
Real-time Convolution of Two Unknown
Signals for Use in a Musical Context

Antoine Henning Bardoz
Lars Eri Myhre

Master of Science in Electronics

Supervisor: Jan Tro, IET
Co-supervisor: Tor A. Ramstad, IET

Sigurd Saue, IM
Øyvind Brandtsegg, IM

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Electronics and Telecommunications

Master of Science

Cross Convolution of Live Audio Signals for Musical Applications

by Antoine Henning Bardoz

Lars Eri Myhre

This thesis proposes a method for convolution of two real-time audio signals, for

use in live performances or post-production. In contrast to traditional convolu-

tion techniques, which require a predefined impulse response as one of the input

signals, our method allows for convolution of two continuously updated, and un-

known, signals, allowing two musicians to shape each other’s timbral and temporal

contributions.

The aim was to create an effect that sounded like convolution, offered low output

delay, as well as giving satisfying feedback to musicians. To achieve this, a hybrid

of time- and frequency domain techniques has been used, offering the low output

delay associated with the time domain, and the low CPU load characteristic of

FFT-based frequency domain processing. To deal with the limitations inherent in

convolution, namely that to perform ideal convolution of two unending signals, an

infinite amount of memory and processing power are eventually required, transient

detection has been applied to segment the signals in a musically relevant way. The

transient-assisted segmentation also makes the effect more intuitive for users, as

it increases the users’ ability to interact rhythmically.

A GUI was developed, and the effect was implemented as a VST plug-in, to allow

users to easily apply the effect in DAWs.

The effect was prototyped in Matlab, and later implemented in Csound and C,

using the Cabbage framework for the VST.

http://www.ntnu.no
http://www.ntnu.edu/ime
http://www.iet.ntnu.no/en

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Sammendrag
Fakultet for informasjonsteknologi, matematikk og elektronikk

Institutt for elektronikk og telekommunikasjon

Master i elektronikk

Krysskonvolusjon av sanntidslydsignaler til musikalske anvendelser

by Antoine Henning Bardoz

Lars Eri Myhre

I denne oppgaven foresl̊as en fremgangsm̊ate for konvolusjon av to sanntids lydsig-

naler, til bruk i live-opptredener eller post-produksjon. I motsetning til tradis-

jonelle konvolusjonsteknikker, som krever en forh̊andsdefinert impulsrespons som

ett av inngangssignalene, tillater v̊ar metode konvolusjon av to kontinuerlig opp-

daterte, og ukjente, signaler, slik at to musikere kan forme hverandres klanglige

og tidsmessige bidrag.

Målet var å skape en effekt som høres ut som konvolusjon, tilbyr lav utgangs-

forsinkelse, og gir tilfredsstillende tilbakemelding til musikere. For å oppn̊a dette

har en kombinasjon av tids- og frekvensdomeneteknikker blitt brukt. Dette kom-

binerer lav CPU-belastning, takket være FFT-basert frekvensplanprosessering,

med den lave forsinkelsen assosiert med tidsdomenet. For å h̊andtere begren-

sningene forbundet med konvolusjon, nemlig at for å utføre ideell konvolusjon av

to uendelige signaler, kreves det etter hvert uendelig minne og prosessorkraft, har

transientdeteksjon blitt brukt til å segmentere signalene p̊a en musikalsk relevant

måte. Segmentering ved hjelp av transienter gjør ogs̊a effekten mer intuitiv for

brukerne ved å øke deres evne til å samhandle rytmisk.

Et grafisk brukergrensesnitt ble utviklet, og effekten ble implementer som en VST

plug-in, slik at brukere enkelt kan benytte effekten i DAWer.

Effekten ble prototypet i Matlab, og senere implementert i Csound og C. Cabbage-

rammeverket ble benyttet for VST-implementasjonen.

Acknowledgements

We would like to extend a special thanks Sigurd Saue for giving us valuable sug-

gestions and technical insight, without which we would truly have been lost.

In addition we would like to thank Jan Tro for keeping music alive at Gløshaugen,

and making this all possible; Øyvind Brandtsegg for technical and artistic insight,

as well as tips from a users’ perspective; and Tor A. Ramstad for signal processing

guidance.

A special thank you goes to Rory Walsh for developing Cabbage and for being ex-

tremely helpful through the forum at www.thecabbagefoundation.com. We would

also like to thank the Csound community for developing Csound and for quick and

crucial help through the Csound developers list.

For wasting our time with mindless babble and keeping us sane, we thank our

study hall companions Thomas Christiansen, Niklas Skyberg, Bendik Paulsrud,

Jørund Kaarstad Dahl and Rune Svensrud.

For their musical contributions, we thank Thomas Etholm-Kjeldsen, Jakob Eri

Myhre and Olaf Mundal.

Antoine would like to thank Lars for truly giving his all during this semester,

contributing heavily every step of the way, coming up with important ideas, and

remaining motivated, as well as motivating, until the very last minute.

Lars would like to thank Antoine for a partnership which will not be forgotten.

His knowledge in signal processing, programming and music has been infectious.

His effort has been remarkable.

iii

Contents

Abstract i

Sammendrag ii

Acknowledgements iii

List of Figures vii

Abbreviations x

Symbols xi

1 Introduction 1

1.1 Problem Description . 2

1.2 How to Read This Thesis . 3

2 Theory 5

2.1 Convolution . 5

2.1.1 Time Domain . 5

2.1.2 The (Circular) Convolution Theorem 6

2.2 The Fast Fourier Transform and Frequency Domain Multiplication . 7

2.3 Theoretical Foundation for Real-Time Blockwise Convolution 8

2.4 Transients and Transient Detection 12

2.5 Latency Tolerance for Musicans . 13

3 Development Tools 14

3.1 Matlab . 14

3.2 Csound . 15

3.3 Cabbage . 15

4 Algorithm 17

4.1 Preliminary Algorithm . 17

4.1.1 Short Description . 18

4.1.2 Buffer Up Signals . 18

iv

Contents v

4.1.3 Convolution Computation 20

4.1.4 Put Convolution Result on Output 20

4.2 Algorithm Version 1 . 21

4.2.1 Short Description . 22

4.2.2 Buffer Partitioning . 23

4.2.3 Cross Convolution of a Segment 24

4.2.4 Output Buffer . 25

4.3 Algorithm Version 2 (Transient Detection) 25

4.4 Algorithm Version 3 (Parallel Processes) 27

4.4.1 Alternative 1: ThrowAll (Used in Final Implementation) . . 28

4.4.2 Alternative 2: ThrowLast 29

4.4.3 Alternative 3: TwoProc . 30

4.4.4 Normalization . 31

5 Results 34

5.1 Preliminary Algorithm . 34

5.2 Algorithm Version 1 . 38

5.3 Algorithm Version 2 . 42

5.4 Algorithm Version 3 . 44

5.4.1 ThrowAll (Final Algorithm) 44

5.4.2 ThrowLast . 48

5.4.3 TwoProc . 49

5.5 Graphical User Interface . 50

5.5.1 Gain Knobs . 51

5.5.2 Transient Detection Section 51

5.5.3 Convolution Section . 52

6 Discussion 53

6.1 Preliminary Algorithm . 54

6.1.1 Why the Preliminary Algorithm Fails 54

6.1.2 Independent Buffer Sizes, Overlap on Output and Fading of
Overlap . 55

6.2 Algorithm Version 1 . 56

6.2.1 Delayed Change . 57

6.2.2 Indistinct Transients . 58

6.2.3 Destructive Interference . 58

6.3 Transient Detection (Algorithm Version 2) 59

6.4 Parallel Processes (Algorithm Version 3) 60

6.4.1 Alternative 1: ThrowAll (Used in Final Implementation) . . 60

6.4.2 Alternative 2: ThrowLast 63

6.4.3 Alternative 3: TwoProc . 64

6.4.4 Level Control and Normalization 65

6.5 Computational Complexity . 66

6.5.1 Computational Complexity Versus Output Delay 67

Contents vi

6.6 Esthetic Considerations . 69

6.6.1 Characteristics of the Effect 69

6.6.2 Areas of Application . 70

6.6.3 The Effect in Action . 70

7 Future Work 72

7.1 Independent Segment Length . 72

7.2 MIDI-Controlled Segmentation . 73

7.3 Zero-Delay FFT-Based Convolution 73

7.4 Automatic Gain Control . 73

7.5 Input Amplitude Thresholding for Computational Efficiency 74

8 Conclusion 75

A Final Implementation 77

A.1 Csound Code . 77

A.2 Opcode laivconv . 86

B Matlab Implementations 103

B.1 Preliminary Algorithm . 103

B.2 Algorithm Version 1 . 108

B.3 Algorithm Version 2 . 114

B.4 ThrowAll . 121

B.5 ThrowLast . 128

B.6 TwoProc . 134

C Transient Detection Algorithm 140

Bibliography 143

List of Figures

4.1 Block diagram of the preliminary algorithm. 18

4.2 The SkipOnSmall mode. Note that samples are skipped on the
signal with the smallest buffer. 19

4.3 The OverlapOnLarge mode. Note that on the signal with the
longest buffer, some of the samples are used more than once. 19

4.4 The overAdd small mode. 20

4.5 The overAdd large mode. 21

4.6 The expFade mode. 21

4.7 The expFade2 mode. 22

4.8 The linFade mode. 22

4.9 Block diagram of algorithm version 1. 22

4.10 Illustration of ftconv, example with 5-block impulse response. The
arrows represent multiplication. 23

4.11 Illustration of frequency domain cross-multiplication with n blocks.
The arrows represent multiplication. 24

4.12 Block diagram of algorithm version 2. 25

4.13 Flow chart of the inner workings in the FIFO Segment update blocks
of version 2, shown in fig. 4.12. 26

4.14 Block diagram of algorithm version 3. 27

4.15 Flow chart of the inner workings in the process update and segments
update blocks in fig.4.14 for ThrowAll. 28

4.16 Flow chart of the inner workings in the process update and segments
update blocks in fig. 4.14 for ThrowLast. 30

4.17 Flow chart of the inner workings in the process update and segments
update blocks in fig. 4.14 for TwoProc. 31

4.18 Generation of output with parallel processes. The active process
and P semi-active processes contribute to the output. BNA is the
number of blocks in the active process. BNSA[P] is the number of
blocks in semi-active process P. 32

5.1 Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 100 samples. (A) shows a short time interval of
the soundfile. The output is clearly a sine. (B) shows a long time
interval of the soundfile. The low frequency AM can be seen in the
envelope of the signal. The AM has a low amplitude and does not
produce noticeable sidelobes. (C) shows the frequency content of
the soundfile. The energy is situated at 440 Hz. 36

vii

List of Figures viii

5.2 Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 300 samples. The low frequency AM shown in
(B) is even smaller than in Fig 5.1b. 37

5.3 Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 350 samples. The output in (A) is clearly not a
sine. There is significant AM, as can be seen in (B) . The frequency
plot in (C) shows that the energy is situated not only at 440 Hz. . . 38

5.4 Plots from Algorithm Version 1, with 500 Hz sines on both input
channels. Block size of 512 samples, 100 block segments. The AM
is less prominent than in 5.3, but still creates some sidelobes. 39

5.5 Plot of first 100000 samples of input and output of Algorithm Ver-
sion 1, with synth.wav on both input channels. Slow rise of initial
transient. Output is delayed by Ls/2 samples. A block size of 512
samples was used. The segment size was 100 blocks. 40

5.6 Plot of input and output of Algorithm Version 1, with drumloop2.wav
and synth.wav as input. Transients are very indistinct on output.
Output is delayed by Ls/2 samples. The Block size was 512 samples.
The segment size was 100 blocks. 40

5.7 Plot of input and output of Algorithm Version 1, with two equal
440 Hz sines on the inputs. As can be seen, to following output
blocks are out of phase, even though the input signals are in phase.
The block size was 512 samples. The segment size was 3 blocks. . . 41

5.8 Plot of input and output of Algorithm Version 1, with two equal
430.7 Hz sines on the inputs. As can be seen, to following output
blocks are in phase, because a 430.7 Hz sine has a period of 512/5
samples with Fs = 44100 Hz. The block size was 512 samples. The
segment size was 3 blocks. 41

5.9 Plot of input and output of Algorithm Version 2, with drumloop2.wav
and synth.wav as input. Transients are much more distinct on out-
put, compared to fig. 5.6. Output is no longer delayed by Ls/2
samples. A Block size of 512 samples was used. The segment size
was 100 blocks. 42

5.10 Plot of drumloop2.wav, with transients detected used to generate
the output in fig. 5.9. 43

5.11 Plot of input and output of Algorithm Version 2, with Gitar1Akkord.wav
and Synth1Akkord.wav as input. Output becomes disharmonic
once the segments are full, that is 512 ∗ 100 = 51200 samples after
the transient. 5.6. Output is no longer delayed by Ls/2 samples.
Block size of 512 samples, 100 blocks segments. 43

5.12 Plot of Gitar1Akkord.wav, with transient detected used to generate
the output in fig. 5.17. 44

5.13 Plots from Algorithm Version 3 ThrowAll, with 440 Hz sines on
both input channels. The are no longer any sidelobes, but there is
an AM with period Ls. This is, however much less disturbing than
a period of LB. The block size was 512 samples. The segment size
was 100 blocks. 45

List of Figures ix

5.14 Plots from Algorithm Version 3 ThrowAll, with 440 Hz sines on
both input channels. The segment has half the length compared to
5.13, and the period of the AM is therefore half as long. There are
still no sidelobes. The block size was 512 samples. The segment
size was 50 blocks. 46

5.15 Plot of input and output of Algorithm Version 3 ThrowAll, with
drumloop2.wav and synth.wav as input, with maxNumProc 10.
Transients are a bit less distinct on output, compared to fig. 5.9.
The block size was 512 samples. The segment size was 100 blocks. . 46

5.16 Plot of input and output of Algorithm Version 3 ThrowAll, with
drumloop2.wav and synth.wav as input, with maxNumProc 1. Tran-
sients are more distinct than with 10 processes, as in fig. 5.15. The
block size was 512 samples. The segment size was 100 blocks. . . . 47

5.17 Plot of input and output of Algorithm Version 3 ThrowAll, with Gi-
tar1Akkord.wav and Synth1Akkord.wav as input. Output no longer
becomes disharmonic. The block size was 512 samples. The seg-
ment size was 100 blocks. 47

5.18 Excerpt from the audio file ThrowLastUnwantedPeriodicityBlock-
size256Input440Hz.wav, showing the unwanted periodicity when a
block size of 256 samples is used. 49

5.19 Excerpt from the audio file ThrowLastUnwantedPeriodicityBlock-
size512Input440Hz.wav.wav, showing the unwanted periodicity when
a block size of 512 samples is used. 49

5.20 Graphical User Interface of VST plug-in. 50

6.1 Example of a process where a transient is detected after three blocks
have entered. The arrows denote multiplications. Notice that FT
Block pair 1 exits the process first, followed by FT Block pair 2,
etc. This illustrates five iterations. 60

6.2 Plot of time available to the processor per operation, with logarith-
mic axes, log2 LSmax versus log2 LB, generate with eq. (6.7). 68

C.1 Flowchart of Transient Detection algorithm. 141

Abbreviations

ADC Analog-to-Digital Converter

AM Amplitude Modulation

DAW Digital Audio Workstation

DFT Discrete Fourier Transform

DSP Digital Signal Processing

FFT Fast Fourier Transform

FT Fourier Transform

FIFO First In, First Out

GUI Graphical User Interface

IFFT Inverse Fast Fourier Transform

IR Impulse Response

JND Just Noticeable Difference

VST Virtual Studio Technology

x

Symbols

LB Block length samples

N Block number in a segment blocks

Nmax Maximum blocks allowed in a segment blocks

Ls segment length (Ls = NLB) samples

xi

Chapter 1

Introduction

I feel the delightful, velvety texture of a flower, and discover its remarkable

convolutions; and something of the miracle of Nature is revealed to me.

-Helen Keller

Since the advent of computer music in 1951 [1, p. 55], the use of computers in

music has gone from being a curiosity to revolutionizing how nearly all music is

being produced. Computers are used for composition, recording, synthesis, mix-

ing and effects processing. Where analog electronic hardware used to dominate,

recent advances in Digital Signal Processing (DSP) capabilities have allowed for

the replacement of analog processing in most applications. The domain of Digital

Audio Effects (DAFx) has grown to include huge amounts of effects, both emu-

lating older hardware and introducing completely new concepts, as well as being

academically discussed to a great degree.

At the heart of many of these audio effects, we find convolution. Convolution is

a mathematical operation which produces one output signal based on two input

signals. One of the input signals is commonly known as an impulse response.

Convolution is extensively used in frequency selective filters and reverberation.

In these applications, impulse responses are either prerecorded or mathematically

derived. Most commonly, these prerecorded impulse responses are the response

1

Chapter 1. Introduction 2

from some analog equipment, or from a room whose reverberation one wishes to

emulate.

In recent years, convolution has been applied using sounds which are not im-

pulse responses, such as recordings of trains or angle grinders[2]. This approach

can create timbres which differ substantially from the results of impulse response

convolution, but are still musically applicable. In common with traditional con-

volution techniques, one of the two input signals is prerecorded. Work has been

done to allow for live convolution between two signals which both change in real-

time[3]. It discusses inherent problems with live convolution and proposes that

use of transient information from the input signals can alleviate these problems.

This thesis will explore ways to perform a real-time convolution between two audio

signals. An algorithm which combines time- and frequency domain signal process-

ing techniques, as well as transient detection, will be developed. The ultimate goal

is to create an effect which is musically pleasing. Emphasis will be put on usability

for performing musicians, so that the effect can be used in live applications.

Prototyping of the effect will be done in Matlab, but the goal for the final real-time

implementation is to implement it as a plug-in1 for Digital Audio Workstations

(DAW).

1.1 Problem Description

The aim is to create a musical effect using an algorithm that can continuously,

and reliably convolve two signals together while outputting sounds at a satisfying

rate for performing musicians.

Due to the problem’s novelty, there are few solutions to go by, and the work will

therefore mainly be experimental in nature. At the outset, the following idealized

goals are proposed. The effect should:

1A plug-in is a computer program that extends the functionality of another computer program.

Chapter 1. Introduction 3

� Use convolution, and sound like convolution

� Run in real time

� Be intuitively usable for musicians

Because of the properties of convolution, a perfect solution is impossible. These

goals are meant as an ideal to be pursued, but never fully reached.

1.2 How to Read This Thesis

Chapter 2 (Theory) describes relevant background theory for the thesis. It also

contains a mathematical proof that justifies parts of the final implementation.

Chances are that the mathematical proof will be easier to follow after chapter

4 (Algorithm) is read, and while reading section 6.4.1. Chapter 3 (Development

Tools) describes the development tools that have been used. Chapter 4 describes

the different algorithms that are implemented. It is a pure description of the

functionality of the algorithms. Justifications of the different choices that were

made during the development, and a discussion on the observations that were

done during and after the development, can be found in chapter 6 (Discussion).

It may be beneficial for the reader to go through chapter 4 and 6 in parallel.

Chapter 6 also contains a discussion on the computational complexity and on

some esthetic considerations. Chapter 5 (Results) contains plots, and details on

the audible results, that are discussed in chapter 6, as well as a presentation of the

GUI. The sound files are located in the digital appendix attached to the thesis. In

chapter 7, some ideas for future work are suggested. The conclusion of the thesis

can be found in chapter 8. The appendices are mainly Matlab, Csound and C

code, with one block diagram of the transient analysis. The code is also found in

the digital appendix. On page 142, there is an index of terms which might help

the reader.

Chapter 1. Introduction 4

If it is desirable to only learn about the final algorithm, section 4.1 (Preliminary

Algorithm) and section 5.1 (Discussion of Preliminary Algorithm) can be omitted.

In addition, the process handling algorithms described and discussed in sections

4.4.2, 4.4.3, 6.4.2 and 6.4.3 were not used, and are not necessary to understand

the final algorithm.

For readers who are just interested in using the effect, reading section 5.5 should

be sufficient.

Chapter 2

Theory

2.1 Convolution

Convolution was likely introduced in the middle of the 1700’s by Jean-le-Rond

D’Alembert to derive Taylor’s expansion theorem. It was later, in 1822, used

by Jean Baptiste Joseph Fourier in his derivation of the Fourier series, an early

example of its relation to the frequency domain[4]. In Digital Signal Processing,

discrete convolution holds a central position because of its applications for linear

time-invariant (LTI) systems. Any LTI system can be completely mathematically

described by its impulse response, and convolution of a signal with this impulse

response is equivalent with sending the signal through the system[5, p. 69].

In this section we define discrete convolution, and explain its relationship with the

frequency domain through the convolution theorem.

2.1.1 Time Domain

Discrete convolution of two signals, x1(n) and x2(n), is defined as

y(n) =
∞∑

k=−∞

x1(k)x2(n− k). (2.1)

5

Chapter 2. Theory 6

If we define the length of x1(n) as Lx1 , and the length of x2(n) as Lx2 , the length

of y(n) is

Ly = Lx1 + Lx2 − 1. (2.2)

2.1.2 The (Circular) Convolution Theorem

The convolution theorem can be stated as follows in the continuous time domain:

F{x1(t) ∗ x2(t)} = F{x1(t)}F{x2(t)} = X1(f)X2(f). (2.3)

The Fourier transform of a convolution in the time domain is equivalent to point-

wise multiplication in the frequency domain.[6, p. 523]

However, because of the periodicity of the DFT, one must add an additional

constraint in the discrete time domain, namely that the convolution is circular.

If

x1(n)
DFT←−→
N

X1(k)

and

x2(n)
DFT←−→
N

X2(k),

then

x1 NOx2(n)
DFT←−→
N

X1(k)X2(k), (2.4)

where
DFT←−→
N

denotes an N-point DFT, and NO denotes circular convolution. This

is known as the circular convolution theorem[5, p. 476].

Circular convolution entails that once an impulse response reaches the end of a

signal, it will wrap around to the beginning. A consequence is that in order to

perform a convolution by way of the frequency domain, without pollution from

the wrapping, one must pad the signals with at least min (Lx1 , Lx2)− 1 zeros[7].

Chapter 2. Theory 7

2.2 The Fast Fourier Transform and Frequency

Domain Multiplication

The Fast Fourier Transform is an efficient way of calculating DFTs. It was pop-

ularized in 1965[8]. While it is possible to create FFT algorithms for any block

size, the most common algorithm is the radix-2 FFT, which is the one that was

used in this thesis. A derivation of the algorithm is beyond the scope of this the-

sis, and this section will only deal with the computational benefits of using it for

convolution.

As stated in section 2.1.2, the Fourier transformation of a time domain convolution

is equivalent to a pointwise multiplication in the frequency domain. This property

can be exploited to perform efficient calculations of convolutions by way of the

FFT.

Time domain convolution of a signal of length n with an impulse response of

length k requires O(kn) multiplications and additions, while frequency domain

multiplication simply requires k + n complex multiplications.

The algorithm developed in this thesis assumes that both the signal and impulse

response (really signal 1 and signal 2) are the same length, i.e. k = n, and

henceforth k is replaced by n (see section 4.2).

Taking into account the zero padding mentioned in section 2.1.2, one must double

the length of the signals before the transformation occurs. Still, even considering

the time complexity of computing the radix-2 FFT and IFFT, both of which are

O(n log n)[5, p. 519-526], one ends up with a total complexity of 4n + 2n log 2n,

which is O(n log n), a far more computationally efficient algorithm than the O(n2)

time domain convolution. The trade-off is that there is an inherent delay of n

samples, as the buffers must be filled before an FFT may be performed.

Chapter 2. Theory 8

2.3 Theoretical Foundation for Real-Time Block-

wise Convolution

Our final algorithm is based on blockwise convolution. We claim that it is math-

ematically equivalent with regular convolution, may be performed in real time

with an output delay of no more than the block length, and that convolution of

two segments may start, and give output, before the entirety of the segments are

available (i.e. buffered into memory). We also claim that early input blocks may

be discarded from memory before the convolution has been completed, providing

that the conceptually infinite input signals are somehow divided into segments.

We have developed the following mathematical proofs of these claims.

Proposition. Blockwise convolution is mathematically equivalent with convolu-

tion, and we may partition the input into any number of blocks.

