 4.1.
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Table 4.1: Layer information for the nominal laser structures of samples Sb 142 and Sb 145. The n-type doping (Te) was
nominally 1 x 10'8 cm™3, but due to a problem with the GaTe source, it is most likely closer to 2 x 10!7cm™3. The substrate
doping is about 5 x 107 cm™3. For p-type doping, Be was used. For the n-type cladding, the GaTe source temperature was
gradually reduced the last 300 nm of the cladding layer, reducing the doping concentration. The grading layers are composed
of alternating GaSb/AlGaAsSb layers, where the thickness of the GaSb layers are reduced from 2 nm to 0.1 nm towards the
AlGaAsSb layers, while the AlIGaAsSb thickness is increased from 0.1 nm to 2 nm. This results in an average linear change
in composition from GaSb to AIGaAsSb. The top p-type cladding is usually grown at 490°C. However, for sample Sb 142 an
error in the recipe resulted in a top cladding temperature of 550°C, while for sample Sb 145 the temperature was set to 490°C.
The resulting lasers lased at 2.0 um (Sb 142) and 2.2 pm (Sb 145). A blue-shift due to thermal annealing of GalnAsSb is

documented in the literature [116].

Layer Material Thickness (nm) Doping  Temp. (°C) Comment
Substrate GaSb 5% 10° n 490

Buffer GaSb 100 n 490

30x superlattice GaSb/AlGaSb 18/1 x30 n 490

Buffer GaSb 250 n 490

Grading GaSb/AlGaAsSb 2.1 x20 n 490 See table text
Cap GaSb 1 n 550 Growth stop
Cladding Alp.9oGaAsSb 1700 n 550

Cladding Alp9oGaAsSb 300 n 550 See table text
Cap GaSb 1 - 430 Growth stop
SCH Alp25GaAsSb 150 - 430

MQW AlGaAsSb/GalnAsSb 20/12.5x3 + 20 - 430

SCH Alp25GaAsSb 150 - 430 Growth stop
Cladding Alp.9oGaAsSb 2000 p 5507490

Grading AlGaAsSb/GaSb 2.1 x20 p 550 /490 See table text
Cap GaSb 50 p 550 /490




Chapter 5

Processing of Laser Diodes

The laser growth defined the electric properties of the laser diode, together with the
gain material and a 1D slab waveguide. The purpose of the processing is to create
a 2D waveguide, electrical contacts for external power connections and mirrors for
the resonator.

Here, the processing techniques used to create the laser diode are presented,
followed by a presentation of the processing results.

Most of the processing presented in this work was performed at the NTNU
Nanolab cleanroom facilities. Information regarding the facilities and the available
equipment can be found online at http://www.norfab.no/lab-facilities/
ntnu-nanolab/.

5.1 Photolithography

Lithography is an integral part of most device processing, where the purpose is
to transfer a pattern onto the sample surface. This usually involves spinning on a
polymer which contains a photosensitive component. By exposing this polymer,
referred to as a photoresist (PR), its chemical properties change, making it soluble
or insoluble in a developer process. If the exposure makes the PR soluble, it is
referred to as a positive resist, since the pattern in the resist will be the same as the
pattern on the mask used to block parts of the light used for exposure. For negative
resists, the exposure hardens the resist, and the pattern is inverted.

To expose the resist, different techniques can be used. For resolutions from
about 2 to 1000 nm, electron beam lithography (EBL) is a popular choice. Here,
the PR is exposed by an electron beam. In a scanning electron microscope (SEM),
the electron beam can be positioned on the sample surface by deviating the electron
beam by electric or magnetic fields. In this way, the electron beam can be used to
expose the PR with a resolution (roughly) defined by the spot size of the electron
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beam, and resolutions below 10 nm are achievable. A critical dimension of 2 nm
has been demonstrated [117]. However, one of the limitations of such a system is
large area exposure, where exposures can take many hours or many days.

For resolutions from a few nm up to more than 100 pm, nanoimprint lithog-
raphy (NIL) is a relatively new and interesting alternative [118], where a stamp is
used to imprint the pattern into a polymer. By imprinting the resist and harden-
ing it, the pattern can be transferred onto the sample. NIL is very scalable, and
research into patterning of full wafers is ongoing [118]. The process usually re-
quires a flat sample, and is best suited for patterning the first process step, prior to
structuring the sample surface.

For resolutions from about 0.35 um and up to wafer size, contact photolithogra-
phy is usually the most common lithography in a research lab environment. Here,
the pattern is transferred using light, usually ultra-violet light at 365 nm (i-line)
[119]. A pattern is defined using chrome deposited on a glass plate, and by placing
it between an ultra-violet light source and a sample covered by PR. Through ad-
vanced techniques such as short wavelengths, focusing and monochromatic light
sources (lasers), the resolution can be increased to less than 100 nm. However, this
requires more advanced equipment.

In this work a MAS56 mask aligner from Karl Suss has been used for the pho-
tolithography process. It provides UV light from a mercury bulb, providing expo-
sure of the 365 nm wavelength (i-line). The intensity was continously monitored
by the instrument during exposure to ensure a constant intensity.

Edge bead removal (EBR) is the removal of the PR near the edges of the sam-
ple. Due to the PR spin-on process, the part of the resist close to the edge is usually
significantly thicker than the resist in the middle of the sample. For contact lithog-
raphy this is problematic, since the mask will be resting on top of the edge bead,
creating a gap between the PR and the mask at the center of the sample. This re-
sults in a separation between the mask and the PR, resulting in reduced resolution
and poor sidewall angles. Figure 5.1 shows the importance of edge bead removal
(EBR) for good resist sidewall profiles. A steep sidewall angle is important for
both good etch profiles and metallization profiles.

EBR is performed by exposing the edge bead with ultra-violet light, while cov-
ering the middle of the sample, a process that only works for positive photoresists.

5.2 Etching

Etching can be divided into two distinct types; wet etching (liquids) and dry etch-
ing (gases) [119].
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Figure 5.1: SEM photographs of photolithography resist profiles without EBR
(left) and with EBR (right). Other parameters are identical. By using EBR, a
steeper sidewall angle is achieved, which is important for most processing steps
using photolithography for patterning. The resist used is S1818.
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In wet etching the sample is immersed into a solution which reacts chemically
with the sample surface. Such etches are usually isotropic, or have an etch rate
dependent on the crystal lattice, and wet etches are usually not ideal for etching
straight sidewalls in a sample. However, they are useful for etching sample sur-
faces to remove impurities and native oxides prior to further processing.

Dry etching refers to a process where a gas is used instead of a liquid. Typi-
cally, it uses a a reactive gas, resulting in chemical etching, or an ionized gas which
results in physical etching from bombardment of atoms onto the sample surface.
By ionizing reactive gases, the sample can be simulatenously physically and chem-
ically etched, which is referred to as reactive ion etching (RIE). In addition, some
gases become reactive due to the ionization.

In RIE, the ionization is created by an oscillating electric field between a top
electrode and the sample. The sample is then given a negative potential, attracting
the positively charged ions to the surface. Since the etch rate is not only dependent
on the chemical reactions, the etch is more anisotropic than the wet etch due to the
directional physical etch from the ion bombardment. However, since the electric
field amplitude controls both the rate of ionization and the rate of physical etch,
the rate of physical and chemical etch cannot be controlled separately. By using,
in addition, an oscillating magnetic field to ionize the gas without accelerating it
towards the sample, the chemical etching by ionized reactive gas can be controlled
separately from the physical etching, controlled by the electric field. This is re-
ferred to as an inductively coupled plasma reactive ion etching (ICP-RIE).

Zhang et al. [120] have investigated the etching of GaSb and AIGaAsSb using
BCl3 and Cl, and found that BCl; provides smooth etch surfaces [120, 121] but
low etch rates, while Cl, results in high etch rates, but with very rough surfaces
for AlIGaAsSb. This is due to a very low physical etch rate when using Cl,. By
mixing it with BCl3, the surface roughness and undercutting is reduced [121]. An
example of GaSb etched by a BCI3/Cl, ICP-RIE etch is shown in fig. 5.2.

For polymers such as PR, it is preferred to use an O,/CF4 etch chemistry. This
is presented in more detail in the laser processing results, see section 5.8.1.

It is also worth noting that the physical etching may damage the electro-optical
properties of the sample, and etching too close to the active medium can ruin the
gain medium. Germann [122] has shown that RIE etching down to 100 nm above
the active medium in an AlGaAs/GaAs laser with ion energies above 500 eV re-
sulted in reduced PL intensity. It is common to only etch the upper cladding to
define the waveguide, and the optical confinement in the waveguide is dependent
on the etch depth!. The etch depth cannot be determined by SEM while process-
ing without sacrificing laser samples, and the etch depth is usually determined by

IThis will be discussed in chapter 7, and the relation between etch depth and transverse mode
profile is shown in fig. F.1.
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Figure 5.2: SEM photographs of a cross section view of the etch profile from a
GaSb dummy wafer etched by ICP-RIE.

a profilometer.

In this work, all dry etching were performed in an Oxford Instruments Plas-
malab System 100 ICP-RIE for chlorine based etch chemistries (BCl; and Cly),
and an Oxford Instruments Plasmalab System 100 RIE for fluorine based and re-
lated etch chemistries (CFy4, O, and Ar).

Etch mask hardening The etch mask will be etched as a part of the etch process.
For some etch chemistries, the etch mask can react nonuniformly or the etched
material can redeposit on the sidewalls, and result in etch artifacts. An example of
this is shown in fig. 5.3.

For proper etching and contacting of ridge laser structures, these artifacts must
be removed, typically by using an etch chemistry which only etches the mask
material. For III-V semiconductors, an oxygen- or fluor-based etch chemistry can
be used.
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Figure 5.3: SEM photograph of an etch test sample. Here, the resist has hardened,
or redeposition of the etched semiconductor has caused the forming of “horns” on
the sides. The etch gases used were BCl; and Ar.

5.2.1 Selectivity

Selectivity is a term used to define the etch rate of the sample compared to the etch
rate of the mask. It is important that the mask, e.g. a PR, is thick enough to support
the desired etch depth. The selectivity s can be determined by

ra d

ry hi—H+d
where r, is the sample etch rate, rp, is the mask etch rate, and the heights /4, H and
d are shown in fig. 5.4. If you know the selectivity, it can be used to determine
the etch depth without removing the mask, which makes it possible to continue
etching if the desired etch depth was not reached. The expression for etch depth is
then

S =

(5.1)

(5.2)

In addition to determining the etch depth, a high selectivity can also be useful
for improving the sidewall profile. The sidewall profile of the mask will be trans-
ferred on to the sample. However, an increased selectivity will result in straighter
sidewalls.

5.3 Insulation

An important part of the processing is to make sure that you only contact the laser
ridge, and not the surrounding sample material, which would result in no lasing.
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Figure 5.4: Etching of mask and sample. h; and h; are the mask thicknesses
before and after etching, respectively. H is the total height, and d is the etch depth.

Also, the optical field of the laser should be removed from any metal (unless the
metal is intentionally placed to change the characteristics of the device), such as
bonding pads.

The insulation material is usually a glass/ceramic, a polymer, or both. For
thick insulation layers it is preferable that the thickness matches the etch depth,
both to planarize the sample, and to create contact pads at the same height as the
ridge and protect the ridge structure chemically and mechanically. In addition, it
should remove heat from the laser. Since the insulation will be close to the core,
it will also be a part of the waveguide through its refractive index. For contacting
the laser sample, it is important that the insulation provides sufficient adhesion for
the deposited metal.

In section 5.8.1 more details regarding insulation used in this work is pre-
sented, including the choice of material and process.

5.4 Metallization

When contacting a laser diode, it is important to create a good ohmic contact.

It is believed that the surface of GaSb has a Fermi level pinning near the va-
lence band edge, which benefits ohmic contacts to p-type GaSb [123]. For p-type
contacts, most groups use Ti/Pt/Au [28, 34, 124], where Ti provides adhesion, Pt
works as a diffusion barrier for Au, and Au is easily contacted externally and does
not oxidize.
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For n-type contacts, however, creating a good ohmic contact can be more chal-
lenging due to a barrier induced at the semiconductor-metal interface. To reduce
this barrier, the most common strategies are either alloying the semiconductor with
the metal, or heavily doping the semiconductor near the interface. Both of these
techniques require an annealing process, described in section 5.4.2, after the metal
deposition.

Robinson and Mohney [125] have shown that by using In in the metallization
scheme, an InGaSb alloy at the interface after annealing reduces the contact re-
sistance. Vogt et al. [126] have published another metalization scheme for n-type
GaSb, using Pd/Ge/Au/Pt/Au annealed at 300 °C. The diffusion of Ge into the
GaSb sample after annealing results in a good ohmic contact. Robinson [127] has
pointed out that this recipe may not be well suited for all purposes, since the Pd
penetrates 150 nm into the GaSb. However, for mid-infrared laser diodes the n-
type contact is usually 100 — 150 um from the active layers, and this is not an issue.
Another alternative is to use Au, which will also diffuse into the sample [128, 129].
However, the diffusion will continue over time causing catastrophic failure of the
device [129].

Metallization is usually performed by electron beam evaporation, where the
metal is heated by an electron beam and evaporated onto the sample surface. This
technique is similar to MBE, however, the deposited thin film is not epitaxial. The
sample surface temperature is usually close to room temperature during this depo-
sition, only heated by the evaporated metals. The heating is due to the high tem-
perature of the evaporated metal and the radiative heating from the metal source.

In this work, a Pfeiffer Vacuum Classic 500 e-beam evaporator and a Cus-
tom ATC-2200V from AJA International Inc. have been used for electron beam
evaporation of metals.

5.4.1 Lift-off

To pattern the deposited metal, a technique called lift-off is commonly used. Lift-
off is a technique where the whole sample is covered with a deposited metal layer,
and then the unwanted parts of the layer is lifted off. This is a popular technique
for depositing layers which are not easily etched without also etching the sample,
such as metals.

The technique is usually implemented by photolitography, where openings in
the PR are made where the metal is to be deposited. The best results are usually
achieved with a negative PR utilizing undercut, where the sidewall angle is greater
than 90°. It is important for this technique that the evaporated metal has a nor-
mal incidence onto the sample surface, a feature provided by the electron beam
evaporation technique. Examples of lift-off are shown in figs. 5.5 and 5.6.
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\ : AL
2012.05.31 10:32 N SD4,6 x1,5k

2012.0924 13:47 N D8,8 x3,0k 30um

Figure 5.5: SEM photographs of metallized samples after lift-off. Left: A bad
lift-off process due to a low PR sidewall profile angle (see fig. 5.1), leading to a
single continuous metal layer on the sample and PR. During the lift-off process
the metal on top of the PR will then tear off or stay on the sample. The dashed
line (——) shows an area of incomplete lift-off, where the metal on top of the PR
is still present after lift-off. The dash-dotted line (—-) shows metal deposited on
the sidewall of the PR. Here, the metal has been torn off near the top of the resist,
leaving an unwanted sloped metal layer (see fig. 5.9 for a cross section view) due
to the low PR sidewall angle. The roughness of the metal is due to deposition on
top of insulation on a dummy sample. Right: A good lift-off process, mainly due
to straight PR sidewall profiles. See fig. 5.6 for photographs prior to and after the
lift-off.

2012.0924 13:46 N D8,8 x15k 5.0um

2012.09.13 1339 N D52 x12k  50um

Figure 5.6: SEM photographs of a good lift-off profile. The photoresist thickness
should be approximately 3 um, and the metal layer, Ti/Pt/Au 50nm/25nm/775nm.
On the left the sample still has the PR mask, while on the right the lift-off process
has been completed.
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5.4.2 Annealing

Annealing refers to the process of heat treatment. With regards to laser processing,
it relates to the heat treatment of the sample and metal to improve the electrical
properties of the contact metal(s). By depositing one or more metals, several issues
with contacting can be overcome when combining metallization with an annealing
process:

Removal of oxide layer Some metals will react with the native oxide of the semi-
conductor to provide an improved interface between the metal contact and
the semiconductor material. A metal shown to provide good oxidation re-
moval properties is Pd [127, 130-132], and it is therefore used in some met-
allization schemes.

Adhesion To make sure the contact does not fall off during use, e.g. due to wire-
bonding, an adhesive metal is often used. A very common example is Ti,
but also Al and Cr are used. Adhesive metals are usually very reactive, and
exposure to air must be avoided during the deposition process.”

Doping and alloying Some metals or semimetals will diffuse into the semicon-
ductor and provide a high-doping region or alloy between the metal contact
and the semiconductor device, improving its ohmic characteristics, e.g. Ge
or In.

Diffusion barrier To prevent all metal layers from alloying with the semiconduc-
tor during the annealing process, a diffusion barrier metal is often used. This
ensures that e.g. Au doesn’t diffuse into your device [128] and short circuit
it. Typically the diffusion barrier metal is Pt, which has a high melting tem-
perature and low reactivity (noble).

Contact metal The top-most metal layer, referred to as the contact metal, should
be easy to contact externally and preferably should not oxidise or otherwise
break down. In III-V semiconductor devices, the metal used is almost ex-
clusively Au, which doesn’t react with the atmosphere. Furthermore, its
softness makes it easy to contact by wirebonding using an Au wire.

In this work, a Jipelec Jetfirst 200 mm rapid thermal annealer was used for
annealing the samples. It is capable of heating samples up to 1200°C at 50°C/s.

2A common feature of adhesive metals are that they will improve the vacuum in vacuum cham-
bers, a feature that is sometimes exploited in high vacuum chambers, such as using a Ti sublimation
pump in MBE chambers.
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5.5 Lapping and cleaving

While thick wafers are important during processing for handling, it negatively af-
fects the performance of the laser diode. By reducing the thickness of the sample,
the electrical resistance from the backside metal contact to the diode and the ther-
mal resistance can be reduced. The reduced thickness also makes it easier to cleave
the lasers into their proper lengths from about 0.5 to 2 mm, which is in the same
length scale as the substrate thickness of 0.5 mm for GaSb.

Lapping is a process where the sample is grinded using sand paper to thin it.
The sample is usually mounted (laser structure down) on to a chuck with height
adjustment so that the final thickness can be set.

The desired thickness is usually limited by the mechanical strength of the sam-
ple; if it is thinned too much, it will break during consequent handling, and a target
thickness of 100-150 um is common for GaSb.

After grinding and backside metallization, the laser devices are cleaved into
their correct lengths. The ZB crystal break along the {110} planes, making it
possible to cleave samples with {100} surfaces into squares with straight sidewalls,
which is an important feature for defining the mirrors of the laser devices.

5.6 Contacting

In order to connect the device to an external circuit, it is necessary to connect wires
to the top and bottom contact. The three most common approaches are probing,
soldering and wirebonding.

Probing is achieved by placing thin metal probes onto the metal pads of the
device by x-y-z manipulators. The tip radius of the probe usually ranges from 1
to 10 um, providing a precise contacting of the device. The benefit of probing is
that the probes can be quickly attached and detached from the devices, which can
be beneficial for testing many devices. It can also deliver high currents due to the
relatively large size of the probe, if large tip radiuses are used. The main drawback
is that the setup is quite large.

Soldering is achieved by melting a metal, usually tin, onto the contact surface
and inserting the wire into the melt. This technique requires a soldering iron,
which has poor precision, and the size of the soldered contact is large, usually sev-
eral hundred pm in diameter. The benefit of soldering is that it is cheap and easy
to implement. However, the large size of the contact needed and the high tempera-
tures (typically 200-300°C) used means that it is rarely used for laser fabrication.
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Wirebonding is a technique where a wire is fused with the metal on top of the
device and with an external circuit. Traditionally the wire and bonding pad are
made of Au, but Al and Cu [133] can also be used. In wirebonding, the metal
wire is fused to the contact metal using ultrasonic vibrations to achieve the bond
[134]. For Au wires, temperatures around 100°C are used in conjunction with the
ultrasonic vibrations to soften the material [134]. This technique can produce very
small contacts, and is the most used for contacting semiconductor devices. In this
work, a TPT HBO5 Wedge and Ball Bonder was used for all wirebonding.

5.7 Characterization

For controlling the process, a few characterization techniques are used. The main
purpose of these techniques is to control the resulting height and alignment of the
different processes.

5.7.1 Microscope

Optical microscopy can be used to magnify the sample surface typically up to
about 100 times, and it has a resolving power in the sub-um range. It is mainly
used to control and inspect the alignment of the photolithography process.

In this work, a Carl Zeiss AxoScope Al was used for microscopy characteri-
zation, which has a magnification up to 100 times.

5.72 SEM

The scanning electron microscope (SEM) is a microscope where electrons are used
instead of light to create an image of the sample surface. By using this technique,
feature sizes of a few tens of nm can be investigated.

By cleaving the sample, the cross section profile of processed structures can be
investigated, as shown in fig. 5.2. This information can be useful to determine the
profile of the ridge waveguide. However, it is very difficult to continue processing
cleaved laser structures, and these measurements are unsuitable for laser devices
during the processing.

