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Abstract

NTNU hosts NUTS (NTNU Test Satellite), that is mainly envisioned as an educational
satellite where most tasks are performed by students while supported by university staff.

The scientific payload of the mission is an IR camera that enables the study of gravity
waves. But there is a side goal of developing new technical solutions for small satel-
lites.

One of these new solutions is the use of radio modules for the internal communications of
the satellite. This master’s thesis deals with the design and implementation of a proof of
concept for such a wireless network.

There are some advantages to the use of a wireless intra-satellite bus including: lower
costs (both economic and in weight) and the possibility to have several transmissions in
parallel. The latter could be attained by the use of virtual channels ( or similar solutions)
that most vendors provide on their radio kits. A proper exploitation of such features would
significantly increase throughput while not requiring for additional hardware.

The solution is based on the commercially available nRF24L01 and is envisioned as com-
plementary to the I2C bus that is also present in the satellite. At the same time the project
hopes to set the necessary groundwork so that, in a future, the sole use of short range radio
transceivers is an option both for future satellites of NTNU or those built elsewhere.Using
COTS parts and freely available software and tools enhances this aim of opening new pos-
sibilities to other projects as well as our own. The implementation is kept as hardware
independent as possible, thus deploying it on other satellites should be relatively effort-
less.

The integration of this new interface with CSP is also considered. Using CSP as a logical
layer on top of the radio links.

It is therefore an eminently practical master’s thesis but it keeps an spirit to experimenting
to discover the possibilities of this novel link
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Sammendrag

NTNU huser NUTS (NTNU Test satellite), som hovedsaklig er en utdannings-satellitt.
Hvor de fleste oppgavene utføres av studenter, under veiledning og støtte fra ansatte ved
universitetet.

Den primære vitenskaplige hensikten med NUTS er bringe et infrarødt-kamera som muliggjør
forsking på gravitasjon bølger. Sekundær hensikten er å utvikle nye teknologiske løsninger
for små satellitter.

En ny teknologisk løsning er bruken av radio moduler for intern kommunikasjon på satel-
litten. Denne master oppgaven fokuserer på designe og implementere en prototype for
intern trådløs databuss kommunikasjon.

Det er fordeler med bruk av en trådløs kommunikasjon. For det første frigjør det vekt-
enheter, som muliggjør en lavere kostnad. For det andre tillater trådløs kommunikasjon
utveksling av data mellom modulene i virtuell parallell. Denne parallell kommunikasjonen
oppnås ved bruk av virtuelle kanaler, eller lignede, som de fleste leverandører inkluderer i
sine radio moduler. Riktig bruk vil gi en merkbar ytelses forbedring ved å øke gjennom-
strømningen av data uten å kreve mer maskinvare.

Løsningen er basert på en kommersiell tilgjengelig nRF24L01 og forestilt å komple-
mentere I2C databuss som er nåværende på satellitten. Prosjektet håper å gjøre det nødvendige
grunnarbeidet, så for kommende satellitter (både NTNUs og de bygget av andre.) kan
bruke det som et utgangspunkt for intern trådløs databuss kommunikasjon. Ved bruk av
kommersiell tilgjengelige varer, fritt tilgjengelig programvare og verktøy, styrker det nye
muligheter for andre prosjekter så vell som våres. Implementasjonen er gjort så maskin-
vare uavhengig som mulig, med tanke på å ta det i bruk på andre satellitter skal være så
enkelt som mulig.

Integrasjonen av dette nye grensesnittet med CSP er vurdert, med tanke på bruke CSP som
et logisk lag på toppen av de trådløse datalink-laget.

Denne masteren er preget av å være utøvende, men utforsker muligheten for en intern
trådløs databuss.
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Chapter 1
Introduction

1.1 Foreword

This is a report for a master’s thesis. Although this document is meant as a stand alone
presentation of the work done, it is important to mention that said work was embedded in
a larger NTNU project: NUTS (1.2). Specifically this thesis deals with the development
of an internal wireless bus for the communication between different modules of the NUTS
satellite. Using an internal wireless bus is a novelty among CubeSats therefore it is de-
sired not only to develop a technical solution but also to study its viability, reliability and
performance.

This thesis is eminently a practical work, although the theoretical background has been
dully explored. It is done in hopes that it can help further NTNU’s CubeSat project’s
progress and other projects of a similar nature.

This document is divided in chapters. The content of each chapter, ordered as they appear
in the document, follows:

Introduction
Presents an overview of this thesis’ aims alongside a description of the NUTS
project as a whole. Including it’s previous status and which improvements are pur-
sued with this work.

Proposed Solution
Describes the solution devised for the intra-satellite communication, on a conceptual
level.

Technical Foundations
Contains an overview of the specific technologies that were relied upon to imple-
ment the described solution.

1



Chapter 1. Introduction

Implementation
Exposes the practical implementation of this project.

Porting and integration guide
This chapter is envisioned as a reference guide to help port and integrate this system
into the larger NUTS satellite.

Testing and Results
Describes the obtained results.

Conclusion
Presents the conclusions from technical, academic and personal point of view. In-
cluding challenges faced during development.

To set things in scope an overview of the NUTS project is here provided. Said overview
may, logically, present some overlapping with other reports done within the NUTS project.

1.2 NUTS

The NTNU Test Satellite is a university project that aims to design, build and launch a
satellite. It also has a strong educational spirit therefore all tasks are performed by students
guided by faculty and staff and, as much as possible, using home-grown solutions devel-
oped from scratch in NTNU. The satellite is embedded within the CubeSat project(1.2.1),
specifically it is a 2U CubeSat.

From a technical and scientific point of view NUTS also has a dual focus: carrying a pay-
load into space to obtain scientific data and to develop novel solutions in satellite build-
ing.

The main payload is an IR camera that will enable the study of atmospheric gravity waves.
The study of said waves can provide valuable information regarding the transportation of
energy in the upper layers of the atmosphere.

Additionally to the main payload some of the technical approaches that are being used are
new to the building of similar spacecraft. Including:

Backplane
The modules of the satellite are interconnected through a backplane, resembling
how computer boards are plugged into the motherboard. The backplane provides
both power and communication (via an I2C bus) to the subsystems. Many other
satellites use a PC104 stacking style to achieve the same effect.

Composite Materials Frame
Whereas most CubeSats use metal for the outer structure and frame, NUTS uses
reinforced plastic based composite materials to build a fully custom frame. In hopes
of shaving some weight off and thus allowing more weight for crucial systems.

Internal Wireless Bus
Additional the the I2C for intra-satellite communication. NUTS is equipped with an

2



1.2 NUTS

experimental internal wireless bus. This thesis deals with the development of said
bus on a logical and software development level.

Software based memory correction
Instead of using radiation rugged hardware, the satellite will compensate for the
hostility of the low earth orbit environment on electronic memories by using a com-
bination of software based solutions [2].

In pursue of this dual spirit NUTS hopes to gather data of scientific value while furthering
technical solutions in spacecraft building technique.

Figure 1.1: Artistic rendering of NUTS.

1.2.1 CubeSat

CubeSat [13] is a type of nano-satellite, that is a very small satellite. The first specification
was published by California Polytechnic State University (Cal Poly) and Stanford Univer-
sity as means for universities to have the possibility to run their own space missions on
a constrained budget. Over the years the CubeSat community has grown as they gained
popularity although there is still a prevalence of academia-related projects.

One of the most recognizable features of said specification is the limited size of the space-
crafts. Originally they were cubical satellites of 10 cm per side. Newer versions of the
specifications have multiplied one of the axis’ length thus creating satellites shaped like
a square prism where the longer side could be either 10 cm (original), 20 cm and 30 cm.
The original size is called 1U and following this pattern the bigger ones are 2U and 3U
respectively.

One of the advantages of adhering to the specification is the compatibility with the deploy-
ment mechanism: P-POD (Figure 1.2), thus simplifying enormously interfacing with the
launch vehicle. In addition to that, CubeSat are easily interchangeable as they all would
comply with the same launch vehicle interface, enabling the use of last-minute openings
in launch opportunities.

3



Chapter 1. Introduction

Figure 1.2: P-POD launch mechanism and mock 1U CubeSat

1.2.2 NUTS Hardware and Subsystems

NUTS [9], as many other satellites, is composed of several different modules and subsys-
tems. They interact with each other to provide the most advanced functionalities of the
spacecraft.

Subsystems

This section presents a brief overview of some of these subsystems. There is also an in-
herent hierarchy among them: namely the On-Board-Computer and the radio module have
control over all other modules. Even more they provide a certain degree of redundancy to
each other. Being the main modules they head the following listing of subsystems.

On-Board-Computer (OBC)
It holds the main processor on the satellite and performs tasks such as housekeep-
ing or payload data processing. It also checks for the status of other modules and
can reset or disable them if they are malfunctioning. The processor used is an
AVR32UC3A3256 and the board also provides a reasonably large amount of SRAM
(16 MB) and Flash (16 GB).

Radio Module
It is the main (and only) means of the satellite to communicate with the ground
station. Therefore all the messages to and from the spacecraft will, at one point
or another, be relayed by the radio module. Aside from it’s main functionalities
as a communications interface this module, like the OBC, also has the capability
to control other modules. Furthermore it could, in the event of an OBC failure,
take part of the OBC’s duties and keep the satellite functioning albeit not at full
capabilities as it has less storage and RAM. In order to keep this redundancy between
radio and OBC modules, the radio is also based on the AVR32UC3A3256. Aside
from redundancy, having a relatively powerful MCU on the radio allows for more

4



1.2 NUTS

Figure 1.3: Current prototype of the OBC board [9]

autonomous operation in all communications thus the OBC has more resources to
perform it’s tasks.

Both modules are equipped with extra pins on their interface with the backplane. These
pins enable to reset or isolate other modules from the power and communication buses if
they were being faulty. It is worth mentioning that radio and OBC also check each other for
sanity and could reset one another should the need arise. Even though a non-recoverable
error in the radio would mean that the satellite is cut off from ground, effectively making
the mission impossible to control. Here continues the listing of modules:

Payload - IR Camera
If the OBC is metaphorically the brain of the satellite then the payload would be its
heart. The intended payload for NUTS is an IR camera to take images of the upper
layers of the atmosphere. These images should enable for the study of gravity waves.
The pictures taken by the camera are then transferred to the OBC for processing (or
sent as raw data to ground).

Power System
All of the other subsystems require power to work hence there is a specific module
devoted to the control, monitoring and distribution of power. The energy is harvested
through solar panels and then stored in batteries to be used by the spacecraft.

Attitude Determination and Control System (ADCS)
The satellite requires means to know its orientation and to control it. Also a way
to stop the initial, after deployment, tumbling. The ADCS provides this functional-
ities. It combines magnetometers, gyroscope and the solar panels (as sun sensors)
to calculate the current attitude of the spacecraft. It can also actuate to change this
attitude through the interaction of the magneto torques with the Earth’s magnetic
field.
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Backplane Based Platform

All the modules described in the prior section(1.2.2) are interdependent thus they require
communication among them. Additionally they require power to perform their functions.
One of the innovative, and uncommon in CubeSats, solutions NUTS is using is the use of
a backplane.

The backplane provides several slots: some of them are generic slots and can house most
standard modules whereas others are specially tailored to specific boards. The specialized
ones allow access to certain control or power lines for enhanced functionalities such as
switching off or resetting other boards as is the case of the OBC and the radio.

Figure 1.4: Current prototype of the backplane [9]

1.3 Previous Work

Naturally being part of the NUTS project this thesis is grounded on a variety of works also
related to NUTS. Two of those works must be specially highlighted because given their
nature have been especially used as references.

Some work done previously in NUTS [8] deals with the more purely electrical engineer-
ing details of the use of small radio transceivers as means of intra-satellite communication.
Paying attention to the hostile environment (due to the presence of many electronic com-
ponents) that the interior of NUTS is for such small transceivers. His work allows the
present master’s thesis to deal with the logical aspects of the internal wireless bus and
their software implementation.

Also as part of the NUTS project [4], the use of the CubeSat Space Protocol on the back-
plane’s I2C bus was explored. In that work tje idea of using two different protocols on the
same interface is introduced. A similar approach has been attempted in this thesis.

6



1.4 Problem Description

1.4 Problem Description

NUTS is composed by several modules(1.2.2) and those need to communicate. The origi-
nal design of the satellite the main interface of internal communication was the I2C bus. It
is a very common bus and it is widely used in other CubeSat projects and generally across
a multitude of embedded systems. Using I2C clearly has advantages: it is a de facto stan-
dard and it’s reliability has been proven before. On the downside: it has limited bandwidth
(400 kB/s) and, obviously, requires wiring across all modules.

While those speeds are enough for most control operations such as the OBC instructing
a given module to perform an operation. They could limited for moving big blocks of
data. Since the intended payload of NUTS is an IR camera it is easily foreseeable that big
amounts of data will need to be transferred throughout the satellite. For example: to bring
the image from the camera board to the OBC for processing.

As I2C was intended as the main interface for intra-satellite communication, all the re-
quirements regarding it’s wiring were by allocated in the backplane (lines, repeaters...),
all of the requirements regarding space and power have been considered. But it would be
interesting to see if alternative solutions can curtail them.

In order to tackle both these limitations the idea of using radio transceivers as a secondary
communication interface is introduced.

The use of a radio interface would increase the bandwidth, reduce the area footprint re-
quired. And, at the same time, make it more flexible since the radio transponder can be
placed anywhere on each of the modules.

Aside from bandwidth and area there is also a desire to experiment. As stated previously
(1.2) NUTS aims to the development of novel techniques or approaches in satellite con-
struction. Keeping that in mind, it would be interesting to equip our system with radio
transponders to see how well they fare under space conditions. And thus determine if they
would be a viable option in future missions. Or even in other settings further from space
technology.

The desire to overcome the technical limitations of the current solutions while at the same
time exploring other options, drive this master thesis.

1.5 Aims and Goals

This thesis aims at the production of a proof-of-concept implementation of all the software
required for the use of commercially available nRF24L01 as nodes in an intra-satellite
communication solution.

Additionally the developed solution needs not only yo be easily integrable in the final
NUTS system but also provide a helpful and clear documentation to do so. This document
is the central piece of that documentation.

7
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Finally, and not so tightly bound with the specific thesis topic, the author also wishes to be
part of NUTS as bigger project than this thesis. Both out of interest for space technology
and seeking a real application to an otherwise maybe purely academic exercise.
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Chapter 2
Proposed Solution

This chapter presents an overview of the solution implemented during this thesis, it does
not deal with the details of its implementation as that is done later in the document
(4).

The main idea is to cut the cord, that is: to provide a wireless interface for intra satellite
communication. Tosolve to the limitations imposed by the I2C wired bus. While keeping
a clean software interface, so the communication operations are as transparent as possible
to the the developers working on other NUTS substystems.

Naturally, as this is an experimental solution, it would not replace the I2C on NUTS but
rather complement it. Therefore all satellite operations should be viable in case only I2C is
operational (albeit they might operate more slowly due to bandwidth constraints).

2.1 Cutting the Cord

The first step into developing a wireless interface was to decide which wireless hardware
to use. Despite there are plenty of solutions for cable-free transmission in the market, not
all of them were viable. For example an infra-red base solution (or any other kind of light
based solution) was automatically discarded as they require clear line of sight between
transceivers. And that requisite is clearly not met in NUTS, as the way the boards are set
on board would prevent such unobstructed line of sight. So it was clear that the solution
had to be a radio-based one.

Within radio solutions two different approaches can be found: embedded solutions and
high-end solutions.

High-end Solutions
Generally coming from the PC world they provide very high data bandwidth (in

9



Chapter 2. Proposed Solution

the order of tens of Mbps) yet they often require interfaces that are uncommon in
embedded systems, and use protocols and software stacks that are demanding both
in program memory, RAM and computing resources. Some examples are Bluetooth
and 802.11b/g (common Wifi)

Despite that was not their original intent it is possible to find these solutions ported
to the embedded world. Such adaptations usually follow a common pattern: There is
a specific processor that handles the costly operations and complex inter facing and
at the same time takes commands and configuration through a commonly available
interface in embedded systems.

An example of such a ported system is the 802.11b/g shield for Arduino (3.1) (Fig-
ure 2.1). Where a dedicated microprocessor handles the wireless interface while
interacting with it’s host system via SPI.

Figure 2.1: WiFi Module for Arduino, an embedded port of a high end solution.

Embedded Solutions
This branch of solutions are purely embedded, they were designed keeping the em-
bedded world in mind. As such they usually provide less bandwidth or lack ad-
vanced features (such as supporting the TCP/IP stack natively) yet, in exchange,
they are less demanding to manage both in memory and computing resources. Ex-
amples of this approach would be the nRF24L01.

Having considered both possibilities the most logical outcome seems to be the use of an
embedded solution. First, and foremost, NUTS is an embedded system. Granted that it is
a fairly complex one that will be set in orbit, but it is still purely an embedded system. The
overhead in size and power to use a high-end approach seems too high a burden for our
satellite. And the features of a simpler technology suffice for NUTS’ needs.

Once settled on the category of radio transceivers to be used for this project, a specific
model needed to be picked. Some of the solutions are entire MCUs whith radio capabilities
whereas others are just radio transceivers with a control unit meant to be interfaced with
a host MCU. Since it is intended to integrate the internal wireless bus into the existing
NUTS platform it was decided to go for the hosted mode.
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Figure 2.2: nRF24L01 (one of its variants), a purely embedded solution

Taking all of the above into account, our scissors to cut the cord are an nRF24L01 (details
on 3.3) because it fulfils the requirements. Additionally it also provides some features
useful for the implementation of a wireless bus, such as:

Up to 32 bytes Payload
Each transmitted packet entails a certain amount of overhead. The MCU needs to
communicate with the radio module and upload the payload to be sent. Then finally
give the command to actually send it. By having relatively large payloads (32 bytes)
this overhead can be lowered, as large blocks of data can be transmitted with less
packets. Additionally the payload size is not fixed, therefore if there is a need to
send lesser amounts of data ( smaller than 32 bytes), it is possible to resize the
packet accordingly, eliminating the need for padding and sending unnecessary data.

SPI Interface
It’s interface (SPI) is readily available in most MCUs. Regardless of them being
8-bit or 32-bit. Practically all MCUs have, at least, one SPI unit therefore this
transceiver can be interfaced with diverse hardware solutions. Although most of
NUTS is based on AVR32. It cannot be discarded that some subsystem or module
could be based on a different architecture. But it would, most certainly, have an SPI
unit therefore it would still have access to the wireless internal bus.

Auto-ACK
The transceiver can autonomously notify another unit that it successfully received a
packet, thus loading off from the MCU the cost of checking for successful transmis-
sions through other mechanisms.

Up to 2 Mbps
It has several bitrates for on-air transmission. They are generally a trade-off between
power and bandwidth. The fastest being 2 Mbps, significantly faster than the wired
I2C (400 Kbps). This feature allows to solve the bottleneck that the wired bus
imposes on the system.

It might seem counter intuitive to use SPI (4 lines) as an alternative to I2C (2 lines) when
precisely trying to eliminate the cables to implement a wireless solution. But the SPI
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connections are shorter, and stay always within each submodule, they are not extended
throughout the whole system. Thus, keeping a flexible and affordable (in terms of foot-
print) profile.

Once decided on which transceivers are to be used for the interface it is important to set a
protocol to enable the communication.

2.2 Protocols

A Protocol could be roughly defined as: how should the information look like. In order for
any communication to work all nodes need to stick to the set of rules concerning syntax,
semantics and synchronization defined by a protocol.

It is important to clarify that the nRF24L01 already has it’s own low level protocol. It
handles timing, collisions, acknowledging reception. . . Therefore while on-air the data will
always be under this radio protocol. Therefore the discussion about protocol options on
this section concerns the information up to the point when it is broadcasted to air and, later,
right after the message has been received and handed to the target MCU.

