
Lossless video compression in an FPGA
for reducing DDR memory bandwidth
usage

Fredrik Jacobsen
Fagerheim
Stian Røed Hafskjold

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Jørgen Linnerud, Cisco Systems

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

PROBLEM STATEMENT

It would be interesting to investigate if the memory bandwidth usage could be sig-
nificantly decreased using lossless, or close to lossless, compression algorithms and
find out if these are possible to implement in an FPGA and be used for real-time
video in telepresence/video-conferencing products.

The master thesis will focus on writing HDL components for the algorithms and
implement them in an FPGA with low FPGA resource usage in mind and bench-
mark them. For the implementation it is important to find best and worst cases
scenarios as well as average use of memory bandwidth. The student would have
to benchmark these implementations using real-life video from telepresence/video-
conferencing scenarios as well as corner-case video patterns to prove the qualities
of the different implementations. It is required that the project results in a clear
table comparing the different algorithms, or set of algorithms, used for the imple-
mentations.

i

ii

PREFACE

This Master’s thesis was completed at the Norwegian University of Science and
Technology (NTNU), under the department of Electronics and Telecommunica-
tions. This thesis marks the end of a five year long study, to achieve a Master of
Science degree in the field of Electronics with Digital System Design as the main
profile.

This thesis is a continuation of a preliminary project which was completed during
the autumn of 2012. The problem description is given by Cisco Systems Norway,
who develops products that are focused on Telepresence technology and services.

We would like to thank our supervisors at NTNU, Professor Kjetil Svarstad, and
our external supervisor at Cisco, Jørgen Linnerud, for meeting with us on a regular
basis, providing us with helpful feedback and guidance.

iii

iv

ABSTRACT

We show that a hardware implementation of a lossless image compression scheme
can be used as means for lowering DDR memory bandwidth usage from a video
stream. A prediction scheme based on LOCO-I is used to reduce correlative re-
dundancy between sequential pixels, before the data is encoded by Golomb coding.
The data packages after source coding contain a continuous stream of prefix codes,
in order to eliminate the header data imposed by more advanced packing schemes.
This in turn results in a higher demand on the decoding side in terms of resource
usage, because of the need for high parallelism when a new prefix code is counted
and decoded each clock cycle.

The test images are reduced in size by 49-84%, depending on their inherent com-
plexity. Resource consumption for this design amounts to 10100 Logic Elements
(synthesized for an Altera Cyclon III FPGA - EP3C80F484C6), with a operating
frequency of 152,86 MHz for a throughput of 458 MB/s. These numbers can be
improved by reducing the algorithm complexities. LE usage is reduced to 4695,
while accomplishing a image size reduction of 34-59%.

We present a way to increase decompression throughput by adding parallel decoder
modules. Those changes will increase throughput to a multiple of 458 MB/s while
worsening the compression somewhat. LE cost increases depending on the level of
parallelism.

v

vi

SAMMENDRAG

Vi viser at en hardware-implementasjon av tapsfri bildekompresjon kan bidra til å
redusere bruken av minnebåndbredden fra en videostrøm. En prediksjonsmodell
basert på LOCO-I brukes til å redusere korrelativ redundands mellom sekvensielle
piksler, før dataen kodes med Golomb-koding. Den komprimerte dataen pakkes tett
i en kontinuerlig strøm med prefikskodede ord for å redusere overflødig data som
innføres av mer kompliserte pakkemetoder. Den tette pakkingen resulterer i noe
høyere ressursbruk i dekodingen, fordi ett kodeord må separeres bit-vis parallellt
per klokkeperiode i den kontinuerlige strømmen.

Testbildene reduseres i størrelse med 49-84%, avhengig av deres iboende komplek-
sitet. Ressursforbruk for dette designet ligger på 10100 Logiske Elementer (Logic
Elements) (syntetisert for en Altera Cyclon III FPGA - EP3C80F484C6), med en
operasjonsfrekvens på 152,86 MHz for en databehandlingsrate på 458 MB/s. Disse
tallene kan forbedres ved å redusere kompleksiteten i algoritmene som benyttes.
LE-forbruk kan da reduseres til 4695, med en reduksjon i bildestørrelse på 34-59%.

Vi foreslår å øke databehandlingsraten på dekomprimeringssteget ved å kjøre flere
dekodings-moduler i parallell. Disse endringene øker databehandlingsraten til et
multiplum av 458 MB/s, mot at kompresjonseffekten reduseres noe. LE-forbruket
øker avhengig av antall parallelle moduler.

vii

viii

TABLE OF CONTENTS

Problem statement i

Preface iii

Abstract v

Sammendrag vii

List of Tables xiii

List of Figures xvi

1 Introduction 1
1.1 The thesis and our interpretations 2
1.2 Contribution . 3

Requirements and guidelines . 3
1.3 Outline . 4

2 Background 5
2.1 Preliminary work . 5

Basis for choosing our algorithm 5
The existing implementations . 6
Decision . 7

2.2 Image representation and compression theory 7
Coding redundancy . 8
Spacial redundancy . 9
Spectral redundancy . 9
Image compression . 9
Modeling . 10
Entropy coding . 12

2.3 LOCO-I . 13

ix

TABLE OF CONTENTS

Prediction . 13
Context determination . 14
Context modeling . 15
Golomb coding . 16

3 System level modeling 17
3.1 Modeling memory and variables 19

Neighbouring pixels . 19
Context register . 19

3.2 Modeling . 20
Context determination (index module) 21
Predictor and adjustment by context 23
Update context information . 23

3.3 Source coding . 24
Reduce maximum bit width . 24
Encoder . 25
Decoder . 26
Determine ’k’ . 27

3.4 Golomb packing . 28
3.5 System put together . 29

Memory package and header data 31
System flow . 32

4 VHDL implementation 33
4.1 Determine context and ’k’ . 34
4.2 Prediction and context update . 35
4.3 Golomb encoder . 38

Golomb packer . 39
4.4 Golomb decoder . 42

Index registers . 43
Update index registers . 44
Decode q and r . 46
Load data register . 47

4.5 Modeling memory . 49
4.6 Top level design . 49

Signal delays . 52
4.7 Proposed implementation to reduce resource usage 52

5 Testing and verification 55
5.1 VHDL testbench . 55

Input files . 55
Encoder testbench . 56
Decoder testbench . 57

5.2 Test images and videos . 58
5.3 Verification . 60

x

TABLE OF CONTENTS

6 Results 63
6.1 Predictor and context determination variables 63
6.2 Maximum golomb code length 65
6.3 Fixed golomb ’k’ value . 66
6.4 Compression results VHDL implementation 67
6.5 VHDL Synthesis . 69

Worst-case timing paths . 71
6.6 Simplified design . 72

Compression results . 72
Synthesis results . 73

7 Discussion 75
7.1 Changes and considerations regarding the LOCO-I algorithm . . . 75

Effects of pipelining . 75
Predictor . 76
Context determination . 77
Maximum Golomb bit length . 78
Possibility to bypass uncompressed data in the memory packages . 79
Spectral decorrelation . 80

7.2 VHDL implementation and synthesis 80
Golomb decoding . 80
Throughput . 81
Proposed design to reduce resource usage 82
Verification . 83

7.3 System level conciderations . 84
Control module to reset when new frame arrives 84
Memory packing . 85
Separating the header data . 87
Overhead data . 88

7.4 Design limitations . 89
Bus traffic . 89
Decoding speed bottleneck . 90
The restricted intra-frame access 91
The decoder throughput bottleneck 91
A different solution . 91

7.5 Comparison of implementations 93
Compression . 93
Resource usage . 93
Throughput . 94

8 Conclusion 95
Restrictions . 96
Final words . 96

A VHDL code 99

xi

TABLE OF CONTENTS

A.1 Find ’k’ and determine context 99
find_k.vhd . 99
index.vhd . 101

A.2 Modeling and signals - encoder 103
enc_modeling.vhd . 103
enc_signal_delays.vhd . 108
enc_reset.vhd . 110

A.3 Source coding - encoder . 113
gol_enc_mux.vhd . 113
gol_enc_shift.vhd . 114
gol_enc_top.vhd . 115
wbuf.vhd . 118

A.4 Toplevel - encoder . 121
enc_top.vhd . 121

A.5 Modeling and signals - decoder 125
dec_modeling.vhd . 125
dec_signal_delays.vhd . 130
dec_reset.vhd . 132

A.6 Source coding - decoder . 135
update_registers.vhd . 135
find_end_q.vhd . 136
count_q.vhd . 138
k8.vhd . 139
find_end_r.vhd . 140
decode_q.vhd . 142
decode_r.vhd . 145
decode_r_mux.vhd . 146
comb_qr.vhd . 147
data_in_reg.vhd . 148
load_data_in.vhd . 149
gol_dec_top.vhd . 151

A.7 Toplevel - decoder . 154
dec_top.vhd . 154

A.8 Embedded memory . 158
line_cache.vhd . 158
ctxt_reg.vhd . 159

A.9 Testbenches . 161
Encoder . 161
Decoder . 168

A.10 Definitions . 174
defs.vhd . 174

Bibliography 175

xii

LIST OF TABLES

2.1 Performance comparison between encoder implementations 7
2.2 Golomb codes for different values of m 12

3.1 Range of context variables . 20
3.2 Quantization regions . 22
3.3 Top level module dependencies and internal memory reads/writes 29

4.1 Combine ’q’ and ’r’ . 47

5.1 Test set . 59

6.1 Synthesis results encoder . 69
6.2 Synthesis results decoder . 70
6.3 Worst-case timing paths . 71
6.4 Synthesis results for simplified design (encoder) 73
6.5 Synthesis results for simplified design (decoder) 74

7.1 Memory usage by context determination 78
7.2 Size increase from header data 88
7.3 Average, worst and best case compression for our proposed pri-

mary, simplified design, and DDPCM+GR [2] 93
7.4 Logic Element counts for the primary and simplified solution. . . 94
7.5 Throughput figures for the primary and simplified solution, and

DDPCM+GR . 94

8.1 Resource, frequency and compression rate summary 96

xiii

xiv

LIST OF FIGURES

2.1 Causal template of current sample ′x′ 10

3.1 Encoder and decoder stages . 18
3.2 Causal template of current sample ’x’ 19
3.3 Decoder register . 27
3.4 Golomb packer register . 28
3.5 Toplevel pipeline diagram . 30
3.6 Header data and Golomb packages (Gpn) combined into one large

package . 31
3.7 Packages queued in the FIFO . 31
3.8 System flow . 32

4.1 Index module flow . 34
4.2 Prediction and context update flow 35
4.3 Golomb MUX . 38
4.4 Calculation of golomb code . 38
4.5 Golomb encoder top level flow 39
4.6 Golomb Packer - main inputs and outputs 40
4.7 Showing the AGP array as it receives data and write Golomb pack-

ages when they are full . 40
4.8 Golomb decoder modules and registers 42
4.9 Golomb decoder index registers 43
4.10 count_q module . 44
4.11 find_end_q module . 45
4.12 k8 module . 45
4.13 decode_r module . 47
4.14 load_data module . 48
4.15 Toplevel pipeline decoder side 50
4.16 Toplevel pipeline encoder side 51
4.17 Toplevel pipeline without context modeling 53

xv

List of Figures

5.1 Encoding testbench flow . 56
5.2 Decoding testbench flow . 58
5.3 Comparison of compression for C++, System C and VHDL models 61

6.1 Predictors and context variables for natural images 64
6.2 Predictors and context variables for desktop images 64
6.3 Maximum code length impact on compression 65
6.4 Fixed ’k’ impact on compression 66
6.5 Final compression results from VHDL implementation 68
6.6 Compression results for simplified design 72

7.1 Visualizing different memory allocations 86
7.2 Three packet queues built from header data 87
7.3 Bus topology showing number of data transfers between RGB source

and external video encoding module without the presented com-
pression scheme . 89

7.4 Bus topology showing number of data transfers between RGB source
and external video encoding module with the presented compres-
sion scheme . 90

7.5 Adjusted packing scheme. The minimum value represents the very
least amount of data included in every package. The variable part
allows for up to 55 bits in the unary part. 92

xvi

CHAPTER

ONE

INTRODUCTION

In recent years, the primary channels for communication and distribution of video
content has begun to change. Faster broadband speeds allow for services to shift
from proprietary and rigorous distribution channels, to the more dynamic and widely
available global network that is the Internet. As the entertainment industry pushes
the boundaries for what can be achieved in terms of video quality on preloaded
storage mediums such as Blu-ray, higher quality has also come to be expected from
online services, where the source material is transferred to its destination via a net-
work connection. For this transfer to be possible on a wide range of network con-
nection speeds, the video information must be compressed before leaving the host.
If the source is something pre-recorded, like a movie, computationally demanding
compression algorithms can be applied in advance in order to have the optimally
encoded video ready when some client requests the content. A live recording, on
the other hand, must be encoded in real time if it is going to appear live for the
person viewing it at the other end. When the time variable is pushed like that, the
system performance necessary to achieve a high-quality low-bitrate encoding rises
drastically. With a set system performance, the trade-off between size and video
quality becomes apparent. The size must be reduced to a so that the data it is eas-
ily transferred to its destination, while the video quality should not degrade too far
from the original.

Communication via live high definition video is almost changing what is consid-
ered to be face to face interactions. The more immersive experience is brought forth
by the continuing development of better video capturing devices as well as con-
sumer grade high resolution monitors with high-quality color reproduction. These
improvements to the capturing and displaying require more of the technology re-
sponsible for compressing and encoding the video output. Higher resolution means
that more pixels must be processed per unit of time, while the modern monitors

1

1.1. The thesis and our interpretations

allow us to see exactly where the image lost information in the encoding process.
Running better algorithms during encoding can make sure more relevant image in-
formation is kept, while reducing the noise and other components that are either
considered unimportant or simply unnoticeable to the human eye.

These image processing algorithms demand high throughput of internal data in
order to process high definition video streams in real time. The algorithms need to
cache large amounts of data in memory to allow for encoding across several video
frames. The resource demand and cost introduced if high speed registers are used,
imposed by the significant data size, results in the need for higher level memory,
such as DDR SDRAM. This comes at the cost of lower internal throughput because
of the lower memory bandwidth.

1.1 The thesis and our interpretations

The thesis asks whether lossless or close to lossless compression algorithms can
be implemented in an FPGA in order to reduce the memory bandwidth usage on
real-time video telepresence/video-conferencing products. This was interpreted to
mean that the raw video stream is to be compressed before it is stored in memory,
then decompressed when it is processed further. No other details or restrictions are
given other except for the real-time requirement, which is interpreted to mean a
frame processing rate equal to the defined frame rate at a given resolution.

The thesis text does not specify if or how the solution should co-exist with an exist-
ing system. Certain implications of our solution have therefore manifested at rather
late stages of the work process. Our solution’s usefulness can therefore prove to
be non-existent in a system with specific requirements. These are mainly require-
ments for how the existing system expects to access the compressed information in
memory. The report discusses these problems and tries to suggest changes to our
design that may improve its usefulness.

The goal of performing tests on an FPGA was put on hold because it would have
required considerable more time. Access to a full fledged test system necessitates
a travel to Cisco Norway, and would have tied down their resources as well. In-
stead we prioritized finding alternatives to our primary design that hopefully would
broaden our conclusion. Further, we focused on the core of the compression-
decompression modules, meaning that system control and general memory packing
modules have not been implemented. The operation and functionality of these are
considered to be so tightly connected to the adopting system, that they in any case
must be built with a specific system in mind. Instead the overall control possibilities
are discussed in chapter 7.

2

Chapter 1. Introduction

1.2 Contribution

This thesis has continued the process that began with the preliminary work pre-
sented in the project report [1]. Where the preliminary work focused on measuring
the performance of a number of image compression techniques, this work uses the
findings to implement some of the algorithms in VHDL. The implementations will
then form the core of a system that is able to reduce the data size of an RGB video
stream on-the-fly through lossless compression. On-the-fly means that the video
content is compressed as it arrives, without touching DDR memory first. This in
turn means that the encoder must handle a throughput close to 374 MB/s for a
1080p video stream at 60 frames per second. The lossless compression is meant
to lower DDR memory usage, lending more headroom to the lossy video encoding
processes. This report does not contain a complete system, ready to be run on an
FPGA. Instead it presents a compression module and a decompression module.

A compression scheme was chosen based on the arguments presented later in chap-
ter 2.1. LOCO-I with context modeling and Golomb coding showed the best results
in the preliminary work, and also was also considered to be among the most viable
for a hardware implementation.

The compression module takes one 8 bit color component per clock cycle, and pro-
duces compressed irregularly timed 16 bits of packed data. The decompression
module decodes those 16 bits of packed data and produces one 8 bit color compo-
nent per clock cycle. Additional functionality that is necessary for a system to be
able to operate is discussed, but not implemented in VHDL, because of uncertain-
ties surrounding the integrating (existing) system.

Requirements and guidelines

• Real-time operation ((1920×1080) pixel
f rame ×3 Byte

pixel ×60 f rame
second = 374 MB/s)

• System frequency of 148,5 MHz for 1080p resolution

• Aim for using few Logic Elements

• Limit use of caching and block ram

3

1.3. Outline

1.3 Outline

Chapter 3 describes a system level model of the design. It outlines the functionality
necessary for the compression scheme to operate on a hardware architecture.

Chapter 4 presents the VHDL implementation. Here the hardware-level considera-
tions that went in to designing synthesizable modules are described.

Chapter 5 describes the test methodology and test data used to obtain the results.

Chapter 6 presents the compression results and relevant figures with different sys-
tem configurations and algorithm complexities.

Chapter 7 discusses the adjustments to algorithms used and reasons for making
changes. Results of the VHDL implementation are discussed in terms of through-
put and resource consumption, a possible limited implementation is explored. Con-
siderations for a system that is integrating the compression scheme are discussed, as
well as limitations and possible solutions that can bypass those limitations. Finally
the primary and simplified implementation are compared.

Chapter 8 delivers the conclusion where results and findings discussed in chapter 7
are summarized. Points to continue working on are also listed.

4

CHAPTER

TWO

BACKGROUND

2.1 Preliminary work

In the preliminary work [1] we presented several compression schemes that can be
used for reducing the storage size of an image. Different contenders for the two
stages of redundancy reduction and entropy coding were implemented in C++ and
tested in order to evaluate their performance in terms of compression. The imple-
mentations also served as great tools to better understand the computational steps
of the different algorithms. A decision on which scheme to continue working on
had to be made by looking at compression statistics and estimating the complexity
of a hardware implementation, especially considering the throughput and real time
requirements.

Basis for choosing our algorithm

The compression comparisons ([1] Ch. 5.6, fig. 21-22) showed that LOCO-I +
Golomb performed the best on images with higher entropy, while arithmetic coding
performed the best on images with lower entropy. Both schemes were among the
top three for both image types. FELICS placed right behind LOCO-I + Golomb on
both image types, while LZSS performed well on low entropy images.

Some of the coding algorithms has characteristics that make them less suitable for
hardware implementation than others. Both of the Lempel-Ziv variants try to rep-
resent sequences of recurring symbols with dictionary look-up values. The creation
of these values require a number of searches, and the number of comparisons nec-

5

2.1. Preliminary work

essary in order to parallelize a search is quite large (16.264 - ref [1] Ch. 6.4). The
encoding is also causal, making it unfeasible to split searches into multiple stages.

Golomb coding is fairly well suited for hardware implementation, with a more
hardware specific variant known as Golomb-Rice. GR uses divisors that are pow-
ers of 2, so that divisions can be implemented as right shifting and multiplications
as left shifting. The algorithm requires no caching or storage, but it depends on op-
timal k-values to achieve optimal coding. Decoding is causal in the sense that the
codewords are of variable lengths, and one code must be separated from the rest be-
fore the next can be found. Calculation of the binary values can be performed over
several pipelined steps if necessary to increase speed. An implementation using
Golomb coding with Differential-Differential Pulse Code Modulation presented in
[2] achieved a high throughput of 2720 MB/s due to high parallelism.

Huffman coding in its simplest form require a pre-calculated code table. Even if
the compression is acceptable, it places last among the examined algorithms. Com-
pression can be improved by using an adaptive code table, although this requires
an adaptive statistical model of the alphabet for each frame in order to optimize the
code table. Decoding involves the same causal variable length code word separa-
tion as Golomb. This fact makes Golomb a better candidate because it has the same
technical challenge, but does not require caching of a table or statistical modeling
during runtime.

Arithmetic coding was never fully implemented in C++, and a Java encoder [13]
was used instead, so the algorithm was not as well understood as the other alter-
natives. It also required a statistical model similar to adaptive Huffman in order
to optimize encoding. An hardware architecture based on context-based modeling
and arithmetic coding is presented in [5]. It uses 1123 slices for a throughput of
15,37 MB/s.

FELICS is considered to be more complicated than the LOCO-I + Golomb alterna-
tive, because it uses a second source coding technique in addition to Golomb. This,
paired with the fact that it showed worse compression results means that LOCO-I
+ Golomb is a better choice. The implementation in [4] achieved a throughput of
546 MB/s.

The existing implementations

Some specifications from papers presenting hardware implementations of similar
compression schemes are summarized in table 2.1.

It can be seen that only DDPCM+GR and FELICS cover our throughput require-
ment of 374 MB/s (3 Gb/s), but both are VLSI-oriented ASICs, so it may be
unlikely that they would have achieved anything close to those frequencies on com-
mon FPGAs. The high parallelism of DDPCM+GR means it could still be able to
reach the required throughput even if its operating frequency takes a hit. It should

6

Chapter 2. Background

Table 2.1: Performance comparison between encoder implementations

Algorithm DDPCM+GR JPEG-LS FELICS Arithmetic Code
Technology 0.15µm 0.18µm 0.13µm Vertex 4
Operating freq 170 MHz 40 MHz 273 MHz 123 MHz
Throughput 2720 MB/s 9.9 MB/s 546 MB/s 15,37 MB/s
Compression 5.26 b/S - 3.40 b/S 4.55 b/S

Parallelism 16 1 2 1
Memory Not used 2.25KB 1.9KB 7.7KB
Reference [2] [3] [4] [5]

also be noted that the test images used for obtaining the compression rates differ
between the papers. Their efficiencies are therefore difficult to gauge, and it is more
relevant to note that i.e. [2] has a best case rate of 4.75 b/S (bits per 8 bit sample).