In this work, all SEM measurements were performed in either a Hitachi TM3000
Tabletop microscope, or a Hitachi S-5500 S(T)EM.

5.7.3 Profilometer

In a profilometer, height differences on the sample surface can be measured by
using a small needle, which follows the sample surface profile. The profilometer
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needle tip radius is usually around 10 um, and precise measurements of small fea-
tures, such as laser ridges of about 2 um, can be difficult. Usually, larger structures
on the samples are used for determining e.g. etch depths, which must be included
in the mask design.

In this work, all profilometer measurements were performed in a Veeco Dektak
150 with a 12.5 um radius tip.

5.8 Processing results

In this section some of the main results from the laser processing are presented.
The y-junction laser process recipe can also be found in appendix C.

5.8.1 Using ma-N 440 as insulation

To insulate the laser samples, both SiO, and a polymer, and only a polymer were
tested. The options that were considered and tested were

SiO; A thin layer of SiO, deposited on top of the lasers after ridge etch will
electrically isolate the lasers and hinder moisture and oxygen from reaching
the laser material. However, due to the fact that no mask was available for
the oxide etch, it was not straightforward to implement this solution.

SiO, and a polymer An alternative that would allow SiO, on the sample is to
deposit it, and then spin on a polymer on top. An etch back process could
be used to uncover only the top of the laser ridge, since a spin on process
would create a flat surface, whereas a SiO, deposition would create a layer
with the same topography as the lasers.

Polymer The third option would be to skip the SiO; layer and only use a polymer.

Due to the lack of masks for insulation lithography, spinning on a thick layer
of polymer and performing an etchback in an RIE chamber was considered the
best option.

Some of the important features considered were:

Thermal stability The sample will be exposed to temperatures up to 300-400°C
(depending on the metallization scheme), and the insulation would have to
be stable up to those temperatures, at least for a short period of time (a few
minutes).

Chemical stability The sample will be exposed to solvents and acids related to
the photolitography and metallization steps, such as acetone and hydrofluo-
ric acid (HF). For lift-off, the samples are usually immersed in acetone for
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30 minutes up to several hours. The insulation will have to withstand these
processes without dissolving or otherwise deteriorating.

Mechanical stability The insulation will have to endure further processing and
operation, including lapping, cleaving, contacting, and in some cases ultra-
sonic cleaning.

Based on available polymer materials suitable for insulation, mainly photore-
sists were considered. The photoresists SU-8, SPR-700 and ma-N 440 were tested.
SU-8 was quickly rejected due to problems with adhesion and uniformity in the
spin-deposition process. The other resists were spun on pieces of silicon and
heated up for 5 minutes to about 370°C, as measured by an infrared (IR) ther-
mometer. This was the highest achievable temperature on the hot plates in the lab.
After the samples were removed, they were placed in a beaker with acetone for
more than one hour to test the chemical stability. Neither ma-N 440 nor SPR-700
dissolved. The mechanical stability was then tested by scraping the resist with a
pair of tweezers. It was found that only ma-N 440 did not flake off during this
process, and it was chosen as the insulation for the lasers.

It was also found that exposing ma-N 440 in the mask aligner prior to heat-
ing it above about 150°C resulted in bubbling, making the resist unusable as an
insulation layer. The EBR was therefore not performed using photolithographic
exposure and develop process, but by covering the center of the sample with a
piece of Si and etching the edge bead in the RIE.

For depositing the insulation layer on top of the laser structure, the resist was
spun on to form a thick uniform layer, followed by an etchback process to uncover
the top of the ridge. The resist surface was flat, and did not follow the etched
ridge profile of the lasers. For the laser samples, the ma-N 440 was heated to
about 200°C, which was found to be sufficient to make it insoluble in acetone.
The etchback was performed in an RIE chamber, and different gas species were
tested for best performance. The etches tested were pure O,, O, and Ar, and O,
and CF4. The resulting data can be found in appendix D on page 151. It was
found that introducing small amounts of CF4 to the O, etch gave superior results
with respect to surface roughness and uniform thickness over 1 mm, as measured
by a profilometer [135]. This might be related to a combination of etching and
passivation deposition by the CF, in the plasma [136], smoothing the surface.

One of the main drawbacks of the ma-N 440 insulation is poor adhesion to
the top metal bonding pads. This makes it difficult to perform wirebonding to the
devices, as the wire can pull off the whole bonding pad. One solution is to increase
the metal thickness. However, this thickness is limited by the lift-off process and
the price of Au.
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Figure 5.7: A part of the metallization mask for the Y-lasers designed by Erik
Poppe and Arne Rgnnekleiv for Erik Poppes PhD work [137]. The lasers lengths
L.+ Lg are 1.5 mm (left) and 2.0 mm (right) long, respectively. In the designed Y-
lasers, the length differences AL range from 0 to 200 um, the ridge widths w from
1.3 to 2.5 um, the lengths L. + L, from 1.0 to 2.0 mm, and the radius of curvature
from 300 to 1000 um, respectively.

5.8.2 Y-junction laser processing

Most of the clean room processes for the Y-junction lasers was developed in 2010
and 2011 on Si and GaSb dummy samples before it was used on laser samples.
The process has been continuously evolving, and the last iteration of the recipe
can be found in appendix C.

The Y-lasers were designed by Erik Poppe and Arne Rgnnekleiv as a part of
Erik Poppes PhD work [137], and a part of the metallization mask is shown in
fig. 5.7. Here, the main processing results are given. A sketch of the cross section
of a processed laser is shown in fig. 5.8.

Samples Sb 142 and Sb 145 were used for laser processing. Due to the limited
availability of laser material, each quarter 2 inch sample was cut into three pieces.
To account for unforeseen problems during the processing, two or three pieces
were processed at a time. A sample consisting of only the upper cladding layer
(sample Sb 122) was usually processed together with the laser material, to make
sure that each process step was working, and to calibrate the etch time.

The lasers fabricated from sample Sb 142 did not work, most likely due to
a curling of the ma-N 440 during Pt deposition (see fig. 5.9). Sb 145 produced
functioning lasers. The grown structures of samples Sb 142 and Sb 145 were
presented in section 4.3.
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Figure 5.8: A sketch of the cross section of a processed laser. Here, the important

parts of the processing can be seen. The process is documented in section 5.8.2,
and the process steps can be found in appendix C.
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Etching The lasers were etched either by a Cl,/BCls etch process developed
by the company Integrated Optoelectronics for NTNU Nanolab (Sb 142), or a
BCls/Ar etch process developed by Oxford Instruments [138] (Sb 145). The etch
depth was chosen to be about 10% below the upper waveguide thickness; the total
thickness of the upper cladding, grading and cap was 2.09 um. The etch target was
then 1.9 um. This depth was chosen to allow for fluctuations in the etch rate so
that etching of the core region could be avoided. The measured etch depths ranged
from 1.9 to 2.1 um.

Insulation For the electrical insulation, the ma-N 440 was used. The process is
described in section 5.8.1. The etchback was considered complete when about 100
nm of the laser ridge was exposed.

Metallization For the laser diodes presented in this work, the p-type contacts
were Ti/Pt/Au with a thickness of 50nm/25nm/775nm. The Pt thickness was re-
duced from 50 to 25 nm to avoid excessive heating of the insulation during depo-
sition. The hot Pt during e-beam evaporation caused the insulation to contract for
the first batch of lasers, where 50 nm Pt was used, see fig. 5.9.

For the n-type metallization, the recipe published by Vogt et al. [131] was used.
The metallization scheme was Pd/Ge/Au/Pt/Au (8.7nm/56nm/23.3nm/47.6nm/250nm)
followed by an anneal at 300°C for 45 seconds.

Lapping and cleaving The laser diodes were lapped to a thickness of about 150
um. The thickness was not reduced further due to problems with cracking of the
sample. After n-type metallization and annealing, the samples were then cleaved
into laser bars of lengths 1, 1.5 and 2 mm.

Contacting The laser diodes were both wirebonded and probed, as shown in
fig. 5.10. Due to the large amount of laser diodes (spectra measured for 20 de-
vices), it was found beneficial to test the devices using probes, since a maximum
of three lasers could be wirebonded at a time. Additionally, each laser could only
be wirebonded one to two times due to damage to the bonding pad from the wire-
bonding process.

Investigation of the laser diodes

The laser diode test results are presented in chapter 6, and simulations related to
the waveguiding properties of the lasers are presented in chapter 7.
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Laser sample
Sb 142

S-5500 30.0kV 0.8mm x7.00k SE 4/18/2012

Figure 5.9: A cross section SEM photograph of sample Sb 142 after processing.
Text has been added to the photograph to highlight the different materials. Here,
the ma-N 440 insulation layer has curled next to the ridge, most likely due to the
heat from depositing Pt in an electron beam evaporator. The curling results in poor
or no contact between the deposited metal layers and the laser material. None of
the lasers from this sample functioned.
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Figure 5.10: Photographs of lasers from sample Sb 145 that are ready for testing.
The lasers are mounted onto a copper block, which acts both as a heatsink and
connection for the backside contact. The lasers are 2 mm wide. Top: Photograph
of wirebonded Y-lasers. A norwegian 1 Kroner coin is shown in the background
(2 =21 mm). Bottom: Photograph of fiber-coupled and probed Y-lasers.
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The test results and simulations pointed to a poorly defined waveguide, and
when the etch depth was control measured later, the etch depth was found to be
only 1.4 um [139]. This was much lower than the target of 1.9 um.

This was unfortunately not uncovered during the processing. Due to the re-
active nature of the AlGaAsSb cladding layer, the etch depth is quickly measured
before the insulation layer is spun on.

Why the thickness measurement failed is uncertain, but contributing factors
could be:

Profilometer The etch depth measurements were performed with a profilometer.
A problem with the profilometer could result in wrongly determined etch
depths, and later investigation in our group has shown that the etch depth
measured by profilometer overestimated the etch depth of about 0.2-0.3 um
as compared to an SEM etch depth measurement [140]. Etch depth mea-
surements using an SEM would be an option, but SEM measurements would
have required cleaving the laser sample to get a cross section image. This
would have been detrimental for further processing of the devices.

Loading effects of the plasma could result in higher etch rates close to the edge of
the sample, where large structures (e.g. alignment marks or bonding pads)
used to determine the etch depth are located. This could result in an overes-
timation of the etch depth of the lasers in the center of the sample. Loading
effects near the ridge can result in “footing”; here, the etch rate next to the
ridge is lower than far from the ridge, causing an over-estimated height of
the etched ridge when measured by profilometer.

Leftover etch mask When removing the etch mask photoresist, a part of the resist
can be hard to remove, due to a hardening from the etch process. If the
resist on top of bonding pads and other large structures was not completely
removed, it could lead to erroneous profilometer etch depth measurements.

BCl; flow For prolonged use, the BCl; flow could go down due to a condensation
of the gas in the pipes. This could affect the etch rate of the process, but it
would most likely have given an error in the etch software. It would also
only affect the etch depth, and not the etch depth measurement.

It is clear that better control of the etch depth is needed to avoid this problem
in the future. A suggestion for improved control is presented in “further work™ in
chapter 9.



Chapter 6

Testing of Laser Diodes

In this chapter the main test parameters are first presented, followed by the main
test results from the laser measurements.

6.1 Important test parameters

There are many parameters which can be used to define the laser properties. In this
section the parameters are explained together with the commonly used equipment
to measure it.

Wavelength The wavelength, A, of the laser is an important parameter for gas
detection and optical communication applications. In gas detection it must
match the wavelength of an absorption line of the gas to be measured, while
in communication it must match the assigned wavelength of the channel
used, to avoid cross-talk with other channels. The wavelength can be mea-
sured using a spectrometer such as an Fourier transform infrared (FTIR).

SMSR The side-mode suppression ratio (SMSR) expresses the spectral purity of
the laser, and it is represented by the fraction of light in the dominating
spectral mode relative to the second most intense mode, and is measured
in dB. For gas detection a high SMSR of at least 20 dB should be used to
obtain a high signal-to-noise ratio (SNR) in the measurements. The SMSR
is measured by a spectrometer.

FWHM The full-width at half maximum (FWHM) is another important parame-
ter for gas detection. The FWHM of the dominating mode should be smaller
than the FWHM of the absorption line of gas to be measured. It is measured
by a spectrometer such as an FTIR.

75
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Intensity The laser intensity, usually measured in mW, is an important parameter
for gas detection. For trace gas sensing, a single mode power intensity of
more than 1 mW is desired [55]. The intensity should be constant while
changing the wavelength for gas detection measurements, as any change
in intensity due to the laser will reduce the gas sensing sensitivity of the
system. For intensity measurements, a power meter such as a bolometer is
often used. For trace gas detection, more sensitive semiconductor detectors
are often used. These detectors should have a good SNR and fast response
time [55, 56].

Gain The gain of the laser diode is a useful parameter to determine the inter-
nal losses, which affects the quality of the laser. Losses are usually associ-
ated with heating, which reduces the laser performance such as the intensity,
threshold current density and the maximum operating temperature. Gain is
usually determined from sub-threshold measurements using an FTIR.

I-V measurements are used to determine the electrical properties of the diode.
These measurements can give information relating to the contacts, the p-n-
junction and doping. A low voltage at the threshold current density suggests
a good diode with good metal contacts, and is often desired. I-V measure-
ments are usually measured by a multimeter.

L-I measurements are used to determine the light-current properties, such as the
threshold current density ji. These measurements can also be used to de-
termine the maximum output power. By introducing the gas to be measured
in the beam path between the laser diode and the power meter, L-I measure-
ments can also be used to determine the current where the laser wavelength
matches the gas absorption line [34].

Near- and far field measurements are useful for determining the beam profile and
divergence of the beam. In most cases a collimated beam with a low NA is
desired. Near- and far field measurements can also be used to estimate r¢r. It
is usually measured by a camera, detector array, or by using a point detector
and an aperture, which is moved across the laser beam.

6.2 Experimental setup

For nearly all experiments, the lasers were cleaved into laser bars and mounted
using a colloidal silver glue on top of a copper plate', see fig. 5.10. The copper

!For some of the initial testing to see if the laser diodes worked, one of the laser bars was placed
on a copper block with a layer of indium instead of colloidal silver glue. These measurements are,
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plate was actively cooled using a thermoelectric cooler (TEC), or Peltier element,
usually set to 16°C (thermistor resistance of 15 k). The TEC was placed on top
of a cooling ribbon designed for computer systems to provide efficient removal of
the heat. The lasers were either wirebonded or probed for contacting the p-type
contact (anode). The n-type contact (cathode) was contacted externally through
the copper plate.

For I-V measurements, multimeters were used to measure the voltage differ-
ence between the anode and cathode, while the currents were read out for the laser
diode current sources (Newport models 505 and 505B). For L-I measurements, a
power meter was placed directly in front of the common facet of the lasers. The
power meter was adjusted to 0 mA after the laser diode temperature was reached,
as the TEC affected the reading of the power meter due to the change in tempera-
ture.

For spectral measurements, most measurements were performed by guiding
the light from the laser to the FTIR using a multimode optical fibre. A few of
the lasers were wirebonded. However, due to the large amount of lasers and a
limitation of only bonding three lasers at a time in the current setup, it was not
used extensively.

For large measurements series, such as the measurement data found in ap-
pendix E, an automatic measurement setup was implemented. The laser currents
were controlled by a National Instruments NI 9263 Voltage source. The voltages
were set on a computer using Labview, which was in turn controlled by the FTIR
software Omnic for measuring the spectrum and selecting the next set of currents.
The measurements were then analyzed using Matlab, where the important test pa-
rameters were extracted from each measurement and stored for efficient data pro-
cessing. The measurement series were up to 1800 measurements, limited by the
computer memory available for the analysis. The measurement series could take
up to 22 hours.

6.3 Test results

6.3.1 I-V and L-I measurements

The I-V and L-I characteristics of a series of Y-junction laser diodes were tested.
These measurements were performed to determine the quality of the diode, through
the threshold voltage Vi, and the typical output powers of the laser diodes. For the
measurements, a Labview program was used to incrementally increase the current
in steps of 20 mA from 0 to 200 mA, while the voltages and optical output power
were manually recorded from multimeters and a power meter, respectively. The

however, not included in the presented results.
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same currents were used for all lasers, and no compensation for differences in ridge
width w or length difference AL were performed. The main results are presented
in table 6.1 and the metallization mask for the lasers is shown in fig. 6.1.

Table 6.1: The results of a series of I-V and L-I measurements of Y-junction
lasers. The metallization mask for the lasers measured is shown in fig. 6.1, with
explanation of the laser parameters. For these measurements, all sections were
pumped with the same current, i.e. the current densities is not equal for all lasers.
The resolution in the set currents were 20 mA to speed up measurements. The
given threshold current /iy, is per section, and must be multiplied by three for the
total current. I« is the current that resulted in the highest optical power, Ppax, for
these measurements. All measurements were performed at 16°C and the highest
current per section used was 200 mA.

Laser L AL r w Iin Vin Inax  Pmax
No. mm pm um um mA V mA mW
1.5 50 750 1.7 60 238 180 5.12
1.5 80 750 1.7 60 247 120 7.52
20 20 500 1.3 60 2.07 200 21.50
20 80 1000 2.0 100 2.66 200 3.26
20 8 750 1.5 60 294 200 @ 9.65
20 100 1000 1.7 80 2.66 180  6.03
2.0 100 1000 2.0 60 237 200  8.55

~N NN R W -

The results show quite varying output powers and relatively high diode volt-
ages. The high threshold current may be due to a low carrier concentration due
to an error in the GaTe doping source in the MBE system. It is believed that the
carrier concentration was probably close to ~2 x 10'7cm™ instead of the target
of 1 x 10" cm™3, due to a poorly outgassed GaTe doping source in the MBE. The
diode voltage at threshold was approximately 2.5 V, which is considered high.
Voltages of 1-1.5 V have been measured for other (broad area) laser diodes in our
lab.

For the output power, Ppax, the mean power is 8.8 mW. For laser number 3 in
table 6.1, the output power is more than twice the mean power. For this laser, the
length difference between the two waveguides, AL is 20 um, which is the lowest
for all the lasers tested. From fig. 6.1, we can see that the bent part of the bent
waveguide is much shorter for this laser than the other lasers, suggesting that the
laser diodes have large bending losses in the waveguide. The bending losses will
be treated in more detail in chapter 7 “Light propagation in waveguides”.



6.3. Test results 79

Figure 6.1: The metallization mask for the Y-junction lasers used for the I-V
and L-I measurements. The optical measurements were performed on the com-
mon facet on the right. The numbers on the right correspond to the numbers in
table 6.1. The three currents used, I ;, are shown on laser number 4, note that
the two contacts marked I, are connected to the same power source. AL is the
length difference between the two waveguides, L is the distance between the two
facets along the x-axis (L. + Ly), and the radius r and the waveguide width w are
illustrated on laser number 5.
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Table 6.2: Optical power measurement results from curved FPLs, pumped with
a pulsed current of 490 mA at 10 kHz, using a duty cycle of 20%. The laser
waveguides are shown in fig. 6.2. The measured optical power suggest that only
lasers 7 and 8 achieved lasing. The power of laser 7 deteriorated quickly from 0.4
to 0.1 mW, suggesting damage of the laser cavity as a result of the large current.

Laser AL r w  Power
No. pm  pm um  mW
20 1000 1.5 0.01
80 750 1.5 0.01
50 750 1.5 0.01
200 500 1.5 0.01
100 500 1.5 0.02
80 500 15 O

100 300 1.5 04,0.1
80 300 1.5 1.05

01O N B~ W

Testing of curved FPL.  The optical output power of eight curved FPL were mea-
sured, see fig. 6.2 for the shape of the waveguides. The width of the laser bar was
1.5 mm. Current densities for which the straight FPL and Y-junction lasers lased,
typically 1.6-1.8 kA/cm? and 3—4 kA/cm?, respectively, did not result in lasing for
the curved FPL. The lasers were then tested with a pulsed current of 490 mA at 10
kHz, using a duty cycle of 20%. The results are shown in table 6.2.

The results suggest that the bending losses are large, which is consistent with
the L-I-measurements of the Y-junction lasers. The FPL with the longest straight
sections are the only ones that achieve lasing, suggesting that the gain in the
straight sections are large enough to achieve lasing between the cleaved facets
of the laser bar.
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Figure 6.2: Waveguides for the bend FPL extracted from the photolithographic
etch mask. The test results for these structures are shown in table 6.2, and the laser
number is shown on the left of each waveguide. All intensity measurements were
performed at the facet on the right. The total length of each laser is 1 mm plus the
given length AL for each laser.
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Figure 6.3: The expected tuning spectra of a Y-junction laser according to Fig.
3 b) in Dutting et al. [141] (© 1994 IEEE), where [; is for the common section
current /., I is for the straight section current /; and I3 is for the bent waveguide
current I. The tuning width is then determined by Ay, see eq. (2.28).