An analogy to this duality nRF24L01 internal protocol and user-define protocols on top
of it can be found on the internet. Where TCP/IP (mostly) takes care of the logical levels
of the communication whereas the lower levels are handled by several different protocols
depending on which technology (ADSL, Cable, WiFi...) is being used.

2.2.1 Deciding on a Protocol

The usual trade-off on protocols is overhead against features. Functionality tends to grow
alongside resources (both memory footprint and computational requirements). Therefore
we decided to explore both extremes of this trade-off:

CubeSat Space Protocol
The CubeSat Space Protocol (more info at [5]) is, naturally, a communications pro-
tocol aimed at CubeSat. Despite it was originally intended for use on CAN inter-
faces it has later been ported to other interfaces such as USART or I2C. Specifically
the I2C port was done previously [4] as part of the NUTS project. The protocol
offers most of the advanced functionalities of modern day protocols: Socket API,
routing, connection oriented and connection-less modes...

It’s advantages are the advanced functionality, leaving most of the effort for routing
and other control operations to the CSP libraries instead of the applications itself.
Resulting in simpler software development.

Against it’s use there are arguments regarding simplicity. Is it really necessary to
have a full blown TCP/IP -like protocol for NUTS, that will not have post deploy-
ment modifications. Therefore all the dynamic routing features might not be needed.
This overcomplexity entails , aside from greater resource usage, a major overhead.
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RAW
Raw is the name picked to illustrate a very basic protocol, almost lack of one. Yet
it is not any official naming. The data is sent precisely raw, without processing.
Therefore the responsibility to route it (decide to which radio transceiver it is sent)
is entirely the responsibility of the applications.

Granted that it lacks the advanced functions of CSP and increases the complexity of
applications but on the other hand it has a lower RAM consumption and a negligible
overhead.

When the project was first envisioned, I though that these two solutions would be mutu-
ally exclusive and therefore one would have to be picked over the other. Yet during the
development I realized that both could be used simultaneously.

2.2.2 Two Networks on One Adapter

One of the features of the nRF24L01 is the possibility to set up multiple receive addresses
in one single transceiver (3.3).

By making use of this it is possible to turn each physical adapter in two (even up to six)
virtual adapters. Then, each module’s nRF24L01 can have 2 addresses: one for RAW and
one for CSP traffic. When transmitting the process is not altered at all, simply the packet
is sent to a given address depending on the protocol intended for use and the targeted
submodule. Then on reception, the receiving MCU would store the packet in one buffer or
another depending on which of it’s addresses the packet was sent to. Finally the receiving
applications would get it from the appropriate buffer depending on what protocol they
were using.

That way both protocols are kept, giving greater flexibility to the system.

Figure 2.3 depicts this scheme.
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Figure 2.3: Schematic representation of Two networks on one adapter

The color coding on the figure has the following meaning:

Blue:
RAW packets, or RAW-specific software components.

Green:
CSP packets, or CSP-specific software components.

Grey:
Empty positions in the messaging queues.
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2.3 Real Time

NUTS, regardless of which communication interface is in use, performs several tasks at
the same time. All those tasks need to meet their deadlines while balancing the available
resources and their respective priorities. In such an environment the communication stack
cannot be blind to such requirements.

It is therefore very important to guarantee that all operations using the internal wireless bus
is as fast as possible.But it must also be non-blocking and as detached from the applications
as feasible. Since the beginning it was clear that the software supporting the Internal
Wireless Bus would have to be integrated with FreeRTOS (3.5). Despite during the early
phases of the design contemplated such integration simply due to FreeRTOS being already
set as part of the NUTS software, it late became clear that some of the synchronization
and data structures that FreeRTOS provides were very useful to the used implementation
(4).

From a practical point of view this implied the use of interrupt-driven (4.7) operations and
queued messages (3.5.2). Therefore the applications interact with these queues (both to
transmit and receive data) through the FreeRTOS API. This made accessing the internal
wireless bus a simple memory access (from the applications’ perspective) both for sending
and receiving data:

Sending data (TX):
The application fills a data structure and simply queues it on the TX queue. Then
there is a task (blocked when the queues are empty) that will forward such message
to the radio and give the command to send it.

Receiving data (RX):
The radio transceivers are, when not actively transmitting, listening for possible
incoming data packets. If a packet is received then the radio transceiver requests
an interrupt to it’s host MCU. When the MCU is servicing the interrupt it will get
the received packet and queue it on the RX queue. Therefore the application that
requested said data can simply read it from the queue. If, at the time the application
requests the read, there are no newly received packets (empty queue) said application
can be blocked so it does not hoard resources that could be used for other tasks.

Said scheme would work both on CSP and RAW traffic, as it deals only with packets
regardless of their content. The difference is that in the case of CSP the one queueing and
reading from queues would be the CSP engine and not the application directly.

2.4 Software Stack

In order to develop a software complying with all the properties described in previous
sections yet keeping it modular enough to make development and maintenance more com-
fortable, a stack-like architecture was envisioned. As a matter of fact such a pattern is
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quite usual of communication software. Each software component can usually communi-
cate with those that are adjacent to it. Figure 2.4 depicts the used scheme.

Figure 2.4: Software Stack

The color coding on the figure has the following meaning:

Blue:
Software developed by third parties, the modifications done to it are minimal or
non-existent, and only to the extent to make it fit with the rest of the system.

Green:
Software developed from scratch for this project or extensively modified (ported
from a different platform) to fit within NUTS. It represents the bulk of the developed
code base.

Grey:
Software that uses this stack, yet it is not part of it. Namely: the rest of the NUTS
software, performing the tasks that actually need to communicate with one another.
During this project, as that software was not readily available (maybe not even de-
veloped yet). It was substituted by a console (4.6) (via serial port and built using
FreeRTOS CLI ) that enabled for interactive use and testing in order to speed up the
prototyping process.

Each of the software blocks has it’s own functionality, a relation of said functionalities and
how they fit into the greater system follows:

Applications/FreeRTOS CLI:
Those are the users of the communication stack. They are very varied pieces of
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software that interact with the stack via the CSP API or the RX/TX functions (de
facto RAW API). Currently there is an interactive console that has commands for
transmitting and receiving as a placeholder for the applications.

CubeSat Space Protocol Core:
Main CSP libraries, they can be seen as a blackbox with a clearly defined API. The
developer needs to provide functions bind it to the specific interface (currently the
nRF24L01’s). The applications can interact with it via the CSP API and it, in turn,
interacts with the RX/TX functions to queue the packets for sending.

RX/TX Functions:
They are a pair of functions: one to send and one to receive. Both are built on the
FreeRTOS queue system, therefore if the an application requests for data that is not
readily available, that application will be suspended by the scheduler until that data
is available. Technically they interact solely with the queues and perform only in
RAM operations. The RX function can be seen as a consumer of the RX queue
whereas the TX is the producer for the TX queue.

RX/TX Tasks:
They are counterparts to the RX/TX Functions as they consume from the TX queue
and produce on the RX queue. This tasks are generally dormant unless there are new
packets in the queue waiting to be sent or newly arrived packets at the nRF24L01
that require to be queued. Both for transmitting and receiving data it interacts with
the low level driver.

FreeRTOS:
It is the operating system of the NUTS project, as such all other software is built on
top of it or at least around it. To the specific purposes of this thesis it provides a use-
ful queuing system and the necessary mechanisms for scheduling and synchronizing
different tasks.

nRF24L01 Low Level Driver:
Provides functions that act as wrappers for the control commands to be sent to the
radio transceivers. The foundations of this module where the nRF24L01 library for
Arduino. Although that library was limited in some aspects it was enhanced during
the porting to meet the requirements. The main enhancements were done to make
it interrupt driven and not as MCU dependant since on the original Arduino code
there are active wait loops and polling. Despite it could be directly used by the
applications that would break the idea of this stack. It is, thus, mostly used by the
RX/TX Tasks. To operate the hardware units on the AVR32 (namely the SPI) it
relies on the Atmel Software Framework.

Atmel Software Framework (ASF):
Vendor procured set of libraries to interact with the software units of the processor.
It provides an abstraction layer so that during the development it is not necessary
to go down to register level configuration of the MCU. ASF code interacts directly
with the hardware.

That concludes the overview on the software architecture for this project yet different uses
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of the stack are possible, in special how to mesh it together with the pre-existing I2C
bus.

2.5 Two Interfaces on the Same Satellite

As pointed out earlier the internal wireless bus will be deployed alongside the existing I2C
solution, resulting in two communication solutions on the same satellite. There are two
main possibilities regarding how to manage this duality:

Fallback:
This scheme contemplates that only one of the interfaces is operating at any given
moment. The system would resort to the other in case the primary one failed. Taking
into account that the Internal Wireless Bus is an experimental approach whereas the
I2C is a tested and de facto industry standard, the internal wireless bus would be the
primary interface, because it has more bandwidth than the I2C and in case of failure
the I2C would still be there to recover. This approach simplifies software since only
one interface is in use at any given but it is wasteful when it comes to resources as
it does not use one of the interfaces despite the system supports it.

Cooperation:
Both interfaces run in parallel, even some traffic specialization can be enacted. For
example the I2C could deliver small yet time-sensitive messages (such as commands
or sensor readings) while the internal wireless bus could take care of bigger data
packets (such as those originating on the payload camera or when dumping logs
to the satellite-to-ground link). This approach entails greater software complexity
as both interfaces are kept running and a given application could use both. For
example: the camera could get the command to transmit the last picture by I2C,
acknowledge it by I2C and finally send the requested data through the wireless in-
terface. Additionally if one of the interfaces was to fail, the remaining one can still
be a fallback interface, thus keeping the advantages of the fallback approach.

When considering that the payload will generate big amounts of data we finally settled for
a cooperation scheme, additionally it holds the upper hand by keeping the advantages of
it’s alternative.

2.6 Summing up

To close up and clarify how everything in this chapter fits together, this section presents a
general graphical overview (Figure 2.5) of the intended communication scheme:

18



2.6 Summing up

Figure 2.5: Communications infrastructure overview
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Basically each module has access to both communication interfaces: I2C and the Internal
Wireless Bus. I2C is natively present in the AVR32 (or other MCUs that could be used)
whereas the access to the Wireless Bus is done through nRF24L01 transceivers that are, in
turn, interfaced via SPI with their corresponding MCU.
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Chapter 3
Technical foundations

This chapter includes information on the technologies and techniques that were used dur-
ing the development of the project. It aims at bridging the gap between Chapter 2 where the
solution is presented and Chapter 4 that describes the process of implementing it. Wording
differently: here the tools used to go from what to how are presented. The aim is to provide
an overview to better understand the implementation and is never intended to replace the
documentation for any of the technologies here described.

3.1 Arduino

Arduino [1] is an open source embedded development platform. It is open source in a wide
sense: both software and hardware are open to anyone to use, modify or develop on. It
is almost a de facto standard for hobbyist embedded systems developers. Such popularity
pushes forth the development of many libraries that are freely available and a sizeable on-
line community to provide support. These factors made it a choice for fast prototyping in
the earliest stages of implementation (4.4).

Figure 3.1 shows the Duemilanove version of the Arduino board, it is the one that was used
during this project. There have been several revisions of the boards but they generally keep
a common form factor and pinout to ensure compatibility.
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Figure 3.1: Arduino Duemilanove [1]

The Arduino project provides not only the hardware platform but also the accompanying
software for it.

3.1.1 Hardware

There is a certain degree of variability among the different board revisions but in gen-
eral the boards are minimalistic: mounting an MCU and the essentials to have it running
(power supply, crystal...). The older boards have an FTDI chip enabling for UART-on-USB
functionalities whereas newer revisions have a secondary MCU that can be configured to
act as different USB peripherals. The Duemilanove used in this project belongs to the
former therefore it was limited to UART-on-USB. This limitation did not hamper develop-
ment in any way as this was the preferred form of communication between Arduino and
PC.

Regarding the MCUs most Arduinos are built 8 bit AVR. Recently the higher end models
based on ARM cores have been launched but those are not yet wildly used. Specifically the
version used in this project relies on an ATmega328 clocked at 16 Mhz. As for memories:
RAM: 2 KB and program Flash: 32 KB. It may seem limited but it sufficed for the uses of
the board in this project.

3.1.2 Software

In a sense the Software is the true core of the Arduino project, because the boards are
simply a mounted MCU with some of it’s pins broken out for easy access. But this does
not set it apart form the many other development kits available in the market. The true
difference is in the software. It is provided as a pairing of libraries and development
environment.

The libraries abstract most of the MCU peripherals and provide clean and easy to use func-
tions that allow for fast development of code. Additionally the libraries homogenize the
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diverse boards increasing cross compatibility across Arduino products (always respecting
hardware limitations). Additionally to those libraries bundled with the project there is a
multitude of libraries made by third parties that can be used as well. One of those libraries
is the NRF24 [7], used to manage nRF24L01 transceivers, that has been used in the project.
The native version on the Arduino and a ported version on the AVR32.

The development environment (figure 3.2) is tightly integrated with the aforementioned
libraries. And integrates a text editor to write the source code with a compiler. Addition-
ally all boards are preloaded with a bootloader that enables users to upload code without a
programmer or any specialized hardware, all is done through the USB connection (UART
mode). All development is done in Arduino Programming Language which is a C/C++
derivative. Essentially it is C++ enhanced with some implicit dynamic memory manage-
ment. An Arduino program (Sketch in their own terms) does not have a main() per se but
rather an initiall function that will be called once: setup() and the loop() function
that is called repeatedly after the initial configuration is done.

Figure 3.2: Arduino IDE

On the downside: the Arduino IDE is very limited compared to other IDEs. The perfor-
mance of an Arduino is significantly lower than when using the MCU plainly due to the
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overhead added by the libraries. Both shortcomings of the platform were deemed accept-
able for this thesis.

3.2 AVR32

In contrast to the Arduino that holds an interest purely for prototyping, Atmel’s AVR32 is
the architecture currently used on several (virtually all) NUTS subsystems. That makes it
the main target of this project and all developed software is for AVR32.

Specifically on the project an AT32UC3A3256 was used. It belongs to the a subfamily of
AVR32 namely the UC3, that include some features to increase their performance. Such
as dedicated hardware FPU. Although none of these specific features were used. First, and
foremost, they were not used because they were not needed but not doing so also helped
to develop a more portable solution.

Development, regarding software, was done relying on the tools provided by Atmel. All
those tools were integrated in Atmel Studio that is their IDE and bundles project manage-
ment, source code edition, compilation, debugging and flashing tools. Additionally the
Atmel Software Framework is also provided.

3.2.1 Atmel Software Framework

Configuring peripherals on an MCU by hand, that is by filling all of the control registers
manually can be laborious. Furthermore it is an error prone task. It is common nowa-
days for MCU manufacturers to provide some libraries containing drivers, and sometimes
advanced functionality on those drivers, for their peripherals.

The Atmel Software Framework is Atmel’s approach at such a solution. The provided
drivers and libraries integrate easily on projects. In addition the ASF comes with examples
for many Atmel development kits that can be used as ready made solutions or to learn how
to use a given feature.

On the downside: documentation is scarce and usually outdated. It is common to have to
explore the header files to know the functions a library provides. Some not documented
requirements or even bugs were detected during the development of this project. In both
cases they have been dully documented in their respective sections in Chapter 4.

Despite it’s weaknesses the ASF was helpful during the development of this master’s the-
sis.

3.3 nRF24L01

Both the Arduino and an AVR32 MCU have been used as cores for the Internal Wireless
Bus’ nodes. But the central component to the Internal Wireless Bus is the nRF24L01 radio
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transceiver. An alternative wording could be: considering the MCUs to be the brains of
the system makes the nRF24L01 it’s heart.

The nRF24L01 [12] is a 2.4 Ghz radio with an SPI interface that can be integrated into
other systems. As a radio it is an all-in-one solution as it requires no external components
to operate. This made it an ideal pick for the project. It is configured and operated via the
SPI interface.

It can function quite autonomously from the MCU, handling all high-speed link layer
operations on it’s own. On practical terms that means that once configured the MCUs
simply upload the data to be sent and give the command to send. Then all timing, coding
and modulation operations are done on the transceiver itself. In a symmetrical manner
all operations required for a reception are done autonomously and the MCU can then
access a buffer holding digital data instead of having to process the RF band to extract
information. This autonomy is one of the main reasons why this module was selected as it
permitted to focus on giving uses to the radio rather than putting a big effort into getting it
to work.

Some of it’s features, and how they can be exploited, are:

126 RF Channels
Having multitude of channels could be useful in noisy environments. Although it is
not planned to use a multitude of channels in NUTS it is good to have flexibility for
possible future changes.

1 and 2 Mbps Air Data Rate
One of the goals of the project is to improve the bandwidth provided by the I2C.
Certainly this data rates help in that. 2 Mbps is slightly more power consuming but
it is the mode that is used in the project. In any case it is easy to switch between the
two.

Programmable output levels: 0, -6, -12 or -18 dBm
Again the decision is a compromise between range and power consumption. On the
project the 0 mode has been used but since NUTS is not large maybe a lower mode
could be used. Not unlike the air rate it is easily configurable. And lower transmit
power implies lower energy consumption.

Dynamic Payload Size
Under normal operation both sender and receiver have to be configured to use the
same payload size. The sender one will be adjusted when sending but the receiving
end will only match (and thus consider it valid data) if the sizes are alike. There
is, although, this option to have the receiving nRF24L01 accept any packet going to
it’s address regardless of size, and then calculate the size based on the received data.
The implemented software supports it and experiments were done to verify it works
as it could be useful in some situations. But it is not currently in use in the produced
prototype. Therefore it is not detailed in Chapter 4.

Auto packet transaction handling
As mentioned earlier all the low-level link operations are performed by the nRF24L01
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modules autonomously. This simplifies software greatly and frees computing re-
sources on the MCU (because it no longer needs to perform such operations.

6 Data pipe MultiCeiver
This feature allows to configure each nRF24L01 with up to 6 addresses. It is also
possible to distinguish which of the different addresses was the packet originally
sent to. This enables the implementation of the two networks on one adapter (2.2.2)
approach.

All of the features and settings of the nRF24L01 are accessed via the registers of the
module which in turn are accessed via it’s SPI interface.

3.3.1 Operating Principles

Internally the nRF24L01 works as a finite state machine. Figure 3.3 depicts it.
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Figure 3.3: nRF24L01 State graph [12]

Many of the depicted modes are transitory, configuration or different levels of stand-by but
there are three main modes of operation:

Standby
The radio interface is off but the configuration registers and the SPI interface are
operational. After each transmission or reception the system defaults back to this
mode. In the implementation the radio is forced to go back to RX mode, as the
desired event driven approach has to be able to receive data at any moment.

RX Mode
In this mode the radio expects to receive data, the RF interface is on and constantly
decoding. In case of match it decodes the packet and stores it in the RX FIFO. In
the implemented design all nRF24L01 spend most time in this mode. In the original
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Arduino implementation the system stays in stand by and not in RX therefore it is
not possible to receive a data packet unless it is being actively awaited.

TX Mode
The module will transmit all packets awaiting to be sent in it’s TX FIFO buffer. It
is worth mentioning that in order to have functional Auto-ACK this mode switches
quickly to RX mode to await for the acknowledgement. This switching is done au-
tomatically by the integrated controller in the transceiver and requires no operation
from the main MCU.

It is important to keep the radio in the desired mode of operation, specially distinguishing
between the different Standby modes and RX.

3.4 SPI

Up to this point MCUs and radio transceivers have been covered but there is a crucial part
in the system: the link between the two. That link uses SPI.