Decision

Based on these considerations, the choice fell on implementing the LOCO-I context
modeling with adaptive Golomb encoding. It had the highest potential for compres-
sion, the prediction and context modelling had high potential for pipelining, while
the Golomb scheme was well understood with tunable properties.

The most apparent obstacle before implementation had begun was the issue of de-
coding tightly packed Golomb code words of variable lengths. One code must be
separated from the rest before the next can be separated. The unary coded quotient
q must be counted, as its length is unknown at the beginning of a new code word
decoding. The length of the residual r is equal to the k-value, and is known at the
start of a code word decoding.

It must also be attempted to minimize the amount of overhead data required to lo-
cate, recover and decode the frame data from memory. The three color components
are expected to be processed by separate parallel encoder instances, and a packing
scheme must be in place which keeps track track of the colors in the memory.

2.2 Image representation and compression theory

This section provides the theory needed in order to understand the basis behind
compression algorithms and the choices made during the initial work.

Since most of the theory regarding image representation and compression were
examined during the preliminary project, some of the sections will be repeated here
in this section and its subsections. More specifically, section 3 ’Image compression
theory’ in [1] and some parts of section 2 ’Image representation’ are repeated.

7

2.2. Image representation and compression theory

An uncompressed image is represented by an array of pixels, where each pixel is
given a numerical value describing the color and luminance information of that
pixel. This value is encoded with a fixed amount of bits, given by the alphabet size.
In an RGB24 representation, the luminance of each color component red, green
and blue, is encoded with an alphabet size of 256 per pixel, resulting in a total of
8+8+8=24 bits per pixel. The total information stored in a picture, however, does
usually not require as many bits, because some of the information is redundant (i.e
repeated or irrelevant).

Image compression is the process of identifying this redundant information, and
reducing the amount of data needed to represent the total information stored in an
image, by removing as much redundant information from each pixel as possible.
The objective is to represent the image with fewer bits than the original representa-
tion, and the amount of compression obtained is the ratio between the total number
of bits before and after compression.

Statistical redundancy in an image can be divided into three main categories, cod-
ing, spatial and spectral redundancy, and will be presented in the following sections.

Coding redundancy

In an uncompressed image each pixel is encoded using a fixed size bit representa-
tion. In the case of RGB24, as mentioned in the previous section, the pixel is coded
with 3 separate color components, red, green and blue, each component consisting
of 8 bits, allowing for an alphabet size of 256 characters. This would lead to a fixed
image size relative to the number of total pixels in the image. However, the value
represented by each pixel is not completely random (unless the image consists en-
tirely of white noise), and thus it would be useful to represent values occurring
more often with shorter bit lengths than values that occur rarely. This will in all
cases result in a shorter (or equal) total bit length than the original representation.

Values that occur more often than others, i.e. has a higher probability, is said to
contain less information. For instance, if the probability of an outcome equals 1,
the information content would be zero, because it would be entirely predictable.
The relationship between information content and probability of an outcome xi,
can be written as,

I(xi) = log
1

P(xi)
=− logP(xi), (2.1)

and gives the number of digits needed to represent xi. Using the base 2 logarithm
would give us the result in bits. So by generating a probability distribution of all
the pixel values, P(x), we can get a measure on the information content stored in
each pixel. More precisely this is called entropy and is defined as

H = ∑
i

P(xi)I(xi) =−∑
i

P(xi) log2 P(xi) (2.2)

8

Chapter 2. Background

and gives the average number of bits per pixel needed to represent all information.
Or in other words, the entropy serves as a lower bound on the average number of
bits needed. So by multiplying the average number by the total number of pixels,
we get a lower bound on the compressibility of the data. Thus, the entropy of a data
set provides us with very useful information regarding the efficiency of the chosen
data compression scheme, by comparing the size of the compressed data with the
entropy.

If we would like to code the image with shorter bit length at pixels that occur often,
and vice versa, we would need a coding scheme supporting variable bit length.
Coding the image using variable bit length based on the probability of the value
to be coded, is called entropy coding. Examples of entropy coding algorithms
includes Huffman coding, arithmetic coding and Golomb coding.

Spacial redundancy

Specifically, equation 2.2 is called the first order entropy, and only takes into ac-
count the first order data correlation between pixels. That is the correlation between
the actual pixel values through out the image frame. The n-th order entropy would
also consider higher order correlation, like the difference between two subsequent
pixels, which would give us the second order correlation. The data redundancy
governing higher order correlation is called spacial redundancy.

Spectral redundancy

Color information can be represented in different ways. In an RGB representation,
the luminance of each color component is described separately. In another repre-
sentation R-G,G,B-G, the luminance of the color green is given a value, while the
other colors, blue and red, is represented by how much they differ from green. In
realistic images the luminance information between red, green and blue usually cor-
relate to a certain degree. Thus, describing the image according to the R-G,G,B-G
representation would in most cases result in a lower entropy [6].

Image compression

Lossless image compression schemes are usually broken into several processing
steps, where each step perform calculations sample by sample (pixel) in a prede-
fined order. Because of the limitations induced by the requirements, only schemes
that scan through the samples line by line are considered (This is called raster scan).
They are also limited to one pass only. A template of the current sample to be
processed,x, with regard to its neighboring samples is illustrated in figure 2.1. This
representation as well as the naming of the samples, will be used throughout this

9

2.2. Image representation and compression theory

paper. Notice that samples a through e are causal and known to both the encoder
and the decoder.

Figure 2.1: Causal template of current sample ′x′

The schemes are usually divided into two main components, modeling and source
coding. In the modeling part of the scheme, the predicted value of the current
sample based on samples a through e is computed. The source coding part then
encodes the error residual of the predicted value. [11]

The actual compression happens during source coding, since this is the stage where
the output code is produced. However, source coding of an image without decor-
relation through the modeling stage, is usually futile because the uncorrelated data
is more or less random to the source coding unit. And likewise, the modeling stage
without a proper source coding scheme is also futile (i.e. encode the decorrelated
image using regular binary coding), because the actual bit length would not be
reduced.

Modeling

The purpose of modeling is to identify spatial redundancy within the image frame,
caused by correlation between samples. This correlation indicates a predictive re-
lationship, and if the data is predictive there is no need to store this data for further
use by the decoder. So by representing each sample as a predicting function of
a subset of previous samples, and only store the error of the relationship between
the function value (predicted value) and the actual value, the information stored for
each sample is said to be decorrelated with respect to this subset. This representa-
tion will be referred to as the prediction residual,

ε = x̂− x, (2.3)

where x̂ is the predicted value, and x is the actual value.

When considering the statistics of the prediction residuals throughout the image
frame, ε can be thought of as a stochastic variable. It is an accepted observation
that the probability density function of the prediction residual, P(ε), has a two-sided
geometric distribution. If the prediction is based solely on the previous sample
subset a - e, the expected value of ε implicitly equals zero, and it has an unknown
variance.

10

Chapter 2. Background

The subset in which the decorrelation is performed has to be limited to a few pre-
vious samples (a through e), considering the complexity of the computation, so not
all spatial information is decorrelated. In order to compensate for this, more pa-
rameters can be introduced when calculating the prediction residual. Since ε can
be modelled as a stochastic variable, it would be useful if we could produce a better
model for the expected value as well as the variance. So, by assigning each sample
a context based on the gradients of the surrounding samples, we can assume that all
samples within the same context will have similar statistical properties. This would
lead to the possibility to implement additional parameters in the computation of ε ,
since the prediction errors from previous samples, would give an idea on how well
the prediction itself performs within the given context. The accumulated prediction
errors of samples within the same context can produce an offset parameter for the
expected value of the prediction residual as well as a parameter for the variance.

The stochastic variable ε can now be expressed as a function of the subset a through
e as well as a function of previous samples within the same context,

ε = x̂(a...e)− x+C(ε ′), (2.4)

where C is the offset parameter of the expected value computed on the basis of
previous values of the prediction residual, ε ′.

In order to make a general description of the modeling process, relevant to a large
number of available compression schemes, the main steps involved can be summa-
rized as following [11]:

1 A prediction step, in which the predicted value of sample x is computed based
on a subset of previous samples.

2 Determination of a context where x occurs.

3 Finding a probabilistic model for the prediction residual based on the context
from the previous step.

4 Output the result from step 1 as well as the parameters of the model in step 3
to the coder.

Some of the parameters output from step 3, like the offset parameter of the expected
value can be added directly to the prediction residual (eq. 2.4) and be utilized by
all coders. Others are used as optimization parameters of the coding process itself.
This includes the variance of ε , where the distribution of the code lengths of the
individual characters, can be adapted to this parameter (this will be explained in
the next section). If the coder is not adaptive, there is no need to compute these
parameters. Also, in a number of less complex compression algorithms, step 2 and
3 are omitted completely, and the prediction residual coded is based on the result
from step 1 only.

11

2.2. Image representation and compression theory

Entropy coding

The purpose of entropy coding is to produce shortest possible bit lengths based on
the probability distribution of the samples to be coded. The main objective is to
obtain a average bit length per sample as close to the entropy (eq. 2.2) as possible.
The two most common techniques are Huffman coding and arithmetic coding. Both
of these are based on obtaining a probability table before the actual coding process.
If the statistics of the probability distribution is known in advance, universal codes
like Golomb codes may be used directly without computing a probability table first.

Golomb codes As stated by [7], it is a widely accepted observation that the global
statistics of residuals from a fixed predictor in continuous-tone images are well-
modeled by a two-sided geometric distribution (TSGD) centered at zero. They
further give a complete characterization of optimal prefix codes for this type of
distribution. The family of optimal codes is an extension of the Golomb codes [8],
which are optimal for one-sided geometric distributions.

Golomb codes has a tunable parameter m and in order to illustrate the effect of this,
a list of Golomb codes for different values of m, is given in table 2.2. It is clear
that choosing codes with parameter m = 1 is only optimal if it is highly likely that
values are close to zero, e.g. coding value 255 with m = 1 would result in a code
length of 256 bits. This can be interpreted as the variance of the prediction residual,
and an m with a higher value would be preferable if the variance is high.

Table 2.2: Golomb codes for different values of m

M(ε) m = 1 (k = 0) m = 2 (k = 1) m = 4 (k = 2) m = 8 (k = 3)
q·r q·r q·r q·r

0 0· 0·0 0·00 0·000
1 10· 0·1 0·01 0·001
2 110· 10·0 0·10 0·010
3 1110· 10·1 0·11 0·011
4 11110· 110·0 10·00 0·100
5 111110· 110·1 10·01 0·101
6 1111110· 1110·0 10·10 0·110
7 11111110· 1110·1 10·11 0·111
8 111111110· 11110·0 110·00 10·000
9 1111111110· 11110·1 110·01 10·001

The codes can be further limited to a minimal complexity sub-family of the Golomb
codes, called Golomb-Rice codes, in which the tunable parameter m is a power of
2 (m = 2k). This makes Golomb-Rice codes more convenient for use on comput-
ers, since multiplication and division by m, would only imply shifting operations.
Further in the report k will be used when referring to the tunable parameter.

12

Chapter 2. Background

In order to produce a Golomb Rice code from the input value N with the parameter
k, the output code is divided into the quotient part q and the remaining part r.

q =

⌊
N
2k

⌋
= (N >> k) (2.5)

r = N mod 2k (2.6)

The quotient is represented by unary coding [9, p. 57] (q-length string of ’1’, ending
with a ’0’), and the remainder is represented by regular binary coding, with a code
length of k. The resulting code length will thus be:

N
′
len = q+1+ k (2.7)

To illustrate this with an example, let say we want to encode N = 9 with parameter
k = 2:

q =

⌊
9
22

⌋
= 2⇒ qbit = 110

r = 9 mod 22 = 1⇒ rbit = 01

The resulting code will be:

N
′
bit = 11001 and N

′
len = 2+1+2 = 5

2.3 LOCO-I

As mentioned above, the LOCO-I algorithm which was implemented in C++ during
the preliminary project, is the basis for this thesis. For convenience, the explanation
of the implementation will be repeated here as a theory background for the VHDL
implementation. ([1] section 4.1)

LOCO-I is the algorithm used in the JPEG-LS codec [3]. In the next sections the
different components of the LOCO-I algorithm will be presented. The modeling
part of the scheme consists of a first order prediction step, followed by a context
modeller. The coding part uses Golomb-Rice codes to represent the data, because
of its ability to create optimal prefix codes for geometrically distributed stochastic
variables.

Prediction

The predictor of LOCO-I is context dependent, and it consists of a fixed term and
an adaptive term. The prediction residual can be written as,

ε = x̂− x+C(c). (2.8)

13

2.3. LOCO-I

Here x is the actual value, x̂ is the value of the fixed predictor and C(c) is the
adaptive term determined by the context c. The calculation of C(c) is done in the
context modeling stage, and will be further discussed.

The fixed term is determined by the neighboring pixels a, b and c (figure 3.2). More
specifically, the fixed predictor guesses [11],

x̂ =

 min(a,b) if c≥max(a,b)
max(a,b) if c≤min(a,b)
a+b− c otherwise.

(2.9)

The predictor switches between three simple predictors. It can be interpreted as
picking b in cases where a vertical edge exists left of the current location, a in
cases of an horizontal edge above the current location, or a+ b− c if no edge is
detected [11].

The expected value of the prediction residual, resulting from the fixed part of the
prediction is implicitly zero.

E(ε f ixed) = E(x̂− x) = 0. (2.10)

However, if the context of the sample to be predicted is considered, there is usually
an offset in the expected value present (e.g. parts of image with an exponential
gradient). The purpose of the adaptive term is to cancel out the context dependent
offset, and it is calculated during the context modeling part of the algorithm. The
offset results in a new expected value,

E(ε) = E(x̂− x+C(c)) =C(c). (2.11)

Context determination

In order to index each sample into a specific context, the context must be calculated
and quantized into a limited set of possible values. The context is based on three
gradients present at the current sample. More specifically,

g1 = d−b

g2 = b− c (2.12)
g3 = c−a.

g is further quantized into 9 regions:

q(g) =

0 if g = 0
±1 if g =±{1,2}
±2 if g =±{3, ...,6}
±3 if g =±{7, ...,20}
±4 if g =±{e|e≥ 21}

(2.13)

14

Chapter 2. Background

These regions can be adjusted for different types of images, but those presented
here are the default ones for an 8-bit/sample alphabet, which is the only alphabet
considered in this report, and hence the only regions considered. The quantized
values are denoted by q1, q2 and q3, and gives a total of 9 ∗ 9 ∗ 9 = 729 possible
combinations. This can be further reduced by assuming that opposite q-triplets in
terms of sign, represents the same context information, only opposite. So if the
first non-zero element of the q-triplet is negative, the signs are switched, and a sign
register is set, so the decoder can switch back the signs. This results in a total of 365
possible combinations of q. The q-triplet is converted in to a parameter c, further
referenced to as the context index.

Context modeling

In the above sections both the prediction process and the coding process includes
context dependent parameters. These parameters represents respectively the ex-
pected value, and the absolute deviation of the stochastic variable ε . In order to
find the expected value, C, it would be intuitive to sum all previous values of ε

within the given context (B), and divide by N numbers of samples, to get the av-
erage value. Likewise, the absolute deviation could be calculated by summing the
absolute value of ε (A), and divide by N. However, in both cases, this includes a di-
vision operation which is not desirable due to its complexity. In the task of finding
the absolute deviation, both the accumulated sum, A, and occurrences, N, is passed
on to the coder, and the need for a division operation is not necessary during this
phase (and the way the coder handles this task, entirely eliminates the need for a
division operation.)

The authors of [3] propose a way of calculating C, without the need for a division
operation, which is also less sensitive to "outliers", i.e. typical large errors can
affect values of C until it returns to its stable value. The procedure is shown in the
below code display.

Display 2.1: Context computation procedure

A += abs(e); // accumulate abs of prediction residual
B += e; // accumulate prediction residual
N++; // update occurrence counter
if (B <= -N){

C--;
B += N;
if (B <= -N){

b = -N + 1;
}

}else if (B > 0){
C++;
B -= N;
if (B > 0){

B = 0;
}

}

15

2.3. LOCO-I

This procedure calculates all the context dependent parameters, C(c), A(c) and
N(c), needed by the prediction and coding phases.

Golomb coding

The prefix codes used for source coding is based on Golomb codes (referring to
table 2.2 in section 2.2). Golomb codes has a tunable parameter m that is given by
the context of the sample, and is determined by the accumulated sum of prediction
residuals stored in A(c), where c represents the context. A(c) is thus computed
during the context modeling stage described below. In order to be able to code
negative values of ε , and utilize the one-sided optimal prefix codes provided by
Golomb, the two-sided distribution is mapped to a one-sided distribution using a
mapping function,

M(ε) = 2|ε|−u(ε), (2.14)

where the indicator function u(ε) = 1 if ε < 0. This will index ε in the interleaved
sequence 0,-1,1,-2,2,...

The Golomb coding itself is performed on the value to be encoded, M(ε), with
the parameter k. The code is broken into two parts, the quotient part q and the
remaining part r.

q =

⌊
M(ε)

2k

⌋
(2.15)

r = M(ε) mod 2k (2.16)

As mentioned above, the quotient is represented by unary coding, and the remainder
is represented by regular binary coding. And the resulting code length is thus

len = q+1+ k (2.17)

The tunable parameter k is computed using the information stored in A(c) and N(c).
The process can be described by this C-code:

Display 2.2: Computing ’k’

for (k=0; (N<<k)<A; k++);

This process will choose the next 2k exceeding the average value of the accumulated
sum of prediction residuals, A, over N previous samples. The motivation for this
is obvious when looking at the coding of the quotient part, which is required to be
low in order to obtain a short code length. In other words, choosing 2k just above
the value to be coded, will result in the quotient part being zero and the code length
is then given by k+ 1. Since the encoding process has to be causal, k cannot be
chosen based on the current sample (which would lead to the shortest code length
regardless), but has to be based on previous values, hence the context modeling.

16

CHAPTER

THREE

SYSTEM LEVEL MODELING

The first stage in the design process consisted of developing a system level model
of all the internal processes in the compression/decompression algorithm, as well
as providing an interface for the whole design which comply with the specified
input and output requirements. System C is used as the modeling platform, which
enables high level description of hardware. It is built on top of the C++ language,
where each module is implemented as a C++ class. The System C package includes
a simulation engine, and the module-classes is registered as parallel event driven
processes by the engine. These processes is the equivalent to clock driven modules
in hardware.

The use of a modeling platform based on the C++ language makes it simple to
create an interface that represents the communication with the outside design. This
is realized through file reading and writing. The input data is read from a file stored
on the disk, and then the 24 bit RGB samples are passed on to the design each clock
cycle, creating a data stream of samples. Likewise, the output data from the design
is written to another file.

Some of the temporary data created by the modules inside the design is also written
to disk in order to check for compression ratios, and buffer overrun/underrun in the
FIFOs.

Referring to section 2.2 image compression consist of two main stages, modeling
and source coding. The modeling stage tries to convert each sample into a value
which lies within a limited range, using a causal model which is reversible. While
the source coding stage is for representing samples within this limited range with
fewer bits than the original sample. This also means that samples lying outside of
this region must be encoded with longer bit sequences. Consequently, the output

17

from the source coding consist of samples with variable bitrate, imposing the need
for a packing module which packs series of samples into a packet of fixed bit length.

The modeling stage need to cache previous samples, since these are used as mod-
eling variables, as well as store information regarding how well the model perform
in a given context, in order to improve the model for future samples.

This results in three main stages and internal memory for both the encoder and the
decoder, and is illustrated in the below figure.

The above stages are presented in the following sections, starting with the internal
memory which is called modeling memory. Followed by the modeling stage, the
source coding stage, Golomb packing, and finally how the complete system is put
together.

Figure 3.1: Encoder and decoder stages

18

Chapter 3. System level modeling

3.1 Modeling memory and variables

Neighbouring pixels

Since neighboring pixels are read during the modeling phase, their value have to
be stored in a cache register. The number of elements in this register is given by
the number of subsequent pixels from the current pixel down to the earliest input
pixel used by the modeller. The template used to describe neighboring pixels in this
document is shown in the figure below. If pixel c, b and d is used by the modeller,
the total elements that have to be stored by the register is given by line_width+
1, where line_width is given by number of pixels in one line of the input video
(in 1080p video this would be 1920 pixels) If f is included the total elements is
2 ∗ line_width, consequently doubling the cache size. For the doubling of cache
size to be expedient, the addition of f in the modeller, should give a corresponding
increase in compression efficiency.

Figure 3.2: Causal template of current sample ’x’

The cache has been written as a shift register, with taps on the relevant neighboring
pixels. Each time a new input pixel is ready to be modeled it is shifted in to the reg-
ister at x (current pixel). A new input arrive each clock cycle. During encoding, the
time from input arrives to it is shifted in to the register is one clock cycle, because
no processing is necessary. This allows for the use of a in the prediction model.
However, during decoding, the current pixel is not known until it is decoded by the
same modeller. Consequently, a is not known by the modeller, since decoding takes
more than one clock cycle to complete. This excludes a as a modeling variable and
only pixels on previous lines are applicable (b, c, d and i).

Context register

The context register is where all the context information is stored. This information
consists of the following variables:

A: Aggregate absolute value of the error residual, used by the Golomb source
coder to determine the best k. This is done by performing the following operation
on A and N,

19

3.2. Modeling

2kN > A, (3.1)

and increment k until the equation is satisfied, up to a maximum value of k = 8.
Since A is the aggregated absolute value, it will never go below 0. The maximum
value is given when k = 8. Consequently, A will be in the range of [0,256N].

B: This is a temporary variable used by the context modeller to determine if C
should be incremented, decremented or remain unchanged. From the context mod-
eling algorithm (code display 2.1), B will always be in the range [−N,0]

C: The error adjustment variable used by the predictor. It is increased or de-
creased until it reaches the current error residual. Since the error residual cannot be
greater or lower than ±255, this will also be the range for the variable A.

N: This is a temporary variable used by the context modeller to keep track of
the number of pixels processed in the current context. (Also used by the Golomb
source coder together with A)

As proposed by the LOCO-I algorithm, in order to keep the register size to a min-
imum, A, B and N is halved each time N reaches a predefined number of samples,
N0. Then, the range for each of the variables will depend on N0 (except for C) and
is summarized in the following table, along with the required bits for each variable
in the context register, if we assume that N0 is set to 32, which is the value used in
the VHDL implementation.