Proof. We begin by proving this for N = 2. Let L = 2l, where l ∈ Z, and let

x1(n) =

x1,1(n), if n ∈ [1, L

2
]

x1,2(n), if n ∈ [L
2

+ 1, L]

0, otherwise

(2.5)

and

x2(n) =

x2,1(n), if n ∈ [1, L

2
]

x2,2(n), if n ∈ [L
2

+ 1, L]

0, otherwise

(2.6)

(Note that x1,1, x1,2, etc. are also 0 outside of their defined range). Then,

y(n) = x1 ∗ x2

=
∞∑

k=−∞
x1(k)x2(n− k)

=
L/2∑
k=1

x1,1(k)x2(n− k) +
L∑

k=L/2+1

x1,2(k)x2(n− k)

= x1,1 ∗ x2 + x1,2 ∗ x2.

Chapter 2. Theory 9

Lemma. f(n) ∗ g(n) = g(n) ∗ f(n). Convolution is commutative, so

y(n) = x2 ∗ x1,1 + x2 ∗ x1,2

=
L∑

k=1

x2(k)x1,1(n− k) +
L∑

k=1

x2(k)x1,2(n− k)

=
L/2∑
k=1

x2,1(k)x1,1(n− k) +
L∑

k=L/2+1

x2,2(k)x1,1(n− k)

+
L/2∑
k=1

x2,1(k)x1,2(n− k) +
L∑

k=L/2+1

x2,2(k)x1,2(n− k)

= x1,1 ∗ x2,1 + x1,1 ∗ x2,2

+ x1,2 ∗ x2,1 + x1,2 ∗ x2,2.

(2.7)

We have now shown that the input signals may be partitioned into two blocks,

and convolution may be done separately for these blocks. We will now generalize

this into N blocks. Let L = Nl, where N, l ∈ Z and let

x1(n) =

x1,1(n), if n ∈ [1, 1
N
L]

x1,2(n), if n ∈ [1
N
L + 1, 2

N
L]

...
...

x1,N−1(n), if n ∈ [(N−2)
N

L + 1, (N−1)
N

L]

x1,N(n), if n ∈ [(N−1)
N

L + 1, L]

0, otherwise

(2.8)

and

x2(n) =

x2,1(n), if n ∈ [1, 1
N
L]

x2,2(n), if n ∈ [1
N
L + 1, 2

N
L]

...
...

x2,N−1(n), if n ∈ [(N−2)
N

L + 1, (N−1)
N

L]

x2,N(n), if n ∈ [(N−1)
N

L + 1, L]

0, otherwise

(2.9)

Chapter 2. Theory 10

(Again x1,1, x1,2, etc. are also 0 outside of their defined range). We may now

partition the convolution into

y(n) =
L/N∑
k=1

x1,1(k)x2(n− k) + · · ·+
L∑

k=
(N−1)

N
L+1

x1,N(k)x2(n− k)

= x1,1 ∗ x2 + · · ·+ x1,N ∗ x2.

Applying the same commutativity logic used in the N = 2 example, we get

y(n) =
L/N∑
k=1

x2,1(k)x1,1(n− k) + · · ·+
L∑

k=
(N−1)

N
L+1

x2,N(k)x1,1(n− k)

...
. . .

...

+
L/N∑
k=1

x2,1(k)x1,N(n− k) + · · ·+
L∑

k=
(N−1)

N
L+1

x2,N(k)x1,N(n− k)

= x2,1 ∗ x1,1 + · · ·+ x2,N ∗ x1,1

...
. . .

...

+ x2,1 ∗ x1,N + · · ·+ x2,N ∗ x1,N ,

(2.10)

Q.E.D.

Proposition. Blockwise convolution can: (1.) Be performed in real time, with an

output delay of no more than the block size, and provide output before the entire

signals are available, and (2.) discard early blocks before the entire convolution

has been finished, provided that the signals are finite in length.

Proof. Let x1 and x2 be defined as in eq. (2.9).

We will now show that there may be output after only L/N samples have entered

the system. Consider

x1,i(n) =

values, if n ∈ [(i−1)
N

L + 1, i
N
L]

0, otherwise

(2.11)

Chapter 2. Theory 11

and

x2,j(n) =

values, if n ∈ [(j−1)
N

L + 1, j
N
L]

0, otherwise.

(2.12)

We wish to find the start- and end points of each convolution result. The result

of a convolution has values when

(x1,i ∗ x2,j)(n) =

values, if n ∈ [(i+j−2)
N

L + 2, i+j
N
L]

0, otherwise.

(2.13)

For simplicity, we define the start- and end points of eq. (2.13) as

Si,j = Sj,i =
(i + j − 2)

N
L + 2 (2.14)

and

Ei,j = Ej,i =
i + j

N
L, (2.15)

respectively. This denotes that no samples from x1,i ∗ x2,j are needed before Si,j

or after Ei,j. Note that both eq. (2.14) and (2.15) are strictly growing. We also

define output time

Tk =
k

N
L + 1, (2.16)

which denotes the time when output block k must be ready.

(1.) For n = T1, we only have a contribution from the first block, x1,1 ∗ x2,1, since

S1,2, S2,1 > T1. x1,1 and x2,1 have fully entered the system when n = T1, and we

may output the first L/N samples at this time. The same goes for the second

output block, at n = T2, where we can see that S2,3, S3,2 > T2. In general we have

Sk+1,1, S1,k+1 > Tk, and we therefore do not need contributions from future blocks

when n = Tk. We have shown that for every output block, we only need blocks

that have already been buffered by the time output must be produced. (2.) We

have Tk > Ei,j when k > i + j. If the signals were infinite in length, blocks would

have to be kept in memory forever, as E1,∞ never occurs. However, both signals

have N < ∞ blocks, so at time TN+1, we no longer have any contribution from

Chapter 2. Theory 12

blocks x1,1 and x2,1, since TN+1 > E1,N and they may be discarded. In general

x1,k and x2,k may be discarded at n = TN+k.

Q.E.D.

2.4 Transients and Transient Detection

Transients are short intervals of audio signals where the signal evolves quickly

and in an unpredictable or nontrivial manner. Percussive sounds from drums or

from claps are examples of signals with transients. Transients are also associated

with the excitation of strings on string instruments. When a string is plucked,

a transient will dominate the signal for a short time interval before the resonant

frequency of the string and the body of the instrument takes over. A transient

usually lasts for 50 ms [9].

Several transient detection methods exist, as it is used in a wide range of appli-

cations, among them note transcription, time-stretching of audio signals, pitch-

shifting of audio signals and audio coding. The methods have to take into account

that it is not necessarily straightforward to decide whether a portion of a signal

is a transient or not. Transients can for instance be classified as weak or strong,

depending on the strength of the envelope of the signal. They can also be classified

as slow or fast depending on the rate of change of the envelope. The methods also

have to decide on a minimum duration between successive transients. The meth-

ods used for transient detection do not vary only because of different definitions

on what should be regarded as a transient, but also because of the fact that in

some applications one deals with pre-recorded signals and in other applications

the method is to function in real-time.

One way to do transient detection is to compare the energy of new samples with

some threshold which is based on the energy of previous samples. A transient is

occurring if an incoming sample has a higher energy than the threshold. With this

Chapter 2. Theory 13

method one would get an adaptive threshold which is important because musical

signals often has a large dynamic range.

2.5 Latency Tolerance for Musicans

When playing an acoustical instrument, there will be some latency associated with

the time it takes for the sound waves to travel from the instrument to the ear. If the

distance between the ear and the instrument is one meter, this time will roughly be

3 ms if the speed of sound is 340 m/s. This is obviously low enough for musicians

to handle, proven by the fact that people have been playing acoustic instruments

for a long time, and is thus rarely considered a problem. When using a computer

to process the sound from an instrument, the latency will necessarily be larger

because it takes time for a signal to be converted from analog to digital and for

the computer to do the actual processing. It is therefore, when designing a digital

effect, important to keep the latency within the limits of what can be considered

tolerable for musicians. If the latency associated with playing an instrument is to

high, it would weaken the performers ability to interact rhythmically with other

musicians. The just noticeable difference (JND) is the time where a performer

just notices a difference when comparing a delayed source with a source without

delay. It was found to be between 20 ms and 30 ms in [10][11].

Chapter 3

Development Tools

In this chapter the tools used to develop and explore the algorithms will be de-

scribed.

3.1 Matlab

Matlab is a high-level programming environment in which signal processing appli-

cation development can be done quickly compared to development in lower-level

languages such as C or C++. As opposed to programs written in C or C++,

which are compiled, Matlab programs are interpreted. Thus, programs written in

Matlab are easier to run, but often run less efficiently. Matlab has a large library

of built-in functions such as an FFT, time-domain convolution, and filter design

algorithms, available through Matlab tool boxes. This can simplify and speed up

development in a lot of situations. In addition to quick development, Matlab pro-

vides the ability of quick and informative analysis of what the developed programs

actually do, thanks to its extensive and easy to use plotting capabilities. A lot

of the the signal processing courses at NTNU use Matlab as their main tool, and

consequently many students and professors are familiar with it. It was therefore

chosen to prototype the effect in Matlab. For more information on Matlab, see

[12].

14

Chapter 3 Development Tools 15

3.2 Csound

Csound is a free open-source audio programming environment. Initially developed

by Barry Vercoe since 1985[13, p. xxix], Csound is continuously beeing extended.

It includes a large library of signal processing modules, called opcodes, which are

usually written in C or C++. An opcode is a basic Csound module that generates

or modifies signals. The opcodes can be connected together to form sound effects

and virtual instruments that can function in real-time. It is also possible to write

new opcodes whenever the existing opcodes are not sufficient. Because of the

novelty of the signal processing tasks faced in the live convolution effect, the

tools available in Csound were not sufficient for an intuitive implementation. It

was deemed necessary to implemented an opcode using C. The final real-time

implementation was implemented in Csound using this self made opcode. For

more information on Csound, see [13] and [14].

3.3 Cabbage

One of the goals for this thesis was to have the final real-time implementation as a

plug-in for DAWs. Plug-ins are programs that enhance or extends the functionality

of existing software. For DAWs, many formats exist, such as VST (Virtual Studio

Technology), AU (Audio Unit) and LADSPA (Linux Audio Developers Simple

Application Programming Interface), each supported by different DAWs. For this

thesis, the VST format was chosen, because of it’s large range of compatible DAWs,

and because both Mac and PC have DAWs which support VSTs. The final real-

time version of the effect in this thesis is available as a VST for both Mac and

PC. Both versions were made with the help of Cabbage which is an audio plug-in

framework for Csound made by Rory Walsh. Cabbage makes it possible to easily

develop a GUI (Graphical User Interface) which can be connected to parameters

in Csound code, and then export the code and its associated GUI to the VST

format. For more info on Cabbage, see [15] and [16].

Chapter 3 Development Tools 16

Chapter 4

Algorithm

This chapter describes the final algorithm, as well as the algorithms developed

on the way to the final algorithm, in detail. Section 4.1 describes an algorithm

that was developed early in the process to gain insight in real-time convolution

in general and to identify future problems that might be encountered. Section

4.2 describes an algorithm that is based on a Csound opcode, written by Istvan

Varga[17], which provides low latency frequency domain convolution. We extend

it by allowing it to convolve two live signals. In section 4.3 we further develop

this algorithm so that it may use information about transients in the input signals

to vary parameters used in the algorithm. Section 4.4 describes three transient

handling methods. These extend the algorithm to allow several processes running

in parallel. They differ in the way they handle the parallel processes. The process

handling used in the final implementation is described in section 4.4.1.

4.1 Preliminary Algorithm

This section describes the inner workings of the preliminary live convolution al-

gorithm. The implementation was done in Matlab and can be found in appendix

B.1.

17

Chapter 4. Algorithm 18

4.1.1 Short Description

Buffer up signal

Buffer up signal

Input signal 1

Input signal 2

Convolution Put result on output

Output

Figure 4.1: Block diagram of the preliminary algorithm.

Fig. 4.1 shows an overview of the preliminary algorithm. The input signals are

first buffered up in blocks. The blocks can have any size, and block sizes do not

have to be the same for the two input signals. After the blocks are filled with

samples, the blocks are passed on to the part of the algorithm where the actual

convolution is computed. The convolution result is then passed on to a part that

puts the result on the output. Because of the unequal block size, the way the

convolution result is put on the output is not necessarily trivial, and can be done

in several ways, more on this in section 4.1.4.

4.1.2 Buffer Up Signals

Because the algorithm is to function in real-time, the input signals are buffered up

in blocks. This allows for more efficient processing than sample-by-sample input.

If the block sizes are the same, it is straightforward to take in samples from the

input signals. One takes in the same amount of samples from each input signal

and then puts the samples in two separate blocks. The next time one takes in

samples, the samples are taken in starting from the sample after the one that was

taken in last the previous time. This will be at the same index in both of the input

signals if the block sizes are the same.

If the block sizes are not the same for the two input signals, it is not immediately

intuitive how the samples should be taken in. This algorithm has two different

modes that take in samples in two different ways if the block sizes differ between the

two input signals. The two modes are called SkipOnSmall and OverlapOnLarge,

and are illustrated in fig. 4.2 and 4.3, respectively.

Chapter 4. Algorithm 19

Signal 1

Signal 2

BLarge

BSmall

BLarge BLarge BLarge

BSmall BSmall BSmall

Figure 4.2: The SkipOnSmall mode. Note that samples are skipped on the
signal with the smallest buffer.

In the SkipOnSmall mode the largest block size determines which samples should

be taken out. Each time blocks are to be filled up, the blocks starts where the

large block ended the previous time. This causes the algorithm to skip samples

on the input signal with the smallest block size.

Signal 1

Signal 2

BLarge

BSmall BSmall BSmall BSmall BSmall BSmall BSmall

BLarge
BLarge

BLarge BLarge
BLarge

BLarge

Figure 4.3: The OverlapOnLarge mode. Note that on the signal with the
longest buffer, some of the samples are used more than once.

In the OverlapOnLarge mode it is the smallest block size that determines which

samples should be taken in. Each time blocks are to be filled up, the blocks start

where the smallest block ended the previous time. A consequence of doing it this

way is that some samples from the signal with the largest block size will be used

more than once.

Chapter 4. Algorithm 20

4.1.3 Convolution Computation

The computation of the convolution sum is done in the time domain. This part

of the algorithm takes in two blocks. If the length of the blocks are LB1 and LB2,

the result will be a vector with length LB1 + LB2 − 1.

4.1.4 Put Convolution Result on Output

The preliminary algorithm provides different modes for putting the result of the

convolution of two blocks on the output. All the modes involve some overlap

between successive convolution results, since the output blocks are longer than

the input. The overlapping samples are added together.

The mode overAdd small has overlap equal to the smallest block. overAdd large

has overlap equal to the largest block. This is illustrated in fig. 4.4 and 4.5

respectively.

Convolution Result i-1

Convolution Result i

Convolution Result i+1

BLarge+BSmall -1

BSmall -1BLarge BLarge

BLarge+BSmall -1

BSmall -1

BLarge

Figure 4.4: The overAdd small mode.

The algorithm has additional modes that provide fading in and fading out of the

overlapping areas. The modes expFade and expFade2 fade the convolution results

in and out exponentially, as illustrated in fig. 4.6 and 4.7, respectively. The mode

linFade fades the convolution results in and out linearly as illustrated in 4.8. The

rate of change of the fading functions are adjustable.

Chapter 4. Algorithm 21

Convolution Result i+1

Convolution Result i

Convolution Result i-1

BLarge -1 BSmall

BLarge+BSmall -1

BSmall

BSmall

BSmall BLarge -1

Figure 4.5: The overAdd large mode.

Fading Function for Convolution Result i+1

Fading Function for Convolution Result i

A
m
p
li
fi
ca
ti
on

Length of Overlap
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: The expFade mode.

4.2 Algorithm Version 1

This section describes the first stage of the final algorithm. It is based on Istvan

Varga’s opcode ftconv. The opcode is modified to support two live audio signals,

as opposed to one prerecorded impulse response and one live audio signal. A block

diagram is given in fig. 4.9. The implementation was done in Matlab, and can be

found in Appendix B.2.

Chapter 4. Algorithm 22

Fading Function for Convolution Result i+1

Fading Function for Convolution Result i

A
m
p
li
fi
ca
ti
on

Length of Overlap
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.7: The expFade2 mode.

Fading Function for Convolution Result i+1

Fading Function for Convolution Result i

A
m
p
li
fi
ca
ti
on

Length of Overlap
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8: The linFade mode.

Buffer up
signal

Buffer up
signal

Input signal
1

Input signal
2

FFT

FFT

FIFO
Segment 1

update

Frequency domain
cross-multiplication

FIFO
Segment 2

update

Overlap add OutputIFFT

Figure 4.9: Block diagram of algorithm version 1.

4.2.1 Short Description

The main idea of Istvan Varga’s ftconv is to perform blockwise frequency domain

multiplication with a prerecorded impulse response (IR), allowing for efficient low

latency convolution. The IR is divided into blocks of size 2n, and a live audio

input signal is then buffered up into blocks of the same length as the IR blocks,

and multiplied with the IR in the frequency domain as shown in fig. 4.10. This

Chapter 4. Algorithm 23

results in an output delay of 2n samples, instead of a delay equal to the length of

the IR. See section 2.3 for a theoretical justification of this method.

IR- FT Block
1

IR- FT Block
2

Oldest audio
FT Block

IR- FT Block
3

IR- FT Block
4

IR- FT Block
5

Latest audio
FT Block

Figure 4.10: Illustration of ftconv, example with 5-block impulse response.
The arrows represent multiplication.

4.2.2 Buffer Partitioning

Both input signals are buffered into a pair of blocks, each of length LB and padded

with LB zeros. The blocks are then Fourier transformed. Henceforth these trans-

formed blocks are referred to as FT blocks (Fourier Transformed blocks). The FT

blocks are then put into their respective segments . The two input signals each

have one segment associated with them, referred to as segment 1 and segment 2

when necessary, or the segments when referred to jointly. The segments contain

N FT blocks each.

The FT blocks are always handled as pairs, and therefore when it is stated that

a pair of blocks is added to or thrown from the segments, it always implies the

blocks that were buffered up at the same time.

Chapter 4. Algorithm 24

Oldest FT
Block 1

Oldest FT
Block 2

Newest FT
Block 1

Newest FT
Block 2

Figure 4.11: Illustration of frequency domain cross-multiplication with n
blocks. The arrows represent multiplication.

4.2.3 Cross Convolution of a Segment

We perform cross convolution as a blockwise frequency domain multiplication of

two segments. The newest FT block of signal 1 is multiplied with the oldest FT

block of signal 2. The second newest FT block of signal 1 is multiplied with the

second oldest FT block of signal 2, and so forth. See fig. 4.11, where the arrows

represent a multiplication. The results of each multiplication are then summed.

A cross convolution is computed once every time a new pair of input buffers have

been filled. It can be mathematically expressed, in the digital frequency domain,

as

YT (k) =
T∑

i=T−N

X1,i(k)X2,N−i(k), (4.1)

where T is the block number of the output (T = 1 would denote the first output

block), and Xm,i denotes FT block i from segment m. An IFFT is performed on

YT , and it is sent to the output buffer.

Chapter 4. Algorithm 25

4.2.4 Output Buffer

As mentioned in section 4.2.2, the output blocks are about twice as long as the

input blocks, because of zero-padding. The output blocks have convolution tails

on both ends. When inserting the blocks into the output buffer, the following

overlap add method is used:

OT (n) = yT (n) + yT−1(n + LB), n ∈ (0, LB − 1). (4.2)

Following this step, the output is sent to the DAC, and the processing is complete.

4.3 Algorithm Version 2 (Transient Detection)

Buffer up
signal

Buffer up
signal

Input signal
1

Input signal
2

FFT

FFT

FIFO
Segment 1

update

Transient
detection

Transient
detection

+

Frequency domain
cross-multiplication

FIFO
Segment 2

update

Overlap add OutputIFFT

Figure 4.12: Block diagram of algorithm version 2.

Algorithm version 2 is an extension of algorithm version 1 described in section 4.2.

Version 2 is extended in that it uses transient information from the input signals

to adjust the segment lengths. The implementation was done in Matlab, and can

be found in appendix B.3.

When a transient occurs in one of the input signals, all the FT blocks previously

contained in the segments are thrown away, keeping only the new pair of FT blocks.

Thus, when a transient occurs, the output is a result of a convolution between only

the latest block pair. The next time a pair of blocks is buffered up, it is put into

the segments as in version 1. Algorithm version 1 has a constant segment length of

Chapter 4. Algorithm 26

N blocks, and throws away the oldest FT block pair in the segments each time a

new pair is put in. In version two, the oldest FT block pair is thrown away only if

the segments are full, i.e. if the amount of blocks in the segments is greater than a

user specified maximum we henceforth refer to as Nmax. The Transient Detection

blocks and the FIFO Segment update blocks in fig. 4.12 are where the extensions

to version 1 happen. When the transient detection blocks detect a transient, a

signal is sent to the FIFO segment updates. A flow chart describing the inner

workings of the FIFO segment update blocks is shown in fig. 4.13.

New blocks are
buffered

Segments
full?

Add new FT block
pair to the segments

Throw all old
FT block pairs

Transient?

Throw away oldest
FT block pair

No Yes

No
Yes

Send segments to
cross-multiplication

Figure 4.13: Flow chart of the inner workings in the FIFO Segment update
blocks of version 2, shown in fig. 4.12.

The transient detection blocks detect transients as defined in 2.4. The methods

used in the Matlab and Csound implementation differ. In the final implementation

(Csound), a transient detection algorithm written by Øyvind Brandtsegg was used.

Since this is not the main focus of this algorithm, see Appendix C for details. The

transient detection algorithm implemented in Matlab is in listing B.8.

Chapter 4. Algorithm 27

Buffer up
signal

Buffer up
signal

Input signal 1

Input signal 2

FFT

FFT

Segments
update,
signal 1

Transient
detection

Transient
detection

+

Frequency
domain cross-
multiplication

Segments
update,
signal 2

Overlap add Output

Process
Update

IFFT

Figure 4.14: Block diagram of algorithm version 3.

4.4 Algorithm Version 3 (Parallel Processes)

These versions are extensions of algorithm version 2, described in section 4.3. In

this section, different ways to handle the FT blocks, which are discarded after

a transient detection, are explored. As opposed to algorithm version 2, the FT

blocks contained in a segment before a transient occurs are not thrown away

immediately once a transient is detected. Their respective segments are kept in

a parallel process to contribute to output blocks following a transient. The three

algorithms described in this section operate differently in the way these processes

receive and throw away FT blocks. All extensions in this section are in the process

update and segments update blocks in fig. 4.14. All of the following versions

have some key features in common, namely what will be referred to as the active

process and semi-active processes . The active process handles the segment pair

that is receiving blocks from the input. The semi-active processes contain segment

pairs that no longer receive input, but still contribute to the output signal.

What all these processes have in common is that they contain two segments, one

for each signal. The segments are cross-multiplied as in fig. 4.11, separately for

each process, then the results are added together and normalized. An IFFT is

then performed, and the block is sent to output, as seen in fig. 4.18.

Chapter 4. Algorithm 28

4.4.1 Alternative 1: ThrowAll (Used in Final Implementa-

tion)

Transient or full
active segment?

Several processes?

Start new
active process

Throw oldest FT block pair
from all semi-active processes

Throw oldest FT block pair
from all semi-active processes

Add new FT block
pair to active process

Yes
No

YesNo

New pair of blocks
are buffered

Send segments to
cross-multiplication

Set active process to
semi-active process

Figure 4.15: Flow chart of the inner workings in the process update and
segments update blocks in fig.4.14 for ThrowAll.

A flow chart of this version’s process handling is shown in figure 4.15. This version,

which is the version used in the final product, treats each part of the signal between

two transient as what we call a convolution event . We define convolution events as

the convolution of segments between two transients. They are processed separately,

without directly affecting, or being directly affected by, surrounding convolution

events. We further discuss convolution events in 6.4.1.

This final algorithm was implemented both in Matlab (appendix B.4) and in

Csound with an opcode written in C (appendix A).

Each time a transient occurs, the active process is turned into a semi-active process.

A new active process is then created, which starts taking in new FT blocks from

the input.

