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Project description

Graphic Processing Units (GPUs) are immensely powerful processors outper-
forming Central Processing Units (CPUs) in a variety of applications on super-
computers and PCs. GPUs are now being manufactured for portable devices,
such as mobile phones and tablets, in order to meet the increasing demand for
performance in this segment.

In embedded systems, Digital Signal Processors (DSPs) and Field-Programmable
Gate Arrays (FPGAs) have been the leading processor technologies. The archi-
tecture of the GPU is highly parallel and tailored to e�ciently construct images
of 3D models. It is therefore conceivable that GPUs are suitable for imple-
mentations of image processing and computer vision algorithms in embedded
systems.

The aim of the project is to compare the performance of the GPU, DSP and
FPGA implementations of known algorithms in embedded systems. Algorithms
such as normalized cross correlation and Finite Impulse Response (FIR) filters
are especially interesting. An evaluation of total project cost should be made
where considerations about development time, component cost and power con-
sumptions are included.
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Abstract

The objective of this thesis is to compare the suitability of FPGAs, GPUs and
DSPs for digital image processing applications. Normalized cross-correlation is
used as a benchmark, because this algorithm includes convolution, a common
operation in image processing and elsewhere. Normalized cross-correlation is a
template matching algorithm that is used to locate predefined objects in a scene
image. Because the throughput of DSPs is low for e�cient calculation of nor-
malized cross-correlation, the focus is on FPGAs and GPUs. An e�cient FPGA
implementation of direct normalized cross-correlation is created and compared
against a GPU implementation from the OpenCV library. Performance, cost,
development time and power consumption are evaluated for the two platforms.
The performance of the GPU implementation is slightly better than the FPGA
implementation, and less time is spent developing a working solution. How-
ever, the power consumption of the GPU is higher. Both solutions are viable,
so the most suitable platform will depend on the specific project requirements
for image size, throughput, latency, power consumption, cost and development
time.

Sammendrag

Målet med denne oppgaven er å sammenligne egnetheten av FPGA, GPU og
DSP for digital bildebehandling. Oppgaven ser p̊a normalisert kryss-korrelasjon,
fordi denne algoritmen inkluderer konvolusjon, en mye brukt operasjon i bilde-
behandling og ellers. Normalisert krysskorrelasjon er en template matching-
algoritme som brukes for å lokalisere forh̊andsdefinerte objekter i et bilde.
Fordi dataraten i DSP er noe lav for e↵ektiv beregning av normalisert kryss-
korrelasjon, fokuserer oppgaven p̊a FPGA og GPU. En e↵ektiv FPGA-implemen-
tasjon av direkte normalisert kryss-korrelasjon utvikles og sammenlignes mot en
GPU-implementasjon fra OpenCV-biblioteket. Ytelse, kostnader, utviklingstid
og strømforbruk vurderes for de to plattformene. Ytelsen til GPU-implemen-
tasjon er litt bedre enn FPGA-implementasjon, og mindre tid er brukt for å
utvikle løsningen. Imidlertid er strømforbruket til GPU høyere. Begge løsninger
er konkurransedyktige og den mest passende plattformen vil avhenge av de spe-
sifikke kravene i prosjektet til ytelse, strømforbruk, kostnader og utviklingstid.
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Chapter 1

Introduction

The purpose of this report will be to examine trade-o↵s and results in the
implementation of template matching by normalized cross-correlation (NCC)
in embedded, real-time systems on FPGAs and GPUs. Template matching is a
method used in computer vision to scan for the presence of predefined objects
in an image.

1.1 Problem definition

As the phrase suggests, template matching involves comparing a template,
model, or representation of an object against a scene image to see if it is present,
and if so, where in the image it is located. Template matching can be performed
in many di↵erent ways, using di↵erent estimators and similarity measures. This
report will focus on the normalized cross-correlation approach. Also called the
normalized correlation coe�cient or Pearson product-moment correlation coef-
ficient, this is a similarity measure that is invariant to scaling and o↵set in the
input images [1]. This is an important feature, as will be further explained in
chapter 2.

In this approach, the template is simply an image of the object we are looking
for. Mathematically, the problem to be solved can be stated as finding the
maximum of

R(x, y) =

P
u,v

(I(u, v)� Ī
x,y

)(T (x+ u, y + v)� T̄ )
qP

u,v

(I(u, v)� Ī
x,y

)2
P

u,v

(T (x+ u, y + v)� T̄ )2
(1.1)

where I is the scene image, T is the template to be searched for, Ī and T̄ are
the means of I and T , (u, v) are the scene image coordinates and (x, y) are the
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2 Introduction

template coordinates. The rationale behind this expression will be explained in
chapter 2.

The implementation of normalized cross-correlation will be evaluated across the
di↵erent platforms with respect to performance, development e↵ort, cost and
power consumption.

1.2 Revised project description

The performance of this algorithm will be explored on FPGAs and GPUs. A
comparison with DSP is also a part of the original problem description. This
was meant as a lower performance benchmark against which to compare the
two other platforms. The DSP intended for use in this project (Analog Devices
ADSP-21489) has a peak performance of 2.7 GLOPS (billions of FLoating-point
Operations Per Second) [2], compared to 276 GMACS (billions of Multiply-
ACcumulates per Second) [3] for the FPGA used and 270 GLOPS [4] for the
GPU. In addition, the DSP is mainly targeted towards audio applications, so
there are no frameworks or support for doing image processing. These factors
combined means that a high e↵ort is needed to create an implementation for
this platform, and the result is likely to be under-performing. For this reason
and in agreement with Kongsberg Gruppen, the DSP will not be included in
the comparison.

1.3 Motivation

Applications for template matching include object identification, vehicle num-
ber plate recognition and face recognition. Searching for pre-defined objects of
this type is just one application for normalized cross-correlation. Other uses
include image registration, motion tracking and medical imaging. An e�cient
implementation of normalized cross-correlation may contain an e�cient imple-
mentation of correlation or convolution. This has even wider applications, such
as for example image filtering and edge detection. It may also be used in to
solve di↵erential equations, which has wide applications.

Normalized cross-correlation is a seemingly straightforward solution to the prob-
lem. However, this method presents challenges in a real-time system. The
amount of time needed to compute the NCC is predictable, but a huge number
of operations are required in a naive implementation [5]. The need for an ef-
ficient implementation is necessitated even more by the inherent variability of
many real-life image scenarios. To search for a particular object, the image not
only has to be scanned once, but many times for di↵erent possible sizes and
orientations of the object in question.
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GPUs and FPGAs are well suited for image processing, because of the inherent
parallelism in these problems. FPGAs are a mature technology. GPUs for em-
bedded systems are on the rise because of the demand for high-quality graphics
in cell phones and tablets. It is therefore interesting to explore which technology
is most suited for new projects.

1.4 Background

Some papers about normalized cross-correlation on GPUs and FPGAs already
exist. Details about some existing approaches and results will be given in chap-
ter 2. Some of these papers also give a comparison between GPU and FPGA
implementations. One example is [6], in which the GPU implementation has
the highest performance. However, as new platforms and technology becomes
available, implementation comparisons have to be revisited in order to see if
di↵erent technologies still compare in the same way. In this report, the imple-
mentation details of the algorithms will also be covered in detail, as many papers
omit crucial details necessary for re-implementation and evaluation. This re-
port will aim to give a comparison of normalized cross-correlation performance
on two concrete platforms. Additionally, the source code of the implemented
solution will be available, along with a description of key design choices and
implementation details.

1.5 Scope and limitations

In order to achieve good results in the time allocated, some simplifications and
pre-built primitives are necessary. This will allow us to focus on achieving a
good comparison between the two platforms.

For the FPGA implementation, well-known and much-used primitives will not
be re-implemented. This includes functions such as division and square root,
for which IP is available from Xilinx at no cost. The rest of the implementation
will be designed and implemented manually using VHDL.

Since this is a thesis with a focus on design of digital circuits, the focus of the
work will be on the FPGA implementation. For the GPU, a free, open source,
optimized implementation of NCC is available through the OpenCV project (for
details, see section 2.6.2). This will be used for comparison against the FPGA
implementation. Thus, the GPU part will not be implemented from scratch.

Only monochromatic images will be considered for the scene and template im-
ages. This simplifies the implementation and allows a more e�cient computa-
tion, and is a common approach in template matching [1].
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1.6 Report structure

This report is organized as follows. This chapter gives an overview of the goals
and limitations of the work. Chapter 2 presents theory relevant for e�cient
computation of the normalized cross-correlation. Details of the methods used
and implementation architecture are given in chapter 3. The results and relevant
interpretation are given in chapter 4. Finally, chapter 5 presents a discussion
and conclusion.



Chapter 2

Theory

This chapter will outline the theory behind the use of normalized cross-correlation
for solving the template matching problem, e�cient ways of solving it and how
these methods may be implemented on FPGA or GPU. Necessary theory of
FPGA and GPU architecture will also be presented. Before explaining the sig-
nificance of normalized cross-correlation, we will present the basics of image
filtering, convolution and correlation, as these topics are a prerequisite.