Table 3.1: Range of context variables

Variable Range
Number of

bits (N0 = 32)
A < 28 ∗N0 [0,256N0] 13
B [−N0,0] 6
C [−255,255] 9
N [0,N0] 6
Total 34

3.2 Modeling

This section describes the prediction model developed during the system level mod-
eling phase of the project. The processing tasks in this model are simply referred
to as modeling (i.e. modeling of input data to yield predicted output). The model is

20

Chapter 3. System level modeling

based on the LOCO-I algorithm, but is modified in order to comply with hardware
limitations.

The following list summarizes the steps through the LOCO-I modeling phase:

• Find the context in which the pixel occurs, based on neighboring pixels. This
is given an integer value within a specified range.

• Read information from context memory.

• Predict pixel value based on neighboring pixels.

• Adjust the predicted value based on information read from context memory.

• Update the context information based on how well the modeller performed.

Context determination (index module)

The gradients applied to determine the context of the current pixel, used by the
LOCO-I algorithm, are based on pixel a, b and c. Because of the causality principle
during decoding which excludes a as a valid variable, a could be substituted by i or
simply left as 0. In the latter case, g3 would be of no use leading to a reduction in
possible contexts. Both scenarios are investigated further and compression results
versus register sizes are presented in the results chapter. If i is included as a variable
the gradients would be computed as follows:

g1 = d−b

g2 = b− c (3.2)
g3 = b− f .

As stated by the LOCO-I algorithm the gradients has to be further quantized in
order to reduce possible contexts, denoted by q0, q1 and q2. They are quantized
in to 9 regions (-4 to 4), resulting in 9∗9∗9 = 729 possible combinations, further
halved by introducing a sign variable and then map equal gradients with opposite
sign to the same context. This gives a total of 365 contexts.

If we think of the q-triplet as numbers in the base-9 number system the equivalent
base-10 integer, c, for each possible triplet would be,

c = q1 ·92 +q2 ·91 +q3 ·90. (3.3)

This conversion is not particularly suitable for hardware implementation, because
it requires several multiplications and additions. It would be better if the radix
of q was a power of 2. So, by choosing 8 quantization regions instead, c can be

21

3.2. Modeling

calculated directly in digital hardware by putting the 3-bit values of each q side by
side,

c = q1 & q2 & q3, (3.4)

resulting in 9 bits. And then further reduce it by setting the sign bit if MSB is ’1’,
and then use opposite sign values of each q instead, giving a total of 8 bits, or 256
unique contexts. The region represented by 0b100 has no unique 2’s complement,
and is thus omitted, resulting in 7 regions given by the following list:

Table 3.2: Quantization regions

g range q q bit
[−128, −7] -3 101
[−6, −3] -2 110
[−2, −1] -1 111

0 0 000
[1, 2] 1 001
[3, 6] 2 010
[7, 127] 3 011

Example: If we have the following gradients,

g1 = −30
g2 = 5
g3 = −1

they will quantize into the following regions,

q1 = −3 = 1012

q2 = 2 = 0102

q3 = −1 = 1112

Since MSB q1 is ’1’, negative q-values are used. The resulting context is calculated
as follows,

c = −q1 & −q2 & −q3

= 011 & 110 & 001
= 111100012 = 24110

22

Chapter 3. System level modeling

Predictor and adjustment by context

Since A is excluded as a modeling variable, because of the causality principle, the
predictor proposed by the LOCO-I algorithm is not applicable. The performance
of several different predictors which meet the causality principle is evaluated and
presented in the results chapter. Since the choice of predictor does not change the
overall system model, and would be fairly simple to replace at a later time, the
current predictor used in the rest of this chapter and also the one implemented in
VHDL is,

p = b. (3.5)

However, several predictor models were investigated and is further discussed. In
the encoder, the error residual adjusted by the context information is given by,

ε = x− p−C, (3.6a)

where x is the original pixel value, and C is the context adjustment variable. If the
sign bit is set during context determination phase, the negative value of the error
residual, before the context adjustment, is encoded. This is calculated directly as,

ε =−x+ p−C, (3.6b)

The decoder receives ε and finds the original pixel value x by reversing the above
operations,

x = ε + p+C, (3.7a)

or,
x =−ε + p−C, (3.7b)

depending on the sign bit.

Update context information

The context update process is the same algorithm as the one used in the LOCO-I
algorithm in code display 2.1 and will be repeated here for convenience. There has
also been added a functionality that halves B, C and N each time the occurrence
counter N reaches N0 (As proposed by [3]). This is to reduce the maximum values,
and hence the memory needed to store these variables. And also make the context
information produced in earlier parts of the image increasingly less significant.

23

3.3. Source coding

Display 3.1: Context computation procedure

A += abs(e);
B += e;
N++;

if (N > N0) {
B = B/2;
C = C/2;
N = N/2;

}
if (B <= -N){

C--;
B += N;
if (B <= -N){

b = -N + 1;
}

}else if (B > 0){
C++;
B -= N;
if (B > 0){

B = 0;
}

}

3.3 Source coding

The source encoder receives the binary coded sample from the modeling stage and
entropy encodes the data. The purpose is to represent the data with as few bits as
possible. Consequently, the output has to be of variable width. This is not possible
to achieve in hardware because the width of the output bus has to be fixed. Thus,
another integer output representing the width of the current data output must be
included. The bits outside of the size range, specified by this integer, will not be
valid and is truncated later by the data packing module.

Similarly, the decoder must be able to read a variable sized data input. This proce-
dure is more complex than during encoding because the length has to be calculated
by reading the bits in the sample serially, due to the nature of prefix codes. And
the start of next sample is not known until the length is known. Consequently, the
decoder must receive fixed sized data packets, read the data serially and ask for
another packet before it reaches the end of the previous packet.

Reduce maximum bit width

The width of the data output bus must be equal to the longest possible entropy
code. By using Golomb codes, and an alphabet size of 256 (8 bit), the worst case
bit length would occur if the sample N = 255 is encoded using k = 0. The unary

24

Chapter 3. System level modeling

encoded data to be transmitted will then have the value (referring to equation 3.8
and 2.7),

q =

⌊
N
2k

⌋
=

⌊
255
20

⌋
= 255, (3.8)

resulting in a size of,

Nlen = q+1+ k = 255+1+0 = 256. (3.9)

When data is encoded, the packer module shifts data in to a register according to
the length of the data. This is done every clock cycle, and the size of the data can
potentially be of maximum length each clock cycle, resulting in the registers being
2 times as large as Nmax

Also, the packets which are written to memory cannot be of smaller size than the
maximum bit length, due to the fact that a series of worst case samples could be
transmitted subsequently. This scenario would result in a buffer overrun in the
packing module if the registers were smaller than the maximum bit length. Fur-
ther, the the packet size cannot be greater than what the bandwidth of the external
memory allows.

Thus, reducing maximum bit width is crucial in order to keep the registers in both
the encoder and decoder, as well as the data packing modules, within a reasonable
size. As proposed by the authors of the JPEG-LS algorithm [3], the data size can
be reduced by imposing a maximum length qmax on the quotient variable q in the
Golomb code. When q is greater than or equal to qmax, q is set to qmax, k is set to 8,
and the remainder r contains the 8 bit unencoded sample. The maximum bit length
will then be,

Nmax_len = q+1+ k = qmax +9. (3.10)

The task of finding an appropriate qmax will be further discussed in the discussion
chapter. During the rest of this chapter and the VHDL implementation chapter,
qmax is assumed to be 7, resulting in a maximum length of 16 bits.

Encoder

The creation of Golomb codes is a fairly simple task in hardware, and not much
calculation is necessary. As mentioned in the theory section, the Golomb codes
consist of a unary encoded quotient q and a binary encoded remainder r, after the
division of the input sample N, where 2k is the divisor. Since the divisor is a power
of 2, all divisions can be executed by the use of shifting operations.

25

3.3. Source coding

Since the output data length must equal the maximum bit length as explained in
the previous section, the invalid data can be padded with ones. These ones will
continue the unary encoded q, which in turn eliminates the need to specify the start
of q in the data output. The start of q will be specified through the size variable,
which is computed by the arithmetic operation,

s = q+1+ k = (N >> k)+1+ k. (3.11)

This is best explained through an example. The inputs, calculations needed to be
done, and the expected output are listed in the following table. The example data
to be encoded is 101010102.

Input Binary Decimal
k 6
N n7 n6 n5 n4 n3 n2 n1 n0
(example) 1 0 1 0 1 0 1 0 170

Calculations
q = (N >> 6) x x x x x x n7 n6

x x x x x x 1 0 2

r = N mod 26 x x n5 n4 n3 n2 n1 n0
x x 1 0 1 0 1 0 42

Output
dataout 1 1 1 1 1 1 1 1 1 0 n5 n4 n3 n2 n1 n0

x x x x x x x 1 1 0 1 0 1 0 1 0
sizeout q+1+ k = 2+1+6 9

The output data will then consist of the k least significant bits of the input, then a
zero indicating end of q, and the rest will be padded with ones. This data is output
together with the size variable.

Decoder

Since the length of the sample to be read is not known when the decoder loads
data to its registers, it need to load packages of data of a fixed size. The package
size must be equal or greater than the maximum bit length of the encoded data. As
mentioned, we assume that the maximum length is 16 bits, and that the decoder
receives packages of this size. Further, the register size in the decoder must be 3
times larger than this, resulting in 48 bits, in order to avoid buffer underrun.

The sample to be read may span two packages, i.e n number of bits stored at the
end of package p, and m number of bits stored at the start of package p+1. If the
beginning of a new package always starts with the first bit of a new sample, some
functionality that enables the decoder to know the end of a package have to be

26

Chapter 3. System level modeling

implemented. The implementation presented here assumes that the input packages
consist of a continuous stream of data, not interrupted by the end of a package.

An example of how the data is stored in the register is illustrated in the figure
below. The first sample to be read starts at bit 0, and the next starts at bit 9. The
only way the decoder knows that the next sample starts at bit 9 is by counting q
until it reaches ’0’, and then add k number of r’s. Since a new sample has to be
decoded each clock cycle, the task of finding next sample must not take more than
one cycle to complete.

Next Start
↓ ↓

x x x . . . r r 0 q q q q r r r r 0 q q q q
47 9 0

Figure 3.3: Decoder register

Data from start of current pixel to the start of next pixel is read by the next module.
This module calculates q and r and combine them to give the corresponding 8 bit
binary encoded data.

Determine ’k’

The calculation of k relative to the current sample has to be done before the Golomb
coder starts encoding or decoding. The task to be executed is given in code display
2.2. It reads A and N from the context register, and based on this information
outputs the corresponding k. The task can be seen as 9 parallel processes, checking
(N << k) ≥ A for all possible k’s (0-8), and then output the right k based on the
results.

Display 3.2: Parallel computation of ’k’

else if((N << 1) >= A) k = 1;
else if((N << 2) >= A) k = 2;
else if((N << 3) >= A) k = 3;
else if((N << 4) >= A) k = 4;
else if((N << 5) >= A) k = 5;
else if((N << 6) >= A) k = 6;
else if((N << 7) >= A) k = 7;
else k = 8;

27

3.4. Golomb packing

3.4 Golomb packing

The packer module receives the variable bit length data from the Golomb encoder.
As mentioned, this is represented by a data bus of 16 bit, and a size variable. This
data has to be truncated relative to the size before it is stored in the registers in the
packer module. In order to avoid buffer overrun in the register, the size has to be at
least 2 times as large as the data bus, in order to avoid buffer underrun.

Truncate
↓

In 1 (size 7) n1 n1 n1 n1 n1 n1 n1 x x x x x x x x x
1 7 16

Truncate
↓

In 2 (size 10) n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 x x x x x x
1 10 16

Write to register:

In 3 In 2 In 1
↓ ↓ ↓

nx . . . n3 n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 n1 n1 n1 n1 n1 n1 n1
31 17 7 0

Output package:

↓ ↓
nx . . . n3 n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 n1 n1 n1 n1 n1 n1 n1
← Package 2 Output 16 bit package when full

15 0

Figure 3.4: Golomb packer register

Figure 3.4 shows how the input data is truncated and added continuously to the
register, and output to the memory writer. It works in a circular manner, so when
the second package (bits 31 down to 16) is written, it proceeds at the start of the
register (bit 0).

28

Chapter 3. System level modeling

3.5 System put together

One of the main limitations when the algorithms are mapped to hardware is the need
for pipelining, in order to keep up with the frequency requirement. This challenges
the causality principle, because not all data are valid at the same time through the
pipelined design. The algorithm was divided into top modules, so that a pipeline
which are valid for both the encoder and decoder could be developed. All internal
memory reads and writes in the LOCO-I algorithm were identified, as well as all
internal dependencies. This is listed in table 3.3.

Table 3.3: Top level module dependencies and internal memory reads/writes

Encoder
Module Dependency Memory read Memory write
Context index None Line cache N/A

Modeling Context index Line cache,
Context mem

Line cache

Context update Context index,
Modeling

Context mem Context mem

Find_k Context index Context mem N/A

Source coding Modeling,
Find_k

N/A N/A

Decoder
Context index None Line cache N/A

Find_k Context index Context mem N/A

Source coding Find_k N/A N/A

Modeling Source coding,
Context index

Line cache,
Context mem

Line cache

Context update Context index,
Modeling

Context mem Context mem

Based on this table, it was found that the decoder/encoder pair could be divided
into a total of 5 top module pairs, placed in such a way in the pipeline that the
internal memory writes and reads would contain the exact same data, and occur at
the same stage. And also in such a way that the internal pipeline of each of the top
modules could have an arbitrary length. The last criteria arose because of the need
for a dynamic model which can be adapted to the not yet developed VHDL code,
since we simply do not know at this stage how long the pipelines need to be in order
for the implemented VHDL module to comply with the speed requirements. Thus,
a model which includes the a dynamic delay of the output data of each System C

29

3.5. System put together

implemented top module, relative to the length of its internal pipeline path, was
necessary.

The pairs identified are the context determination part, the modeling part (both pre-
diction and correction by context), updating of context information, the procedure
of finding k, and source coding (Golomb).

In order to make the decoding process valid, it must perform operations on the
data in the same order as the encoder. And it must also read to and write from the
modeling memory, which contains the modeling variables, in the same order and
at exactly the same pipeline stage as the encoder, in order for the stored data to be
equal in both the decoder and the encoder. A top level model based on these criteria
and the above table gives us the following pipeline diagram:

Figure 3.5: Toplevel pipeline diagram

30

Chapter 3. System level modeling

Memory package and header data

The 16 bit output from the Golomb packer is about to be sent to memory for stor-
age. A single FIFO represents the common memory of all three components, and
additional header info is necessary in order to tell the elements apart. In order to
reduce the total number of headers, 8 Golomb packages are combined into one
larger 128 bit package. The total width of the elements in the memory FIFO is thus
130 bits, if it is assumed that 2 bits are needed in order to specify one of the three
color components. It has not been decided at this stage how the packing scheme is
best implemented, so this temporary scheme is used because it bears similarities to
several of the possibilities discussed in chapter 7.3.

Memory package:

hhx Gp0 Gp1 Gp2 Gp3 Gp4 Gp5 Gp6 Gp7
2b 128b

Figure 3.6: Header data and Golomb packages (Gpn) combined into one large package

Example FIFO content:

Queue pos. 130 bit package, 2b header + 128b data
#0 10G 8 x Green
#1 01R 8 x Red
#2 11B 8 x Blue
#3 10G 8 x Green
.
#n 10G 8 x Green

Figure 3.7: Packages queued in the FIFO

When a package is pulled from the memory, the header is read first in order to
identify the color and make sure that the 128 data bits are delivered to the correct
decoder. The data portion is then split into the 8 smaller Golomb packages, and
those are written to a 16 bit FIFO that act as a buffer for the decoding module.

31

3.5. System put together

System flow

Figure 3.8 illustrates all modules included in the System C implementation, and
how they are connected.

Figure 3.8: System flow

32

CHAPTER

FOUR

VHDL IMPLEMENTATION

Based on the above system level model, each of the top level modules index,
f ind_k, modeling, coding and packing were realized using the VHDL language.
The following sections will give an explanation of how each of the modules were
implemented, and particularly how they are pipelined in order to comply with the
speed requirement. This is important so that the above described system level
model can be adapted to the signal delays caused by the pipelines, and further
checked for consistency regarding the validity of data, and to see of this has any
impact on the compression ratio.

In order to simplify the implementation, and only concentrate on the parts that is
relevant in order to specify signal delays, FPGA resource usage, and critical paths
for the whole design, only the relevant parts are implemented. This include an
encoder module which encodes only one color component, that is assumed to input
8 bit data each clock cycle and output 16 bits Golomb packages, when the write
buffer is full. And, a decoder module which inputs 16 bit Golomb packages, and
outputs the decoded 8 bit color component each clock cycle.

Memory packing modules which create memory packages and RGB header data
packages, are not implemented. A reason for this is that it is not clear at this stage
what is the best way of doing this. Also, this is not relevant in order to make a
working system. But a discussion on different possible implementations is given in
chapter 7.

The test bench however, instantiates three of these encoder/decoder pairs, one for
each of the color components, and emulates the peripheral memory and the memory
packing modules. This makes it possible to simulate the whole design in order
to check for validity of the decoded data, and also if the compression ratios are
comparable to the ones obtained by the System C implementation.

33

4.1. Determine context and ’k’

One would think that the best way of checking for consistency between the Sys-
tem C implementation and the VHDL implementation, was comparing the Golomb
packages created by the encoder. But it turned out to be very hard to obtain the
exact same output data for both implementations, because only a tiny difference
in the algorithm, results in completely different encoded data. So the validation of
the VHDL code consisted of comparing the compression ratios obtained by the two
systems, and then checking if the decoded data was identical to the original data.

4.1 Determine context and ’k’

index: The implementation of this module is pretty straight forward. It is pipelined
in order to comply with the speed requirements. The pipeline consist of three pro-
cessing stages, gradient, quantize and index which corresponds to the stages de-
scribed in section 3.2 (Equation 3.2, table 3.2 and equation 3.4 respectively). The
inputs are samples stored in the line cache, and the output is the context index, and
sign.

Figure 4.1: Index module flow

find_k: The calculations done during this stage is the same as those in code dis-
play 3.2. The output k, which takes on values from 0 to 8, is represented in 3
different ways:

• k_out : 9 bits. Only one bit is set, and its position represents the integer.
• k_less_out : 9 bits. All bits below the k position is set.
• k_int_out : 4 bit binary encoded integer value.

Different modules require these different representations.

It calculates all possible outputs in parallel and selects the output based on A and
N stored in context memory. Since it has to read from context memory, the index
module must compute the index-variable first since it acts as the address to the
context memory. Because of the reading delay imposed by the embedded memory

34

Chapter 4. VHDL implementation

that is used on the FPGA, the module is pipelined through two stages, where the
first stage is devoted to getting data from context memory only and store them in
registers.

The loco_index and loco_k modules are instantiated by both the encoder and the
decoder, and the VHDL code is given in appendix A.1.

4.2 Prediction and context update

modeling Prediction and context update has been combined into the same mod-
ule. The prediction part which produces the error residual to be encoded is given
in equation 3.6a/b and the reversed operation (during decoding) in equation 3.7a/b,
and the context update procedure is given in code display 3.1. There are many
arithmetic calculations needed to be done during these two stages, and in order
to keep the critical paths short enough after synthesis, the procedures had to be
pipelined. Code displays 4.2 and 4.3 show how the above mentioned procedures
are divided into separate pipeline stages, for the encoder and decoder respectively.
The complete pipeline is illustrated in figure 4.2, and the full VHDL code is given
in appendix A.2 and A.5 for the encoder and decoder side respectively.

The reading of context memory is done in a separate stage (stage 1), because the
memory read delay is quite large compared to register read delay. Also, during
decoding, data_in has to be mapped to a two sided distribution (equation 2.14).
This is done by the following VHDL code.

Display 4.1: Golomb mapping function (Decoder)

if data_in(0) = ’1’ then
e(6 downto 0) <= not data_in(7 downto 1);
e(7) <= ’1’;

else
e(6 downto 0) <= data_in(7 downto 1);
e(7) <= ’0’;

end if;

Figure 4.2: Prediction and context update flow

35

4.2. Prediction and context update

Display 4.2: Pipelinging of prediction and context determination (Encoder)

//--
// STAGE 1
//
// Read A,B,C,N from context memory
// Read data_in, P (Predictor) and sign

//--
// STAGE 2

if (sign == 1) {
e = data_in - P - C;

}else{
e = P - data_in - C;

}

if (N > N0) {
A = A/2;
B = B/2;
N = N/2;

}
//--
// STAGE 3

Q_out = e;

A += abs(e);
B += e;
N++;

//--
// STAGE 4

if (B <= -N) {
C--;
B += N;

//--
// STAGE 5

if (B <= -N) {
B = -N + 1;

}
}

//--
// STAGE 4

else if (B > 0) {
C++;
B -= N;

//--
// STAGE 5

if (B > 0) {
B = 0;

}
}

//--
// STAGE 6

A_out = A;
B_out = B;
C_out = C;
N_out = N;

36

Chapter 4. VHDL implementation

Display 4.3: Pipelinging of prediction and context determination (Decoder)

//--
// STAGE 1
//
// Read A,B,C,N from context memory
// Read data_in, P (Predictor) and sign

e = map(data_in);
//--
// STAGE 2

if (sign == 1) {
data = P + C + e;

}else{
data = P - C - e;

}

if (N > N0) {
A = A/2;
B = B/2;
N = N/2;

}
//--
// STAGE 3

Q_out = data;

A += abs(e);
B += e;
N++;

//--
// STAGE 4

if (B <= -N) {
C--;
B += N;

//--
// STAGE 5

if (B <= -N) {
B = -N + 1;

}
}

//--
// STAGE 4

else if (B > 0) {
C++;
B -= N;

//--
// STAGE 5

if (B > 0) {
B = 0;

}
}

//--
// STAGE 6

A_out = A;
B_out = B;
C_out = C;
N_out = N;

37

4.3. Golomb encoder

4.3 Golomb encoder

gol_enc_mux: The computation of the Golomb code is explained in the System
level modeling chapter 3.3. In order do this in hardware a series of 16 MUX’s
is used. The input data is n (8 bit sample from modeling stage), 1 or 0, and the
selector is determined by its position relevant to k. Data bits below k is given the
value of its respective n. The bit at position k is 0, and bits above k is given value
1. The MUX is illustrated in the figure below, and is the same as the one proposed
in the discussion section of the preliminary project [1].

Figure 4.3: Golomb MUX

A series of 16 MUX’s will give the following output data, if we assume that k = 6
and q becomes 2, as an example.