SPI [15] stands for Serial Peripheral Interface and it is a de facto standard for embedded
systems. It is a master/slave protocol therefore the connected devices will have different
roles. The roles are not interchangeable even if both ends are capable of operating in both
manners, although this is an uncommon setting. Usually the peripheral (in this case the
nRF24L01) can only operate as a slave.

It is a serial interface so the bits are sent one after another through the same line. Ad-
ditionally it is synchronous, meaning that there is a common clock signal that rules over
both devices during the transference.

The signals required for an SPI interface are:

MOSI
Master Out Slave In: This line carries the bits from the master to the slave, one bit
per clock tick.

MISO
Master In Slave Out: Analogous to the former but in the opposite sense.

CLK
Clock line to regulate the data flow, it is generated by the master.

SS
Slave Select: This line is used to select the slave to talk to, it can be seen as a request
for attention from that slave to listen to it’s data and clock lines.

Figure 3.4 shows a typical SPI setup, as it is used in the project.
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Figure 3.4: Schematic of an SPI connection [15]

SPI is a Full Duplex interface, furthermore an enforced Full Duplex interface. All trans-
missions are bidirectional. If either side has nothing to communicate it is necessary to use
some dummy data. The nRF24L01 transmits it’s status register value whereas the AVR32
transmits 0x55. The dummy value 0x55 was chosen because it’s characteristic waveform
makes it recognizable during debugging.

Figure 3.5 illustrates a transference, including the use of dummy values when neces-
sary.

Figure 3.5: Logical Analysis of an SPI transfer

Aside from the SPI lines the nRF24L01 also uses two additional lines:

CE
Chip Enable: Used to toggle between different modes on the transciever, as pre-
sented in figure 3.3.

IRQ
Interrupt Request Line: Used to notify the host MCU (be it Arduino or AVR32) that
an event requiring processing has occurred. It’s use is detailed in section 4.7.

Although this two additional lines are not part of the SPI connection, they are required for
a proper operation of the transceiver. The CE line is managed as a GPIO line whereas the
IRQ line is managed by the External Interrupt Controller.
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3.5 FreeRTOS

A satellite has to perform a multitude of different tasks. That requires scheduling. Using
a real time operating system can provide the scheduling features (among others) that are
needed. NUTS uses FreeRTOS [10] for this purpose.

FreeRTOS is an open source real time operating system for embedded systems. It has been
ported to multiple architectures, AVR32 among them. It is designed to be portable and to
have a low memory footprint. For this project FreeRTOS is used (keeping the development
platform as similar to NUTS as possible), naturally during the development FreeRTOS
was devoted entirely to the scheduling of operations that dealt with the Internal Wireless
Bus. But in the integrated NUTS system it will schedule other tasks as well. In other
words: many different software components will share a single instance of FreeRTOS
after integration.

Scheduling could be considered the main feature of any real time operating system. FreeR-
TOS’ take on it is built around the idea of Task. The naming empowers the one-to-one
association that each of the different tasks the system should perform can be implemented
as a FreeRTOS Task. A Task is the unit FreeRTOS uses for scheduling (akin to a pro-
cess on a PC operating system) and it has a set of resources associated to it (stack, local
variables. . . ). When there are more than one task in a system (any real world application
has more than one task) the system scheduler decides which task is run and when. For
convenience the capitalize word Task refers to a FreeRTOS Task construct whereas task
means the general concept of a job to be performed.

There are many possible scheduling algorithms to determine how tasks should run. The
one used in this project is Round Robin with priorities. In plain words: Tasks take turns,
yet those with higher priorities can cut the queue in front of those with lower.

The most common way of operating with FreeRTOS is: configuring the hardware, creating
tasks and then launching scheduler. When doing the latter stage FreeRTOS takes control
of the execution flow and will alternate execution, following it’s policies, among all tasks
that are ready to be run. Any given task could not be ready different reasons such as being
blocked (waiting for some event or resource) or being stopped.

Having all tasks isolated from one another (having their own local variables and stack) can
be a problem when trying to communicate between tasks. And the use of global variables is
inadvisable in any multitask system because the variable used for communication generate
inconsistencies if it is accessed or modified at critical points when other Tasks switch
into execution. The system provides mechanisms that allow safe communication between
tasks. The scheduler is aware of this mechanisms which avoids the risk of inconsistencies.
Among such mechanisms there are semaphores and queues.

3.5.1 Sempahores

A simplistic view of a semaphore is: a counter. It accounts for the availability of any
given resource.The resource can be of different nature: hardware unit, system event...
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And is implemented in such a way that while one task is accessing it (either reading or
writing) no other task can have access. In this manner problems deriving from a multitask
environment can be avoided.

The most common implementation of semaphores (and FreeRTOS adheres to it) has three
operations for a sempahore, the nomenclature can differ thus the FreeRTOS naming scheme
has been used:

Initialization
The semaphore is created and the current and maximum values are fixed. For exam-
ple: a maximum value of 1 and a current of 0 would be assigned if the semaphore
has to control access to a UART module that is not in use by anyone right now. The
FreeRTOS header is:

xSemaphoreHandle xSemaphoreCreateCounting
(

unsigned portBASE_TYPE uxMaxCount,
unsigned portBASE_TYPE uxInitialCount

)

Give
Once the managed resource (the UART in our example) is no longer needed, the
Task that used it must give it. Effectively this will increase in one the counter of
the semaphore (never above maximum value) and if there are other Tasks suspended
due to the semaphore, the first one will be resumed. The FreeRTOS header is:

xSemaphoreGive( xSemaphoreHandle xSemaphore )

Take
Complementary to the give operation, this one is used when the resource is requested
for use. It checks the semaphore counter if the counter is bigger than zero (therefore
the resource is still avaliable) it decreses the counter and continues execution. If the
counter is below zero it suspends the current task that will wait to be resumed by a
give call by one of the current users of the resource. The FreeRTOS header is:

xSemaphoreTake(
xSemaphoreHandle xSemaphore,
portTickType xBlockTime )

As it can be seen in the header FreeRTOS allows the configuration of a timeout,
if the resource is not obtained after said period the task will be resumed anyway.
Based on the returned value it is possible to distinguish in execution time whether
the resource was obtained or not, and act accordingly after resuming execution.

Additionally it is worth mentioning that there are special versions of the semaphore op-
erations to be used within ISRs, that is done to avoid a blocking operation inside an ISR.
In this variations there is no wait time: either the resource is obtained or the call returns
with the failed to obtain value and execution can carry on. Semaphores are useful for sig-
nalling and synchronization but they do not handle a payload, that is where queues come
in.
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3.5.2 Queues

Queues are data structures where information can be added or read from. The information
is kept orderer and has fixed points of insertion (enqueuing on the back and dequeuing on
the front. As shown in figure 3.6.

Figure 3.6: Representation of a queue

Using queues to share information between different tasks has some advantages. It is an
asynchronous process, that means that the Task producing the data can leave it in the queue
regardless of when the consuming task will read it. Additionally the system makes use of
the scheduler: if a Task tries to read information from a queue and that queue is empty,
the Task will be suspended and kept in that state until there is data avaliable or it reaches
timeout.

FreeRTOS provides queues and the API to operate with them. And they have been used in
the implementation of this project(4).

3.6 CubeSat Space Protocol

The CubeSat Space Protocol [5] was developed in 2008 by the Aalborg University and has
been used in some of their satellites, starting with AAUSAT3. The team that developed it
eventually spun off as a commercial the commercial company: GomSpace.

It is a network-layer protocol, similar to the Internet Protocol on common networks. And it
borrows many of it’s ideas. The information is transferred in packages and said packages
are preceded by a 32 bit header (Figure 3.7). Also similar to the internet the packet is
routed through several different interfaces.

It provides many features that are common in common computer networks, including:
loopback traffic and control packets. Additionally packets can be on-the-fly. The latter is
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Figure 3.7: CSP header [14]

specially useful when using it for ground to satellite communications although it might not
be necessary for intra-satellite communication.

It is designed to be deployed on several different operating systems, including FreeR-
TOS.

Albeit the core of the system is provided as an open sourced software component, the
drivers binding it to physical interfaces need to be developed.
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Chapter 4
Implementation

This chapter describes the process followed while developing the designed solution (2).
A bottom-up coding strategy was chosen. That is: small and specific functionalities are
developed first and the rest of the system is built gradually on those building blocks. I
favour this strategy for projects that, like this master’s thesis, have a strong prototyping
component since these building blocks can be tested before moving on to the next level.
Exemplifying for the case at hand: initially the radio transceivers driver is developed and
only once the transceivers behave as desired one moves forward into making said driver
asynchronous.

The development setup follows:

4.1 Development Setup

The solution has been implemented on AT32UC3A3256 MCUs, manufactured by Atmel.
The choice of the MCU was not mine to make but it was rather established by the fact that
most of the NUTS hardware is already based on this architecture and even on this specific
MCU. Far from being a drawback, this will make the eventual porting of this project onto
the satellite platform easier.

As a development platform the UC3-A3 Xplained was used. It is a rather simple develop-
ment board, it can actually be considered closer to a demo kit than a development board.
It is, mainly, a base to operate the MCU (power supply, crystals...) with some of the I/O
pins broken out and a few other peripherals (such as a capacitive touch slider, an external
RAM). Additionally it is also equipped with a mini-USB connector that proved very use-
ful during development as it was used as a serial port. Albeit being a simple kit it covered
the needs of this project. It even exceeded them, seeing how some of the peripherals and
components were not used.
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From a purely software point of view: the code was written in C on Atmel Studio which in
turn relies on AVR-GCC. Again this was more of a fixed constraint than an actual decision.
Atmel Studio is provided by Atmel at no cost to develop for their products and it provides
a good integration with their debuggers/programmers. GCC is often regarded as one of the
best C compilers. Despite I had little freedom to decide on the software to use, I would
most have made an identical choice. C is the authors language of choice and it allows low
level operations that are vital to embedded software development. Flashing and debugging
operations was done using an AVR Dragon.

4.2 Hello World

The first step was, although it might seem redundant, to make sure that the the development
board was running the code that I was actually developing. The simplest way to to that
was to run a blinker code, that is a simple snippet of code that simply blinks LEDs on the
board. Once that worked one can move forward with the implementation.

Despite there was an AVR Dragon constantly hooked up to the board, and one could have
debugged using it, it was thought interesting to have serial port (UART) communication
with the PC. Most modern PC no longer have an RS232 connector although it is possible to
emulate such a link through a USB device. The usual (and actually used) solution is to do
the UART on USB emulation on the MCU side, and the AVR32 has specific hardware to
this purpose. A simple explanation of what is actually done is: the MCU’s USB modules
are configured to enumerate as a serial port. Then the PC would recognise them as such
and all software designed to work with serial ports can use that interface. On the MCU
side then all UART operations are done on this newly created virtual UART and not on the
specific hardware units.

On practical grounds, the ASF (3.2.1) provides an example project where the UART-on-
USB is already configured. The initial premise was to extract the necessary function calls
and configuration files to replicate the emulation behaviour on a blank project. The need to
replicate it on a blank project rose from the author’s preference for starting from scratch,
thus having absolute control on the code. But for reasons still unknown, the behaviour
could never be replicated. Despite the same configuration files, function calls and program
structure were used, it did not work as expected. After software assisted comparisons
(by using diff) of both source codes gave no meaningful differences it was decided to
develop the rest of the system on the template of the given example. Thus keeping the
UART-on-USB functionality and having a line of communication between the PC and the
micro-controller. Following tradition a Hello World string was used as a first trial of the
link.

That concluded the preparations of the platform and opened way for developing the actual
system components.
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4.3 Interfacing with the radio transceivers

The interface between the nRF24L01 and the MCU can be seen in two separate layers: the
physical interface and the software driver that operates on said interface.

4.3.1 Physical Interface

Connecting the MCU with the transceivers physically was the first step. The connection to
operate the nRF24L01 (3.3) is SPI (3.4)plus one GPIO pin, one IRQ line and power supply.
One of the connectors on the development boards had all the necessary pins conveniently
broken out. But the pinouts on both sides do not match, it was therefore necessary to build
an adapter. It is a small board with a 10-pin socket (lodging the nRF24L01) and breaking
it’s pins out in a convenient manner for use on a breadboard.

The pin matching between the AVR32 board and the nRF24L01 is:

PB10 = Master Out Slave In (MOSI)
PB08 = Master In Slave Out (MISO)
PB07 = Clock (SCK)
PB09 = Slave Select (SS)
PX57* = Chip Enable (CE)
PA23* = Interrupt Request (IRQ)

Those pins marked with an asterisk (*) do not belong to the SPI interface. The SPI unit
used was SPI1 because all the pins were broken out at connector J1. All pins except PA23
are located in the J1 connector of the Xplained board. PA23 is located at J2 and single
cable bridges the connection.

The following figures (4.1 and 4.2) illustrate the setup:

Figure 4.1: Development board connected to the nRF24L01 using the adapter
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Figure 4.2: Left: nRF24L01 (bottom view). Right: built adapter (top view)

Once all the connections were in place, the SPI module on the AVR32 could be activated.
Again the ASF was used as it provided an SPI module driver. Generally speaking all
AVR32 modules have a similar setup process: enabling the clock, setting up the pins,
configuring the uni and finally initializing the module. The first two steps are necessary
as the clock tree is usually kept off to save power unless it is needed and the control of
the pins is by default granted to the GPIO. To configure a module before initializing it is
a good practice, as it avoids running the unit with an unknown configuration. Once those
requirements are met, the module can be activated. The code on listing 4.1 depicts these
phases, the 3 visible statement groups match the steps taken:

Listing 4.1: SPI module Initialization

1 static void spi_init_module()
{

sysclk_enable_peripheral_clock(SPI_RADIO_1);
5 spi_pin_setup();

spi_initMaster(SPI_RADIO_1,&spi_options_radio);
spi_selectionMode(SPI_RADIO_1, 0, 0, 0);

9 spi_setupChipReg(SPI_RADIO_1,&spi_options_radio,FOSC0);

spi_enable(SPI_RADIO_1);

13 }

To test that the module had been properly initialized a logic analyser was used to perform
naive test: sending a random byte just to see that all the signals were being generated
properly. And with the test it was found out the the clock signal on the SPI (SCK) was
not being generated, it was a flat 0. At first, as it was on the SCK line, an error on the SPI
module clock configuration was suspected, but after inspecting and stepping through the
code it was discarded. The next step was to toggle the affected line with the GPIO driver.
The hypothesis was: if the line is under control of the SPI, toggling via the GPIO module
should have no effect. But it toggled, meaning that it was still under GPIO control. While
refactoring the code of spi_pin_setup (4.2) it was discovered that the SCK line had
to be the last one mapped to the SPI unit (as shown in listing 4.2). This requirement is
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not documented and by inspecting the code no cause can be detected so it was deemed a
hardware bug and a bug report was dully filled with the manufacturer.

Listing 4.2: SPI pin setup

static void spi_pin_setup()
2 {

static const gpio_map_t spi1_gpio_map = {
{AVR32_SPI1_MISO_0_0_PIN, AVR32_SPI1_MISO_0_0_FUNCTION}, //MISO

6 {AVR32_SPI1_MOSI_0_0_PIN, AVR32_SPI1_MOSI_0_0_FUNCTION}, //MOSI
{AVR32_SPI1_NPCS_0_0_PIN, AVR32_SPI1_NPCS_0_0_FUNCTION}, //SS0
{AVR32_SPI1_SCK_0_0_PIN, AVR32_SPI1_SCK_0_0_FUNCTION} //SCK

};
10

gpio_enable_module(spi1_gpio_map,sizeof(spi1_gpio_map)/sizeof(
spi1_gpio_map[0]));

}

After the function (4.1) is executed, the SPI is ready to transmit and receive data. But
still a driver needs to be implemented to manage exactly what meaningful data (and not
random bytes) must be sent.

4.3.2 nRF24L01 Driver

The driver itself is based on an Arduino library for the nRF24L01 (3.3) called NRF24 [7].
The library, like most Arduino software, is open source. That made it a good candidate
as a foundation for the AVR32 driver. Additionally the author had experience using that
specific Android library in a previous project.Logically the original code was based in
Arduino’s own library to manage it’s peripherals and translating those calls to ASF was
required. Additionally the NRF24 library, written in Arduino’s own enhanced C++, used
some features of object oriented programming that are not avaliable in C. Some adjust-
ments were made to address these issues, such as:

Turning members into constants
The original object oriented had two member variables holding pin mapping infor-
mation, specifically which GPIO pins match SS and CE. By holding this informa-
tion as members the Arduino could have handle more than one radio simultaneously,
granted that CE and SS were different in each of the instances. Knowing that NUTS
was not planning to have more than one radio transceiver per module such flexibil-
ity was no longer necessary, thus both pins were fixed as constants. With the use of
#define constructs enables us to conveniently change the pins in a consistent and
clean manner, although such adjustment could only be made in compilation time.

Renaming of functions
Initially all the functions were kept as they were in the original library, in an attempt
to keep maximum similarity between the original and the ported version. Hoping
that such similarity would help during development since all documentation was
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for the Arduino version. Far from the original intent, keeping the names unchanged
induced confusion. The original code being object oriented would have its functions
called in this fashion: nrf24.spiRead(parameter) assuming nrf24 was
the name of the given instance of the object being used. But as C has no objects the
same call was then: spiRead(parameter), making it unclear to distinguish if
it was an nRF24L01 specific operation or rather a generic SPI call. This issue was
solved trivially by prefixing all functions with nrf24_ rendering a more readable
nrf24_spiRead(parameter).

Translation of API calls
Most of the original NRF24 library consisted of functions that simply prepared the
bytes to be transmitted to the module, so that they would be conforming the the
nRF24L01 command format. Later those functions relied on four lower level ones
to actually use the Arduino SPI library. Therefore the majority of functions were
trivial to port and these latter 4 functions would required a more significant change.
Exemplifying:

Listing 4.3: Arduino NRF24::spiBurstRead(...)

void NRF24::spiBurstRead(uint8_t command, uint8_t* dest, uint8_t
len)

2 {
digitalWrite(_chipSelectPin, LOW);
SPI.transfer(command);
while (len--)

6 *dest++ = SPI.transfer(0);
digitalWrite(_chipSelectPin, HIGH);

}

Listing 4.4: AVR32 nrf24 spiBurstRead(...)

void nrf24_spiBurstRead(uint8_t command, uint8_t* dest, uint8_t
len)

2 {
uint16_t temp;
spi_selectChip(SPI_RADIO_1,0);
spi_write(SPI_RADIO_1,command);

6 while (len--)
{

spi_write(SPI_RADIO_1,0x55);
spi_read(SPI_RADIO_1, &temp);

10 *(dest++) = (uint8_t) temp;
}

spi_unselectChip(SPI_RADIO_1,0);
14 }

Listing 4.3 is the Arduino version and listing 4.4 is it’s ported counterpart. It can
be easily seen that both share a common structure yet some differences are worth
mentioning:
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Arduino relinquishes the control of the SS line to be done by it’s GPIO libraries:

digitalWrite(_chipSelectPin, LOW)

and

digitalWrite(_chipSelectPin, HIGH))

whereas on AVR32 those lines are tied to the SPI unit. On AVR32 even if the devel-
oper preferred to use a GPIO line as SS the calls to
spi_selectChip(SPI_RADIO_1,0) and spi_unselectChip(SPI_RADIO_1,0)
are still required. If those calls are not used the SPI unit is rendered unresponsive.

Arduino has a simple call SPI.transfer(command) that writes out it’s param-
eter and returns whatever was read from the MISO line during the transaction. It is
worth remembering that SPI is always bidirectional and thus every write implies a
read (that can be useless data). The ASF has two functions one to clock the data out
spi_write(SPI_RADIO_1,command) and one to return the buffer of what
was read during the last transfer spi_read(SPI_RADIO_1, &temp). Thus
both are necessary to replicate the SPI.transfer(command) functionality.