2.1 Image filtering

The idea of spatial image filtering is to have a mask or kernel of a certain
extent that applies a desired operation to the image pixels under the kernel. By
moving the kernel around the image, so that all pixels are visited by the center
of the kernel, the image is filtered. The operation applied to the underlying
image may be either linear or non-linear. We will focus only on linear filtering.
This implies that the filter kernel will be a matrix of coe�cients that will be
multiplied with the corresponding underlying image pixels [7]. The sum of all
products at each location will yield the pixel values of the filtered image.

When using symmetric filter kernels, the orientation of the kernel is not impor-
tant. However, if the filter kernel is non-symmetric, orientation is critical. This
is the center of the distinction between convolution and correlation. Correlation
is the process described in the previous paragraph. When doing convolution,
the same procedure is followed, except that the filter kernel is rotated 180� [7].
It is important to be aware of this distinction, as correlation is the algorithm
of interest in the following chapters. If a library function that only supports
convolution has to be used, then the kernel (or equivalently, the image) must
be rotated 180� before processing.

5



6 Theory

Another issue that arises in image filtering is boundary conditions. For some
image pixels near the border of the image, parts of the kernel will be outside
the image boundaries. There are di↵erent ways to handle this. Two common
methods are zero padding and avoiding boundaries. In zero padding, the center
of the kernel is moved over all pixels of the image. When pixels outside the
image are needed for the calculation, they are assumed to have zero value.
Avoiding boundaries is, as the name suggests, simply a matter of not moving
the kernel over the image pixels that are so close to the edge that part of the
template would be outside the image. Which of these (or other) approaches is
most suitable depends on the application.

2.2 Template matching

Image filtering is the basis of the template matching algorithm mentioned in
chapter 1. This algorithm takes as input a scene image, which is the image
that will be searched in, and a template image, which is the image that will be
searched for. When the template is moved across the image like a filter kernel,
the output will have strong responses in areas where the input image has high
correlation with the template, indicating high similarity. This cross-correlation
may be written as C =

P
u,v

I(u, v)T (x+ u, y + v), where I is the scene image
matrix and T is the template image matrix. A visual explanation of the concept
is shown in figure 2.1.

(a) Scene image with template im-
age superimposed.

(b) Result of template matching.

Figure 2.1: A visual explanation of template matching. Image A indicates
how the template of the door handle is scanned across the scene image.
Image B shows the result of template matching. Note the bright white spot
at the location of the door handle in the scene image.
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Another important step of the template matching method is normalization.
Simply correlating the scene image with the template image is not enough to
achieve working template matching under real-world conditions. Real images
of the same object under di↵erent conditions are not pixel-wise identical. One
source of variability is lightning conditions. In very bright parts of the image,
the output will have a strong response even if the object we are searching for is
not present. On the other hand, if the object is visible in the image, but appears
dark for example due to poor lightning, it will generate a weak response in the
output and may not be detected. To alleviate this problem, normalization is
applied after correlation. This is called normalized cross-correlation.

Instead of simply correlating the input image with the template, the mean of
the part of the image that is under the template is first subtracted from the
image. This subtraction may be written as I(u, v)� Ī

x,y

, where Ī
x,y

is the mean
of the part of the image that is under the template at the current position. In
the same way, the mean of the template is also subtracted from the template,
written as T (x + u, y + v) � T̄ . The two are then correlated and the result is
divided by the standard deviation of the image and the template, yielding the
formula shown in (2.1) [8].

R(x, y) =

P
u,v

(I(u, v)� Ī
x,y

)(T (x+ u, y + v)� T̄ )
qP

u,v

(I(u, v)� Ī
x,y

)2 ·
P

u,v

(T (x+ u, y + v)� T̄ )2
(2.1)

2.2.1 Strengths and weaknesses

Even template matching using normalized cross-correlation has several short-
comings from a computer vision viewpoint. One problem is the unreliability of
the algorithm. Because it relies on a pixel-by-pixel comparison, the algorithm
is sensitive to variations both in the object itself and in the imaging conditions
[5].

Despite these limitations, it is a widely used algorithm with some advantages [9].
The normalization step helps somewhat e↵ectively in overcoming illumination
changes. It is also relatively simple to understand and implement, at least in a
straightforward way.

2.3 NCC implementations

Because a high number of templates may need to be matched against each scene
image, an e�cient algorithm and implementation is required. Many systems
may also have real-time requirements, and predictable timing may be necessary.
The following sections will address the problem of e�cient implementations.
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A minor issue that may arise is that if the scene image has zero variance under
the template at any position, the denominator of (2.1) will be zero at that
position. This must be addressed to avoid divide-by-zero situations, which
may have unpredictable results. This also means that the normalized cross-
correlation is undefined at these positions. The MATLAB implementation of
normalized cross-correlation assigns zero output in that case [10].

2.3.1 Straightforward implementation

Calculation of the normalized cross-correlation may be calculated directly by
implementing (2.1) in a straightforward manner. R(x, y) is then calculated for
one pixel at a time. This includes finding the correlation between the scene
image and the template at each (x, y)-pair, as well as the sum and the sum
of the squared scene image values that lie directly under the template at that
position.

Throughout this document, let X and Y be the height and width of the scene
image, respectively. In the same way, let M and N be the height and width of
the template image. For each position of the template in the X⇥Y picture, the
correlation across the M ⇥ N template must be evaluated. Therefore, a naive
implementation will require on the order of M ⇥ N ⇥ X ⇥ Y multiplications
and additions. The problem is made worse by the fact that template matching
requires the size and orientation of the object to be the same in the image as
in the template. In order to have robust detection, each image must be cross-
correlated with many templates of varying size and with varying orientation of
the object. This can dramatically increase the number of operations needed.
This implementation must iterate over all scene image pixels, and for each pixel
it must iterate over a number of pixels corresponding to the number of pixels
in the template. Let the scene image size be X ⇥ Y and the template size be
M⇥N , as defined in the previous section. Then the total number of calculations
(in big-O notation) will be O(X ⇥ Y ⇥M ⇥N).

2.3.2 DFT-based correlation

This section will outline how the discrete Fourier transform may be used in
e�cient calculation of normalized cross-correlation.

As shown in appendix B, the numerator may be written as a di↵erence between
two terms. The first term is the correlation between the template and the part
of the scene image that is under the template. Direct calculation of this term
for each pixel is expensive. Instead of using the direct method on each pixel,
a DFT-based approach may be used to calculate the correlation values for the
entire scene image, as detailed in the following sections.
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The DFT is a linear transform from the spatial domain to the frequency domain.
Let f(x, y) be an image of sizeX⇥Y . Then the definition of the two-dimensional
discrete Fourier transform is

(2.2)F (q, r) =
X�1X

x=0

Y�1X

y=0

f(x, y)e�j2⇡(qx/X+ry/Y )

The correlation theorem states that correlation in the spatial domain is equiv-
alent to multiplication in the frequency domain [7]. Let I be the scene image
and T be the template image. The cross-correlation C may then be found as

C = I ? T = F�1 {F {I}F⇤ {T}} (2.3)

The superscript star indicates the complex conjugate of the Fourier transform.
Complex conjugation in the frequency domain is equivalent to reflection in the
spatial domain. This means that instead of using the complex conjugate, the
template may be flipped before taking the Fourier transform.

The one-dimensional discrete Fourier transform may be calculated in O(n log n)
time using a Fast Fourier Transform algorithm (FFT). This is what makes
DFT-based correlation worthwhile compared to direct correlation in the spatial
domain.

Two-dimensional DFT

As noted in [11], the DFT of a two-dimensional image may be computed by
the use of one-dimensional DFTs. This is convenient if a one-dimensional DFT
function is easily available, but not a two-dimensional. This is the case in
FPGAs.

To compute the two-dimensional DFT, take the one-dimensional DFT o↵ all
the columns in the image matrix first. Then, apply a one-dimensional DFT to
the rows of the result from the previous step. The order of operations (i.e. with
respect to rows and columns) may be interchanged. This may be written as

(2.4)H = FFT-on-index-1(FFT-on-index-2[h])

= FFT-on-index-2(FFT-on-index-1[h])

as noted in [11].

This method requires many data accesses in order to copy the data to and from
memory. If a multidimensional DFT algorithm is available, it should be used
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[11]. However, for implementation on an FPGA the method is still viable. A
major advantage in this case is that optimized one-dimensional FFT IPs are
readily available. In addition, both the row and column operations may be
performed in parallel on an FPGA.