Input
q q r r r r r r
n7 n6 n5 n4 n3 n2 n1 n0

Output ↓ ↓ ↓ ↓ ↓ ↓
x x x x x x x q q q r r r r r r
1 1 1 1 1 1 1 1 1 0 n5 n4 n3 n2 n1 n0

Figure 4.4: Calculation of golomb code

The MUX module is called gol_enc_mux in the VHDL code.

gol_enc_shift: In order to find the size variable the length of q has to be calcu-
lated, this is done by shifting the input sample k times to the right. All possible
results are calculated in parallel, and a MUX outputs the right q length based on the
input k (equation 2.17)

gol_enc_top: The input data is geometrically distributed around 0 in the range
[-128, 127], and has to be mapped to a one sided distribution, since the Golomb
encoder only takes positive integers. This mapping function is given in the below
in the VHDL code and corresponds to the mapping function given in the theory
section, equation 2.14. This is a clocked process.

38

Chapter 4. VHDL implementation

Display 4.4: Golomb mapping function

if input(7) = ’1’ then
input_t1(7 downto 1) <= not input(6 downto 0);
input_t1(0) <= ’1’;

else
input_t1(7 downto 1) <= input(6 downto 0);
input_t1(0) <= ’0’;

end if;

When the length of the q sequence is calculated by the shifting process, a process
checking if q is 7 bits or larger is implemented, in order to comply with the max-
imum Golomb bit length. If this is the case, the r part of the output is set to the
data given by the input sample N, and the size variable is set to 16. Otherwise, the
output is set to the one calculated by the multiplexers, and the size variable is given
by qlength +1+k. This is illustrated by the following VHDL code, and is a clocked
process.

Display 4.5: Select golomb output

if (q_length > 6) then
length_out <= "1111"; -- 16
output <= "11111110" & input;

else
length_out <= q_length + 1 + k;
output <= output_mux;

end if;

The whole process of computing Golomb code is pipelined through 3 stages, and
is illustrated in the figure below. All code is given in

Figure 4.5: Golomb encoder top level flow

Golomb packer

wbuf Variable length Golomb codes require a module capable of buffering the
output until a package of some constant size can be passed along. This module is
called Golomb Packer, and the 16 bit packages it outputs are called Golomb pack-
ages. The module receives 16 bits of data from the Golomb encoder. These 16 bits
contain the Golomb code word and usually some invalid data, so the size input is
used to communicate how many of the input bits that make up the code word.

39

4.3. Golomb encoder

Figure 4.6: Golomb Packer - main inputs and outputs

For a buffer array AGP of size N, the write pointer wi is the index of AGP from
where the first bit of a code word is written. Because this index can take on any
of the N possible values, the module logic must be able to connect a 16 bit input
to any of the N positions. Using a small N will therefore help reduce the module
size. Additionally, using a multiple of 16 as N is desirable, as it minimizes the
required wiring between AGP and the GP module output. Using a size N equal to
two Golomb packages ensures that there always is room to store a code word. The
output alternates between only two different locations in the array.

AGP(31 downto 16) AGP(15 downto 0)
#0 wi
#1 wi
#2 wi
#3 wi
#4 wi
#5 wi
#6 wi
#7 wi
#8 wi

Figure 4.7: Showing the AGP array as it receives data and write Golomb packages when they
are full

Figure 4.7 shows AGP as data is collected until a 16 bit package is ready to be
outputted. Each space represents 2 bits of data. The white spaces are considered
empty, light blue indicates the total 16 bit input, and the dark blue spaces indicate
which of the 16 bits that are valid. When the array contains 16 bits of valid data,
the half containing the valid data is pushed to the output, as indicated by green clk
cells.

The input can typically be written straight into AGP if there are at least 16 bit places
behind the write position. If there is not enough room behind the write pointer,
input must be written down to the last position, then continue from the front end
of the array. The code displayed in 4.6 show the operations responsible for this
functionality.

40

Chapter 4. VHDL implementation

Display 4.6: Golomb Packer wrap-around function

if (writePos < 15) then
writebuffer(writePos downto 0) := input(15 downto x);
writebuffer(31 downto writePos + 17) := input(x-1 downto 0);

else
writebuffer(writePos downto writePos - 15) := input;

end if;

The remaining functionality can be summed up by the following steps:

1. Move write pointer and add to valid content tally according to size input

2. Check if valid content now is > Golomb package

3. Output if true, and subtract output length (16) from valid content tally

If a Golomb package is read to the output, the write port is set to ’1’ to signal a
valid output.

All VHDL code presented in this section is given in appendix A.3.

41

4.4. Golomb decoder

4.4 Golomb decoder

The figure below shows each of the modules and the main registers which make
up the Golomb decoder. It uses an indexed data register in order to keep track of
where the samples are positioned. Each of the modules will be further explained,
and also how the indexing system works.

data_in_reg
↓

Data register:
x x x . . . r r 0 q q q q r r r r 0 q q q q

Clock 1

Get index:
0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

↓
find_end_q

↓
End q index:
0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

↓
k8
↓

find_end_r
↓

Next index:
0 0 0 . . . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Pipelined

↓ ↓ ↓
decode_q decode_r load_data

↓
comb_qr
↓

Figure 4.8: Golomb decoder modules and registers

42

Chapter 4. VHDL implementation

Index registers

One possible way of reading the input samples which are of arbitrary length, is to
start reading at the start of the data register, then shift the data register relative to the
sample length, resulting in the next sample to be positioned at the start. And then
start reading a new sample. Since the length of the input sample is not known until
the sample is actually read, this procedure would in the best case need two clock
cycles per sample to complete. This does not comply with the real time requirement
of one sample per clock.

Thus, a system which consist of four parallel registers, one data register, and three
registers that serves as index bits to the data register, was developed. These four
registers, each consisting of 48 bits, are given the names:

• data
• get_index
• end_q_index
• next_index

data contains at any time 3 Golomb packets to be decoded. get_index, end_q_index
and next_index has only one bit set at the rising edge of the clock, representing the
start of sample, end of q sequence and the start of next sample respectively. This is
illustrated in the figure below.

data x x . . . q q q q r r r r 0 q q q q
get_index 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 1
end_q_index 0 0 . . . 0 0 0 0 0 0 0 0 1 0 0 0 0
next_index 0 0 . . . 0 0 0 1 0 0 0 0 0 0 0 0 0

47 0

Figure 4.9: Golomb decoder index registers

43

4.4. Golomb decoder

Update index registers

All modules in this subsection is written to consist of only combinational logic,
because all processing has to be done during one clock cycle. The top level design
update_registers takes get_index-register, data register and k as inputs and calcu-
lates the new end_q register and next_index register using 3 sub-modules. This
information is used by the q and r decoders to extract data at the right position, as
well as being the basis for the new get_index updated on the next clock cycle, since
next_index register is the consecutive get_index register. The 3 sub-modules are:

find_end_q: Since it is important that the critical path is as short as possible, it
desired to parallelize the process as much as possible. We know that the unary
encoded q cannot consist of more than 7 ones in a row followed by a zero. Based
on this the count_q module was written and is shown in the figure below. It finds
the first zero occurring in the 8 bit input data, and outputs its position if the get bit
is set.

Figure 4.10: count_q module

48 such modules were implemented in an array, each representing one data bit po-
sition. It takes the data bit and get index at the modules current position and the
subsequent 7 data bits as inputs. Based on this information, it outputs the position
of the first zero occurring in the 8 bit sequence, and only if the get bit is set. Conse-
quently, only one of the 48 modules will output a 8 bit signal with one bit active. All
7 bit data outputs from all modules are then processed through OR-gates resulting
in a 48 bit signal with only one bit set, representing the end of the q sequence. This
is stored in the end_q_register. This is illustrated in the below figure. The AND-
gate pairs in the count_q module are represented as squares placed diagonally and
relative to the data input. The data path produced by the example data stored in
the data register, is marked in red. Only two count_q modules are included in the
illustration for readability.

44

Chapter 4. VHDL implementation

Figure 4.11: find_end_q module

k8: This module checks if the distance between get_index and end_q is 8 bits. It
takes get_register and end_q_register as inputs, and uses 48 AND-gates checking
if bit position n in the get_register and bit n+8 in the end_q_register is both ’1’.
In that case it sets it output high, indicating that k = 8, and the subsequent 8 r-bits
consist of unencoded data.

Figure 4.12: k8 module

45

4.4. Golomb decoder

find_end_r: Based on k, this module calculates the end of the r sequence, which
is k bits after end_q. It takes end_q_register and k as inputs and calculates the end
of r of all possible k’s, in 9 parallel processes (k = 0-8). Then it uses a MUX to
select the right output based on the actual input k. The output data is given as a
48 bit register with only one bit set, representing the end of the r sequence. This
register is the next_index and points to the start of the next sample.

Decode q and r

decode_q: All information needed to calculate q is stored in the get_index and
next_index registers. This module takes the position of the get and next bit stored
in these registers and convert them into binary coded integers. Then it calculates
the difference of these two integers. Since maximum q length is 7, the output is
truncated into 3 bits. This process is described in the below code, with q_out as the
resulting q integer value. q_out is updated on rising edge, and the whole process
takes one clock cycle to complete.

Display 4.7: Convert ’get’ and ’next’ to integer

with end_q select end_q <=
"000000" when "0001",
...
"101111" when "1000";

with get select get <=
"000000" when "0001",
...
"101111" when "1000";

calc_diff : process(clk) is
begin

if rising_edge(clk) then
q_temp <= end_q - get;

end if;
end process calc_diff;

q_out <= q_temp(2 downto 0);

decode_r: This module has to extract the r bits stored in the data register at the
position given by the end_q_index register. It uses an array of 8×48 multiplexers
to select either the data in the data register or data from the previous MUX. The
array is illustrated in figure 4.13. In the illustration the previous MUX is the one
to the right. The select signal is given by the get bit, and it activates a whole
diagonal row of MUXes. If the activate signal is high, it selects data from the data
register, otherwise it selects data from the previous MUX. This enables the data bits
to propagate all the way down to the left where it is read by the 8 bit output register.
This process takes one clock cycle to complete.

46

Chapter 4. VHDL implementation

Figure 4.13: decode_r module

combine_qr This module takes the 3 bit q integer and the 8 bit r integer and
combines them into the decoded 8 bit sample. This process is straight forward, and
takes one clock cycle to complete. All possible combinations for the different k’s
are given in the following table. All 9 combinations are processed in parallel and a
MUX selects the correct output based on k.

Table 4.1: Combine ’q’ and ’r’

k = 0 0 0 0 0 0 q2 q1 q0
k = 1 0 0 0 0 q2 q1 q0 r0
k = 2 0 0 0 q2 q1 q0 r1 r0
k = 3 0 0 q2 q1 q0 r2 r1 r0
k = 4 0 q2 q1 q0 r3 r2 r1 r0
k = 5 q2 q1 q0 r4 r3 r2 r1 r0
k = 6 q1 q0 r5 r4 r3 r2 r1 r0
k = 7 q0 r6 r5 r4 r3 r2 r1 r0
k = 8 r7 r6 r5 r4 r3 r2 r1 r0

Load data register

data_in_reg: The mechanism that loads new 16 bits Golomb packets in to the
data register consists of two modules. The first module data_in_reg is the module
that contains the data register and loads a new data packet when ready_in is active.
The data register consists of 48 bits in order to store 16 bits packets in three fixed
places. ready_in has two bits for selecting the portion of the register that is to
be written to. It receives the packet at data_in and outputs the 48 bit register at

47

4.4. Golomb decoder

data_out. The loading of data occurs in a circular manner, so the register represents
a stream of continuous data.

load_data_in: This module is responsible of feeding data_in_reg with the ready
signal, in order to load a new Golomb packet. It monitors the get_index and the
next_index registers to learn if a previous Golomb packet has been fully read. Since
the data register is divided into three 16 bit Golomb packet sections, it only need to
monitor each of the sections for both get_index and next_index. E.g. if the get bit
is set in section one, and next bit is set in section two, it means that section one is
ready for a new packet on the next clock cycle. This is illustrated in the following
figure. Here, the get bit is set in the first section, and next bit is set in section two.
The active data path is marked in red. Since the max length of a sample is the same
as the section size, there will never be an incident of get and next being in two
registers not adjacent to each other, i.e. get is in section one and next is in section
three.

Figure 4.14: load_data module

All VHDL code presented in this section describing the Golomb decoder, is given
in appendix A.6 in the same order as presented.

48

Chapter 4. VHDL implementation

4.5 Modeling memory

The internal memory has been written in order to utilize the embedded memory on
the Altera FPGA. The VHDL code for the following two modules, line_cache and
context_reg, is given in appendix A.8

line_cache The line cache memory is written as a shift register with taps at the
corresponding neighboring pixels to the current pixel that is being processed. Dur-
ing decoding, the fully decoded sample is shifted in after the modeling module has
finished. Since the memory data has to be equal in both the encoder and the de-
coder, the encoder must shift in data at the same pipeline stage, even though the
data is known at the first stage (input sample).

The context determination module uses neighboring samples to compute the gradi-
ents, as well as the prediction module. Since the prediction module is implemented
at a later stage in the top level pipeline, the the taps which correspond to the neigh-
boring pixels are not tapping the same memory elements as for the context deter-
mination module. This shift, has to correspond to the pipeline delay between these
two modules.

context_reg This memory consist of the four context variables, A, B, C and N.
The number of bits needed to be stored for each of the variables are 13, 6, 9 and 6
respectively, referring to table 3.1. This is repeated for 256 different contexts, and
the index variable computed in the index module (context determination) is used as
the memory address.

Both the f ind_k module and the modeling module must be able to read from the
memory at the same time at different stages in the pipeline, at different addresses.
While the modeling module is writing to a third address at the same time. Because
of this the memory module has to support reading from two different locations as
well as writing to a third location simultaneously.

4.6 Top level design

Based on the system level design from chapter 3, the above described VHDL mod-
ules were joined to yield a fully working encoder/decoder pair. Figure 4.15 and
4.16 shows how the modules are connected in order to comply with their internal
pipeline length, for the decoder and encoder respectively. It is worth noting that
reading and writing to both the line cache and context memory is done at the same
pipeline stage for the encoder and decoder.

49

4.6. Top level design

Figure 4.15: Toplevel pipeline decoder side

50

Chapter 4. VHDL implementation

Figure 4.16: Toplevel pipeline encoder side

51

4.7. Proposed implementation to reduce resource usage

Signal delays

enc_signal_delays and dec_signal_delays The variables index, sign and k (de-
coder) are used by more than one module, in different stages of the pipeline. Thus,
the signals must be stored and output at the right time. This is implemented by
shifting the signals into shift registers each clock, and use taps placed relative to
the reading modules position in the pipeline.

enc_reset and dec_reset The reset signal is also delayed relative to the pipeline
path, so each of the modules are started at the right clock period, not processing or
outputting invalid data.

The VHDL code for these four modules are given in A.2 and A.5 for the encoder
and decoder side respectively.

The top level modules are given in appendix A.4 and A.7.

4.7 Proposed implementation to reduce resource us-
age

The above implementation uses context modeling in order to find the k value that
gives the shortest code lengths, and to correct the prediction residual based on pre-
vious observations. This enables the algorithm to adaptively change the modeling
parameters in order to ensure that the compression ratio is optimal of many types of
images (Low/high noise, sharp edges, uniform areas etc.). However, context mod-
eling require a significant amount of FPGA resources, and it would be interesting
to see if it is still possible to acquire good compression ratios also when context
modeling is not used.

The following list provides an overview of which modules that can be omitted, and
the figure on the next page shows the new top level pipeline obtained when these
modules are left out.

• Context memory
• Context determination module
• Find ’k’ module
• Context update process in modeling module
• Shift registers for signal delays (index, sign and k)
• Simplified source encoding and decoding

This implementation would require k to be fixed. Compression ratios with different
k values has been presented in figure 6.6, in order to find the most suitable for
different types of images. A fully working implementation was synthesized and
verified. The resource usage is presented in table 6.4 and 6.5.

52

Chapter 4. VHDL implementation

Figure 4.17: Toplevel pipeline without context modeling

53

4.7. Proposed implementation to reduce resource usage

54

CHAPTER

FIVE

TESTING AND VERIFICATION

The testbenches must instantiate the three modules necessary to process three color
components, and take single frame data as input, as the scheme is meant to pro-
cess only individual frames. The compressed data is written to a file on disk to be
used by the decoder during decompression. Relevant compression statistics are pre-
sented after encoding, and the decoder checks that the decompressed information
matches the original, thus verifying that the modules operate as expected.

Test images represent likely input data for a video conferencing unit. Both natural
images, representing high entropy information, and captures of a computer screen,
representing low entropy information, are used.

5.1 VHDL testbench

Input files

Bitmap binary files are not well suited to be read directly by a VHDL testbench
using the textio package. RGB data must therefore be converted into a set of binary
or hexadecimal vectors. The simplest and most readable way of reorganizing the
data is to have one pixel per vector. Conversion is performed by a script written in
MATLAB, outputting a file with 1920× 1080 lines of 24bit hexadecimal vectors.
Using hexadecimal vectors make them easier to read and take up less disk space.
The first 10 values of the an input file are displayed in 5.1 below. Two and two
hexadecimal symbols make up the values for R, G and B.

55

5.1. VHDL testbench

Display 5.1: The first 10 vectors in the t1 test data file

1 B4B2B2
2 B0AFAE
3 AEAEAD
4 AFAEAD
5 AEADAD
6 B0AEAE
7 B3B2B1
8 B4B3B2
9 B4B3B2

10 B4B3B1
11 ...

Encoder testbench

The Encoder testbench instantiates 3 sets of encoders and Golomb packers, one
for each color. Between their inputs and their outputs they operate independently.
The input file is controlled by an input process, in which one line is read every
clock cycle until the file is empty. A separate process manages the outputs. It
is responsible for writing the Golomb packets to 3 separate output files whenever
the Golomb packers’ write signals are high. Figure 5.1 shows the overall flow in
and out of the testbench as well as the upper level modules. The signal probing
(Signal Spy) feature from the modelsim_lib.util package is used in order to debug
signals that are buried deep within the design hierarchy without having to create
unnecessary ports. Probing a signal and connecting it to a signal at the top level
testbench is faster than digging through layers of modules with countless signals
when setting up Modelsim simulations.

Figure 5.1: Encoding testbench flow

A compression ratio is calculated upon completion of the simulation, where bits out
are divided by bits in and scaled to indicate the average number of bits per symbol
(b/S). An example of the console output is displayed in 5.2. It shows compression

56

Chapter 5. Testing and verification

ratio (b/S) per color component and total. In addition it lists the sizes of the header
data for some different packet sizes.

Display 5.2: Example of compression results printed to the simulation console (Transcript)

Ending simulation.
Simulation statistics for t1:

R : 1.772022e+000
G : 3.674012e+000
B : 1.945378e+000
- - - - - - - - -
Tot : 2.463804e+000
- - - - - - - - -
Head 16 : 239 KB
Head 32 : 119 KB
Head 64 : 59 KB
Head 128: 29 KB
Head 256: 14 KB

The input color data is not spectrally decorrelated and the operation is also not
implemented as a module. Decorrelation calculation is therefore applied directly to
the input vector within the input process. The code in 5.3 shows how the spectral
decorrelation is performed when the inV vector is split between the three encoder
inputs.

Display 5.3: Spectral decorrelation step performed within the encoder testbench

inputR <= inV(23 downto 16) - inV(15 downto 8); -- R = R - G
inputG <= inV(15 downto 8); -- G = G
inputB <= inV(7 downto 0) - inV(15 downto 8); -- B = B - G

The contents are found in the file enc_tb.vhd in [ref appendix].

Decoder testbench

The decoding testbench is pretty much mirroring the flow of the encoder testbench.
It also instantiates three separate decoders, but it does not have an external buffering
module similar to the Golomb Packer. The input process manages and loads packets
from the three output files that were created by the encoder. It monitors the read
signals and supply new packets whenever they are needed.

The decoder produces one pixel per clock cycle, so the output process need only to
gather the three component outputs and reverse the spectral decorrelation that was
applied in front of the encoders. This process also checks for errors by comparing
each pixel to the original input file.

The contents are found in the file dec_tb.vhd in [ref appendix].

57

5.2. Test images and videos

Figure 5.2: Decoding testbench flow

5.2 Test images and videos

The test images used are the same as in the preliminary project, and a video has
been added to the set. Images (frames) from typical video conference situations
were used, as well as "desktop"-images, i.e. snapshot of the screen and Power
point presentations.

The individual frames in the short video sequence have a significant amount of
what looks like random color fluctuation noise. Some of the other images do also
have noise, but in those the fluctuations are in intensity. Variations in intensity is
expected to respond well to the spectral decorrelation step.

All images has a resolution of 1920×1080 pixels, and has been taken with a digital
photo camera. The video has the same same resolution as the images, and the
samples are represented by 24 bit RGB.

When the RGB information is divided into 3 individual components, the images
consist of 1920×1080×3 = 6,220,800 8 bit samples each, and the video consist
of 6,220,800×60 = 373,248,000 8 bit samples to be processed.

The test set is presented in table 5.1.

The images screen and pp will be referred to as desktop images, because they
represents screen captures of a computer desktop. The other images are referred to
as natural images. Both types of images were included in the test set because of
their relevance to video streams during conference calls.

58

Chapter 5. Testing and verification

Table 5.1: Test set

Name Specification Image

portrait1 Portrait. Low noise (ISO 80).
White, close to uniform back-
ground.

portrait2 Portrait. High noise (ISO 1600)
White, close to uniform back-
ground.

portrait3 Portrait. Colored, not uniform
background.

room Conference room. Low noise
(ISO 80).

screen1 Screen shot of MATLAB

screen2 Power point presentation

video 60 frames video of conference
room (1080p, 60fps, 24 bit
RGB)

59

5.3. Verification

5.3 Verification

During the verification phase of the VHDL design, it proved to be very hard to
validate all internal data through all processing stages. This would require all com-
putations and pipelines to be identical, since only one minor alteration, usually due
to the C data types versus the logic vectors in VHDL, would propagate through the
computation of all samples during the modeling stage, because of the high depen-
dence on previous data. And result in completely different internal data. Based on
this it was decided to only use the comparison of compression ratios between the
C++, System C, and VHDL model as a measure on how successful the mapping
of the original C++ algorithm had been. Figure 5.3 presents these results, and is
further discussed in section 7.2 under ’Verification’.