The original NRF24 library relied on busy waits for reception of data, instead of
interrupts. Although to avoid blocking the MCU completely waiting for data that
may never arrive it introduced the possibility to wait for receiving data until a cer-
tain timout counter run out. Naturally this timeout was controlled using Arduino’s
timekeeping API, so porting this function also required some additional changes,
specifically shown in listing 4.5 (Arduino) and 4.6 (AVR32).

Listing 4.5: Arduino NRF24::arduinoWaitAvailableTimeout(...)

1 bool NRF24::waitAvailableTimeout(uint16_t timeout)
{

powerUpRx();
unsigned long endtime = millis() + timeout;

5 while (millis() < endtime)
if (available())

return true;
return false;

9 }

Listing 4.6: AVR32 nrf24 waitAvailableTimeout(...)

uint8_t nrf24_waitAvailableTimeout(uint16_t timeout)
2 {

nrf24_powerUpRx();
t_cpu_time to;
cpu_set_timeout(cpu_ms_2_cy(timeout,sysclk_get_cpu_hz()),&to);

6

while (! cpu_is_timeout (&to)){
if (nrf24_available()){

10 cpu_stop_timeout(&to);
return true;
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}
}

14 cpu_stop_timeout(&to);
return false;

}

Again both have a similar structure but while the Arduino one relies on it’s specific
call millis() which returns the uptime of the system in milliseconds, the AVR32
code is based on cpu_set_timeout(...) based on the ASF timer libraries.
The latter libraries were introduced into the project solely for the implementation of
this function.

Once the whole of the driver code was ported it was time for a first trial at transferring
information via the nRF24L01 modules. Such a trial would be limited as the driver at this
point was only a port of the Arduino code with all it’s limitations, such as using busy wait
instead of interrupts.

4.4 First Transmissions

One of the problems of testing communication interfaces is that usually the result of the
test is boolean in nature; either everything is set and configured correctly or some error (or
errors) hamper the communication. Therefore eliminating as many unknowns as possible
would increase the chances of success. With that in mind the decission to use the AVR32
as one node and an Arduino as the other was taken. The Arduino would be using already
tested code, thus any error would either be on the physical interface (either side) or on the
AVR32 software. Both development boards had UART-on-USB so they could print on a
serial console helpful messages to debug and fine tune the software.

Figure 4.3: Arduino with mounted prototyping shield and nRF24L01

Right after booting up the system and the SPI module is ready, the nRF24L01 needs to
undergo a configuration process where some details of it’s workings are set. Such as:
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data rate, transmit power, address. These settings need to match in all the stations that
form the internal wireless network. The developed driver provides functions to set such
settings.

4.4.1 Ping

Resorting again to the Arduino library, specifically to the examples it bundled. A useful
ping application was found there. Actually the ping example was split in two halves:

Client
It initializes the nRF24L01 and then loops through the following procedure: send
current time through the radio transceivers and await for an answer. When the an-
swer, that is just the same data echoed back, is received measure the difference
between the current time and the received answer. That difference is the round trip
time and is printed via the UART-on-USB. The whole looped is scheduled to run
once a second.

Server
It, naturally, acts as counterpart. So, after initializing the radio transceiver it simply
awaits for data packages and echoes them back.

This simple application is an ideal test bench because both client and server imply trans-
mitting as well as receiving data. Both boards were used for both roles in order to increase
the covered cases.

Fortunately both roles worked on both boards with relative ease. Thus confirming that
the interfaces, on their lowest level, worked. The ported driver was functioning correctly.
Despite the partial success it still lacked many desired properties (interrupt driven, message
queueing, multitasking...). Steps were taken to mend this issues.

4.5 Time for FreeRTOS

Due to the many different tasks that the NUTS system needs to perform a real-time oper-
ating system was chosen: FreeRTOS (3.5). Since the aim of the software is to integrate
into the NUTS system it seemed a good fit to develop on a system as similar to NUTS as
possible which implied the use of FreeRTOS. Initially the integration of FreeRTOS into
this master’s thesis was done solely to keep that similarity, and to benefit from some of it’s
scheduling capabilities. But later other functionalities of the system emerged as useful,
even required, for the solution presented on this document.

4.5.1 Bringing FreeRTOS In

Using past versions (such as 2.1.1) of the ASF Atmel one could use the provided version of
FreeRTOS that could be imported through the ASF Wizard on Atmel Studio (similarly to
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how it is done for the SPI or the timer libraries), that is no longer the case with the current
version (3.5.1 at time of writing this document). But the port of FreeRTOS to AVR32 is,
albeit hidden, still available. It is possible to get it from the example projects provided. The
chose example was FreeRTOS Basic Example - EVK 1104 because that board
is based in the same MCU that is used for this project, and also on the NUTS satellite. The
FreeRTOS files can then be moved from the example project folder tree onto the project
being worked on and included in Atmel Studio.

4.5.2 Using FreeRTOS

FreeRTOS has a multitude of features, most can be included or not on the build depending
on that specific project’s needs, this adjustments can be done through a the configuration
header file: FreeRTOSConfig.h. This functions were not used at first and the first take
of contact was to replicate the earlier-described (4.4.1) ping functionality.

Generally speaking a FreeRTOS program does not differ in behaviour from an OS-less
program until the scheduler is called. Usually the first phase is used to configure the
system and create the FreeRTOS tasks and other data structures that might be needed
during execution. Once the scheduler is launched it will start running and pre-empting the
tasks based of scheduling policies, priorities, synchronization between tasks...

These two-phase scheme was applied to the ping (as seen on listing 4.7). Initially the sys-
tem was configured: initializing the nRF24L01 module and creating a task that would be
run once a second. Three other tasks were created, each blinking a LED at a different rate.
This tasks allowed for a fast way to verify that the multitasking capabilities of the system
were operating properly. Then launching the scheduler provided the expected results: the
LEDs were blinking and the system was successfully pinging the other board, which at
this point in time was still the Arduino. Task Dave (commented on the listing 4.7) printed
the string Hello Dave [6] to the serial console. It was intended as means of trying the
UART-on-USB from FreeRTOS and it functioned as expected.

For this project FreeRTOS’ default scheduling policy was used. That is Round robin with
priorities. Therefore Tasks that include potentially blocking operations should be given
lower priorities than those that do not, else that blockage would propagate to all other
Tasks in the system. That can be seen on lines 25-26, again in listing 4.7.

Listing 4.7: Ping client on FreeRTOS

int main (void)
{

3 sysclk_init();
board_init();

irq_initialize_vectors();
7 cpu_irq_enable();

stdio_usb_init();

11 nrf24_initRadioSpi();
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if (!nrf24_setChannel(1)) printf("setChannel failed \n");
if (!nrf24_setThisAddress((uint8_t*)THIS_ADD, 5)) printf("

setThisAddress failed \n");
if (!nrf24_setPayloadSize(PAYLOAD_SIZE)) printf("setPayloadSize

failed \n");
15

NRF24DataRate dr = NRF24DataRate2Mbps;
NRF24TransmitPower pr = NRF24TransmitPower0dBm;

19 if (!nrf24_setRF(dr, pr)) printf("setRF failed");

xTaskCreate(&vLedTask1, (const signed portCHAR *)"Led Task 1",
configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+3, NULL);

xTaskCreate(&vLedTask2, (const signed portCHAR *)"Led Task 2",
configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+3, NULL);

23 xTaskCreate(&vLedTask3, (const signed portCHAR *)"Led Task 3",
configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+3, NULL);

xTaskCreate(&vServerTask, (const signed portCHAR *)"Server Task",
configMINIMAL_STACK_SIZE+512, NULL, tskIDLE_PRIORITY+1, NULL);

//xTaskCreate(&vDave, (const signed portCHAR *)"Dave Task",
configMINIMAL_STACK_SIZE+8192, NULL, tskIDLE_PRIORITY+2, NULL)
;

27

vTaskStartScheduler();

return 42;
31

}

From this this point onwards the system was running on FreeRTOS, but so far it was only
looping at scheduled times. It was necessary to have a closer approach to the real use on
NUTS an on-command scheme . In other words: in real life NUTS could get a command
from ground asking to dump the last image taken by the camera. Then the camera module
(or the OBC if the image had been already processed) could transfer said image to the
radio module that links NUTS with ground by using the internal wireless bus. Thus the
whole operation would have been done by request and not as an scheduled event. It was
thus necessary to create a system that could imitate such requests.

4.6 Interactive Console

An interactive console seemed a good option to create the desired event driven system.
Occurrences that on the satellite would be commands from ground, or internal satellite
events would in this thesis be simulated by console commands. Such commands would
be read and it’s output written to the serial port, making the system operable from any
computer.

A console is, in a simplistic overview, a piece of software that takes an input, parses it
and summons other software components based on that input. It can, very often, also take
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parameters that can be forwarded to it’s called functions. And once those end the console
would show the output.

The advantages it has over other solutions (e.g, LCD + buttons interface) are it’s lower
use of hardware resources (quite often only the communication interface it uses) and it’s
flexibility. One can add new commands with relative ease. Downsides: consoles can
have higher processing demands (mostly due to parsing) and might require relatively big
buffers, thus increasing RAM consumption.

4.6.1 Deploying the Console

The earliest idea was to develop the console from scratch, but it was soon discarded as there
are packages that can be integrated and tailored to specific needs. One such packages is
FreeRTOS Command Line Interface (FreeRTOS CLI). As the name implies it is provided
as a component for FreeRTOS and by the same team. Using this option smoothened the
integration.

The first command that was implemented had little to do with the nRF24L01 and was
implemented as a proof of concept. It allowed to toggle the state of a LED that was
passed as a parameter. It was a suitable candidate because the action is simple enough to
minimize failure yet requires the parsing of a parameter, allowing to explore the FreeRTOS
facilities. In order to add each new command to the FreeRTOS CLI there are four steps to
be followed. Here they are detailed by using this first toggle n as an example:

Providing a function that implements the command behaviour
The console parses and matches to a command, and then launches the function it
has associated. Therefore the function is at the core of each and every command.
These functions need to follow this prototype:

portBASE_TYPE xFunctionName(
int8_t *pcWriteBuffer,
size_t xWriteBufferLen,
const int8_t *pcCommandString )

Where pcWriteBuffer is the output buffer, that will be printed on serial port
once the function returns.Additionally xWriteBufferLen is the size (in bytes)
of pcWriteBuffer, necessary for the console to control how many characters to
print. FinallypcCommandString allows access to the whole command that sum-
moned the function. Therefore the parameters are contained in this command string
and must be parsed and converted depending on the uses intended. Specifically to
the case of toggle n:

Listing 4.8: Toggle LED Implementation

portBASE_TYPE prvToggleLed(int8_t *pcWriteBuffer, size_t
xWriteBufferLen, const int8_t *pcCommandString ){

uint8_t* param;
uint8_t* pz;
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4 param = FreeRTOS_CLIGetParameter(pcCommandString,1,pz);
switch(*param){
case ’0’:
gpio_toggle_pin(LED0_GPIO);

8 break;
case ’1’:
gpio_toggle_pin(LED1_GPIO);
break;

12 case ’2’:
gpio_toggle_pin(LED2_GPIO);
break;

case ’3’:
16 gpio_toggle_pin(LED3_GPIO);

break;
default:
sprintf(pcWriteBuffer,"%s\r\n","n must be 0 - 3");

20 xWriteBufferLen = strlen(pcWriteBuffer);
return pdFALSE;

break;
}

In snippet 4.8 it can be appreciated how the parameter is parsed by using
FreeRTOS_CLIGetParameter(pcCommandString,1,pz) .

that returns a pointer to the beginning of the desired parameter. In this case the first
one. It also returns it’s length.

FreeRTOS will consider that a command matches an action if the the command
name and the number of parameters match. But to parse the content of said pa-
rameters falls under the summoned function, that is why there is a default case
warning of an error if the LED to be toggled does not exist.

Mapping the command to the function
FreeRTOS CLI requires all commands to be stored in a struct as the one in listing
4.9:

Listing 4.9: struct xCommandLineInput

1 typedef struct xCOMMAND_LINE_INPUT
{

const int8_t * const pcCommand;
const int8_t * const pcHelpString;

5 const pdCOMMAND_LINE_CALLBACK pxCommandInterpreter;
int8_t cExpectedNumberOfParameters;

} xCommandLineInput;

It contains information about what exact input will trigger this command. Both the
command name and the number of arguments it accepts. Logically it also holds
a pointer to the function to be called. FreeRTOS CLI provides a built-in help
command, that prints the relation of available commands and their respective help
strings.
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It is a simplistic set of commands but it allows interactive sending and receiving of
messages.

Registering the command with FreeRTOS CLI

All commands registered in the previous step must be registered with the FreeRTOS
CLI. The console framework provides a function for it:

portBASE_TYPE FreeRTOS_CLIRegisterCommand(
xCommandLineInput *pxCommandToRegister )

What this function actually does is filling FreeRTOS’ internal data structures with
the provided command definition. During parsing the entered string will be com-
pared against the data in these structures and if a match occurs the function is
launched.

The registering has to be done for each command that is meant to be used. In a vast
majority of cases a console will have more than one possible command, then it is
possible to have an array of command defining structures, where each position holds
one command. This idea was applied in this project (listing 4.10).

Listing 4.10: Command registration loop

1 void registerCommands(){
int i;
for(i = 0; i < sizeof(cmdTable)/sizeof(cmdTable[0]);i++)
{

5 FreeRTOS_CLIRegisterCommand(&cmdTable[i]);
}

}

Currently, and including the built-in help, there are five commands defined:

toggle n: toggles the n-th LED where n = [0..3]
receive_raw: prints received message
send_raw n payload: transmits payload of size n
conf_rf: changes radio transceiver configuration
help: prints information about available commands

Although registering the commands in execution time may be seem as waste of
computing resources, it has an advantage: dynamism. New commands could be
created (filling the appropriate struct) and registered while the system is running.
Obviously the behaviour to be executed would be limited by the functions that are
console callable (that follow the specified prototype), but aliases could be created.
These aliases could, for example, be existing functions but fixing it’s parameters.
For example: an SOS command could be created. This hypothetical SOS command
could be defined as accepting zero arguments and calling the function to transmit
(send_raw). Once inside the function the outcome could be decided by which
command was used to summon the function: SOS would send a message, fixed
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in size and content, requesting assistance. Whereas send_raw would parse the
arguments and operate normally. Both functions differ only in how the arguments
are obtained: either hard-coded or parsed.

Said dynamic capabilities were not used in this thesis.

Run the command interpreter

Once all the pieces were in place the interpreter can be run. The interpreter (or
shell) need to be run on repeated occasions thus it is common, and recommended, to
make it a FreeRTOS task. Briefly the shell takes the input, one character at a time,
and when it detects an end of command character (most often ’\n’) it provides the
newly created string to:

FreeRTOS_CLIProcessCommand(
pcInputString,
pcOutputString,
MAX_OUTPUT_LENGTH)

The function will then try to match the input string to FreeRTOS’ internal data struc-
tures by comparing the string and the detected number of arguments. If there is no
match an error message is displayed and the shell is ready to start accepting input
again. If there is a match the requested function is called and once it returns the
console will print it’s output and be reading again to take the next input.

For this thesis the serial port was used as interface, but for different projects other
interfaces could be used the only changes to the shell are the functions it uses to get
and put the characters.

Having followed these steps the console is now ready to be used, so it is added as a task
before calling the scheduler. This task will, by definition, make use of I/O operations so it
is recommended to give it a lower priority than other periodic tasks else it may block those
tasks while waiting.

4.6.2 Running the Console

As earlier mentioned(2.4) adding the console was not a goal of the project per se but rather
a tool to experiment with the wireless bus interface acting in lieu of the applications that
will be running on the real NUTS platform.

The first test that was done consisted in sending data packets from the AVR32 board to the
Arduino. Upon receiving the data the Arduino would print it on a serial console of it’s own.
The data being sent were ASCII strings. This test allowed to test the send_raw com-
mand. The results were satisfactory as the string was printed on the Arduino side.

The second test was meant to assess the receive_raw command. The software used
in the previous test was modified. On the AVR32 side it no longer sent an ASCII chain
but a 32-bit unsigned integer, and right after sending the integer it would expect to receive
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an integer back to print it on the serial port. The modifications for the Arduino made it
interpret the received data as a 32-bit integer, print it, and then increment it by 1 and send
it back to the AVR32. If the test had worked correctly both boards would have printed out
different integers (n and n+1) but several problems arose:

Endianness
It was observed that when the AVR32 transmitted a 1 the Arduino interpreted it as
16777216. The initial diagnosis was that some noise was being read or a coding
error, but the repeatability of the results eliminated both possibilities. While debug-
ging it the Arduino code was changed to print the received integer in binary, that
rendered: 0b0000000100000000000000000000000. It was then properly
diagnosed as an endianness mismatch. The Arduino is based on an 8bit AVR there-
fore it’s endianness depends on how the types larger than the byte are implemented
in software. The AVR32 is natively a Big endian MCU.

Blocking calls
Even with the endianness problems the transmission/reception should have endured,
albeit wrong values would be printed out. That was not the case. The blocking
nature of the receive functions heavily impaired proper operation. Since the actual
sending was done from the console task (any function launched from a task belongs
to said task) the task console would block waiting for packets to be received. Since
the system would only send a packet when told to by the shell and it was locked, no
packets were being sent to the Arduino. Therefore the Arduino was not answering,
thus the AVR32 was stuck waiting for packets.

The Endianness problem could have been solved by bithacking the data on either board to
make it fit it’s data representation scheme. The blocking calls problem could have been
partially solved by using the functions that await incoming packets for a given time, else
they timeout. This would have been a partial solution as it still implied busy waits that
could have derived in a system that waits most of the time and seldom (after timeout and
before next blocking operation) is responsive.

One of the original requirements was to make the driver interrupt driven, and with this
results it was clear that it was a moment to pursue that goal. Since making the Arduino
version of the driver interrupt driven was not a goal of this project at this point the second
UC3-A3 Xplained board was introduced into the system aiming at improving the AVR32
driver on both boards. This change in the experimental setup also solved, as a side effect,
the endianness issues. Although if in a future a LittleEndian device is connected to the
Internal Wireless Bus it will be required to recode the data.

Naturally the second AVR32 had an identical setup as the first, as depicted in figure
4.1.
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4.7 Getting interrupted

To develop an interrupt driven driver was one of the goals of this project since the begin-
ning but why is it so important?

At a first glance: having an interrupt driven driver would eliminate the need for actively
waiting and polling the radio checking if the internal wireless bus interface has received
anything. This constant checking is not only unnecessarily expensive (computationally
speaking) but is also disruptive to the system (4.6.2).

Additionally the use of interrupts grants a more natural scheme of communication. Look-
ing at it from a human communication point of view: we do not periodically (and often)
check our phones to see if there is an incoming call but rather we wait until the phone
interrupts us (by sound or vibration) that there is an event that requires our attention. Fur-
thermore if we were to constantly check our phones most of our other tasks would suffer
from that behaviour. Thus the analogy of the telephone proves how important the interrupt
driven approach is and how damaging being constantly checking (ie, blocking calls) can
be.

The nRF24L01 has mechanisms to notify the MCU that it’s attention is required. The
AVR32, and virtually all other processors, have mechanisms to listen to such attention
requests (interrupts). Both were used in this master’s thesis.

4.7.1 Listening in

The AVR32 is capable of paying attention to interrupts from several different sources.
Some of them from it’s own peripherals and others that are external to the chip. Naturally
for the purposes of the driver the latter were used.

Generally the procedure to use an external interrupt entails three steps, here they are detail
by using as an example their implementation on the project:

Preparing the line
The AVR32 has several I/O lines that are accessible through it’s physical pins. These
lines are under control of the GPIO module unless they have been granted to another
peripheral[ (4.3.1). The lines that are going to be used to listen in to external inter-
rupt requests need to be configured as inputs,and to have GPIO relinquish over to
the External Interrupt Controller. Snippet 4.11 shows how it was done during devel-
opment.