The number of operations necessary is as follows: O(X logX ⇥ Y log Y ) oper-
ations to transform the scene image from the spatial domain to the frequency
domain. The same number of operations is needed to transform the template,
even though it is smaller than the scene image. This is because the template
must be padded with zeroes before taking the transform, so that the frequency
domain representation of the scene image and template image will be of the
same size. This is crucial in the next step, where the frequency matrices will
be multiplied together element by element. This requires O(X⇥Y ) operations.
Finally, the inverse Fourier transform takes the same number of operations as
the forward transform. This means that in total, O(X logX ⇥ Y log Y ) opera-
tions are needed. For large templates, this will be much faster than the direct
approach, which requires O(X ⇥ Y ⇥M ⇥N) operations.

FFT IP

FFT Intellectual Property (IP) makes the transformation to and from the fre-
quency domain more convenient. An example of an FFT IP is the Xilinx Logi-
CORE IP Fast Fourier Transform v8.0 [12]. It implements the Cooley-Tukey
FFT algorithm for transform sizes N = 2m where m is an integerm 2 [3, 16] and
word sizes in the range of 8 � 34 bit. It supports run-time configurable trans-
form length, radix-2 and radix-4 FFT architectures and scaled and unscaled
integer operation. These and additional options are available in the LogiCore
IP generator.

The FFT core operates in stages called butterflies. For a thorough treatment
of FFT theory, see [13]. The numbers returned after each butterfly step may
be larger than the input numbers. This means that either more bits must be
used to store the output than input or a scaling factor must be applied after
each step. In practice, this is implemented as a per-frame configurable scaling
schedule that must be supplied to the core if it operates in the scaled mode. The
output after each butterfly may be shifted by 0, 1, 2 or 3 bits. It is vital to avoid
overflow, or else the values will wrap around and the result will be useless. The
core has an optional overflow flag that warns the user if this happens. Xilinx
describes a conservative scaling schedule that may be employed in order to
completely avoid overflow [12].

In order to e�ciently explore the design space with regard to scaling, bit lengths
and other options, Xilinx o↵ers a bit-accurate C model of the IP core [14]. This
model also has a MEX interface for MATLAB. Once compiled, the model can
be used as part of MATLAB scripts to model the system.
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2.3.3 Fast Normalized Cross-Correlation

J. P. Lewis describes an e�cient way of implementing normalized cross-correlation
in [8]. The paper notes that while FFT-based correlation can be used to speed
up the cross-correlation step, there are still some parts of (2.1) that are com-
putationally expensive if done in a naive way. For example, the expression
I(u, v) � Ī

u,v

represents the sum of the image under the template, with the
mean of the part of the image that is under the template subtracted. In order
to calculate this expression e�ciently, tables of running sums are proposed. Cal-
culating the expression directly would require iterating over all the pixels under
the template for each value of x and y. Instead, the running sum of the image
may be pre-calculated as S(x, y) = I(x, y)+S(x�1)+S(y�1)�S(x�1, y�1).
Then, the sum of the image under an M ⇥N sized template with the upper left
corner positioned at (x, y) may be found as

(2.5)
x+M�1X

u =x

y+N�1X

v =y

I(u, v) = S(x� 1, y � 1)� S(x+M � 1, y � 1)

� S(x� 1, y+N � 1) + S(x+M � 1, y+N � 1)

The exact same logic applies when calculating
P

u,v

(I(u, v)�Ī
u,v

)2 =
P

u,v

(I(u, v)2�
2I(u, v)Ī

u,v

+ Ī2
u,v

).

Using this algorithm reduces the running time for finding the denominator of
2.1 from O(X ⇥ Y ⇥M ⇥N) to O(X ⇥ Y ) at the cost of an O(X ⇥ Y ) increase
in memory for storing the running sum tables.

2.4 Exploiting parallelism

One of the advantages of platforms like FPGAs and GPUs is the architectural
parallelism in these devices. On the other hand, they typically have lower clock
frequencies than conventional CPUs. This means that in order to achieve a
speed-up, the parallelism of the device must be exploited by identifying and
taking advantage of parallelism in the problem to be solved.

Assume that a fraction P of a problem can be parallelized, and that there are
N parallel data paths available. Then Amdahl’s law states that the maximum
achievable speed-up achievable through parallelization is

S(N) =
1

(1� P ) + P

N

(2.6)
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This law assumes that nothing changes other than breaking the parallelizable
section of the problem up into parts that are executed in parallel. As more
parallelism is added (N increases), the return gained by increasing N even more
decreases. Another important point is that P should be as large as possible
in order to achieve the best e↵ect. The key takeaway is that exposing and
exploiting parallelism in the problem is essential to achieve a speed-up on these
parallel platforms.

It is important to note that Amdahl’s law gives a maximum achievable speed-
up, not the speed-up that will in fact be obtained. The actual speed-up may
be limited by for example communication requirements between the problem
instances.

2.5 FPGA

FPGAs (Field-Programmable Gate Arrays) are integrated circuits that may be
electronically programmed (in the field) to execute any type of functionality
[15]. They typically consist of programmable logic cells and interconnects. The
exact structure varies across FPGA vendors and families. In this section, the
focus will be on the architecture of the Xilinx 7 series FPGAs, and especially
on the Zynq Z-7020, which is the synthesis target in this project. Nevertheless,
the principles should hold for most modern FPGAs.

Xilinx 7 series FPGAs consists of a two-dimensional structure of di↵erent el-
ements that may be used to implement desired functionality. This includes
configurable logic blocks (CLBs), block RAM, DSP slices and a switching ma-
trix connecting the various elements together.

The CLBs are where the logic functionality of the FPGA fabric is selected. A
CLB typically contains look-up tables (LUTs) that can implement arbitrary
binary functions, as well as registers, multiplexers and glue logic. The CLBs
and the other components are connected together by a matrix of wires and
switchboxes, allowing flexible routing of signals between the components. The
connectivity of the switching matrix as well as the function of the CLBs is
configured by loading a bitstream into the FPGA after power-up.

2.5.1 Block RAM

Block RAM is dedicated memory used for data storage in the FPGA. Xilinx
7 series FPGAS have between 30 and 1,880 blocks of 36 Kb block RAMs (the
Zynq Z-7020 has 140) [3]. Each of these may also be used as two independent
18 Kb block RAMs. Each block RAM can have two independent read/write
ports of variable size (including 2 Kb ⇥ 8 bit used in this project), and even
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di↵ering aspect ratios. The block RAM is fully synchronous and can only be
read or written once per port per clock cycle.

2.5.2 DSP Slices

The Zynq series SoCs feature between 80 and 900 DSP slices (220 in the Zynq
Z-7020). Each slice has a 25 bit ⇥ 18 bit multiplier. The multiplier (which can
be bypassed) feeds its result into a 48-bit accumulator, resulting in a Multiply-
Accumulator circuit.

2.5.3 Arithmetic

As can be seen from (2.1), calculating the normalized cross-correlation involves
calculation of additions, subtractions, multiplications, division and square roots.
Multiplications are implemented automatically by the synthesis tool, either by
using DSP slices or FPGA slice logic. Adders and subtractors are implemented
automatically in slice logic by default (leveraging dedicated carry logic in the
FPGA) [16]. Dividers are implemented using slice logic by default. This results
in extremely long timing paths as no pipelining is employed. Square root is not
built into the compiler. Thus, a di↵erent approach as detailed below is needed
for division and square root operations.

Xilinx provides an IP Core for integer division [17]. The divider core features
two modes of operation: Radix2 and High Radix. Xilinx recommends the use
of the High Radix algorithm for input operands of width larger than 16 bits. In
High Radix mode, the latency (in clock cycles) of the calculation may be selected
when the divider core is generated. There is a trade-o↵ between latency and
resource usage.

The extended CORDIC (COordinate Rotation DIgital Computer) algorithm is
a very attractive way of implementing the square root functions in FPGAs,
because the only operations required are shifting, adding, subtracting and table
look-ups [18]. Xilinx provides an IP Core that implements this algorithm [19],
so it does not need to be implemented from scratch. The input number can be
an unsigned integer width a maximum width of 48 bits. The pipelining mode
can be selected when generating the IP Core using the Xilinx Core Generator.
There are three choices: no pipelining, optimal pipelining (using no additional
LUTs) or maximum (pipelining after every step of the algorithm).

2.5.4 Row bu↵ering

The motivation for row bu↵ering is to both make e↵ective use of the mem-
ory available on the FPGA. If the image is stored o↵-chip, row bu↵ering can
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minimize o↵-chip memory accesses. Consider a search template being moved
sequentially over an input image. As the template moves along, only the num-
ber of pixels in a single column of the template must be loaded from the input
image. The rest have already been referenced. If they are cached in the row
bu↵er, the amount of memory accesses are kept to a minimum. When the image
enters the FPGA on a row-by-row basis, row bu↵ering makes the most e↵ective
use of on-chip memory. The row bu↵er will store all the rows of the input image
that the template is currently being moved over, as shown in figure 2.2.