The ability to decode the encoded data without error, and obtain the exact same
data as the original input, is a strong indication that the algorithm is functioning as
expected. Since the VHDL code has not been implemented on a FPGA in order to
perform thorough tests on video streams, the validation is limited to using single
frames and short video sequences in a simulation environment. The use of longer
video sequences would simply take too long to process in order to be practically
feasible. The final design was able to process all images and the video given in the
test set, and completely decompresses all data.

60

Chapter 5. Testing and verification

Figure 5.3: Comparison of compression for C++, System C and VHDL models

61

5.3. Verification

62

CHAPTER

SIX

RESULTS

In this chapter the compression ratios obtained by running the test image set through
the different implementations is presented. Some results were obtained during an
early stage in order to find the modeling parameters to be further considered, and is
based on the C++ implementation of the LOCO-I algorithm developed during the
preliminary project. This includes the modeling variables, the maximum Golomb
bit length and the k-parameter. Further, in section 6.4 the compression ratios ob-
tained by the VHDL implementation is presented.

The synthesis results for both the encoder and the decoder is presented in section
6.5, and includes resource usage and maximum frequencies, as well as the top 5
worst-case timing paths. In section 6.6, results governing the simplified design, is
presented, both compression and synthesis results.

6.1 Predictor and context determination variables

The following results gives information about the compression potential using dif-
ferent predictor and context determination variables. The purpose is to find the best
variables in terms of compression and complexity. The C++ code developed during
the preliminary project was used, and the test data consist of the images in the test
set, represented in 24 bit RGB. The data is grouped in average for natural images
and desktop images. The results are discussed in 7.1, but to summarize, it can be
established that the choice of predictor is not significant to the compression results.
Further, context modeling using two gradients to correct the error residual, worsen
the desktop image compression ratio, compared to not correcting. Three gradients
gives slightly better compression for both types of images.

63

6.1. Predictor and context determination variables

All results are given in average bit length per 8 bit R/G/B input sample.

Figure 6.1: Predictors and context variables for natural images

Figure 6.2: Predictors and context variables for desktop images

64

Chapter 6. Results

6.2 Maximum golomb code length

The following results show the compression ratios when different maximum bit
lengths are chosen regarding the Golomb data output. The test data consist of 24
bit RGB images, and is run through the C++ implementation. The results show that
the difference in compression with bit lengths between 16 and 256 is negligible.
While 12 bits are possible to use in order to reduce resource demand, 16 bit is the
best choice regarding compression versus resource usage. All results are given in
average bit length per 8 bit input sample.

Figure 6.3: Maximum code length impact on compression

65

6.3. Fixed golomb ’k’ value

6.3 Fixed golomb ’k’ value

In order to test compressibility when fixed k values are used, in stead of dynam-
ically adjusted values, the test image set was run through the C++ code from the
preliminary project, in order to find out if this could be the basis for an alternative
implementation. All results are given in average bit length per 8 bit input sample,
and is grouped in average values for natural images and desktop images. Since
k gives the lower bound for minimum bit length, values of more than 4 were not
considered. The dynamic k variant is included for comparison.

Figure 6.4: Fixed ’k’ impact on compression

66

Chapter 6. Results

6.4 Compression results VHDL implementation

The compression ratios obtained by the final design, after all the test data was pro-
cessed, is presented in figure 6.5. The test data consisted of spectrally decorrelated
(R-G, G, B-G) images. And the results is represented in average bit lengths per 8
bit input data.

It shows that images with more noise has a lower degree of compressibility (when
comparing port1 and port2). This is also the case for images with several objects
that are causing sharper gradients than uniform areas (port3, room).

The screen and pp images have the highest compression because of their uniform
nature, as expected. video has the lowest compression, and after further inspection
it seems as if the noise generated by the image chip in the video camera is random
across the spectral components, while the images taken by a digital photo camera
has more ’grey’ noise, indicating that the random data follows the same patterns in
all three components. This leads to the conclusion that data from the video camera
is less spectrally decorrelatable.

An image consisting of random data is also processed in order to check for worst
case scenarios, and represent a video stream that entirely consists of noise. It shows
that this is exactly 8.5 bits per 8 bit original sample, and can be backed up with the
fact that Golomb encoded samples have a bit length in the range of 1 to 16 bits,
which gives 8.5 as an average value if all internal modeling and thus all output
lengths are random.

67

6.4. Compression results VHDL implementation

Figure 6.5: Final compression results from VHDL implementation

68

Chapter 6. Results

6.5 VHDL Synthesis

Table 6.1: Synthesis results encoder

Analysis & Synthesis Resource Usage Summary
Resource Usage
Estimated Total logic elements 984

Total combinational functions 911
Logic element usage by number of LUT inputs

– 4 input functions 193
– 3 input functions 269
– <=2 input functions 449

Total registers 588
I/O pins 32
Total memory bits 44040
Maximum fan-out 700
Total fan-out 5372
Average fan-out 3.21

Analysis & Synthesis Resource Utilization by Entity
Hierarchy Node LC Combinationals LC Registers Memory Bits
enc_top 911 588 44040

ctxt_reg 41 0 13312
enc_signal_delays 2 10 64
find_k 122 22 120
gol_enc 124 71 0
index 81 46 0
line_cache 69 49 30544
loco 392 281 0
reset 58 57 0

Max frequency
Slow 1200mV 0C Model Fmax 206.31 MHz
Slow 1200mV 85C Model Fmax 183.89 MHz

All VHDL code was synthesized using Quartus II 12.1 (Web edition), for the de-
vice Cyclone III EP3C8U484C6.
The context modeling in loco is responsible for most of the LEs consumed by the
encoder. Memory bits are used for line caching and the context registers. Fre-
quencies lie well above what is necessary for real-time processing of 1080p 60fps
video.

69

6.5. VHDL Synthesis

Table 6.2: Synthesis results decoder

Analysis & Synthesis Resource Usage Summary
Resource Usage
Estimated Total logic elements 2383

Total combinational functions 2248
Logic element usage by number of LUT inputs

– 4 input functions 1262
– 3 input functions 419
– <=2 input functions 567

Total registers 774
I/O pins 29
Total memory bits 43920
Maximum fan-out 866
Total fan-out 10629
Average fan-out 3.35

Analysis & Synthesis Resource Utilization by Entity
Hierarchy Node LC Combinationals LC Registers Memory Bits
dec_top 2248 774 43920

ctxt_reg 41 0 13312
dec_modeling 374 290 0
dec_reset 53 53 0
dec_signal_delays 2 17 64
find_k 101 31 0
gol_dec_top 1517 279 0

comb_qr 32 8 0
data_in_reg 19 48 0
decode_q 229 3 0
decode_r 436 0 0
load_data_in 30 0 0
update_registers 555 0 0

index 81 47 0
line_cache 71 49 30544

Max frequency
Slow 1200mV 0C Model Fmax 169.23 MHz
Slow 1200mV 85C Model Fmax 152.86 MHz

The Decoder’s LE resources is mostly spent on decoding the Golomb words, as
well as the modeling which again stands out. Frequencies have now fallen, but are
still above the threshold.

70

Chapter 6. Results

Worst-case timing paths

Critical paths: Slow 1200mV 85C Model Setup: ’clk’

Table 6.3: Worst-case timing paths

From Node To Node Data Delay (ns)
Encoder
modeling|N_t3[0] modeling|B_temp[5] 5.385
modeling|N_t3[0] modeling|B_temp[4] 5.385
modeling|N_t3[0] modeling|B_temp[2] 5.385
modeling|N_t3[3] modeling|B_temp[5] 5.381
modeling|N_t3[3] modeling|B_temp[4] 5.381

Decoder
gol_dec_top|get_in[17] gol_dec_top|get_in[41] 6.477
gol_dec_top|get_in[3] gol_dec_top|get_in[47] 6.483
gol_dec_top|get_in[17] gol_dec_top|get_in[47] 6.455
gol_dec_top|get_in[17] gol_dec_top|get_in[10] 6.440
gol_dec_top|get_in[39] gol_dec_top|get_in[41] 6.428

The encoder has its data delay bottleneck in the context modeling, between N_t3
and B_temp. The decoder has its longest data delay between two consecutive get_in
shifts.

71

6.6. Simplified design

6.6 Simplified design

This section presents results governing the simplified design presented in section
7.2 under ’Proposed design to reduce resource usage’. Compression ratios for the
whole test image set are presented in figure 6.6, and synthesis results in table 6.4
and 6.5 for the encoder and decoder side respectively.

The test image set was run through the VHDL test bench, for k = 2 and k = 3
which were considered as the most relevant candidates. Results from the dynamic
k implementation is included for comparison.

Compression results

Figure 6.6: Compression results for simplified design

72

Chapter 6. Results

Synthesis results

Table 6.4: Synthesis results for simplified design (encoder)

Analysis & Synthesis Resource Usage Summary
Resource Usage
Estimated Total logic elements 189

Total combinational functions 144
Logic element usage by number of LUT inputs

– 4 input functions 37
– 3 input functions 13
– <=2 input functions 94

Total registers 163
I/O pins 32
Total memory bits 15320
Maximum fan-out 171
Total fan-out 934
Average fan-out 2.46

Analysis & Synthesis Resource Utilization by Entity
Hierarchy Node LC Combinationals LC Registers Memory Bits
enc_top 144 163 15320

gol_enc 32 36 0
line_cache 34 11 15320
loco 24 32 0
reset 32 32 0

Max frequency
Slow 1200mV 0C Model Fmax 379.79 MHz
Slow 1200mV 85C Model Fmax 333.89 MHz

The simplified encoder design trims LEs by dropping the complicating context
modeling. Memory bits are used only for the line caching. Frequency rise sig-
nificantly.

73

6.6. Simplified design

Table 6.5: Synthesis results for simplified design (decoder)

Analysis & Synthesis Resource Usage Summary
Resource Usage
Estimated Total logic elements 1376

Total combinational functions 1287
Logic element usage by number of LUT inputs

– 4 input functions 835
– 3 input functions 204
– <=2 input functions 248

Total registers 341
I/O pins 33
Total memory bits 15320
Maximum fan-out 349
Total fan-out 5446
Average fan-out 3.20

Analysis & Synthesis Resource Utilization by Entity
Hierarchy Node LC Combinationals LC Registers Memory Bits
dec_top 1287 341 15320

dec_modeling 24 32 0
dec_reset 30 29 0
gol_dec_top 1190 261 0

comb_qr 8 8 0
data_in_reg 19 48 0
decode_q 218 3 0
decode_r 453 0 0
load_data_in 30 0 0
update_registers 317 0 0

line_cache 35 11 15320

Max frequency
Slow 1200mV 0C Model Fmax 176.46 MHz
Slow 1200mV 85C Model Fmax 160.31 MHz

Again, the context modeling is simplified, reducing the resource consumption, and
the Golomb decoding is slightly less consuming because of the fixed k-value. The
frequency goes up slightly.

74

CHAPTER

SEVEN

DISCUSSION

7.1 Changes and considerations regarding the LOCO-
I algorithm

Some changes were made to the LOCO-I algorithm in order to be able to imple-
ment it in hardware. These changes are mainly a consequence of the frequency
requirement, but also a part of the attempt to reduce the implementation size. They
include using a different set of variables during the prediction and context deter-
mination stage, and those imposed by the pipelining requirement. Considerations
regarding maximum Golomb bit lengths, spectral decorrelation of input data and
the possibility of bypassing uncompressed data in the memory packages are also
discussed.

Effects of pipelining

During the modeling phase, several of the processes defined by the LOCO-I algo-
rithm have to be pipelined on order to comply with the speed requirement. This
does not alter the algorithmic steps, and the processing path produces the same in-
ternal output as the original algorithm. However, the pipeline delays the updating
of the variables used to model the current input sample. Hence, the variables used
are not based on data ’as close’ to the current pixel as desired. This has several im-
pacts on the compression efficiency. It can be divided in to how well the predictor
performs and how correct the offset variable C is, based on context.

The predictor is based on data stored in the line cache. The predictor in LOCO-I
is looking for gradients in the area around current pixel, and need a to function

75

7.1. Changes and considerations regarding the LOCO-I algorithm

properly. As explained in 3.1, a is not applicable as a modeling variable. And
because of this an other predictor has to be used.

The pipeline has two impacts on context modeling. First, how relevant the calcu-
lated context is to the current pixel. LOCO-I finds the gradients around current
pixel in order to classify it in to a context. Since these variables are stored in line
cache, the same arguments about not being able to use a as a variable goes here.

Secondly, after the context is determined, the implemented model uses 8 clock
cycles from the context information is read from memory until the new context
information is written to the same memory (section 4.2, 6 cycles to produce new
variables and 2 cycles to write to memory). If 8 pixels of equal context index occurs
subsequently, these pixels will be modelled using the same offset variable c, and
therefore it will take 8 pixels before the compression is improved in that specific
context. In natural images where the context of each pixel changes frequently, this
is not expected to have an impact on compression efficiency. But, in computer
screen images with long series of pixels occurring in the same context, this could
have an impact. Results governing this assumption is discussed further in section
7.2, backed up with results.

Predictor

As mentioned, the original LOCO-I predictor (equation 2.9) could not be used, be-
cause it requires a as a modeling variable. Thus, it was critical to test for other
applicable predictors during the initial part of this thesis. The original predictor
tried to guess the current pixel x, based on the possible existence of vertical or hor-
izontal gradients around this pixel. This is illustrated in the following two figures,

where the left one represents the function: x = max(a,b), if c≤min(a,b), and the
right one represents: x = min(a,b), if c≥max(a,b).

When all modeling variables have to reside on the above lines, the task of finding an
appropriate predictor for x is limited, and it can be seen that the LOCO-I predictor
approach in finding gradients is no longer reasonable.

76

Chapter 7. Discussion

Here, the best predictor would probably be x = b. Even though there still exists
gradients in the area above, it would be difficult to extract this information in order
to create a more sophisticated predictor, and is beyond the scope of this thesis.

However, it might be possible that using average values of the variables on the
above line b, c and d (referring to the causal template in figure 3.2), could result in
a better model than only using b alone. To find out this, the following predictors
were tested using the C++ code developed during the preliminary project:

• a
• b
• c
• (a+b)/2
• (b+c)/2
• (a+b+c)/3

The results given in figure 6.1 and 6.2 shows the compression ratios obtained using
these predictors for natural images and desktop images respectively. For natural
images the difference is not significant, but models including b as a variable, tend
to have better compression. And since using only x= b is less complex and requires
less resources, this would be the most preferable one.

For the desktop images, x = b gives best results. Thus, this is the prediction model
that was used during the rest of the implementation process.

It should be mentioned that during the initial literature study [1], a range of popular
image compression algorithms were investigated. This included amongst others,
the JPEG-LS [3], FELICS [4], PNG codec [14] and Lossless JPEG [15]. Since
these are written as software codecs, with no real-time requirements, a was used
as a variable in all codecs. Thus, none of these models could be used in this im-
plementation (except for PNG, which supports the possibility of using x = b as a
parameter).

Context determination

The same arguments about the ability to use a as a modeling variable goes here. In
the LOCO-I algorithm, the gradients used to calculate the context is d− b, b− c
and c−a, which means that the last gradient could not be used. During the initial
testing, c− a was substituted by both 0, and f − b, in order to see the impact this
had on the compression ratio. By using 0 as a variable means that in practice
only two gradients are used. The results are presented in figure 6.1 and 6.2 for
natural and desktop images respectively. The results are compared to the case of
not correcting the error residual by the context at all. For the natural images the
results are not significant, but using 0 or f −b as the gradients generally increases
the compressibility, by 0.5% and 1.7% respectively. For the desktop images, using

77

7.1. Changes and considerations regarding the LOCO-I algorithm

0 as one of the gradients worsen the compression by 11.9%, while f −b improved
the compression by 1.7%.

By including f as a modeling variable, the cache that stores previous samples need
to be doubled, since f resides on two lines above the current pixel, which can be
seen in the causality template in figure 3.2. Even though not using context at all to
correct the error residual does not significantly worsen the compression, the context
still has to be determined by some set of gradients, on order to compute k used by
the Golomb coder. However, it would be possible to use a fixed k value, and omit
the context modeling completely, even though this decreases the compression ratio
significantly for desktop images. This scenario is discussed later in section 7.2
under ’Proposed design to reduce resource usage’.

If we assume that context modeling is desirable, the increase in memory usage
when f is added as a variable has to be weighed against the decrease in compression
for desktop images when f is omitted. Further, if only two gradients are used, the
amount of possible contexts is reduced, resulting in a smaller context memory.
Referring to equation 3.4 only 5 bits would be necessary in order to address the
context memory, instead of 8. This means that information regarding 32 different
contexts in stead of 256 has to be stored, resulting in the context memory to be
reduced by a factor of 8.

Table 3.1 indicates that 34 bits have to be stored for each context, which further
means that 8704 memory bits are needed for 256 contexts and 1088 for 32 con-
texts. Adding this with the extra cache requirement for storing previous samples
(referring to section 3.1 under ’Neighboring pixels’), the reduction in memory bits
is significant if only two gradients are used, and is summarized in the following
table.

Table 7.1: Memory usage by context determination

Gradients Context mem usage Cache usage Total mem bits
3 34 x 256 = 8704 3840 x 8 = 30720 39424
2 34 x 32 = 1088 1921 x 8 = 15368 16456

Maximum Golomb bit length

During the initial review of the implementation it was clear that it was necessary
to reduce the maximum possible bit lengths produced by the Golomb encoder. in
section 3.3 under the ’Decoder’ section it is stated that the width of the data bus
output from the Golomb encoder has to equal the longest possible code. And by
using an alphabet size of 256, which is the case when the input samples are 8 bits,
the worst case bit length would be 256. This would cause the registers needed in
both the encoder and decoder to be huge. Also, the critical path when decoding
would be too long. Since it can be seen as a sequential bitwise operation. Based

78

Chapter 7. Discussion

on this it is desirable to keep the maximum length as short as possible. The results
presented in figure 6.3, shows the impact different lengths have on the compression
ratio.

The differences between max lengths between 16 and 256 is negligible, and thus it
would be desirable to use the shortest. Based on this observation a maximum length
of 16 bits was used during the System C modeling and VHDL implementation
phases. Also a bit length of 12 was tested out as a measure to reduce resource
usage and critical paths, and will be discussed later in section 7.2.

Possibility to bypass uncompressed data in the memory packages

In order to reduce incidents where series of samples are encoded with more than 8
bits, which will result in negative compression in local areas of the image, a method
which involved bypassing the 8 bit original samples instead was investigated. This
functionality was implemented during the System C modeling phase, and involved
switching between Golomb encoded samples and original samples during the mem-
ory package stage (section 3.5). At any time, the memory packer counted the num-
ber of encoded samples inside the 128 bit package to be output to memory, and if
this was less than 16 samples (128/8), 16 original samples were joined in a package
and output to memory instead. This also required the header data to include a bit
which told the decoder if this was a compressed or uncompressed package.

This functionality was successfully implemented in System C and resulted in an
average improvement in compression by around 2% in natural images and desktop
images, and around 6% improvement in noisy images and random data, which is
considered as worst case.

The Golomb packer was designed so that data is continuously adding to a packing
register, which means that samples are usually split between two Golomb pack-
ages (i.e the next Golomb package does not start with a new sample). This caused
the decoding process to be significantly more complex if unencoded samples were
included. If the decoder starts to read a sample in package 1 and the end of this sam-
ple is supposed to be in package 2, this imposes a problem if package 2 consists of
unencoded data. This was solved in System C by just omitting the data currently
read by the Golomb decoder, pause the process until the uncompressed package
was processed, and continue reading the next compressed Golomb package which
then would start with a new sample.

In the VHDL implementation it was important to reduce the critical path during
the serial processing of samples in order to find the next sample. This is described
in section 4.4 Golomb decoder, under the ’Update index registers’ procedure. By
adding the extra functionality described above, the critical paths became simply too
long in order to comply with the frequency requirement. Thus, this feature was not
included in the VHDL code.

79

7.2. VHDL implementation and synthesis

Still, as a subject for future work, it would be interesting to see if this could be
done in another way, which does not impose the need to alter the Golomb decoding
process. For instance, an external module could feed the Golomb decoder with
trivial data, which matches the number of unencoded samples, and then switch
between the Golomb decoded samples and the unencoded samples.

Spectral decorrelation

As stated by the authors of the JPEG-LS codec which is built upon the LOCO-I
algorithm [ref side 30 JLS], for some color spaces (e.g. RGB), good decorrelation
can be obtain through simple lossless color transformations as a pre-processing
step to JPEG-LS. For example, compressing the (R-G, G, B-G) representation of
the image . . . yields saving between 25% and 30% over compressing the respective
RGB representation.

Since this thesis concerns processing RGB data, this representation is implemented
and used in the final design. The representation deals with the spectral redundancy
occurring in RGB images, and is explained in section 2.2. The processing only
includes two subtraction procedures (No modulo operation is necessary in hard-
ware, since the bit lengths are kept to 8 bits, and the final carry bit is omitted),
and induces very low additional resource usage compared to the compression im-
provement. Further, this is done as a pre-processing stage in the encoder, and a
post-processing stage in the decoder, and does not have any impact on the overall
design, nor does it effect the real time requirement.

7.2 VHDL implementation and synthesis

Golomb decoding

As mentioned, the the biggest challenge during the implementation phase was keep-
ing the critical paths imposed by the bitwise processing of input data, to a minimum.

If the data to be encoded is not split between two or more parallel processes, i.e.
only one encoder/decoder pair for each color component, a new variable bit length
sample must be processed by the decoder each clock cycle. Consequently, pipelin-
ing during the extraction of samples from packed data, is not possible, and the
counting procedure must consist of combinational logic without clocked processes,
which is able to provide information about the position of next sample at each clock
cycle. It would be possible to use several parallel encoder/decoder pairs, but this
would result in the resource demand increase by the same factor as the number of
parallel processes added, and also potentially decrease the compression ratio. Since
resource usage had to be keep to a minimum, this was not considered as a possible
solution.

80

Chapter 7. Discussion

Several solutions were written in VHDL to check for resource usage as well as the
critical path lengths. The most intuitive way of implementation is by using shift
registers which can shift a variable number of bits (1 - Golomb max length). By
first counting the number of pixels in the current pixel, the register could be shifted
according to this number, ready to read next pixel from the start of the register.
Even though a working solution was written and synthesized, it was not possible
to achieve the required speed. Since it requires both counting a maximum of 16
bits and shifting at the same clock period. Also, since the 16 bit input packages is
a continuous stream of data, when a new package has to be written to the register,
it must be allowed to be written at the end of previous package, which can be at
any position within this 16 bit length. Consequently, a large large number of logic
elements is needed to both load and shift data inside the registers.