6.3.2 Wavelength

All wavelength characterization was performed with an FTIR. The main focus of
the measurements was to determine the tunability of the Y-junction lasers.
According to Dutting et al. [141], a sawtooth pattern should be observed when
tuning the Y-junction laser by changing the current of either the straight or bent
waveguide, as shown in fig. 6.3. To test the tuning spectra of the manufactured
laser diodes, an automated setup was used to test several combinations of the tun-
ing currents successively. A multimode optical fiber was used between the FTIR
and the probe setup for the lasers to measure the laser spectra. The peak wave-
length Apeqk for each measurement was then determined. A representative excerpt
of the peak wavelengths as a function of the fraction I;/Ij, are shown in fig. 6.4.
Tuning of the Y-junction lasers using the current schemes published by Dutting
et al. [141] were unsuccessful for these lasers. Any change in the wavelength due
to tuning of the bent waveguide was minimal, further suggesting a large optical
loss in the bent waveguide. From the results presented in appendix E and fig. 6.4,
it is likely that the dominant tuning mechanism is heat, since an increase in total
current increases the wavelength. It is likely that the FCPE (see section 2.2.1)
tuning mechanism was saturated before the lasers reached threshold, due to the
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Figure 6.4: Measurements of three Y-junction lasers using the tuning scheme
from Dutting et al. [141]. The laser parameters are shown above each plot. The
legend shows currents . and /i for the measurements. In the bottom plot, /. and I
were varied from 110 to 160 mA and from 120 to 160 mA, respectively.
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high threshold current densities (>3kA/cm?).

6.4 Gain measurements

The sub-threshold spectra were measured for several lasers to determine the gain
curve and interferometric oscillations in the spectrum. It was found that the mul-
timode fiber positioning manipulated the spectrum, see fig. 6.5. Due to this extra
interference in the spectrum, the gain properties of the laser would have been hard
to determine. A subthreshold measurement of a wirebonded Y-laser is shown in
fig. 6.6. It can be seen that the gain curve here has a shape close to the expected
Gaussian shape. These results indicate that multimode fibers should not be used for
testing laser diodes. This may be due to interference in the fiber, and/or reflections
between the laser and the fiber.

6.5 Near field and far field measurements

The near-fields and far-fields of the laser diodes were measured for straight FPL.
These measurements were performed to determine the NA by measuring the beam
divergence.

Near field The near field measurements were performed using a setup sketched
in fig. 6.7. A aspherical lens with a focal length f; of 4 mm and an NA of 0.56
was placed directly in front of the laser, while a spherical lens with a focal length
J> of 450 mm was placed between the aspherical lens and the camera. The near
fields were only measured for a few straight 1 mm long FPLs, and little variations
were found between lasers with different ridge widths w. To avoid damaging the
camera, currents close to the treshold current of about 50 mA (~~ 2.5 kA/cm?)
were used. A measurement of a FPL with a magnification m = 112.5 is shown in
fig. 6.8. The large in-plane FWHM of the near field suggests poor waveguiding,
since the waveguide is designed to be about 2 um wide. Modelling of the optical
field distribution and the resulting far fields due to different etch depths can be
found in appendix F. A low expected doping of the n-type cladding or shallow
etch depth can both help to increase the width of the pumped area due to electrical
spreading from the high resistivity and a poorly defined waveguide, respectively.

Far field Measurements of the far field of 12 straight 1 mm long FPLs were also
performed to determine the mode profile of the laser beam. However, the far field
measurements resulted in a ring pattern, shown in fig. 6.9 b). It was found that
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Figure 6.5: Sub-threshold measurements of a laser diode through a multimode
fiber (butt coupled) for different spacings, d, between the fiber and the laser facet.
All other parameters were kept the same. The distances between the fiber and
the laser were determined from microscope photographs using a computer and a
digital ruler.
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Figure 6.6: Sub-threshold measurements of a Y-junction laser diode measured
directly into the FTIR. The sample was wirebonded and placed in the focal point
of the FTIR measuring stage.
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Figure 6.7: Near field measurement setup. The setup was designed according to
the setup used by Kinzer et al. [142], referred to as a Gaussian telescope. fi and
/> are the focal lengths of the lenses, and m = f,/f; is the magnification of the

system.
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Figure 6.8: Near field measurements of an FPL. The FWHM of the light is about
8 um in-plane (horisontally) and about 1.8 pm out-of-plane (vertically). The lenses
used were an aspherical lens with focal length f; =4 mm and a lens with f, =450
mm, resulting in a magnification of m = 112.5.
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this pattern was most likely due to interference inside the camera, caused by an
unwanted Fabry-Perot etalon.

The best fits to the far field angular distribution along the narrow axis found
an FWHM of about 8-10°, independent of the etched ridge width w. From the
simulations shown in appendix F, this suggests a low effective refractive index
contrast most likely due to a too shallow etch.

6.6 Other measured parameters

The parameters SMSR, FWHM, n, o and A were extracted from each spectrum.
The measured FWHM of the laser mode during lasing was approximately 0.036—
0.040 nm for most of the measurements. This value is most likely limited by the
FTIR instrument, which has a specified spectral resolution of about 0.034 nm at 2.2
um wavelength. The extracted effective group index, ng cff, from the sub-threshold
spectrum mode spacing resulted in a value of about 3.75-3.85 with small variations
between different laser diodes and a small increase with increasing current. The
measured wavelengths ranged from 2.17 to 2.28 um, where most of the lasing was
observed around 2.20 um. The SMSR ranged from 0 to 25 dB. For measurements
where the SMSR was higher than 10 dB, the most common values were close to
12 dB and 20 dB for reasons unknown to the reader. For FPL, the SMSR is at most
of the order 20 dB [46], and it is likely that these values are due to optimum SMSR
in the straight waveguide. The effect of a straight waveguide with a 50% loss due
to a nonfunctional Y-junction on the SMSR has not been investigated, but could
provide insight into these common values.

The measured SMSR and wavelength for several laser diodes can be found in
appendix E.

6.7 The lack of interferometric tuning

To explain the tuning behaviour of the lasers, which is inconsistent with the ex-
pected tuning performance of an interferometric laser structure, a series of sim-
ulations were performed. The main goal of these simulations was to determine
the effect of waveguide roughness and etch depth from the laser processing on the
waveguiding properties of the laser. These simulations and simulation results are
presented in chapter 7.
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Figure 6.9: Far field measurements. a) Measurements of the far field by scattering
the laser light on rough Si surface and imaging the Si surface. b) Measurement of
the far field by placing the camera directly in front of the laser without any lenses.
¢) A 2D gaussian intensity profile as a function of angle. d) The intensity profile
depicted in c) after taking the transmission through a Fabry-Perot etalon of optical
thickness nL = 120 pym in account, using eq. (2.23) with L — L/cos(8") (6’ is the
angle of the light ray, see section 2.1.2).
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Chapter 7
Light propagation in waveguides

In this chapter a short introduction to the methods used for laser waveguide simu-
lations and determination are described, followed by the simulation results. Note
that all simulations performed have only used the real refractive index, and the
effect of gain and absorption have not been accounted for.

In fig. A.3, Gonzalez-Cuevas et al. [84] was used as a reference for the re-
fractive index data. The refractive index for Aly.oGag 1 Asg.06Sbg.94 from this data
suggest that it is 3.408. However, other older sources, e.g. Adachi, Alibert et al.
[143, 144], suggest that it should be around 3.25. For VCSELs, AIAsSb layers lat-
tice matched to GaSb are commonly used, and refractive indices close to 3.1-3.2
have been used for the AIGaSb layer in several publications [20, 145, 146]. This
suggests that a refractive index of 3.408 is a bit high for Aly.9Gag.1 Asg.065b0.94.
This discrepancy in the refractive index data was not initially identified, and some
of the older computations in this work have used 3.408, while newer computations
have used 3.25. For all other layers, Gonzalez-Cuevas et al. [84] has been used as
a reference for the refractive index data.

7.1 Mode solver

To determine the allowed transverse optical modes in the lasers, the field in each
layer of the waveguide is calculated. This approach is based on ref. [46, App. B].
For the TE modes, the appropriate boundary conditions are that the electric field
propagating in the z-direction, E, = E(x)exp(—jBz), must be continuous at each
interface. E(x) is given by eq. (2.8). A TE mode has magnetic components in the
x- and z-directions. See fig. 7.1 for a description of the structure and axes. The
appropriate boundary conditions are then

Eip1(xit1) = Ei(xit1), (7.1)
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Figure 7.1:  Illustration of the slab waveguide interfaces used in eqs. (7.1)
and (7.2). The refractive index varies along the x-axis, while the electric field
is along the y axis for TE modes. The propagation is along the z-axis.

and that transverse magnetic field A, must be continuous, leading to [46] !

dE;
dx

dE

(7.2)

X=Xj+1 X=Xj+1

Furthermore, for a bound mode, the field must vanish when x — 4o, so that
Bo =0 and Ay = 0, where N is the last layer. By setting Ap = 1 and By = 0 and
changing the wavenumber 3, the solutions are found from the values of § which
result in Ay = 0. The full procedure can be found in ref. [46, App. B].

This method results in quick solutions for the distribution of E(x), the effective
refractive index negr and the number of allowed modes when iteration of the input
parameters are desired, i.e. parametrization of the layer refractive indices and/or
thicknesses. The solution for slab waveguides of varying core thicknesses using
these equations can be found in appendix B. These solutions suggest that the core
thickness for single TE mode operation can be up to about 0.7 um thick, and that
increasing the core size reduces the necessary required cladding thickness.

For more detailed simulations the website Lights has been used, which con-
tains both a 1D and 2D mode solver’ and more outputs, such as the far field.
Lights can be found at http://www.nano-fab.com/lights.

"The solutions to these equations were also investigated in section 2.1.2 on page 12
ZNote that Lights also includes a 2D and 3D beam propagation method (BPM) solver. However,
it was unavailable at the time BPM simulations were needed.
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7.2 Light propagation in Y-junction waveguides

To determine the waveguiding properties of a waveguide, the beam propagation
method (BPM) is a very popular technique. In BPM, the propagation of an optical
field through a weakly guiding structure can be simulated. It is a requirement for
this technique to be used that the refractive index contrast, dn, inside and outside
the waveguide is small. A quick introduction to the method can be found from e.g.
Loui [147].

For all simulations used in this thesis, the fast Fourier transform (FFT)-BPM
Matlab script made by Codina [148] was used. The background refractive index
was set to 3.77, and the waveguide refractive index was set to 3.774dn, where dn
=0.01,0.02,0.03,0.04,0.05. The reason the refractive indices were set so high is
based on measurements of the effective group index from sub-threshold measure-
ments, and should in retrospect have been set much lower, in the 3.3-3.5 range.
However, the refractive index contrast, dn, is the most important parameter, and
the differences in refractive indices are approximately 1 — (3.6/3.8) ~ 5% so the
conclusions should still be valid. The resolution was set to 0.12 x 0.12 um, re-
stricted by available memory. The simulations typically took from a few minutes
to more than 30 minutes each, depending on the size of the waveguide.

The main goal of the simulations was to determine why the bent waveguide
was not working. The main theories to be tested were; /) is the waveguide rough-
ness due to the cleanroom process, such as roughness in the mask, in the PR and/or
the ICP-RIE process, responsible for the insufficient waveguiding?, or 2) is it due
to an insufficient refractive index contrast?, or could it be due to something else?
To investigate these hypothesis, a series of 2D BPM simulations were performed.
The parameters used are shown in table 7.1. The totalt length of the laser was not
simulated in all cases, instead the common section was chosen to be 200 um to
stabilize the input gaussian beam, followed by the required length to simulate the
bent section. An excerpt of the simulations is shown in fig. 7.2.

When radiation exits the simulation window on the left or on the right, the
radiation re-enters on the opposite side, as shown in fig. 7.2. This is due to the
periodic nature of the Fourier basis functions [149], and it is usually overcome by
using boundary conditions such as perfectly matched layers [149, 150] or absorb-
ing boundaries [147]. In Codina [148]’s Matlab script, this was not implemented,
and the problem was overcome by using a wider simulation window, so that the
re-entered radiation did not interfere with the waveguides.

7.2.1 The effects of design parameters on the waveguiding

In figs. 7.3 to 7.5, the light guided through the bent waveguide (see fig. 2.7 on
page 22) of the Y-junction waveguides is shown. The amount of guided light is
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Table 7.1: Simulation parameters for BPM simulations of the waveguiding prop-
erties of the Y-laser design. The length L, length difference AL, radius of curvature
r and width w refers to the ridge waveguide and were defined in fig. 6.1 on page 79.
dn refers to the refractive index contrast between the ridge and outside the ridge,
dn = nyigge — Noutside ridge- The roughness refers to the width of the area on the sides
of the waveguide where the refractive index is somewhere between noyside ridge and
Nyidge- Note that in fig. 7.4, the roughness 0.2 um was used, while in fig. 7.5 0.25
um was used. The roughness in these simulations is randomly distributed, and
the roughness width is divided, so that half of the width is on each side of the
waveguide.

Parameter Figure 7.3  Figure 7.4 Figure 7.5
w (um) 1.3,15,1.7,2,2.5 2
L (mm) 08,1.2,1.6 1,15,2 -
Roughness (um) 0 0,0.05, 0.1, 0.2/0.25, 0.5, 1
dn (1072) 4 4 1,2,3,4,5
Common parameters
AL (um) 0, 20, 50, 80, 100
r (um) 300, 500, 750, 1000

presented as a function of two simulation parameters, and all permutations of the
parameters have been displayed in a series of sub-plots; each data point in a plot
represents the average of the bent waveguide light intensity in the simulations for
that condition. For example, the plot AL vs r in fig. 7.5; here, each datapoint is
averaged over all roughnesses and refractive index contrasts dn (see table 7.1).
Based on individual inspection of the simulations, this averaging did not alter any
of the observed trends presented in figs. 7.3 to 7.5.

Figure 7.2 shows a few of the simulations. Here, an electric field with a Gaus-
sian profile was placed at the entrance of the common section, where the propaga-
tion was simulated. The length of the common section was 200 pm, to stabilize the
mode profile before the Y-junction. The electric field was then propagated through
the two arms of the waveguide. The numerical value for the maximum intensity at
each waveguide exit, i.e. from the straight and bent waveguides, respectively, was
extracted from each simulation. For simplicity in the Matlab code, the highest in-
tensity for x < 0 um was chosen as the intensity at the exit of the bent waveguide,
see explanation in fig. 7.2. For cases where the bent waveguide did not provide
sufficient waveguiding, this value could be determined outside the waveguide exit.
Especially for a dn of 0.01, a poor waveguiding results in a discrepancy in the
chosen intensity, as shown in fig. 7.6. This is observed in fig. 7.5, that a dn of
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0.01 seemingly provides better waveguiding than 0.02. For fig. 7.5, 7 simulations
out of 600 are missing. However, analysis of the simulation data suggest that the
observed trends for the waveguiding properties are not impacted.

In figs. 7.4 and 7.5 the roughness was simulated for 0, 0.05, 0.1, 0.2, 0.5 and
1 um, where half the roughness was on each side of the waveguide. However, as
stated earlier, the simulation resolution was set to 0.12 x 0.12 um, suggesting that
any roughness below this size would not be noticeable. This may explain the little
change in fig. 7.4 for roughnesses below 0.12 um. For roughnesses below 0.24 um,
the roughness may have only been introduced on one side of the waveguide, due
to the resolution constraints.

In fig. 7.4, the plot of w versus r shows best waveguiding for 2 um instead of 2.5
um. This may be due to a change from single-mode to multi-mode behavior of the
waveguide. For symmetric slab waveguides, the limit for single-mode operation is
given by [46]

e M (7.3)

2 2
2 Ncore — Nelad

where w is the core width, in our case the ridge width. Using the simulation pa-
rameters used for fig. 7.4 of A = 2.2 um, neore = 3.81 and ncjag = 3.77, we get a
single mode behavior for w < 2.0 um. Using ngore = 3.40 and n¢jog = 3.36, which
are closer to the expected effective refractive indices expected inside and outside
the ridge (based on table B.3), respectively, the core width for single mode oper-
ation increases to w = 2.12 ym. It is therefore likely that the increased loss with
increasing w is due to a multi-mode curved waveguide.
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AL: 50 um, r: 750 pm
roughness: 0.1 pm roughness: 1 um
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Figure 7.2: 2D BPM simulations of a laser with AL = 50 pm, » = 750 ym, w = 2
um, etch roughness of 0.1 um (left) and 1 pm (right). From top to bottom the re-
fractive index contrast dn is 0.02, 0.03 and 0.04, respectively. Note that the aspect
ratio in the figures are not correct, they have been compressed along the y-axis.
The dashed yellow arrows are a guide to the eye for highlighting the problem with
radiation re-entering the simulation on the opposite side. Here, the radiation leaves
on the left, and re-enters on the right. The red line illustrates where the intensity of
the bent waveguide is extracted from; for simplicity, the highest intensity for x < 0
um was extracted from each simulation, which coincide with the end of the bent
waveguide (red arrow) in cases of proper waveguiding.
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Figure 7.4: The results of 1800 BPM simulations of Y-junction lasers with different L, w, AL, r and etch roughness. The
etch roughness is the total width which have a random refractive index (between n and n+dn), where half of the roughness
width is on each side of the waveguide. In each sub-plot, the light guided through the bent waveguide is shown for different
combinations of the simulation parameters. Red indicates good waveguiding, where most of the light is guided in the curved
waveguide. Blue indicates poor waveguiding, where most of the light has leaked out of the waveguide.
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Figure 7.6: 2D BPM simulation of a waveguide with AL = 0 um, » = 1000 um,
w = 2 um and no etch roughness. The refractive index contrast dn for this simula-
tion was 0.01, and it can be seen that the light is not guided by the waveguide after
the junction. Since the bent waveguide intensity is chosen by using the highest
intensity for x < O um, it is here over-estimated. This explains why a refractive
index contrast dn of 0.01 shows better waveguiding than 0.02 in fig. 7.5.
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From analyzing the simulations and mainly the simulation results presented in
figs. 7.3 to 7.5, the following observations are made:

* The refractive index contrast, dn, for guiding light in a curved waveguide
should be at least 0.04 (for our structures).

* Laser ridge roughness only substantially affects the light guiding if it is more
than 25% of the ridge width. However, for increasing AL it becomes gradu-
ally more important.

e The most important design parameters are; r, which should be large; dn,
which should also be large (at least > 0.03); AL, which should be small;
w, which should be close to the maximum allowed width for single mode
operation.

* The guiding properties of the waveguide are more or less independent of L.

The etch depth measurement in SEM found that the etch depth was only 1.4
um, which is significantly lower than the target depth of 1.9 um. These simula-
tions confirm that this is the most likely reason for the non-functional Y-junction
laser diodes. The simulations further suggest that the etch roughness is less impor-
tant than the refractive index contrast, and increasing the etch depth should result
in functioning bent waveguides even if the etch process could result in a rough
waveguide. Furthermore, the bend radius should be increased as much as the total
length of the laser diodes allows for to reduce bend losses.

Due to time constraints, new Y-junction laser diodes based on these findings
were not fabricated for this work. However, suggestions for further work are pre-
sented section 9.3, including a suggestion for improved control of the etch depth.
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Thermal expansion of GaSb measured by temperature dependent

x-ray diffraction

Tron Arne Nilsen,? Magnus Breivik, Geir Myrvagnes, and Bjgrn-Ove Fimland®
Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-

7491 Trondheim, Norway

(Received 23 September 2009; accepted 5 February 2010; published 5 May 2010)

X-ray diffraction measurements were performed using a modified zone technique on Te-doped GaSb
wafers, commonly used for molecular beam epitaxial growth, at temperatures between 32 and
546 °C to determine the thermal expansion. The authors found the thermal expansion to be very
close to the data published by Bublik et al. [Phys. Status Solidi A 73, K271 (1982)]. Control
measurements of the lattice constant of Si were found to agree with the results published by Okada
and Tokumaru [J. Appl. Phys. 56, 314 (1984)] within our measurement error of +2X 107 A. A
fourth order polynomial, @(gusp)(7)=6.0959+3.37 X 107T+5.63 X 107°72-1.29x 1071°7%+1.05
X 10737* (A) (T in °C), was found to be a good fit to our data, while a linear fit with a constant
thermal expansion coefficient of 7.17 X 107 K~! was found to be a poorer fit. © 2010 American

Vacuum Society. [DOI: 10.1116/1.3336341]

I. INTRODUCTION

GaSb is an important material for mid-infrared applica-
tions, both as a substrate and part of compound epilayers. In
order to obtain high quality, thick lattice-matched epilayers
on GaSb substrates, the lattice constant at growth tempera-
tures must be well known. There have been several studies
carried out on the linear thermal expansion coefficient (TEC)
of GaSb, from Bernstein and Beals,1 Woolley,2 and Strauma-
nis and Kim® in the 1960s to the work performed by Bublik
et al.* in 1982. Measurements on GaSb of the thermal ex-
pansion of the macroscopic length /(T) (Ref. 1) and the mi-
croscopic change in the lattice parameter a(7) (Refs. 2—4)
have been reported in literature. However, the published re-
sults from the previous experiments do not agree well with
each other, and review articles published later>® also use
differing values. In this work, we have performed tempera-
ture dependent x-ray diffraction (XRD) measurements to de-
termine the TEC of Te-doped GaSb wafers. Our data allow
temperature dependent XRD measurements of the thermal
misfit of epilayers grown on GaSb substrates.” Control mea-
surements were also performed on Si and GaAs to verify the
accuracy of our measurement method.