7KLV�VWHQFLO�FRQWDLQV�FXVWRP�ILOO�SDWWHUQV��
:KHQ�WKLV�VWHQFLO�LV�RSHQ��LWV�SDWWHUQV�DUH�
DYDLODEOH�DW�WKH�HQG�RI�WKH�3DWWHUQ�OLVW�LQ�WKH�
)LOO�GLDORJ�ER[�

7R�DSSO\�D�FXVWRP�SDWWHUQ��VHOHFW�D�VKDSH��DQG
WKHQ�FKRRVH�)RUPDW�!�)LOO��,Q�WKH�3DWWHUQ�OLVW��
VHOHFW�D�FXVWRP�SDWWHUQ�QDPH��DQG�WKHQ�FOLFN�
2.�

Template

Scan

Figure 2.2: Illustration of row bu↵ering. The template (dark grey) is
moved across the image. The pixels (light grey) are stored in the row bu↵er.
[20]

Ideally, the row bu↵er would be implemented as a FIFO bu↵er. This means that
the row bu↵er will only store the pixels needed, and as each new pixel is added,
another is removed from the bu↵er in a FIFO manner. A FIFO implementation
has the advantage that the pixels actually needed for the calculations (that is,
the pixels directly under the template) are in the same location in the bu↵er.
This means no multiplexors are needed, as each pixel position will always be on
the same index in the bu↵er memory. Xilinx 7 series FPGAs have built-support
and logic for block RAM FIFOs. Unfortunately, the contents in the middle of
the FIFO bu↵er are not available. Only the output word at the end of the bu↵er
may be read. This makes the built in FIFO unsuitable as a row bu↵er, as the
contents in the FIFO bu↵er are needed to calculate the cross-correlation.

A row bu↵er may also be implemented with shift registers, but this has a major
disadvantage. Such an implementation would use many flip-flops and therefore
a large number of the CLBs available on the FPGA. Block RAM is more suited
for storing image data in such large quantities [20].

2.5.5 An FPGA solution architecture

Wang and Wang describe a way of computing the straightforward normalized
cross-correlation on an FPGA [21]. The paper is rather practical and describes
two possible architectures. Performance and area results for each architecture
are given. A major point in their architecture is the parallel computation of
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several multiplications and additions, when computing the correlation between
scene image and template. They also propose a memory architecture with row
bu↵ering and multiplexers in order to achieve this parallelization of arithmetic
operations. For a scene image size of 512 ⇥ 512 and a template image of size
80⇥ 80, they achieve a clock frequency of 70 MHz and a latency of 224 ms.

2.5.6 Simulation

Functional simulation is straightforward using VHDL simulation software. How-
ever, if IP cores are used in the design to be simulated, the necessary libraries
must be available to the simulation tool. They are available from the FPGA
vendor.

2.5.7 Synthesis

Synthesis, followed by mapping, place and route must be done before the circuit
described in VHDL can be implemented on an FPGA and the performance of the
circuit can be known. Synthesis builds a representation of the state machines
in the design and the relationship between them. The logic is optimized to
remove redundancy. Mapping replaces the high-level constructs created during
synthesis with actual component types available on the target FPGA. This
included LUTs, block RAM and DSP units. Place and route tries to place the
components and interconnects so that timing constraints can be met.

These steps are done using automated tools, but the tools may have a wide
variety of options that will a↵ect the resource usage, performance and power
consumption of the final circuit. Additionally, di↵erent synthesis tools may not
give equal results when processing the same set of VHDL files.

2.6 GPU

GPUs (Graphics Processing Units) are characterized by their parallel structure,
with a high number of processors compared to traditional CPUs. Originally
used for computer graphics, they can now be used for all types of calculations.
The highest speedups are achieved when the problem can be partitioned into
smaller, independent blocks that each run the same code, and does minimal
conditional branching. This means that it is very well suited for image process-
ing algorithms, where the image may be partitioned into smaller blocks, and
each block is processed on one of the many GPU cores.
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2.6.1 Architecture

In GPU computing, code is typically executed both on a conventional CPU and
on a GPU. Sequential code with many random memory accesses, branches and
complicated logic is most e�ciently executed on the CPU. Parallel, arithmetic
code may see a significant speed-up when executed on the GPU [22].

E�cient development of parallel applications for GPUs is dependent upon a
su�ciently high-level programming language. Examples of such languages are
CUDA (for NVIDIA GPUs) and OpenCL (general-purpose). These languages
helps abstract the complicated nature of the GPU hardware, hiding low-level
features. By focusing on exploiting the inherent parallelism of the problem,
significant speed-ups can be gained with reasonable e↵ort.

The parallel part of a CUDA program consists of kernels that are executed on
the GPU. Many copies of the kernel are executed in parallel as threads, grouped
together in thread blocks. Threads within the same block may communicate
through shared memory.

2.6.2 The OpenCV library

The Open Source Computer Vision Library (OpenCV) is a library of functions
used in computer vision and image processing. It is cross-platform, so that
it may be compiled for ARM and executed on the CARMA board. As of
the latest version (2.4.5), the necessary makefiles to compile for CARMA are
included in the library. It has about 500 algorithms and 5000 functions, many
of which have specialized GPU implementations along with their (multi-core)
CPU counterparts. This includes functions for template matching and image
filtering. The library is written in C++, optimized for speed and is free for
commercial applications under a BSD license.

The OpenCV template matching function matchtemplate(), when called with
the method flag set to CV TM CCOEFF NORMED, calculates the normalized cross-
correlation R, as given in equation 2.1 [23].

The source code for matchtemplate() [24] reveals that the implementation
closely follows the one suggested in [8]. The matchtemplate() function will
determine the method to be used for the matching and the data type used in
the image and template (they must be identical). Based on this, it will call
the appropriate function (for example matchTemplate CCOFF NORMED 8U if the
method is set to CV TM CCOEFF NORMED and the image and template values are
8-bit unsigned integers). The sequence of function calls after this is shown in
figure 2.3.
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Based on the area of the template, the library will choose between the naive,
direct correlation method if the area is below the threshold and the FFT-
based correlation method otherwise. Both methods are executed on the GPU.
The threshold value for the template area is hardcoded at 250 pixels in the
getTemplateThreshold function.

Once the scene and template image are cross-correlated, they will be normalized
using the matchTemplatePrepared_CCOFF_NORMED_8U function, which also uti-
lizes the GPU. First integral tables are prepared, as described in section 2.3.3.
Then those the tables are used to do the normalization.

matchTemplate_CCOFF_NORMED_8U

matchTemplate_CCORR_32F matchTemplatePrepared_CCOFF_NORMED_8U

convolvematchTemplateNaive_CCORR_32F

� 250< 250

Template area

matchTemplatePreparedKernel_CCOFF_NORMED_8UmatchTemplatePreparedKernel_CCOFF_NORMED_8UmatchTemplatePreparedKernel_CCOFF_NORMED_8UmatchTemplatePreparedKernel_CCOFF_NORMED_8U

matchTemplateNaiveKernel_SQDIFF

convolveconvolveconvolve

Figure 2.3: Data flow of the matchTemplatePrepared_CCOFF_NORMED_8U

function. The downward arrows show function falls. The horizontal arrow
shows flow of data. Parallelism is indicated by several boxes on top of each
other.





Chapter 3

Method

This chapter will detail how the solutions to the normalized cross-correlation
problems are designed. Specifications, design choices, architecture and test
procedures will be discussed.

3.1 Development equipment

The comparisons and results of this project are made with specific hardware in
mind. This section will give an overview of the target platforms.

3.1.1 ZedBoard (FPGA)

ZedBoard is an evaluation and prototyping board featuring the Xilinx Zynq Z-
7020 All Programmable SoC. Devices in the Zynq series have a dual-core ARM
Cortex A9 processor and 28 nm Xilinx programmable logic. The programmable
logic in the Z-7020 is equivalent to that of an Artix-7 FPGA, and has 53,200
LUTs and 560 KB block RAM[3]. A picture of the ZedBoard is shown in figure
3.1.

3.1.2 CARMA (GPU)

The CARMA development kit from SECO will be used for GPU software de-
velopment and testing. The development board features an NVIDIA Tegra 3
ARM Cortex A9 Quad-Core CPU and an NVIDIA Quadro 1000M GPU. The
Quadro 1000M GPU has 96 CUDA cores with compute capability 2.1, 2 GB

19
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Figure 3.1: ZedBoard development kit.

DDR3 memory and a maximum power consumption of 45 W [25]. A picture of
the CARMA board is shown in figure 3.2.

The kit comes pre-loaded with a specially built, stripped-down Linux version.
One can either connect directly to the card using USB keyboard and mouse and
a HDMI-compatible monitor, or operate remotely through Ethernet and SSH.
The compiler needed to compile CUDA-enabled programs for ARM cannot run
on the CARMA card itself. For details about how to set up the compiler, see
appendix A.

3.2 FPGA

First, a method for implementing the straightforward normalized cross-correlation
in accordance with (2.1) will be presented.