Chapter 4. Algorithm 29

The way processes are handled in this version can be seen in fig. 4.15. The main

idea is that the oldest FT block pair from all semi-active processes are thrown in

each iteration, while the active process keeps receiving FT block pairs from the

input, and does not throw away old blocks. If the number of FT block pairs in

the active process reaches Nmax, it is treated as if a transient is detected, and

the process is set to be semi-active. If neither a transient is detected, nor the

active segment becomes full, the oldest FT block pairs in each semi-active process

are thrown, and the newest FT block pairs from the signals are appended to the

segments in the active process.

4.4.2 Alternative 2: ThrowLast

A flow chart of this version’s process handling is shown in fig. 4.16. This version

was implemented in Matlab, see appendix B.5.

As in ThrowAll, ThrowLast starts a new active process whenever a transient is

detected and sets the previous active process to semi-active. However, as opposed

to ThrowAll, ThrowLast only throws out the oldest FT block pair in the oldest

semi-active process. The other semi-active processes remain constant until they

become the oldest one. When the oldest semi-active process is empty, the second

oldest process is set to be the oldest one, and will thus be the process from which

FT block pairs are thrown out in the next iteration. If no transients occur and

no new processes are started, one can end up with a case where all semi-active

processes have empty segments, and the only process running is the active one. If

the active process is the only one running, the algorithm checks if the segments

associated with this process are full, i.e. they contain Nmax FT block pairs. If

they are full, the oldest block pair is thrown out. If the segments are not full, no

blocks are thrown out.

Chapter 4. Algorithm 30

New blocks are
buffered

Transient?

Set active process
to semi-active

Start new active
process

Add new FT block pair to
active process

Throw oldest FT block pair from
oldest semi-active process

Oldest semi-active
process empty?

Set second oldest semi-
active process to oldest

Send segments to
cross-multiplication

Yes

Yes

No

Several
Processes?

Segments full?

No Yes

No

Throw oldest FT block
pair from active process

Yes

No

Figure 4.16: Flow chart of the inner workings in the process update and
segments update blocks in fig. 4.14 for ThrowLast.

4.4.3 Alternative 3: TwoProc

A flow chart of this version’s process handling is shown in fig. 4.17. This version

was implemented in Matlab, see appendix B.6.

This version has a maximum of two processes running in parallel. When a transient

is detected on one of the input signals, all the FT blocks in the active process are

appended to the semi-active process, and the newest FT block pair is put into

the active process. An FT block pair is thrown out of the semi-active process if

the sum of the number of FT block pairs contained in the active and semi-active

process is equal to Nmax. If the semi-active process is empty, an FT block pair is

thrown out of the active process once it reaches Nmax FT block pairs.

Chapter 4. Algorithm 31

Transient?

Segment full?
Move all FT block pairs from active

process to end of semi-active process

Throw oldest FT block pair
from semi-active process

Add new FT block pair
to active process

Yes

No

Yes
No

New pair of blocks
are buffered

Semi-active process
exists?

Yes
No

Throw oldest FT block
pair from active process

Send segments to
cross-multiplication

Figure 4.17: Flow chart of the inner workings in the process update and
segments update blocks in fig. 4.14 for TwoProc.

4.4.4 Normalization

There is no obviously correct way to normalize the blocks of the different processes.

What could be considered an optimal normalization depends on which criteria one

optimizes for. We opted to normalize with a stable output amplitude in mind. Our

normalization scheme is illustrated in fig. 4.18.

Chapter 4. Algorithm 32

F
ig
u
r
e
4
.1
8
:

G
en

er
at

io
n

of
ou

tp
u

t
w

it
h

p
ar

al
le

l
p

ro
ce

ss
es

.
T

h
e

ac
ti

ve
p

ro
ce

ss
an

d
P

se
m

i-
ac

ti
ve

p
ro

ce
ss

es
co

n
tr

ib
u

te
to

th
e

o
u

tp
u

t.
B

N
A

is
th

e
n
u

m
b

er
of

b
lo

ck
s

in
th

e
ac

ti
v
e

p
ro

ce
ss

.
B

N
S
A

[P
]

is
th

e
n
u

m
b

er
of

b
lo

ck
s

in
se

m
i-

a
ct

iv
e

p
ro

ce
ss

P
.

Chapter 4. Algorithm 33

With this method, one normalizes by the total number of blocks being processed,

which is

BTot = BNA +
P−1∑
i=1

BNSA[i], (4.3)

where P is the total number of processes, BNA is the number of block pairs in the

active process, and BNSA[i] is the number of block pairs in semi-active process i.

This means that the amplitude stabilizes quickly, even as the number of blocks

grows.

This method was only implemented for ThrowAll, as all the other versions are

only implemented in Matlab, and the scaling of the output is done automatically

by Matlab’s built in function soundsc().

Chapter 5

Results

This chapter presents results relevant for the discussion in chapter 6. All the

sound files mentioned here can be found in the digital appendix delivered with

this thesis. The files are organized in folders with the same names as the headlines

in this chapters.

All input signals used to generate these audio files can be found in the folder Test

input signals.

5.1 Preliminary Algorithm

Sound files from this version (found in the PreliminaryAlgorithm folder in the

digital appendix):

� 440SinesAsInput Buffer100.wav

� 440SinesAsInput Buffer300.wav

� 440SinesAsInput Buffer350.wav

� 440SinesAsInput Buffer500.wav

� 440SinesAsInput Buffer550.wav

34

Chapter 5. Results 35

� 440SinesAsInput B 1 2000 B 2 100 expFade2.wav

� 440SinesAsInput B 1 2000 B 2 100 NoFade.wav

� 440SinesAsInput B 1 2000 B 2 150 expFade2.wav

All of these files were generated with 440 Hz sines on both inputs.

440SinesAsInput BufferX.wav were generated with buffer sizes of X samples on

both inputs. No fading functions were used.

440SinesAsInput B 1 2000 B 2 100 expFade2.wav was generated with buffer sizes

of 2000 and 100 samples for the two input signals, using the OverlapOnLarge

method and the expFade2 fading function.

440SinesAsInput B 1 2000 B 2 100 NoFade.wav was generated with buffer sizes

of 2000 and 100 samples for the two input signals, using the OverlapOnLarge

method without any fading function.

440SinesAsInput B 1 2000 B 2 150 expFade2.wav was generated with buffer sizes

of 2000 and 150 samples for the two input signals, using the OverlapOnLarge

method and the expFade2 fading function.

The (A) and (B) figures in fig. 5.1, 5.2 and 5.3 are all time-domain plots of

their respective soundfiles. The (A) figures span over a short interval to show

the waveform properly. The (B) figures span over longer intervals, and they are

all included to show the low frequency amplitude modulation (AM) seen in the

envelope of the signal, but which is not clearly visible in the (A) figures. All the

(C) figures show the frequency content of the sound files.

Chapter 5. Results 36

y(n)

n [samples] ×104
5 5.05 5.1 5.15 5.2

−1

−0.5

0

0.5

1

(a)

y(n)

n [samples] ×104
0 2 4 6 8 10

−1

−0.5

0

0.5

1

(b)

| Y (f) |

Frequency [Hz]
0 500 1000 1500

0

0.5

1

1.5

2

2.5

(c)

Figure 5.1: Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 100 samples. (A) shows a short time interval of the soundfile.
The output is clearly a sine. (B) shows a long time interval of the soundfile. The
low frequency AM can be seen in the envelope of the signal. The AM has a low
amplitude and does not produce noticeable sidelobes. (C) shows the frequency

content of the soundfile. The energy is situated at 440 Hz.

Chapter 5. Results 37

y(n)

n [samples]
0 500 1000 1500 2000 2500 3000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

y(n)

n [samples] ×104
0 5 10 15

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

| Y (f) |

Frequency [Hz]
0 200 400 600 800 1000 1200 1400

0

0.5

1

1.5

2

2.5

(c)

Figure 5.2: Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 300 samples. The low frequency AM shown in (B) is even

smaller than in Fig 5.1b.

Chapter 5. Results 38

y(n)

n [samples]
0 500 1000 1500 2000 2500 3000

−1

−0.5

0

0.5

1

(a)

y(n)

n [samples] ×105
0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

(b)

| Y (f) |

Frequency [Hz]
0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

Figure 5.3: Plots from the preliminary algorithm, with 440 Hz sines as input
and a buffer size of 350 samples. The output in (A) is clearly not a sine. There
is significant AM, as can be seen in (B) . The frequency plot in (C) shows that

the energy is situated not only at 440 Hz.

5.2 Algorithm Version 1

Sound files from this version (found in the Version1Results folder in the digital

appendix):

� 500HzSineInput BlockSize512 BlockNum100.wav

� disharmonyFromDelayedChange.wav

� indistinctTransientsSynthDrumloop2.wav

All sound files were generated with LB = 512 samples, and segment length N = 100

blocks.

Chapter 5. Results 39

500HzSineInput BlockSize512 BlockNum100.wav has two equal sines on the in-

puts. Relevant plots are in fig. 5.4.

disharmonyFromDelayedChange.wav has synth.wav on both inputs. Relevant plots

are in fig. 5.5.

indistinctTransientsSynthDrumloop2.wav has synth.wav on one input, and drum-

loop2.wav on the other. Relevant plots are in fig. 5.6.

y(n)

n [samples] ×104
5 5.05 5.1 5.15 5.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

y(n)

n [samples] ×104
5 5.5 6 6.5 7 7.5 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

| Y (f) |

Frequency [Hz]
0 200 400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

Figure 5.4: Plots from Algorithm Version 1, with 500 Hz sines on both input
channels. Block size of 512 samples, 100 block segments. The AM is less

prominent than in 5.3, but still creates some sidelobes.

Chapter 5. Results 40

n [samples]

Output signal

n [samples]

Input Signal 2 (synth)

n [samples]

Input Signal 1 (synth)

×104

×104

×104

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

−1

0

1

−1

0

1

Figure 5.5: Plot of first 100000 samples of input and output of Algorithm
Version 1, with synth.wav on both input channels. Slow rise of initial transient.
Output is delayed by Ls/2 samples. A block size of 512 samples was used. The

segment size was 100 blocks.

n [samples]

Output signal

n [samples]

Input Signal 2 (synth)

n [samples]

Input Signal 1 (Drumloop2)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

0

1

−1

0

1

−1

0

1

Figure 5.6: Plot of input and output of Algorithm Version 1, with drum-
loop2.wav and synth.wav as input. Transients are very indistinct on output.
Output is delayed by Ls/2 samples. The Block size was 512 samples. The

segment size was 100 blocks.

Chapter 5. Results 41

Output at T = 1 (blue), output at T = 2 (red)

Output at T = 1 (blue), output at T = 2 (red)

Buffer at T = 1 (blue), Buffer at T = 2 (red)

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 1400 1600

0 500 1000 1500 2000 2500

−1000

0

1000

−1000

0

1000

−1

0

1

Figure 5.7: Plot of input and output of Algorithm Version 1, with two equal
440 Hz sines on the inputs. As can be seen, to following output blocks are out
of phase, even though the input signals are in phase. The block size was 512

samples. The segment size was 3 blocks.

Output at T = 1 (blue), output at T = 2 (red)

Output at T = 1 (blue), output at T = 2 (red)

Buffer at T = 1 (blue), Buffer at T = 2 (red)

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200 1400 1600

0 500 1000 1500 2000 2500

−1000

0

1000

−1000

0

1000

−1

0

1

Figure 5.8: Plot of input and output of Algorithm Version 1, with two equal
430.7 Hz sines on the inputs. As can be seen, to following output blocks are in
phase, because a 430.7 Hz sine has a period of 512/5 samples with Fs = 44100

Hz. The block size was 512 samples. The segment size was 3 blocks.

Chapter 5. Results 42

5.3 Algorithm Version 2

Sound files from this version (found in the Version2Results folder in the digital

appendix):

� drumloop2 synth version2 transDet.wav

� Git1Akk Syn1Akk ver2.wav.wav

All sound files were generated with LB = 512 samples, and maximum segment

length Nmax = 100 blocks.

drumloop2 synth version2 transDet.wav has synth.wav on one input, and drum-

loop2.wav on the other. Relevant plots are in fig. 5.9 and 5.10.

Git1Akk Syn1Akk ver2.wav has Gitar1akkord.wav on one input, and Synth1akkord.wav

on the other. Relevant plots are in fig. 5.17 and 5.12.

n [samples]

Output signal

n [samples]

Input Signal 2 (synth)

n [samples]

Input Signal 1 (drumloop2)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

0

1

−1

0

1

−1

0

1

Figure 5.9: Plot of input and output of Algorithm Version 2, with drum-
loop2.wav and synth.wav as input. Transients are much more distinct on out-
put, compared to fig. 5.6. Output is no longer delayed by Ls/2 samples. A

Block size of 512 samples was used. The segment size was 100 blocks.

Chapter 5. Results 43

Detected transients

drumloop2

×105
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.10: Plot of drumloop2.wav, with transients detected used to generate
the output in fig. 5.9.

n [samples]

Output signal

n [samples]

Input Signal 2 (Synth1Akkord)

n [samples]

Input Signal 1 (Gitar1Akkord)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

−1

0

1

−1

0

1

Figure 5.11: Plot of input and output of Algorithm Version 2, with Gi-
tar1Akkord.wav and Synth1Akkord.wav as input. Output becomes disharmonic
once the segments are full, that is 512∗100 = 51200 samples after the transient.
5.6. Output is no longer delayed by Ls/2 samples. Block size of 512 samples,

100 blocks segments.

Chapter 5. Results 44

Detected transients

Gitar1Akkord

×105
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.12: Plot of Gitar1Akkord.wav, with transient detected used to gen-
erate the output in fig. 5.17.

5.4 Algorithm Version 3

5.4.1 ThrowAll (Final Algorithm)

Sound files from this version (found in the Final Version folder in the digital

appendix):

� 440HzSine FinalVersion 512 BS 100B.wav

� 440HzSine FinalVersion 512 BS 50B.wav

� drumloop2 synth FinalVersion 1Process.wav

� drumloop2 synth FinalVersion 10Process.wav

� gitar1akkord synth1akkord FinalVersion.wav

All sound files were generated with LB = 512 samples, and maximum segment

length Nmax = 100 blocks, except for 440HzSine FinalVersion 512 BS 50B.wav,

which was generated with 50 block segments.

Chapter 5. Results 45

All sound files were generated with maxNumProc = 10, except for

drumloop2 synth FinalVersion 1Process.wav, which was generated with

maxNumProc = 1.

y(n)

n [samples] ×104
5 5.05 5.1 5.15 5.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

y(n)

n [samples] ×105
0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

| Y (f) |

Frequency [Hz]
0 200 400 600 800 1000 1200

0

0.5

1

1.5

(c)

Figure 5.13: Plots from Algorithm Version 3 ThrowAll, with 440 Hz sines on
both input channels. The are no longer any sidelobes, but there is an AM with
period Ls. This is, however much less disturbing than a period of LB. The

block size was 512 samples. The segment size was 100 blocks.

Chapter 5. Results 46

y(n)

n [samples] ×104
5 5.05 5.1 5.15 5.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

y(n)

n [samples] ×105
0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Frequency [Hz]
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 5.14: Plots from Algorithm Version 3 ThrowAll, with 440 Hz sines on
both input channels. The segment has half the length compared to 5.13, and
the period of the AM is therefore half as long. There are still no sidelobes. The

block size was 512 samples. The segment size was 50 blocks.

n [samples]

Output signal

n [samples]

Input Signal 2 (synth)

n [samples]

Input Signal 1 (drumloop2)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

0

2

−1

0

1

−1

0

1

Figure 5.15: Plot of input and output of Algorithm Version 3 ThrowAll, with
drumloop2.wav and synth.wav as input, with maxNumProc 10. Transients are
a bit less distinct on output, compared to fig. 5.9. The block size was 512

samples. The segment size was 100 blocks.

Chapter 5. Results 47

n [samples]

Output signal

n [samples]

Input Signal 2 (synth)

n [samples]

Input Signal 1 (drumloop2)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

0

1

−1

0

1

−1

0

1

Figure 5.16: Plot of input and output of Algorithm Version 3 ThrowAll, with
drumloop2.wav and synth.wav as input, with maxNumProc 1. Transients are
more distinct than with 10 processes, as in fig. 5.15. The block size was 512

samples. The segment size was 100 blocks.

n [samples]

Output signal

n [samples]

Input Signal 2 (Synth1Akkord)

n [samples]

Input Signal 1 (Gitar1Akkord)

×105

×105

×105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

0

1

−1

0

1

−1

0

1

Figure 5.17: Plot of input and output of Algorithm Version 3 ThrowAll, with
Gitar1Akkord.wav and Synth1Akkord.wav as input. Output no longer becomes
disharmonic. The block size was 512 samples. The segment size was 100 blocks.

Chapter 5. Results 48

5.4.2 ThrowLast

Sound files from this version (found in the ThrowLast folder in the digital ap-

pendix):

� ThrowLast256+SingleSine172Hz.wav

� ThrowLast512+SingleSine86Hz.wav

� ThrowLastUnwantedPeriodicityBlocksize256Input440Hz.wav

� ThrowLastUnwantedPeriodicityBlocksize512Input440Hz.wav

� ThrowLastUnwantedPeriodicityBlocksize512Input500Hz.wav

� ThrowLastUnwantedPeriodicityBlocksize512Inputsynth.wav

Fig. 5.18 and fig. 5.19 illustrate the weakness of the ThrowLast algorithm, i.e.

the unwanted periodicity. The audio files were generated with a 440 Hz sine and

drumloop2.wav as input signals. Nmax was set to 200. A transient detetion was

applied to the drumloop to ensure that initialization of new processes occured,

which is required for the unwanted periodicity to arise. The transient detection

was applied using the Matlab script TransDet2, which can be found in appendix

B.3.

Chapter 5. Results 49

Unwanted Periodicity
Output y(n)

n ×104
3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5.18: Excerpt from the audio file ThrowLastUnwantedPeriodicityBlock-
size256Input440Hz.wav, showing the unwanted periodicity when a block size of

256 samples is used.

Unwanted Periodicity
Output y(n)

n ×104
3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 5.19: Excerpt from the audio file ThrowLastUnwantedPeriodicityBlock-
size512Input440Hz.wav.wav, showing the unwanted periodicity when a block size

of 512 samples is used.

5.4.3 TwoProc

Sound files from this version (found in the TwoProc folder in the digital appendix):

� TwoProcSynthDrumloopMNB50.wav

Chapter 5. Results 50

� TwoProcSynthDrumloopMNB100.wav

� TwoProcSynthDrumloopMNB200.wav

All examples were generated with LB = 512, using input signals synth.wav and

drumloop2.wav.

TwoProcSynthDrumloopMNB50.wav has Nmax = 50.

TwoProcSynthDrumloopMNB100.wav has Nmax = 100.

TwoProcSynthDrumloopMNB200.wav has Nmax = 200.

5.5 Graphical User Interface

Figure 5.20: Graphical User Interface of VST plug-in.

For the VST implementation, a GUI was implemented, as seen in fig. 5.20. When

using the VST in a DAW, the VST has to be put on an auxillary channel in

the DAW. The two input signals has to be sent to this auxillary channel. One

of the input signals has to panned all the way to the left and the other signal

has to be panned all the way to the right. An inherent limitation in the current

VST-standard forced us to handle the input signals this way.

In the next sections, the parameters available to users will be described.

Chapter 5. Results 51

5.5.1 Gain Knobs

Gain 1/2 sets the input gain of the signals.

Dry Input 1/2 sets the output gain for the unprocessed input signals. Leave these

at 0 if only the convolution result should be heard.

Conv Output sets the output gain for the convolution result.

Total Gain sets the output gain for the final mix of dry and processed signals.

5.5.2 Transient Detection Section

Transients may be very different from instrument to instrument (see section 2.4).

To give the user control over the transient detection, a range of parameters are

available. The two input signals have separate parameters. It is important to note

that the transient analysis has an adaptive threshold, based on the RMS of the

signals.

Rel is the release time of the envelope analysis which the transient detection is

based on. Low values allow for more frequent transient detection, high values

allow for more stable RMS-analysis for the dynamic threshold.

Thresh sets the threshold for transient detection. This threshold is relative to the

RMS level of the signal, meaning that a threshold of 0 dB would result in tran-

sients being detected all the time, and a higher threshold would require stronger

amplitude changes for detection.

LowThresh sets a minimum amplitude for detection, regardless of the RMS level.

MinTime sets a minimum amount of time between transient detections.

TransMonitor lets the user hear a click every time a transient is detected. This

click is based on the input signal, making it easier to adjust the detection param-

eters. A ”LED” to the right of this knob also lights up every time a transient is

detected.

Chapter 5. Results 52

5.5.3 Convolution Section

MaxSegLen is related to Nmax, and sets the maximum Ls. It is given in seconds

(calculated from the block size and sampling frequency) to be intuitive for mu-

sicians. Longer segments lead to more smearing in time, making the inputs less

distinguishable.

BlockSize sets LB. This mainly affects output delay, and also has an impact on

processor use. The impact depends on segment length, so the optimal block size

varies. Any block size below 2048 samples is lower than the JND (see section 2.5),

which implies no noticeable delay for performers.

MaxProcs sets the maximum amount of parallel processes. Fewer processes lowers

the load on the processor, and makes the output less complex and time-smeared.

Higher amounts are closer to the sound of convolution. Note that the number of

needed processes never exceeds log2Nmax, so increasing this parameter past that

has no noticeable effect, see section 6.4.1.

Chapter 6

Discussion

The ultimate goal for this thesis was to make a sound effect that uses an algorithm

which performs convolution between two audio signals in real-time. As described

in section 2.1.1, general convolution between two signals x1 and x2, will result in

a signal y(n), computed as

y(n) =
∞∑

k=−∞

x1(k)x2(n− k). (6.1)

The equation is restated here for practical reasons. When seen in context with the

goals of this thesis, stated in section 1.1, usage of equation 6.1 in the algorithm

implies some inherent constraints.

The limits in the summation span from −∞ to ∞. Thus, computation with

equation 6.1 implies usage of every sample from start to end, in both x1 and x2,

whenever a sample is to be sent out of the audio effect. Because the audio effect is

to operate in real time, it is subject to the constraint that future samples are not

available, and the straightforward usage of equation 6.1 is therefore impossible.

A natural way to handle the fact that future samples are not available, would be

to completely omit the usage of future samples. The output signal y(n) could then

53

Chapter 6. Discussion 54

be computed as,

y(n) =
n∑

k=−∞

x1(k)x2(n− k). (6.2)

Straightforward usage of equation 6.2 implies the use of every former sample from

the input. The consequence is that the computation power needed will eventually

grow beyond what is available. In addition, output produced by all the input

samples up to this point would be intolerably muddy for all but the most ethereal

performances, and put little emphasis on what is happening in the present moment.

The usage of all previous samples is therefore not applicable.

One way to ensure that the computational power is kept within an acceptable

limit, as well as putting a stronger emphasis on what is currently happening, is

to omit some of the former samples every time new samples are included in the

computation. All algorithms explored in this thesis employ some variation of this

idea.

6.1 Preliminary Algorithm

The preliminary algorithm is an implementation that was done in the beginning of

this project to gain insight into real-time convolution in general and to identify fu-

ture problems that might be encountered. An explanation on how the preliminary

algorithm works can be found in section 4.1. It was shown early in the process

that the preliminary algorithm fails to meet the criteria stated in section 1.1. The

following sections describe the problems inherent in this method.

6.1.1 Why the Preliminary Algorithm Fails

Tests with single sines of equal frequency and phase on both of the inputs were

sufficient to show that the preliminary algorithm fails to meet the solution criteria.

They showed that the buffer sizes have to be adjusted to the frequency of the

input signals, for the effect give acceptable output. Convolving two sines of equal

Chapter 6. Discussion 55

frequency should ideally result in a sine identical to the input, but this was not

the case.

The files 440AsInput BufferX.wav are generated with the preliminary algorithm

using buffer sizes of X samples. From listening to these it is clear that the results

generated with buffer sizes of 100, 300 and 500 samples are most similar to what

we expected. Fig. 5.1a and 5.2a show that the outputs with buffer sizes of 100

samples and 300 samples, respectively, is similar to a sine. Fig. 5.3a and the

associated sound file show that the output generated with a buffer size of 350

samples is far from a sine.