Il. THEORY
The linear thermal expansion coefficient is defined as

1 da
T)=——,
o(7) adT

(1
where a is the (temperature dependent) lattice constant of the
material and 7T is the temperature. Equation (1) can be ap-
proximated as

“Electronic mail: tronarne @iet.ntnu.no
YElectronic mail: bjorn.fimland @iet.ntnu.no
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L da
a(T,) dT

oT) = (2
as long as a/a(Ty)—1 is small. The lattice constant at any
given temperature 7 is then given by

T
a(T)=a(T0)(1+f a(T)dT). (3)

To

From Bragg’s law and the definitions of reciprocal space and
Miller indices,® it can be shown that for a crystal sample with
tetragonal unit cell (including a tetragonally distorted cubic
unit cell) and with a (001) surface, the Bragg angle 6 for a
(hkl) plane can be expressed as

N

and the angle 7 between the surface and the plane

la
T:cos’l( ‘ L ) (5)
V(ha,)* + (ka,)* + (la,)?
Solving Egs. (4) and (5) with respect to the in-plane lattice
constant a, and the out-of-plane lattice constant a, gives only
one solution with physical meaning

IN

S a— 6

% 2 sin @z cos T ©)
Ih? + k2N

a,= )

2 sin B sin 7’

lll. EXPERIMENT

The XRD measurements were performed on a Bruker
AXS D8 Discover HRXRD diffractometer with a half circle
geometry (i.e., 6, 26 between 0° and 180°) and equipped
with an Anton-Paar DHS900 temperature stage.g Incident

1071-1023/2010/28(3)/C3117/4/$30.00 ©2010 American Vacuum Society C3I17
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beam optics include a Gobel mirror and a V-groove beam
compressor giving Cu K« radiation and a full width at half
maximum for Si (111) of less than 0.01°." Symmetric and
asymmetric measurements using a modified zone
technique”‘]2 with an open detector and a 1 mm circular
aperture on the source were carried out on (001)-oriented
GaSb, GaAs, and Si substrates in a nitrogen atmosphere. The
115, 226, 335, 444, 002, 004, and 006 reflections were mea-
sured for GaAs and GaSb. In addition, the 117 reflection was
measured for GaSb. For Si, the 115, 224, 335, and 004 re-
flections were measured. For asymmetrical planes, both posi-
tive and negative geometries were used. Due to the large
number of peaks (13 in the case of GaSb), the peaks were
extracted automatically by taking the average angle between
two points with the same intensity on each side of the peak.
The intensity used was usually 80% of the peak value. With
correctly calibrated azimuthal (¢) and tilt (x) angles, the
measured source to sample angle for a reflection i can be
expressed as

Wy ;= O+ T+ Oop+ A, 5, (®)

Wi = Opi= T+ 0o+ A, )

where Eq. (8) is valid for positive geometry and Eq. (9) is for
negative geometry. w.; is a constant zero-offset in omega
and

Aw,, ;= 8cot(by,; + 7;) + tan b ,), (10)

Aw,_;= 6(cot(fp;— 7;) + tan g ), (11)

with 1-J being the refractive index of the material for
x-rays. The method used for finding the in-plane and out-of-
plane lattice constants uses a least-mean-square (LMS)
method that varies wg to find the value that gives the lowest
variance of the lattice constants between reflections. For each
iteration, the following calculations are performed: First, the
refractive index correction is calculated by

wm+,i + wm—,i
Aw,, ;= 5(C0t(wm+,i — Woge) + tan(i - woff>) ,

(12)

wm+,i + wm—,i
Aw,_;= 6| cot(w,,_ ; — ) + tan - 5 - Wi | |»
(13)

which is not exactly equal to Egs. (10) and (11), but the error
introduced by not including Aw,, ; or Aw,_; in angles inside
Egs. (12) and (13) can safely be neglected.'” The Bragg
angle and the angle between the surface and the plane of the
reflection are then calculated

wcorr+.i + wcorrai
b= 5 - Worrs (14)
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= Wcorrs,i ~ Weorr—,i . (15)
2

where wcorr+,[=(wm+,i_Awr+,i) and wcorr—J:(wm—,i_Awr—.[)‘

Equations (6) and (7) are then used to calculate a, and a_ for

each asymmetric reflection. For symmetric reflections,

Wy ;= Wy, 7;=0, and only a, is found. The sum

N M
2 (@ -a)*+ 2 (a,-a)? (16)
i=1

i=1

is then minimized by using the LMS method and varying
w,g- Here M is the total number of reflections used, N is the
number of asymmetric reflections used

a;, (17)

M
Xa,. (18)

and a,;,a,; are the answers obtained from Egs. (6) and (7)
for the ith reflection. After the optimum value for w.; has
been found, additional offsets wqg, ; and wqg_; are added to
Egs. (8) and (9) to account for errors in determining the peak
position, and the sum in Eq. (16) is minimized again using
the LMS method and varying w, ; and w.g; for all values
of i. After the LMS algorithm has finished, the final a, and a,
values are given by Egs. (17) and (18), respectively. For
cubic unit cells, the lattice parameter a is calculated as an
average of a, and a,. Any measurement where the difference
between the in-plane and out-of-plane lattice constant ex-
ceeded 2X 10™* A was not used, as we have found this to be
indicative of bad alignment of ¢ and y angles. The GaSb
substrates were from Wafer Technology and Galaxy and
were Te-doped with a concentration of (2-7) X 10'7 and 1
X 10" cm™, respectively. The GaAs substrates were from
Water Technology and were undoped or Si-doped with a
concentration of (1-5)x10'® cm™.

XRD measurements were performed at 32, 65, 100, and
then every 50 °C up to 550 °C. Azimuthal (¢) and tilt ()
angles were recalibrated every 100 °C. The temperature was
measured by a thermocouple (TC) built into the heater
stage.9 The temperature measured by the TC has an offset
with respect to the sample surface that is being probed by the
x-rays. This offset is dependent on the sample’s temperature,
thickness, size, and thermal conductivity, as well as the na-
ture of the thermal contact between the sample and the stage.
The thermal offset was estimated by first comparing high
temperature (up to 890 °C) XRD measurements on Si to the
measurements done by Okada and Tokumaru'® and assuming
the difference in lattice constant to be due to the temperature
offset. A simple model for heat transfer from stage to sample
and sample to the environment was then fitted to the data to
estimate the offsets for lower temperatures and other sample
materials (i.e., GaSb and GaAs). For each measurement se-
ries on a sample, the lattice constant for each temperature
was measured twice, once in the part of the measurement
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TABLE 1. Measured lattice constant of GaSb vs temperature measured by TC
and vs estimated temperature at the XRD-probed GaSb surface.

Temperature  Estimated surface
TC temperature AGash T No. of
(°C) (°C) (A) (10* A)  measurements
32 32 6.0971 1.71 4
65 65 6.0983 2.24 9
100 100 6.0997 1.59 7
150 150 6.1019 2.09 6
200 199 6.1041 1.92 8
250 249 6.1062 1.42 8
300 299 6.1084 1.51 7
350 348 6.1106 1.66 8
400 398 6.1128 0.95 8
450 447 6.1149 0.71 6
500 497 6.1172 0.91 6
550 546 6.1195 0.67 4

series going from low to high temperatures and then again in
the part of the measurement series going from high to low
temperatures, to check for hysteresis effects. In addition, for
temperatures above 350 °C, GaSb was measured again at a
lower temperature after each temperature increase to verify if
the time at elevated temperature had any effect on the mea-
sured lattice constant at the lower temperature. Reproducibil-
ity of the measurements was tested by removing the sample
completely and remounting it, and then repeating the mea-
surements.

IV. RESULTS AND DISCUSSION

Table I shows the measured lattice constant for GaSb at
different temperatures, the standard deviation of the data
points, and the number of data points collected for each tem-
perature. The measurements were performed over a period of
3 months and on several samples. From the data in Table I,
we estimate the measurement accuracy to be within *2
x10* A. The temperature stability of the TC temperature
was =1 °C and the uncertainty in the surface temperature
estimates was estimated to be =2 °C at 550 °C.

Figure 1 shows a comparison between some values found
in literature and our measurements. As shown in Fig. 1, our
results agree well with the results published by Bublik et al. 2
who used a fourth order polynomial to fit their data. A fourth
order fit to our measurements yields the following expres-
sion:

agasy(T) = 6.0959 +3.37 X 10737+ 5.63 X 107877 - 1.29
X 1071973 + 1.05 X 10737 (A), (19)

where 7 is the temperature in °C. The standard error of the fit
in Eq. (19) was 3.6 X107 A. Using Eq. (2), a T, of 25 °C
and an a(T,) of 6.0968 A gives a linear thermal expansion
coefficient of
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Bernstein [1] g
===Woolley [2]
6.115 Bublik [4]
— Vurgaftman [6]
§ * This work
§6.110
]
2
8
86.105
5
6.100
6.095

160 260 360 460 560
Temperature (°C)

Fic. 1. Comparison between this work and the previous works of Bernstein
and Beals (Ref. 1), Woolley (Ref. 2), Bublik et al. (Ref. 4), and the values
from the review of Vurgaftman et al. (Ref. 6). Bernstein and Beals (Ref. 1)
measured macroscopic expansion and Woolley (Ref. 2) only reported the
linear TEC in his work. In order to calculate the lattice constants from the
works of Woolley (Ref. 2) and Bernstein and Beals (Ref. 1), Eq. (3) with a
T, of 25 °C and an a(T,) of 6.0968 A has been used.

gasp(T) =5.53 X 1070 + 1.85 X 10787 - 6.35 x 1071172
+6.9 X 107473 (K™, (20)

where T is the temperature in °C.

Table II summarizes the majority of works found in the
literature on the thermal expansion of GaSb at temperatures
above room temperature. Straumanis and Kim® only mea-
sured between 0 and 70 °C and Bernstein and Beals' re-
ported a rapid increase in the TEC between 300 and 400 °C
and stopped at 436 °C due to this increase. All previous
works, with the exception of Bublik ef al.* and Bernstein and
Beals,' reported a constant TEC for GaSb. A linear fit to our
data in the temperature range of 32—-546 °C gives a constant
TEC of 7.17X 107 K~'. The standard error of this fit is
1.2x10™* A. In addition, the results presented in Fig. 2 sug-
gest that the TEC is not constant with regard to temperature
and thus a higher order polynomial fit is in order.

TaBLE II. Comparison of TEC values from the literature and from this work.
The value from Bublik et al. (Ref. 4) is a linear fit to their fourth order
polynomial in the temperature range of 0—680 °C. For both Vurgaftman et
al. (Ref. 6) and Bublik et al. (Ref. 4) who reported only the lattice constant
as function of temperature and no TEC, Eq. (2) along with a T, of 25 °C
and a(T,)=6.0968 A was used to calculate the TEC.

Linear TEC
Reference (K™
Bernstein and Beals® 6.0x107°
Woolley” 6.7% 107
Straumanis and Kim® 7.75%107°
Bublik er al.* 731X 107
Vurgaftman et al.® 7.74X107°
This work 7.17 X107

“Reference 1.
PReference 2.
“Reference 3.
9Reference 4.
“Reference 6.
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TEC from 4th order fit Eq. (20)
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FIG. 2. Linear TEC vs temperature. For each temperature, TEC was calcu-
lated by linear regression of three data points in Table I, using the data point
of the temperature in question and nearest neighboring data points. T
=25 °C.

The results of the control measurements carried out on Si
for temperatures up to 550 °C were nearly identical to the
values obtained from the empirical equation given by Okada
and Tokumaru"® with the largest deviation being less than
2%x10* A and the standard error 9.5X 1075 A. This com-
pares well to Okada and Tokumaru’s'> +1x 10 A differ-
ence between their results and empirical equation, indicating
no large systematic sources of error in our measurements in
addition to the statistical ones estimated in Table I. This also
strengthens our assumption that the difference in lattice con-
stant between the measurements of Okada and Tokumaru'®
and our measurements at high temperatures is due to a higher
TC reading than the actual surface temperature for our
samples. For GaAs, several different values are reported'*'
for the TEC and the lattice constant of GaAs. For our control
measurements at temperatures up to 398 °C, our results
agree well with the values presented by Brice'* and by Bak-
Misiuk et al.”® In fact, we obtain a linear TEC from 32 to
398 °C of 6.53 X 107° K~!, which is very close to the value
6.50X 107 K~! obtained by Bak-Misiuk et al.” for tem-
peratures from 23 to 427 °C. At higher temperatures, we
currently have only preliminary measurements. Our lattice
constant values are between the values reported by Brice'
and Song et al."® The differing values in literature for the
lattice constant at high temperatures, and the fact that our
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preliminary data differ from these, indicate the need for fur-
ther investigation of the thermal expansion of GaAs at high
temperatures.

V. CONCLUSION

The lattice constant of Te-doped GaSb wafers has been
measured with an accuracy of *2X10™* A from 32 to
546 °C by temperature dependent XRD. The results ob-
tained agree well with what Bublik et al’ published in 1982
and a fourth order polynomial has been fitted to the data.
Control measurements on Si were found to match earlier
published values' within our measurement accuracy indicat-
ing no significant errors in the measurement method.
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Temperature dependent lattice constant of AlygoGag 10As,Sb_,
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Using x-ray diffraction, the in-plane and out-of-plane lattice constants of AljgoGag 0As,Sb;_,
epilayers grown on GaSb and GaAs substrates were determined between 30 and 398 °C for y
=0.003-0.059. The bulk lattice constant was then calculated from the in-plane and out-of-plane
lattice constants. A polynomial function for the bulk lattice constant as a function of y and
temperature was derived from a fit to the resulting data. Comparison to measured out-of-plane
lattice constants of platinum-coated Al 9,Gay 19As,Sb;_, indicates that the polynomial function is
valid up to around 550 °C. The polynomial function can be used to determine the lattice matching
of AlygoGag 1pAs,Sb;_, to, e.g., GaSb at typical growth temperatures used for growth of cladding
layers in laser structures. A formula is given for calculating the As mole fraction for lattice matching
to GaSb at a given temperature. © 2010 American Vacuum Society. [DOL: 10.1116/1.3414830]

I. INTRODUCTION

Al Ga;_,As,Sb;_, is a popular cladding material for
GaSb-based laser structures due to its large band gap and low
refractive index for high x and lattice matching to GaSb for
low y. Using a high Al mole fraction also enables doping to
a high electron carrier concentration.! From literature, e.g.,
Refs. 2-5, the chosen values for the As mole fraction y are
typically 0.05-0.07. The As mole fraction is usually chosen
to be close to the lattice matching value at room temperature,
which depends on the Al mole fraction.

We have experimental results showing that lattice match-
ing at the growth temperature is important in order to
achieve dislocation-free layers. When comparing to
Alj9oGay 19As,Sb_, lattice-matched to GaSb at room tem-
perature, x-ray diffraction (XRD) measurements show that a
slight decrease in the As mole fraction results in a lower full
width at half maximum (FWHM).® We believe this to be due
to a difference in the thermal expansion coefficients of
Aly.99Gag 19As,Sb;_, and GaSb.° The difference in strain at
room temperature and at growth temperature, respectively, is
called the “thermal misfit.” If large, the thermal misfit can
significantly affect the critical thickness and the density of
misfit dislocations. It is therefore important to take this into
consideration when designing structures. To the authors’
knowledge, no systematic measurements have been per-
formed on the temperature dependence of the lattice constant
of Alyg9Gay 19As,Sb;_,. Additionally, no data for the thermal
expansion coefficient (TEC) of AISb above 340 K (Ref. 7) is
reported in literature, making any interpolation of TEC data
for the binary constituents uncertain above 340 K.

“Electronic mail: magnus.breivik @iet.ntnu.no
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Using XRD measurements from several crystal lattice
plane orientations, it is possible to measure the lattice con-
stants accurately. The preferred method has been Bond’s
method from the 1960s.® For our measurements, we chose
the Zone technique developed by Fatemi,”'” as this method
can be utilized in diffractometers with half circle geometry,
ie., 6,20e[0°,180°], while giving the same level of accu-
racy as Bond’s method.

In this work, we will present a polynomial fit for the
temperature dependent lattice constant of
Alj 99Gay 19As,Sb_, valid from room temperature to around
550 °C, as determined from XRD measurements. The data
are then used to determine the As mole fraction for lattice
matching of Alj¢oGay 9As,Sb;_, to GaSb as a function of
temperature.

Il. THEORY

In order to calculate the bulk lattice constant of a zinc
blende crystal from a strained epilayer, both the in-plane and
out-of-plane lattice constants must be known, hereafter re-
ferred to as a, and a_, respectively. The relationship between
the lattice constants of the strained layer and the bulk lattice
constant can be calculated from the following equation:11

_a+(2Cy/Cypa,

> 1
1+(2C1,/Cyy) ()

where a is the (unstrained) bulk lattice constant and C;, and
Cy, are the stiffness tensor elements. In this study, C;; and
Cy, were determined using interpolation of data for the bi-
nary constituents of (Al,Ga)(As,Sb).lz’13 According to Ref.
14, Cy; and C, are temperature dependent for GaAs. How-
ever, the error induced in a by assuming that C;, and C, are

©2010 American Vacuum Society C3I1
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temperature independent is less than 1X 107 A from 0 to
550 °C. Since the error contribution is so small and since we
have no corresponding data for the other binary constituents,
the stiffness tensors were assumed to be temperature inde-
pendent in our calculations.

The linear thermal expansion coefficient, a(7), is given
bylS

1 da(T) 1 da(T)

am:ﬁ daT  a(T,) dT ° @

where 7 is the temperature at which « is evaluated and T is
a reference temperature for which a is known, typically the
room temperature. The above approximation, setting a(7)
=a(T), is a good approximation for all temperatures in this
study since [a(T)/a(Ty)]-1 is small.

The lattice constant at a given temperature can then be
calculated as

T
a(n =a<T0>(1 - a(T)dT). @

To

lll. EXPERIMENT

All samples were grown in a Varian Gen II Modular mo-
lecular beam epitaxy system on (001)-oriented GaSb sub-
strates, except sample As 510-2 that was grown on a (001)-
oriented GaAs substrate. The group III composition was
calibrated using reflection high-energy electron diffraction
on dedicated GaAs samples.

High resolution XRD measurements were performed on a
Bruker AXS D8 Discover XRD diffractometer with a half
circle geometry. Incident beam optics include a Gobel mirror
and a V-groove beam compressor giving Cu K« radiation
and a FWHM for Si (111) of less than 0.01°.'® The diffrac-
tometer was equipped with an Anton-Paar DHS 900 tem-
perature stage used to do measurements from 30 to 550 °C,
as measured by a thermocouple (TC) inside the hot plate. A
5 min pause was used to allow the temperature to stabilize
after each step in temperature. For temperatures above
150 °C, the temperature of the XRD-probed sample surface
has been shifted by up to —4 °C (at 550 °C) relative to the
TC reading to compensate for the temperature gradient
through the sample, based on lattice constant measurements
of a Si substrate on the DHS 900 temperature stage.18

Lattice constants were determined from symmetric and
asymmetric reflections using a modified Zone technique.g‘lo
All XRD measurements were performed with an open detec-
tor and a 1 mm circular aperture on the source. Measure-
ments were carried out on samples in a nitrogen atmosphere
using at least four of the 115, 117, 226, 335, 444, 002, 004,
and 006 reflections at each temperature. Asymmetric reflec-
tions were measured both in positive (“steep incidence”) and
negative (“shallow incidence”) geometries. The 444 reflec-
tion was only used for sample As 510-2 due to an overlap of
the substrate peak and the epilayer peak in positive geometry
for all other samples at most temperatures. Reflections where
the overlap of the substrate and epilayer peaks became too
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TaBLE I. Samples used for XRD study of AlygoGag 10As,Sb,_,. All samples
were capped with 5-50 nm GaSb.

Thickness Growth temperature
Sample ID (m) y (°C)
As 510-2 6 0.0027 530
Sb 54-3 2 0.0524 490
Sb 99-1 2 0.0670 490
Sb 122 2 0.0569 550
Sb 130-4 2 0.0589 550
Sb 141-2 0.5 0.0579 465

large for an accurate determination of the peak positions
were not included in the calculations. The azimuthal (¢) and
tilt (x) angles of the samples were aligned to get a correct
incidence angle on to the sample. This was done one to three
times during a measurement series, at different temperatures.

Due to the large number of peaks (613 peaks each for
epilayer and substrate for each calculated pair of lattice con-
stants a, and a.), the peak positions were extracted automati-
cally by taking the average angle between two points on
opposite sides of the peak. The points were usually taken at
70% of the peak intensity but higher values were chosen
when overlap of epilayer and substrate peaks became an is-
sue.