3.2.1 Specification

The FPGA implementation of direct normalized cross-correlation will have an
interface as shown in table 3.1. The template and image ports are 8-bit wide
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Figure 3.2: CARMA development kit.

ports, for loading the template and scene image as unsigned integers. The image
and template data will be sampled on the rising edge of the image_clk signal.
In addition to the image clock, a system clock signal must be supplied to the
circuit (clk). The clock must run at a faster rate than image_clk, because
many operations must be executed per pixel. Exactly how much faster it has
to run depends on the implementation. When start is asserted, loading of the
template will commence. When the template is finished loading, the scene image
will be loaded and normalized cross-correlation processing will start. The circuit
will output the normalized cross-correlation data for verification purposes.

Table 3.1: Interface to the normalized cross-correlation circuit.

Port name Direction Size Description

image in 8 Scene image input
template in 8 Template image input
start in 1 Starts loading of data and calculation of re-

sult
image clk in 1 Clock for image and template loading
clk in 1 System clock used for calculations and con-

trol
reset in 1 Synchronous reset, active high
ready out 1 Signals that the system is idle and ready to

process data
result ready out 1 Signals that the output on normxcorr is

valid
normxcorr out 9 The normalized cross-correlation result
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3.2.2 Architecture

In order to achieve a speedup from an FPGA implementation, parallelism in
the problem must be identified and exploited, as noted in section 2.4. It is not
su�cient merely to port a serial software implementation to the FPGA. This is
because FPGAs have much lower clock frequencies than traditional CPUs.

For every possible template position, three quantities are time-consuming to
compute directly. These are the correlation between the image and the template,
the sum of the image under the template and the sum of the squared image under
the template. The method with running sums discussed in section 2.3.3 speeds
up the last two calculations, but this relies on a trade-o↵ between speed and
memory usage. On FPGAs, memory is a scarce resource. Storing an image with
1024⇥ 768 pixels would require 1024⇥ 768 pixels ⇥8 bit = 786 KB, exceeding
the block RAM capacity of the FPGA. The running sum tables would be even
larger, as more than 8 bit would be needed per pixel position. Even storing just
a band of height N of the running sum tables is impossible.

Parallelization of the straightforward cross-correlation equation can be em-
ployed instead. One possible parallelization opportunity (as noted in section
2.5.5) is in the step where the template pixels are multiplied with the scene
image pixels under the template and the results added together. Multiple mul-
tiplications and additions can be performed per clock cycle. The number of
parallel operations possible is limited by the FPGA resources, such as mul-
tipliers and slice logic for adders. The same strategy must be employed for
squaring the image pixels under the template, doubling the number of required
multipliers.

When doing the cross-correlation, data from both the template and the scene
image must be available simultaneously, as they must be multiplied together
pixel-by-pixel. Consequently, a memory architecture that allows both the tem-
plate and scene image to be loaded from memory in the same clock cycle is
desirable. One such architecture is shown in figure 3.3. Each row of the figure
represents one 18 Kb block RAM. N block RAMs are used, so that the tem-
plate and the image rows under the template can be stored. This means that
the height of the template is limited to the number of available block RAMs
(280). The first part of each block RAM is used for storing a scene image row,
and the last part stores the template. As noted in section 2.5.1, the block RAM
in Xilinx 7 series FPGAs support two simultaneous reads from a single block
RAM in one clock cycle. Hence, this architecture ensures that for each clock
cycle, one column of the scene image under the template can be loaded, as well
as one column of the template.

Writing to the scene image block RAM will be designed to wrap around. This
means that when the first N rows of the scene image have been written into block
RAM, writing continues from the start of the first block RAM, overwriting its
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Scene image Template

Block 
RAMs

Retrievable in a single clock cycle

Figure 3.3: Diagram of the memory architecture chosen for the implemen-
tation. The rows indicate 18 Kb block RAMs. The data indicated in gray
can be retrieved in a single clock cycle.

contents. A counter is therefore needed to keep track of which block RAM
contains the topmost scene image row.

This memory architecture gives rise to the architecture for the cross-correlation
circuit shown in figure 3.4. Before loading the scene image, the template is
loaded into the template memory in a pixel-by-pixel manner (this can also be
done while loading the scene image, but this is not done here for simplicity).
Once the template is loaded, loading of the scene image into block RAM can
begin. Let N be the number of rows in the template. As soon as N rows are
loaded into the scene image bu↵er, calculations can begin. Because the block
RAM is overwritten in a cyclical manner, multiplexers are needed to shu✏e the
pixels read from a block RAM column into the correct order. N multiplexers
with N byte-wide inputs are needed to be able to shu✏e the pixels into the
correct order. Once a column from the scene image and a column from the
template are loaded in the correct order, the sum, product and sum of the
squared image pixels can be calculated. When all columns of the template and
underlying scene image have been processed in this way, the results are added
together (not shown in the figure) and ready for the normalization step of the
calculation. The next scene image pixel can be loaded and processing of that
pixel started at this time.

Figure 3.5 summarizes the top-level circuit architecture. The outermost entity
(ncc_top) contains the normalization logic, and instantiates the entity respon-
sible for cross-correlation, correlation. By making the correlation unit a sep-
arate module, the correlation strategy can easily be change without a↵ecting
the normalization logic, which can be neatly decoupled.
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Add

Image sum

Sum of squared image

Cross-correlation

Figure 3.4: Architecture of the cross-correlation step. The figure shows
how the scene image and template is loaded into block RAM. Multiplexers
are used to shu✏e the data into correct positions before processing.

Normalization

Normalized cross-correlation (QFFBWRS)

Cross-correlation (FRUUHODWLRQ)

Figure 3.5: The top-level architecture of the solution. The grey boxes
indicate VHDL entities. The normalization step is part of the ncc_top

entity.

3.2.3 Implementation

The normalized cross-correlation circuit is implemented in VHDL. The project
is managed in Xilinx ISE Design Suite 14.4, using Mentor Graphics Modelsim
SE-64 10.2 for simulation and Synopsys Synplify Premier G-2012.09-SP1 for
synthesis. The synthesis target is the Xilinx Zynq Z-7020.
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Cross-correlation

The cross-correlation module is implemented as a separate entity. The template
and scene image are loaded into block RAM as discussed in section 3.2.2. As the
template is loaded, the sum of all the pixels in the template and sum of all pixels
in the squared template are computed. When the template is finished loading,
these values are available on the template_sum and template_squared_sum

outputs.

A state machine is used to control the cross-correlation circuit. After the tem-
plate has been loaded into block RAM, the scene image starts loading. Once
N rows of the scene image are loaded, calculations begin. For each template
position, calculation of the output values take M clock cycles, as N pixels are
processed in parallel. The calculation is pipelined: one clock cycle is used to
retrieve data from memory, one to multiply scene pixels and template pixels as
well as squaring image pixels, and one to sum the results for that column. When
the calculation is finished, the correlation between the scene image and template
at that position, as well as the sum of the scene image pixels and squared scene
image pixels under the template are available on correlation, image_sum and
image_squared_sum. At the same time, result_ready is asserted.

Normalization

Once the results are available from the cross-correlation sub-module, they are
normalized to obtain the normalized cross-correlation. The equation for nor-
malized cross-correlation ((2.1)) may be rewritten as
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to be better suited for computation on an FPGA, as shown in appendix B. All
sums in the equation are over the image template, or the corresponding scene
image area directly below the image template. The results of all the sums are
available from the cross-correlation sub-module. All that have to be done is
multiplying, subtraction, division and square roots.

A state machine controls the normalization procedure as follows. When the
cross-correlation at the current position is done, the correlation module will
make the results available on the corresponding output ports and assert the
result_ready signal. This will start calculation of the numerator, as well as
the expression under the square root signs in the denominator. The next step
is calculating the square roots of the said expressions. Two instances of the
LogiCORE IP CORDIC v5.0 from Xilinx (described in section 2.5.3) are used
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for the calculation of the square roots. They are configured with the ”Optimal”
pipelining option, as this is found to give delays that are not in the critical path,
while not using excessive amounts of slice logic. The square root calculations
finish after 12 clock cycles, as seen in figure 3.6. The results from the square root
operations are then multiplied together to form the denominator of (3.1). As
noted in the equation, the denominator is divided by 28 in order to scale the final
result range from �1.0 ! 1.0 to �256 ! 255, avoiding floating-point numbers.
The division by 28 is implemented by discarding the eight least significant bits of
the denominator. After this, the numerator and denominator are ready, and the
division is started. Figure 3.7 summarizes the architecture of the normalization
circuit.

1090.48 1090 56 1090.64 1090.72

square_root_in_re... 1

square_root_out_r... 0

square_root_data_i.. ...6E58500
square_root_data_... 0000288F
start_division 0

division_done 0

divisor_in ...0000000
dividend_in ...0000000
quotient_from_divid....B3FBC74

0000066D027F

0000289A 00000000 0000288F

0000000000 000004F793

000000000000 FFFFFFF0B6F6

120 ns

150.1 ns

Signal name Value

Figure 3.6: Timing of the square root and division process. The square
root operations take 12 clock cycles, and the division operation takes 15
clock cycles with tclk = 10 ns.
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Figure 3.7: Architecture of the normalization step. The figure shows how
the various outputs from the cross-correlation step are processed to obtain
the normalized cross-correlation.