Another solution incorporating a circle of elements, each representing one bit in a
total of 3 Golomb packages (48 bits), was written and synthesized. Each element
had a 4 bit register where the bits represented the data bit, if it was positioned
at the first bit in current sample, if it was at the end of a q sequence and if it
was the last bit in that sample. Based on input bits from the previous element
and the internal register, it could determine if it was part of a q sequence, or a r
sequence. Each clock cycle the information propagated through the 48 elements,
and the information was ready to be read by subsequent logic. After synthesis it
was clear that the critical path through the 48 elements was too long to comply with
the speed requirement.

This solution gave the basis for the final design, but measures had to be taken in
order to increase the speed. This included isolating the critical path of each sample
which resulted in the f ind_end_q and f ind_end_r modules described in section
4.4. Further, The internal 4 bit register in each element was split into the data,
get_index, end_q_index and next_index registers.

The synthesis results of the final design is presented in table 6.2. The Golomb
decoding module (gol_dec_top and its sub-modules) uses 1517 combinational el-
ements and 279 registers, this is 67% and 36% respectively of the total resource
usage. Thus, it would be desirable to take measures in order to reduce this demand.
A possible way of reducing the size is by having Golomb packages of shorter bit
length, this is discussed further in section 7.2. But overall, this would be an impor-
tant subject for further work.

Throughput

Even though the resource usage of the Golomb decoder is quite significant com-
pared to the other modules in the complete decoder design, it is able to achieve the
speeds given by the requirement. The synthesis results gives us a max frequency
of 152.86 MHz and 169.23 MHz respectively for 85C and 0C model. Which gives
a final throughput of at least 24× 152.86 = 3669 Mbps. As stated by the require-

81

7.2. VHDL implementation and synthesis

ments in section 1.2, a 1080p video has a data rate of 374 MB/s and operates at a
frequency of 148.5 MHz.

In table 6.3 the top 5 critical paths for both the encoder and decoder is presented. It
shows that the Golomb decoder is the slowest module, and in order to increase the
throughput, this module has to be redesigned.

Proposed design to reduce resource usage

As an effort to reduce the resource demand, a simplified version of the design was
written and synthesized. In figure 6.1 and 6.2 the effect of correcting the error
residual after prediction based on context is presented. The results are discussed in
section 7.1 where it was established that the increase in compression ratio was 1.7%
for both natural and desktop images when using b, c, d and f as variables during the
context determination. This is not a significant improvement, and this correction
procedure could be omitted in order to lower the resource usage. However, the same
context information is also used to dynamically adjust the k parameter used by the
Golomb coder. So by omitting the context part completely the coder is forced to
use a fixed k value.

Figure 6.4 shows compression results for different k values compared to the dy-
namic k variant, for natural images and desktop images. While using dynamic k
ensures best compression for both types of images, it is clear that the choice of
fixed k value has different impact depending on the image type.

It should be mentioned that the k parameter gives a lower bound on the compressed
bit length possible to achieve, referring to equation 2.17 where it is stated that the
minimum length would be k+1 if q is zero.

Natural images, which consist of much unpredictable information, has an improved
compression relative to an increasing k value, as long as the lower bound imposed
by k does not exceed the compression potential. For the desktop images used in the
test set on the other hand, this potential is already below 2 bits per sample, thus it
is desirable to keep k as low as possible.

Since the data used to produce the results is not spectrally decorrelated the com-
pression potential is higher than if this kind of decorrelation was included, And
since this only requires a simple pre-processing stage, it is assumed that the input
data will be spectrally decorrelated.

The choice regarding which value of k to be used, must be based on a compro-
mise of compression ratios relative to different types of input data. Based on the
results obtained for the test set used, and also assuming that data will be spectrally
decorrelated, both k = 1 and k = 2 is potential candidates for further testing.

Alternatively, a variant where k is calculated during a pre-processing stage to the
encoder, and used on all pixels in predefined areas of the image, would be possible.

82

Chapter 7. Discussion

But it would also require k to be included in the header data of that confided area,
in order for the decoder to be able to produce the correct output. To keep the header
data to a minimum, these areas have to be of a certain size, such as one line of the
image. Also computing k on a frame-by-frame basis would probably give satisfac-
tory results, which is the case for the results discussed in this section. The scenario
presented in this paragraph has not been a subject for this thesis, and no synthesis
results regarding the necessary modules is presented, nor any compression results.

The proposed design was written in VHDL and synthesized in order to get an idea
of the resource demand. The encoder has an estimate of 189 logic elements which
is only 19% of the original designs 984 logic elements. While the decoder usage
is at 1376 logic elements, which is 58% of the 2383 logic elements in the original
decoder.

The module that uses most resource is still the Golomb decoder (1190 combina-
tional and 261 registers), because of the high parallelism needed in order to comply
with the speed requirement. The resource usage is roughly proportional to the data
register size, because the operations can be seen as bitwise parallel processes on all
data stored in the register at any time. As mentioned earlier the data register size
need to be 3 times as large as the maximum Golomb bit length, in order to avoid
buffer underrun.

Consequently, the proposed design discussed above does not reduce the Golomb
decoder size significantly, and the only parameter that can reduce this is the max-
imum Golomb bit length, which has an impact on the data register size needed.
Section 6.2 in the results chapter shows compression ratios for different lengths.
The original implementation uses 16 as the maximum length, because this seems
to give the best overall results. Even though the LOCO-I specification proposes to
use bit lengths that are a power of 2 [3], it would still be possible to use 12 as the
maximum length, which also would result in the Golomb package size to be 12.
However, a more complicated scheme to create memory packages matching power
of 2 bit lengths would be necessary.

Figure 6.6 presents the compression results obtained by running the test bench on
this implementation instead of the original implementation, for each of the images
in the test set. This is done for k = 2 and k = 3, compared to the original implemen-
tation which uses dynamic k. Giving k a value as low as 2 makes the compression
more vulnerable to worst case input, but gives better compression when it comes to
best case input. A k value of 3, results in a more stable compression ratio of around
4-5 bits per sample.

Verification

When the System C algorithm was mapped over to VHDL, it was hard to achieve
the exact same compressed data output, because of all algorithmic steps involved.
This would require extensive testing of all VHDL modules, and comparing the data

83

7.3. System level conciderations

output produced during all steps with the System C model. Since only small varia-
tions during the encoding stage, results in total different compressed data, because
of the high dependency of previous encoded samples and the nature of how Golomb
codes are produced, the validation consisted of comparing the decompressed data
with the original input. Also by comparing the compression ratios obtained by
both the System C model and the VHDL model, we can get an overview on the
correctness of the implemented algorithm.

Both the System C model and the VHDL testbench were written in order for the
decoded data to be compared to the input data. Both final designs did not en-
counter any errors during the processing of the test image set. Each image con-
sist of 6,220,800 8 bit samples, and the video consist of 60 frames resulting in
373,248,000 samples. This gives a total of 410,572,800 samples for all 6 test im-
ages and the video, which were encoded and further decoded to yield the exact
same data as the original data. This is a strong indication that the decoding pro-
cess will be valid for any input data, and the implementation is considered as being
successfully.

Figure 5.3 show the compression results obtained for the System C model and the
VHDL model, compared to the original C++ code developed during the prelimi-
nary project, only corrected for the new modeling variables and maximum Golomb
bit length discussed in section 7.1. The results varies with a maximum of 6.7%
between the System C and VHDL model, which is considered as satisfactory, but
indicates that further work governing fine tuning of the algorithmic steps is possi-
ble.

Another aspect regarding the comparison of compression ratios between the C++
and the VHDL model, is that it is possible to get a view on the impact the pipelin-
ing has on the context modeling part, since the C++ model does not include any
pipelining. The similarities in compression indicates that this does not have a se-
vere impact.

7.3 System level conciderations

Control module to reset when new frame arrives

The final design must reset all memory bits regarding the line cache and context
memory when a new frame arrives, in order for the encoding process to be valid.
Since the memory is implemented using the embedded memory bits on the FPGA,
it cannot be reset using a single reset signal, so the initial data must be written to
all memory bits during a reset phase.

The working solution receives a ’new frame’ notification from the overall system,
and respond with a ’ready’ signal when all memory is reset. This requires a specific
amount of time relative to the number of addresses in the context memory, and the

84

Chapter 7. Discussion

number of elements in the line cache. The final design uses 256 context addresses
and 3840 line cache elements. Each write in both of the memories takes one clock
cycle to complete, thus the line cache is the bottleneck, resulting in 3840 clock
cycles needed in order to reset all memory.

This process might use to many cycles to complete depending on the external data
stream. In such a case, measurements have to be taken. This could be solved by
including a register which contain valid bits for all memory location. This would
require 256 registers for the context memory, but only one for the line cache, be-
cause the valid bit does not have to be set until all previous 3840 pixels are shifted
in, meaning that the line cache contains two complete lines of original input data.
This is left as a subject for further work.

Memory packing

Design of the packer and unpacker modules was not a priority, because their oper-
ation would very much depend on the memory space’s addressability. Instead we
decided to describe a basic interface capable of handling a few different alterna-
tives, and rather discuss some of the possibilities.

The data packets that are written from the encoders must be read by the decoders in
a specific order. This means that the three package types (R, G and B) must be rec-
ognizable and separable in memory in order to be distributed to the correct decoder
module. For data of a predictable size, this would not be difficult. Uncompressed
RGB data will take up a known slice of the memory for per frame, the three color
components will consist of the same number of bits, and the number of transfers
in and out of the DDR memory is also known. When the implemented compres-
sion scheme is applied, the resulting frame-to-frame data size becomes variable.
The color components’ contributions to the memory footprint will vary greatly de-
pending on the input, which complicates the option of storing colors at separate
predefined memory locations.

Looking at figure 7.1 a), it shows two uncompressed frames in memory. The colors
are shown as separate blocks, but this is only done to better illustrate the result of
pre-allocating a slice per color as a means to keeping them separable. Figure 7.1 b)
shows the memory footprint when sending compressed data to the same memory
slices. Each component can be pulled from memory in a predictable manner, but
a considerable fragmentation will be introduced. The fragmented space could be
released upon finalization of a frame, but finding an optimal use for the available
space may be difficult. Any fragmented sections that stand unusable will negatively
affect the final compression rate.

A way of reducing the fragmentation is depicted in figure 7.1 c). Here the compo-
nents are grouped together so that the next frame can continue where the one before
it ended. Free space will be located in front of some write pointer. The zig-zag lines
represent longer sections of whatever is above and below them. Red has both an

85

7.3. System level conciderations

Figure 7.1: Visualizing different memory allocations

unspecified amount of data above and free space below it, while green is running
out of space and approaching the blue allocated memory. The main apparent issue
is the uncertainty of a variable space requirements for components relative to each
other.

So far, the colors have been kept separate from each other, but with drawbacks
such as fragmentation of the space that is saved. A solution to this is represented
in figure 7.1 d). The purple color represents an interlacing of the components, as
they are all written to the first available location as they arrive from the encoders.
This storage scheme does not introduce fragmentation, but a specific color can no
longer be pulled directly from a predefined location.

An issue with this memory structure, is the problems arising in the case of dispro-
portioned compression rate between two color components. When all three compo-
nents encoders write their memory packets to the same sequential memory location,
a relatively even distribution is required when they are read back into the decoding
module. If one component has reached high compression, and therefore write few
packets to the memory, these packets can be spaced out by packets written from the
other component encoders. Those packets must be picked and placed in their re-
spective queues before a high-compressed packet can appear, and the queues must
therefore be spacious enough to accommodate a worst case scenario.

Knowing the best case output of one bit per pixel, we can use the packet size to
approximate the worst case distribution in memory. A packet size of 16 would at
the very least write a packet every 16 pixels. If the two remaining components
concurrently produced the worst case output length of 16 bits per pixel, we see that
two times 16 packets could appear in line before the dense packet. From empty,
this scenario would require a capacity of 16 elements per FIFO, but they must also
have enough packets ready for those long dry spells where all packets belong to
the two other components. These runs will be no longer than 32 cycles. A size
requirement of two times the Golomb packet size is also in line with what System
C simulations show to be necessary in order to prevent underrun in all situations.

86

Chapter 7. Discussion

Separating the header data

An alternative to the previously described memory structure would be to store the
header information separately. One can picture an array of the colors RGB, where
the order equates to the sequential order that the data packets hold in memory. This
can show advantageous for several reasons. Having no header data as part of the
data packets themselves means that their sizes are a multiple of the decoder input.
This simplifies the module feeding the decoder, because it eliminates the need to
combine the end of a data packet with the front of the next.

The second advantage of storing header data separately can prove very beneficial
if implemented efficiently. By reading the header packets ahead of time, we are
basically in possession of address offsets for where each color component packet
is stored in memory. In the simplest case one can use the information to decide
whether the next packet can be read from memory and sent to a FIFO, or if this
packet would hit a FIFO at its maximum capacity. Say if the red FIFO is full, while
the two other colors are running low, the knowledge that the next data packet is
blue and not red, can be used to reduce the risk of underruns.

The next step would be to fully utilize the information that the headers provide, and
use the offsets to fetch the exact color component that is needed. Instead of storing
rather large buffered data packets in FIFOs, one could store a single dynamic ad-
dress pointer per color component. Three queues would hold the distances between
one color’s data packet and the next. The necessary data packet can then be found
by grabbing a value from the queue and adding it to the address pointer.

Figure 7.2: Three packet queues built from header data

87

7.3. System level conciderations

Overhead data

Because the write buffer behind the encoder collects the variable length encoded
words and produces full packages for storage, there is no need for any extra length
information to be added to every package. Still, there might be some overhead data
created by the encoder. The amount depends on how the compressed data packets
can be stored and retrieved from memory. With three addressable memory sections,
each holding only one color component’s data, there is no need to store anything
extra. If separate sections are infeasible, a vector of flags identifying a packet’s
color must be added to the post-compression size. The size of this overhead data
will naturally depend on the number of packets produced by the encoders, as well
as the size of the packets. Each packet adds 2 flag bits, so the total additional data
per frame can be found to be a constant percentage of the compressed image data
size. Percentages added to the data size is listed in table 7.2.

Table 7.2: Size increase from header data

Bits per package Percentage increase
16 12.50 %
32 6.25 %
64 3.13 %
128 1.56 %
256 0.78 %

88

Chapter 7. Discussion

7.4 Design limitations

Bus traffic

To the lossy video encoder, the DDR contents (image frames) should look identical
with and without the compression scheme. Depending on the interconnect topology
of the system where this compression scheme is to be integrated, a common inter-
connection bus could potentially see a dramatic increase in traffic. Figure 7.3 is an
example of how a system without any compression steps in front of its DDR mem-
ory might look. The data only touches the common bus once before it is cached
in memory. The data can then be accessed by a module such as the lossy video
encoder.

Figure 7.3: Bus topology showing number of data transfers between RGB source and exter-
nal video encoding module without the presented compression scheme

If the compression step is added, the number of bus transactions in this configura-
tion goes up. In figure 7.4 each transaction is labelled in order from 1 to 4. The
RGB data only appears in memory after the fourth transaction.

1. RGB data to the compression module (encoding)

2. Encoded data packets to the DDR memory

3. Encoded packets from memory to the decompression module

4. Decoded RGB data to memory

Summing all the bus traffic T per transfer i gives a figure for the total traffic ∑ Ti

4

∑
i=1

Ti = T +Tc +Tc +T = 2Tc +2T (7.1)

89

7.4. Design limitations

Figure 7.4: Bus topology showing number of data transfers between RGB source and exter-
nal video encoding module with the presented compression scheme

where Tc is compressed at a rate c, whereas the compressionless configuration only
had a ∑ Ti = T . It is apparent that this configuration does not serve to reduce any
bottlenecking through the memory bus either. The first transaction from the RGB
source to the compression module can be moved off of the common bus. Any
other data originating from the same source would either have to travel through the
compression module via a by-pass, or the source must have a separate connection
to the common bus. With this alteration, the sum of transactions are lowered to
∑ Ti = 2Tc +T .

This still leaves two transactions that increase traffic, so where can the decompres-
sion module be placed to avoid them? Our compression scheme creates encoded
independent frames, but the compressed data at random points within one frame is
very much dependent on all of the data before it. If the decompression module is
placed in front of the lossy video encoder, it could sequentially read a whole frame.
It would then have to either feed the decompressed frame back to a memory loca-
tion, or it would have to decompress the same frame every time it is needed - even
a small section of it. Any module that requires relatively random access to sections
of an image frame would have limited use of such a compression scheme. The bus
transactions per frame is technically lowered from T + n ·T to Tc + n ·Tc, n being
the number of accesses to the data after it has been compressed in memory. This
reduction comes at the cost of not having independent access to specific sections
within a frame.

Decoding speed bottleneck

Another issue is the fact that the proposed decoder delivers only one pixel per clock
cycle. This will amount to around 440MB/s worth of uncompressed RGB data
based on a clock frequency of 148,5MHz. That is far from the potential bandwidths

90

Chapter 7. Discussion

of newer generations of DDR memory, which lie in the thousands of MB/s.

The restricted intra-frame access

The presented implementation delivers great lossless compression, but the causal
encoding means that the whole frame must be decoded every time a section is
read. This issue can be addressed by creating starting points at certain stages in a
frame. The compression restarts at these points, cutting off one causal sequence
and starting another. The decoder can then begin decoding from any of the starting
points. Basic tests have shown that the compression rate is good even with a few
1920 pixels wide lines. The encoder requires few changes except for the more
frequent restarts. Additional meta data must most likely be created in order to
point to where specific frame sections are kept within a frame’s allocated memory
space.

The decoder throughput bottleneck

Adding intra-frame starting points does not alone increase the decoder throughput.
It does however create an opportunity for parallelizing the decoding process. With
independent starting points in the compressed data, one can increase the decoding
throughput by running several decoders in parallel. Only a single encoder is needed
still. Running four decoders in parallel with starting points at every 4 lines mean
that 16 lines of data can be decompressed at around 4× 440 MB/s = 1760 MB/s.
This parallelization comes at the cost of higher FPGA resource usage, with the
exact amount depending on which algorithm configurations are used (e.g. adaptive
or fixed k).

A different solution

The DDPCM+GR scheme outlined in [2] has two main strengths over our imple-
mentation. One is its high level of parallelism, giving it the ability to raise through-
put in exchange for increased area usage. The second strength is its low worst
case, achieved by storing uncompressed values in the cases where the compres-
sion algorithm would have increased the size. The proposed primary solution has a
theoretical worst case of 16-18 b/S, although the highest observed is 8.5 b/S, found
using full spectrum pseudo-random noise.

It is not made clear how DDPCM+GR stores its packages in memory; more specif-
ically, what is done with the bit positions that are left after the variable unary codes
have all been appended. Based on their need to store the length and their testing
with different bus bandwidths, one can assume that there is a rounding involved at
either 8, 16 or 32 bit intervals. This practice would certainly reduce the average
compression. It also seems like they could have cut 1 bit off their constant data by

91

7.4. Design limitations

dropping the last terminating zero in the unary data. This would lower the best case
package size to 75 bits. The length value can also be reduced by one bit, because
the minimum and maximum packet size does not span more than 64 values. These
two changes would have reduced their maximum and average compression.

Figure 7.5: Adjusted packing scheme. The minimum value represents the very least amount
of data included in every package. The variable part allows for up to 55 bits in the unary
part.

It is possible that they made the decision to sacrifice these two bits because the
alternative in figure 7.5 introduced at least one addition operation; finding the ac-
tual package length from L+minimum instead of using the value of L directly. It
could also have impacted their decoding in a way that required additional logic for
deducing the location of the missing terminating zero. Seeing how high parallelism
is an important characteristic of their design, they may valued the transistors saved
more because the extra space would be factored into every single instance of their
module.

92

Chapter 7. Discussion

7.5 Comparison of implementations

Compression

The primary design’s best feature is clearly its average compression rate. Com-
pared to the simplified design it delivers on average 14% better compression on
the images in the test set. The simplified design’s results depend on the choice of
k-value. A high k locks the best case compression at a high number, as the best case
can never be lower than k+1 bits per symbol. Still, a higher k is necessary to miti-
gate a large prediction error. The middle ground that seem to yield the best results
on average is a constant value of k = 2. The observed worst case with adaptive k is
only 8.5, while a fixed k give 14,9 b/S on pseudo-random noise.

DDPCM+GR has a best case compression rate of 4.75, which is far higher than
the proposed implementations. It also has control of the worst cases, as it stores
original uncompressed data instead if the compressed data turns out to be larger.
Further comparison require an implementation of the design in order to run tests on
the same images.

Table 7.3: Average, worst and best case compression for our proposed primary, simplified
design, and DDPCM+GR [2]

Primary solution Simplified solution DDPCM+GR
Adaptive k k=1 k=2 k=3

Avg compr. [b/S] 2,74 3,88 3,86 4,34 -
Worst case [b/S] 8,50 15,40 14,90 14,00 8,00
Best case [b/S] 1,00 2,00 3,00 4,00 4,75

Resource usage

The simplified solutions uses fewer FPGA resources than the primary solution.
Table 7.4 shows Logic Elements per instance, total, and LE per compression. The
last figure is calculated with the following formula LEtotal

8−Avg.comp. , and reflects which
solution achieves its compression most (resource) efficiently.

It is difficult to compare the resource consumption of the non-FPGA DDPCM+GR
design directly, because they use Gate Equivalents as their unit of measurement.

93

7.5. Comparison of implementations

Table 7.4: Logic Element counts for the primary and simplified solution.

Primary solution Simplified solution DDPCM+GR
Encoder Decoder Encoder Decoder

LE 984 2383 189 1376 -
LE total 10100 4695 16000 GEs

LE/Compression 1920 1134 -

Throughput

The total throughput for each of the two implementations is equal to three times
the clock frequency of the instances, as each instance will process one 8 bit symbol
every clock cycle. The simplified solution therefore has a slightly higher throughput
because of its slightly higher maximum frequency. The numbers are summarized
in table 7.5. It is clear that the throughput per resource usage is doubled by using
the simplified design.

Note that the proposed implementations run one instance per RGB component,
while DDPCM+GR uses 8 bit YUV as its input and is running 16 instances in
parallel.