Listing 4.11: Configuring pin as input

1 void extint_pin_setup()
{

static const gpio_map_t extint_gpio_map = {{
AVR32_EIC_EXTINT_2_PIN, AVR32_EIC_EXTINT_2_FUNCTION}};

5

gpio_enable_pin_pull_up(AVR32_EIC_EXTINT_2_PIN);
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gpio_enable_module(extint_gpio_map,sizeof(extint_gpio_map)/
sizeof(extint_gpio_map[0]));

9 }

The line is configured as an input with a pull-up resistor, such a setting was adopted
as the nRF24L01 clears the line when it requests for attention. The ASF functions
were relied upon when the configuration of the pin was done.

Unfortunately none of the pins broken out in connector J1 of the Xplained devel-
opment board can be used to to receive external interrupts, as they are not wired to
the External Interrupt Controller. Thus a pin on J2 had to be used, requiring for an
additional single cable. The single cable that is not bundled in the ribbon in figure
4.1 is the IRQ line.

Binding an ISR
An interrupt demands an action to be taken to address it’s request. Back to the

analogy of the phone call, a ringing phone needs to be answered. It is therefore
necessary to define an action to be taken when the interrupt event is detected and
that action needs to be bound to the event. The action to be taken is known as an
Interrupt Service Routine (ISR). Once more on the phone analogy: when the phone
rings (event) answer (ISR). Listing 4.12 presents both: the action defined and the
binding.

Listing 4.12: ISR and binding

1

ISR(radio_irq_handler,1,AVR32_INTC_INTLEV_INT0){
xSemaphoreGiveFromISR(semaphoreRadioEvent,NULL);
gstatus = nrf24_statusRead();

5 eic_clear_interrupt_line(EIC_RADIO_1,EXT_INT2);
}

void init_ext()
9 {

extint_pin_setup();

INTC_register_interrupt (&radio_irq_handler,AVR32_EIC_IRQ_2,
AVR32_INTC_INTLEV_INT0);

13

eic_init (EIC_RADIO_1, &nrf24_irq_eic, 1);
eic_enable_interrupt_line(EIC_RADIO_1,EXT_INT2);
eic_enable_line (EIC_RADIO_1,EXT_INT2);

17

}

The ISR will be called, it was defined using the compiler directive for ISR’s. The
compiler needs to be aware of the fact that it is not a common function as some
special instructions are required when compiling it. Most notably the use of RETI
instead of RET to return to the previous context. The contents of the ISR are dis-
cussed further in subsection 4.7.2.
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Function init_ext() includes a call to extint_pin_setup() presented in
listing 4.11, but additionally registers the ISR (radio_irq_handler to the spe-
cific line being used (EXTIRQ2) and gives it a priority (INT0).

This left the action defined and bound to which event should trigger it. The last three
lines on 4.12 are detailed on the next bullet point.

Enabling interrupts
Although interrupts are practical and allow for event-driven software, they can at
times be undesirable. For example on a time critical zone of code it might be inad-
visable to switch context and wast time attending an interrupt. Or interrupts being
triggered before the system is properly configured (both the one that generates it or
the one that processes it) as they could result in undefined behaviour.

To solve these issue most platforms allow to activate and deactivate the acceptance
of interrupts. AVR32 offers such solution and accompanying ASF functions to use
it, as seen on the last three lines in listing 4.12.

Generally there is also a general interrupt switch, in our case it was already set to
accept incoming interrupts as it was required for the UART-on-USB functionality.
It is an ASF call ( cpu_irq_enable() ) in the main function.

These three steps prepared the AVR32 to receive interrupts. Before tying it to the nRF24L01
it was tested with a simple cable, forcing it to high and low levels. Such level switched
would produce interrupts and those bound to an ISR that would toggle a LED allowed for
a visual verification that the MCU was acceptin and attending incoming interrupts.

4.7.2 Speaking out

It is obviously not enough to have the AVR32 ready to take interrupts, it is also necessary
to set up the nRF24L01 3.3 to generate interrupts. The radio transceivers can generate
an interrupt for three different events: a packet has been received, a packet has been suc-
cessfully sent (it has been acknowledged by it’s target) and a packet transmission failed (it
exhausted retrial attempts and still got no acknowledgement from it’s target).

In 4.4 the initialization process of the radio transceivers was introduced. During that pro-
cess the nRF24L01 is configured to notify through it’s IRQ pin none, some or all of those
events. Namely in the configuration register NRF24_REG_00_CONFIG there are possi-
ble flags: NRF24_MASK_RX_DR, NRF24_MASK_MAX_RT and NRF24_MASK_TX_DS
that activate the data received, maximum retrials and data successfully sent interrupts re-
spectively.

So, at this point, we had the AVR32 ready to react to interrupt requests and the nRF24L01
prepared to make those same requests. In other words our caller was ready to make the
phone call and the callee was ready to answer to it. But what do they talk about? There
are three possible events that could trigger an interrupt, but there is only one interrupt line
therefore the same interrupt will be triggered for all three options. Then within the ISR the
system distinguishes which event occurred and addresses it. The ISR, introduced earlier,

53



Chapter 4. Implementation

in listing 4.12 is very simple: as it performs only three commands: note that a radio event
has occurred, get the current status of the radio transceiver (as it will be processed later,
outside the ISR), and let the nRF24L01 know that it’s interrupt has been processed.

Interrupts must be as brief as possible that is why it was decided that the events were to
be notified to the system and then processed outside of the ISR. It might seem counter-
intuitive to increase the complexity of the software. Why not simply process the event in
the ISR ? All of this is done to make sure the ISR is short, both in code and execution
time. This derives from the fact that while on an interrupt other interrupts are generally
inhibited therefore anything that is interrupt driven works anomalously. That includes:
timer (scheduling) which is critical in a real time system. It is also advisable to avoid
all kinds of I/O operations while in interrupt context because they are slow. But it could
not be avoided because the nRF24L01 clears the interrupt source once the IRQ line has
been cleared. So a compromise was made: the ISR reads and stores the kind of event that
triggered the interrupt and then notifies the system that this event needs to be processed,
the event is then processed in normal execution context. Keeping the I/O operation in ISR
short (only one status byte is transmitted).

This notification is done by means of a semaphore (detailed in 3.5.1), that allows to have
a Task suspended, thus not consuming resources, and waking it up when the event has
happened. A software based interrupt of sorts. Such a Task (listing 4.13) awaits for the
semaphore semaphoreRadioEvent to be set and then dispatches the event to the spe-
cific task, again via semaphores, depending on the status of the radio. These tasks will
then operate the queue structures (described in 3.5.2: one fore received messages and one
for messages to be sent, respectively rxQueue and txQueue. Applications will then
operate with them via the queue API.

Listing 4.13: vRadioEvent Task

1 void vRadioEvent(void *pvParameters)
{

nrf_frame_t qm;
5

while(1) {
if(xSemaphoreTake(semaphoreRadioEvent,portMAX_DELAY)) {

if( gstatus & NRF24_MASK_RX_DR) {
9 xSemaphoreGive(semaphoreRX);

}
if( gstatus & NRF24_MASK_TX_DS) {

xSemaphoreGive(semaphoreTX);
13 }

if( gstatus & NRF24_MASK_MAX_RT) {
xSemaphoreGive(semaphoreMRT);

}
17 } else {

/*SemaphoreRadioEvent could not be acquired (SHOULD NEVER END
UP HERE)*/

}
}

21 }
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Figure 4.4 depicts this the usual execution flow of sending a data packet.

Figure 4.4: TX operation execution flow

At this point the flow of the program diverges depending on which of the event triggered
the original interrupt, the following subsections explore the cases.

4.7.3 Receiving a Data Packet

The first situation that was tackled was the reception of a packet. Two facts made it the
best option to start. In the first place: receiving a packet is the most asynchronous of the
events. As the local system has no way of knowing when the next incoming packet is going
to come in. The second fact is: a reception can’t go wrong, meaning that the nRF24L01
only notifies of a new reception when the new packet is already in it’s buffers waiting to be
read by the MCU. The idea is simple then: once a packet is received the software should
collect it from the buffers on the transceiver and place it in the AVR32’s RAM to make it
available for the applications.

Subsection 4.7.2 presented how the events were dispatched to different tasks. There is
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then a specific task (also suspended by the semaphore mechanism unless there are pending
messages to be treated). Listing 4.14 presents it:

Listing 4.14: vReceive Task

void vReceive(void *pvParameters){
2

nrf_frame_t qm;

while(1) {
6 if (xSemaphoreTake(semaphoreRX,portMAX_DELAY)){

nrf24_recv((uint8_t *) &qm.content ,&qm.size);
xQueueSendToBack(rxQueue,&qm,0);

} else {
10 //Unobtained Semaphore (Should not happen)

}
}

}

The task vReceive gets via the SPI, by using the low level driver, the packet and queues
it in the rxQueue for applications to collect it. The whole montage brings two benefits
to the system: One of them being the fact that an application can request to read a packet
at any point by using xQueueReceive(rxQueue,...). If the packet is ready it will
be served to the application. If it is not, the application will be suspended until said packet
becomes available. The second advantage is it’s symmetrical a packets are received as sent
to RAM regardless of whether they had been requested or not, as there is no longer need
to actively wait for them.

The current implementation is limited in the sense that there is only one queue for re-
ceived messages thus an application could be awakened by a message that was not meant
for it. The application could then simply requeue the message and be again suspended.
Another option would be to have separate reception queues for each application and task
vReceive could deliver to the pertaining one.

Figure 4.5 depicts this the usual execution flow of sending a data packet.
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Figure 4.5: RX operation execution flow.

4.7.4 Sending a Data Packet

The internal wireless bus is designed as half duplex, because a transceiver is either sending
or receving. It could be argued that transmitting does not need to be interrupt driven, as
an application is aware of the moment it starts sending something and then the transceiver
could simply be polled until the packet is acknowledged or a delivery error is detected.
While it is true that avoid the transmit phase active waits is not as paramount as those of
reception (because the active checking there would be always on going), it is also true that
those MCU cycles used checking are wasted and could be put to a much better use. The
principle here is symmetrical to the one used during sending. Thus it starts at the local ap-
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plication and progresses up to the transceiver. The first step is the queueing of the packet by
the sending application through the use of the xQueueSendToBack(txQueue,...).
That will awaken task vSend() (see listing 4.15) that is usually suspended unless there
are pending packets to send.

Listing 4.15: vSend Task

void vSend(void *pvParameters){
2 while(1){

nrf_frame_t qm;
if (xQueueReceive(txQueue,&qm,portMAX_DELAY)){

nrf24_setTransmitAddress((uint8_t*)TARGET_ADD, 5);
6 nrf24_send((uint8_t*) &qm.content, qm.size , false);

nrf24_waitPacketSentSemaphores();
nrf24_powerUpRx();

} else {
10 /*NO MSG TO SEND*

}
}

}

Task vSend() sets the target address of the sending to be done, then uploads the payload
and gives the command to send it. nrf24_waitPacketSent() is the original function
provided on the Arduino library that would poll the status register to monitor the current
sending. In an attempt to avoid the use of active polling a function based on events (sig-
naled by semaphores) was developed: nrf24_waitPacketSentSemaphores() It’s
use is exemplified in listing 4.16.

Listing 4.16: nrf24 waitPacketSentSemaphores() Function

uint8_t nrf24_waitPacketSentSemaphores()
{

3 if (xSemaphoreTake(semaphoreTX,50/portTICK_RATE_MS)) {
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_TX_DS |

NRF24_MAX_RT);
return true;

}
7 if (xSemaphoreTake(semaphoreMRT,50/portTICK_RATE_MS)) {

nrf24_flushTx();
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_TX_DS |

NRF24_MAX_RT);
return false;

11 }
return false;

}

The function nrf24_waitPacketSentSemaphores() relies on the semaphores:
semaphoreTX and semaphoreMRT that are in turn set by the interrupts and Task
vRadioEvent() (4.13). In this manner it can return the status of the sending (be it suc-
cessful or not) while avoiding constant polling, as the semaphores suspend it unless there is
a change. The timeouts (maximum amount of time it waits for a semaphore) are necessary
as there are two semaphores and both need to be checked. Else it would be possible that the
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function waits for semaphoreTX and it never wakes up because transmission failed and
actually semaphoreMRT was the one given. In the event of a sending failure the outgo-
ing buffers are flushed to allocate resources for the next transmission. Although the current
implementation does not have this feature , it might prove useful in the future to requeue
in txQueue the outgoing message if nrf24_waitPacketSentSemaphores() as the
system knows then that the transmission failed.

On vSend() (4.15) the call to nrf24_powerUpRx() had to be added. On the original
Arduino code (not interrupt driven) the transceivers were set to RX mode when a packet
was being actively awaited, but on the new driver it was necessary to return to RX mode
after each transmission. This return to RX is not automatic as the state diagram on 3.3
shows. The implications of not returning are that after doing a transmission that node
could no longer receive any incoming packet (as it was not in RX mode). Observing this
behaviour pushed the addition of nrf24_powerUpRx() to be ran abter each transmis-
sion.

Combining both the interrupt-based reception and sending the driver and stack are fully
operational in RAW mode(2.2.1). Albeit only two complete nodes were used during the
development (both on AVR32), and an additional mock node on the Arduino, the system
is scalable theoretically up to filling the nRF24L01 address space.

4.8 CubeSat Space Protocol

Integrating the Internal Wireless Bus with the CubeSat Space Protocol would increase even
more the flexibility and transparency of the implementation. That is, an application that
operates through CSP does not even need to know which interface will eventually carry
it’s payload.

CSP is bundled as an external library that can be compiled and then linked into the project.
It’s developers provide a script based in WAF to manage the build process. WAF in turn is
based on Python. Although to build it using the provided scripts is the usual path to take it
is not the one that was taken in this project.

NUTS has already a compiled CSP library [4] to be integrated with the system, as it is also
used in the wired I2C connection. To guarantee compatibility it was decided to link the
project against that compiled version. The commonality in the architecture and develop-
ment tools allow for the drop in placement.

CSP is designed in a modular fashion where there is the core engine of the protocol and
then different interfaces can be added, granted they provide a common interface to the
mentioned core: One function to send packets so that the core could rely on it to deliver a
new packet to the interface. And a second function to get packets from the interface and
feed them to the CSP core.

Despite the original intent to have a fully working CSP integration with the internal wire-
less bus, this goal could not be met. No technical obstacles were detected during the
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attempts and the failure at implementing these features was due to lack of time. More
information provided on section 7.2.

4.9 Implementation Outcome

Despite the failure to produce a working integration with CSP there have been usable
results. The driver is usable and could be easily integrated and deployed with the final
NUTS system.

Taking advantage of the fact that most NUTS submodules are already running on FreeR-
TOS the RAM memory footprint of the driver is reduced to the two queues (txQueue
and rxQueue). Naturally the driver functions and the FreeRTOS tasks associated with
the nRF24L01 have RAM usage but only while on execution therefore they are not a con-
stant drainage of resources. As far as program memory is concerned : most of the data
structures and algorithms to manage them are based on FreeRTOS and therefore the code
is shared with the rest of the system. The only purely nRF24L01 code cost are the ISR,
the vSend(), vRecieve() and vRadioEvent() tasks and the low level driver itself.
And only the latter is of a significant code size.

Additionally the command shell, which has been used during this project, despite it is a
good tool during development for interactive testing it will not be included in the final
system. As it will be replaced by the real application in NUTS. Although some of it’s
mechanisms used for parsing and registering commands could well be used when process-
ing the commands sent from ground to the satellite. But in a general view the memory and
code size footprint of the console are not a source of concern as they will not, per se, be in
the final integrated system.

The whole design structure aimed at make the driver interrupt driver and non-blocking can
benefit a real-time system such as NUTS.
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Integration Guide

The end goal of the solution designed and developed for this master’s thesis is to be inte-
grated and used in the NUTS satellite. This chapter provides the necessary information to
ease the integration process. The chapter itself is split in two parts: the first with the neces-
sary programming considerations and the second presents the Software Design Document
of this implementation

5.1 Programming Considerations

This section contains several points that have to be considered when integrating the Inter-
nal Wireless Bus into other systems (mostly aimed at the NUTS Satellite). Although they
all have relevance they are not necessarily linked to one another.

5.1.1 Basic Integration Requirements

The most basic integration requires to, naturally, move the code base to the new project.
The following subsection present a relation of the elements to port.

Elements to Port

Maybe the most important part of this master’s thesis is to easily integrate it into the
bigger NUTS system. The code base has been developed in a manner that enables said
integration. The following list of files (both headers and source code) that must be present
in any project that integrates the Internal Wireless Bus:
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nrf24l01.c and nrf24l01.h
These files contain all the low level operations necessary to interact with the nRF24L01
modules. Additionally the header file defines the register names for the transceiver
thus it allows for a much clearer code and debugging. The operations are based on
the ASF therefore if the wireless bus were ported to another architecture changes to
nrf24l01.c to match the new SPI routines would be necessary. The SPI unit that is
in use and the GPIO pin used as Chip Enable for the radio modules is also defined
there and both would require adjustment in case of a hardware change.

user interrupts.c and user interrupts.h
The ISR for the external interrupt is defined there. Also the necessary functions to
initialize the AVR32 hardware to receive those interrupts. The specific pin used is
defined there and needs to be kept coherent with any changes done to the physical
connections.

msgQueue.c and msgQueue.h
Both reception and transmission queues are based on these files. Also the functions
to create and initialize them. The structure that is enqueued is defined in the header
file, so that is where modifications must be made in case new fields are thought
necessary. Since the queues are purely on RAM structures only logical changes
affect them and no modification is necessary due to hardware changes.

stdio usb example.c
It is the file containing the main() function, naturally not all the file must be used
when integrating into other projects, but some portions need to be extracted and
moved to the new project. The list follows:

void vSend(...)
This Task monitors the txQueue and in case there is data pending to be sent,
sends it. It is obviously a very important part of the system as it binds the
queue system (purely software) with the nRF24L01 modules. As the function
is right now all packets are sent to the address: brd01, obviously in a system
with multiple nodes this would require a change. The function
nrf24_setTransmitAddress(...)
allows that change in execution time. A possible implementation would be
to have a target field in the enqueued frame and then when dequeuing it for
sending the intended address could be set.

This Task also checks (using nrf24_waitPacketSentSemaphores(...)
that the transmission was completed successfully.

void vRecieve(...)
It is the complimentary to the prior Task. This one is activated (as it usually
lies suspended) when new data is available in the nRF24L01 modules, then
reads the data from the transceivers via SPI and enqueues them in the reception
queue. The current implementation has a single reception queue but it would
be possible to enqueue it on different structures depending on, for example,
priorities or the targeted task.
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void vRadioEvent(...)
As described in 4.7.2 there are three possible events on the nRF24L01 that in-
terrupt the AVR32 and request it’s attention. This Task distributes this requests
for attention the the proper Tasks or functions for processing. It could be been
as a software switchboard. Unless the structure of the semaphore-based syn-
chronization is changed (and that is inadvisable) no changes should be made
to this Task.

uint8 t nrf24 waitPacketSentSemaphores()
This function catches semaphores relating to the events of successful and failed
packet transfer and notifies the calling task of the outcome additionally it
flushes the nRF24L01 buffers if necessary. No modification is advised.

Those are the elements that should be present in any deployment of this solution. It is
important to mention that many of them are based on ASF or FreeRTOS. The follow-
ing subsection describes their use. These source code files can be found in the annex
(7.4).