The lattice constant was then determined by correcting for
incident angle offsets and refractive index, in that order. Us-
ing a least-mean-square (LMS) approach, the extracted peak
positions were shifted to account for an incident angle offset,
followed by refractive index correction, minimizing for the
residual error in a, and a, from different reflections. The
refractive indices were taken to be n=1- 4, with & calculated
using values from Ref. 19. The resulting LMS fit gave a
good agreement between the lattice constants calculated
from each reflection, as the standard deviation for a, and a,
was between 5X 107% and 3 X 10 A. The bulk lattice con-
stant @ was then calculated using Eq. (1).

For each sample, the As mole fraction, y, was determined
from the interpolation of lattice constants of the binaries at
30-32 °C to fit the found bulk lattice constant, assuming x
=0.90 and that Vegard’s law is valid. The lattice constant of
GaSb (6.0970 A) was taken from our own measurements. '
The lattice constant of GaAs (5.6538 A) was taken from Ref.
14, while for AlAs (5.6610 A) and AISb (6.1359 A), the
lattice constants were taken from Refs. 7 and 20. The values
given in parenthesis are at 32 °C.

XRD measurements were performed at TC temperatures
from 100 to 400 °C in steps of 50 °C, as well as at
30-32 °C and at 65 °C. More than 50 values for a were
calculated from the measurements of the samples. The im-
portant sample parameters are given in Table I. While the
uncertainty in y is closer to =4 X 107 (£2x 10~ A), it was
determined down to 1X 107* as this gave a smaller residual
error between the measurements and the polynomial fit
found in Sec. IV.

The As mole fraction was found to vary slightly (up to
+0.001) across a 2 in. wafer. Smaller pieces (typically 8
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X 8 mm?) from the same sample in Table I would therefore
often have slightly different As content. Typical values for y
are listed in Table 1.

Due to a degradation of the epilayer at temperatures
above 350-400 °C, believed to be due to outdiffusion of the
group V constituents, the measurements have mainly been
performed up to 400 °C. The samples measured above
400 °C were prepared by evaporating Pt layers of varying
thicknesses on to the sample in an e-beam evaporator. A
minimum thickness of 100 nm was found to be necessary to
stop the degradation of the epilayer.

IV. RESULTS AND DISCUSSION

The calculated lattice constants from all samples except
Sb 99-1 and Sb 122 resulted in 52 values for a in the tem-
perature range of 30—398 °C. These values were used to
make the polynomial fit

a(y,T)=by+by X y+by X T+by X T? (A). (4)

Sb 99-1 was not included due to an overlap of the peaks
in the measured temperature range (lattice matching). For Sb
122, temperature dependent XRD measurements were only
performed on Pt-coated pieces due to time constraints. To
avoid any potential Pt influence on Eq. (4), these results were
not used in the polynomial fit.

The best fit was with by=6.1310 A, b;=—0.4702 A, b,
=2.856X 1075 A/°C, and by3=5.03x 10" A/°C? when T
is given in °C. yT and y% were not included, as the contribu-
tions were found to be less than the measurement uncertainty
in the measured ranges for y and 7. The standard error of the
fit was 1.5X 107 A.

Equations (2) and (4) then give the following linear TEC:

_ by+2b3T
bo+ by
=468 % 10°+1.65X 102X T (°C™") (5)

a(T)

for y=0.06, where T is given in °C and a(T}) is evaluated at
0°C.

The As mole fraction y required for lattice matching to
GaSb as a function of T has been calculated from Eq. (4) and
our measurements for GaSb (Ref. 18) and is presented in
Fig. 1.

A linear fit to the curve in Fig. 1 gives the following
criterion for lattice matching to GaSb:

y=0.0751-2.59 X 107 X T, (6)

where 7T is given in °C. For a fully strained
Alj90Gag 19As,Sb_, epilayer on GaSb, y can quickly be de-
termined from a 004 XRD scan at room temperature (25 °C)
using y=0.0744-0.1971 X A6, where A @ is the angular sepa-
ration (in degrees) between the AljgoGag0As,Sb;_, peak
and the GaSb peak.

A topographical representation of the temperature shift of
the Alg 9oGag 10AS0.06715b0.9320 and GaSb 004 XRD peaks for
a piece of sample Sb 99-1 is shown in Fig. 2. The substrate
and epilayer peak positions merge close to 305 °C. This is
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FiG. 1. Lattice matching criteria for AlyGag 19As,Sb;_, on GaSb.

close to the value of 309 °C found from Eq. (6) and the As
mole fraction calculated from asymmetric XRD measure-
ments at 32 °C. Note that for all topographical plots (Figs.
2-4), each constituent scan has been shifted so that the GaSb
peak is at its theoretical position, given by the polynomial in
Ref. 18. The shift is necessary due to an inhomogeneous
expansion of the DHS 900 hot plate, leading to a temperature
dependent angular offset of the sample.17

In order to measure the lattice misfit at higher tempera-
tures and examine the validity of Eq. (4) above 400 °C, 8
X 8 mm? pieces of sample Sb 122 were capped with either a
100 nm thick or a 200 nm thick Pt layer on the episide. A
topographical representation of the temperature shift of 004
peaks up to 546 °C for the piece coated with 100 nm is
shown in Fig. 3.

The resulting bulk lattice constants a of (unstrained)
Al 90Gag 10AS0.05665b0.0434 at different temperatures are listed
in Table II. The bulk lattice constant was calculated from Eq.
(1), where a, was assumed to be equal to the GaSb lattice
constant'® (i.e., fully strained epilayers) and a, was derived

350
— — —GaSb
300 ‘== Eq.(4)
9
2 250
El
<
g
£ 200
3
it
% 150 \
oy N
100 N
N

50

30.27 30.28 30.29 30.30 30.31
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FIG. 2. (Color online) Topographical representation of the temperature shift
of Alyg0Gay 10AS).06715b0 0320 and GaSb 004 XRD peaks for a piece of Sb
99-1, with measurements performed at about 25 °C intervals from 50 to
348 °C. The dashed curves show theoretical peak positions calculated from
lattice constants found in Ref. 18 (GaSb) and from Eq. (4)
(AIO.‘)UGaU.Il]AsySblfy)'
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FiG. 3. (Color online) Topographical representation of the temperature shift
of 004 peaks for a piece of Sb 122 coated with 100 nm Pt. Measurements
were performed at about 25 °C intervals from 299 to 546 °C. The dashed
curves show theoretical peak positions calculated from lattice constants
found in Ref. 18 (GaSb) and from Eq. (4) (AlyoGag 1oAs,Sby_,), with y
=0.0566.

from the 004 scans presented in Fig. 3. Due to a high degree
of overlap of the epilayer and substrate peaks at most of
these temperatures, the usual 70% of peak value method
could not be used for extracting the peak position. Instead, a
weighted mean over a range of higher intensities was used,
with the peak intensity being weighted the most. The As
mole fraction (y=0.0566) was derived from the best fit to
Eq. (4) at 299 °C, which was then used to determine C; i
and J.

In Table II, the bulk lattice constants derived from mea-
surements are also compared to the bulk lattice constants
calculated from Eq. (4) at different temperatures up to
546 °C. It can be seen that the deviation between a derived
from measurements and a calculated from Eq. (4) is within
+1x10™* A from 300 to 546 °C. An analysis of the uncer-
tainties involved in the determination of the peak positions

500

450

400

Epilayer temperature (°C)

Y
NN
30.20 3022 30.24 30.26 30.28 30.30 30.32

0 (degrees)

350

FIG. 4. (Color online) Topographical representation of the temperature shift
of 004 peaks for a piece of Sb 122 coated with 200 nm Pt. Measurements
were performed at 348 °C, at about 25 °C intervals from 398 to 497 °C,
and at 546 °C. The dashed curves show theoretical peak positions calcu-
lated from lattice constants found in Ref. 18 (GaSb) and from Eq. (4)
(Al 99Gag 19As,Sb;_,), with y=0.0574. Equation (4) was found to fit the
measurements to within =1X 10~ A up to 450 °C (i.e., as far as both
peaks are well resolved).
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TaBLE II. Sb 122 (100 nm Pt): Comparison of a from Eq. (4) and a calcu-
lated from Eq. (1) using literature values of GaSb (Ref. 18) for a, and values
derived from 004 reflection measurements (Fig. 3) for a.. A@ is the observed
angular separation between the two peaks shown in Fig. 3 and 6 is the
angular position of the Al gyGay 10ASys665b0.9434 Peak.

Temperature A6 [ a from Eq. (1) Equation (4)
°C) (deg)  (deg) (&) (A)
299 0.054 30.239 6.1134 6.1134
324 0.051 30.236 6.1142 6.1142
348 0.048 30.234 6.1149 6.1149
373 0.044 30.231 6.1157 6.1157
398 0.041 30.228 6.1165 6.1166
423 0.038 30.225 6.1173 6.1174
447 0.035 30.222 6.1181 6.1182
472 0.032 30.220 6.1189 6.1190
497 0.028 30.217 6.1197 6.1198
522 0.025 30.214 6.1206 6.1207
546 0.022 30.211 6.1214 6.1215

and ag,g, suggests that the uncertainty in a derived from the
004 reflection measurements is =2.4X 10~ A, close to the
standard error of Eq. (4). We take the above results as a
strong indication that Eq. (4) is valid up to around 550 °C.
Note that since we have not measured the in-plane lattice
constant, these measurements cannot be considered to be ab-
solute proof of validity for Eq. (4) up to 550 °C.

A topographical representation of the temperature shift of
004 peaks up to 546 °C for the piece coated with 200 nm Pt
is shown in Fig. 4. Also in this case, Eq. (4) was found to fit
the measurements up to 450 °C (i.e., as far as both peaks are
well resolved).

The TEC of AISb has only been reported up to 340 K
(Ref. 7) (where it flattens out) and is thus currently the best
estimate for the TEC of AlSb at higher temperatures. Using
this TEC, we can calculate the lattice constant at higher tem-
peratures from Eq. (3). A comparison of the interpolation of
the binary constituents, Eq. (4) (y=0.0589) and the derived
bulk lattice constants for Sb 130-4 is shown in Fig. 5. It can
be seen that the binary interpolation deviates significantly

6.116
Vo4 ;
6.114 Eq. (4) e
— — — Bin.int.

Lattice constant (A)

6.112

6.110

6.108

6.106

6.104
0 100 200 300 400

Temperature (°C)
FIG. 5. Derived bulk lattice constants of Al g,Gag 9ASgs9Sbo.osr; from
experimental data for sample Sb 130-4 compared to Eq. (4) and interpola-
tion of the binary constituents from 32 to 400 °C.
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from the measured lattice constants at elevated temperatures,
and thus further investigation of AISb above 340 K is
needed.

A. Error sources

Uncertainties include errors in x, y, and 7. For sample Sb
141-2, x was measured by using a 200 nm Al,Ga,_Sb cali-
bration layer. A simulation of the 004 XRD peaks for sample
Sb 141-2 using the LEPTOS software package from Bruker
AXS resulted in x=0.911. Assuming an uncertainty of Ax
==*0.02 around x=0.90, at 30 °C, y would be determined
within +1.5X 1073 from the actual As mole fraction in the
sample (according to binary interpolation). This shift in y
would, however, not be detrimental to Eq. (4). The error
would mainly impact Eq. (4) through the thermal coefficients
b, and b5 since the thermal expansion for, e.g., x=0.88
would slightly differ from x=0.90. An estimation of the un-
certainty in a(7) for a deviation in x, Ax, of 0.02 can be
evaluated by comparing the deviation in a(7), Aa(T), at the
lowest (30 °C) and highest (400 °C) temperature measured
using

da(T) %

Aa(T) = ? Ax
_ Al ooGag 1050(T) ~ AGas(T)

0.9

0.02, (7)

where Eq. (4) is used for an , a, ,,sb (v=0) and data in Ref.
18 are used for ag,gp. The difference between Aa at 30 and
400 °C was found to be F1.0X 10™* A for x=0.90*+0.02,
which is the best estimate for the contribution of this error.

The uneven thermal expansion of the hot plate, causing
thermally induced tilt, also contributes to the temperature-
related errors. Investigation suggests that the contribution to
the incident angular offset is approximately 0.01° in 6 when
going from 50 to 350 °C. This contribution is, however, in-
cluded in the incident angle offset calculations mentioned in
Sec. III. It is assumed that the angular offset is constant for
the measurement series (6—13 measured epilayer and sub-
strate peaks) at each temperature, which lasts about 1.5-2 h.
The angular offsets for the peak positions seem random for
the different measured peaks, suggesting that there is no
steady drift in the angular offset at constant temperature.

The temperature dependence of C; and C|, can also con-
tribute to thermally induced errors. However, as mentioned
in Sec. II, this temperature dependence is weak and is ig-
nored. For strained GaAs, this error would be approximately
1X10™* A in the lattice constant a under similar conditions.
If the other binary constituents have temperature depen-
dences in Cy; and C, of the same order, the total error would
be approximately the same.

Many of these errors are hard to quantify. For the majority
of the measurements (90%), the calculated values for a were
within +2X 10* A of the values predicted by Eq. (4) (and
96% within 2.7 X 10~* A). The discussed error sources may
both increase and decrease the value for a, and they are all
within =2 X 10 A. Since we have performed over 50 mea-
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surements on four samples with potentially slightly differing
Al mole fractions (x), =2X 10™* A is probably the best es-
timate for the deviation in the fit for the bulk lattice constant
of  AlygyGag 9As,Sb;_,. In addition, measurements on
sample Sb 99-1 show that Eq. (4) can be used for y up to at
least 0.067 and measurements on Sb 122 show that Eq. (4)
can be used up to around 550 °C.

V. CONCLUSIONS

Measurements of  the lattice  constant  of
AlygoGag 19As,Sby_, from 30 to 398°C for y
=0.003-0.059 were performed. A polynomial function for
the bulk lattice constant was derived from a fit to the result-
ing data. Measurements on Pt-coated samples at higher tem-
peratures indicate that the polynomial function is valid up to
around 550 °C. We have shown the lattice matching condi-
tion for growth of AljgoGag joAs,Sb;_, lattice matched to
GaSb. At 450 °C-550 °C, an As mole fraction of 0.063—
0.061 should be used. An interpolation of the binary constitu-
ents (Al,Ga)(As,Sb) was shown to give a poor fit to the bulk
lattice constant at elevated temperatures, probably due to the
lack of data in literature for the thermal expansion coeffi-
cients, especially for AISb.

ACKNOWLEDGMENTS

Thanks are due to Mike Pochet for assistance in improv-
ing the language of this article. This project was partly
funded by the Research Council of Norway under Contract
No. 177610/V30.

'A.Z. Li, J. X. Wang, Y. L. Zheng, G. P. Ru, W. G. Bi, Z. X. Chen, and N.
C. Zhu, J. Cryst. Growth 127, 566 (1993).

’A. Gassenq, L. Cerutti, A. Baranov, and E. Tournié, J. Cryst. Growth
311, 1905 (2009).

°D. Donetsky, J. Chen, L. Shterengas, G. Kipshidze, and D. Westerfeld, J.
Electron. Mater. 37, 1770 (2008).

‘1. B. Rodriguez, L. Cerutti, and E. Tournié, Appl. Phys. Lett. 94, 023506
(2009).

3s. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. West-
erfeld, D. Snyder, and G. Be-lenky, Appl. Phys. Lett. 93, 081107 (2008).
°E. Selvig, G. Myrvagnes, R. Bugge, and B. O. Fimland, J. Cryst. Growth
(submitted).

‘0. Madelung, Semiconductors—Basic Data, 2nd ed. (Springer, Berlin,
1996).

SW. L. Bond, Acta Crystallogr. 13, 814 (1960).

M. Fatemi, Appl. Phys. Lett. 80, 935 (2002).

M. Fatemi, Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 301
(2005).

'"'M. Fatemi and R. E. Stahlbush, Appl. Phys. Lett. 58, 825 (1991).

2 Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89,
5815 (2001).

L Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003); see Ref.
10.

143, C. Brice, Properties of Gallium Arsenide, 2nd ed. (Inspec, London/New
York, 1990).

'>G. A. Slack and S. F. Bartram, J. Appl. Phys. 46, 89 (1975).

'°Dg DISCOVER User Manual, Bruker AXS GmbH, 2006, Vol. 3.

R. Resel, E. Tamas, B. Sonderegger, P. Hofbauer, and J. Keckes, J. Appl.
Crystallogr. 36, 80 (2003).

BT, A, Nilsen, M. Breivik, G. Myrvégnes, and B. O. Fimland, J. Vac. Sci.
Technol. B 28, C3117 (2010).

"E. N. Maslen, International Tables for Crystallography (Kluwer Aca-
demic, Dordrecht, 1995), Vol. C.

2G. Giesecke and H. Pfister, Acta Crystallogr. 11, 369 (1958).



8.3. Paper III - Thermal dependence of the lattice constant and the Poisson
ratio of AISb above room temperature 115

8.3 Paper III - Thermal dependence of the lattice con-
stant and the Poisson ratio of AISb above room tem-
perature



Journal of Crystal Growth 336 (2011) 29-31

journal homepage: www.elsevier.com/locate/jcrysgro

Contents lists available at SciVerse ScienceDirect

Journal of Crystal Growth

" e CRYSTAL
GROWTH

Thermal dependence of the lattice constant and the Poisson ratio

of AISb above room temperature

Tron Arne Nilsen ¥, Saroj Kumar Patra, Magnus Breivik, Bjgrn-Ove Fimland

Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 27 June 2011

Accepted 16 September 2011
Communicated by M.S. Goorsky
Available online 24 September 2011

Keywords:

A1l. High resolution X-ray diffraction

A3. Molecular beam epitaxy

B1. Antimonides

B2. Semiconducting aluminum compounds

decreasing above.

Temperature dependent X-ray diffraction measurements were performed on two samples with AlSb
epilayers of differing thickness grown on GaSb by molecular beam epitaxy to determine the
temperature dependence of the lattice constant (assp) and the Poisson ratio of AlSb between 32 and
546 °C. At 32 °C, aus, was found to be 6.1361 A, which is in good agreement with previous work. At
higher temperatures, it differed significantly from the linear extrapolation of previously published
values (below 67°C). A polynomial was fitted to the results: ays, =6.1353+2.85 x 10T+
6.11 x 10 T2 (A). The Poisson ratio was found to be approximately constant up to 300 °C while
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1. Introduction

AlSb is a binary often used as a part of I[I-V compounds grown
on GaSb substrates. Compound antimonides containing Al are
often used as cladding materials and quantum well barriers in
antimonide based emitters. Previous work [1] suggests that in
order to obtain thick epilayers of Al containing compound anti-
monides of high quality, lattice matching needs to be done at
growth temperature. This requires the bulk lattice constants of
the epilayer and the substrate to be known at typical growth
temperatures. The bulk lattice constant can be obtained through
direct measurement of the in-plane (ay) and out-of-plane (a,)
lattice constants at growth temperature and using an estimated
Poisson ratio from the binary constituents, or using Vegard's law
and the lattice constant of the binaries at growth temperature.
Previous work [2] has shown that using Vegard's law with
currently known or estimated lattice constants of binaries at
growth temperature is not accurate for Alg9Gag.1As,Sby_,.

There has been limited work reported on the thermal expan-
sion and lattice constant of AlSb. Some theoretical work [3] has
been performed for low temperatures and measurements have
been made from 20 to 340 K [4]. No measurements of the thermal
expansion from 67 °C up to typical growth temperatures for AlSb
have been reported. To the authors’ best knowledge, no previous
work has been reported on the Poisson ratio of AlSb above room
temperature (RT). The lattice constant of AISb at RT used in

* Corresponding author.
E-mail addresses: tronarne@iet.ntnu.no (T.A. Nilsen),
bjorn.fimland@iet.ntnu.no (B.-O. Fimland).

0022-0248/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jcrysgro.2011.09.034

literature was determined by Giesecke and Pfister [5] in 1957
and was reproduced by Bocchi et al. [6] in 1996. However, the
original work by Giesecke and Pfister included measurements of
several IlI-V materials and their findings on the lattice constant
of GaSb is not in agreement with later published results [7,8].
In addition, the reproduction by Bocchi et al. [6] used the GaSb
lattice constant value published by Straumanis and Kim [9],
which is not in agreement with later works [7,8], to calculate
the AlSb lattice constant from the separation between the AlSb
peak and GaSb substrate peak in their X-ray diffraction (XRD)
measurements.

In this work, we present the results of temperature dependent
XRD measurements on two samples with AISb epilayers of
different thickness grown on GaSb by molecular beam epitaxy
(MBE). We have determined the thermal expansion of AlSb and
the temperature dependence of the Poisson ratio from 32 to
546 °C.