If Fs is the sampling frequency, one period of a sine tone with frequency F will

contain

SiP =
Fs

F
[samples]. (6.3)

Since a 440 Hz sine tone contains 44100
440

= 100.2273 ≈ 100 samples in each period,

all of the files generated with buffer sizes close to integer multiples of a period of

the input sines, sound as expected. However, when changing the buffer size to

not being an integer multiple of a period of the input signals, the results change

dramatically. The result with buffer size of 350 samples exemplifies this. Heavy

side lobes are produced in the output. To avoid this, the buffer size would have

to be adjusted to be a multiple of the period of the input signals. Musical signals

rarely only contain single frequencies, and the buffer lengths would therefore need

to be adaptive to all the frequency components in the input signals, which is

infeasible. An attempt to deal with this was fading, described in the following

section.

6.1.2 Independent Buffer Sizes, Overlap on Output and

Fading of Overlap

The preliminary algorithm has the ability of having independent buffer sizes on

the two input signals. The idea was that the buffer sizes would be determined

by a transient analysis in later versions, and the signals could have transients in

Chapter 6. Discussion 56

different locations. In such an implementation, different buffer sizes could occur,

and therefore it was desirable that the algorithm was able to handle it. The

preliminary algorithm provides two different modes on how samples are drawn

out of the input signals and put in the buffers, namely the SkipOnSmall mode

and the OverlapOnLarge. It also has different modes on how to put convolution

results on the output. The overAdd small mode was meant to be used along with

the OverlapOnLarge buffer mode, and the overAdd large mode was meant to be

used along with the SkipOnSmall.

SkipOnSmall was quickly abandoned, as it would mean throwing away parts of the

signal with the shortest block length before it was ever processed. OverlapOnLarge,

however, caused clicking with a period equal to the large block size. This can be

heard in 440AsInput B 1 2000 B 2 100 NoFade.wav. To avoid this, as well as

avoiding the side lobes mentioned in section 6.1.1, fading between output buffers

was introduced, see section 4.1.3. The fading that gave the best results was

expFade2, which can be heard in 440AsInput B 1 2000 B 2 100 expFade2.wav.

The clicking was strongly attenuated, but the side lobes remained if the short

block size was not a multiple of the input sine period. An example of this is

440SinesAsInput B 1 2000 B 2 150 expFade2.wav.

6.2 Algorithm Version 1

To make the convolution more efficient, a frequency domain algorithm was intro-

duced. The algorithm in this version was based on Istvan Varga’s ftconv. It is

a hybrid of straight time domain convolution and traditional frequency domain

methods. It has several advantages over both of these approaches. The downfall

of time domain convolution is its processing time of O(n2), while the problem

of traditional frequency domain multiplication is that the entire signal must be

buffered up before it can be Fourier transformed and subsequently multiplied. See

section 2.2 for more informations. ftconv finds a middle-ground between these,

allowing one to partition the signals into blocks before the FFT is performed, and

Chapter 6. Discussion 57

resulting in a delay of only the block size. This allows for long segments to be

convolved efficiently, and with little output delay. It will also be shown in section

6.4 that this method, combined with the extensions of later versions, lead to the

convolution events defined in section 4.4.1.

One disadvantage is that for the FFT to be maximally efficient, the blocks in the

segments must have a length that is 2n. This is because we use a radix-2 FFT.

This limits the flexibility and ease of use of the algorithm, as it is not intuitive for

a musician why the block sizes are so severely limited. It also demands that we

have two settings for the segment length, the block size LB and the block number

N . Ideally the segment length would be given in seconds, which is a unit anyone

can relate to. In the GUI for the final implementation, the segment length is given

in seconds, and the block number is rounded to the closest fit, see section 5.5.3.

ftconv is meant to be used with one constant impulse response stored in a ta-

ble, and a live signal being continuously sent into the opcode. Because ftconv

originally convolves inputs of equal length for every iteration, it was deemed im-

practical to allow for segments of independent length. Unlike what is allowed in

the preliminary algorithm, it was decided that the segments for both signals would

have equal length.

When the impulse response is replaced by a changing live signal, it is not immedi-

ately obvious how the segments should be updated. The first attempted approach

was to have a fixed Ls, and throw the oldest block pairs out every time a new pair

is inserted. Testing revealed several disadvantages to this naive method; delayed

changes, indistinct transients, and destructive interference leading to side lobes.

6.2.1 Delayed Change

Each time a new FT block pair enters the segment, they are first multiplied with

the oldest block pair, and are not multiplied with each other until they reach the

middle of the segment after about Ls/2 samples. We can also see that we have a

delay of Ls/2 samples before there is output in fig. 5.6 and 5.5. Not only does this

Chapter 6. Discussion 58

make transitions between chords slow and gradual, but with long segments this

could lead to harmonically distinct parts, such as parts in different keys, being

convolved, resulting in disharmonic output. While not necessarily an unwanted

result, it would be unfortunate if it was very difficult for musicians to avoid this

without forcing them to have a very low block size. An example may be heard in

disharmonyFromDelayedChange.wav, where synth.wav is convolved with itself.

6.2.2 Indistinct Transients

The lack of a dynamic segment length has a great effect on the distinctiveness

of the transients in a signal. This is apparent in indistinctTransientsSynthDrum-

loop2.wav, where synth.wav and drumloop2.wav are used as input. The result is

plotted in fig. 5.6.

Another situation in which transients would be indistinct is when a signal of

approximately constant amplitude, for example a synthesizer pad, enters the seg-

ment. When the signal first enters the segment, most blocks will again be zero.

Assuming that the other channel is for this period filled with a constant signal, the

output will keep growing in amplitude until the first channel’s segment has been

filled with the new signal. Instead of getting a sharp attack and a constant am-

plitude out, the output amplitude would not be stabilized until after Ls samples.

This is apparent in fig. 5.5, where a sharp and distinct transient on the input rises

slowly on the output. It can be heard in the beginning of disharmonyFromDe-

layedChange.wav.

6.2.3 Destructive Interference

The perhaps most alarming problem with this naive approach is the heavy destruc-

tive interference it introduces. The interference was observed to have the form of

an amplitude modulation with a frequency of 1/LB samples, which is similar to

the distortion in the preliminary algorithm. The reason for this can most easily

be illustrated with a simple sine as an example. As can be seen in fig. 5.7, even if

Chapter 6. Discussion 59

the input signals are two identical sines which are in phase, the output blocks are

not necessarily in phase. The phase of the output is dependent on the block size,

resulting in interference if the input period does not match the block length. This

is of course the case in most instances, as a musical signal is often a harmonically

complex signal containing many frequencies at one time. Fig. 5.8 shows that the

results are in phase when the sines have a period with a rational relationship to

the block size.

6.3 Transient Detection (Algorithm Version 2)

To deal with delayed change and indistinct transients, transient detection was

introduced. With this addition, the slow rise of amplitude described in 6.2.2 is

strongly diminished, while the disharmonic convolution described in 6.2.1 is com-

pletely done away with, assuming that harmonically distinct sections are separated

by a transient in one of the signals. This is also important to give performers im-

mediate feedback.

It is obvious by comparing fig. 5.9 with fig. 5.6 that the transients on the

output are much more similar to the input. This can also be heard in drum-

loop2 synth version2 transDet.wav.

What does remain is the destructive interference. It was however observed that

the interference only occurred when the segments reached a full state before a new

transient was detected. This is audible in

Git1Akk Syn1Akk ver2 blockSize512 blockNum100.wav, where one can hear that

LBN = 51200 samples (1.16 seconds) after the transient, disharmony is intro-

duced. In this state, this version functions exactly as version one. That is, it

takes in one block pair, and throws away the segments’ oldest block pair. Once a

transient is detected, the interference disappeared until the full state was reached

once again. It was also observed that the throwing away of all old blocks when

a transient occurs resulted in a thinner, if clearer, sound than version 1. It is

also problematic, with respect to the stated criteria, that the blocks are thrown

Chapter 6. Discussion 60

away without finishing their processing, as it entails a sound that is less close to

convolution. For this reason, parallel processes were introduced.

6.4 Parallel Processes (Algorithm Version 3)

To find a more sophisticated way to handle blocks thrown after a transient detec-

tion, several methods were explored. After testing, ThrowAll was deemed to be

the best choice. It will be shown that using this throwing algorithm will lead to

the realization of convolution events, which is mathematically equivalent to con-

volution of segments between transients. See section 2.3 for a mathematical proof

of this.

6.4.1 Alternative 1: ThrowAll (Used in Final Implementa-

tion)

FTB 1

FTB 1

Seg 1

FTB 1

FTB 1

Seg 1

FTB 2

FTB 2

FTB 1

FTB 1

Seg 1

FTB 3

FTB 3

FTB 2

FTB 2

FTB 2

FTB 2

Seg 1

FTB 3

FTB 3

FTB 3

FTB 3

Seg 1

Seg 2 Seg 2 Seg 2Seg 2 Seg 2

Figure 6.1: Example of a process where a transient is detected after three
blocks have entered. The arrows denote multiplications. Notice that FT Block
pair 1 exits the process first, followed by FT Block pair 2, etc. This illustrates

five iterations.

As shown in section 2.3, in the blockwise convolution of a segment of finite length,

the oldest blocks are convolved first, and the newest blocks are convolved last.

Once the length of a segment has been established, i.e. when a new transient

is detected, it follows that the oldest blocks will eventually have been convolved

with every block of the other signal, and may be discarded. As it turns out,

Chapter 6. Discussion 61

this point is reached exactly when a transient occurs, that is TN+1 is exactly one

sample after E1,N (from eq. (2.15) and (2.16)). This means that block 1 may be

discarded immediately after a transient is detected. Note that the proof in section

2.3 operates in the time domain, but since convolution in the time domain is

equivalent to multiplication in the frequency domain, this is not a problem. Since

we use a frequency domain algorithm, we will use multiplication of FT blocks

interchangeably with convolution of time domain blocks in this particular section.

See section 2.1.2 for more information on this.

Fig. 6.1 shows an example of a process’s lifespan, in this case a transient is detected

after three blocks have entered the process. Comparing it with the terminology

stated in section 2.3, this is equivalent to a segment with N = 3 blocks. At

first, we multiply only the first FT block pair, then the second FT block pair

enters and is multiplied with the first FT block pair. Once the first FT block pair

has been multiplied with all the other pairs, it may be discarded. This happens

exactly when a transient is detected and the process is made semi-active. Once

all FT block pairs have been multiplied with all the other pairs, the convolution

is complete, and the process becomes inactive.

This algorithm is equivalent to the blockwise convolution described in 2.3. That

blockwise convolution is mathematically equivalent to the convolution of two seg-

ments, and the limits of these segments are decided by transients. Consequently,

we have arrived at a convolution event.

There is, however one special case in which a necessary precaution must be taken.

The user sets Nmax, which is the maximum number of blocks allowed in a seg-

ment. There must be a limit, since if no transients occur, the segments would

grow infinitely in length, and both infinite memory and processing power would

be necessary. Therefore, if Nmax is reached, the active process is turned into a

semi-active process, and a new active process is created. This has two benefits:

The processing power used can be limited by the user, and since we never reach

a state in which one block pair is thrown out every time a one block pair is taken

Chapter 6. Discussion 62

in, the destructive interference described in all previous versions is highly atten-

uated. This can be heard in 440HzSine FinalVersion 512 BS 100B.wav, as well

as gitar1akkord synth1akkord FinalVersion.wav. In fig. 5.13 and 5.14, one can

see an AM distortion. However, in contrast with previous versions, it has a pe-

riod of Ls. This is usually far below the audible frequency range (< 20 Hz)[18,

p. 1], and causes no sidelobes, as one can see from the FFT plot. This sort

of AM distortion can be mostly done away with by using a compressor, and is

not a big problem with complex signals containing several frequencies, like gi-

tar1akkord synth1akkord FinalVersion.wav. The lack of sidelobes ensures that no

unnatural disharmony is introduced.

Since a convolution is not complete until after a transient is detected1, there may

be several convolutions going on in parallel. This is handled by creating semi-

active processes. The process in fig. 6.1 becomes semi active after it receives a

transient, and then starts throwing blocks.

The maximum amount of needed processes is equal to log2Nmax, because all pro-

cesses(except the active process) throw one block per iteration. The maximum size

a process can attain before becoming semi-active is Nmax. To get the maximum

amount of parallel processes, one has to get each process as long as possible; this

happens when one process is filled to the max, then a transient occurs when the

following process is half full (resulting in two processes with Nmax/2 blocks. Then

a transient occurs when the next process has Nmax/4 blocks, and so forth. This

leads to maximally log2Nmax processes in parallel.

The transients are much clearer than in Version 1, but a little less clear than in

version 2. However, since we include a parameter limiting the maximum amount

of processes, the user may choose to use only 1 process, and the result is the same

as Version 2, without the destructive interference. The difference can be seen in

fig. 5.15 and 5.16, and heard in drumloop2 synth FinalVersion 10Process.wav and

drumloop2 synth FinalVersion 1Process.wav

1The length of a convolution result is twice as long as the input, see eq. (2.2)

Chapter 6. Discussion 63

Combining the parallel processes and the process handling method used in ThrowAll,

a method for live convolution which meets all the technical goals proposed in sec-

tion 1.1 has been developed!

6.4.2 Alternative 2: ThrowLast

ThrowLast is an alternative way of handling the parallel processes. It’s function-

ality is described in chapter 4.4.2. It differs from the ThrowAll version in that it

throws away FT blocks more rarely. As opposed to the ThrowAll version, which

throws away one FT block pair from every semi-active process for every iteration,

the ThrowLast version only throws away one FT block pair from the oldest semi-

active process. If transients occur frequently, several processes will be running in

parallel in both of the versions. If several processes are running in parallel in the

ThrowAll version, several FT blocks will be thrown away while only one new FT

block pair is added. The ThrowLast version was developed because it was not

obvious why the algorithm should throw away more FT blocks than the amount

added. If blocks were thrown away more rarely, the output would be generated

based on more information. We believed that an output based on more informa-

tion would be more likely to sound fuller and more musically pleasing. At least

it would increase the probability of having overlap in frequency between the two

input signals.

Tests with the ThrowLast version showed that it has a clear weakness. If several

processes are running in parallel, the segments in the semi-active processes will

not be altered before their associated process become the oldest one. This results

in that they contribute to the output with the exact same convolution result in

subsequent iterations. This leads to unwanted periodicity which is audible and

which dominates the output. The section 5.4.2 presents some plots and where

to find audio files which show this phenomenon. The unwanted periodicity has

a fundamental frequency whose period is the block size LB. For example, in

ThrowLast256+SingleSine172Hz.wav, we get

Chapter 6. Discussion 64

ffundamental =
Fs

LB

=
44100[samples

s
]

256[samples]
= 172.265625[Hz]. (6.4)

6.4.3 Alternative 3: TwoProc

Before the final real-time implementation was done, we thought that memory

management in the ThrowAll version and the ThrowLast version would be un-

necessarily complicated, due to several processes running in parallel. We thought

that a version with maximally two processes running in parallel would simplify the

memory management significantly, and perhaps not negatively affect the output.

Special cases of the ThrowAll version or the ThrowLast version where the maxi-

mum allowed processes is set to two, would both accomplish this, but they would

both also result in versions where processes are prematurely ended if transients

occur frequently. The idea with the TwoProc version was to have an implemen-

tation that only threw away one FT Block pair for every pair added, while only

having maximally two processes running in parallel.

One reason for choosing the ThrowAll version over the TwoProc version was the

mathematical analysis that was done in section 2.3. This mathematical analysis

proves that ThrowAll realizes actual convolution of segments between transients

in the input signals, or in the jargon of this thesis, the realization of convolution

events . The way the TwoProc version handles transients results in a convolution

method that suddenly jumps forward in time, resulting in a messy output. To

understand this concept, imagine that in one iteration, both of the processes in

TwoProc contains several FT Blocks. If a transient is present during the next

iteration, the oldest FT Blocks in the old process will be multiplied with FT Blocks

associated with a point in time that is way beyond the point in time associated

with the FT Blocks with which they were multiplied in the last iteration.

Another reason for not choosing the TwoProc version came from simple tests with

a drum loop and a synthesizer as input signals, and with transient detection on

the drum loop to ensure that new processes were started frequently. See section

Chapter 6. Discussion 65

5.4.3 for information on the test results. When listening to these audio files, it is

clear that the old process dominates the output too much if the segment size is

large. The larger the segment size is, the more dominating the old process will be.

TwoProc could have been usable if strict restrictions were set on the segment size.

This would obviously lead to an effect with fewer possibilities. It was therefore

concluded that the reduced complexity of the memory management in a real-time

implementation of TwoProc would not be worth the reduction of possibilities it

would involve when comparing them with the possibilities of ThrowAll.

6.4.4 Level Control and Normalization

In convolution, there is a build up and a fading out of amplitude, called the ”tails”.

In most applications, the impulse response one convolves a signal with is signifi-

cantly shorter than the signal. The tails occur when there isn’t a complete overlap

between the signal and the impulse response, and have lengths approximately

equal to the impulse response. One usually normalizes the impulse response so

that there is no amplification of the output, something which may be done because

the impulse response is known and unchanging.

In our algorithm, none of these assumptions apply. The impulse response is neither

shorter than the signal, nor known in advance. In fact, the ”impulse response” has

equal length to the signal, resulting in output which is basically two tails, with no

midsection where the amplitude stabilizes. An example can be seen in the bottom

of fig. 5.7. One can see the amplitude increasing and decreasing. The output

amplitude may become very large as well, since normalization of the ”impulse

response” cannot be performed beforehand.

To deal with these problems, we have developed the Total Block Normalization

method, as described in 4.4.4, and illustrated in fig. 4.18. With this method all

FT Block pairs will have equal contribution to the output. More specifically, they

will be weighted with a factor of 1/BTot, where BTot is the total number of FT

Block pairs on which the output is based.

Chapter 6. Discussion 66

Using this method, the output amplitude does not build up as the number of

blocks in a process increases. In addition, this keeps the amplitude from growing

unchecked.

6.5 Computational Complexity

To understand how the different parameters affect the processing time, an analysis

of the computational complexity is needed. In the derivation of the complexity,

the transient analysis and handling of processes is ignored, as the main load on

the processor is the multiplication and addition of blocks.

The following pseudocode gives a simplified overview of the total algorithm:

1 Perform FFT on new input block pair

2

3 for (all blocks in active and semi−active processes)

4 for (every sample in an FT block)

5 perform multiplication and addition of FT block sample

6 end

7 end

8

9 Perform IFFT on output block

A radix-2 FFT has a computational complexity of (N/2) log2N complex multi-

plications, and N log2N complex additions [5, p. 519-526]. Each block has LB

samples,but they are also padded with LB zeros, resulting in a length of 2LB. There

are two input blocks which must be Fourier-transformed, ergo the complexity of

this operation is 2((2LB/2) log2 2LB) = 2LB log2 2LB complex multiplications and

2(2LB log2 2LB) = 4LB log2 2LB complex additions.

The multiplication and addition of block samples happens BTot times, where BTot

is the sum of the number of block pairs contained in all of the active and semi-

active processes. There are 2LB complex samples in each FT block which will all

Chapter 6. Discussion 67

be multiplied and added, so this for-loop has a complexity of 2BTotLB complex

multiplications and 2BTotLB complex additions.

The IFFT must only be performed on a single block, and has the same complex-

ity as an FFT, and therefore the complexity of the last operation is LB log2 2LB

complex multiplications and 2LB log2 2LB complex additions.

The total complexity is 3LB log2 2LB + 2BTotLB complex multiplications and

6LB log2 2LB + 2BTotLB complex additions. BTot ≤ Nmax, so the total complexity

C is

C ≤ 3LB log2 2LB + 2NmaxLB[complex multiplications]

+

6LB log2 2LB + 2NmaxLB[complex additions].

(6.5)

The computational complexity is therefore O(LB logLB + NmaxLB).

6.5.1 Computational Complexity Versus Output Delay

The time available to the processor, every time it is waiting for a new block pair

to be buffered, is LB/Fs seconds. Dividing this by the operation number stated in

eq. (6.5), and assuming that a multiplication takes k times as long as an addition,

we get

T (LB, Nmax) =
1

Fs((3k + 6) log2 2LB + (2k + 2)Nmax)
[s/operation]. (6.6)

To best see how the block size affects processing time, it is appropriate to consider

LSmax = NmaxLB, as the segment length is, in fact, what is relevant to a musician.

The segment length, after all, is what decides how many seconds of audio can be

convolved at a time. Substituting Nmax with LSmax/LB, we get

T (LB, LSmax) =
LB

Fs((3k + 6)LB log2 2LB + (2k + 2)LSmax)
[s/operation]. (6.7)

Chapter 6. Discussion 68

10−6[s]

log2 of LB[samples]

log2 of LSmax[samples]

0

10

20

30

0 2 4 6 8 10 12 14

×

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.2: Plot of time available to the processor per operation, with loga-
rithmic axes, log2 LSmax versus log2 LB, generate with eq. (6.7).

This equation has been graphically represented in fig. 6.2, assuming k = 1, which

is reasonable for an x86-processor. Here, high values are good, i.e. the processor

has more time available per operation. From fig. 6.2, one can see that a higher

block size improves the runtime only when LSmax > 25 = 32, and even above that,

the block size only lightens the CPU load up to a certain size, after which it starts

increasing again. Typical values for LSmax range from 212 to 218 samples (0.1 to

6 seconds), ideal block sizes range from 212 = 512 to 214 = 16384 samples. Still,

even block sizes down to 64 samples leave time in the order of 10−7 seconds per

operation, which is in the MFLOPS range, a fairly low load in these times. Even

on the most extreme settings, on a five year old laptop, no more than 40% of the

CPU is used if LB = 256.

Chapter 6. Discussion 69

6.6 Esthetic Considerations

This section gives a qualitative description of the effect, as well as suggestions for

areas of use.

6.6.1 Characteristics of the Effect

The frequency-multiplicative properties of convolution have several consequences

which are important to the sonic characteristics of the output.

Much like cross synthesis[13, p. 518], our cross convolver typically results in more

energy in the lower frequency bands. This is due to most tonal instruments having

overtones which have less energy than the fundamental frequency. Because the

frequencies of the two input signals are multiplied, high frequency content which

is low in amplitude becomes even lower on the output. To deal with this, we

suggest using an equalizer, which alleviates this symptom considerably.

The dynamic range of the output is also considerable. We get very high amplitude

output if the fundamental frequencies of the input signals overlap. Conversely, if

there is only overlap with overtones/subharmonics, or fundamentals which do not

quite match, the output can be very low. We suggest using a compressor or limiter

on the output to alleviate this problem.

Another important characteristic is the time-smearing effect of convolution. In

our algorithm, the convolution settings (block size, segments length and maximum

process number) can be used to control the smearing. With longer segment lengths

and higher numbers of processes there is a greater degree of smearing. Transient

detection also affects time smearing, and frequent detections lead to a less smeared

output.

Chapter 6. Discussion 70

6.6.2 Areas of Application

One obvious application in which the effect can be used is in Live Electronics, a

performance category which is associated with improvisation and experimentation

on new ways to generate and process sound. One example of performers operating

within this category is T-EMP (Trondheim ensemble for Electroacoustic Music

Performance) consisting of people from The Music Technology section at NTNU

Department of Music. They have already been experimenting with the use of live

convolution [3].

We also believe that the effect can be used in pop-music. In pop-music, a great

deal of the final result is done through post-processing. Even though the effect

has been designed to operate in real-time, there is no inherent limitations in the

effect that prevents it from being used in post-processing.

Another application in which the effect can be used is in art installations. The

effect has great possibilities of making floating sound landscapes, like the sound

landscapes found in ambient music. This also leads us to believe that the effect

can be used to make abstract sound effects in movies and radio plays.

6.6.3 The Effect in Action

Several examples of musicians using the effect have been contributed, and can be

found in the Music Created Using The Effect folder in the digital appendix.

Thomas Etholm-Kjeldsen’s music falls within the pop genre, using the effect with

guitars, drums and synthesizers. The effect input/output has also been put in

separate files, so that one may hear the contributions the effect has made to the

music. The effect was applied in post-production.

Jakob Eri Myhre and Olaf Mundal’s work is improvisational, live electronics, using

a trumpet (Myhre) and a guitar (Mundal). These only use the output of the effect

in the final work. The effect was used live.