Additional Software Requirements

The ASF and FreeRTOS are integral parts of the system yet they have not been considered
as a segment necessary to port because it is assumed that they will present in any future
software for NUTS where the Internal Wireless Bus is integrated. Considerations about
their configuration follow:

Atmel Software Framework
The ASF is split in modules. They are all accessible via an integrated ASF Wizard
in Atmel Studio. The ASF version used during the development is 3.5.1. There
are significant differences between versions, specially between major versions, but
generally they are enhancements. Therefore, it is very likely, that any version above
3.5.1 will keep the functions used. It is the header inclusion #include <asf.h>
must naturally be present in all files that used the ASF but it is also required to use
the ASF Wizard to include the desired features into ASF. The list of used features
(and thus required):

EIC - External Interrupt Controller (driver)
GPIO - General purpose Input/Output (driver)
SPI - Serial Peripheral Interface (driver)
Delay routines (service)
Generic Board Support (driver)
USB Device (service configured as cdc_stdio)
Interrupt Management (Common API) (driver)

Replicating this configuration should enable all the features necessary to operate
the the nRF24L01 through the software stack designed and developed during this
master’s thesis..
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FreeRTOS
To comply with the multitasking nature of NUTS FreeRTOS will be certainly de-
ployed in any future development. Some of the optional features of FreeRTOS
have been used to implement this project, therefore it is required for them to be
enabled. The common way to configure the real time operating system is through
one of it’s header files: FreeRTOSConfig.h. In that file there must be the line:
#define configUSE_COUNTING_SEMAPHORES 1

That line enables semaphore functionality in FreeRTOS.

This concludes the requirements in software that must be ported to the a NUTS software
for integration.

5.1.2 Skeleton of the Main Program

It does not suffice to bring all the necessary pieces of code. It is also necessary to organize
it in a specific manner and to initialize all required structures. Listing 5.1 presents a min-
imal structure that is required for the system to function. It is assumed that the required
steps will be done in the main function although it would also be possible to place them
elsewhere as long as the execution order is kept. Inline comments have been added to help
the reader.

Listing 5.1: Skeleton of a main function

void main()
3 {

...

/*Initiallize and stabilize clocks*/
7 sysclk_init();

/*Initialize and enable interrupts*/
irq_initialize_vectors();

11 init_ext();
cpu_irq_enable();

/*Declare two auxilliary variables requires for nRF24L01
configuration*/

15 NRF24DataRate dr = NRF24DataRate2Mbps;
NRF24TransmitPower pr = NRF24TransmitPower0dBm;

/*Initiallize the SPI interface and the nRF24L01*/
19 nrf24_initRadioSpi();

/*Configure nRF24L01*/
nrf24_setChannel(1));

23 nrf24_setThisAddress((uint8_t*)THIS_ADD, 5);
nrf24_setPayloadSize(PAYLOAD_SIZE);
nrf24_setRF(dr, pr);

27 /*Initialize RX and TX queues both with size 8*/
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initMsgQueues(8,8);

/*Initialize Semaphores*/
31 semaphoreRadioEvent = xSemaphoreCreateCounting(1,0);

semaphoreRX = xSemaphoreCreateCounting(3,0);
semaphoreTX = xSemaphoreCreateCounting(1,0);
semaphoreMRT = xSemaphoreCreateCounting(1,0);

35

/*Create the three necessary tasks*/
xTaskCreate(&vRecieve, (const signed portCHAR *)"Recieve Task",

configMINIMAL_STACK_SIZE, NULL,
tskIDLE_PRIORITY+3, NULL);

39 xTaskCreate(&vRadioEvent, (const signed portCHAR *)"Radio Event
Processing Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+3,
NULL);

xTaskCreate(&vSend, (const signed portCHAR *)"Send Task",
configMINIMAL_STACK_SIZE+8192, NULL,

tskIDLE_PRIORITY+3, NULL);
43

/*Launch FreeRTOS scheduler*/
vTaskStartScheduler();

47 ...

}

It must be kept in mind that the presented snippet of code (5.1) is meant only as an exam-
ple and it omits the declaration of required variables and of the required functions. It is
understood that any future developer will take the limitations of this example in mind. Re-
garding the priorities associated to the Tasks: they are designed to operate properly when
having the same priority (although they may work as well under different priorities), and
it must be higher than any task that could block the system for indeterminate amount of
time.

5.1.3 FreeRTOS Tasks’ Stack Size

When the function xTaskCreate(...) is used to add a Task to the scheduler (for
example in listing 5.1) , a size for the stack is assigned. Generally the minimal stack
size suffices unless very memory demanding functions (such as printf(..)) is used
from within the task. An undersized memory does not present a single distinguishable
failure but rather erratic behaviour from that task. Such errors can be hard to diagnose.
It is advised to any developers to check for the proper stack size to use by trial and error.
Generally stepping through the Task once with the debugger suffices.
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5.1.4 Endianness

As discussed in 4.6.2 it is possible to have nodes using different endianness schemes. That
depends on which hardware are those nodes based on. It is advised to adapt all platforms
other than the AVR32 to the Big endian scheme because it will be the most commonly
used in the NUTS subsystems.

5.1.5 Include Paths

Due to some problem with Atmel Studio installed on the development computer it was
necessary to hardcode the path to some header files in their respective #include direc-
tives. Even configuring the IDE to seek header files in the directories hosting them there
were still problems to locate the files during compilation. There is no reason to believe that
this erroneous behaviour would manifest in other development settings but it is necessary
to remember that it might be necessary to switch those paths back to relative instead of
absolute.

5.1.6 Available Functions

The system is constructed in such a way that there should be no need to access the driver
level functions. In case that they would be required the documentation of the original
Arduino library is still widely usable as the behaviour and the return values have been
kept during the port. And behave as described in [7]. Those functions that are new or that
underwent significant change are detailed in chapter 4.

5.2 Software Design

The nature of the NUTS project implies rapidly changing engineering teams. This en-
hances, even further, the need for a clear and standardized documentation. Such a doc-
ument is not meant as a substitute for the present master’s thesis but rather as a quick
reference guide to get an overview of the system. Within the NUTS project a standard was
developed [11]. One of this thesis’ aims is to produce helpful documentation therefore the
description of the software following said standard follows.

5.3 Software Design Document

Project Name/ID
NUTS - 1.1.3 Internal Wireless Bus

Creation Date
03/07/2013
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Author(s)
Jordi Francès Matas

Change history
Initial version

Context
The Internal Wireless Bus provides a high bandwidth link to the NUTS satellite
for inter-module communication. It aims both at solving the limitations of the I2C
communication scheme and to test the viability of using small radio transceivers
(nRF24L01) in intra-satellite communication.

Composition
Two main layers can be distinguished: a logical layer presenting a non-blocking
interface for applications to use the communication interface. And a driver layer
that interacts directly with the hardware. There are intermediate components to
ensure the binding between the two layers.

Implementation
The logical layer is based on FreeRTOS queues. Specifically there is one queue
for sending packets where the applications enqueue outgoing messages. And com-
plimentary there is a queue for receiving packets where the system enqueues the
incoming messages so that the applications can access them in an orderly fashion.

The driver layer interacts directly with the nRF24L01 transceiver via the SPI bus,
managing all the low level transactions necessary to send and receive the messages.

The intermediate components (based mostly on interrupts and semaphore-signalling)
ensure timely communication between the driver and logical layer.

Dependencies and interfaces
The top level (logical) depends on FreeRTOS’ queue system.

The driver layer is based on the ASF to operate the SPI unit and the GPIO lines.

The interface exposed to users of the internal wireless bus is the FreeRTOS Queue
API as all interaction is eventually simplified to queuing and dequeuing packets.

Glossary

I2C: Inter-integrated Circuit Bus.

nRF24L01: Nordic Semiconductor’s integrated 2.4Ghz radio transceiver.

SPI: Serial Peripheral Interface.

ASF: Atmel Software Framework.
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Chapter 6
Testing and Results

This chapter summarizes the outcome of the work done throughout the thesis and the
methods used to gather such information.

6.1 Testing

Admittedly the testing portion of this master’s thesis is the most lacking one. No actual
systematic testing could be performed due to time constraints (see 7.2). Nevertheless
each step of the implementation was tested, it could be seen as an iterated unit testing at
each implementation version. As a matter of fact many of the decisions and adjustments
that were done during the development were made upon seeing the result of these unit
tests.

The interactive console 4.6 was very helpful in this informal testing process. Allowing to
make fast runtime adjustments or to reproduce bug suspicious behaviour. This advantages
justify the development and use of an interactive shell despite it was not meant to be
integrated in the final product.

Over the many iterations of development this limited testing gave an impression of viabil-
ity and robustness of the system. But it is inadvisable to rely on such preliminary results,
especially for a system such as NUTS were reliability is key. It is of paramount importance
to have the system undergo a more rigorous test scheme (see 7.1).

Regardless of the amount of testing done, it is strictly necessary to have the system undergo
reliability tests while it is being integrated in the final NUTS satellite. This has been listed
as a high priority future work in 7.1

Despite range testing was not a concern of this project since purely radio concerns were
addressed by previous work [8]. Informal trials were done by transmitting at ranges of up
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to 25 meters in a clear line-of-sight environment. All ranging trials were successful.

6.2 Results

As aforementioned it is not possible to provide quantitative results due to limited testing
but some assessment can be done on a purely qualitative basis.

First and foremost: the system works. Data packets were transferred back and forth be-
tween two AVR32-based nodes using a FreeRTOS friendly programming model that pro-
vides non-blocking transferences. And, in the author’s opinion, it could be easily inte-
grated into the satellite to provide a secondary internal communications bus.

From a software point of view one of the objectives was not met: integration with the
CubeSat Space Protocol. Despite attempts to attain so.

Looking back at the initial goals:

Bandwidth
The Internal Wireless Bus exchanges information at a maximum speed 2 Mbps, it is
possible to configure it at 1 Mbps to ease energy concerns. In both cases it is well
over the 400 Kbps provided by the I2C bus on the backplane. The improvement in
bandwidth can help to move big blocks of data such as those produced by the IR
Camera mounted as a payload.

Flexibility
Among the downsides of the I2C bus is the requirement to have it’s lines run through-
out the entire satellite, or at least reaching all those points were access to the bus is
requires. This imposes a footprint on the backplane. The wireless nature of the
solution explored in this document eliminates, by definition, the need for such long
lines. Instead it requires much shorter lines, never going across modules, that con-
nect the processors of the different modules to their respective nRF24L01. Doing so
increases flexibility in the sense that the required communication wiring is moves
from the backplane to the submodules. And this allows for a more independent de-
sign of the submodules and even a freer placing of them on the mounted satellite.
Obviously this flexibility can not be exploited by NUTS because the I2C bus is still
present. But it may be exploited in newer designs.

Experimenting
The goal of exploring whether such a system could be viable in a satellite is still
on-going. And will stay on-going until the system is deployed and actually used in
space. But the first steps have been taken and they contribute to the desire of using
NUTS also as a platform to develop new technologies.

Finally, and from a software point of view: it is objectively good that the solution could
be achieved purely by developing software for the MCU. That is: the radio transceivers
are used without any modification to their internal firmware. Such modifications are not
always possible due to the lack of development tools or documentation and when done
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they may lead to performance or reliability problems. Therefore it is safe to conclude that
it is positive that such modifications were not required.
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Chapter 7
Conclusion

This section concludes this master’s thesis report with the author’s personal opinions and
considerations of the work done. It also identifies the problems encountered, what could
and should have been done differently. There is also a listing of possible paths to continue
the work.

7.1 Future Work

There are two very clear axis around which high-priority future actions should be tar-
geted:

Integration with CSP
Maybe the most notable shortcoming of the thesis has been the failure to integrate
the system with CSP. The system would gain greater usability with a working in-
tegration with an established protocol such as CSP. Furthermore it would make the
solution more attractive to similar projects that might find the idea of a high through-
put wireless bus attractive.

The integration with CSP would also enable the development of the two networks
on one adapter idea as described in 2.2.2.

Testing
As discussed in 6.1 it is a lacking portion of this work. Despite it would not add
features per se it is a necessary job. Taking into account the the this solution aims at
being deployed in a critical environment (such as a satellite) one must be certain of
it’s reliability.

The two aforementioned items should have, in the author’s opinion, priority but there are
also some other development paths that are worth exploring.
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There might be some energy consumption concerns regarding the use of a radio. During
this work such concerns have not been tended because it was understood as a proof-of-
concept development from an almost exclusively software point of view. But the limita-
tions in the scope of this project do not, by any means, imply that power consumption can
be neglected. If it was found out that the power consumption is too high there are two
suggestions to keep it at bay.

A possible approach would be to have the wireless bus in stand by (and not defaulting
to RX status) and bring it up only when a transfer needs to be done. This naturally re-
quires for both nodes, sending and receiving, to be aware that an exchange is about to take
place. The I2C bus could be used to coordinate both nodes when it is necessary to bring
the transceivers out of stand by. This approach requires for the duality of I2C and radio
transceivers to be present, while it is a valid solution for NUTS it would not be for a hypo-
thetical future system where the I2C has been stripped. That leads to time slicing.

A time slicing scheme would imply that the transceivers are brought out of standby only
for a fraction of time at regular intervals and all communication would happen during that
time. It would increase communication latency but reduce energy consumption. It might
be problematic to keep all the boards coordinated as there would be no other communica-
tion scheme present.

Another possible line of work would be to port the system to an ARM based processor.
They are quite popular in the embedded world in general and in the CubeSat community
in particular therefore such a port might bring interest from other projects.

7.2 Problems Encountered

Obviously some problems have been encountered during the realization of this project.
Some of them could be either solved or circumvented while others implied cuts to the
attainment of thesis goals.

The biggest problem faces has been time. The development of the working system (as it it
presented in this document) consumed more a much longer time than it was planned. This
pushed other tasks aside up to the point where some of them had to be abandoned and left
as possible future work. The two main items that suffered from this were the integration
with the CubeSat Space Protocol and testing.

The most obvious cause for a lack of time was most an overly optimistic planning. Yet
some other factors could have weighted in. During the first stages of development signif-
icant effort was made to get the UART-on-USB working on a project from scratch. That
was not part of the core of the project and maybe it should have been detoured by basing
the development on an example where that functionality was already present, as it was
eventually done.

A second issue, related with the first, was the limited and sometimes inaccurate ASF docu-
mentation. While the library itself is a good piece of software the bundled documentation
was found to be quite lacking. Often referring to older and deprecated versions of the
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library where functions or even the whole logical structure was changed. This forced to
proceed blindly or by example. Yet often times no useful examples were found as they
were based on older versions of the ASF as well. Additionally some libraries were found
to hold bugs or undocumented requirements as details in 4.3.1. These factors impacted
greatly on the earliest stages of the development while trying to get the SPI communica-
tion to work.

A third problem was the assumptions of similarity between PIC and AVR32 architectures
made by the author. Given the author’s familiarity with the PIC architecture many of
the early stages were developed as if everything had an inherent similarity between the
two architectures. While both architectures, like many other computer architectures, share
some common traits it was an undesirable thought bias to overestimate the influence of
said similarities.

All problems could maybe have been avoided, or palliated, with a more careful planning. A
planning that takes into account the available documentation and the differences between
architectures. Nevertheless the major issue was, and hence it is mentioned first, an overly
optimistic planning. And while efforts will be made in a future to correct that, it is an error
that drew mainly from the author’s inexperience in larger projects. And that will hopefully
correct itself over time.

7.3 Learning Outcome

Aside from an engineering project this master’s thesis is also an academic work, as such it
is conceived as a learning experience. From a purely technical point of view, experience
was gained in a some areas. Such as:

I had no experience developing embedded software on a real time operating system. I
had developed embedded software before but it was logically designed as state machines
of diverse complexity, yet only state machines. On the other hand I had taken theoretical
courses regarding real timeliness but never had hands on experience on one. I consider
this the biggest learning outcome of the thesis as it is not technology dependant therefore
it will certainly benefit future projects.

The use of radio transceivers was also new to me. Nowadays there are many communica-
tion interfaces and in previous projects I had experimented with others but this was a first
contact with radios.

It was not the first approach at using an AVR32 but it was by far the most extensive to date.
This implied familiarizing with the tools for development and debugging.

On a more general note and taking into account that the project is encased in the NUTS
initiative. It was certainly educational to have my own project within a much larger one.
Although the systems developed by others were, not yet, interdependent there mas not
so much a coordination but rather a reporting and bringing others up to date with the
current development of the project. Despite the systems were incompatible there was the
possibility of collaboration, specially empowered by the fact that most software is being
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developed in similar platforms. It was also interesting to partake in NUTS affairs that
were not strictly bound to the thesis, such as finding ideas to recruit new students in the
future.

An unexpected, yet very welcome, opportunity was the chance to participate, as a speaker
[3], in the 5th European CubeSat Symposium.

7.3.1 5th European CubeSat Symposium

The idea of using wireless for the internal communication of a small satellite is rather new.
As such it was an interesting opportunity to present it to the CubeSat community. The
Symposium was held in Brussels where this work was exhibited through an oral presenta-
tion. The used slides can be found in the Appendix (7.4).

The idea was met, in my opinion, warmly by other members of the CubeSat community.
Using wireless for NUTS is an experiment but during the conferences we learnt that it
would solve some technical issues for similar projects. For example one of the projects
were considering drilling through a black boxed hardware module to pass through com-
munication lines. The risk of damaging the perforated module could be avoided by using
wireless Technology. That increased my confidence in the potential future use of this
technology. Maybe even beyond CubeSats. Devices with moving parts (making wiring
troublesome) could also benefit from it.

Personally, it was the first time I presented in such an event. Despite the obvious nervous-
ness I was happy in doing so and found the experience to be enriching.

To attend the symposium I applied to the European Space Agency for sponsoring and
obtained it.

7.4 Personal Experience

On a purely personal point of view: I liked this thesis. I was interested in the topic and
in the technologies that I got to explore. I was already involved with the NUTS project
and wished to do my thesis within it, but the specific topic was chosen out of interest for
development using radio transceivers and real time systems.

I also consider the experience of being a member of NUTS a very positive one. The exis-
tence of a team and a clear objective makes it easier to keep working towards it. It is dif-
ferent from working on an isolated project, and I clearly liked being part of NUTS.

On the negative aspects: it was sometimes frustrating. Specially in the beginning when
there was visible results. And the lack of testing and integration with CSP leaves a bitter
taste of incompleteness.

As a final though: it was an overall positive experience and the produced system is a work-
ing prototype and I really hope it will be used and set in orbit when NUTS launches.
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Appendix

Presentation used in the 5th European CubeSat Symposium

The slides that were used to support the presentation of 15 minutes given in Brussels
follow:
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NUTS – CSP on an RF Link

Jordi FrancesMay 31, 2013

We are NUTS
The Norwegian University ofScience and Technology (NTNU)is currently engaged in theCubeSat project: NUTS – NTNUTest Satellite. Our main payloadis an IR-camera that will enablethe study of gravity waves.Additionally:

• Backplane
• Reinforced Plastic BasedComposite Materials in aCustom Built Frame
• Wireless InternalCommunication Bus

J. Frances, jordifr@stud.ntnu.no 2 / 13 http://nuts.cubesat.no



Talking about communication
NUTS is composed of severalmodules:

• On Board Computer (OBC)
• Radio module
• ADCS
• Payload
• Power and temperaturesensors

All modules are fitted on thebackplane, providing power andI2C communication.
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Cut the cord
Buses are generally wired, butwhat if they were not:

• NUTS
• Designed experiment

• Hardware
• Reduces arearequirements
• Reduces weightrequirements
• Slightly increases incomplexity

• Software
• Slightly increases incomplexity
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Scissors, Knife ?
There are several COTSsolutions to provide a radiointerface to an MCU. We areusing the nRF24L01. Some of itsfeatures are:

• 2.4 Ghz Band
• Payloads of up to 32 bytes
• SPI interface with the MCU
• Auto-ACK
• Auto-sized Payload (RX)
• Up to 2Mbps
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Protocols
CubeSat Space Protocol:Specifically designed forCubeSats. Provides a TCP/IP-likescheme. Some of its features:

• Socket API.
• Connection oriented andconnectionless modes
• Low level functions: ping,buffer status query...
• Supports several physicalinterfaces

Advanced functionality yetsome overhead.