Table 7.5: Throughput figures for the primary and simplified solution, and DDPCM+GR

Primary solution Simplified solution DDPCM+GR
Max Freq. 150 MHz 160 MHz 127 MHz *

Throughput 450 MB/s 480 MB/s 2720 MB/s
Parallelism 1 1 16

Throughput/Parallelism 450 MB/s 480 MB/s 170 MB/s

Throughput/LE 44,5
kB/s

LE 102,2
kB/s

LE -
*ASIC 0,15µm technology.

94

CHAPTER

EIGHT

CONCLUSION

A lossless image compression scheme has been implemented in System C and
VHDL in order to gauge its FPGA resource costs and operating frequency. The
design is a compression module and decompression module, representing the core
of a scheme, where added control circuitry adhering to the integrating systems re-
quirements must be added in order to properly pack the compressed frame data in
memory.

One compression module capable of compressing the eight bits of one component
(R, G, or B) uses 984 Logic Elements, running at a frequency of 183,89 MHz. The
decompression module requires 2383 LE, while operating at a frequency of 152,86
MHz. Adding up the total requirements for an RGB solution, the compression
requires 2952 LE and the decompression requires 7149 LE.

Adjustments can be made with relatively little loss of compression rate, in order
to reduce the resource costs. The adjustments involve dropping the context mod-
eling, and using a constant k-value for the Golomb encoding. Both modules see a
drastic decrease in FPGA resource usage if these changes are implemented. The re-
sources requirement of the compression reduced by 80%, while the decompression
module’s requirements are reduced by 42%. The compression module’s operat-
ing frequency nearly doubles to 333 MHz, and the decompression module rises to
160,31 MHz.

These figures does not include the FIFOs required to buffer compressed data at
the decoder inputs. System C modeling showed that 32 Golomb packets must be
speedily available to the decoder in order to counteract under-run, which would
require the decompression module to pause operation. FIFOs at the encoder and
decoder outputs are mostly depending on the integrating system’s need for back-
pressure reduction due to high bus loads (busy bus).

95

Table 8.1: Resource, frequency and compression rate summary

Primary solution Simplified solution
Encoder Decoder Encoder Decoder

LE
·Individual 984 2383 189 1376
·Total 10101 4695
Compression
·Natural 3,27 b/S 4,10 b/S
·Screen 1,43 b/S 3,25 b/S

Speed
·Frequency 189,89 MHz 152,86 MHz 333 MHz 160,31 MHz
·T hroughput 569 MB/s 458 MB/s 999 MB/s 480 MB/s

Restrictions

The design has some restrictive properties that may prove to be problematic for
an integrating system. Encoding results in a causal sequence of compressed data,
meaning that the frame must be decompressed from start to end every time it is ac-
cessed from memory. This differs from the compressionless alternative, where any
addressable section of the frame can be read from memory at any time. The pro-
posed decoder does also have a low throughput when compared to the theoretical
memory bandwidths on modern DDR architectures.

Letting the encoder restart its compression at pre-defined intervals, e.g. every 8
lines, will let an decoder choose to extract sections of image data instead of the
whole image. This adjustments comes at the cost of reduced compression rate
and an increased amount of meta data per frame, necessary for referencing the
specific locations where image frame sections are found. When sections of the
image are independently stored, it also allows for a parallelization of the decoding
process. Multiple modules can decompress different sections of the image at the
same time, increasing the theoretical throughput to n × DecoderT hroughput, at a
cost of increased resource usage.

Final words

The study has shown that it is possible to implement compression schemes in
VHDL that successfully reduces the memory bandwidth usage. The proposed im-
plementations reach throughputs necessary to compress 1920×1080×60 fps video
in real time. If the primary design uses too many resources, the LE count can be re-
duced by using a simplified solution, without losing too much of the compression
benefit. An implementation’s usefulness depends greatly on how an integrating
system expects to access the compressed image information. The presented design
can be adapted to increase its usefulness, with specific use cases in mind.

96

Chapter 8. Conclusion

Future work

• Work towards a specific system / use case. Adjust the design depending on
exactly how compressed data must be accessible.

• Finalize the packing and unpacking depending on said system’s specifica-
tions.

• Include better reset functionality when new frame arrives.

• Reduce Golomb decoder resource demand.

• Include functionality to bypass unencoded data, in order to reduce worst case
scenarios.

• Further investigate the simplified design, and possibilities to compute k on a
frame-by-frame basis.

• Check for algorithmic error resulting from the mapping of VHDL code from
C code.

• Run tests on an FPGA.

97

98

APPENDIX

A

VHDL CODE

A.1 Find ’k’ and determine context

find_k.vhd

entity find_k is
port(

clk : in std_logic;
rst : in std_logic;
A : in std_logic_vector(A_LEN - 1 downto 0);
N : in std_logic_vector(N_LEN - 1 downto 0);
k_out : out std_logic_vector(8 downto 0);
k_less_out : out std_logic_vector(8 downto 0);
k_int_out : out std_logic_vector(3 downto 0)

);
end entity find_k;

architecture RTL of find_k is
signal N_ctxt : std_logic_vector(N_LEN - 1 downto 0);
signal A_ctxt : std_logic_vector(A_LEN - 1 downto 0);

begin
comp_k : process(clk, rst) is
begin

if rising_edge(clk) then
if rst = ’1’ then
k_out <= "100000000";
k_less_out <= "011111111";
k_int_out <= "1000";
A_ctxt <= (others => ’1’);
N_ctxt <= (others => ’0’);

--Select k based on A and N:

99

A.1. Find ’k’ and determine context

else
A_ctxt <= A;
N_ctxt <= N;
-- k = 0
if "00000000" & N_ctxt >= A_ctxt then
k_out <= "000000001";
k_less_out <= "000000000";
k_int_out <= "0000";

-- k = 1
elsif "0000000" & N_ctxt & "0" > A_ctxt then
k_out <= "000000010";
k_less_out <= "000000001";
k_int_out <= "0001";

-- k = 2
elsif "000000" & N_ctxt & "00" > A_ctxt then
k_out <= "000000100";
k_less_out <= "000000011";
k_int_out <= "0010";

-- k = 3
elsif "00000" & N_ctxt & "000" > A_ctxt then
k_out <= "000001000";
k_less_out <= "000000111";
k_int_out <= "0011";

-- k = 4
elsif "0000" & N_ctxt & "0000" > A_ctxt then
k_out <= "000010000";
k_less_out <= "000001111";
k_int_out <= "0100";

-- k = 5
elsif "000" & N_ctxt & "00000" > A_ctxt then
k_out <= "000100000";
k_less_out <= "000011111";
k_int_out <= "0101";

-- k = 6
elsif "00" & N_ctxt & "000000" > A_ctxt then
k_out <= "001000000";
k_less_out <= "000111111";
k_int_out <= "0110";

-- k = 7
elsif "0" & N_ctxt & "0000000" > A_ctxt then
k_out <= "010000000";
k_less_out <= "001111111";
k_int_out <= "0111";

-- k = 8
else
k_out <= "100000000";
k_less_out <= "011111111";
k_int_out <= "1000";

end if;
end if;

end if;
end process comp_k;

end architecture RTL;

100

Appendix A. VHDL code

index.vhd

entity index is
port(

clk : in std_logic;
rst : in std_logic;
B_cache : in std_logic_vector(SMPL_LEN - 1 downto 0);
C_cache : in std_logic_vector(SMPL_LEN - 1 downto 0);
D_cache : in std_logic_vector(SMPL_LEN - 1 downto 0);
I_cache : in std_logic_vector(SMPL_LEN - 1 downto 0);
index_out : out std_logic_vector(7 downto 0);
sign_out : out std_logic

);
end entity index;
architecture RTL of index is

type g_arr is array (0 to 2)
of std_logic_vector(SMPL_LEN - 1 downto 0);

type q_arr is array (0 to 2) of std_logic_vector(2 downto 0);
signal g : g_arr;
signal q : q_arr;
signal sign_t1 : std_logic;
signal test_count : std_logic_vector(7 downto 0);
signal qn : q_arr;

begin
-- compute gradient based on neighbouring pixels:
gradient : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then
g(0) <= (others => ’0’);
g(1) <= (others => ’0’);
g(2) <= (others => ’0’);

else
g(0) <= D_cache - B_cache;
g(1) <= B_cache - C_cache;
g(2) <= I_cache - B_cache;

end if;
end if;

end process gradient;

-- quantize the gradients:
quantize : process(clk) is
begin

if rising_edge(clk) then
sign_t1 <= ’1’;
for i in 0 to 2 loop
if (g(i) = "00000000") then -- g = 0

q(i) <= "000";
qn(i) <= "000";

elsif (g(i) <= "00000010") then -- 0 > g >= 2
q(i) <= "001";
qn(i) <= "111";

elsif (g(i) <= "00000110") then -- 2 > g >= 6
q(i) <= "010";
qn(i) <= "110";

elsif (g(i) <= "01111111") then -- 6 > g >= 127

101

A.1. Find ’k’ and determine context

q(i) <= "011";
qn(i) <= "101";

elsif (g(i) <= "11101011") then -- -128 <= g <= -21
q(i) <= "101";
qn(i) <= "011";
if i = 0 then

sign_t1 <= ’0’;
end if;

elsif (g(i) <= "11111001") then -- -21 < g <= -7
q(i) <= "101";
qn(i) <= "011";
if i = 0 then -- Set sign bit

sign_t1 <= ’0’;
end if;

elsif (g(i) <= "11111101") then -- -7 < g <= -3
q(i) <= "110";
qn(i) <= "010";
if i = 0 then -- Set sign bit

sign_t1 <= ’0’;
end if;

elsif (g(i) <= "11111111") then -- -3 < g <= -1
q(i) <= "111";
qn(i) <= "001";
if i = 0 then -- Set sign bit

sign_t1 <= ’0’;
end if;

end if;
end loop;

end if;
end process quantize;

-- Combine quantized regions:
index : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

index_out <= (others => ’1’);
sign_out <= ’0’;
test_count <= "00000001";

else
if (sign_t1 = ’0’) then
index_out <= qn(0)(1 downto 0) & qn(1) & qn(2);
test_count <= test_count + 1;

else
index_out <= q(0)(1 downto 0) & q(1) & q(2);

end if;
sign_out <= sign_t1;

end if;
end if;

end process index;
end architecture RTL;

102

Appendix A. VHDL code

A.2 Modeling and signals - encoder

enc_modeling.vhd

entity loco is
port(

clk : in std_logic;
rst : in std_logic;
data : in std_logic_vector(SMPL_LEN - 1 downto 0);
loco_w_rst : in std_logic;

sign : in std_logic;
P : in std_logic_vector(SMPL_LEN - 1 downto 0);

A : in std_logic_vector(A_LEN - 1 downto 0);
B : in std_logic_vector(B_LEN - 1 downto 0);
C : in std_logic_vector(C_LEN - 1 downto 0);
N : in std_logic_vector(N_LEN - 1 downto 0);

A_out : out std_logic_vector(A_LEN - 1 downto 0);
B_out : out std_logic_vector(B_LEN - 1 downto 0);
C_out : out std_logic_vector(C_LEN - 1 downto 0);
N_out : out std_logic_vector(N_LEN - 1 downto 0);

B0_out : out std_logic_vector(B_LEN - 1 downto 0);
N0_out : out std_logic_vector(N_LEN - 1 downto 0);
Q_out : out std_logic_vector(SMPL_LEN - 1 downto 0)

);
end entity loco;

architecture RTL of loco is
signal e : std_logic_vector(C_LEN downto 0);
signal A_t1 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t1 : std_logic_vector(C_LEN downto 0);
signal C_t1 : std_logic_vector(C_LEN downto 0);
signal N_t1 : std_logic_vector(C_LEN downto 0);
signal A_t2 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t2 : std_logic_vector(C_LEN downto 0);
signal C_t2 : std_logic_vector(C_LEN downto 0);
signal N_t2 : std_logic_vector(C_LEN downto 0);
signal A_t3 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t3 : std_logic_vector(C_LEN downto 0);
signal C_t3 : std_logic_vector(C_LEN downto 0);
signal N_t3 : std_logic_vector(C_LEN downto 0);
signal e_abs : std_logic_vector(C_LEN downto 0);
signal A_t0 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t0 : std_logic_vector(B_LEN - 1 downto 0);
signal C_t0 : std_logic_vector(C_LEN - 1 downto 0);
signal N_t0 : std_logic_vector(N_LEN - 1 downto 0);
signal P_t0 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal A_temp : std_logic_vector(A_LEN - 1 downto 0);
signal B_temp : std_logic_vector(C_LEN downto 0);
signal C_temp : std_logic_vector(C_LEN downto 0);
signal N_temp : std_logic_vector(C_LEN downto 0);
signal B_t2t1 : std_logic_vector(C_LEN downto 0);

103

A.2. Modeling and signals - encoder

signal B_t2t2 : std_logic_vector(C_LEN downto 0);
signal C_t2t1 : std_logic_vector(C_LEN downto 0);
signal C_t2t2 : std_logic_vector(C_LEN downto 0);
signal B0_out1 : std_logic_vector(B_LEN - 1 downto 0);
signal N0_out1 : std_logic_vector(N_LEN - 1 downto 0);
signal B0_out2 : std_logic_vector(B_LEN - 1 downto 0);
signal N0_out2 : std_logic_vector(N_LEN - 1 downto 0);
signal data_t0 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal sign_t0 : std_logic;

begin
adj_e : process(clk, rst) is

variable temp_e1 : std_logic_vector(C_LEN downto 0);
variable temp_e2 : std_logic_vector(C_LEN downto 0);

begin
if rising_edge(clk) then

if rst = ’1’ then
e <= (others => ’0’);
e_abs <= (others => ’0’);
A_t1 <= (others => ’0’);
B_t1 <= (others => ’0’);
C_t1 <= (others => ’0’);
N_t1 <= (others => ’0’);
A_t0 <= (others => ’0’);
B_t0 <= (others => ’0’);
C_t0 <= (others => ’0’);
N_t0 <= (others => ’0’);
P_t0 <= (others => ’0’);
B0_out <= (others => ’0’);
N0_out <= (others => ’0’);
B0_out1 <= (others => ’0’);
N0_out1 <= (others => ’0’);
B0_out2 <= (others => ’0’);
N0_out2 <= (others => ’0’);
data_t0 <= (others => ’0’);
sign_t0 <= ’0’;

else
-- Pipeline registers:
A_t0 <= A;
B_t0 <= B;
C_t0 <= C;
N_t0 <= N;
P_t0 <= P;
B0_out1 <= B;
N0_out1 <= N;
B0_out2 <= B0_out1;
N0_out2 <= N0_out1;
B0_out <= B0_out2;
N0_out <= N0_out2;
data_t0 <= data;
sign_t0 <= sign;

-- Find error residual for sign = 1:
-- Using input data, predictor (P) and context (C)
if (sign_t0 = ’1’) then
temp_e1 := (data_t0(7) & data_t0(7) & data_t0)

- (P_t0(7) & P_t0(7) & P_t0) - (C_t0(8) & C_t0);

104

Appendix A. VHDL code

if temp_e1(7) = ’1’ then
e_abs <= 0 - (temp_e1(7) & temp_e1(7)

& temp_e1(7 downto 0)
);

else
e_abs <= temp_e1(7) & temp_e1(7) & temp_e1(7 downto 0);

end if;
e <= temp_e1(7) & temp_e1(7) & temp_e1(7 downto 0);

-- Find error residual for sign = 0:
else

temp_e2 := (P_t0(7) & P_t0(7) & P_t0)
- (data_t0(7) & data_t0(7) & data_t0) - (C_t0(8) & C_t0);
if temp_e2(7) = ’1’ then
e_abs <= 0 - (temp_e2(7) & temp_e2(7)

& temp_e2(7 downto 0)
);

else
e_abs <= temp_e2(7) & temp_e2(7) & temp_e2(7 downto 0);

end if;
e <= temp_e2(7) & temp_e2(7) & temp_e2(7 downto 0);

end if;

-- Half B,C,N if N >= 32, and extend bit lengths:
if N_t0(5) = ’0’ then

A_t1 <= A_t0;
B_t1 <= B_t0(5) & B_t0(5) & B_t0(5) & B_t0(5) & B_t0;
C_t1 <= C_t0(8) & C_t0;
N_t1 <= "0000" & N_t0;

else
A_t1 <= A_t0(A_LEN - 1) & A_t0(A_LEN - 1 downto 1);
B_t1 <= B_t0(5) & B_t0(5) & B_t0(5) & B_t0(5)

& B_t0(5) & B_t0(B_LEN - 1 downto 1);
C_t1 <= C_t0(8) & C_t0;
N_t1 <= "0000001111";

end if;
end if;

end if;
end process adj_e;

-- Context modeling procedure:
modeling : process(clk, rst) is
begin

if rising_edge(clk) then
if loco_w_rst = ’1’ then
-- Reset pipelined registers:
A_out <= (others => ’0’);
B_out <= (others => ’0’);
C_out <= (others => ’0’);
N_out <= (others => ’0’);
A_t2 <= (others => ’0’);
B_t2 <= (others => ’0’);
C_t2 <= (others => ’0’);
N_t2 <= (others => ’0’);
A_t3 <= (others => ’0’);
B_t3 <= (others => ’0’);
C_t3 <= (others => ’0’);

105

A.2. Modeling and signals - encoder

N_t3 <= (others => ’0’);
B_t2t1 <= (others => ’0’);
B_t2t2 <= (others => ’0’);
C_t2t1 <= (others => ’0’);
C_t2t2 <= (others => ’0’);
A_temp <= (others => ’0’);
B_temp <= (others => ’0’);
C_temp <= (others => ’0’);
N_temp <= (others => ’0’);

else
A_t2 <= A_t1 + e_abs;
B_t2 <= B_t1 + e;
C_t2 <= C_t1;
N_t2 <= N_t1 + 1;
B_t2t1 <= B_t1 + e + N_t1 + 1;
B_t2t2 <= B_t1 + e - N_t1 - 1;
C_t2t1 <= C_t1 - 1;
C_t2t2 <= C_t1 + 1;

if ((B_t2 <= "0" - N_t2) and B_t2(C_LEN) = ’1’) then
A_t3 <= A_t2;
B_t3 <= B_t2t1;
C_t3 <= C_t2t1;
N_t3 <= N_t2;
if ((B_t3 <= 0 - N_t3) and B_t3(C_LEN) = ’1’) then

A_temp <= A_t3;
B_temp <= 0 - N_t3 + 1;
C_temp <= C_t3;
N_temp <= N_t3;

else
A_temp <= A_t3;
B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;
elsif (B_t2 > 0 and B_t2(C_LEN) = ’0’) then
A_t3 <= A_t2;
B_t3 <= B_t2t2;
C_t3 <= C_t2t2;
N_t3 <= N_t2;
if ((B_t3 <= 0 - N_t3) and B_t3(C_LEN) = ’1’) then

A_temp <= A_t3;
B_temp <= (others => ’0’);
C_temp <= C_t3;
N_temp <= N_t3;

else
A_temp <= A_t3;
B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;
else
A_t3 <= A_t2;
B_t3 <= B_t2;
C_t3 <= C_t2;
N_t3 <= N_t2;
A_temp <= A_t3;

106

Appendix A. VHDL code

B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;
-- Output new computed A,B,C,N
A_out <= A_temp;
B_out <= B_temp(B_LEN - 1 downto 0);
C_out <= C_temp(C_LEN - 1 downto 0);
N_out <= N_temp(N_LEN - 1 downto 0);

end if;
end if;

end process modeling;

-- Output error residual:
update_output : process(clk, rst) is
begin

if rst = ’1’ then
Q_out <= (others => ’0’);

elsif rising_edge(clk) then
Q_out <= e(SMPL_LEN - 1 downto 0);

end if;
end process update_output;

end architecture RTL;

107

A.2. Modeling and signals - encoder

enc_signal_delays.vhd

entity enc_signal_delays is
port(

clk : in std_logic;
rst : in std_logic;
index_in : in std_logic_vector(7 downto 0);
sign_in : in std_logic;
k_less_in : in std_logic_vector(8 downto 0);
k_in : in std_logic_vector(8 downto 0);
k_int_in : in std_logic_vector(3 downto 0);

index_out1 : out std_logic_vector(7 downto 0);
index_out2 : out std_logic_vector(7 downto 0);
sign_out : out std_logic;
k_less_out : out std_logic_vector(8 downto 0);
k_out : out std_logic_vector(8 downto 0);
k_int_out : out std_logic_vector(3 downto 0)

);
end entity enc_signal_delays;

architecture RTL of enc_signal_delays is
type k_array is array (ENC_K_DELAY downto 0)

of std_logic_vector(8 downto 0);
type k_less_array is array (ENC_K_DELAY downto 0)

of std_logic_vector(8 downto 0);
type k_int_array is array (ENC_K_DELAY downto 0)

of std_logic_vector(3 downto 0);
type index_array is array (ENC_INDEX_DELAY downto 0)

of std_logic_vector(7 downto 0);
type sign_array is array (ENC_SIGN_DELAY downto 0)

of std_logic;

-- k
signal k : k_array;
signal k_less : k_less_array;
signal k_int : k_int_array;

-- index
signal index : index_array;
signal sign : sign_array;

begin
propagate_signals : process(clk, rst) is
begin

if rising_edge(clk) then

-- Propagate signals through registers:
index(ENC_INDEX_DELAY downto 1)

<= index(ENC_INDEX_DELAY - 1 downto 0);
sign(ENC_SIGN_DELAY downto 1)

<= sign(ENC_SIGN_DELAY - 1 downto 0);
k(ENC_K_DELAY downto 1) <= k(ENC_K_DELAY - 1 downto 0);
k_less(ENC_K_DELAY downto 1)

<= k_less(ENC_K_DELAY - 1 downto 0);
k_int(ENC_K_DELAY downto 1)

108

Appendix A. VHDL code

<= k_int(ENC_K_DELAY - 1 downto 0);

-- Input signals:
index(0) <= index_in;
sign(0) <= sign_in;
k(0) <= k_in;
k_less(0) <= k_less_in;
k_int(0) <= k_int_in;

-- Output signals:
index_out1 <= index(4);
index_out2 <= index(ENC_INDEX_DELAY);
sign_out <= sign(ENC_SIGN_DELAY);
k_out <= k(ENC_K_DELAY);
k_less_out <= k_less(ENC_K_DELAY);
k_int_out <= k_int(ENC_K_DELAY);

end if;
end process propagate_signals;

end architecture RTL;