Chapter 6. Discussion 71

Jakob Eri Myhre’s solo contributions are fleeting soundscapes, which could be used

in film or art installations. They use piano, flutes, and synthesizers, among other

instruments. The effect was applied in post-production.

Our own contribution, as Conwolves, is a short pop tune, using vocals, guitar,

drums, synthesizer, and violin as input to the effect. The effect was applied in

post-production.

Chapter 7

Future Work

The algorithm developed in this thesis provides a framework for live convolu-

tion. It is conceptually divided into the following parts: Input buffering, transient

analysis, signal segmentation, convolution engine, and output buffer. In our im-

plementation, choices have been made for how these parts act and interact, choices

which may or may not be suitable for every application. There is still room for

experimentation and improvements, some of which are suggested here.

7.1 Independent Segment Length

In our final implementation, the convolution engine works with segments that are

separated from each other by the transient analysis component. It was decided

to keep the segment length of both signals equal in each process, and therefore

start a new segment in both signals each time a transient is detected on either

signal, mainly for practical implementation reasons. This need not necessarily

be the case. There may be a relevant way in which to keep the segment lengths

independent. This might lead to more rhythmically interesting output.

72

Chapter 7. Future Work 73

7.2 MIDI-Controlled Segmentation

An alternative to transient analysis is using MIDI trigger signals to segment the

signals. A possible solution is to synchronize the segmentation to the DAW’s

clock, performing a segmentation at every 1/4 beat, 1/6 beat, or any other time

signature. This could give interesting rhythmic effects to two stationary inputs.

7.3 Zero-Delay FFT-Based Convolution

A method for zero-delay FFT-based convolution has been proposed [19]. This

technique can be used in combination with our block convolver at longer block sizes

to provide zero delay, and keeping the efficient nature of FFT-based convolution.

7.4 Automatic Gain Control

A problem with the current algorithm is that output amplitudes may vary wildly,

depending on the frequency content of the input. If there is frequency overlap

only on the overtones of one of the signals, or if the overlap is imperfect (e.g.

two tones which are close, but not exactly the same), output will be weak. If

the fundamental frequencies of periodic signals align, output amplitudes may be

a thousandfold higher. This is not intuitive for musicians, who are more used to

additive frequency interaction between instruments than multiplicative. It would

be advantageous to find a way to control the dynamic range of the output. At this

point, we have had reasonable success with using a compressor on the output, but

perhaps a more tailored solution would be in order.

Chapter 7. Future Work 74

7.5 Input Amplitude Thresholding for Compu-

tational Efficiency

As should be obvious by this point, if there is zero input on one channel, there is

zero output. To save unnecessary computations, one could stop frequency multipli-

cations once the input level on one or both of the channels falls below a threshold,

potentially saving lots of power, which could be useful in a battery driven hardware

implementation.

Chapter 8

Conclusion

An algorithm for live convolution has been developed. At the outset of this thesis,

several goals were set. The algorithm was to:

� Use convolution, and sound like convolution

� Run in real time

� Be intuitively usable for musicians

The algorithm was mathematically proven to give out the convolution of live sig-

nals in real time, given that the signals are segmented somehow. We segment the

signals using transient analysis, which offers musically relevant segmentation, and

allows musicians to control the segmentation simply by playing their instruments.

The output delay may be less than 1ms at the extreme, and performs reasonably

well with about 6ms of delay, which is well below what most people are able to

distinguish. The two first goals have been reached.

We have created a GUI, and implemented the effect as a VST plug-in. These are

both important steps for making it accessible to musicians. As shown by the music

examples attached to this thesis, the effect has been successfully used in a several

contexts, including post-processing for popular music, and experimental work, as

well as live electroacoustical improvisation. The musicians were given minimal

75

Chapter 8 Conclusion 76

instructions, and we therefore have reason to believe that the last goal seems to

have been reached, although more user tests are needed.

We hope that this effect will be of use to someone, and that convolution has been

revealed to have another useful trick up its sleeve.

Appendix A

Final Implementation

A.1 Csound Code

In the following code, the Cabbage code ranges from line 1-39. The transient

detection section is from line 114-152, and the opcode is called on line 200.

1 <Cabbage> ;Code within the Cabbage tags describe the GUI

2 form size(623, 310), caption("LaivConv"), pluginID("Laiv")

3 ;form size(623, 435), caption("LaivConv"), pluginID("Laiv")

4 image bounds(0, 0, 623, 310), file("background.jpg"), ...

shape("round")

5

6 groupbox bounds(0, 0, 80, 310), text("Input Gain"), ...

fontcolour("white")

7 rslider channel("input1Gain"), bounds(0,51,70,70), ...

text("Gain 1"), range(0,1, 0.5, 1, 0.01), tracker(113,171,236)

8 rslider channel("input2Gain"), bounds(0,238,70,70), ...

text("Gain 2"), range(0,1, 0.5, 1, 0.01), tracker(113,171,236)

9 groupbox bounds(81, 0, 380, 310), text("Transient Detection"), ...

fontcolour("white")

10

11 groupbox bounds(86, 27, 370, 19), colour(0,0,0,0), ...

text("Channel 1"), fontcolour("white")

77

Appendix A. Final Implementation 78

12 rslider channel("transRelease1"), bounds(90,51,70,70), ...

text("Rel [s]"), range(0.1, 0.4, 0.3, 1, 0.01), ...

tracker(113,171,236); envelope follower release

13 rslider channel("transThresh1"), bounds(160,51,70,70), ...

text("Thresh [db]"), range(1, 15, 7, 1, 0.1), ...

tracker(113,171,236) ; attack threshold (in dB)

14 rslider channel("transLowThresh1"), ...

bounds(230,51,70,70), text("LowThresh"), range(0.1, 1, 0.5, ...

1, 0.01), tracker(113,171,236) ; lower threshold for ...

transient detection (adaptive)

15 rslider channel("transMintime1"), bounds(300,51,70,70), ...

text("MinTime [s]"), range(0.01, 1, 0.05, 1, 0.01), ...

tracker(113,171,236) ; minimum duration between events, ...

(double trig limit)

16 rslider channel("transMonitor1"), bounds(370,51,70,70), ...

text("TransMonitor1"), range(0, 1, 0, 1, 0.01), ...

tracker(113,171,236) ; Volume of transient monitor1

17 groupbox bounds(86, 214, 370, 19), text("Channel 2"), ...

fontcolour("white")

18 rslider channel("transRelease2"), bounds(90,238,70,70), ...

text("Rel [s]"), range(0.1, 0.4, 0.3, 1, 0.01), ...

tracker(113,171,236) ; envelope follower release

19 rslider channel("transThresh2"), bounds(160,238,70,70), ...

text("Thresh [db]"), range(1, 15, 7, 1, 0.1), ...

tracker(113,171,236) ; attack threshold (in dB)

20 rslider channel("transLowThresh2"), ...

bounds(230,238,70,70), text("LowThresh"), range(0.1, 1, ...

0.5, 1, 0.01), tracker(113,171,236) ; lower threshold for ...

transient detection (adaptive)

21 rslider channel("transMintime2"), bounds(300,238,70,70), ...

text("MinTime [s]"), range(0.01, 1, 0.05, 1, 0.01), ...

tracker(113,171,236) ; minimum duration between events, ...

(double trig limit)

22 rslider channel("transMonitor2"), bounds(370,238,70,70), ...

text("TransMonitor2"), range(0, 1, 0, 1, 0.01), ...

tracker(113,171,236) ; Volume of transient monitor

23 groupbox bounds(462, 0, 80, 310), text("Convolution"), ...

fontcolour("white")

Appendix A. Final Implementation 79

24 rslider channel("MaxNumBlocks"), bounds(467,25,70,70), ...

text("MaxSegLen"), range(0.1, 6, 1.5, 1, 0.01), ...

tracker(113,171,236) ;Maximum number of blocks

25 combobox channel("BlockSize"), bounds(462,105,80,70), ...

caption("Block Size"),value(5), items(16, 32, 64, 128, 256, ...

512, 1024, 2048, 4096, 8192, 16384) ;Maximum number of blocks

26 rslider channel("MaxNumProcs"), bounds(467,185,70,70), ...

text("MaxProcs"), range(1, 10, 10, 1, 1), ...

tracker(113,171,236) ;Maximum number of blocks

27 button channel("reInit"), bounds(467,265,70,20), ...

text("Reinit"), colour(255,255,0), value(0), fontcolour("red")

28

29 groupbox bounds(543, 0, 80, 310), text("Output Mix"), ...

fontcolour("white")

30 rslider channel("input1OutGain"), bounds(548,25,70,70), ...

text("Dry Input 1"), range(0, 1, 0, 1, 0.01), ...

tracker(113,171,236) ;Gain on dry output 1

31 rslider channel("input2OutGain"), bounds(548,95,70,70), ...

text("Dry Input 2"), range(0, 1, 0, 1, 0.01), ...

tracker(113,171,236) ;Gain on dry output 2

32 rslider channel("convOutGain"), bounds(548,165,70,70), ...

text("Conv Output"), range(0, 10, 0.5, 1, 0.01), ...

tracker(113,171,236) ;Gain on convolution output

33 rslider channel("totalOutGain"), bounds(548,235,70,70), ...

text("Total Gain"), range(0, 1, 0.5, 1, 0.01), ...

tracker(113,171,236) ;Gain on total mix

34

35 checkbox channel("transientDisplay1"), ...

bounds(442,75,10,10), value(0)

36 checkbox channel("transientDisplay2"), ...

bounds(442,262,10,10), value(0)

37

38 ;csoundoutput bounds(0,315, 623, 120), text("Output")

39 </Cabbage>

40

41 <CsoundSynthesizer>

42

43 <CsOptions>

Appendix A. Final Implementation 80

44 −d
45 −n
46 </CsOptions>

47

48 <CsInstruments>

49

50 sr = 44100 ;sampling rate

51

52 ksmps = 8 ;control rate

53

54 0dbfs = 1 ;max volume ref.

55

56 nchnls = 2

57

58 chn a "input1", 1 ;input channel 1

59 chn a "input2", 1 ;input channel 2

60 chn a "MasterOut", 2 ;output channel

61 chn a "TransientMonitor1", 2 ;Transient Monitor 1 channel

62 chn a "TransientMonitor2", 2 ;Transient Monitor 1 channel

63

64 ;−−−
65 ;−−−−−Instrument that takes in signal from the microphone −−−−−−−−
66 ;−−−
67 instr 1 ;Takes in input signals and send them to their ...

respective channels

68 aIn1, aIn2 ins

69 chnmix aIn1, "input1"

70 chnmix aIn2, "input2"

71 endin

72

73 instr 98 ;take in signals, do processing

74

75 aIn1 chnget "input1"

76 aIn2 chnget "input2"

77 kGain1 chnget "input1Gain"

78 kGain2 chnget "input2Gain"

79

80 iResponse = 50 ; response time in milliseconds

Appendix A. Final Implementation 81

81

82 aIn1 = aIn1*kGain1

83 aIn2 = aIn2*kGain2

84

85 ;Parameters for transient detection of channel 1

86

87

88 kAttack1 = 0.0001 ; envelope follower attack

89 kRelease1 chnget "transRelease1" ; envelope ...

follower release

90 kAtck db1 chnget "transThresh1" ; attack threshold ...

(in dB)

91 kLowThresh1 chnget "transLowThresh1" ; lower threshold ...

for transient detection (adaptive, relative to recent ...

transient strength)

92 kdoubleLimit1 chnget "transMintime1" ; minimum ...

duration between events, (double trig limit)

93 kTransMon1 chnget "transMonitor1"

94

95 ;Parameters for transient detection of channel 2

96

97 kAttack2 = 0.0001 ; envelope follower attack

98 kRelease2 chnget "transRelease2" ; envelope ...

follower release

99 kAtck db2 chnget "transThresh2" ; attack threshold ...

(in dB)

100 kLowThresh2 chnget "transLowThresh2" ; lower threshold ...

for transient detection (adaptive, relative to recent ...

transient strength)

101 kdoubleLimit2 chnget "transMintime2" ; minimum ...

duration between events, (double trig limit)

102 kTransMon2 chnget "transMonitor2"

103

104 ;reinitialize i−rate variables for transient detection every ...

second.

105 start:

106 timout 0, 1, continue

107 iLowThresh1 = i(kLowThresh1)

Appendix A. Final Implementation 82

108 idoubleLimit1 = i(kdoubleLimit1)

109 iLowThresh2 = i(kLowThresh2)

110 idoubleLimit2 = i(kdoubleLimit2)

111 reinit start

112 continue:

113 ;analyze transients. Transient analysis part mostly written by ...

Ã¿yvind Brandtsegg

114 #define analyzeTransients(N)#

115 aFollowIn$N follow2 aIn$N, kAttack$N, kRelease$N

116 kFollowIn$N downsamp aFollowIn$N

117 kFollowdbIn$N = dbfsamp(kFollowIn$N) ; convert ...

to dB

118 kFollowDelIn$N delayk kFollowdbIn$N, iResponse/1000 ; ...

delay with response time for comparision of levels

119

120 kTrigIn$N init 0

121 kLowThresh$N init 0

122 kTrigIn$N = ((kFollowdbIn$N > kFollowDelIn$N + ...

kAtck db$N) ? 1 : 0) ; if current rms plus threshold is ...

larger than previous rms, set trig signal to current rms

123

124 ; avoid transient detection of very soft signals (adaptive ...

level)

125 if kTrigIn$N > 0 then

126 kLowThresh$N = (kLowThresh$N *0.7)+(kFollowIn$N ...

*0.3) ; (the coefficients can be used to adjust ...

adapt rate)

127 endif

128

129 kTrigIn$N = (kFollowIn$N > kLowThresh$N *iLowThresh$N ? ...

kTrigIn$N : 0)

130

131 ; avoid closely spaced transient triggers (first trig ...

priority)

132 kDouble$N init 1

133 kTrigIn$N = kTrigIn$N * kDouble$N

134 if kTrigIn$N > 0 then

135 reinit double$N

Appendix A. Final Implementation 83

136 endif

137 double$N:

138 kDouble$N linseg 0, idoubleLimit$N, 0, 0, 1, 1, 1

139

140

141 ; amplitude

142 kamp$N = kFollowIn$N

143

144 ; delay triggers to sync with amp analysis

145 ;kTrigIn$N delayk kTrigIn$N, 0.02

146 kTransient$N = kamp$N * kTrigIn$N

147 ;; split transients and sustain

148 aTransient$N upsamp kTrigIn$N

149 aTransEnv$N follow2 aTransient$N, 0.001, 0.2; a$Ndel ...

delay a$N, iResponse/1000

150 ; asplitTrans$N = a$Ndel * aTransEnv$N

151 ; asplitSustain$N = a$Ndel * (1−aTransEnv$N)
152 #

153

154 $analyzeTransients(1)

155 $analyzeTransients(2)

156 rireturn

157

158 chnset kTransMon1*aIn1*aTransEnv1, "TransientMonitor1"

159 chnset kTransMon2*aIn2*aTransEnv2, "TransientMonitor2"

160

161 ;initial settings for convolution knobs

162 kBlockSizeSamp init 256

163 kBlockSize init 5

164 kMaxNumProc init 10

165 kBlocks init 258

166 kNormMode init 1

167

168 kBlockSize chnget "BlockSize"

169 kSegLen chnget "MaxNumBlocks"

170 kMaxNumProc chnget "MaxNumProcs"

171 kButton chnget "reInit"

172 kNormMode chnget "NormMode"

Appendix A. Final Implementation 84

173

174

175 ;convert from combobox output to blocksize. Convert from ...

seconds to block number

176 kBlockSizeSamp pow 2,kBlockSize+3

177 kBlocks = round(kSegLen*44100/kBlockSizeSamp)

178

179 ;initial settings for laivconv opcode

180 iBlockSize init 256

181 iBlockNum init 258

182 iMaxNumProc init 10

183 iNormMode init 1

184 iSkipInit = 1

185

186

187 kParamChange changed kButton

188 if (kParamChange == 1) then

189 reinit beginReinit

190 endif

191

192 beginReinit:

193 iBlockSize = i(kBlockSizeSamp)

194 iBlockNum = (i(kBlocks) > 1 ? i(kBlocks) : 1)

195 iMaxNumProc = i(kMaxNumProc)

196 iNormMode = i(kNormMode)

197

198

199 ;run laivconv opcode

200 aOut laivconv aIn1, aIn2, iBlockSize, iBlockNum, ...

iMaxNumProc, kTransient1+kTransient2, iSkipInit

201

202 rireturn

203

204 chnmix aOut, "MasterOut"

205

206

207

208 ;Control segment for LEDs displaying transient detection:

Appendix A. Final Implementation 85

209 kTransButton1 changed kTransient1

210 kTransButton2 changed kTransient2

211 kBEnv1 init 0

212 kBEnv2 init 0

213

214 if kTransButton1 > 0 then

215 reinit letsGo1

216 endif

217

218 if kTransButton2 > 0 then

219 reinit letsGo2

220 endif

221

222 chnset kBEnv1, "transientDisplay1"

223 chnset kBEnv2, "transientDisplay2"

224

225 letsGo1:

226 kBEnv1 linseg 1,0.15,1,0,0,0

227 rireturn

228

229 letsGo2:

230 kBEnv2 linseg 1,0.15,1,0,0,0

231 rireturn

232

233 endin

234

235 instr 99 ;Output mixer

236 aOut chnget "MasterOut"

237 aIn1 chnget "input1"

238 aIn2 chnget "input2"

239 aMon1 chnget "TransientMonitor1"

240 aMon2 chnget "TransientMonitor2"

241

242 kIn1Amp chnget "input1OutGain"

243 kIn2Amp chnget "input2OutGain"

244 kCnvAmp chnget "convOutGain"

245 kTAmp chnget "totalOutGain"

246

Appendix A. Final Implementation 86

247 a0 = 0

248

249 ;sends mixed output to output channel

250 outs ...

3*kTAmp*(kCnvAmp*aOut+kIn1Amp*aIn1+kIn2Amp*aIn2+aMon1+aMon2) ...

, 3*kTAmp*(kCnvAmp*aOut+kIn1Amp*aIn1+kIn2Amp*aIn2+aMon1+aMon2)

251 chnset a0, "MasterOut"

252 chnset a0, "input1"

253 chnset a0, "input2"

254 endin

255 </CsInstruments>

256

257 <CsScore>

258

259 i1 0 3600

260 i98 0 3600

261 i99 0 3600

262

263 </CsScore>

264

265 </CsoundSynthesizer>

Listing A.1: The Csound code for the final implementation.

A.2 Opcode laivconv

1 /*

2 ftxconv.c:

3

4 Copyright (C) 2005 Istvan Varga

5

6 This file is part of Csound.

7

8 The Csound Library is free software; you can redistribute it

Appendix A. Final Implementation 87

9 and/or modify it under the terms of the GNU Lesser General ...

Public

10 License as published by the Free Software Foundation; either

11 version 2.1 of the License, or (at your option) any later ...

version.

12

13 Csound is distributed in the hope that it will be useful,

14 but WITHOUT ANY WARRANTY; without even the implied ...

warranty of

15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16 GNU Lesser General Public License for more details.

17

18 You should have received a copy of the GNU Lesser General ...

Public

19 License along with Csound; if not, write to the Free Software

20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA

21 02111−1307 USA

22 */

23

24 #include "csdl.h"

25 #include <math.h>

26

27 /*

28 ** ftxconv − data structure holding the internal state

29 */

30

31 typedef struct {
32 int start1;

33 int end1;

34

35 int start2;

36 int end2;

37 int length;

38 }pIndex;
39

40 typedef struct {
41

42 /*

Appendix A. Final Implementation 88

43 ** Input parameters given by user

44 */

45 OPDS h;

46 MYFLT *aOut; // output buffer

47 MYFLT *aIn1; // input buffer 1

48 MYFLT *aIn2; // input buffer 2

49

50 MYFLT *iBlockLen; // length of impulse ...

response partitions (latency <−> CPU usage)

51 MYFLT *iMaxNumBlocks; // Number of blocks in ...

segment

52 MYFLT *iMaxNumProcesses;

53

54 MYFLT *kTransDet; //For signaling if a ...

transient has been detected

55 MYFLT *iSkipInit; // skip initialization ...

without failure (optional, default 0)

56

57

58 /*

59 ** Internal state of opcode maintained outside

60 */

61 int initDone; /* flag to indicate ...

initialization */

62 int cnt; /* buffer position, 0 to ...

blockLen − 1 */

63 int maxNumBlocks; /* number of convolve ...

partitions */

64 int maxNumProcesses; /*Maximum number of ...

processes running in parallel*/

65 int blockLen; /* partition length in ...

sample frames (= iBlockLen as integer) */

66 int rbCnt1; /* ring buffer index 1, ...

0 to maxNumBlocks − 1 */

67 int rbCnt2; /* ring buffer index 2, ...

0 to maxNumBlocks − 1 */

68 int transDetected; /*Initialized to ...

0, set to 1 if transient is detected (then returned to 0)*/

Appendix A. Final Implementation 89

69 int oldestProcess; /*Process number ...

for the oldest active process*/

70 int newestProcess; /*Process number ...

for the newest active process*/

71

72 /* The following pointer point into the auxData buffer */

73 MYFLT *tmpBuf; /* temporary buffer for ...

accumulating FFTs */

74 MYFLT *ringBuf1; /* ring buffer of FFTs ...

of input partitions − these buffers are now computed during ...

init */

75 MYFLT *ringBuf2; /* impulse responses ...

(scaled) */

76 MYFLT *outBuf; /* output buffer ...

(size=blockLen*2) */

77 pIndex *processIndex;

78

79 AUXCH auxData; /* Aux data buffer ...

allocated in init pass */

80 } ftxconv;

81

82 /*

83 ** Function to multiply the FFT buffers

84 ** outBuf − the output of the operation (called with ...

tmpBuf), single channel only

85 ** ringBuf − the partitions of the single input signal

86 ** IR data − the impulse response of a particular channel

87 ** blockLen − size of partition

88 ** maxNumBlocks − number of partitions

89 ** ringBuf startPos − the starting position of the ring buffer

90 ** (corresponds to the start of the ...

partition after the last filled partition)

91 */

92 static void multiply fft buffers(MYFLT *outBuf, MYFLT ...

*ringBuf1, MYFLT *ringBuf2, int blockLen, int maxNumBlocks, ...

int ringBuf1 startPos, int ringBuf2 startPos, int length)

93 {
94 MYFLT re, im, re1, re2, im1, im2;

Appendix A. Final Implementation 90

95 MYFLT *rbPtr1, *rbPtr2, *outBufPtr, *outBufEndPm2, ...

*rbEndP1, *rbEndP2;

96

97 /* note: blockLen must be at least 2 samples */

98 blockLen <<= 1; /* locale blockLen is twice the size of the ...

partition size */

99 outBufEndPm2 = (MYFLT*) outBuf + (int) (blockLen − 2); /* ...

Finding the index of the last sample pair in the output ...

buffer */

100 rbEndP1 = (MYFLT*) ringBuf1 + (int) (blockLen * ...

maxNumBlocks); /* The end of the ring buffer 1*/

101 rbEndP2 = (MYFLT*) ringBuf2 + (int) (blockLen * ...

maxNumBlocks); /* The end of the ring buffer 2*/

102 rbPtr1 = &(ringBuf1[ringBuf1 startPos*blockLen]); ...

/* Initialize ring buffer 1 pointer */

103 rbPtr2 = &(ringBuf2[ringBuf2 startPos*blockLen]); ...

/* Initialize ring buffer 2 pointer */

104 outBufPtr = outBuf; ...