Division is done using the Xilinx LogiCORE IP Divider Generator v4.0 in High
Radix mode, as this mode is recommended by Xilinx for input operands larger
than 16 bits. When selecting the latency of the divider core, several factors
must be considered. A low number of cycles will increase the length of the
critical path. If a critical path is found in the divider core, this can be easily
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alleviated by increasing the latency. However, one have to make sure that the
calculation will be finished in time before the next set of data is available, as
pipelining of the calculations is impossible in high radix mode. On the other
hand, a lower latency will translate into more slice logic. Through experiments,
it was found that a latency of 15 did not cause the critical path to be inside the
divider, to this latency was chosen.

According to the manual for the divider core, the result of division by zero
is undefined. An output flag called divide_by_zero can be used to detect
these cases. In this design, we will check if the input denominator is zero
before division start. In that case, the numerator will be set to zero and the
denominator to one, so that the result of the division will be zero. This is in
line with the MATLAB implementation of normalized cross-correlation.

The number of bits used in the intermediate stages of the calculation is an
important point when implementing the normalization step. The numbers are
represented as std_logic_vectors internally, as the integer type is limited to
numbers in [�231, 231 � 1]. This is not su�cient for storing the results of the
intermediate values. The necessary number of bits depends on the size template
used. For instance, the worst case is the sum of a squared template containing
only the value 255. This must be taken into account when selecting the number
widths.

3.2.4 Test

For functional correctness testing, a testbench is used. The testbench reads in
the test data from text files and use this data to stimulate the circuit. The test
data consists of 8-bit unsigned integers. They are stored in plain text files with
one pixel value listed per line. An e�cient way of generating such text files from
an existing image is shown below.

test Image = imread ( ’ in . pgm ’ ) ;
test Image = reshape ( test Image . ’ , 1 , [ ] ) ;
dlmwrite ( ’ image . txt ’ , testImage ’ , ’ newl ine ’ , ’ pc ’ )

During simulation, the calculated normalized cross-correlation at each pixel is
saved to file. The circuit is tested for functional correctness by comparing this
output against the MATLAB implementation of normalized cross-correlation,
normxcorr2 [10]. An exact comparison is not possible, because of errors intro-
duced by the fixed-point representation. Instead, an error margin of for example
1 % may be employed. If the di↵erence in the output from the circuit and the
output from the reference function is within 1 % of the total range of values,
the test is passed.

In order not to incur excessive simulation times when verifying the circuit, the
test images should be kept to a reasonable size. The test image set used is
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taken from a template matching assignment from an image processing course
at McGill University [26]. The scene and template images are shown in figure
3.8. The template image will be used to locate the man’s nose in the picture
using normalized cross-correlation.

(a) Scene image (b) Template image

Figure 3.8: The images used for testing the FPGA implementation [26].

To estimate performance, both the clock frequency of the circuit and the total
number of clock cycles required for the calculation must be known. The esti-
mated maximum clock frequency of the circuit is reported by the synthesis tool.
The number of clock cycles is known through analysis of the circuit architec-
ture, and can be verified through simulation. Then the total time needed for
calculating the normalized cross-correlation is t

total

= n
cycles

/f
clk

.

3.2.5 Power estimation

The Xilinx XPower Analyzer is used to estimate the power consumption in
”Vectorless Estimation” mode. In this mode, actual stimulation vectors are not
supplied, instead the tool assigns activity rates to all nodes before calculating
power consumption [27].

3.3 DFT-based FPGA implementation

In this section the viability of a DFT-based correlation implementation will
be explored. The basis for this exploration will be the Xilinx LogiCore IP
Fast Fourier Transform v8.0, as described in section 2.3.2. Before starting the
VHDL implementation of the DFT-based correlation, it is a good idea to use
the bit-accurate MATLAB model to explore the design space. This is especially
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important for the data bit width of the input and output ports, in order to
estimate resource and memory usage.

The procedure used for computing the DFT-based correlation is as follows.

1. Map the scene image and template range to the range of the FFT model
([�1, 1]).

2. Pad both images so that the resulting images have the same size.

3. Compute the DFT of the columns of the images, and then of the rows of
the result.

4. Multiply the Fourier representations together to form the product F {I}F {T}.
5. Compute the inverse DFT of this by first taking the inverse DFT of the

columns, and then of the rows of the result.

6. The real part of the result is the DFT-based correlation.

The accuracy of the FPGA-based correlation will be determined as a function
of the FFT IP core input and output width. For this purpose, the procedure
above will be used, and the results compared using Sum of Absolute Di↵erences
(SAD). The DFTs will be MATLABs built-in fft function as the gold standard
and the bit-accurate Xilinx model as the device under test.

The results of the comparison are shown in figure 3.9. The figure shows unac-
ceptable errors for small data widths. For higher data widths, block RAM will
be quickly exhausted because of the wide data widths. As an example, a low
data width of 24 is considered. The results after the first DFT stage will require
48 bits per pixel for the scene and template image. As scene image size grows
large, this will prohibit storage of the entire image in the FPGA block RAM.
This method would have to make use of external memory, or use some way
of partitioning the image into blocks that are processed separately, using for
example the overlap-save or overlap-add methods [13]. This will not be further
considered in this report due to time constraints.

3.4 GPU

Performance measurement of template matching on GPU will be done as a
ground for comparison against the FPGA implementation. The main target for
comparison is the Quadro 1000M GPU described in section 3.1.2. A brief com-
parison will also be made against the more powerful, desktop-oriented GeForce
GTX 660 Ti. The OpenCV implementation of normalized cross-correlation will
be used as the benchmark.
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Figure 3.9: Sum of absolute di↵erences in the FPGA bit-accurate MAT-
LAB simulation of the DFT-based cross-correlation as a function of DFT
data width.

3.4.1 Performance measurement

When OpenCV is compiling and running properly, benchmarking test can be
executed. The correctness of the results are confirmed by running the self-test
that comes with the OpenCV library (opencv_test_gpu). A C++ program
that calls the OpenCV functions in question is written and executed to record
the time spent calculating the normalized cross-correlation.

The program generates quadratic scene and template images of varying size,
calls the OpenCV matchTemplate function and records the elapsed time. The
scene image side length will be varied in steps of 32. For clarity and to ensure
smooth graphs, the template side length will be varied in steps of one.

There are some finer points that one has to be aware of in order to get correct
timing results. That is, OpenCV will only initialize the CUDA Runtime API
on the first CUDA function call. In addition, OpenCV uses Just In Time-
compilation for CUDA code [28]. This means that the first CUDA function call
will be very slow (up to several seconds). Therefore, a dummy call must to be
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placed to the desired function before the actual performance measurement is
done.

For simplicity, random matrices of di↵erent sizes may be conveniently prepared
through the OpenCV randn function. Before the matrices can be populated,
they must be created as cv::Mat objects. The data type CV 8U is used, indi-
cating an unsigned 8-bit integer single-channel matrix.

The simplest way of measuring elapsed time for the function call is to use
a CPU timer. However, the recorded time would then include the time spent
transferring data to and from the GPU. In order to only record the time actually
spent calculating on the GPU, a GPU timer may be used. A CUDA event is then
inserted into the CUDA instruction stream before the mathTemplate function
call, and another one after. The time in milliseconds elapsed between the events
according to the GPU clock can then be found using the cudaEventElapsedTime
function.

Once all the above is set up correctly, one can iterate through all desired com-
binations of scene image and template size and record the results. On Linux,
the procedures detailed in appendix A are used to compile the benchmarking
program. On windows, Microsoft Visual C++ 2010 Express is used, together
with OpenCV 2.4.5 and CUDA 5.0.

3.4.2 Data analysis

The benchmarking program outputs the time in milliseconds spent calculating
the normalized cross-correlation for each scene image and template size. A
MATLAB program is created to sort, filter and visualize the results to produce
the graphs presented in chapter 4.

3.4.3 Power measurement

Power consumption from the CARMA card is measured by using a TTi EL302
power supply. The supply is configured for 19 V and connected to the CARMA
card. Current consumption is measured both in the idle state (only the oper-
ating system is running) and during the benchmark test.
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Results

In this chapter, the results obtained for the various platforms will be presented
and analyzed.

4.1 FPGA

4.1.1 Cost and development time

Giving an estimate for the development time and e↵ort needed to complete
this FPGA implementation is not easy. The time spent during the work with
this thesis may not be the same time spent on a similar project by a more
experienced developer. Quite some time was spent on getting the development
environment running properly.