2. Theory

The relation between the bulk lattice constant (a) of a cubic
lattice and the in-plane (ay) and out-of-plane (a,) lattice constants
of the tetragonally distorted cubic lattice is given by [10]:

ZC]Z
a -a
Z+ C‘[] X
1+——=
Cn
where C;; and Cp, are stiffness tensor elements of the strained
material. Eq. (1) can also be expressed using the Poisson ratio

e

a=
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v=C12/(Cr2+Cr1):

1-v 2v
a=a, (m> +ay (m) )

By using Eq. (2) and knowing the in-plane (a,;, ay ;) and out-of-
plane (a,;, a,,) lattice constants of two tetragonally distorted
lattices of the same material with different degrees of distortion,
both the bulk lattice constant and the Poisson ratio can be found.
Solving Eq. (2) for both lattices gives:

1

v= 2. Oy —0x1 +1 (3)
az1—0z2
Ax1 - dz2—0x2 - Az
a= "= - 4
(axl _axz)_(azl —ﬂzz) ( )
The linear thermal expansion coefficient (TEC) is defined as:
1da
oT)= dT (5)

where a is the (temperature dependent) lattice constant of the
material and T is the temperature. Eq. (5) can be approximated as:
_ 1 da
- Cl(T())dT
as long as a/a(Ty)—1 is small. The lattice constant at any given
temperature T is then given by

oT) (6)

T
a(T):a(To)(l+ /T o(T) dT> (7)

3. Experiment

Samples with a 500 nm GaSb buffer, an AlSb layer of differing
thickness and a 50 nm GaSb cap layer were grown in a Varian Gen
I Modular MBE system. The layers were grown on Te-doped
(001)-oriented GaSb substrates with a doping concentration of
(2-7)x 107 cm~3. The epilayers were grown at 550 °C as mea-
sured by a Minolta Land Cyclops 241 pyrometer. Sample Sb 144-2
had an AISb thickness of 74 nm, which is below the critical
thickness of around 100 nm when a 50 nm GaSb cap is used
[11,6]. The AISb thickness of sample Sb 144-1 was 2.8 pm.
A Bruker AXS D8 Discover X-ray diffractometer with a half circle
geometry and equipped with an Anton-Paar DHS 900 tempera-
ture stage [12] was used to examine the AlSb layers at tempera-
tures ranging from 32 to 546 °C in a nitrogen atmosphere.
A modified version [8] of the zone technique [13,14] was used
to determine a, and a, of the AISb layer of each sample.

Table 1 shows the reflections measured for the different
materials on the two samples. For the AISb layer, reflections were
not measured if the intensity was too low. For GaSb on Sb 144-1,
the reflections were chosen to minimize the contribution of the
strained 50 nm GaSb cap layer. In all cases both positive and
negative geometries were measured for asymmetric reflections.
Values of a, and a, used in the determination of the thermal

Table 1
Reflections measured for GaSb and AISb on samples Sb 144-1 and Sb 144-2.

expansion and the Poisson ratio are the average of four measure-
ments in a row at a temperature without recalibration of tilt angle
(») and azimuth angle (¢) between the measurements. In the
following, a measurement series is defined as a series of measure-
ments with varying temperature. For each measurement used in
the determination of the lattice constant at 32 °C, the DHS 900
heating stage was taken off the X-ray diffractometer, the sample
remounted and y, ¢ calibrated after remounting the DHS 900. For
sample Sb 144-2, the AlSb layer is thin enough that the AlSb peak
will undergo a shift in peak position due to interference with the
substrate peak [15]. In order to correct for this effect, the
uncorrected values for the bulk lattice constant and the Poisson
ratio were used with the simulation program Leptos-2 by Bruker
AXS to simulate the peak positions of all reflections used for a
sample identical to Sb 144-2 and a sample with a 3 pm unrelaxed
AISD layer. The lattice constants (a, and a,) were then calculated
for both simulated cases and the differences in calculated lattice
constants between the thick and thin sample were then used as
corrections for the measurements on Sb 144-2.

4. Results and discussion

Table 2 shows values for the bulk lattice constant of AlSb
(aaisp) at 32 °C deduced from our measurements using Eq. (1),
C11=87.69 GPa and C;,=43.41 GPa [4]. No temperature is given
in the work of Bocchi et al. [6], but since Straumanis and Kim’s [9]
value of the GaSb lattice constant (agusp) at 25 °C is used to
calculate the AlISb lattice constant, it is assumed here that their
measurements were at 25°C. They reported aa;s,=6.1353 A
which gives a lattice constant of 6.1355 A at 32 °C, using a TEC
of 52 x 10" K™', which is 6 x10~*A lower than our results.
However, if their measurements are used with ag.s,=6.0968 A
[7.8], a lattice constant for AlSb of 6.1362 A is obtained at 25 °C
and 6.1364 A at 32 °C. Giesecke and Pfister [5] measured the
lattice constant of AlSb to be 6.1356 A at 18 °C after refractive
index correction. This value has been misquoted in later works;
Madelung [4] gives it as 6.1355A at 18 °C, which is the value
before refractive index correction, while Vurgaftman et al. [16]
gives it as 6.1355 A at 25 °C. Using a TEC of 5.2 x 10°% K=" with
Giesecke and Pfister’s data [5], one finds ays, = 6.1360 Aat32°C
which agrees well with our results at 32 °C. From Table 2, the
agreement with literature values, and the accuracy obtained with
the same instrument and measurement method in our earlier
work [8], we estimate the measurement accuracy to be within
+2x107 %A

Fig. 1 shows the bulk lattice constant of AlSb calculated by
using Eq. (4) and our measurements of a, and a, for Sb 144-1 and
Sb 144-2. Fig. 2 shows the Poisson ratio calculated from the same
data and Eq. (3). In both cases the calculations are based on two
measurement series of Sb 144-1 and one for Sb 144-2 in the
temperature range from 348 °C to 546 °C. For the lower tempera-
tures, three measurement series were used for Sb 144-1 and one
for Sb 144-2. The accuracies of the calculated bulk lattice constant
and the Poisson ratio of AlSb were estimated to +3.5x 10~4A

Table 2
Lattice constant of AISb at 32 °C.

Sample, material Reflections measured

Sb 144-1, AlSb 115, 117, 226, 444, 002, 004, 006
Sb 144-1, GaSb 115, 117, 226, 004, 006
Sb 144-2, AlSb 115, 335, 444, 002, 004

Sb 144-2, GaSb 115, 117, 226, 335, 444, 002, 004, 006

Sample Calc. a (A) G (1074 A) No. of
measurements

Sb 144-1 6.1362 1.8 10

Sb 144-2 6.1360 1.2 3

All 6.1361 1.7 13
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Fig. 1. Bulk lattice constant of AISb vs. temperature; this work and linear
extrapolation of the values given by Vurgaftman et al. [16] and Madelung [4].

0.35

034 } + B 7
0_33—10' 1 11 .

ot

0.31

Poisson ratio

0.30 -

0.29 - L

0.28 - -

I PSRN [ T ST S A TUM TSR S| T TR S T S SR T 1

100 200 300 400 500
Temperature (°C)

Fig. 2. Poisson ratio for AISb vs. temperature.

and + 0.008, respectively. As can be seen from Fig. 1, our results
differ significantly from the linear extrapolation above 67 °C of
earlier published values. A linear fit to our data gives the
following expression for the bulk lattice constant of AlSb:

Ausp = 6.1350+3.20 x 107°T (A) (®)

where T is the temperature in °C. The standard error of the fit is
1.7 x 10~ A, Using Eq. (6) and a(T,) = 6.1358 A where Ty = 25 °C
gives a constant TEC of 5.2 x 10" K~', which is significantly
higher than the TEC of 4.2 x 10" K~! published earlier [4,16].
In an earlier work, we found a second order expression to be a
good fit to our Alg9Gag1As,Sby_, data [2]. Due to the similarity
between this material and AlSb, a second order expression was
fitted to our data:

sy = 6.1353+2.85 x 10°T+6.11 x 10 "T2 (A) )
which has a standard error of 7.5 x 10~ A. Using Eq. (6) gives a
temperature dependent linear TEC of

o(T)=4.65 x 1076+1.99 x 107°T (K1) (10)

where Tis in °C and a(25 °C) = 6.1360 A. The AISb lattice constant
obtained from Eq. (9) at 32 °C was found to be 1 x 10~ A higher
than the average value for the AISb lattice constant given in

Table 2, whereas the lattice constant obtained from Eq. (8) is
1x 10~ * A lower than the average value from Table 2.

Fig. 2 shows the temperature dependence of the Poisson ratio
for AISb. It can be seen that the Poisson ratio is approximately
constant up to 300 °C and then starts decreasing above. The value
obtained at 32 °C is 0.331, which agrees well with the Poisson
ratio of 0.331 calculated from room temperature values of Cy;
and C.

5. Conclusion

The lattice constant of AlSb at 32 °C was found to be 6.1361 A
with an accuracy of +2x10~“A, which is in agreement with
earlier published results [5]. The bulk lattice constant and the
Poisson ratio of AlSb were deduced from XRD measurements in
the temperature range 32-546 °C. The temperature dependent
lattice constant was found to be different from linear extrapola-
tion of earlier results [4,16]. The Poisson ratio was found to be
approximately constant up to 300 °C and decreasing above this
temperature.
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1. Introduction

InSb is an important binary for electrooptical components, and
it is an important constituent in many semiconductor alloys such
as InAsSb, GalnSb and GalnAsSb in the mid- and long wavelength
infrared range (2-12 pm). The small bandgap of the InAsSb alloy
allows wavelengths up to at least 10 pm [1] to be reached.
However, for most of the range of the InAsSb lattice constant
(6.06-6.48 A), there are no substrates suitable for lattice matching.
AllnSb or GalnSb metamorphic buffers have been utilized as
virtual substrates for InAsSb alloys in laser structures [2-6], high
electron mobility structures [7,8] and light emitting diodes [9].
GalnAsSb and GaInSb are also popular constituent alloys in
semiconductor laser structures on GaSb in the mid-infrared
wavelength range due to their small bandgaps.

Optimizing growth parameters, such as lattice matching at
elevated temperatures, and modeling structures require accurate
material parameters both at room temperature and at higher
temperatures. We have previously examined the temperature
dependent lattice constants of GaSb [10] and AlISb [11]. Preliminary
studies of the thermal expansion of GaAs and InAs up to 400 °C
and 300 °C, respectively, are in agreement with previous work
[12,13]. For InSb, however, no measurements of the temperature
dependent lattice constant above 62 °C [14] were found. The
thermal expansion coefficient, a, was measured by Gibbons [15]

* Corresponding author. Tel.: +47 73594424; fax: +47 73591441.
E-mail addresses: magnus.breivik@gmail.com,
magnus.breivik@ntnu.no (M. Breivik), bjorn.fimland@ntnu.no (B.-O. Fimland).

0022-0248/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j jcrysgro.2013.06.034

from 4 to 300K and by Bernstein and Beals [16] from room
temperature up to 500 °C, both using the technique developed by
Nix and MacNair [17], measuring the thermal expansion Al/I of a
crystal of height [ using interferometric measurements of mono-
chromatic visible light.

In this work, temperature dependent X-ray diffraction (XRD)
measurements of InSb(001) from 32 to 325 °C were performed.
From these measurements the temperature dependent lattice
constant and the thermal expansion of the crystal were calculated
and the results compared to earlier work.

2. Theory

The linear thermal expansion coefficient, a(T), is expressed by
the equation [18]

o) = Lda(T)N 1 da(T) a

where T is the temperature at which «a is evaluated and Tj is a
reference temperature for which a is known, typically taken at
room temperature. Using a(Ty) in Eq. (1) is a good approximation
for all temperatures in this study, since (a(T)/a(To))—1 is small.

3. Experiment

All measurements were performed on a Bruker AXS D8 Dis-
cover XRD diffractometer equipped with an Anton-Paar DHS 900
temperature dome [19]. Incident beam optics include a Gobel
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mirror and V-groove resulting in K,; radiation, with a specified
full-width at half maximum (FWHM) (A#) of 0.007° (25”) for the
Si 111 reflection. The X-ray beam spot size was approximately
1 mm by 0.3 mm and the temperature dome was continuously
purged with 10-20 sccm N». No aperture was used on the detector,
and the FWHM for the InSb(001) 004 reflection (€) was typically
between 0.007° and 0.008°. The scan resolution was 0.001°, and
the scan time was set to give a peak intensity of about 10* counts
or higher. The reflections measured were 115, 117, 226, 002, 004
and 008. A modified version [10] of the Zone Technique [20,21]
was used to determine the lattice constant.

In this study, 1 x 1 cm? square samples of undoped epi-ready
and test-grade InSb(001) substrates from Wafer Technologies were
examined. The nominally undoped epi-ready substrate was speci-
fied n-type with a carrier concentration of 1-3 x 10 cm~3, a Hall
mobility of 5.1-5.7 x 10° cm?/V s and an average etch pit density
(EPD) of 11-22 cm~2, whereas the carrier concentration, Hall
mobility and EPD were not specified for the test-grade substrate.
The measurements were performed at 32, 65, 100, 150, 200, 250,
300 and 325 °C, as shown in Table 1, with a temperature change
between each individual measurement. XRD measurements at
higher temperatures were not performed due to a thermal
decomposition of the sample surface above 325 °C.

The temperature offset between the sample surface and the
thermocouple was determined from measurements of the tem-
perature dependent lattice constant of Si, where the deviation
between the published values and our measurements up to 890 °C
was attributed to a thermal offset between the hot plate surface
and the sample surface [10]. The thermal conductivities of Si and
InSb [22] were then used to determine the thermal gradient
through the samples and the surface temperature of the InSb
samples. For temperatures above 226 °C, the thermal conductivity
was extrapolated from the published data [22], and the highest
estimated temperature offset, at 325 °C, was —1.3 °C.

The peak position was determined by the mid-point between
the peak slopes at 75% of the peak intensity. Measurements where
the in-plane (a,) and out-of-plane (a,) lattice constants differed by
more than 3 x 107* A were not used, as a=ay=a, for cubic
crystals such as InSb. A difference between a, and a, was
attributed to the misalignment of sample rotation and tilt, which
were realigned when |ay—a;| > 3 x 104 A. Changes in the rotation
and tilt are most likely due to the non-uniform expansion of the
hot plate [19]. a = (ax + a;)/2 was used in further calculations.

4. Results and discussion

The measurements resulted in a total of 82 values for a, with a
minimum of 6 for each temperature. The average value for

Table 1

Calculated lattice constants for each temperature T measured, and the standard
deviation o. ay,gp, is the average lattice constant from the XRD measurements at the
given temperature, while ag, is the fitted value from Eq. (2).

T(°C) apsy (A) o (107*A) ag (A) o5 (10-%A) No. of measurements (N)

32 64802 117 6.4802 1.18 7

65 64813 1.29 6.4813 133 8
100 64825 0.95 6.4825 0.95 9
150 6.4842 1.01 6.4843 1.01 7
200 64861 1.94 6.4861 2.10 7
201 64861 0.66 6.4861 0.72 6
249 64880 0.82 6.4879 0.86 9
250 64879 0.95 6.4880 1.45 6
299 64900 0.95 6.4898 1.63 6
300 64898 1.19 6.4899 1.35 10
325 64908 1.25 6.4908 1.25 7

each measured temperature is listed in Table 1. The polynomial
equation

a(T)=bo + by x T + by x T?(A) 2)

was fitted to the calculated values for the lattice constant at
different temperatures by the least squares method. The best fit
was for by=64791A, b;=328x10°A/°C, by=1.02x
1078 A/°C? (T in °C), which had a standard error of 1.29 x

104 A, and ofit = \/(1 /N)ZfV= 1(ai(T)—a(T)m)2 for each temperature

was less than 2.2 x 107 A as shown in Table 1.

Using Eq. (1) and the polynomial fit with a(To=25°C)=
6.4799 A gives a(T)=5.062 x 1076 +3.15x10%x TK' (T in
°C). Comparisons to the previous work are shown in Fig. 1 and
Tables 2 and 3. From the figure and tables it is reasonable to
assume that the data source for Vurgaftman et al. [23] is Strau-
manis and Kim [14], which implies that the equation for the InSb
lattice constant in Vurgaftman et al. [23] is only valid up to 62 °C.

For temperatures near room temperature, the thermal expansion
coefficient « is similar to the published values, while the lattice
constant a is 3-8 x 107* A higher than values from the literature.

a
6.490 * Measured, this work
Fit, this work
—— S&K
6.488 Vurgaftman et al.
~ 6.486
<
S 6.484
6.482
6.480
50 100 150 200 250 300
T (°C)
b
6.2 This work
Vurgaftman et al.
6.0 _ - — sgK
''''' B&B
- 58 v Gibbons
N
T 5.6
>
=
T 54k .
52 / ___________________
5017

50 100 150 200 250 300
T (°C)

Fig. 1. Comparisons of our work with the previously published values. (a) Bulk
lattice constant of InSb vs. temperature: this work, the XRD measurements by
Straumanis and Kim [14] (S&K), and the review article by Vurgaftman et al. [23].
See also Table 2. (b) Thermal expansion coefficient vs. temperature for InSb:
this work, the review article by Vurgaftman et al. [23], measurements by S&K,
and interferometric measurements by Bernstein and Beals [16] (B&B) and by
Gibbons [15]. See also Table 3. Our work suggests that the lattice constant, a, near
room temperature is 3-8 x 10~ 4 A higher than previously published values, and it
shows a thermal expansion, «, higher than previously published above 100 °C.



IV

M. Breivik et al. / Journal of Crystal Growth 381 (2013) 165-168 167

Table 2

Comparison of the derived temperature dependent lattice constant, a(T), with values from the literature. While Vurgaftman et al. [23] is a review article, it was included as it
is one of the most used references for material parameters. Italics indicates an extrapolation of the data or data from a review article.

Source 17 (°C) (A) 18 (°C) (A) 25 (°C) (A) 62 (°C) (A) 300 (°C) (A)
This work 6.4797 6.4797 6.4799 6.4812 6.4899
Straumanis and Kim [14] 6.47912 6.47937 6.48067

Giesecke and Pfister [25] 6.4789

Ozolin'sh et al. [24] 6.47962°

Vurgaftman et al. [23] 6.4791 6.4791 6.4793 6.4806 6.4889

2 Ozolin'sh et al. [24] is not corrected for refraction.

Table 3

Comparison of values for the thermal expansion coefficient  from this work and from the literature.
The value from Bernstein and Beals [16] was extracted from the linear range in Fig. 1 of their article,
excluding the non-linear thermal expansion above 475 °C.

Source a(107°K™ 1)

This work 5.16-6.09 (32-325 °C)
Straumanis and Kim [14] 5.37+0.5 (10-70 °C)
Gibbons [15] 5.04 (300 K)
Bernstein and Beals [16] ~5.2 (25-475 °C)
Vurgaftman et al. [23] 537

2 Value from Vurgaftman et al. [23] was deduced by us from their equation for a(T).

Table 4

XRD control measurements (of lattice constants) for GaSb and InSb. The control measurements were taken separately from the

measurements used to fit Eq. (2).

Sample Temperature (°C) Nilsen et al. [10] (A) Control (A)
Gasb 32 6.0971 6.0971

150 6.1019 6.1018
Sample Temperature (°C) Eq. (2) (A) Control (A)
InSb 32 6.4802 6.4801

150 6.4843 6.4842

It is known that large concentrations of impurities, via the size
effect and free carriers [26], or defects may cause measurable
variations in the lattice constant. The free carrier contribution can
be calculated from Eq. (1) in Leszczynski et al. [26]; using a
deformation potential of —7.3 eV [23], a bulk modulus of 47 GPa
[27] and a free electron concentration of 3 x 10" cm~3 result in a
positive contribution to the lattice constant of 1.6 x 107 A at
25 °C. A measurable contribution of 1 x 107* A would require a
free electron concentration of 1.9 x 10'® cm~3. For our samples we
can thus rule out any measurable contributions to the lattice
constant due to this effect.

Straumanis and Kim [14] reviewed several papers regarding the
lattice constant of InSb at room temperature, and a steady increase
in the value from 6.465 A in 1926 [28] to 6.47932 A in 1963 [24] is
observed. One could speculate that this might, at least partly, be
due to an improving crystal quality over the years, with a lower
concentration of contracting defects and impurities. The low
specified carrier concentration of 1-3 x 10 cm~3, high Hall
mobility of 5.1-5.7 x 10° cm?/Vs and low EPD of 11-22 cm™2
suggest that the defect and impurity concentrations for our epi-
ready sample are low.

Measurements of the Si lattice constant by powder XRD have
shown a reduced lattice constant of about 1.5 x 10~% A as com-
pared to the single crystalline XRD measurements [29]. Hubbard
and Mauer [30] point out that an absorption correction of the

measured reflection must be performed for powder diffraction
measurements due to an uneven absorption of the diffracted X-
rays in spherical crystals. For powder samples of small spherical Si
crystals with a diameter of 0.25 mm, the suggested correction was
+0.79 x 10~* A when using the 444 reflection [30]. This effect
could explain part of the difference between the data of Strauma-
nis and Kim [14], Giesecke and Pfister [25] and Ozolin'sh et al. [24],
all measured by powder XRD, and our data, as we have used
nominally undoped and high purity single crystalline InSb
samples.