/* Initialize output buffer pointer */

105

106 /* do { */

107 /* *(outBufPtr++) = FL(0.0); */

108 /* *(outBufPtr++) = FL(0.0); */

109 /* } while (outBufPtr <= outBufEndPm2); */

110

111 /*

112 ** Multiply FFTs for each partition and mix to output buffer

113 ** Note: IRs are stored in reverse partition order

114 */

115 do {
116 /* wrap ring buffer position */

117 if (rbPtr1 >= rbEndP1)

118 rbPtr1 = ringBuf1;

119 if (rbPtr2 >= rbEndP2)

120 rbPtr2 = ringBuf2;

121

122 outBufPtr = outBuf;

Appendix A. Final Implementation 91

123 *(outBufPtr++) += *(rbPtr1++) * *(rbPtr2++); /* ...

convolve DC − real part only */

124 *(outBufPtr++) += *(rbPtr1++) * *(rbPtr2++); /* ...

convolve Nyquist − real part only */

125 re1 = *(rbPtr1++);

126 im1 = *(rbPtr1++);

127 re2 = *(rbPtr2++);

128 im2 = *(rbPtr2++);

129

130 /*

131 ** Status:

132 ** outBuf + 2, ringBuf + 4, irBuf + 4

133 ** re = buf + 2, im = buf + 3

134 */

135

136 re = re1 * re2 − im1 * im2;

137 im = re1 * im2 + re2 * im1;

138 while (outBufPtr < outBufEndPm2) {
139 /* complex multiply */

140 re1 = rbPtr1[0];

141 im1 = rbPtr1[1];

142 re2 = rbPtr2[0];

143 im2 = rbPtr2[1];

144 outBufPtr[0] += re;

145 outBufPtr[1] += im;

146 re = re1 * re2 − im1 * im2;

147 im = re1 * im2 + re2 * im1;

148 re1 = rbPtr1[2];

149 im1 = rbPtr1[3];

150 re2 = rbPtr2[2];

151 im2 = rbPtr2[3];

152 outBufPtr[2] += re;

153 outBufPtr[3] += im;

154 re = re1 * re2 − im1 * im2;

155 im = re1 * im2 + re2 * im1;

156 outBufPtr += 4;

157 rbPtr1 += 4;

158 rbPtr2 += 4;

Appendix A. Final Implementation 92

159 /*

160 ** Status:

161 ** outBuf + 2 + 4n, ringBuf + 4 + 4n, irBuf + 4 + 4n

162 ** re = buf + 2 + 4n, im = buf + 3 + 4n

163 */

164 }
165 outBufPtr[0] += re;

166 outBufPtr[1] += im;

167

168 } while (−−length);
169 }
170 static inline int buf bytes alloc(int blockLen, int ...

maxNumBlocks, int maxNumProcesses)

171 {
172 int nSmps;

173

174 nSmps = (blockLen << 1); /* ...

tmpBuf */

175 nSmps += ((blockLen << 1) * maxNumBlocks); ...

/* ringBuf1 */

176 nSmps += ((blockLen << 1) * maxNumBlocks); ...

/* ringBuf2 */

177 nSmps += ((blockLen << 1));

178 /* outBuf */

179

180 return ((int) sizeof(MYFLT) * nSmps + (int) ...

sizeof(pIndex)*maxNumProcesses);

181 }
182 static void set buf pointers(ftxconv *p, int blockLen, int ...

maxNumBlocks)

183 {
184 MYFLT *ptr;

185

186 ptr = (MYFLT*) (p−>auxData.auxp);
187 p−>tmpBuf = ptr;

188 ptr += (blockLen << 1);

189 p−>ringBuf1 = ptr;

190 ptr += ((blockLen << 1) * maxNumBlocks);

Appendix A. Final Implementation 93

191 p−>ringBuf2 = ptr;

192 ptr += ((blockLen << 1) * maxNumBlocks);

193 p−>outBuf = ptr;

194 ptr += (blockLen << 1);

195 p−>processIndex = (pIndex*) ptr;

196

197 }
198

199 static void throwBlock(pIndex* process, int maxNumBlocks){
200

201 (*process).start1++;

202 (*process).start2−−;
203

204 /*Check that start indexes are not out of bounds*/

205 if ((*process).start1 >= maxNumBlocks) (*process).start1 = 0;

206 if ((*process).start2 < 0) (*process).start2 = maxNumBlocks−1;
207 (*process).length−−;
208 }
209

210 static void addBlock(pIndex *process, int rbCnt1, int rbCnt2){
211

212 (*process).end1=rbCnt1;

213 (*process).end2=rbCnt2;

214 (*process).length++;

215 }
216

217 static void updateOldBuffers(pIndex* processIndex, int ...

*oldestProcess, int newestProcess, int maxNumBlock, int ...

maxNumProcesses){
218 //kaster en blokk fra alle semiaktive. sjekker om oldest er ...

blitt tom, og setter den saa til en ny oldest/newest.

219 int index = (*oldestProcess);

220

221 while (index != newestProcess){
222 if (processIndex[index].length != 0){
223 throwBlock((processIndex+index),maxNumBlock); //Update ...

start, decrement length

224 }

Appendix A. Final Implementation 94

225 if (processIndex[index].length == 0 && index == ...

*oldestProcess) {
226 *oldestProcess = (*oldestProcess +1)%maxNumProcesses;

227 }
228 index = (++index)%maxNumProcesses;

229 }
230 }
231

232 static void startNewProcess(int *newestProcess, int ...

oldestProcess, pIndex processIndex, int maxNumProcesses, ...

int rbCnt1, int rbCnt2){
233

234 /*Increment newestProcess index*/

235 *newestProcess= (*newestProcess + 1)%maxNumProcesses;

236

237 if(*newestProcess == *oldestProcess)

238 oldestProcess++;

239

240 /*Update indexes, set length to 1*/

241 processIndex[*newestProcess].length = 0; //length will be ...

set to one in addblock

242 processIndex[*newestProcess].start1 = rbCnt1;

243 processIndex[*newestProcess].start2 = rbCnt2;

244 addBlock((processIndex+*newestProcess), rbCnt1, rbCnt2);

245

246 }
247

248 static int ftxconv init(CSOUND *csound, ftxconv *p)

249 {
250 int n, nBytes;

251

252

253

254 if(p−>initDone) csound−>Warning(csound, Str("Init kjort ...

etter at init ble satt!"));

255

256 /* set p−>blockLen to the initial partition length, ...

iBlockLen */

Appendix A. Final Implementation 95

257 p−>blockLen = MYFLT2LRND(*(p−>iBlockLen));
258 if (UNLIKELY(p−>blockLen < 4 | | (p−>blockLen & (p−>blockLen ...

− 1)) != 0)) { // Must be a power of 2 at least as large ...

as 4

259 return csound−>InitError(csound, Str("ftxconv: invalid ...

impulse response "

260 "partition length"));

261 }
262

263

264 /* Calculate the total length */

265 n = MYFLT2LRND(*(p−>iBlockLen) * *(p−>iMaxNumBlocks));
266 if (UNLIKELY(n <= 0)) {
267 return csound−>InitError(csound,
268 Str("ftxconv: invalid length, or ...

insufficient"

269 " IR data for convolution"));

270 }
271

272 // Compute the number of partitions (total length / ...

partition size)

273 p−>maxNumBlocks = MYFLT2LRND(*(p−>iMaxNumBlocks));
274 p−>maxNumProcesses = MYFLT2LRND(*(p−>iMaxNumProcesses));
275

276 /*

277 ** Calculate the amount of aux space to allocate (in bytes) ...

and allocate if necessary

278 ** Function of partition size and number of partitions

279 */

280 nBytes = buf bytes alloc(p−>blockLen, p−>maxNumBlocks, ...

p−>maxNumProcesses);
281 if (nBytes != (int) p−>auxData.size)
282 csound−>AuxAlloc(csound, (int32) nBytes, &(p−>auxData));
283 else if (p−>initDone > 0 && *(p−>iSkipInit) != FL(0.0))

284 return OK; /* skip initialisation if requested */

285

286 /*

287 ** From here on is initialization of data

Appendix A. Final Implementation 96

288 */

289

290

291 /* initialise buffer pointers */

292 set buf pointers(p, p−>blockLen, p−>maxNumBlocks);
293

294 /* clear ring buffers to zero */

295 n = (p−>blockLen << 1) * p−>maxNumBlocks;
296 memset(p−>ringBuf1, 0, n*sizeof(MYFLT));

297 memset(p−>ringBuf2, 0, n*sizeof(MYFLT));

298

299 /* initialise buffer index */

300 p−>cnt = 0;

301 p−>rbCnt1 = 0;

302 p−>rbCnt2 = 0;

303

304 /* clear output buffers to zero (why not use memset here?) */

305 memset(p−>outBuf, 0, (p−>blockLen << 1)*sizeof(MYFLT));

306

307 /*Initialize process indexes to 0*/

308 memset(p−>processIndex, 0, p−>maxNumProcesses*sizeof(pIndex));
309

310 /*Initialize transient detection*/

311 p−>transDetected = 0;

312 p−>oldestProcess = 0;

313 p−>newestProcess = 0;

314

315 /*

316 ** After initialization:

317 ** Buffer indexes are zero

318 ** tmpBuf is filled with rubish

319 ** ringBuf and outBuf are filled with zero

320 ** IR Data is filled with the FFT of the impulse response

321 */

322 printf("FFTScale is: %f", ...

csound−>GetInverseRealFFTScale(csound, (p−>blockLen << 1)));

323 p−>initDone = 1;

324 return OK;

Appendix A. Final Implementation 97

325 }
326

327 static int ftxconv perf(CSOUND *csound, ftxconv *p)

328 {
329 MYFLT *x, *rBuf1, *rBuf2;

330 int i, n, nSamples, normalizeFactor;

331 int m = csound−>ksmps; // Size of audio buffer

332

333 MYFLT FFTscale;

334

335 normalizeFactor = 0;

336 /* Only continue if initialized */

337 if (p−>initDone <= 0) goto err1;

338

339 /*Check for transients*/

340 if (*(p−>kTransDet) != FL(0.0)){
341 printf("!!Transient detected!! it is %f\n", ...

*(p−>kTransDet));
342 p−>transDetected = 1;

343 }
344

345

346 /*If maxNumBlocks is reached, throw process*/

347 if (p−>processIndex[p−>newestProcess].length >= ...

p−>maxNumBlocks){
348 p−>transDetected = 1;

349 }
350

351 nSamples = p−>blockLen; /* Length of partition */

352 rBuf1 = &(p−>ringBuf1[p−>rbCnt1 * (nSamples << 1)]); /* ...

Pointer to a partition of ring buffer 1*/

353 rBuf2 = &(p−>ringBuf2[p−>rbCnt2 * (nSamples << 1)]); /* ...

Pointer to a partition of ring buffer 2*/

354

355 /* FFT amplitude scale, trivial function */

356 //FFTscale = csound−>GetInverseRealFFTScale(csound, ...

(p−>blockLen << 1)); //Why is this always == 1.000?

357 //FFTscale = 1000/(*(p−>iBlockLen));

Appendix A. Final Implementation 98

358 //printf("FFTscale is: %f\n\n",FFTscale);
359

360

361 /* For each sample in the audio input buffer (length = ...

ksmps) */

362 for (n = 0; n < m; n++) {
363

364 /* store input signal in buffer, scale for FFT */

365 rBuf1[p−>cnt] = p−>aIn1[n];//*FFTscale;
366 rBuf2[p−>cnt] = p−>aIn2[n];//*FFTscale;
367

368 /* copy output signals from buffer (contains data from ...

previous convolution pass) */

369 p−>aOut[n] = p−>outBuf[p−>cnt];
370

371 /* is input buffer full ? */

372 if (++p−>cnt < nSamples)

373 continue; /* no, continue with next ...

sample */

374

375 /* Now the partition is filled with input −−> start ...

calculate the convolution */

376 p−>cnt = 0; /* reset buffer position */

377

378 /* pad input in ring buffer with zeros to double length */

379 for (i = nSamples; i < (nSamples << 1); i++){
380 rBuf1[i] = FL(0.0);

381 rBuf2[i] = FL(0.0);

382 }
383

384 /* calculate FFT of input */

385 csound−>RealFFT(csound, rBuf1, (nSamples << 1));

386 csound−>RealFFT(csound, rBuf2, (nSamples << 1));

387

388 if (p−>transDetected){
389

390 /*A transient is detected */

Appendix A. Final Implementation 99

391 /*Initialize start− and end−indexes, and newestProcess ...

index*/

392

393 //Inc newestprocessindex and Initialize start− and ...

end−indexes, set length to 1, (check maxNumProcess)(sjekk ...

om det skrives over en aktiv proc)

394 startNewProcess(&(p−>newestProcess), ...

&(p−>oldestProcess), p−>processIndex, p−>maxNumProcesses, ...

p−>rbCnt1, p−>rbCnt2);
395

396 //Throw one block from all semiactive processes, i.e ...

update start indexes, and update oldestProcess

397 updateOldBuffers(p−>processIndex, &(p−>oldestProcess), ...

p−>newestProcess, p−>maxNumBlocks, p−>maxNumProcesses);
398

399

400 }else{
401 /*A transient is not detected*/

402 if(p−>oldestProcess==p−>newestProcess){
403 /*Only one active process*/

404 /*When here, newestProcess can still be full or empty*/

405 /*therefore check length against maxNumOfBlocks*/

406

407 ...

if(p−>processIndex[p−>newestProcess].length==p−>maxNumBlocks){
408

409 /*Active process is full*/

410

411 /*update end indexes, i.e. add one more block*/

412 addBlock((p−>processIndex+ p−>newestProcess), ...

p−>rbCnt1, p−>rbCnt2);
413

414 /*update start indexes, i.e. throw out one block*/

415 throwBlock((p−>processIndex + ...

p−>newestProcess),p−>maxNumBlocks);
416

417

418 }else{

Appendix A. Final Implementation 100

419

420 /*Active process is not full, update only ...

end−indexes*/
421 /*We only need to take in a fftblock in active ...

process*/

422

423 addBlock((p−>processIndex + p−>newestProcess), ...

p−>rbCnt1, p−>rbCnt2);
424 }
425 }else{
426

427 /*Active process is not full, update only end−indexes*/
428 /*We only need to take in a fftblock in active process*/

429

430 addBlock((p−>processIndex + p−>newestProcess), ...

p−>rbCnt1, p−>rbCnt2);
431

432 //Throw one block from all semiactive processes, i.e ...

updatere start indexes

433 updateOldBuffers(p−>processIndex, ...

&(p−>oldestProcess), p−>newestProcess, p−>maxNumBlocks, ...

p−>maxNumProcesses);
434 }
435 }
436

437 /* update ring buffer position */

438 p−>rbCnt1++;
439 p−>rbCnt2−−;
440 if (p−>rbCnt1 >= p−>maxNumBlocks)
441 p−>rbCnt1 = 0;

442 if (p−>rbCnt2 < 0)

443 p−>rbCnt2 = p−>maxNumBlocks−1;
444

445 /* clear output buffer to zero */

446 memset(p−>tmpBuf, 0, sizeof(MYFLT)*((nSamples << 1)−2));
447

448 /* multiply complex arrays −−> multiplication in the ...

frequency domain */

Appendix A. Final Implementation 101

449 if (p−>oldestProcess == p−>newestProcess){
450

451 multiply fft buffers(p−>tmpBuf, p−>ringBuf1, ...

p−>ringBuf2, nSamples, p−>maxNumBlocks, ...

p−>processIndex[p−>newestProcess].start1, ...

p−>processIndex[p−>newestProcess].end2, ...

p−>processIndex[p−>newestProcess].length);
452 normalizeFactor = ...

p−>processIndex[p−>newestProcess].length;
453 }else{
454 i = p−>oldestProcess−1;
455 do{
456 i = (++i)%p−>maxNumProcesses;
457 if (p−>processIndex[i].length){
458 multiply fft buffers(p−>tmpBuf, p−>ringBuf1, ...

p−>ringBuf2, nSamples, p−>maxNumBlocks, ...

p−>processIndex[i].start1, p−>processIndex[i].end2, ...

p−>processIndex[i].length);
459 normalizeFactor += p−>processIndex[i].length;
460 }
461

462 }while (i != p−>newestProcess);
463 }
464

465 /* inverse FFT */

466 csound−>InverseRealFFT(csound, p−>tmpBuf, (nSamples << 1));

467

468

469

470 /*

471 ** Copy IFFT result to output buffer

472 ** The second half is left as "tail" for next iteration

473 ** The first half is overlapped with "tail" of previous ...

block

474 */

475 x = &(p−>outBuf[0]);
476 for (i = 0; i < nSamples; i++) {

Appendix A. Final Implementation 102

477 x[i] = ...

(p−>tmpBuf[i]/*FFTscale*/)/((MYFLT)normalizeFactor) + x[i + ...

nSamples]; //Normalize output by number of blocks added ...

together (normalizeFactor)

478 x[i + nSamples] = (p−>tmpBuf[i + ...

nSamples]/*FFTscale*/)/((MYFLT)normalizeFactor);

479 }
480 p−>transDetected = 0;

481 }
482 return OK;

483

484 err1:

485 return csound−>PerfError(csound, Str("ftxconv: not ...

initialised"));

486 }
487

488 /* module interface functions */

489

490 static OENTRY localops[] = {
491 {
492 "laivconv", // name of opcode

493 (int) sizeof(ftxconv), // data size of state block

494 TR|5, // thread

495 "a", // output arguments

496 "aaiiiOp", // input arguments

497 (int (*)(CSOUND *, void *)) ftxconv init, // init ...

function

498 (int (*)(CSOUND *, void *)) NULL, // k−rate ...

function (?)

499 (int (*)(CSOUND *, void *)) ftxconv perf // a−rate ...

function

500 }
501 };
502

503 LINKAGE

Listing A.2: The C code for the opcode implementation.

Appendix B

Matlab Implementations

This appendix contains the Matlab implementations. The files can also be found

in the digital appendix delivered with this thesis. In the digital appendix, the

different versions are arranged into separate folders, one folder for each version.

Some of the versions use the same files, but each folder contain all the files needed

to run each version so there is no need to move files around. For the version that

uses transient detection, the script transDet2.m has to be run on the audio files

before the main script is run.

B.1 Preliminary Algorithm

The preliminarty algorithm can be run with the main script in listing B.1. It uses

the buffBlend function shown in listing B.2.

1 %%

2 %%%%%%%%%%%%%%Preliminary algorithm %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

103

Appendix B. Matlab Implementations 104

8

9 % Reads wav from file

10 % Uses function "buffblend" defined in buffblend.m

11

12 %buffMode 'skipOnSmall' should be used with blendMode

13 %'overAdd small'

14 %buffMode 'overlapLarge' should be used with blendMode

15 %'overAddLarge','expfade', 'expfade2' or 'linfade'

16 buffMode = 'overlapLarge'; %'overlapSmall',

17 blendMode = 'overAdd large'%'overAdd small',

18 %'expfade', 'expfade2' or 'linfade';

19

20 %output will be played if set

21 playsound=1;

22

23 %Take inn signals

24 inSig = cell(1,2);

25 [inSig{1},fs] = wavread('synth.wav');

26 inSig{2} = wavread('drumloop2.wav');

27

28 %Convert to mono

29 inSig{1} = inSig{1}(:,1)';
30 inSig{2} = inSig{2}(:,1)';
31

32 %Length of signals,

33 len1 = length(inSig{1})
34 len2 = length(inSig{2})
35

36 %Initialize output

37 output = [];

38

39 %Initsialize buffers (length in samples):

40 bLen = {2000, 2000};
41 buffer = cell(1,2);

42 buffer{1} = zeros(1,bLen{1});
43 buffer{2} = zeros(1,bLen{2});
44

45 %Iteration variable for main loop

Appendix B. Matlab Implementations 105

46 i = 1;

47

48 %Main loop, simulating real−time
49 while ˜(i+bLen{1} > len1 | | ...
50 i+bLen{2} > len2)

51

52 %Buffer up signals

53 switch buffMode

54 case 'skipOnSmall'

55 buffer{1} = inSig{1}(i:i+bLen{1}−1);
56 buffer{2} = inSig{2}(i:i+bLen{2}−1);
57 i = max(i+bLen{1},i+bLen{2});
58 case 'overlapLarge'

59 buffer{1} = inSig{1}(i:i+bLen{1}−1);
60 buffer{2} = inSig{2}(i:i+bLen{2}−1);
61 i = min(i+bLen{1},i+bLen{2});
62 case 'oneSample'

63 buffer{1} = inSig{1}(i:i+bLen{1}−1);
64 buffer{2} = inSig{2}(i:i+bLen{2}−1);
65 i = i + 1;

66 otherwise

67 error('Not a valid buffer mode')

68 end

69

70 %Perform convolution on buffers

71 temp = conv(buffer{1}, buffer{2});
72

73 %Put output block(temp) on existing output

74 output = buffBlend(output, temp, bLen{1}, bLen{2}, blendMode);

75

76 end

77

78 %play output

79 if(playsound)

80 soundsc(output,fs)

81 end

Listing B.1: Main script for the preliminary algorithm.

Appendix B. Matlab Implementations 106

1 %%

2 %%%%%%%%%%%%%%BuffBlend %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %Function puts a newly generated output block on the existing

10 %output

11 function [out] = buffBlend(oldOut, newOut, len1, len2, mode)

12

13 %Length of smallest buffer

14 small = min(len1,len2);

15 %Length of largest buffer

16 large = max(len1,len2);

17

18 if small <= 1

19 out = [oldOut newOut];

20 elseif isempty(oldOut)

21 out = newOut;

22 else

23 switch mode

24

25 case 'overAdd small'

26 %newOut is put on output with an overlap equal to the ...

length

27 %of the shortest buffer, i.e min(len1,len2)

28 oldOut(length(oldOut)−small+1:end) = ...

29 oldOut(length(oldOut)−small+1:end)+ ...

newOut(1:small);

30 out = [oldOut newOut(small+1:end)];

31

32 case 'overAdd large'

33 %newOut is put on output with an overlap equal to the ...

length

34 %of the longest buffer, i.e max(len1,len2)

Appendix B. Matlab Implementations 107

35 oldOut((length(oldOut)−large)+1:end)=...
36 ...

oldOut((length(oldOut)−large)+1:end)+newOut(1:large);
37 out = [oldOut newOut((large+1):end)];

38

39 case 'linFade'

40 %Uses overlap similar to 'overAdd large', and linear ...

fading

41 sizes = sort([len1, len2]);

42 blendCurve = linspace(1,0,sizes(2)−1);
43 oldOut(length(oldOut)−sizes(2)+2:end) = ...

44 ...

blendCurve.*oldOut(length(oldOut)−sizes(2)+2:end) + ...

45 ...

fliplr(blendCurve).*newOut(1:sizes(2)−1);
46 out = [oldOut newOut(sizes(2)+2:end)];

47

48 case 'expFade'

49 %Uses overlap similar to 'overAdd large', and ...

exponential fading

50 ampModOld = logspace(0,−2,(large−1));
51 ampModNew = logspace(−2,0,(large−1));
52 out = [oldOut(1:end−large+1) ...

53 (oldOut(end−large+2:end).*ampModOld +...

54 newOut(1:large−1).*ampModNew)...
55 newOut(large:small+large−1)];
56

57 case 'expFade2'

58 %Uses overlap similar to 'overAdd large', and ...

exponential fading

59 ampModOld =1−logspace(−100,0,large−1);
60 ampModNew =1−logspace(0,−100,large−1);
61 out = [oldOut(1:end−large+1) ...

62 (oldOut(end−large+2:end).*ampModOld +...

63 newOut(1:large−1).*ampModNew)...
64 newOut(large:small+large−1)];
65

66 otherwise

Appendix B. Matlab Implementations 108

67 error('Not a valid blending mode')

68

69 end

70 end

Listing B.2: buffBlend function used in the main script of the preliminary

algorithm.

B.2 Algorithm Version 1

Algorithm Version 1 can be run with the script mainAVersion1, shown in listing

B.3. It uses the functions fftMulAndAdd, expandOutput and generateWeight

shown in listing B.4, B.5 and B.6, respectively.

1 %%

2 %%%%%%%%%%%%%%mainAVersion1 %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %This script use the functions "fftMulAndAdd",

10 %"expandOutput" and "genereteWeight, their .m−files
11 %have to be in the same folder as this script for

12 %the script to run

13

14 % hear generated sound file−> playSound = 1;

15 playSound = 1;

16

17 %Different weightmodes used in a test which failed. The mode

18 %'const' does nothing, but have to be set for the code to run.