As more code and IP cores are added to the project, simulation and synthesis
time started to take up a significant portion of the total development time. The
square root IP core has a precompiled behavioral simulation model that makes
for very fast simulation. However, the divider and FFT cores have structural
VHDL simulation models. In these models, every internal signal, LUT, DSP48
core and other components are instantiated directly in VHDL. This results in
very large models, running into hundred thousands of lines. This slows down
the simulation considerably, especially if the simulator intentionally limits the
simulation speed. This is the case with Aldec Active-HDL EDU edition. A
simulation with a small picture may then take tens of minutes. Mentor Graphics
ModelSim SE was available and runs at full speed, so this was used instead for
simulating the design when these IPs were included.
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In summary, the FPGA development e↵ort was the most time-consuming part
of this project. Several weeks were spent coming up with a feasible architecture,
implementing it in VHDL, selecting and configuring IP blocks and testing and
optimizing the design.

4.1.2 Synthesis

The normalized cross-correlation circuit described in section 3.2 was synthesized
with di↵erent values for the template size. The scene image size was kept
constant at 512⇥ 512 pixels. The synthesis results can be seen in table 4.1.

Table 4.1: Synthesis results.

N [pixels] f [MHz] LUTs DSP48s BRAMs

4 149.0 3046 30 1
8 149.0 3316 38 9
16 149.0 4079 54 17
32 149.0 5289 86 33
64 149.0 8067 150 65
96 145.5 20872 214 97
128 144.5 20031 218 129

After synthesis, the resource requirement for each VHDL entity is reported.
From the synthesis report for the 96 ⇥ 96 template circuit, we find the hierar-
chical resource usage breakdown shown in table 4.2.

Table 4.2: Hierarchical breakdown of resource usage.

Module name LUTS Registers DSP48s BRAMs

ncc top 134 272 8 0
correlation 20017 1249 193 96

divider 792 413 13 1
sqrt 1 723 392 0 0
sqrt 2 723 390 0 0

Except for the case where N = 4, the number of block RAMs required are N+1
as one block RAM is required for the divider core, and N for the correlation,
as each row under the template must be stored at all times. The number of
DSP48 elements used in correlation is 2N + 1. For each row in the template,
one multiplier is used to find the correlation and one to square the image under
the template. In addition, one multiplier is needed to square the template
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pixel values as they enter the circuit, before they are added together. Seven
multipliers are needed for the normalization process (see figure 3.7). However,
if both M and N are powers of two, those multiplications can be implemented by
shifting, and only four multipliers are needed. This translates into eight DSP48
slices because of the wide operands (two slices are cascaded to form a larger
multiplier).

The limiting factor for the template size is the number of DSP48 slices and
block RAMs available. If the number of rows in the template is increased too
much, there will not be enough block RAMs to store the template and the scene
image under the template. However, for this design, the DSP48 limit will be
reached first. When the number of multipliers needed exceed the number of
multipliers on the FPGA, the multipliers will be implemented using slice logic
instead. This will greatly increase the delay of the circuit, and consume large
amounts of area. So to increase the number of rows in the template further, an
FPGA with more block RAM and DSP48 slices would be needed.

4.1.3 Performance

The performance of the circuit describes the throughput that is possible to
achieve, as well as the latency. Both will be presented in this section. As
only one image can be loaded into the circuit at any given time, latency and
throughput is directly related. Both depend only on two parameters: the clock
frequency and the number of cycles needed to complete the calculation. The
clock frequency at various template sizes is known from table 4.1. The number
of cycles can be exactly determined by analyzing the state machines in the
circuit, together with simulation data for the IP cores.

Figure 4.1 is created from this data. It shows the execution time for the direct
implementation of normalized cross-correlation on FPGA as a function of kernel
side length for a quadratic kernel.

4.1.4 Power consumption

For a template size of N = 128, the Xilinx XPower Analyzer estimates the
power consumption for the programmable logic to be 0.69 W, but with a low
confidence. This means that this number should only be seen as an indicator of
the magnitude of the power consumption. Actual measurements on FPGA can
be done to obtain an accurate number.
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Figure 4.1: FPGA performance results. The figure shows execution time
as a function of kernel size for various scene image sizes.

4.1.5 Correctness

Figure 4.3 shows the result of the normalized cross-correlation of the pictures
shown in figure 3.8. The blue line shows the results from the MATLAB Image
Processing Toolbox normxcorr2 function, while the red line shows the results of
the FPGA implementation. As can be seen from the figure, the error (di↵erence
between the lines) is very small. The largest deviation is 0.14 %.

4.2 GPU

4.2.1 Cost and development time

The cost of a CARMA development kit is listed as e 529 plus taxes. For prod-
uct development, the Nvidia Quadro 1000M GPU (or any other GPU) would
probably be bought stand-alone at a much lower price, but the exact cost is
di�cult to verify from public sources.
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(a) MATLAB normxcorr2 (b) FPGA implementation

Figure 4.2: Results from running normalized cross-correlation in MATLAB
and FPGA simulation. A clear bright spot on the man’s nose indicates that
the normalized cross-correlation is highest in that location.

Development time is very fast when using existing libraries such as OpenCV.
It may take a few days to get everything to compile properly for the embedded
platform (a guide for doing this is included in appendix A). After this, applica-
tions can be programmed in just a few hours to days, taking advantage of the
extensive OpenCV library.

4.2.2 Performance

Quadro 1000M

The main result from the performance test of the OpenCV matchTemplate

function is shown in figure 4.4. The graph shows the GPU execution time (time
spent during calculations) as a function of the side length of a square template.
The di↵erent colors denote di↵erent side lengths of the square scene image, in
32 pixels steps from 32 to 1600 pixels.

Figure 4.5 illustrates the unpredictability in execution time for the CARMA
GPU implementation. A single data set is used to create the figure. For clarity,
only series with spikes (< 10 ms) are included.

Figure 4.6 shows the latency of the direct GPU implementation.

GeForce GTX 660 Ti

Figure 4.7 shows the result of the same test as in figure 4.4, run on a GeForce
GTX 660 Ti graphics card. The results are the minimum values of three runs, as
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Figure 4.3: Comparison between the normalized cross-correlation output
from MATLAB’s normxcorr2 function and the VHDL implementation de-
signed in this project.
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Figure 4.4: Latency as a function of kernel side length for a quadratic
kernel for varying sizes of a quadratic scene image
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Figure 4.5: Variable latency in a single run of GPU execution.
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Figure 4.6: GPU execution time for the direct implementation of normal-
ized cross-correlation.
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in the previous section. The individual runs have large spikes in the processing
times, seemingly occurring at random and at di↵erent image and template sizes
in each run.
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Figure 4.7: Latency presented in the same way as in figure 4.4, but from
GeForce GTX 660 Ti execution.

4.2.3 Power consumption

The CARMA card consumes 0.51 A (9.69 W) in the idle state and 1.00 A (19
W) when the benchmark test is running.

4.2.4 Correctness

The relevant built-in self-test that comes with OpenCV for testing the
MatchTemplate_CCOEF_NORMED function passes, as shown in listing 4.1.

Listing 4.1: Test results from OpenCV built-in self-test

[����������] 1 t e s t from GPU ImgProc/MatchTemplate CCOEF NORMED
[ RUN ] GPU ImgProc/MatchTemplate CCOEF NORMED. Accuracy /0
[ OK ] GPU ImgProc/MatchTemplate CCOEF NORMED. Accuracy /0 (3960 ms)
[����������] 1 t e s t from GPU ImgProc/MatchTemplate CCOEF NORMED (3960 ms t o t a l )



Chapter 5

Discussion and conclusion

This chapter will summarize the most important results, discuss why they
turned out as they did and o↵er concluding remarks on the choice of technology.
Possible areas for further work will also be presented.

5.1 Discussion and further work

The platforms are to be evaluated with respect to development e↵ort, cost,
power consumption and performance for image processing algorithms such as
normalized cross-correlation. Depending on the specific project or application,
some criteria may be more important than others. Some projects may even
have absolute requirements, such as throughput in a real-time system or power
consumption in an embedded system.

5.1.1 Development e↵ort

For FPGAs, the use of IP can reduce the e↵ort needed, but it is still a time-
consuming and sometimes error-prone process to design a complete system.
Various high-level tools may somewhat alleviate this. Languages such as Han-
dleC and tools such as Xilinx Vivado HLS and MATLAB HDL Coder and HDL
Verifier allow the designer to work at a higher level of abstraction, with auto-
matic generation of HDL code. This comes at the price of higher licensing costs
and perhaps sub-optimal solutions, when compared to a manual bottom-up
design.

When considering development e↵ort, GPUs have a significant advantage. Open-
source libraries such as OpenCV, combined with a relatively high-level language
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such as CUDA C++ or OpenCL for custom implementation give short design
times. The challenge lies in finding a good partitioning of the problem in to
parallel parts, not the programming itself. Software can be tested on any com-
patible GPU, for example in a desktop computer, even though it is destined
for an embedded system. Debugging is seamless and integrated with tools such
as NVIDIA Parallel Nsight. There are also many libraries available to make
development easier.