Additionally, for Ozolin'sh et al. [24] the result is not corrected
for refraction. Based on the refraction correction method for
powder diffraction measurements used by Giesecke and Pfister
[25], with experimental parameters for Ozolin'sh et al. [24], an
increase of a in the range 1.2-2.0 x 10~ A can be expected for the
results. Correcting the values given in Ozolin'sh et al. [24] for both
refraction and absorption in powder would result in a lattice
constant close to our extrapolated value at 25 °C (i.e. to within the
experimental error of our measurements).

In order to verify the accuracy of our InSb measurements, the
GaSb lattice constant at 32 and 150 °C was measured and com-
pared to published values. In addition, the InSb lattice constant
was measured in the same session and compared to Eq. (2). The
results are shown in Table 4 and show good agreement with
published data for GaSb and our fit for InSb.
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5. Conclusions

The temperature dependent lattice constant and thermal
expansion of bulk InSb from 32 to 325 °C were determined using
high-resolution X-ray diffraction. The results were compared to
earlier work for the temperature range of 17-62 °C where the
lattice constant was found to be slightly higher than previously
reported [14,24,25], which could be due to a difference in
measurement techniques and structural quality of samples. The
thermal expansion was found to be close to measured values in
the previous works [14-16] for temperatures below 100 °C, while it
was found to be higher for temperatures above 100 °C.
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Chapter 9

Conclusions and further work

To summarize, this work has examined the crystal parameters at elevated temper-
atures for the thickest layers used in GaSb-based laser diodes, the cladding layers.
Furthermore, an investigation of the binaries which form the constituents for laser
epilayers have been examined. Laser structures have been grown by molecular
beam epitaxy (MBE), Y-junction and Fabry-Perot lasers (FPLs) have been pro-
cessed and tested, and Y-junction waveguides have been simulated. The conclu-
sions have been divided into two parts. First, the conclusions relating to the X-ray
diffraction (XRD) measurements in the included papers (chapter 8) are presented
in section 9.1. Second, the conclusions relating to Y-junction lasers presented in
chapters 4 to 7 are presented in section 9.2. Finally, suggestions for further work
are given in section 9.3.

9.1 XRD measurements

The temperature dependent lattice constants of the binaries GaSb, AISb and InSb,
and the quaternary Alp9Gaop.| As,Sb;_, have been measured.

We have measured the temperature dependent lattice constant of GaSb up to
546°C using XRD. Our measurements fit well with the previously published val-
ues from Bublik et al. [1], and it can therefore be concluded that both sets of data
are valid and should be used for the temperature dependent GaSb lattice constant.
We also confirmed our measurement technique by measuring the temperature de-
pendent lattice constant of Si and comparing it to literature values presented by
Yasumasa and Yozo [151], where we have a good fit. At 550°C, a deviation of
2 x 107 A in the measured lattice constant of Si between our and Yasumasa and
Yozo [151]’s measurements was found, which was accounted to a thermal gradi-
ent through the wafer. Measurements of the lattice constant of Si up to 890°C
were then used to determine the thermal gradient through the sample. The deter-
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mined thermal gradient of Si was then used to estimate the thermal gradient for all
samples presented in our publications.

We have also measured Aly 9Gag.1 AsySby_ epilayers on either GaSb or GaAs
for y ranging from 0.003 to 0.059 up to 398°C using XRD, and determined the
temperature dependent lattice constant, a(7), and the thermal expansion (7).
Measurements on Pt-coated samples at higher temperatures indicate that the pre-
sented polynomial for a(7') is valid up to 550°C. The required y for lattice match-
ing at temperatures up to 550°C was derived. An interpolation of the binary con-
stituents (Al,Ga)(As,Sb) was shown to give a poor fit with the bulk lattice constant
of Aly9Gag 1As,Sb;_, at elevated temperatures, most likely due to lack of data
for the thermal expansion coefficients in the literature, especially for AISb. This
information is directly relevant to grown laser structures, since this alloy is used as
the cladding material. Lattice matching at growth temperature increases the criti-
cal thickness during growth, which reduces the risk of dislocations, not just in the
cladding layers, but also in the following core and multiple quantum wells (MQW)
layers.

The temperature dependent lattice constant of AISb was investigated. Mea-
surements of AISb epilayers on GaSb up to 546°C by XRD were performed. We
found that the lattice constant and thermal expansion above room temperature were
larger than previously reported (up to 67°C [90]). By using AISb epilayers of dif-
ferent strain, we were also able to determine the Poisson ratio of AISb.

We have measured the temperature dependent lattice constant of InSb from
32°C to 325°C by XRD. Our measurements indicate that the lattice constant for
InSb was larger than previously reported, most likely due to better crystalline qual-
ity and in part due to the measurement techniques used, where previous measure-
ments have been mainly powder diffraction measurements. We also found that the
thermal expansion above 100°C was higher than previously reported.

These data will help to improve the growth of epilayers sensitive to strain,
where lattice matching is important for increasing the critical thickness and crystal
quality.

9.2 Y-junction lasers

Two laser material samples (Sb 142 and Sb 145) were grown and processed into
Y-junction laser diodes using standard cleanroom processes. The Y-junction laser
diodes were tested and single-mode behavior was observed from sample Sb 145.
Optical power, wavelength, near and far field of different Y-junction lasers and FPL
were measured. It was concluded that large optical losses in the bent waveguide
of the lasers resulted in no contribution to the tuning from the bent waveguide.
The Y-junction waveguides were simulated using 2D beam propagation method
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(BPM), and the simulation results suggested that the optical losses were caused by
a low refractive index contrast and that waveguide roughness is of less importance
for the waveguiding properties of Y-junction lasers. It was suggested that the (2D)
refractive index contrast should be at least 0.03. Cross section scanning electron
microscope (SEM) characterization confirmed a poor etch depth. This is the most
likely reason for the lack of interferometric tuning from the processed Y-junction
lasers.

The reasons for the poor etch depth were discussed, such as problems with the
profilometer measurement, loading effects from the dry etch, leftover etch mask on
the sample, poor selectivity determination and/or problems with the etchant gas.

The results suggest that an increased refractive index contrast, by e.g. increas-
ing the ridge etch depth, should result in functioning Y-junction laser diodes. Sug-
gestions for further work for fabricating functioning laser diodes, including sug-
gestions related directly to Y-junction laser diodes, are presented in section 9.3.

9.3 Further work

To improve the Y-junction laser performance, and mid-infrared laser structures in
general, many modifications can be explored. Ideas and suggestions are presented
here.

9.3.1 Computations and simulations

Improved simulations of laser diodes An increased focus on modeling and
simulating laser structures would be beneficial for fabrication process of Y-junction
lasers. This would help to improve the grown structures, and give insight to which
parameters give significant changes in the laser diodes.

Different aspects of the laser diodes could be simulated. Examples include
modeling and simulating the electrical characteristics of the p-i-n diode, to opti-
mize the doping concentration and the doping profile, and to determine the impact
of different epilayer thicknesses and ridge etch profile. 3D optical modelling and
simulations of the Y-junction waveguides would give further insight into the proper
etch depths and the impact of process related issues, e.g. roughness. Such simula-
tions would provide more information than the 2D BPM simulations presented in
chapter 7.

When the electrical and optical properties have been analyzed, laser simu-
lations, including both electrical and optical properties, would result in further
understanding of the design aspects of the laser diodes. This includes both the
compositions and thicknesses of the laser material, and the processed laser struc-
ture, where an improved understanding of the gain and lasing properties of the
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Y-junction laser would be useful. E.g. the large optical intensity inside the com-
mon section compared to the straight and bent part of the laser after the Y-splitter
may have an appreciable impact on the lasing properties of the diodes, such as
maximum power, side-mode suppression ratio (SMSR) etc.

Modelling and simulation of the band structure for AlGaAsSb An ab-initio
modelling and simulation of the band structure for AlIGaAsSb could be helpful
for determining its electrical properties [152]. This is especially interesting for
n-doped AlGaAsSb with more than 50% Al, due to the band gap minima in the
X direction in k-space [98] (see section 3.2.2 and fig. 3.1). Devi et al. [153]
have performed an ab-initio study of structural, electronic and optical properties of
Al,_,Ga,Sb. However, their results are in poor agreement with experimental val-
ues; for Aly.sGag sSb their calculations resulted in E, = 0.1269 eV, while the data
from Donati et al. [154] suggests it is about 1.4185 eV. This suggests that further
work is needed.

Previous studies in our group suggest that the crystalline quality of Alg 9GaAs,Sb
grown on GaSb is optimum if the lattice matching is made at or close to growth
temperature [59]. However, the electrical properties have not been characterized.
When the AIGaAsSb epilayer is strained, the degenerate conduction band minima
in the X-valley could be lifted. It would be helpful to know if the conduction band
minimum is in the in-plane crystal directions, in the out-of-plane direction, or if
something else happens. This can significantly affect the electrical properties of
the laser diode, and further investigations should be made. An experimental study
of the electrical properties of the cladding layer as a function of strain could also
be beneficial for improving the laser diode performance.

Studies of AlGaAs/GaAs suggest that the introduction of a conduction band
minimum in the L or X valley, depending on the Al content, are related to the
microscopic strain induced by the Al atoms [155]. The same effect may also be
present in AlGaAsSb/GaSb, and a literature study of the electrical properties of
AlGaAs may give more insight into the matter.

Alternative interferometric structures An investigation into other interfero-
metric waveguide structures could be of interest to improve the SMSR and tun-
ability of the lasers. An interesting alternative is V-coupled cavities [156, 157],
where the SMSR can be improved by coupling two waveguides optically over a
well defined distance instead of intersecting the waveguides like in the Y-junction
structure.

Improvements to the Y-junction laser structure could also be made, such as a
third waveguide [46], a multi-mode interferometer coupler, and/or Bragg reflectors
[158]. However, a working Y-junction laser should be fabricated before increasing



9.3. Further work 129

the complexity of the structure.

Leaky modes Another interesting possibility is to introduce an extra modulation
on the cavity gain by intentionally using leaky modes (see section 2.1.2). This can
be achieved by growing a thin lower cladding layer to allow for the bound mode to
leak into the substrate, due to the substrates large refractive index n. The modula-
tion period would be determined by the substrate thickness, while the amplitude is
determined by the lower cladding thickness. This effect has been demonstrated for
InGaAs/GaAs laser diodes with AlGaAs cladding layers [74]. The benefit would
be an increased SMSR. However, the modulation curve is adjusted by changing the
substrate thickness, which would be a major drawback. Small adjustments may be
achievable by changing the temperature of the laser device.

9.3.2 Growth and material characterization

Reduction of the threshold current density Simple modeling suggests that the
optical confinement in the core is poor for the lasers using a core width of about
442 nm (see appendix B), which was used for our lasers. Increasing the core width
results in an increase of ng. The implications of this are a larger overlap of the
gain medium and the optical field, and a possible reduction of the required cladding
thickness. Using a thicker core has been documented in the literature to decrease
the threshold current density [159]. Garbuzov et al. [159]’s results suggest that
an increase in the core size from 0.4 to 0.8 um should reduce the internal losses
almost ten-fold, mainly due to losses in the cladding layer.

The DX centers present in n-type cladding layers result in a reduced doping
efficiency, with ionization energies which could be more than 100 meV, see sec-
tion 3.2.2. A reduction in the n-type cladding layer thickness could help decrease
the series resistance of the device, which would also reduce heating close to the
gain medium.

Electrical properties of AlGaAsSb According to Li et al. [98] the band gap of
Al Ga;_,Asg 03Sbg.97 changes from direct to indirect for x = 0.25. It is reasonable
to believe that strain will affect the band structure of AlGaAsSb as it does for
InGaAsSb, see section 3.1.3. It is beneficial that the band gap is, if possible, direct
in the MQW barriers so that the charge carriers can easily enter the wells, since
their momentum k is small.

By using the tilted sample method, described by Nilsen et al. [113], a single
sample can be grown with varying As and Al incorporation across the sample. By
mapping the sample along the x and y-directions using XRD and photolumines-
cence (PL), the composition, strain and band gap properties could be determined;
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when the band gap changes from direct to indirect, a drop in the PL from the
layer is expected. This information could be beneficial when choosing appropriate
composition of the MQW and separate confinement heterostructure (SCH).

It has also been suggested that the deep ionization levels help to increase the
SMSR, due to the Te-doped cladding layer acting as a saturable absorber [160].
This increases the optical losses of modes whose longitudinal mode maxima are
spatially located between the maxima of the dominating mode.

Alternatively, measurements could be designed to experimentally determine
the electrical properties of n-doped AlGaAsSb layers. It would be beneficial to
differentiate between in-plane and out-of-plane electrical properties.

Longer wavelengths Developing gain material for longer wavelengths is im-
portant for increasing the number of gas species that can be detected. Especially
wavelengths around 2.35 um and 3.5 um provide atmospheric windows with avail-
able gas species, as shown in fig. 1.1. This may require growth of AlGalnAsSb,
and an effort should be made to develop laser material and laser diodes for these
longer wavelengths.

Refractive indices of AlGaAsSb alloys Gonzalez-Cuevas et al. [84] suggest
AISb has a refractive index of about 3.5 at 0.5 eV, while newer work by Jung
et al. [87] suggests 3.23 at 0.7 eV. There seems to be a lack of data for the refrac-
tive index of Al,Ga;_,As,Sb;_, lattice matched to GaSb for x > 0.5, which are
important alloys for optical confinement for GaSb-based lasers and waveguides.
An investigation of the refractive indices of Al,Ga;_,As,Sb;_, lattice matched to
GaSb for x > 0.5 could be beneficial for optimizing the design of the waveguide
for our laser structures.

Bowing parameters While the lattice constant of alloys can be approximated
by a linear interpolation of the lattice constants for the binary constituents, there
is often a small deviation between the linear interpolation and the actual lattice
constant. This deviation is usually expressed by the bowing parameter B in the
following equation:

a=xa;+x(1 —x)B+ (1 —x)ay .1

Here a; » are the lattice constants of the binary constituents of the alloy and
a is the lattice constant for the alloy, e.g. the lattice constants GaSb and InSb
for GalnSb. A binary interpolation for Al 9Gag 1Sb using our measured values
for AISb and GaSb extrapolated to 25°C yields a result of 6.1321 A, while ex-
trapolating the lattice constant from our results for Al 9Gag.1As,Sby_, withy =0
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yields a value of 6.1317 A, a deviation of 4 x 10~* A!. To account for such dis-
crepancies, the temperature dependent bowing parameter B should be determined
(by XRD) for the AlGaAsSb and GalnAsSb material systems. Determination of
B would further increase the accuracy of the lattice constant used for calculations
regarding strain at both room temperature and higher temperatures, such as growth
temperatures.

9.3.3 Laser processing

Improvement of the etch process To produce working interferometric lasers,
better control of the etch process is needed. In-situ etch depth measurements would
result in better control. One option would be to use interferometric measurements
during the etch process, which could be used to determine the etched depth of
the laser diodes. Another option would be to use an end-point detection system,
where a thin layer containing e.g. In could be inserted into the laser structure
during growth. By using an optical emission detector in the etch chamber, the etch
could then be stopped when this layer is reached. These detectors measure the
emitted light from the plasma, which relates to the material being etched [161].
This would, however, require a modification of the laser structure, and any side-
effects of introducing an In-containing layer would have to be investigated.

Since an interferometric laser measurement system is available for the induc-
tively coupled plasma reactive ion etching (ICP-RIE) at NTNU Nanolab (http:
//www.norfab.no/lab-facilities/ntnu-nanolab/), in-situ etch depth mea-
surements using this system should be utilized.

Improvement of bonding pad metal adhesion to insulation Increased adhe-
sion of the bonding pad metal to the insulation would be beneficial for a good
wirebonding process. One alternative would be to replace the ma-N 440 with e.g.
SiO2 or SiN. Improved adhesion can also be achieved by increasing the metal
thickness, which may require changes to the lift-off process parameters.

Surface passivation Capasso and Williams [162] have suggested that a hydro-
gen or hydrogen-nitrogen, such as ammonia (NH3), plasma can be used to passi-
vate the surface of GaAs and GaSb and related materials. It could be beneficial to
investigate if an H, plasma step at the end of the ICP-RIE etch could improve the
performance of the laser diodes, due to e.g. a reduced surface recombination on
the sidewalls of the laser ridge.

1Using B = —4 x 1073 A would account for the deviation (within our measurement uncertainty).
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9.3.4 Testing of laser diodes

Top-down measurements of the optical power leakage By connecting a sensi-
tive IR camera to a microscope, it may be possible to directly measure the optical
leakage from the bent waveguide. In conjunction with beam propagation simula-
tions, this could give further insight into the waveguiding nature of the Y-junction
laser diodes.

Replacement of the multimode fiber setup It is clear from the sub-threshold
measurements presented in section 6.4 and fig. 6.5 that our fiber setup should not
be used for these measurements. A free space setup or single-mode fiber may
remove the observed oscillations, and such setups should be investigated.



Appendix A

Important material parameters

In this chapter an overview of important material parameters are shown. This
data gives an overview of the properties of the alloys of AlGalnAsSb. Figure A.1
shows the band gaps as a function of material and lattice constant. This data is
taken from Donati et al. [154], and the values for Ej are given for 0 K, and will
be slightly higher than room temperature values. The band gap for e.g. GaSb will
change from about 0.81 eV at 0 K to about 0.78 eV at 300 K [163]. Besides the
temperature, other parameters such as strain and doping will also affect the band
gap. In fig. A.2, the same data is presented, but instead of E,, it is presented by the
expected recombination wavelength A ~ 1.24/E,.

In fig. A.3, the refractive indices n are shown. Note that the values for layers
with high Al content, such as AISb and AIGaAsSb, are probably over-estimated by
the semi-empirical paper from Gonzalez-Cuevas et al. [84] The refractive indices
were extracted from fig. 2 in Gonzalez-Cuevas et al. [84], at 0.5 eV (A ~ 2.5 um).

In fig. A.4 the conduction band offset (CBO) and valence band offset (VBO)
are shown as a function of material and lattice constant. This information is use-
ful when designing quantum wells (QWs) and defining proper electron and hole
confinement in laser structures.
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Figure A.1: Band gap energy [154] as a function of the lattice constant [61, 62, 64, 86, 90, 151].

is calculated for O K, and it will be smaller for temperatures near room temperature.

Note that the band gap energy
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Figure A.3: Refractive index n [84] as a function of the lattice constant [61, 62, 64, 86, 90, 151].
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Appendix B

Slab waveguide

This chapter contains results from calculations of an infinite slab waveguide with
a core thickness w. The parameters are explained in fig. B.1 and the results are
shown in table B.1. The calculations are performed using the theory described in
ref. [46, App. B]. While I' refers to the optical power, a parameter I'g . has
been included in the tables. This parameter refers to the optical field E(x). If the
waveguide is leaky (see section 2.1.2), the field can radiate into e.g. the substrate
and be reflected back into the waveguide and cause interference, and the resulting
optical power in the waveguide, in the case of destructive interference, will be
given by ’Einside — Ereflected back’z, and not |Einside ’2 - |Ereﬂected back’z-

For reference, the laser samples Sb 142 and Sb 145 have nominal core thick-
nesses of 442 nm.

The calculations contain the effective refractive indices (nef), the width of the
confined optical power (I') and the number of allowed modes for different core
thicknesses. These calculations may be helpful for determining growth parameters,
with relation to the optical leakage and confinement in the core. Good confinement
provides good overlap of the gain material and the optical field.

In table B.1 solutions for the slab waveguide modes using the refractive index
data from Gonzalez-Cuevas et al. [84] is presented, while in table B.2 the cladding
refractive index has been changed to 3.25, under the assumption that Gonzalez-
Cuevas et al. [84]’s values are too high.

In table B.3 the change in the effective refractive index ng as a function of
etch depth is illustrated for the slab waveguides investigated in tables B.1 and B.2.
While these computations are based on 1D slab waveguides, they give some insight
into how important the etch depth is on the waveguiding properties of the laser
diode, expressed by rne.
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Figure B.1: Slab waveguide along x direction. Illustration of parameters shown
in tables B.1 and B.2. nj,g and ngoe are the cladding and core refractive indices,
respectively. I refers to the confinement, i.e. how much of the optical power
(|E(x)[?) is within the specified region. I'g yg refers to the confined E-field (E(x))
inside the waveguide. Ax is the width of the cladding on each side, and Axgpg 999
refers to the cladding thickness required to confine 90% and 99% percent of the

optical power, respectively.