19 weightMode = 'const';

20

21 %Sampling frequency

Appendix B. Matlab Implementations 109

22 fs = 44100;

23

24 %test transient location

25 transLoc = 68700;

26

27 %Block length

28 blockLen = {512, 512};
29

30 %Number of blocks

31 maxNumOfBlocks = 100;

32 numOfBlocks = maxNumOfBlocks;

33

34 %Load test signals

35 %include path for files, or put files in same folder as script

36 inSig = cell(1,2);

37 [inSig{1},fs] = wavread('drumloop2.wav');

38 inSig{2} = wavread('synth.wav');

39

40 %Convert to Mono

41 inSig{1} = inSig{1}(:,1)';
42 inSig{2} = inSig{2}(:,1)';
43

44 %Shortest signal

45 minLen=min(length(inSig{1}),length(inSig{2}));
46 inSig{1} = inSig{1}(1:minLen);
47 inSig{2} = inSig{2}(1:minLen);
48

49 %Size of ffts must account for length of convolution

50 fftLen = blockLen{1}+blockLen{2}−1;
51

52 %Segment length, should be an integer times block length

53 segLen = {blockLen{1}*numOfBlocks, blockLen{2}*numOfBlocks};
54

55 %Initialize blocks

56 block = cell(1,2);

57

58 %Initialize fft blocks

59 fftBlock = cell(1,2);

Appendix B. Matlab Implementations 110

60

61 %Initialize segments

62 segment = cell(1,2);

63 segment{1} = zeros(1,segLen{1});
64 segment{2} = zeros(1,segLen{2});
65

66 %Initialize fft segments

67 fftSegment = cell(1,2);

68 fftSegment{1} = zeros(1,(numOfBlocks)*fftLen);

69 fftSegment{2} = zeros(1,(numOfBlocks)*fftLen);

70

71 %Initialize output

72 output = [zeros(1,fftLen)];

73

74 %Generate weight vector, used in the failed test. Does nothing if

75 %weightMode = 'const'

76 wVector = generateWeight(weightMode,numOfBlocks);

77

78 i=1;

79 while ˜((i+blockLen{1} > length(inSig{1})) | | ...
80 (i+blockLen{2} > length(inSig{2})))
81

82 %Fill up blocks

83 block{1} = inSig{1}(i:i+blockLen{1}−1);
84 block{2} = inSig{2}(i:i+blockLen{2}−1);
85

86 i = max((i+blockLen{1}),(i+blockLen{2}));
87

88 %fft on blocks

89 fftBlock{1} = fft(block{1},fftLen);
90 fftBlock{2} = fft(block{2},fftLen);
91

92 %Fill upp fftSegment

93 %First fftBlock −> out, second fftBlock −> first fftBlock,

94 %third fftBlock −> second fftBlock and so on

95 %new fftBlock −> last fftBlock

96 fftSegment{1} = [fftSegment{1}(fftLen+1:end) fftBlock{1}];
97 fftSegment{2} = [fftSegment{2}(fftLen+1:end) fftBlock{2}];

Appendix B. Matlab Implementations 111

98

99 %Multiply fftSegments.

100 %Function takes inn two fftSegments with numOfBlocks

101 %fft blocks each. First block in fftSegment1 is multiplied

102 %with last block in fftSegment2 First block in fftSegment2

103 %is multiplied with last block in fftSegment1 ...and so on

104 %real(ifft(mul res)) are added together in out vector.

105 %out vector is fftSegment1/numOfBlocks long

106 temp=fftMulAndAdd(fftSegment{1}, fftSegment{2}, wVector,...

107 numOfBlocks,fftLen);

108

109 %Put result on output with buffblend function

110 output=expandOutput(output,temp,blockLen{1});
111

112 %Update info on the number of blocks in the segments

113 if numOfBlocks < maxNumOfBlocks

114 numOfBlocks = numOfBlocks+1;

115 end

116 end

117

118 %Play Sound

119 if playSound

120 soundsc(output,fs)

121 end

Listing B.3: Main script for algorithm version 1.

1 %%

2 %%%%%%%%%%%%%%fftMulAndAdd %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9

10 function out = fftMulAndAdd(fftSegment1, fftSegment2,...

Appendix B. Matlab Implementations 112

11 wVector, numOfBlocks,fftLen)

12

13 %Function takes inn two fftSegments with numOfBlocks fft ...

results each.

14 %First block in fftSegment1 is multiplied with last block in ...

fftSegment2

15 %First block in fftSegment2 is multiplied with last block in ...

fftSegment1

16 %All multiplication results are added together in out vector.

17 %outvector is fftSegment1/numOfBlocks long

18

19 %Initialize output

20 out=zeros(1,fftLen);

21

22 %Number of blocks in segment

23 maxNumOfBlocks = length(fftSegment1)/fftLen;

24

25 %Iterate and multiply segments

26 for i=1:numOfBlocks

27 start = maxNumOfBlocks−numOfBlocks;
28 out=out+wVector(i)*real(ifft((fftSegment1(...

29 ((start+i−1)*fftLen+1):(start+i)*fftLen)...
30 .*fftSegment2(((maxNumOfBlocks−i)*fftLen+1):...
31 (maxNumOfBlocks−i+1)*fftLen))));
32 end

33

34 %Normalize,i.e divide by number of blocks in segment

35 out = out/numOfBlocks;

Listing B.4: fftMulAndAdd function used in main script of algorithm

version 1.

1 %%

2 %%%%%%%%%%%%%%expandOutput %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

Appendix B. Matlab Implementations 113

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %Function puts newly generated output on existing output

10

11 function out = expandOutput(oldOut, newOut, blockLen)

12

13 %Length of existing output

14 lenOld=length(oldOut);

15

16 %New output block overlaps existing ouput

17 oldOut(lenOld−blockLen+2:lenOld) = ...

18 oldOut(lenOld−blockLen+2:lenOld)+newOut(1:blockLen−1);
19

20 out = [oldOut newOut(blockLen:blockLen*2−1)];
21

22 end

Listing B.5: expandOutput function.

1 %%

2 %%%%%%%%%%%%%%mainAVersion1 %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 % a function used in a failed test. Should not be considered,

10 %and does nothing in the 'const' mode. The different modes

11 %provides different weight for the segments.

12

13 function wVector = generateWeight(mode, numOfBlocks)

14

15 switch mode

16 case 'v function'

17 for i = −(numOfBlocks/2):numOfBlocks/2

Appendix B. Matlab Implementations 114

18 wVector(i+numOfBlocks/2+1)=abs(i)+numOfBlocks;

19 end

20 wVector=(1/max(wVector))*wVector;

21

22 case 'exp exp'

23 if(mod(numOfBlocks,2)==0)

24 wVector = [logspace(−1,0,numOfBlocks/2)...
25 logspace(0,−1,numOfBlocks/2)];
26 else

27 wVector = [logspace(0,−1,floor(numOfBlocks/2)) 10ˆ(−1)...
28 logspace(−1,0,floor(numOfBlocks/2))];
29 end

30 case 'lin'

31 wVector = linspace(0,1,numOfBlocks);

32 case 'lin lin'

33 if(mod(numOfBlocks,2)==0)

34 wVector = [linspace(1,0,numOfBlocks/2)...

35 linspace(0,1,numOfBlocks/2)];

36 else

37 wVector = [linspace(1,0,floor(numOfBlocks/2)) 10ˆ(−1)...
38 linspace(0,1,floor(numOfBlocks/2))];

39 end

40 case 'const'

41 wVector = ones(1,numOfBlocks);

42 end

43

44

45 end

Listing B.6: generateWeight function.

B.3 Algorithm Version 2

Algorithm Version 2 can be run with the script mainAVersion2.m, shown in listing

B.7. It uses the functions fftMulAndAdd, expandOutput and generateWeight

shown in listing B.4, B.5 and B.6, respectively. It also uses transient vectors, called

Appendix B. Matlab Implementations 115

transVec and transVec2 for the respective audio files. They can be generated

with the script transDet2.m shown in listing B.8.

1 %%

2 %%%%%%%%%%%%%%mainAVersion1 %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %This scrupt use the functions "fftMulAndAdd", "expandOutput"

10 %and "genereteWeight, their .m−files have to be in the

11 %same folder as this script for the script to run

12

13 %It also uses vectors transVec and transVec1 that can be

14 %generated with transDet2.m

15

16 % hear generated sound file−> playSound = 1;

17 playSound = 1;

18

19 %Different wightmodes used in a test which failed. The mode

20 %'const' does nothing, but have to be set for the code to

21 %run.

22 weightMode = 'const';

23

24 %Sampling frequency

25 fs = 44100;

26

27 %Block length

28 blockLen = {512, 512};
29

30 %Number of blocks

31 maxNumOfBlocks = 100;

32 numOfBlocks = maxNumOfBlocks;

33

34 %Load test signals

Appendix B. Matlab Implementations 116

35 %include path for files, or put files in same folder as script

36 inSig = cell(1,2);

37 [inSig{1},fs] = wavread('drumloop2.wav');

38 inSig{2} = wavread('synth.wav');

39

40 %Load transVec for drumloop2 generated with transdet2.m

41 load 'drumloop2.mat'

42

43 %Don't use transients from inSig{2}
44 transVec2 = zeros(1,length(inSig{2}));
45

46 %Convert to Mono

47 inSig{1} = inSig{1}(:,1)';
48 inSig{2} = inSig{2}(:,1)';
49

50 %Shortest signal

51 minLen=min(length(inSig{1}),length(inSig{2}));
52 inSig{1} = inSig{1}(1:minLen);
53 inSig{2} = inSig{2}(1:minLen);
54

55 %Size of ffts must account for length of convolution

56 fftLen = blockLen{1}+blockLen{2}−1;
57

58 %Segment length, should be an integer times block length

59 segLen = {blockLen{1}*numOfBlocks, blockLen{2}*numOfBlocks};
60

61 %Initialize blocks

62 block = cell(1,2);

63

64 %Initialize fft blocks

65 fftBlock = cell(1,2);

66

67 %Initialize segments

68 segment = cell(1,2);

69 segment{1} = zeros(1,segLen{1});
70 segment{2} = zeros(1,segLen{2});
71

72 %Initialize fft segments

Appendix B. Matlab Implementations 117

73 fftSegment = cell(1,2);

74 fftSegment{1} = zeros(1,(numOfBlocks)*fftLen);

75 fftSegment{2} = zeros(1,(numOfBlocks)*fftLen);

76

77 %Initialize output

78 output = [zeros(1,fftLen)];

79

80 %Generate weight vector, used in the failed test. Does nothing if

81 %weightMode = 'const'

82 wVector = generateWeight(weightMode,numOfBlocks);

83

84 %Iteration variable for real−time loop

85 i=1;

86

87 %Loop that simulates real−time
88 while ˜((i+blockLen{1} > length(inSig{1})) | | ...
89 (i+blockLen{2} > length(inSig{2})))
90

91 %Fill up blocks

92 block{1} = inSig{1}(i:i+blockLen{1}−1);
93 block{2} = inSig{2}(i:i+blockLen{2}−1);
94

95 %If a transient is detected, shorten numOfBlocks to one ...

block, then

96 %keep adding blocks every iteration until you either reach ...

a new

97 %transient or reach maxNumOfBlocks

98 if sum(transVec(i:i+blockLen{1}−1))>=1
99 numOfBlocks = 1;

100 end

101 if sum(transVec2(i:i+blockLen{1}−1))>=1
102 numOfBlocks = 1;

103 end

104

105 %Update iteration variable

106 i = max((i+blockLen{1}),(i+blockLen{2}))
107

108 %fft on blocks

Appendix B. Matlab Implementations 118

109 fftBlock{1} = fft(block{1},fftLen);
110 fftBlock{2} = fft(block{2},fftLen);
111

112 %Fill upp fftSegment

113 %First fftBlock −> out, second fftBlock −> first fftBlock,

114 %third fftBlock −> second fftBlock and so on

115 %new fftBlock −> last fftBlock

116 fftSegment{1} = [fftSegment{1}(fftLen+1:end) fftBlock{1}];
117 fftSegment{2} = [fftSegment{2}(fftLen+1:end) fftBlock{2}];
118

119 %Multiply fftSegments.

120 %Function takes inn two fftSegments with numOfBlocks fft ...

results each.

121 %First block in fftSegment1 is multiplied with last block ...

in fftSegment2

122 %First block in fftSegment2 is multiplied with last block ...

in fftSegment1

123 %..and so on

124 %real(ifft(mul res)) are added together in out vector.

125 %out vector is fftSegment1/numOfBlocks long

126 temp=fftMulAndAdd(fftSegment{1}, fftSegment{2}, wVector, ...

numOfBlocks,fftLen);

127

128 %Put result on output with buffblend function

129 output=expandOutput(output,temp,blockLen{1});
130

131 %Update info on the number of blocks in the segments

132 if numOfBlocks < maxNumOfBlocks

133 numOfBlocks = numOfBlocks+1;

134 end

135 end

136

137 %play the output

138 if playSound

139 soundsc(output,fs)

140 end

Listing B.7: Main script for algorithm version 2.

Appendix B. Matlab Implementations 119

1 %%

2 %%%%%%%%%%%%%%transDet2 %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %Generates a vector transVec. TransVec will contain info on

10 %when transients occur in inSig

11

12 %clear all;

13 close all;

14

15 %sampling freq

16 fs = 44100;

17

18 %Length of vector that decides the threshold (by calculating rms)

19 rmsVecLen = 20000;

20

21 %Minimum number of samples between transients

22 minSampBetTrans = (100/1000)*fs;

23

24 %Load test signals

25 inSig = wavread('../../Testsignaler/Drumloop2.wav');

26

27 %Convert to Mono

28 inSig = inSig(:,1)';

29

30 inSig=[inSig];

31 %inSig= inSig(1:length(transVec2));

32 %Length of test signal

33 inSigLen = length(inSig);

34

35 %inSig = inSig(1:inSigLen/2);

36 %inSigLen = length(inSig);

37 %Initialize vector

Appendix B. Matlab Implementations 120

38 rmsVec= zeros(1,rmsVecLen);

39

40 %Initialize counter

41 counter=1;

42

43 %Initialize transient vector

44 transVec = zeros(1,inSigLen);

45

46 %Initial rms value

47 rmsVal = 0;

48

49 %Flag that indicates a resent transient

50 transFlag = 0;

51 %Counter

52 transCounter = 0;

53

54 while((counter)< inSigLen)

55

56 rmsVec=[rmsVec(2:rmsVecLen) inSig(counter)];

57

58 rmsVal=sqrt(mean(rmsVec.ˆ2));

59

60 if ((transFlag == 0))

61 if(abs(inSig(counter))>1.5*rmsVal)

62 transVec(counter)=1;

63 transFlag = 1;

64 end

65 elseif ((transFlag == 1) && (transCounter<minSampBetTrans))

66 transCounter = transCounter+1;

67 else

68 transCounter = 0;

69 transFlag = 0;

70 end

71

72 counter = counter + 1;

73

74 end

Appendix B. Matlab Implementations 121

Listing B.8: Script for generating transient vector.

B.4 ThrowAll

The ThrowAll version can be run with the script mainThrowAll.m, shown in list-

ing B.9. It uses the functions fftMulAndAdd, expandOutput and generateWeight,

shown in listing B.10, B.5, B.6, respectively. ThrowAll also uses transient vectors,

called transVec and transVec2 for the respective audio files. They can be gener-

ated with the script transDet2.m shown in listing B.8.

1 %%

2 %%%%%%%%%%%%%%mainThrowAll %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %This script uses the functions fftMulAndAdd, expandOutput,

10 %generateWeight, which can be found in their .m−files.
11

12 %It also uses the vectors transVec and transVec2 which can

13 %be altered with transDet2.m

14

15 %If set, the sound file generated will be played

16 playSound = 1;

17

18 %Different wightmodes exist. They were used in a test which

19 %failed. The mode 'const' does nothing, but have to be set

20 %for the code to run.

21 weightMode = 'const';

22

23 %Block length

Appendix B. Matlab Implementations 122

24 blockLen = {512, 512};
25

26 %Number of blocks4

27 maxNumOfBlocks = 200;

28 numOfBlocks = maxNumOfBlocks;

29

30 %Number of maximum concurrent processes

31 maxNumProc = 10;

32

33 %Load test signals

34 inSig = cell(1,2);

35 [inSig{1},fs] = wavread('drumloop2.wav');

36 inSig{2} = wavread('synth.wav');

37

38 %Load transient vector,transVec,

39 %for drumloop2, or use transDet2 to generate

40 %transVec

41 load 'drumloop2.mat'

42 %Don't use transient detection for inSig{2}
43 transVec2 = zeros(1,length(transVec));

44

45 %Convert to Mono

46 inSig{1} = inSig{1}(:,1)';
47 inSig{2} = inSig{2}(:,1)';
48

49 %Normalize

50 inSig{1}=inSig{1}/max(inSig{1});
51 inSig{2}=inSig{2}/max(inSig{2});
52

53 %Size of ffts must account for length of convolution

54 fftLen = blockLen{1}+blockLen{2}−1;
55

56 %Segment length, should be an integer times block length

57 segLen = {blockLen{1}*numOfBlocks, blockLen{2}*numOfBlocks};
58

59 %Initialize blocks

60 block = cell(1,2);

61

Appendix B. Matlab Implementations 123

62 %Initialize fft blocks

63 fftBlock = cell(1,2);

64

65 %Initialize fft segments

66 fftSegment = cell(maxNumProc,2);

67 fftSegment{1,1} = zeros(1,fftLen);

68 fftSegment{1,2} = zeros(1,fftLen);

69 for i = 2:maxNumProc

70 fftSegment{i,1} = [];

71 fftSegment{i,2} = [];

72 end

73

74 %RunningProcVec is a structarray that contains info about

75 %the number of running processes 2 −> running, 1 −> running

76 %but counting down blocks, 0 −> not running the other value

77 %in each cell is number of blocks in the segment representing

78 %that process

79 runningProcVec = struct;

80

81 %Initially, one process is active

82 runningProcVec(1).state=2;

83 runningProcVec(1).numOfBlocks=1;

84

85 %Initialize other processes to zero

86 for j=2:maxNumProc

87 runningProcVec(j).state=0;

88 runningProcVec(j).numOfBlocks=0;

89 end

90

91 %Counter that counts the number of recent transients

92 transCount=1;

93

94 %Initialize output

95 output = zeros(1,blockLen{1});
96

97 %Iteration variable

98 i=1;

99

Appendix B. Matlab Implementations 124

100 %Number of processes running in paralell

101 processCounter = 1;

102

103 while ˜((i+blockLen{1} > length(inSig{1})) | | ...
104 (i+blockLen{2} > length(inSig{2})))
105

106 %Fill up blocks

107 block{1} = inSig{1}(i:i+blockLen{1}−1);
108 block{2} = inSig{2}(i:i+blockLen{2}−1);
109

110 %Checks if active process is full. If it is it says that

111 % a transient has occured.

112 for j=1:maxNumProc

113 if(runningProcVec(j).state==2)

114 if(runningProcVec(j).numOfBlocks==maxNumOfBlocks)

115 transVec(i+10)=1;

116 end

117 end

118 end

119

120 %Check if there is a transient somwhere in these blocks

121 %If there is a transient, increment number of processes

122 if (sum(transVec(i:i+blockLen{1}−1))>=1) | | ...
123 (sum(transVec2(i:i+blockLen{1}−1))>=1)
124 transCount=mod(transCount,maxNumProc)+1;

125 for j = 1:maxNumProc

126 if(runningProcVec(j).state==2)

127 runningProcVec(j).state=1;

128 end

129 end

130 runningProcVec(transCount).state=2;

131 runningProcVec(transCount).numOfBlocks=0;

132 processCounter = processCounter+1;

133 end

134

135 i = max((i+blockLen{1}),(i+blockLen{2}));
136

137 %fft on blocks

Appendix B. Matlab Implementations 125

138 fftBlock{1} = fft(block{1},fftLen);
139 fftBlock{2} = fft(block{2},fftLen);
140

141 %Fill up fft segments according to the info in runningProcVec

142 for j = 1:maxNumProc

143 switch runningProcVec(j).state

144 case 2

145 %Process is active and not full. Append segments

146 %with newest FT Block pair

147 if(runningProcVec(j).numOfBlocks<maxNumOfBlocks)

148 fftSegment{j,1}=[fftSegment{j,1} fftBlock{1}];
149 fftSegment{j,2}=[fftSegment{j,2} fftBlock{2}];
150 runningProcVec(j).numOfBlocks=...

151 runningProcVec(j).numOfBlocks+1;

152 else

153 %Process is active and full. Append segments with

154 %newest FT Block pair. Throw away oldest FT block

155 %pair

156 ...

fftSegment{j,1}=[fftSegment{j,1}(fftLen+1:end)...
157 fftBlock{1}];
158 ...

fftSegment{j,2}=[fftSegment{j,2}(fftLen+1:end)...
159 fftBlock{2}];
160 end

161 case 1

162 %Process is semi−active.
163 runningProcVec(j).numOfBlocks=...

164 runningProcVec(j).numOfBlocks−1;
165 if(runningProcVec(j).numOfBlocks==0)

166 %Process is empty, set state to not active

167 %decrement number of processes

168 runningProcVec(j).state=0;

169 processCounter = processCounter−1;
170 else

171 %Throw away oldest FT block pair

172 ...

fftSegment{j,1}=[fftSegment{j,1}(fftLen+1:end)];

Appendix B. Matlab Implementations 126

173 ...

fftSegment{j,2}=[fftSegment{j,2}(fftLen+1:end)];
174 end

175 otherwise

176 fftSegment{j,1}=[];
177 fftSegment{j,2}=[];
178 end

179 end

180

181 temp = 0;

182 totalBlockNum = 0;

183 %Send all semi−aciteve processes and active process to

184 %fftMulAndAdd and save all results in temp

185 for j = 1:maxNumProc

186 if(runningProcVec(j).state˜=0)

187 wVector = generateWeight(weightMode,...

188 runningProcVec(j).numOfBlocks);

189 temp=temp+(1/runningProcVec(j).numOfBlocks)*...

190 fftMulAndAdd(fftSegment{j,1},fftSegment{j,2}...
191 ,wVector, runningProcVec(j).numOfBlocks,fftLen);

192 totalBlockNum = totalBlockNum +...

193 runningProcVec(j).numOfBlocks;

194 end

195 end

196

197 %Put new output block on existing output

198 output=expandOutput(output,temp,blockLen{1});
199

200 end

201

202 %play the output

203 if playSound

204 soundsc(output,fs)

205 end

Listing B.9: Main script for the ThrowAll version.

Appendix B. Matlab Implementations 127

1 %%

2 %%%%%%%%%%%%%%fftMulAndAdd %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 function out = fft MulAndAdd(fftSegment1, fftSegment2,...

10 wVector, numOfBlocks,fftLen)

11

12

13 %Function takes inn two fftSegments with numOfBlocks fft ...

results each.

14 %First block in fftSegment1 is multiplied with last block in ...

fftSegment2

15 %First block in fftSegment2 is multiplied with last block in ...

fftSegment1

16 %All multiplication results are added together in out vector.

17 %outvector is fftSegment1/numOfBlocks long

18

19 %Initialize output

20 out=zeros(1,fftLen);

21

22 %Maximum allowed number of blocks

23 maxNumOfBlocks = length(fftSegment1)/fftLen;

24

25 %Iterate, multiply

26 for i = 1:numOfBlocks

27 out=out+...

28 wVector(i)*real(ifft(fftSegment1(((i−1)*fftLen+1):i*fftLen)...
29 .*fftSegment2((fftLen*numOfBlocks−i*fftLen+1)...
30 :fftLen*numOfBlocks−(i−1)*fftLen)));
31 end

Listing B.10: fftMulAndAdd function.

Appendix B. Matlab Implementations 128

B.5 ThrowLast

The ThrowLast version can be run with the script mainThrowLast.m, shown in list-

ing B.11. It uses the functions fftMulAndAdd, expandOutput and generateWeight,

shown in listing B.10, B.5, B.6, respectively. ThrowLast also uses transient vec-

tors, called transVec and transVec2 for the respective audio files. They can be

generated with the script transDet2.m shown in listing B.8.

1 %%

2 %%%%%%%%%%%%%%mainThrowLast %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %This script uses the functions fftMulAndAdd, expandOutput,

10 %generateWeight, which can be found in their .m−files.
11

12 %It also uses the vectors transVec and transVec2 which can

13 %be altered with transDet2.m

14

15 %If set, the sound file generated will be played

16 playSound = 1;

17

18 %Different wightmodes exist. They were used in a test which

19 %failed. The mode 'const' does nothing, but have to be set

20 %for the code to run.