RAW/Ad-Hoc: Simply sendingdata packets through the radiointerface with a minimal headeror protocol.
• Quasi-0 overhead
• Lower RAM consumption

Very low level, and lackingadvanced functionalities.Increases the softwarecomplexity of its client apps.
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Software Stack
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2 Networks on 1 adapter

J. Frances, jordifr@stud.ntnu.no 8 / 13 http://nuts.cubesat.no



General Scheme
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Fallback or cooperation ?

Fallback:
The secondary interface(usually wireless bus) wouldonly work if the primary onefailed.

• Software simplicity
• Misuse of resources

Cooperation:Take advantadge of bothinterfaces at the same time
• Higher throughput(Payload data can use thewireless link)
• Fallback is still possible
• Higher software complexityand power consumption
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Saving power
The nRF24L01 has several modes of operation, each with it’s own powerconsumption:

• Power down: 900 nA
• Standby: 22-320 µA
• TX (-18dBm): 7mA
• RX (Low Current): 11.5mA

Time slicing could be used to reduce. the power consumption,although it would increase software complexity.
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Development setup and progress report
Development Board

• AVR UC3-A3 Xplained
• AT32UC3A3256 (AVR32)
• SPI-interfaced with annRF24L01

• Progress
• RX/TX of dynamicallyvarying sized payloadsworks interrupt drivenand asynchronous
• Integration with CSP iscurrenlty being workedon
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Source Code

Here there are some of the source code files that were developed. In the authors opin-
ion they are the most relevant due to playing an important role in the finished system or
as stepping stones to develop the project. The header files have not been included for
brevity. These files along with the rest of code has been handed in digitally with this
thesis although some differences may be found between the digital files and this copies.
The changes are not altering functionality and are only removals of dead code to increase
readability.

stdio usb example.c

/*
Main file, based on the USB-STDIO example provided by Atmel

3

*/

7 #include <asf.h>
#include <board.h>
#include <sysclk.h>
#include <stdio_usb.h>

11 #include <nrf24l01.h>
#include <user_interrupts.h>
#include <shell.h>

15 #include "projdefs.h"
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

19 #include "queue.h"
#include "msgQueue.h"

23

/*Defines for the adresses, it is the only difference
between the binaries used in both AVR32s*/

27

//#define THIS_ADD "brd01"
//#define TARGET_ADD "brd02"

31 #define THIS_ADD "brd02"
#define TARGET_ADD "brd01"

/*defines to decide server or client during early stages (PING test) ->
NOW DEPRECATED*/

35 #define SERVER
//#define CLIENT

39 xSemaphoreHandle semaphoreRadioEvent;
xSemaphoreHandle semaphoreTX;
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xSemaphoreHandle semaphoreRX;
xSemaphoreHandle semaphoreMRT;

43

uint8_t nrf24_waitPacketSentSemaphores()
{

47 // Wait for either the Data Sent or Max ReTries flag, signalling the
// end of transmission

if (xSemaphoreTake(semaphoreTX,50/portTICK_RATE_MS)) {
51 nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_TX_DS |

NRF24_MAX_RT);
gpio_toggle_pin(LED1_GPIO);
return true;

55

}

59 if (xSemaphoreTake(semaphoreMRT,50/portTICK_RATE_MS)) {
nrf24_flushTx();
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_TX_DS |

NRF24_MAX_RT);
gpio_toggle_pin(LED2_GPIO);

63 return false;
}

gpio_toggle_pin(LED3_GPIO);
67 return false;

}

71

void vLedTask0(void *pvParameters){
while(1) {

gpio_toggle_pin(LED0_GPIO);
75 //xSemaphoreGive(semaphoreRadioEvent);

vTaskDelay(100/portTICK_RATE_MS);
}
}

79

void vLedTask1(void *pvParameters){
while(1) {

//xSemaphoreTake(semaphoreRadioEvent,portMAX_DELAY);
83 gpio_toggle_pin(LED1_GPIO);

vTaskDelay(100/portTICK_RATE_MS);
}

}
87

void vLedTask2(void *pvParameters){
while(1) {

gpio_toggle_pin(LED2_GPIO);
91 vTaskDelay(50/portTICK_RATE_MS);

}
}

95 void vLedTask3(void *pvParameters){
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while(1) {
gpio_toggle_pin(LED3_GPIO);

vTaskDelay(1000/portTICK_RATE_MS);
99 }

}

char s[16];
103

void vRadioEvent(void *pvParameters){

107 queuedMessage qm;

while(1) {
//if(semaphoreRadioEvent != NULL) {

111 if(xSemaphoreTake(semaphoreRadioEvent,portMAX_DELAY)) {
if( gstatus & NRF24_MASK_RX_DR) {

xSemaphoreGive(semaphoreRX);
115 }

if( gstatus & NRF24_MASK_TX_DS) {
xSemaphoreGive(semaphoreTX);

}
119 if( gstatus & NRF24_MASK_MAX_RT) {

xSemaphoreGive(semaphoreMRT);
}

123 } else {
//Semaphore not acquired

}
}

127 }

void vRecieve(void *pvParameters){
131

queuedMessage qm;

while(1) {
135 if (xSemaphoreTake(semaphoreRX,portMAX_DELAY)){

//Obtained
nrf24_recv((uint8_t *) &qm.content ,&qm.size);
xQueueSendToBack(rxQueue,&qm,0);

139 } else {
//Unobtained

}
}

143 }

void vSend(void *pvParameters){
while(1){

147 queuedMessage qm;
if (xQueueReceive(txQueue,&qm,portMAX_DELAY)){

if (!nrf24_setTransmitAddress((uint8_t*)TARGET_ADD, 5)) ;//
gpio_clr_gpio_pin(LED1_GPIO);

151 if (!nrf24_send((uint8_t*) &qm.content, qm.size , false)) ;
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nrf24_waitPacketSentSemaphores();
nrf24_powerUpRx();

155 } else {
//NO MSG TO SEND

}
159 }

}

void vServerTask(void *pvParameters){
163 while(1) {

nrf24_waitAvailable();

167 unsigned long data;
uint8_t len = sizeof(data);
if (!nrf24_recv((uint8_t*)&data, &len)) printf("read failed

\r\n");
// Now send the same data back

171 // Need to set the address of the detination each time,
since auto-ack changes the TX address

if (!nrf24_setTransmitAddress((uint8_t*)"clie1", 5)) printf
("setTransmitAddress failed \r\n");

175 // Send the same data back
if (! nrf24_send((uint8_t*) &data, sizeof(data) , false))

printf("send failed \r\n");

if (!nrf24_waitPacketSent()) printf("waitPacketSent failed
\r\n");

179

}
}

183

#ifdef SERVER

/**
187 * \brief main function

*/
int main (void)
{

191 /* Initialize basic board support features.

* - Initialize system clock sources according to device-specific

* configuration parameters supplied in a conf_clock.h file.

* - Set up GPIO and board-specific features using additional
configuration

195 * parameters, if any, specified in a conf_board.h file.

*/
sysclk_init();
board_init();

199

// Initialize interrupt vector table support.
irq_initialize_vectors();
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203 init_ext();

// Enable interrupts
cpu_irq_enable();

207

/* Call a local utility routine to initialize C-Library Standard I/
O over

* a USB CDC protocol. Tunable parameters in a conf_usb.h file must
be

* supplied to configure the USB device correctly.
211 */

stdio_usb_init();

215 //delay_s(5);

nrf24_initRadioSpi();
219 if (!nrf24_setChannel(1)) printf("setChannel failed \n");

if (!nrf24_setThisAddress((uint8_t*)THIS_ADD, 5)) printf("
setThisAddress failed \n");

if (!nrf24_setPayloadSize(16)) printf("setPayloadSize failed \n");

223 NRF24DataRate dr = NRF24DataRate2Mbps;
NRF24TransmitPower pr = NRF24TransmitPower0dBm;

if (!nrf24_setRF(dr, pr)) printf("setRF failed");
227

registerCommands();
initMsgQueues(8,8);

231 semaphoreRadioEvent = xSemaphoreCreateCounting(1,0);
semaphoreRX = xSemaphoreCreateCounting(3,0);
semaphoreTX = xSemaphoreCreateCounting(1,0);
semaphoreMRT = xSemaphoreCreateCounting(1,0);

235

xTaskCreate(&vLedTask0, (const signed portCHAR *)"Led Task 0",
configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+4, NULL);

xTaskCreate(&vRecieve, (const signed portCHAR *)"Recieve Task",
configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY+3, NULL);

xTaskCreate(&vRadioEvent, (const signed portCHAR *)"Radio Event
Processing Task", configMINIMAL_STACK_SIZE, NULL,
tskIDLE_PRIORITY+3, NULL);

239 xTaskCreate(&vSend, (const signed portCHAR *)"Send Task",
configMINIMAL_STACK_SIZE+8192, NULL, tskIDLE_PRIORITY+3, NULL);

xTaskCreate(&vCommandConsoleTask, (const signed portCHAR *)"Shell
Task", configMINIMAL_STACK_SIZE+1024, NULL, tskIDLE_PRIORITY+2,
NULL);

vTaskStartScheduler();
243

return 42;

}
247

#endif // SERVER
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/*CLIENT IS DEPRECATED, LEFT ONLY AS AN EXAMPLE*/
251

#ifdef CLIENT

int main (void)
255 {

/* Initialize basic board support features.

* - Initialize system clock sources according to device-specific

* configuration parameters supplied in a conf_clock.h file.
259 * - Set up GPIO and board-specific features using additional

configuration

* parameters, if any, specified in a conf_board.h file.

*/

263 sysclk_init();
board_init();

//eic_init(EIC_RADIO_1,&nrf24_irq_eic,1);
267 //eic_enable_line (EIC_RADIO_1,1);

// Initialize interrupt vector table support.
271 irq_initialize_vectors();

// Enable interrupts
cpu_irq_enable();

275

/* Call a local utility routine to initialize C-Library Standard I/
O over

* a USB CDC protocol. Tunable parameters in a conf_usb.h file must
be

* supplied to configure the USB device correctly.
279 */

stdio_usb_init();

delay_s(5);
283

printf("Goooood morning sunshine...I’m a client\n");

nrf24_initRadioSpi();
287

if (!nrf24_setChannel(1)) printf("setChannel failed \n\r");
if (!nrf24_setThisAddress((uint8_t*)"xplan", 5)) printf("

setThisAddress failed \r\n");
//if (!nrf24_setPayloadSize(sizeof(unsigned long))) printf("

setPayloadSize failed \r\n");
291 if (!nrf24_setPayloadSize(4)) printf("setPayloadSize failed \r\n");

NRF24DataRate dr = NRF24DataRate2Mbps;
NRF24TransmitPower pr = NRF24TransmitPower0dBm;

295

if (!nrf24_setRF(dr, pr)) printf("setRF failed");

//printf("\n New Regs \n");
299

//nrf24_printRegisters();
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printf("\n Hello Dave \n");
303

while (true)
{

//printf("send \r\n");
307

// Send some data to the server
if (!nrf24_setTransmitAddress((uint8_t*)"ardui", 5)) printf

("setTransmitAddress failed \r\n");

311 uint16_t time = cpu_cy_2_ms(Get_sys_count(),sysclk_get_cpu_hz())
;

if(!nrf24_send((uint8_t*) time, sizeof(time), false)) printf("
send failed \r\n");

315 if(!nrf24_waitPacketSent()) //printf("waitPacketSent failed \r\n
");

//printf("Packet Aknowledged: %d\r\n", time);

319 //gpio_toggle_pin(LED3_GPIO);

//nrf24_waitAvailable();
if( nrf24_waitAvailableTimeout(1000)){

323

//printf("New Packet Recieved \r\n");

uint16_t data;
327 uint16_t len = sizeof(data);

if(!nrf24_recv((uint8_t*) &data,&len)) printf("read failed \r\n
");

331 printf("Ping: %d \r\n",cpu_cy_2_ms(Get_sys_count(),
sysclk_get_cpu_hz())-time);

} else {

//printf("TIMEOUT \r\n");
335

}

gpio_toggle_pin(LED0_GPIO);
339 delay_ms(10);

}
}

343

#endif // CLIENT

msgQueue.c

/*
2 * msgQueue.c
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*
* Created: 13/05/2013 17:28:28

* Author: Jordi
6 */

#include "msgQueue.h"
10

xQueueHandle rxQueue = NULL;
xQueueHandle txQueue = NULL;

14 char initMsgQueues(uint8_t txSize, uint8_t rxSize){
txQueue = xQueueCreate(txSize,sizeof(queuedMessage));
rxQueue = xQueueCreate(rxSize,sizeof(queuedMessage));

18 return (txQueue != NULL && rxQueue != NULL );

}

nrf24l01.c

/*
* nrf24l01.c

*
4 * Created: 25/03/2013 15:59:49

* Author: Jordi

*/

8

#include <nrf24l01.h>
#include <asf.h>

12 spi_options_t spi_options_radio =
{

.baudrate = 8000000, //1000000,

.bits = 8,
16 .modfdis = 1,

.reg = 0,

.spck_delay = 0,

.spi_mode = SPI_MODE_0,
20 .stay_act = 1, //TODO: Dubtable

.trans_delay = 0
};

24

28 static void spi_pin_setup()
{

static const gpio_map_t spi1_gpio_map = {{AVR32_SPI1_MISO_0_0_PIN,
AVR32_SPI1_MISO_0_0_FUNCTION}, //MISO

32 {AVR32_SPI1_MOSI_0_0_PIN, AVR32_SPI1_MOSI_0_0_FUNCTION}, //MOSI
{AVR32_SPI1_NPCS_0_0_PIN, AVR32_SPI1_NPCS_0_0_FUNCTION}, //SS0
{AVR32_SPI1_SCK_0_0_PIN, AVR32_SPI1_SCK_0_0_FUNCTION} //SCK
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};
36

gpio_enable_module(spi1_gpio_map,sizeof(spi1_gpio_map)/sizeof(
spi1_gpio_map[0]));

}
40

static void spi_init_module()
{

44 sysclk_enable_peripheral_clock(SPI_RADIO_1);
spi_pin_setup();

spi_initMaster(SPI_RADIO_1,&spi_options_radio);
48 spi_selectionMode(SPI_RADIO_1, 0, 0, 0);

spi_setupChipReg(SPI_RADIO_1,&spi_options_radio,FOSC0);

52 spi_enable(SPI_RADIO_1);
}

uint8_t nrf24_initRadioSpi()
56 {

spi_init_module();

delay_ms(100); //Wait for NRF24L01 POR TODO
60

// Clear interrupts
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_RX_DR |

NRF24_TX_DS | NRF24_MAX_RT);

64 // Make sure we are powered down
nrf24_powerDown();

// Flush FIFOs
68 nrf24_flushTx();

nrf24_flushRx();

//nrf24_spiWriteRegister(NRF24_REG_00_CONFIG, NRF24_MASK_RX_DR |
NRF24_MASK_MAX_RT | NRF24_DEFAULT_CONFIGURATION); //Enable only
TX interrupt

72

//Activate dynamic payload size
//nrf24_activate();
//nrf24_spiWriteRegister(NRF24_REG_1D_FEATURE, NRF24_EN_DPL);

76 //nrf24_spiWriteRegister(NRF24_REG_1C_DYNPD, NRF24_DPL_P0 |
NRF24_DPL_P1);

nrf24_powerUpRx();

80 return true;

}

84

uint8_t nrf24_spiCommand(uint8_t command)
{
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uint16_t status;
88 spi_selectChip(SPI_RADIO_1,0);

spi_write(SPI_RADIO_1,command);
spi_read(SPI_RADIO_1,&status);
spi_unselectChip(SPI_RADIO_1,0);

92 return (uint8_t) status;
}

// Read and write commands
96 uint8_t nrf24_spiRead(uint8_t command)

{
uint16_t val;
spi_selectChip(SPI_RADIO_1,0);

100 spi_write(SPI_RADIO_1,command); // Send the address, discard status
spi_write(SPI_RADIO_1,0x55); //Send a dumy to clock the read out
spi_read(SPI_RADIO_1,&val); // The MOSI value is ignored, value is

read

104 spi_unselectChip(SPI_RADIO_1,0);
return (uint8_t) val;

}

108 uint8_t nrf24_spiWrite(uint8_t command, uint8_t val)
{

uint16_t status;
spi_selectChip(SPI_RADIO_1,0);

112 spi_write(SPI_RADIO_1,command);
spi_read(SPI_RADIO_1,&status);
spi_write(SPI_RADIO_1,val);
spi_unselectChip(SPI_RADIO_1,0);

116 return (uint8_t) status;
}

void nrf24_spiBurstRead(uint8_t command, uint8_t* dest, uint8_t len)
120 {

uint16_t temp;
spi_selectChip(SPI_RADIO_1,0);
spi_write(SPI_RADIO_1,command); // Send the start address, discard

status
124 while (len--)

{
spi_write(SPI_RADIO_1,0x55); //Send Dummy to clk out
spi_read(SPI_RADIO_1, &temp);

128 *(dest++) = (uint8_t) temp; //Assign to array and then
increment, note post incr

//dest++ ;//= ((uint8_t) dest) + 1;
}

132 spi_unselectChip(SPI_RADIO_1,0);

// 300 microsecs for 32 octet payload
}

136

uint8_t nrf24_spiBurstWrite(uint8_t command, uint8_t* src, uint8_t len)
{

uint16_t status ;
140 spi_selectChip(SPI_RADIO_1,0);
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spi_write(SPI_RADIO_1,command);
spi_read(SPI_RADIO_1,&status);

144

while (len--)
{

spi_write(SPI_RADIO_1,*src++);
148 }

spi_unselectChip(SPI_RADIO_1,0);
return (uint8_t) status;

152 }

// Use the register commands to read and write the registers
156 uint8_t nrf24_spiReadRegister(uint8_t reg)

{
return nrf24_spiRead((reg & NRF24_REGISTER_MASK) |

NRF24_COMMAND_R_REGISTER);
}

160

uint8_t nrf24_spiWriteRegister(uint8_t reg, uint8_t val)
{

return nrf24_spiWrite((reg & NRF24_REGISTER_MASK) |
NRF24_COMMAND_W_REGISTER, val);

164 }

void nrf24_spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len
)

{
168 return nrf24_spiBurstRead((reg & NRF24_REGISTER_MASK) |

NRF24_COMMAND_R_REGISTER, dest, len);
}

uint8_t nrf24_spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t
len)

172 {
return nrf24_spiBurstWrite((reg & NRF24_REGISTER_MASK) |

NRF24_COMMAND_W_REGISTER, src, len);
}

176 uint8_t nrf24_statusRead()
{

return nrf24_spiReadRegister(NRF24_REG_07_STATUS);
// return nrf24_spiCommand(NRF24_COMMAND_NOP); // Side effect is

to read status
180 }

uint8_t nrf24_flushTx()
{

184 return nrf24_spiCommand(NRF24_COMMAND_FLUSH_TX);
}

uint8_t nrf24_flushRx()
188 {

return nrf24_spiCommand(NRF24_COMMAND_FLUSH_RX);
}
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192 uint8_t nrf24_setChannel(uint8_t channel)
{

nrf24_spiWriteRegister(NRF24_REG_05_RF_CH, channel & NRF24_RF_CH);
return true;