Table B.1: Results from 1D mode solver based on theory described in Buus et al.
[46], App. B. w is the width of the core, ncjog and ncqre are based on values from
sample Sb 142, and are 3.408 and 3.576, respectively. A was chosen to be 2.3 um.
See fig. B.1 for an illustration of parameters.

w et No.of Teoe Axgos Axgoe, ID'wg D'Ewg
(um) modes (um)  (um)

0.1 341 1 0.05 2.67 533 064 0.16
0.2 342 1 0.09 1.39 278 093 0.62
03 343 1 0.14 0098 196 098 0.81
04 345 1 0.19 0.79 1.58 099 0.89
0.5 346 1 0.26 0.68 1.36 1 0.93
0.6 348 1 0.36 0.61 1.23 1 0.95
0.7 349 1 0.50 0.57 1.14 1 0.97
0.8 3.50 1 0.65 0.54 1.07 1 0.97
09 351 1 0.79 0.1 1.02 1 0.98
1.0 3.51 1 0.88 0.49 0.99 1 0.98
1.1 352 1 094 048 0.96 1 0.98
1.2 353 2 097 047 0.93 1 0.99
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Table B.2: Results from 1D mode solver based on theory described in ref. [46,
App. B]. w is the width of the core, ncaqg and ncoe are based on values from
sample Sb 142, with the assumption that the cladding refractive index is closer to
3.25, and are 3.25 and 3.6, respectively. A was chosen to be 2.3 um. See fig. B.1
for an illustration of parameters.

w nef  No.of Teore  Axgo, Axgoq, I'wg  I'Ewg
(pum) modes (um)  (um)

0.1 327 1 005 132 265 094 0.65
0.2 330 1 0.09 0.71 1.43 1 0.92
03 335 1 0.15 0.53 1.05 1 0.97
04 3.39 1 026 044  0.88 1 0.99
05 342 1 044 039 0.79 1 0.99
0.6 345 1 0.66 036 0.73 1 1
0.7 3.47 1 0.84 034  0.69 1 1
0.8 3.49 2 093 0.33 0.66 1 1
09 350 2 097 032 0.64 1 1
1.0 352 2 0.99 0.31 0.63 1 1
1.1 353 2 1 0.31 0.62 1 1
12 354 2 1 0.30  0.61 1 1




142 Slab waveguide

Table B.3: Results from 1D mode solver based on theory described in ref. [46,
App. B]. The values below illustrate the change in the effective refractive index,
nefr, for different etch depths in to the top cladding, for core thicknesses w of 0.442
um and 0.6 um. The wavelength A was chosen to be 2.3 um. The refractive index
above the cladding was set to 1.5, which is an approximate refractive index value
expected for the ma-N 440 insulation layer. The value dn illustrates the change
in refractive index of etched cladding with insulation, compared to an unetched
cladding layer. These numbers illustrate the change in the refractive index as a
function of etch depth. Note that these values are extracted from 1D slab simula-
tions, and not full 2D ridge calculations, which should be used for more accurate
etch depth calculations. The parameters for the slab waveguide are described in
the descriptions of tables B.1 and B.2, respectively.

Remaining cladding Table B.1 Table B.2
thickness (um) Neff dn Neff dn
w = 0.442 um
1.50 3.455 0.000 3.403 0.000
1.00 3.454 0.002 3.403 0.000
0.70 3451 0.004 3.402 0.001
0.60 3.449 0.006 3.401 0.002
0.50 3.447 0.009 3.399 0.004
0.40 3.443 0.013 3.397 0.006
0.30 3437 0.018 3.391 0.011
0.25 3434 0.022 3.388 0.015
0.20 3429 0.026 3.382 0.021
0.15 3424 0.031 3.375 0.028
0.10 3419 0.037 3.365 0.038
0.05 3413 0.042 3.351 0.052
0.00 3409 0.047 3.333 0.069
w=0.6 um
1.50 3476 0.000 3.450 0.000
1.00 3476 0.001 3.450 0.000
0.70 3474 0.003 3.449 0.000
0.60 3473 0.004 3.449 0.001
0.50 3471 0.006 3.448 0.002
0.40 3.468 0.009 3.446 0.003
0.30 3464 0.013 3.443 0.006
0.25 3461 0.016 3.441 0.009
0.20 3.457 0.020 3.438 0.012
0.15 3452 0.024 3.433 0.017
0.10 3.447 0.030 3.426 0.024
0.05 3440 0.036 3.417 0.033

0.00 3432 0.044 3.404 0.045




Appendix C

Laser processing recipe

The following pages contain the recipe used for laser processing of sample Sb
145. It should be noted that the recipe is constantly evolving to compensate for
problems and improvements made during processing. The process typically takes
several months from start to finish; this is both due to the actual time each step
takes, but also to accomodate to a multi-user environment, changes to instruments
requiring adjustments of the recipe, downtime etc.
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Processing Run card, y-junction laser nanolab

Notebook: Documents for thesis

Created: 23.05.2011 11:24 Updated: 04.10.2013 10:19
Taas: lab

URL: about:blank

Sample:

Sample nr:

Sketch of sample:

Ridge Etch

.O\U'I-bbJNI—A

7.

Sample Clean

. 5 min in Acetone

.5 min in Ethanol

. 5minin IPA

. IPA rinse

. DIW rinse + immediate N2 dry

tightetch =130 NH4OHTH20305 + N2 dry
1. Should be made freshrdaity
2. Do NOT rinse withwater after etch
Dehydration bake 150 C / 10 min

Comments:

N

LooNOUT AW

Photolitography

1. Spin SPR-700-1.0 @ 3500 rpm / 30 s (0.975 pm)
. Clean backside of sample carefully with a swab moisted with acetone if resist is

present

. Soft bake 95C /60 s

. Edge bead removal exposure 60-70 m]/cm2

. Develop until edge bead is gone

. Soft bake 95C/ 60 s

. Exposure - 35-40 mJ/cm2

. PEB115C/60s

. Develop in mf26a 15-25 s (Varies from run to run, keep an eye on it, always use a

test)

. Spindry @ 1000 rpm /45 s

Comments:

1.

2.

w

No v h

ICP-RIE etch

Check that it has been used for Cl-gases
1. If not, run the necessary cleaning steps

. Do condition run w/o sample

1. Use recipe developed by renato and tron, or Oxford recipe

. Do test run with test sample (preferably cladding sample, or alternatively GaSb)
. Check etch rate from test sample

. Etch to desired etch depth (typically 100 nm above core)

. PR removal

1. Do a 5 min plasma clean
2. Remove PR by putting sample in acetone (5-15 min)
1. If not removed you can ignore the photoresist and it will be etched
away in the passivation etchback
2. If not removed - use acetone gun or swabs

Comments:
(etch depth, rates,
selectivity, etc)




3. Rinse immediately in IPA + N2 dry

‘ 8. Rinse sample in running DIW for 5 min (Cl-removal)

Passivation, Nitride

Not sure if needed, only do for half of the lasers
Sample clean Comments:

1. Acetone + IPA rinse + N2 dry
2. 5 min dehydration bake @ 150 C on hot plate

1. Deposit 100 nm SiN in PECVD

PECVD Comments:
(Deposited thickness, dep. rate)

1. Or less. 1 min deposition is ok

Passivation, Resist

Do for all samples
Sample Clean

1.
2. 5 min plasma clean (?)
3.

Acetone + IPA rinse + N2 dry

10 min dehydration bake 150 C

Comments:

DA WN =

N o u»

Resist

. Spin ma-N 440 @ 3000 rpm / 30 s

. Soft bake: 60 s @ 95C

. Do not expose the sample!!

. Place sample on 3" Si wafer on black ceramic hot plate @ 100 C (TC, temperature on the

display)

. Ramp to 160 C, bake at 160 C for 5 minutes
. Start timer for 2 minutes, ramp to 220 C (TC)
. Take off sample after 2 minutes (including ramp time, so approx 1 min at 220C)

Comments:

1.

2.

Etch Back, RIE

Do condition run, recipe: *02mask cleam t00W* "O2 resist etch 100W" for 10-30 minutes
(plasma should be yellow not blue)

Etch sample(s), recipe:

15 sccm 02

3 sccm CF4

100 W

10 mTorr (Strike at 50 mTorr/20 V/5 ramp)

. Etch time TBD

A wn

. Etchback of edge bead first

1. Use piece of silicon to cover lasers (like for flood exposure) when you insert sample into
RIE

2. Etchback of edge bead until completely removed

. Do many etches, e.g. 3-4-5 minutes, and check result every time (microscope / profilometer)
. Inspect in microscope/profilometer to make sure ridge is uncovered
. Do SiN/SiO2 etch if sample has oxide/nitride passivation

1. Recipe: CHF3 ... (33 sccm Ar, 17 sccm CHF3 or other way around)
2. NOTE: O2/CF4 recipe probably attacks SiN/SiO2 as well

Comments:

Top contact layer

Sample Clean

Comments:




1. Acetone + IPA rinse + N2 dry
2. 10 min dehydration bake 150 C

Photolitograhy

. Spin S1818 @ 1500 rpm / 30 s (1500 rpm ~= 3 pm)

. Soft bake: 115C/60s

. Edge bead removal: ca 3x normal exposure - 400-500 mJ/cm2

. Develop until clear edge

. Soft bake 115C/ 60 s

. Align and (over-)expose: ca. 165 mJ/cm2 (150 mJ/cm2 is probably ok)
. Develop: 1-2 minutes. Remove immediately when pattern is developed

NoOuUuThWN =

Comments:

Metallization

1. Do a 30 sec 50 W, 30 % 02 plasma clean
2. Just before loading sample
1. 1:1:800 NH40OH:H202:DI-Water for 5 sec
2. 1:30 NH4OH:DI-Water for 30 sec
3. Blow dry with N2
4. Load sample immediately
3. Metallization: Ti/Pt/Au 50nm/25nm/775nm (for bonding)

Comments:

Lift-off. Recipe will need revising if not working!

1. Put sample in closed container for 10-20 minutes
2. If lift-off is not successfull, try following (stop when lift-off is done)
1. Spray sample with acetone gun
2. Use brush, then spray with acetone
3. Ultrasonic in plastic beaker (max 20 minutes)
4. Acetone + swab
5. If nothing works, change recipe!!!
3. Clean sample in ethanol + IPA + N2 rinse
4. Inspect sample

Comments:

Bottom contact, Lapping

Done at the supporting lab,

Comments:
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Bottom contact, Metallization



Done at nanolab.

Mounting

1. Clean and dehydrate a piece of silicon large enough to fit all samples
2. Spin ma-N 440 @ 1000 rpm / 30 s

3. Place all samples, backside up, on the photoresist ££FCKRE baking

4. Soft bake 110 C / 10 minutes

Comments:

Metallization

1. Immediately before loading samples, do a
1. 1:1:200 NH40H:H202:DI-Water 5 sec
2. 1:30 NH4OH: DI-Water for 30 sec
3. Blow dry with N2
4. Load immediately
2. Do n-type contact deposition
1. Vogt et al.; Pd/Ge/Au/Pt/Au 87R/560A/233R/476//1056A& (make thicker Au layer at end,
at least 300 nm)

De-mount

1. Place samples in acetone for 1 hour in closed beaker (as always)
2. Remove and clean acetone + ipa + n2 dry
3. Inspect

Bottom contact, Annealing

Done at nanolab.

Rapid thermal annealer Comments:

1. Make or use annealing recipe in the RTP
1. Make new recipe for Vogt et al. metal; 45 s @ 300 C

Scribing

Supporting lab, nanolab.

1. Mount sample on blue tape

2. Make a recipe based on the length of the laser

3. Make sure you hit the laser at the end - will be difficult!! Machine not calibrated
1. DO NQT scribe across the ridge - the laser will not work (just cleave)
2. Use edge scribes for scribing perpendicular to the ridge

Comments:

Mounting and bonding

Either nanolab or basement at IET.

1. Glue laser to a laser copper plate using silver epoxy or silver glue
2. Tape the bonding pads to the copper with kapton tape (double sided)

1. Bonding pads must have soldered on wires BEFORE taping them to the copper
3. Wirebond the laser contacts to the laser bonding pads.

1. Bonding settings, nanolab:

Ball bond (Spring 2011)

T=118C

Ultrasonic: 180 280
Time: 100 55
Force: 85 65

Tail: 300

Comments:




Feed +/- 12

Wedge bond (March 2012)

T=118

Ultrasonic:
Time:
Force:

Tail: 300
Feed +/- 12

1. Should be ready for testing! (If test setup in FTIR lab is operational)

200 200
220 220
40 40
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Appendix D

ma-N 440 insulation etchback

To improve the uniformity of the passivation etchback, the established recipe in
our lab for reactive ion etching (RIE) of photoresists, using only O,, was compared
to other etch recipes using scanning electron microscope (SEM) and profilometer
characterization. The passivation procedure was applied to a silicon wafer, which
was then cleaved into four pieces, where each piece was etched for 3 minutes using
one of the recipes 1 to 4 in table D.1. The samples were then cleaved for cross
section SEM photographs, shown on the following pages. The recipe numbers in
table D.1 correspond to the numbers on the photographs.

The process development for using ma-N 440 as an insulation layer can be
found in section 5.8.1 and the process steps used can be found in appendix C.

Table D.1: The parameters used for etching the ma-N 440 insulation layer.

Recipe Pressure (mTorr) Power (W) O; (sccm) Ar (scem)  CFy (scecm)

1 10 100 15 0 0
2 8 100 12 7 0
3 20 50 15 0 0
4 10 100 15 0 3
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Appendix E

Laser spectrum measurements

The following figures are laser measurements of Y-junction lasers where at least
1000 combinations of the three currents /.5, (see fig. E.1) were measured. The
different sub-plots in the measurement results are explained in fig. E.2. These mea-
surements were performed in an attempt to determine the relationship between the
wavelength and the current. In many cases the relationship was purely a function
of total current, see e.g. the measurements presented on top of page 159. Here,
the wavelength is more or less independent of any one of the currents /., but
it is highly dependent on the total current /. + I; + I,. This suggests that the tun-
ing mechanism was mainly due to increased temperature from the total injected
current.

SMSR, full-width at half maximum (FWHM), n, ¢ and wavelength were ex-
tracted from each spectrum. The data for the wavelength are presented from page
167, see fig. E.3 for explanation of the figures. The measurements with an SMSR
above 10 dB are highlighted in the figures. The measured FWHM of the laser mode
during lasing was usually between 0.036 and 0.040 nm for most of the measure-
ments. This value is most likely limited by the Fourier transform infrared (FTIR)
instrument, which has a specified spectral resolution of about 0.034 nm at 2.2
um wavelength. The extracted effective group index, ng eff, from the subthreshold
spectrum mode spacing resulted in a value of about 3.75-3.85 with small variations
between different laser diodes and a small increase with increasing current.
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158 Laser spectrum measurements

L

N

Figure E.1: The Y-junction laser waveguides. To achieve 50-50 splitting of the
light, the Y should be symmetric. Here the two arms have the lengths L. + L, for
the straight waveguide and L. + L, for the bent waveguide, and AL =L, — L. L., L
and L, are the lengths of the common, straight and bent sections, respectively.

Current /,

Wavelengths measured, Current /
sorted )

Current /,,

Total current

Intensity for each measurement LA+,

Figure E.2: Description of the plots of the laser measurements. The x-axis in
all plots is measurement number, sorted by wavelength. The colors of the plotted
measurement points give extra information regarding the measurement; Green in-
dicates an SMSR of at least 18 dB, indicates low intensity, and black indicates
that the measurement is missing. Blue is used for all other measurements.
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Laser spectrum measurements

Measurements sorted by wavelength for L1.5r500dL80w1.7 spacemap.mat
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Measurements sorted by wavelength for L1.5r750dL80w1.7 spacemap.mat
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Laser spectrum measurements

Measurements sorted by wavelength for L2r1000dL80w2 12r1000dL80w2.mat

Current shared section

. . . - 200
2192 [Median FWHM: 0.03721 — Median SMSR: 14.4 - b
150f— = e - T T
2190} & 1 =T
100! —
0 1000 2000
2188 e i Current straight section
200
2186 i (‘ ) - - - ex
180 o= o o=
21841 1 100t
- 0 1000 2000
2182} _ | Current bent section
200| i
L - i | :’! '!’; , ”-} [}
oof woo L s N
| | | |
0 500 1 O(EO . 1500 2000 0 1000 2000
Peak intensity Total i
1500 T : ¥ otal curren
- ’ 500 5 —
S S - T Ty I
= ‘ [ > -* 400 [/ , B v e-F
L o I gyl | o A N | ‘
500 il y f, ji Ihi
0 S TS S i S 300%-
0 500 1000 1500 2000 0 1000 2000

Measurements sorted by wavelength for L2r500dL80w1.3 spacemap failed.mat

Current shared section

2030 edian = Median al | 200
100
2220+ [ i
4 0
// 0 1000 2000
2210} / |
2200} / :
2190 ~ J
;
2180 & 1
0 ,200 400 60?; 809 1000 1200 1400 1600 0 1000 2000
x 10 eak Intensity
6 : Total current
1000
4 L 4
. 500
2r ., 3 1
Y . - J
o' bl 4 ol
0 500 1000 1500 2000 0 1000 2000



163

Measurements sorted by wavelength for L2r500dL80w1.3 spacemap.mat
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Measurements sorted by wavelength for L2r750dL80w2.5 spacemap.mat
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- 156 mA

I, (common) |,

I, (bent) [mA] 100

I, (straight) [mA] 200

Laser
Wavelength A [nm]: parameters:

2300 L=1.5mm
2250 dL =80 um

r=500
2200 Hm

w=1.7 um
2150

Figure E.3: Description of the plots of the laser wavelength maps. For each plot
the common current, /., is kept constant. The x-axis shows the straight section cur-
rent, I;, and the y-axis shows the bent section current, I,. The laser measurements
with an SMSR of at least 10 dB are highlighted by their brightness in the plots, as
shown in the top right plot. Note that dL is used for AL in these plots.
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Appendix F

Near and far field simulations

Solutions to the mode profiles for different etch depths were simulated using the
Lights software by Sarangan [73]. These simulations were performed to relate
near and far field measurements to the processed laser structure, and to see if it
was possible to determine the refractive index profile from far field measurements.

Here, the refractive index profile presented in fig. 4.4 was used, including a
value of 3.408 for the AlGaAsSb cladding layers. To account for the etched ridge
profile, most of the top cladding material was replaced by a medium with a re-
fractive index of 1.5, which represents the insulation layer (see section 5.8.2). The
results are shown in figs. F.1 and F.2.
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List of symbols

Notation Description

aop
Asub
Ay
a

B

AE

Neff
Ng eff

The bulk lattice constant of a cubic crystal.
The bulk lattice constant of the substrate.
The in-plane lattice constant of a crystal.
The out-of-plane lattice constant of a crystal.

wavenumber for propagating light wave, see
page 13.

Energy difference between well and barrier en-
ergy levels in a quantum well, given by the VBO
and CBO in the valence band and conduction
band, respectively. See appendix A.

conduction band edge energy. See appendix A.
bandgap energy, E, = E. — E,. See appendix A.
valence band edge energy. See appendix A.

Electron or hole effective mass in a quantum well
barrier.

Electron or hole effective mass in a quantum
well.

Carrier concentration, electrons.

Refractive index. See appendix A.

effective refractive index for propagating wave.
effective group refractive index.
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182 List of symbols
Notation Description
0 The Bragg angle relative to the sample surface,
see fig. 3.6.
P Carrier concentration, holes.
T The angle between the crystal plane and the sam-
ple surface, see fig. 3.6.
0 The Bragg angle; the angle of constructive inter-
ference of the diffracted X-ray.
0, Critical angle for total internal reflection.



List of acronyms

Notation
BPM

CBO
Cw

DBR
DFB

EBL
EBR

FCPE
FFT
FPL
FTIR
FWHM

HEMT
HF

HH
HITRAN

ICL
ICP-RIE
IR

Description
beam propagation method.

conduction band offset.
continuous wave.

distributed bragg reflector.
distributed feedback.

electron beam lithography.
edge bead removal.

free-carrier plasma effect.
fast Fourier transform.
Fabry-Perot laser.

Fourier transform infrared.
full-width at half maximum.

high-electron mobility transistors.

hydrofluoric acid.

heavy hole valence band.

high-resolution transmission molecular absorp-
tion database.

interband cascade lasers.

inductively coupled plasma reactive ion etching.
infrared.
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List of acronyms

Notation
LH
LPE

MBE
ML
MQW

NA
NIL

PL
PR

QCL
QCSE
QW

RIE

SCH
SEM
SMSR
SNR

TDLS
TE
TEC
TIR
™

UHV
VBO

VCSEL
VECSEL

Description
light hole valence band.
liquid phase epitaxy.

molecular beam epitaxy.
mono-layer.
multiple quantum wells.

numerical aperture.
nanoimprint lithography.

photoluminescence.
photoresist.

quantum cascade lasers.
the quantum confined stark effect.
quantum well.

reactive ion etching.

separate confinement heterostructure.
scanning electron microscope.
side-mode suppression ratio.
signal-to-noise ratio.

tunable diode laser (absorption) spectroscopy.

transverse electric.
thermoelectric cooler.
total internal reflection.
transverse magnetic.

ultra-high vacuum.
valence band offset.

vertical cavity surface-emitting laser.
vertical external cavity surface-emitting laser.
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Notation Description
XRD X-ray diffraction.

7B zinc blende.
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