21 weightMode = 'const';

22

23 %Block length

24 blockLen = {512, 512};
25

26 %Number of blocks4

27 maxNumOfBlocks = 200;

28 numOfBlocks = maxNumOfBlocks;

Appendix B. Matlab Implementations 129

29

30 %Number of maximum concurrent processes

31 maxNumProc = 200;

32

33 %Load test signals

34 inSig = cell(1,2);

35 [inSig{1},fs] = wavread('drumloop2.wav');

36 inSig{2} = wavread('synth.wav');

37

38 %Load transient vector,transVec,

39 %for drumloop2, or use transDet2 to generate

40 %transVec

41 load 'drumloop2.mat'

42 %Don't use transient detection for inSig{2}
43 transVec2 = zeros(1,length(transVec));

44

45 %Convert to Mono

46 inSig{1} = inSig{1}(:,1)';
47 inSig{2} = inSig{2}(:,1)';
48

49 %Normalize

50 inSig{1}=inSig{1}/max(inSig{1});
51 inSig{2}=inSig{2}/max(inSig{2});
52

53 %Size of ffts must account for length of convolution

54 fftLen = blockLen{1}+blockLen{2}−1;
55

56 %Initialize blocks

57 block = cell(1,2);

58

59 %Initialize fft blocks

60 fftBlock = cell(1,2);

61

62 %Initialize fft segments

63 fftSegment = cell(maxNumProc,2);

64 fftSegment{1,1} = zeros(1,fftLen);

65 fftSegment{1,2} = zeros(1,fftLen);

66 for i = 2:maxNumProc

Appendix B. Matlab Implementations 130

67 fftSegment{i,1} = [];

68 fftSegment{i,2} = [];

69 end

70

71 %RunningProcVec is a structarray that contains info about

72 %the number of running processes, it has variables state

73 %and numOfBlocks for each process. State will be either

74 %3,2,1 or 0. 3 −> the active process. Append segments with

75 %newest FT Block pair. 2−>semi−active, but not the oldest.

76 %dont modify segments. 1−> oldest semi−active process, throw

77 %away oldest FT Block pair. 0−>not running.

78 runningProcVec = struct;

79

80 %Initially, one process is active

81 runningProcVec(1).state=3;

82 runningProcVec(1).numOfBlocks=0;

83 %Initialize other processes to zero

84 for j=2:maxNumProc

85 runningProcVec(j).state=0;

86 runningProcVec(j).numOfBlocks=0;

87 end

88

89 %Variables that point to the active and

90 %tossing (oldest sem−active) process

91 activeProcess=1;

92 tossingProcess=0;

93

94 %Initialize output

95 output = [zeros(1,fftLen)];

96

97 %Generate weight vector

98 wVector = generateWeight(weightMode,numOfBlocks);

99

100 %Iteration variable for main loop

101 i=1;

102

103 %Variable with info on total number of paralell processes

104 while ˜((i+blockLen{1} > length(inSig{1})) | | ...

Appendix B. Matlab Implementations 131

105 (i+blockLen{2} > length(inSig{2})))
106

107 %Fill up blocks

108 block{1} = inSig{1}(i:i+blockLen{1}−1);
109 block{2} = inSig{2}(i:i+blockLen{2}−1);
110

111 %Check if there is a transient somwhere in these blocks

112 %If there is a transient, increment number of processes

113 if (sum(transVec(i:i+blockLen{1}−1))>=1) | | ...
114 (sum(transVec2(i:i+blockLen{1}−1))>=1)
115 if(runningProcVec(mod(activeProcess+maxNumProc−2,...
116 maxNumProc)+1).state == 0)

117 %Only one process running. Active process is now

118 %oldest semi−active process

119 runningProcVec(activeProcess).state=1;

120 tossingProcess=activeProcess;

121 else

122 %Several processes are running.

123 %Set active process to semi−active (not oldest)

124 runningProcVec(activeProcess).state=2;

125 end

126 %Start new active process

127 activeProcess=mod(activeProcess,maxNumProc)+1;

128 runningProcVec(activeProcess).state=3;

129 fftSegment{activeProcess,1}=[];
130 fftSegment{activeProcess,2}=[];
131 end

132 if(tossingProcess˜=0 &&...

133 runningProcVec(tossingProcess).numOfBlocks==0)

134 %tossing process is empty, set oldest process to not

135 %running, set second oldest semi−active to oldest

136 %semi−active
137 if(runningProcVec(mod(tossingProcess,...

138 maxNumProc)+1).state˜=3)

139 runningProcVec(tossingProcess).state=0;

140 tossingProcess=mod(tossingProcess,maxNumProc)+1;

141 runningProcVec(tossingProcess).state=1;

142 else

Appendix B. Matlab Implementations 132

143 tossingProcess=0;

144 end

145 end

146

147 i = max((i+blockLen{1}),(i+blockLen{2}));
148

149 %fft on blocks

150 fftBlock{1} = fft(block{1},fftLen);
151 fftBlock{2} = fft(block{2},fftLen);
152

153 %Fill up fft segments according to the info in runningProcVec

154 for j = 1:maxNumProc

155 switch runningProcVec(j).state

156 case 3

157 if(runningProcVec(j).numOfBlocks<maxNumOfBlocks)

158 fftSegment{j,1}=[fftSegment{j,1} fftBlock{1}];
159 fftSegment{j,2}=[fftSegment{j,2} fftBlock{2}];
160 runningProcVec(j).numOfBlocks=...

161 runningProcVec(j).numOfBlocks+1;

162 else

163 ...

fftSegment{j,1}=[fftSegment{j,1}(fftLen+1:end)...
164 fftBlock{1}];
165 ...

fftSegment{j,2}=[fftSegment{j,2}(fftLen+1:end)...
166 fftBlock{2}];
167 end

168 case 1

169 if runningProcVec(j).numOfBlocks

170 runningProcVec(j).numOfBlocks = ...

171 runningProcVec(j).numOfBlocks−1;
172 end

173 if(runningProcVec(j).numOfBlocks==0)

174 runningProcVec(j).state=0;

175 end

176 fftSegment{j,1}=...
177 [fftSegment{j,1}(fftLen+1:end)];
178 fftSegment{j,2}=...

Appendix B. Matlab Implementations 133

179 [fftSegment{j,2}(fftLen+1:end)];
180 case 2

181 %Do nothing

182 otherwise

183 fftSegment{j,1}=[];
184 fftSegment{j,2}=[];
185 end

186 end

187

188 %temporary vector for output block

189 temp = 0;

190

191 %Send processes to fftMulAndAdd, sum up the results in ...

temp vector

192 for j = 1:maxNumProc

193 if(runningProcVec(j).state˜=0)

194 wVector = generateWeight(weightMode,...

195 runningProcVec(j).numOfBlocks);

196 temp=temp+(1/runningProcVec(j).numOfBlocks)...

197 *fftMulAndAdd(fftSegment{j,1},fftSegment{j,2},...
198 wVector,runningProcVec(j).numOfBlocks,fftLen);

199 end

200 end

201

202 %Put output block (temp) on existing output

203 output=expandOutput(output,temp,blockLen{1});
204

205 end

206

207 %Play the output

208 if playSound

209 soundsc(output,fs)

210 end

Listing B.11: Main script for the ThrowLast version.

Appendix B. Matlab Implementations 134

B.6 TwoProc

The TwoProc version can be run with the script mainTwoProc.m, shown in listing

B.12. It uses the functions fftMulAndAdd, expandOutput and generateWeight,

shown in listing B.10, B.5, B.6, respectively. TwoProc also uses transient vec-

tors, called transVec and transVec2 for the respective audio files. They can be

generated with the script transDet2.m shown in listing B.8.

1 %%

2 %%%%%%%%%%%%%%mainTwoProc %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%June 2013 %%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%Authors: Antoine Henning Bardoz %%%%%%%%%%%%%%%

6 %%%%%%%%%%%%%% Lars Eri Myhre %%%%%%%%%%%%%%%

7 %%

8

9 %This script uses the functions fftMulAndAdd, expandOutput,

10 %generateWeight, which can be found in their .m−files.
11

12 %It also uses the vectors transVec and transVec2 which can

13 %be altered with transDet2.m

14

15 %If set, the sound file generated will be played

16 playSound = 1;

17

18 %Different wightmodes exist. They were used in a test which

19 %failed. The mode 'const' does nothing, but have to be set

20 %for the code to run.

21 weightMode = 'const';

22

23 %Block length

24 blockLen = {512, 512};
25

26 %Number of blocks

27 maxNumOfBlocks = 100;

28 numOfBlocks = maxNumOfBlocks;

Appendix B. Matlab Implementations 135

29

30 %Load test signals

31 inSig = cell(1,2);

32 [inSig{1},fs] = wavread('drumloop2.wav');

33 inSig{2} = wavread('synth.wav');

34

35 %Load transient vector,transVec,

36 %for drumloop2, or use transDet2 to generate

37 %transVec

38 load 'drumloop2.mat'

39 %Don't use transient detection for inSig{2}
40 transVec2 = zeros(1,length(transVec));

41

42 %Convert to Mono

43 inSig{1} = inSig{1}(:,1)';
44 inSig{2} = inSig{2}(:,1)';
45

46 %Normalize

47 inSig{1}=inSig{1}/max(inSig{1});
48 inSig{2}=inSig{2}/max(inSig{2});
49

50 transVec = [transVec zeros(1,length(inSig{1}))];
51 transVec2 = zeros(1,length(transVec));

52

53 inSig{2} = [inSig{2} inSig{2}];
54

55 %Size of ffts must account for length of convolution

56 fftLen = blockLen{1}+blockLen{2}−1;
57

58 %Initialize fftSegments

59 fftSegmentOld = cell(1,2);

60 fftSegmentOld{1} = [];

61 fftSegmentOld{2} = [];

62

63 fftSegmentNew = cell(1,2);

64 fftSegmentNew{1} = zeros(1,fftLen*maxNumOfBlocks);

65 fftSegmentNew{2} = zeros(1,fftLen*maxNumOfBlocks);

66

Appendix B. Matlab Implementations 136

67 %Variable with info on numOfBlocks in the segments

68 currentNumOfBlocksNew = 0;

69 currentNumOfBlocksOld = 0;

70

71 %Initialize output

72 output = [zeros(1,fftLen)];

73

74 %Generate weight vector

75 wVector = generateWeight(weightMode,numOfBlocks);

76

77 i=1;

78 rundeteller=0;

79 processCounter = 1;

80 while ˜((i+blockLen{1} > length(inSig{1})) | | ...
81 (i+blockLen{2} > length(inSig{2})))
82

83 %Fill up blocks

84 block{1} = inSig{1}(i:i+blockLen{1}−1);
85 block{2} = inSig{2}(i:i+blockLen{2}−1);
86

87 %Fft on blocks

88 fftBlock{1} = fft(block{1},fftLen);
89 fftBlock{2} = fft(block{2},fftLen);
90

91 if((currentNumOfBlocksNew+currentNumOfBlocksOld) == ...

maxNumOfBlocks)

92 maxNumBlo = 1;

93 %Total number of blocks has reached maxNumOfBlocks. ...

One block

94 %should be thrown away when a new block is added.

95 if (sum(transVec(i:i+blockLen{1}−1))>=1) | | ...
96 (sum(transVec2(i:i+blockLen{1}−1))>=1)
97 trans = 1;

98 %A transient is detected. Add the blocks in new

99 %to old. Put newest block in new. Remove one block

100 %from old because total number of blocks has reached

101 %maxNumOfBlocks

102 fftSegmentOld{1} = [fftSegmentOld{1}(fftLen+1:end) ...

Appendix B. Matlab Implementations 137

103 fftSegmentNew{1}];
104 fftSegmentOld{2} = [fftSegmentOld{2}(fftLen+1:end) ...

105 fftSegmentNew{2}];
106 fftSegmentNew{1} = [fftBlock{1}];
107 fftSegmentNew{2} = [fftBlock{2}];
108 currentNumOfBlocksOld = currentNumOfBlocksOld−1+...
109 currentNumOfBlocksNew;

110 currentNumOfBlocksNew = 1;

111 elseif (currentNumOfBlocksOld˜=0)

112 trans=0;

113 %No transient detected. Remove oldest block in old.

114 %Add newest block to new process.

115 fftSegmentOld{1} = [fftSegmentOld{1}(fftLen+1:end)];
116 fftSegmentOld{2} = [fftSegmentOld{2}(fftLen+1:end)];
117 fftSegmentNew{1} = [fftSegmentNew{1} fftBlock{1}];
118 fftSegmentNew{2} = [fftSegmentNew{2} fftBlock{2}];
119 currentNumOfBlocksOld = currentNumOfBlocksOld − 1;

120 currentNumOfBlocksNew = currentNumOfBlocksNew + 1;

121 else

122 trans=0;

123 %No transient detected. Old is empty. Remove oldest

124 %block from new and add newest block to new.

125 fftSegmentNew{1} = [fftSegmentNew{1}(fftLen+1:end) ...

126 fftBlock{1}];
127 fftSegmentNew{2} = [fftSegmentNew{2}(fftLen+1:end) ...

128 fftBlock{2}];
129 end

130 else

131 maxNumBlo = 0;

132 %Total number of blocks is less than maxNumOfBlocks.

133 %No blocks should be thrown.

134 if (sum(transVec(i:i+blockLen{1}−1))>=1) | | ...
135 (sum(transVec2(i:i+blockLen{1}−1))>=1)
136 trans=1;

137 %Transient detected.

138 fftSegmentOld{1} = [fftSegmentOld{1} ...

fftSegmentNew{1}];

Appendix B. Matlab Implementations 138

139 fftSegmentOld{2} = [fftSegmentOld{2} ...

fftSegmentNew{2}];
140 fftSegmentNew{1} = [fftBlock{1}];
141 fftSegmentNew{2} = [fftBlock{2}];
142 currentNumOfBlocksOld = currentNumOfBlocksOld+...

143 currentNumOfBlocksNew;

144 currentNumOfBlocksNew = 1;

145 else

146 trans = 0;

147 %No transient detected.

148 fftSegmentNew{1} = [fftSegmentNew{1} fftBlock{1}];
149 fftSegmentNew{2} = [fftSegmentNew{2} fftBlock{2}];
150 %Consider throwing one block if old is active,

151 %even if maxNumOfblocks is not reached.

152 fftSegmentOld{1} = fftSegmentOld{1}(fftLen+1:end);
153 fftSegmentOld{2} = fftSegmentOld{2}(fftLen+1:end);
154 currentNumOfBlocksOld;

155 currentNumOfBlocksNew = currentNumOfBlocksNew + 1;

156 end

157 end

158

159 i = max((i+blockLen{1}),(i+blockLen{2}));
160 temp = 0;

161

162 if(currentNumOfBlocksOld˜=0)

163 wVector = ...

generateWeight(weightMode,currentNumOfBlocksOld);

164 temp=temp+fftMulAndAdd(fftSegmentOld{1},...
165 fftSegmentOld{2},wVector,...
166 currentNumOfBlocksOld,fftLen);

167 wVector = ...

generateWeight(weightMode,currentNumOfBlocksNew);

168 temp=temp+fftMulAndAdd(fftSegmentNew{1},...
169 fftSegmentNew{2},wVector,...
170 currentNumOfBlocksNew,fftLen);

171 else

172 wVector = ...

generateWeight(weightMode,currentNumOfBlocksNew);

Appendix B. Matlab Implementations 139

173 temp=temp+fftMulAndAdd(fftSegmentNew{1},...
174 fftSegmentNew{2},wVector,...
175 currentNumOfBlocksNew,fftLen);

176 end

177

178 output=expandOutput(output,temp,blockLen{1});%/processCounter;
179 end

180

181 if playSound

182 soundsc(output,fs)

183 end

Listing B.12: Main script for the TwoProc version.

Appendix C

Transient Detection Algorithm

The code for the algorithm was written mainly by Øyvind Brandtsegg, and is on

lines 114-152 in the Csound implementation file, see Appendix A. A flowchart of

the functionality is included below for the convenience of the reader.

140

Appendix C. Transient Detection Algorithm 141

follow2

(envelope
tracker)

Z-iResponse

(delay)

No Transient
detected

Transient
detected

kAtck

(Threshold
value)

iLowThresh

Input
signal

+ Left < Right?

Yes
No

*Left > Right?

No

0.7

0.3

+

Yes

More than idoubleLin
seconds since last transient?

(init = 0)
kLow

Figure C.1: Flowchart of Transient Detection algorithm.

Index

active process, 24, 26, 27, 29, 60

convolution event, 24, 51, 55, 58

cross convolution, 20

FT blocks, 19, 20, 22, 24–27, 58–60

segments, 6, 20, 22, 24–26, 35, 36, 38,

51, 52, 54, 55, 57, 58, 61, 65

semi-active processes, 24–27, 29, 57, 60

142

Bibliography

[1] C. Leider. Digital Audio Workstation, ISBN 0-07-142286-2. 2004. ISBN

0-07-142286-2.

[2] T. Engum. Real-time control and creative convolution. Proceedings og the

Internation Conference on New Interfaces for Musical Expression, 72(12):

519–522, December 2001. URL http://link.aip.org/link/?RSI/72/4477/

1.

[3] Ø. Brandtsegg S. Saue. Experiments with dynamic convolution techniques

in live performance. In Linux Audio Conference, IEM, Graz, Austria, 2013.

Institute of Electronic Music and Acoustics, University for Music and Per-

forming Arts Graz, Austria. URL http://lac.linuxaudio.org/2013.

[4] A. Dominguez-Torres. The origin and history of convolution i:

Continuous and discrete convolution operations (last visited in

march 2013). 2010. URL http://www.slideshare.net/Alexdfar/

origin-adn-history-of-convolution.

[5] J.G. Proakis and D.G. Manolakis. Digital Signal Processing, Fourth Edition,

ISBN 0-13-187374-1. ISBN 0-13-187374-1.

[6] E. Kreyszig. Advanced Engineering Mathematics, Ninth Edition, ISBN 978-

0-471-72897-9. ISBN 978-0-471-72897-9.

[7] W.H. Press et. al. NUMERICAL RECIPES IN FORTRAN 77: THE ART

OF SCIENTIFIC COMPUTING, ISBN 0-521-43064-X. 1986-1992. ISBN

0-521-43064-X.

143

http://link.aip.org/link/?RSI/72/4477/1
http://link.aip.org/link/?RSI/72/4477/1
http://lac.linuxaudio.org/2013
http://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution
http://www.slideshare.net/Alexdfar/origin-adn-history-of-convolution

Bibliography 144

[8] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of

complex fourier series. Mathematics of Computation 19, pages 297–301, 1965.

[9] K.R. Ramakrishnan B. Thoshkahna, F. X. Nsabimana. A transient detection

algorithm for audio using iterative analysis of stft. 12th International Society

for Music Information Retrieval Conference (ISMIR 2011), 2011. URL http:

//ismir2011.net/papers/PS2-6.pdf.

[10] T. Maki-Patola and P. Hamalainen. Latency tolerance for gesture controlled

continuous sound instrument without tactile feedback. In Proc. International

Computer Music Conference (ICMC), 2004.

[11] A. Sæbø P. Svensson S. Farner, A. Solvang. Ensemble hand-clapping exper-

iments under the influence of delay and various acoustic environments. In

121st Convention of the Audio Engineering Society, 2009.

[12] Mathworks. Matlab homepage (last visited in june 2013). URL http://www.

mathworks.se/products/matlab/.

[13] R. Boulanger et. al. The Csound Book, First Edition, ISBN 0-262-52261-6.

ISBN 0-262-52261-6.

[14] R. Boulanger J. Clements. Csound homepage (last visited in june 2013). URL

http://www.csounds.com.

[15] R. Walsh. Cabbage audio plugin framework. In Proceedings of the Inter-

national Computer Music Conference, University of Huddersfield, UK, 2011.

URL http://www.icmc2011.org.uk/.

[16] R. Walsh. The cabbage foundation homepage (last visited in june 2013). URL

http://thecabbagefoundation.org/.

[17] I. Varga. ftconv (last visited in june 2013), 2005. URL http://www.csounds.

com/manual/html/ftconv.html.

[18] L.E. Kinsler et.al. Fundamentals of Acoustics, Fourth Edition, ISBN 978-

0-471-84789-2. ISBN 978-0-471-84789-2. URL http://www.wiley.com/

college.

http://ismir2011.net/papers/PS2-6.pdf
http://ismir2011.net/papers/PS2-6.pdf
http://www.mathworks.se/products/matlab/
http://www.mathworks.se/products/matlab/
http://www.csounds.com
http://www.icmc2011.org.uk/
http://thecabbagefoundation.org/
http://www.csounds.com/manual/html/ftconv.html
http://www.csounds.com/manual/html/ftconv.html
http://www.wiley.com/college
http://www.wiley.com/college

Bibliography 145

[19] W.G. Gardner. Efficient convolution without input/output delay. In 97th

Convention of the Audio Engineering Society, San Fransisco, CA, 1994.

	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Problem Description
	1.2 How to Read This Thesis

	2 Theory
	2.1 Convolution
	2.1.1 Time Domain
	2.1.2 The (Circular) Convolution Theorem

	2.2 The Fast Fourier Transform and Frequency Domain Multiplication
	2.3 Theoretical Foundation for Real-Time Blockwise Convolution
	2.4 Transients and Transient Detection
	2.5 Latency Tolerance for Musicans

	3 Development Tools
	3.1 Matlab
	3.2 Csound
	3.3 Cabbage

	4 Algorithm
	4.1 Preliminary Algorithm
	4.1.1 Short Description
	4.1.2 Buffer Up Signals
	4.1.3 Convolution Computation
	4.1.4 Put Convolution Result on Output

	4.2 Algorithm Version 1
	4.2.1 Short Description
	4.2.2 Buffer Partitioning
	4.2.3 Cross Convolution of a Segment
	4.2.4 Output Buffer

	4.3 Algorithm Version 2 (Transient Detection)
	4.4 Algorithm Version 3 (Parallel Processes)
	4.4.1 Alternative 1: ThrowAll (Used in Final Implementation)
	4.4.2 Alternative 2: ThrowLast
	4.4.3 Alternative 3: TwoProc
	4.4.4 Normalization

	5 Results
	5.1 Preliminary Algorithm
	5.2 Algorithm Version 1
	5.3 Algorithm Version 2
	5.4 Algorithm Version 3
	5.4.1 ThrowAll (Final Algorithm)
	5.4.2 ThrowLast
	5.4.3 TwoProc

	5.5 Graphical User Interface
	5.5.1 Gain Knobs
	5.5.2 Transient Detection Section
	5.5.3 Convolution Section

	6 Discussion
	6.1 Preliminary Algorithm
	6.1.1 Why the Preliminary Algorithm Fails
	6.1.2 Independent Buffer Sizes, Overlap on Output and Fading of Overlap

	6.2 Algorithm Version 1
	6.2.1 Delayed Change
	6.2.2 Indistinct Transients
	6.2.3 Destructive Interference

	6.3 Transient Detection (Algorithm Version 2)
	6.4 Parallel Processes (Algorithm Version 3)
	6.4.1 Alternative 1: ThrowAll (Used in Final Implementation)
	6.4.2 Alternative 2: ThrowLast
	6.4.3 Alternative 3: TwoProc
	6.4.4 Level Control and Normalization

	6.5 Computational Complexity
	6.5.1 Computational Complexity Versus Output Delay

	6.6 Esthetic Considerations
	6.6.1 Characteristics of the Effect
	6.6.2 Areas of Application
	6.6.3 The Effect in Action

	7 Future Work
	7.1 Independent Segment Length
	7.2 MIDI-Controlled Segmentation
	7.3 Zero-Delay FFT-Based Convolution
	7.4 Automatic Gain Control
	7.5 Input Amplitude Thresholding for Computational Efficiency

	8 Conclusion
	A Final Implementation
	A.1 Csound Code
	A.2 Opcode laivconv

	B Matlab Implementations
	B.1 Preliminary Algorithm
	B.2 Algorithm Version 1
	B.3 Algorithm Version 2
	B.4 ThrowAll
	B.5 ThrowLast
	B.6 TwoProc

	C Transient Detection Algorithm
	Bibliography