196 }

uint8_t nrf24_setThisAddress(uint8_t* address, uint8_t len)
{

200 // Set RX_ADDR_P1 for this address
nrf24_spiBurstWriteRegister(NRF24_REG_0B_RX_ADDR_P1, address, len);
// RX_ADDR_P2 is set to RX_ADDR_P1 with the LSbyte set to 0xff, for

use as a broadcast address
return true;

204 }

uint8_t nrf24_setTransmitAddress(uint8_t* address, uint8_t len)
{

208 // Set both TX_ADDR and RX_ADDR_P0 for auto-ack with Enhanced
shockwave

nrf24_spiBurstWriteRegister(NRF24_REG_0A_RX_ADDR_P0, address, len);
nrf24_spiBurstWriteRegister(NRF24_REG_10_TX_ADDR, address, len);
return true;

212 }

uint8_t nrf24_setPayloadSize(uint8_t size)
{

216 nrf24_spiWriteRegister(NRF24_REG_11_RX_PW_P0, size);
nrf24_spiWriteRegister(NRF24_REG_12_RX_PW_P1, size);
return true;

}
220

uint8_t nrf24_setRF(uint8_t data_rate, uint8_t power)
{

uint8_t value = (power << 1) & NRF24_PWR;
224 // Ugly mapping of data rates to noncontiguous 2 bits:

if (data_rate == NRF24DataRate250kbps)
value |= NRF24_RF_DR_LOW;

else if (data_rate == NRF24DataRate2Mbps)
228 value |= NRF24_RF_DR_HIGH;

// else NRF24DataRate1Mbps, 00
nrf24_spiWriteRegister(NRF24_REG_06_RF_SETUP, value);
return true;

232 }

uint8_t nrf24_powerDown()
{

236 nrf24_spiWriteRegister(NRF24_REG_00_CONFIG,
NRF24_DEFAULT_CONFIGURATION);

gpio_clr_gpio_pin(CE_PIN);
return true;

}
240

uint8_t nrf24_powerUpRx()
{

nrf24_spiWriteRegister(NRF24_REG_00_CONFIG,
NRF24_DEFAULT_CONFIGURATION | NRF24_PWR_UP | NRF24_PRIM_RX);
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244 gpio_set_gpio_pin(CE_PIN);
return true;

}

248 uint8_t nrf24_powerUpTx()
{

// Its the pulse high that puts us into TX mode
gpio_clr_gpio_pin(CE_PIN);

252 nrf24_spiWriteRegister(NRF24_REG_00_CONFIG,
NRF24_DEFAULT_CONFIGURATION | NRF24_PWR_UP);

gpio_set_gpio_pin(CE_PIN);
return true;

}
256

uint8_t nrf24_send(uint8_t* data, uint8_t len, uint8_t noack)
{

nrf24_powerUpTx();
260 nrf24_spiBurstWrite(noack ? NRF24_COMMAND_W_TX_PAYLOAD_NOACK :

NRF24_COMMAND_W_TX_PAYLOAD, data, len);
// Radio will return to Standby II mode after transmission is

complete
//delay_ms(10); //TODO: remove delay make it irq driven
return true;

264 }

uint8_t nrf24_waitPacketSent()
{

268 // If we are currently in receive mode, then there is no packet to
wait for

if (nrf24_spiReadRegister(NRF24_REG_00_CONFIG) & NRF24_PRIM_RX)
{

return false;
272 }

// Wait for either the Data Sent or Max ReTries flag, signalling
the

// end of transmission
276 uint8_t status;

while (!((status = nrf24_statusRead()) & (NRF24_TX_DS |
NRF24_MAX_RT))) {}

280 // Must clear NRF24_MAX_RT if it is set, else no further comm
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_TX_DS |

NRF24_MAX_RT);
if (status & NRF24_MAX_RT)

{
284 nrf24_flushTx();

}

288 // Return true if data sent, false if MAX_RT
return status & NRF24_TX_DS;
//return true; //TODO: fer maco

}
292

uint8_t nrf24_isSending()
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{
return !(nrf24_spiReadRegister(NRF24_REG_00_CONFIG) & NRF24_PRIM_RX

) && !(nrf24_statusRead() & (NRF24_TX_DS | NRF24_MAX_RT));
296 }

uint8_t nrf24_printRegisters()
{

300 uint8_t registers[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0
x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0d, 0x0f, 0x10, 0
x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x1c, 0x1d};

uint8_t i;
for (i = 0; i < sizeof(registers); i++)

304 {
printf("Register: 0x%X: ", registers[i]);
printf("0x%x \n",nrf24_spiReadRegister(i));

}
308 return true;

}

uint8_t nrf24_available()
312 {

if (nrf24_spiReadRegister(NRF24_REG_17_FIFO_STATUS) &
NRF24_RX_EMPTY){

return false;

316 }
// Manual says that messages > 32 octets should be discarded
if (nrf24_spiRead(NRF24_COMMAND_R_RX_PL_WID) > 32)

{
320 nrf24_flushRx();

return false;
}

return true;
324 }

void nrf24_waitAvailable()
{

328 nrf24_powerUpRx();
while (!nrf24_available());

}

332 // Blocks until a valid message is received or timeout expires
// Return true if there is a message available
uint8_t nrf24_waitAvailableTimeout(uint16_t timeout)
{

336 nrf24_powerUpRx();
t_cpu_time to;
cpu_set_timeout(cpu_ms_2_cy(timeout,sysclk_get_cpu_hz()),&to);

340

while (! cpu_is_timeout (&to)){
if (nrf24_available()){

cpu_stop_timeout(&to);
344 return true;

}
}
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cpu_stop_timeout(&to);
348 return false;

}

uint8_t nrf24_recv(uint8_t* buf, uint8_t* len)
352 {

// Clear read interrupt
nrf24_spiWriteRegister(NRF24_REG_07_STATUS, NRF24_RX_DR);

356 // 0 microsecs @ 8MHz SPI clock
if (!nrf24_available())

return false;
// 32 microsecs (if immediately available)

360 *len = nrf24_spiRead(NRF24_COMMAND_R_RX_PL_WID);
// 44 microsecs
nrf24_spiBurstRead(NRF24_COMMAND_R_RX_PAYLOAD, buf, *len);
// 140 microsecs (32 octet payload)

364

return true;
}

368 void nrf24_activate(){
nrf24_spiWrite(NRF24_COMMAND_ACTIVATE,0x73);

}

shell.c

#include <shell.h>
2 #include "msgQueue.h"

#define MAX_INPUT_LENGTH 50
#define MAX_OUTPUT_LENGTH 100

6

static const int8_t * const pcWelcomeMessage =
"FreeRTOS command server.\r\nType Help to view a list of registered

commands.\r\n";

10 /*static xCommandLineInput cmdToggleLed = {
.pcCommand = "toggle",
.pcHelpString = "toggle n: Toggle the LED specified as a parameter

n [0 - 3].\r\n",
.pxCommandInterpreter = prvToggleLed,

14 .cExpectedNumberOfParameters = 1
};*/

static xCommandLineInput cmdTable[] = {{
18 .pcCommand = "toggle",

.pcHelpString = "toggle n: Toggle the LED
specified as a parameter n [0 - 3].\r\n",

.pxCommandInterpreter = prvToggleLed,

.cExpectedNumberOfParameters = 1
22 }, {

.pcCommand = "config_rf",

.pcHelpString = "config_rf [channel] [datarate] [
payload size] [power] \r\n",

.pxCommandInterpreter = prvConfigRF,
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26 .cExpectedNumberOfParameters = 4
}, {
.pcCommand = "send_raw",
.pcHelpString = "send_raw: send_raw [size] [

payload]\r\n",
30 .pxCommandInterpreter = prvSendRaw,

.cExpectedNumberOfParameters = 2
}, {
.pcCommand = "recieve_raw",

34 .pcHelpString = "recieve_raw: Gets one message
from the queue and prints it\r\n",

.pxCommandInterpreter = prvRecRaw,

.cExpectedNumberOfParameters = 0
}};

38

void registerCommands(){
42 int i;

for(i = 0; i < sizeof(cmdTable)/sizeof(cmdTable[0]);i++){
//for(i = 0; i < 4;i++){

FreeRTOS_CLIRegisterCommand(&cmdTable[i]);
46 }

}

50

uint8_t z;

portBASE_TYPE prvConfigRF(int8_t *pcWriteBuffer, size_t xWriteBufferLen
, const int8_t *pcCommandString ){

54 //"config_rf: Sets RF params for the radio. Use: config_rf [channel]
[datarate] [payload size] [power].\r\n",

volatile portCHAR* param;

uint8_t channel, datarate, payload_size, power;
58

//gpio_toggle_pin(LED3_GPIO);

param = FreeRTOS_CLIGetParameter(pcCommandString,1,&z);
62 //This function kills it all

channel = atoi(param);

param = FreeRTOS_CLIGetParameter(pcCommandString,2,&z);
66 //This function kills it all

datarate = atoi(param);

param = FreeRTOS_CLIGetParameter(pcCommandString,3,&z);
70 //This function kills it all

payload_size = atoi(param);

param = FreeRTOS_CLIGetParameter(pcCommandString,4,&z);
74 //This function kills it all

power = atoi(param);

nrf24_setChannel(channel);
78 //nrf24_setRF(datarate,power);
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nrf24_setPayloadSize(payload_size);

uint8_t readChannel = nrf24_spiReadRegister(NRF24_REG_05_RF_CH);
82 uint8_t readRF = nrf24_spiReadRegister(NRF24_REG_06_RF_SETUP);

uint8_t readPayloadSize = nrf24_spiReadRegister(NRF24_REG_11_RX_PW_P0
);

86

//rawPrint(param,4);
//channel = atoi(param);

90 //param = FreeRTOS_CLIGetParameter(pcCommandString,2,&pz);
//datarate = atoi(param);

//param = FreeRTOS_CLIGetParameter(pcCommandString,3,&pz);
94 //payload_size = atoi(param);

//param = FreeRTOS_CLIGetParameter(pcCommandString,4,&pz);
//power = atoi(param);

98

volatile int8_t tz = z;

102

//sprintf(pcWriteBuffer,"%d %d %d %d \r\n",power,payload_size,
datarate,channel);

//sprintf(pcWriteBuffer,"%d %d %d %d \r\n",42,43,44,45);
//sprintf(pcWriteBuffer,"Command: %s Param 1: %c%c Size: %d, Add of z

: %p\r\n",pcCommandString,*param,*(param+1),tz,&tz);
106 //sprintf(pcWriteBuffer,"Command: %s END\r\n",pcCommandString);

sprintf(pcWriteBuffer,"Channel: %d Datarate: %d Payload Size: %d
Power: %d END\r\n",readChannel,readRF,readPayloadSize,readRF);

xWriteBufferLen = strlen(pcWriteBuffer);

110 return pdFALSE;
}

114 portBASE_TYPE prvToggleLed(int8_t *pcWriteBuffer, size_t
xWriteBufferLen, const int8_t *pcCommandString ){

uint8_t* param;
uint8_t* pz;
param = FreeRTOS_CLIGetParameter(pcCommandString,1,pz);

118 switch(*param){
case ’0’:

gpio_toggle_pin(LED0_GPIO);
break;

122 case ’1’:
gpio_toggle_pin(LED1_GPIO);
break;

case ’2’:
126 gpio_toggle_pin(LED2_GPIO);

break;
case ’3’:

gpio_toggle_pin(LED3_GPIO);
130 break;
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default: //Wrong parameters
sprintf(pcWriteBuffer,"%s\r\n","n must be 0 - 3");
xWriteBufferLen = strlen(pcWriteBuffer);

134 return pdFALSE;
break;

}

138 sprintf(pcWriteBuffer,"%s: %c\r\n","OK",*param);
xWriteBufferLen = strlen(pcWriteBuffer);

return pdFALSE;
142 }

portBASE_TYPE prvRecRaw(int8_t *pcWriteBuffer, size_t xWriteBufferLen,
const int8_t *pcCommandString ){

queuedMessage qm;
146 if (xQueueReceive(rxQueue,&qm,0)){

//Message avaliable
sprintf(pcWriteBuffer,"MSG: %s SIZE: %d\r\n",qm.content,qm.size);

150 } else {
//message unavaliable
sprintf(pcWriteBuffer,"NO MESSAGES \r\n");

154 }

xWriteBufferLen = strlen(pcWriteBuffer);
return pdFALSE;

158 }

162 portBASE_TYPE prvSendRaw(int8_t *pcWriteBuffer, size_t xWriteBufferLen,
const int8_t *pcCommandString ){

uint8_t* param;
uint8_t* pz;
queuedMessage qm;

166

param = FreeRTOS_CLIGetParameter(pcCommandString,1,pz);
uint8_t size = atoi(param);

170

param = FreeRTOS_CLIGetParameter(pcCommandString,2,pz);
param[size-1] = NULL; //Termination

174 qm.size = size;
memcpy_ram2ram(&qm.content,param,size);

if( xQueueSendToBack(txQueue,&qm,0)){
178 sprintf(pcWriteBuffer,"Queued in Tx\r\n");

} else {
sprintf(pcWriteBuffer,"ERROR: No avaliable spots in Tx\r\n");

182

}

/*
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186 if (!nrf24_setTransmitAddress((uint8_t*)"clie1", 5)) sprintf(
pcWriteBuffer,"setTransmitAddress failed \r\n");

else if (!nrf24_send((uint8_t*) param, size , false)) sprintf(
pcWriteBuffer,"send failed \r\n");

else if (!nrf24_waitPacketSent()) sprintf(pcWriteBuffer,"
waitPacketSent failed size: %d message: %s \r\n",size,param);

else sprintf(pcWriteBuffer,"SENT !\r\n");
190 */

xWriteBufferLen = strlen(pcWriteBuffer);

194 return pdFALSE;
}

void rawPrint(char* s,uint16_t size){
198 int i;

for(i = 0; i < size; i++) {
putchar(s[i]);
//TODO: mutex ??

202 }

}

206 void vCommandConsoleTask( void *pvParameters )
{
//Peripheral_Descriptor_t xConsole;
int8_t cRxedChar, cInputIndex = 0;

210 portBASE_TYPE xMoreDataToFollow;
/* The input and output buffers are declared static to keep them off

the stack. */
static int8_t pcOutputString[ MAX_OUTPUT_LENGTH ], pcInputString[

MAX_INPUT_LENGTH ];

214 /* This code assumes the peripheral being used as the console has
already

been opened and configured, and is passed into the task as the task
parameter. Cast the task parameter to the correct type. */
//xConsole = ( Peripheral_Descriptor_t ) pvParameters;

218

/* Send a welcome message to the user knows they are connected. */
//FreeRTOS_write( xConsole, pcWelcomeMessage, strlen(

pcWelcomeMessage ) );
//printf("%s",pcWelcomeMessage);

222 //xSemaphoreTake(mutexUART,portMAX_DELAY);
rawPrint(pcWelcomeMessage,strlen(pcWelcomeMessage));
//xSemaphoreGive(mutexUART);

for( ;; )
226 {

/* This implementation reads a single character at a time.
Wait in the

Blocked state until a character is received. */
//FreeRTOS_read( xConsole, &cRxedChar, sizeof( cRxedChar ) );

230 cRxedChar = getchar();
if( cRxedChar == ’\n’ )
{

/* A newline character was received, so the input command
stirng is
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234 complete and can be processed. Transmit a line separator,
just to

make the output easier to read. */
//FreeRTOS_write( xConsole, "\r\n", strlen( "\r\n" );

//xSemaphoreTake(mutexUART,portMAX_DELAY);
238 rawPrint(pcInputString,strlen(pcInputString));

putchar(’\r’);
putchar(’\n’);
//xSemaphoreGive(mutexUART);

242 /* The command interpreter is called repeatedly until it
returns

pdFALSE. See the "Implementing a command" documentation
for an

exaplanation of why this is. */
do

246 {
/* Send the command string to the command interpreter.

Any
output generated by the command interpreter will be

placed in the
pcOutputString buffer. */

250 xMoreDataToFollow = FreeRTOS_CLIProcessCommand
(

pcInputString, /* The command
string.*/

pcOutputString, /* The output buffer
. */

254 MAX_OUTPUT_LENGTH/* The size of the
output buffer. */

);

/* Write the output generated by the command
interpreter to the

258 console. */
//FreeRTOS_write( xConsole, pcOutputString, strlen(

pcOutputString ) );
//xSemaphoreTake(mutexUART,portMAX_DELAY);
rawPrint(pcOutputString,strlen(pcOutputString));

262 //xSemaphoreGive(mutexUART);
//printf("%s",pcOutputString);

} while( xMoreDataToFollow != pdFALSE );

266 /* All the strings generated by the input command have been
sent.

Processing of the command is complete. Clear the input
string ready

to receive the next command. */
cInputIndex = 0;

270 memset( pcInputString, 0x00, MAX_INPUT_LENGTH );
}
else
{

274 /* The if() clause performs the processing after a newline
character

is received. This else clause performs the processing if
any other

character is received. */
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278 if( cRxedChar == ’\r’ )
{

/* Ignore carriage returns. */
}

282 else if( cRxedChar == ’\b’ )
{

/* Backspace was pressed. Erase the last character in
the input

buffer - if there are any. */
286 if( cInputIndex > 0 )

{
cInputIndex--;
pcInputString[ cInputIndex ] = ’\0’;

290 }
}
else
{

294 /* A character was entered. It was not a new line,
backspace

or carriage return, so it is accepted as part of the
input and

placed into the input buffer. When a \n is entered the
complete

string will be passed to the command interpreter. */
298 if( cInputIndex < MAX_INPUT_LENGTH )

{
pcInputString[ cInputIndex ] = cRxedChar;
cInputIndex++;

302 }
}

}
}

306 }

user interrupts.c

/*
2 * user_interrupts.c

*
* Created: 04/04/2013 14:32:48

* Author: Jordi
6 */

//#include "user_interrupts.h"

10 #include "FreeRTOS.h"
#include "semphr.h"
#include <asf.h>
#include <nrf24l01.h>

14

#define EIC_RADIO_1 (&AVR32_EIC)

xSemaphoreHandle semaphoreRadioEvent = NULL;
18 //xSemaphoreHandle mutexUART = NULL;

uint8_t gstatus;
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eic_options_t nrf24_irq_eic = {.eic_async = EIC_ASYNCH_MODE,
22 .eic_edge = EIC_EDGE_FALLING_EDGE,

.eic_filter = EIC_FILTER_ENABLED,

.eic_level = EIC_LEVEL_LOW_LEVEL,

.eic_line = EXT_INT2,
26 .eic_mode = EIC_MODE_EDGE_TRIGGERED};

ISR(radio_irq_handler,1,AVR32_INTC_INTLEV_INT0){
//gpio_toggle_pin(LED3_GPIO);

30 //gpio_toggle_pin(LED0_GPIO);
xSemaphoreGiveFromISR(semaphoreRadioEvent,NULL);
gstatus = nrf24_statusRead();
eic_clear_interrupt_line(EIC_RADIO_1,EXT_INT2);

34 }

void extint_pin_setup(){

38 static const gpio_map_t extint_gpio_map = {{AVR32_EIC_EXTINT_2_PIN,
AVR32_EIC_EXTINT_2_FUNCTION}};

gpio_enable_pin_pull_up(AVR32_EIC_EXTINT_2_PIN);
gpio_enable_module(extint_gpio_map,sizeof(extint_gpio_map)/sizeof(

extint_gpio_map[0]));
42

}

void init_ext(){
46 //sysclk_enable_peripheral_clock(EIC_RADIO_1);

extint_pin_setup();
INTC_register_interrupt (&radio_irq_handler,AVR32_EIC_IRQ_2,

AVR32_INTC_INTLEV_INT0);
50

eic_init (EIC_RADIO_1, &nrf24_irq_eic, 1);
eic_enable_interrupt_line(EIC_RADIO_1,EXT_INT2);
eic_enable_line (EIC_RADIO_1,EXT_INT2);

54

}
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