5.1.2 Component cost

As pricing information for GPU and FPGA chips is not readily available, an
assessment will have to be done before a production project is started, if cost
is important.

5.1.3 Power consumption

From the simulations and measurements presented in chapter 4, it is clear that
the FPGA solution has significantly lower power consumption than the GPU
solution. Because of the uncertainty of the FPGA power simulation, exactly
how much is di�cult to quantize. The GPU development kit also has a cooling
fan, unlike the FPGA kit, which only uses passive cooling.

5.1.4 Performance

The performance results from chapter 4 shows that the GPU implementation
outperforms the FPGA implementation. For large image sizes, the GPU imple-
mentation use FFT-based correlation, which is very e�cient. No comparable
algorithm is made for the FPGA in this work because of memory constraints,
so these results cannot be directly compared against the FPGA results.

However, the performance of the direct implementation of normalized cross-
correlation on FPGA and GPU can be directly compared. The execution time
for finding a template in a 512 ⇥ 512 scene image is shown in figure 5.1. This
shows that execution time for the GPU implementation is slightly better than
for the FPGA implementation.

The DFT-based correlation on the GPU has unpredictable execution time, as
shown in figure 4.5. This may be caused by operating system scheduling issues.
For real-time systems, this unpredictability may be undesirable. Another issue
with the GPU solution is that the first call to the template matching function
is very slow, because of Just-in-Time compiling.
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Figure 5.1: Execution time for direct implementation of normalized cross-
correlation on FPGA and GPU for scene image width X = 512.

5.2 Conclusion

In conclusion, it is relatively easy to build a solution with high throughput using
a GPU, with the help of available libraries. The reference GPU implementation
of normalized cross-correlation from the OpenCV library slightly outperforms
the implementation designed in this project. The maximum size of the im-
ages processed on the FPGA using this design is dependent on the amount of
resources available on the FPGA. For larger images, a more powerful FPGA
must be used. The high performance and relative ease of software development
of GPUs has to be weighed against the higher power consumption in real-world
projects.

5.3 Future work

The most important area of future exploration is DFT-based correlation on
FPGA. It is possible that a significant speed-up could be achieved by using
DFT-based correlation combined with running sum tables for the normalization
on a powerful FPGA with fast o↵-chip RAM. For large image sizes, DFT-based
correlation is necessary if low latencies are critical.
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Appendix A

Setting up the CARMA
card

In this chapter we explain how to install the necessary software to compile soft-
ware for the CARMA development board. The instructions have been adapted
from [29, 30] to work on a computer running 64-bit Ubuntu 12.10 with no
NVIDIA graphics card installed.

A.1 CUDA SDK samples

We start with a fresh installation of Ubuntu 12.10. Other versions may work,
but it must be a 64-bit version. Before starting, download the CUDA Toolkit
and CUDA Software Development Kit from http://www.seco.com/carmakit.
Then, update the package list and install some basic developer tools:

$ sudo apt�get update
$ sudo apt�get i n s t a l l f r e e g l u t 3�dev bui ld�e s s e n t i a l l ibx11�dev

libXmu�dev l ibXi�dev l i b g l 1�mesa�g lx l i bg l u1�mesa l i bg l u1�mesa�
dev

Install the 32-bit development libraries needed for compiling to the CARMA
card:

$ sudo dpkg ��add�a r c h i t e c t u r e i386
$ sudo apt�get update
$ sudo apt�get i n s t a l l ia32� l i b s
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Install the ARM cross compilers. GCC 4.5 is the only version o�cially supported
for targeting the CARMA kit. However, this version is not available for Ubuntu
12.10, and GCC 4.6 was found to cause no problems when compiling the CUDA
Samples.

$ sudo apt�get i n s t a l l gcc�4.6�arm�l inux�gnueabi g++�4.6�arm�l inux�
gnueabi

Install the CUDA Toolkit downloaded from http://www.seco.com/carmakit.

$ sudo sh cuda�l inux�ARMv7�r e l �4.2.10�13489154. run

nvcc should be added to the PATH. This can be done by appending the following
line to .bashrc.

export PATH=/usr / local /cuda/bin :$PATH

Power on the CARMA card and install necessary ARM OpenGL and X11 li-
braries. Connect the card to your local network and run ifconfig to get the IP
address. The card may then be accessed via SSH in the next steps.

ubuntu@carma�devk i t : ˜ $ sudo apt�get i n s t a l l l i b g l u t 3�dev l ibXi�dev
libXmu�dev

ubuntu@carma�devk i t : ˜ $ i f c o n f i g

The only purpose of installing the libraries in the previous step was to get the
ARM version of the libraries, so that they may be copied to the development
PC. When the toolkit was downloaded from http://www.seco.com/carmakit,
it included a file called copy from fs.sh. Copy this file to the directory where
the toolkit is installed. Then run it with the IP address of the card found in
the previous step as an argument.

$ sudo cp copy f rom f s . sh / usr / local /cuda / .
$ cd / usr / local /cuda
$ sudo sh copy f rom f s . sh 192 . 1 68 . 0 . 1 00

Install the CUDA Software Development Kit downloaded from http://www.

seco.com/carmakit.

$ sudo sh gpu�computing�sdk�l inux �4.02.0913.1014�13896433. run

http://www.seco.com/carmakit
http://www.seco.com/carmakit
http://www.seco.com/carmakit
http://www.seco.com/carmakit


Setting up the CARMA card 51

Finally, try to compile the samples included in the CUDA SDK.

$ cd ˜/NVIDIA GPU Computing SDK
$ sudo make ARMv7=1 CUDA INSTALL PATH=/usr / local /cuda CXX=/usr /bin /

arm�l inux�gnueabi�g++�4.6

If make fails with an error message such as ”cannot find -lGL”, create a symbolic
link to the missing library. This may happen if there is no NVIDIA card or
drivers installed on the developer PC. Other libraries in other locations may be
needed, the below is just an example.

$ cd arm�l inux�gnueabi /
$ sudo ln �s ˜/NVIDIA GPU Computing SDK/ l i b / libGL . so . 3 02 . 2 6 libGL .

so

A.1.1 OpenCV

Once the samples can be compiled properly, we can compile and install the
OpenCV library.

$ sudo apt�get i n s t a l l make python python�dev python�numpy g i t
l i b g t k 2 .0�dev l ibavcodec�dev l ibavformat�dev l i b sws ca l e�dev
pkgconf ig

$ g i t c l one g i t : // github . com/ thrus t / th rus t . g i t
$ sudo cp �r th rus t / th rus t <path to cuda t o o l k i t >/inc lude / th rus t

$ cd cmake�2 .8 .10 .2/
$ . / c on f i gu r e
$ make
$ sudo make i n s t a l l

$ g i t c l one g i t : // code . opencv . org /opencv . g i t
$ g i t c l one g i t : // code . opencv . org / opencv extra . g i t
$ cd opencv
$ mkdir bu i ld
$ cd bu i ld
$ cmake �DCMAKE TOOLCHAIN FILE=../ modules/gpu/misc/carma . t oo l cha in .

cmake �DCUDA TOOLKIT ROOT DIR=/usr / local /cuda �DCUDA ARCH BIN:
STRING=” 2 . 1 ( 2 . 0 ) ” �DCUDAARCHPTX:STRING=”” �DCMAKE SKIP RPATH:
BOOL=ON �DWITH CUBLAS:BOOL=ON . .

$ make





Appendix B

A formula suitable for
FPGA implementation

The purpose of this appendix is to show how (2.1) can be re-written to be more
implementation-friendly.

Let

T 0(x0, y0) = T (x0, y0)�
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be the template and scene image under the template, both with the respective
mean removed. Then, as previously shown, the normalized cross-correlation
may be written as
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The numerator may be written out as
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The last term is constant. Rewriting with this in mind, we get
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Using the same approach, the denominator may be rewritten as

(B.5)

vuuut
X

x

0
,y

0

T (x0, y0)2 �

2

4
X

x

0
,y

0

T (x0, y0)

3

5
2

/(M ⇥N)

⇥

vuuut
X

x

0
,y

0

I(x+ x0, y + y0)2 �

2

4
X

x

0
,y

0

I(x+ x0, y + y0)

3

5
2

/(M ⇥N)

Combining this, we get
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which only includes the cross-correlation of scene image and template, as well
as the sum and squared sum of scene image and template.



Appendix C

Throughput

This appendix contains plots of the throughput of the GPU (figure C.1 and
C.2) and FPGA (figure C.3 and C.4) solutions.
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Figure C.1: Throughput for GPU as a function of kernel side length for a
quadratic kernel for varying sizes of a quadratic scene image.
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Figure C.2: Throughput for GPU as a function of scene image side length.
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Figure C.3: Throughput for FPGA as a function of kernel side length for
a quadratic kernel for varying sizes of a quadratic scene image.
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Figure C.4: Throughput for FPGA as a function of scene image side length.
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