109

A.2. Modeling and signals - encoder

enc_reset.vhd

entity reset is
port(

clk : in std_logic;
rst : in std_logic;
new_frame : in std_logic;
ready : out std_logic;
ctxt_addr : out std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
ctxt_rst : out std_logic;
cache_rst : out std_logic;
index_rst : out std_logic;
loco_k_rst : out std_logic;
loco_rst : out std_logic;
loco_w_rst : out std_logic;
gol_rst : out std_logic

);
end entity reset;

architecture RTL of reset is
signal counter : std_logic_vector(12 downto 0);
signal index_rst0 : std_logic_vector(ENC_INDEX_RST downto 0);
signal loco_k_rst0 : std_logic_vector(ENC_K_RST downto 0);
signal loco_rst0 : std_logic_vector(ENC_LOCO_RST downto 0);
signal gol_rst0 : std_logic_vector(ENC_GOL_RST downto 0);
signal loco_w_rst0 : std_logic_vector(ENC_LOCO_W_RST downto 0);

begin

-- Count through all addresses in context memory and write 0:
empty_cache : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

counter <= (others => ’0’);
ctxt_addr <= (others => ’0’);

else
if new_frame = ’1’ then
counter <= counter + 1;
ctxt_addr <= counter(CTXT_ADDR_SIZE - 1 downto 0);

else
counter <= (others => ’0’);
ctxt_addr <= (others => ’0’);

end if;
end if;

end if;
end process empty_cache;

-- Delay reset signals to all modules in the design:
reset : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

ready <= ’0’;
index_rst <= ’1’;
index_rst <= ’1’;
loco_k_rst <= ’1’;

110

Appendix A. VHDL code

loco_rst <= ’1’;
loco_w_rst <= ’1’;
gol_rst <= ’1’;
index_rst0 <= (others => ’1’);
loco_k_rst0 <= (others => ’1’);
loco_rst0 <= (others => ’1’);
gol_rst0 <= (others => ’1’);

else
if new_frame = ’1’ then

-- After counting two lines and line cache is empty:
if counter(12) = ’1’ then
-- Set input value:
ready <= ’1’;
index_rst0(0) <= ’0’;
loco_k_rst0(0) <= ’0’;
loco_rst0(0) <= ’0’;
loco_w_rst0(0) <= ’0’;
gol_rst0(0) <= ’0’;

-- Propagate signals:
index_rst0(ENC_INDEX_RST downto 1)

<= index_rst0(ENC_INDEX_RST - 1 downto 0);
loco_k_rst0(ENC_K_RST downto 1)

<= loco_k_rst0(ENC_K_RST - 1 downto 0);
loco_rst0(ENC_LOCO_RST downto 1)

<= loco_rst0(ENC_LOCO_RST - 1 downto 0);
loco_w_rst0(ENC_LOCO_W_RST downto 1)

<= loco_w_rst0(ENC_LOCO_W_RST - 1 downto 0);
gol_rst0(ENC_GOL_RST downto 1)

<= gol_rst0(ENC_GOL_RST - 1 downto 0);
else
-- Else keep reset:
ready <= ’0’;
index_rst0 <= (others => ’1’);
loco_k_rst0 <= (others => ’1’);
loco_rst0 <= (others => ’1’);
loco_w_rst0 <= (others => ’1’);
gol_rst0 <= (others => ’1’);

end if;
else

-- Keep not reset after new frame has started:
ready <= ’0’;
index_rst0(0) <= ’0’;
loco_k_rst0(0) <= ’0’;
loco_rst0(0) <= ’0’;
loco_w_rst0(0) <= ’0’;
gol_rst0(0) <= ’0’;
index_rst0(ENC_INDEX_RST downto 1)
<= index_rst0(ENC_INDEX_RST - 1 downto 0);

loco_k_rst0(ENC_K_RST downto 1)
<= loco_k_rst0(ENC_K_RST - 1 downto 0);

loco_rst0(ENC_LOCO_RST downto 1)
<= loco_rst0(ENC_LOCO_RST - 1 downto 0);

loco_w_rst0(ENC_LOCO_W_RST downto 1)
<= loco_w_rst0(ENC_LOCO_W_RST - 1 downto 0);

gol_rst0(ENC_GOL_RST downto 1)
<= gol_rst0(ENC_GOL_RST - 1 downto 0);

111

A.2. Modeling and signals - encoder

end if;
-- Output delayed reset signals:
index_rst <= index_rst0(ENC_INDEX_RST);
loco_k_rst <= loco_k_rst0(ENC_K_RST);
loco_rst <= loco_rst0(ENC_LOCO_RST);
loco_w_rst <= loco_w_rst0(ENC_LOCO_W_RST);
gol_rst <= gol_rst0(ENC_GOL_RST);
ctxt_rst <= index_rst0(ENC_INDEX_RST);
cache_rst <= index_rst0(ENC_INDEX_RST);

end if;
end if;

end process reset;
end architecture RTL;

112

Appendix A. VHDL code

A.3 Source coding - encoder

gol_enc_mux.vhd

entity gol_enc_mux is
Port(

D : in std_logic_vector(1 downto 0);
Y : out std_logic;
S : in std_logic

);
end gol_enc_mux;
architecture arch of gol_enc_mux is
-- Select q,r or 0 based on position (D):
begin

with D select Y <=
’1’ when "00",
’0’ when "10",
S when "01",
S when others;

end arch;

113

A.3. Source coding - encoder

gol_enc_shift.vhd

entity gol_enc_shift is
port(

clk : in std_logic;
rst : in std_logic;
k : in std_logic_vector(8 downto 0);
O : out std_logic_vector(SMPL_LEN - 1 downto 0);
I : in std_logic_vector(SMPL_LEN - 1 downto 0)

);
end gol_enc_shift;
architecture arch of gol_enc_shift is
begin

process(clk) is
begin
-- Shift input based on k = 0 ... 8:

if rising_edge(clk) then
if k = "000000001" then
O <= I(7 downto 0);

elsif k = "000000010" then
O <= "0" & I(7 downto 1);

elsif k = "000000100" then
O <= "00" & I(7 downto 2);

elsif k = "000001000" then
O <= "000" & I(7 downto 3);

elsif k = "000010000" then
O <= "0000" & I(7 downto 4);

elsif k = "000100000" then
O <= "00000" & I(7 downto 5);

elsif k = "001000000" then
O <= "000000" & I(7 downto 6);

elsif k = "010000000" then
O <= "0000000" & I(7 downto 7);

elsif k = "100000000" then
O <= "00000000";

end if;
end if;

end process;
end arch;

114

Appendix A. VHDL code

gol_enc_top.vhd

entity gol_enc_top is
port(

clk : in std_logic;
rst : in std_logic;
k_in : in std_logic_vector(8 downto 0);
k_less_in : in std_logic_vector(8 downto 0);
k_int_in : in std_logic_vector(3 downto 0);
input : in std_logic_vector(SMPL_LEN - 1 downto 0);
B : in std_logic_vector(B_LEN - 1 downto 0);
N : in std_logic_vector(N_LEN - 1 downto 0);
output : out std_logic_vector(GOL_MAX_LEN - 1 downto 0);
length_out : out std_logic_vector(3 downto 0)

);
end entity gol_enc_top;

architecture beh of gol_enc_top is
signal inReg : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal k_less : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal k : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal k_int_t1 : std_logic_vector(3 downto 0);
signal reg_t1 : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal input_t1 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal q_t2 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal k_less_t1 : std_logic_vector(8 downto 0);
signal k_t1 : std_logic_vector(8 downto 0);
signal reg_t2 : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal input_t2 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal k_int_t2 : std_logic_vector(3 downto 0);

begin
inReg(GOL_MAX_LEN - 1 downto SMPL_LEN) <= (others => ’0’);
inReg(SMPL_LEN - 1 downto 0) <= input_t1;
k_less(8 downto 0) <= k_less_t1;
k_less(GOL_MAX_LEN - 1 downto 9) <= (others => ’0’);
k(8 downto 0) <= k_t1;
k(GOL_MAX_LEN - 1 downto 9) <= (others => ’0’);
-- Mapping of twosided function to onesided:
mapping : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then
input_t1 <= (others => ’0’);

else
if input(7) = ’1’ then

input_t1(7 downto 1) <= not input(6 downto 0);
input_t1(0) <= ’1’;

else
input_t1(7 downto 1) <= input(6 downto 0);
input_t1(0) <= ’0’;

end if;
end if;

end if;
end process mapping;
-- Find q:
shiftreg : entity work.gol_enc_shift port map(

115

A.3. Source coding - encoder

clk => clk,
rst => rst,
k => k_t1,
I => input_t1,
O => q_t2

);
-- Pipeline registers:
delay_input : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

input_t2 <= (others => ’0’);
k_int_t1 <= (others => ’0’);
k_int_t2 <= (others => ’0’);
k_less_t1 <= (others => ’0’);
k_t1 <= "000000001";
reg_t2 <= (others => ’0’);

else
input_t2 <= input_t1;
k_int_t1 <= k_int_in;
k_int_t2 <= k_int_t1;
k_less_t1 <= k_less_in;
k_t1 <= k_in;
reg_t2 <= reg_t1;

end if;
end if;

end process delay_input;

-- Instantiate n number of muxes to compute golomb code:
n_mux_modules : for n in GOL_MAX_LEN - 1 downto 0 generate

mux_module : entity work.gol_enc_mux port map(
D(0) => k_less(n),
D(1) => k(n),
Y => reg_t1(n),
S => inReg(n)

);
end generate;

-- Find length and output data:
reduce : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

length_out <= (others => ’0’);
output <= (others => ’0’);

else
if (q_t2 > 6) then -- If q longer than gol max length
length_out <= "1111";
output <= "11111110" & input_t2;

else
length_out <= q_t2(3 downto 0) + k_int_t2;
output <= reg_t2;

end if;
end if;

end if;
end process reduce;

end beh;

116

Appendix A. VHDL code

wbuf.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.STD_LOGIC_ARITH.ALL;
use ieee.std_logic_unsigned.all;

--
-- Golomb Packer (WRITE BUFFER)
-- Collect encoded words from golomb encoder (genc)
-- and write Golomb packages when they are ready

entity wbuf is
generic(-- number of input bits

constant IN_WIDTH : integer := 16;
-- number of output bits
constant OUT_WIDTH : integer := 16;
-- number of bits in the internal buffer
constant WBUF_WIDTH : integer := 32

);

port(
clk : in std_ulogic;
rst : in std_ulogic;

-- INPUTS
-- Input from the golomb encoder
in_wbuf : in std_logic_vector(IN_WIDTH - 1 downto 0);
-- Length of the valid part of the input
word_length : in std_logic_vector(3 downto 0);
-- Enable the wbuf Golomb packer
wbuf_enable : in std_logic;

-- OUTPUTS
-- Golomb packer output
out_wbuf : out std_logic_vector(OUT_WIDTH - 1 downto 0);
-- The golomb packer is empty,
-- do not expect additional Golomb packages
wbuf_empty : out std_logic;
-- A Golomb packet is ready on the output
wbuf_write : out std_logic

);

end entity wbuf;

architecture RTL of wbuf is
begin

G_ENC : process(clk, rst, wbuf_enable) is
variable wbuffer : std_logic_vector(WBUF_WIDTH - 1 downto 0);
variable init_done : boolean;

variable num_elements : std_logic_vector(4 downto 0);
variable write_pos : std_logic_vector(4 downto 0);
variable read_pos : std_logic_vector(4 downto 0);

--variable shiftL : std_ulogic_vector(4 downto 0);

117

A.3. Source coding - encoder

variable shift_input : std_logic_vector(in_wbuf’range);
begin

if (rst = ’1’) then
wbuffer := (others => ’0’);
init_done := false;
num_elements := (others => ’0’);
write_pos := (others => ’1’);
read_pos := (others => ’1’);

out_wbuf <= (others => ’0’);
wbuf_empty <= ’0’;
wbuf_write <= ’0’;

elsif (rising_edge(clk) and wbuf_enable = ’1’) then
if (init_done) then

-- Shifting the input to the left so that the valid part
-- starts at position 15 of ’shift_input’.
-- This is done because the input (all 16 bits) can then
-- be written directly to the array.
-- The alternative would be to pick a variable number of
-- bits and place them into the array, which
-- is expected to increase the module complexity\size.
shift_input(
IN_WIDTH - 1 downto IN_WIDTH
- conv_integer((word_length)) - 1

) := in_wbuf(conv_integer((word_length)) downto 0);

-- Checks to see if the ’write_pos’ is lower than 16,
-- which will make the input wrap around ’wbuffer’
-- and continue at the other end.
-- (else copies ’shift_input’ straight into ’wbuffer’
if (conv_integer(write_pos) < IN_WIDTH) then
wbuffer(

conv_integer(write_pos) downto 0
) := shift_input(

IN_WIDTH - 1 downto IN_WIDTH - 1 - conv_integer(write_pos)
);

wbuffer(
WBUF_WIDTH - 1 downto WBUF_WIDTH - 1

- (IN_WIDTH - 1 - conv_integer(write_pos) - 1)
) := shift_input(

IN_WIDTH - 1 - conv_integer(write_pos) - 1 downto 0
);

else
wbuffer(

conv_integer(write_pos)
downto conv_integer(write_pos) - IN_WIDTH + 1

) := shift_input;
end if;

-- Add ’word_length’ to the number of elements (bits)
-- currently in the wbuffer
num_elements := num_elements + (word_length) + "1";
-- Move the write position by subtracting the word_length

118

Appendix A. VHDL code

-- (word_length from 0 to 15 represents a code word
-- length of 1 to 16 bits)
write_pos := write_pos - (word_length) - "1";

-- Writes data to the output if the number of
-- elements is more than the Output width.
-- wbuf_write is set to 1 to indicate that a
-- Golomb package was written
-- (else sets wbuf_write back to 0)
if (num_elements >= OUT_WIDTH) then

out_wbuf <= wbuffer(
conv_integer(read_pos)
downto conv_integer(read_pos)
- OUT_WIDTH + 1

);
wbuf_write <= ’1’;
read_pos := read_pos - "10000";
num_elements := num_elements - "10000";

else
wbuf_write <= ’0’;
out_wbuf <= (others => ’0’);

end if;
wbuf_empty <= ’0’;

else
num_elements := (others => ’0’);
wbuf_empty <= ’1’;
write_pos := (others => ’1’);
read_pos := (others => ’1’);
init_done := true;

end if;

-- When the enable goes low, there could still be data left
-- in the write buffer. This ensures that the last golomb
-- package is written even if it doesnt contain only valid bits.
-- A counter in the decoder will know when all pixels have been
-- decoded, and the unvalid bits will be ignored
elsif (rising_edge(clk) and wbuf_enable = ’0’) then

if (num_elements > 0) then
out_wbuf <= wbuffer(

conv_integer(read_pos)
downto conv_integer(read_pos)
- OUT_WIDTH + 1

);
wbuf_write <= ’1’;
wbuf_empty <= ’0’;
num_elements := (others => ’0’);

else
wbuf_empty <= ’1’;
wbuf_write <= ’0’;
out_wbuf <= (others => ’0’);
read_pos := (others => ’1’);
write_pos := (others => ’1’);
init_done := false;

end if;
end if;

end process;
end architecture RTL;

119

A.4. Toplevel - encoder

A.4 Toplevel - encoder

enc_top.vhd

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.defs.all;

entity enc_top is
port(

clk : in std_logic;
rst : in std_logic;
data_in : in std_logic_vector(7 downto 0);
new_frame : in std_logic;
ready : out std_logic;
data_out : out std_logic_vector(GOL_MAX_LEN - 1 downto 0);
size_out : out std_logic_vector(3 downto 0)

);
end entity enc_top;

architecture RTL of enc_top is
signal data_in_c : std_logic_vector(7 downto 0);

--index
signal index_rst : std_logic;
signal B_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal C_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal D_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal I_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal index_out : std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
signal sign_out : std_logic;

--k
signal loco_k_rst : std_logic;

signal A_k_out : std_logic_vector(A_LEN - 1 downto 0);
signal N_k_out : std_logic_vector(N_LEN - 1 downto 0);
signal k_out : std_logic_vector(8 downto 0);
signal k_less_out : std_logic_vector(8 downto 0);
signal k_int_out : std_logic_vector(3 downto 0);

--loco
signal loco_rst : std_logic;

signal A_out : std_logic_vector(A_LEN - 1 downto 0);
signal B_out : std_logic_vector(B_LEN - 1 downto 0);
signal C_out : std_logic_vector(C_LEN - 1 downto 0);
signal N_out : std_logic_vector(N_LEN - 1 downto 0);
signal B_l : std_logic_vector(SMPL_LEN - 1 downto 0);
signal sign_d : std_logic;
signal loco_w_rst : std_logic;
signal index_d2 : std_logic_vector(7 downto 0);
signal A_in : std_logic_vector(A_LEN - 1 downto 0);

120

Appendix A. VHDL code

signal B_in : std_logic_vector(B_LEN - 1 downto 0);
signal C_in : std_logic_vector(C_LEN - 1 downto 0);
signal N_in : std_logic_vector(N_LEN - 1 downto 0);
signal Q : std_logic_vector(SMPL_LEN - 1 downto 0);

--gol
signal gol_rst : std_logic;
signal k_less_d : std_logic_vector(8 downto 0);
signal k_d : std_logic_vector(8 downto 0);
signal k_int_d : std_logic_vector(3 downto 0);

--context
signal ctxt_addr_rst : std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
signal ctxt_rst : std_logic;

--output
signal data_out_c : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal size_out_c : std_logic_vector(3 downto 0);

signal cache_rst : std_logic;
signal not_rst : std_logic;
signal index_d1 : std_logic_vector(7 downto 0);
signal B_gol : std_logic_vector(B_LEN - 1 downto 0);
signal N_gol : std_logic_vector(N_LEN - 1 downto 0);
signal data_in_c1 : std_logic_vector(7 downto 0);
signal data_in_c2 : std_logic_vector(7 downto 0);
signal data_in_c3 : std_logic_vector(7 downto 0);

begin
not_rst <= not rst;

clocked_in_out : process(clk, rst) is
begin

if rising_edge(clk) then
if rst = ’1’ then
data_in_c <= (others => ’0’);
data_out <= (others => ’0’);
size_out <= (others => ’0’);

else
data_in_c <= data_in;
data_in_c3 <= data_in_c2;
data_in_c2 <= data_in_c1;
data_in_c1 <= data_in_c;

data_out <= data_out_c;
size_out <= size_out_c;

end if;
end if;

end process clocked_in_out;

index_module : entity work.index port map(
clk => clk,
rst => index_rst,
B_cache => B_i,
C_cache => C_i,
D_cache => D_i,
I_cache => I_i,
index_out => index_out,

121

A.4. Toplevel - encoder

sign_out => sign_out
);

find_k_module : entity work.find_k port map(
clk => clk,
rst => loco_k_rst,
A => A_k_out,
N => N_k_out,
k_out => k_out,
k_less_out => k_less_out,
k_int_out => k_int_out

);
modeling_module : entity work.loco port map(

clk => clk,
rst => loco_rst,
loco_w_rst => loco_w_rst,
data => data_in_c,
sign => sign_d,
P => B_l,
A => A_out,
B => B_out,
C => C_out,
N => N_out,
A_out => A_in,
B_out => B_in,
C_out => C_in,
N_out => N_in,
B0_out => B_gol,
N0_out => N_gol,
Q_out => Q

);
gol_module : entity work.gol_enc_top port map(

clk => clk,
rst => gol_rst,
k_in => k_d,
k_less_in => k_less_d,
k_int_in => k_int_d,
input => Q,
B => B_gol,
N => N_gol,
output => data_out_c,
length_out => size_out_c

);
ctxt_reg_module : entity work.ctxt_reg port map(

clk => clk,
rst => rst,
write_0 => ctxt_rst,
write0_addr => ctxt_addr_rst,
read_index => index_d1,
read_k_index => index_out,
write_index => index_d2,
A_in => A_in,
B_in => B_in,
C_in => C_in,
N_in => N_in,
A_out => A_out,
A_k_out => A_k_out,
B_out => B_out,

122

Appendix A. VHDL code

C_out => C_out,
N_out => N_out,
N_k_out => N_k_out

);
cache_module : entity work.line_cache port map(

clk => clk,
shift => not_rst,
write_0 => cache_rst,
sr_in => data_in_c3,
sr_tap_B => B_i,
sr_tap_C => C_i,
sr_tap_D => D_i,
sr_tap_I => I_i,
sr_tap_B_l => B_l

);
delay_module : entity work.enc_signal_delays port map(

clk => clk,
rst => rst,
index_in => index_out,
sign_in => sign_out,
k_less_in => k_less_out,
k_in => k_out,
k_int_in => k_int_out,
index_out1 => index_d1,
index_out2 => index_d2,
sign_out => sign_d,
k_less_out => k_less_d,
k_out => k_d,
k_int_out => k_int_d

);
reset_module : entity work.reset port map(

clk => clk,
rst => rst,
new_frame => new_frame,
ready => ready,
ctxt_addr => ctxt_addr_rst,
ctxt_rst => ctxt_rst,
cache_rst => cache_rst,
index_rst => index_rst,
loco_k_rst => loco_k_rst,
loco_rst => loco_rst,
loco_w_rst => loco_w_rst,
gol_rst => gol_rst

);
end architecture RTL;

123

A.5. Modeling and signals - decoder

A.5 Modeling and signals - decoder

dec_modeling.vhd

entity dec_modeling is
port(

clk : in std_logic;
rst : in std_logic;
data : in std_logic_vector(SMPL_LEN - 1 downto 0);
loco_w_rst : in std_logic;
sign : in std_logic;
P : in std_logic_vector(SMPL_LEN - 1 downto 0);
k_int_in : in std_logic_vector(3 downto 0);
k_orig : in std_logic_vector(3 downto 0);
A : in std_logic_vector(A_LEN - 1 downto 0);
B : in std_logic_vector(B_LEN - 1 downto 0);
C : in std_logic_vector(C_LEN - 1 downto 0);
N : in std_logic_vector(N_LEN - 1 downto 0);
A_out : out std_logic_vector(A_LEN - 1 downto 0);
B_out : out std_logic_vector(B_LEN - 1 downto 0);
C_out : out std_logic_vector(C_LEN - 1 downto 0);
N_out : out std_logic_vector(N_LEN - 1 downto 0);
Q_out : out std_logic_vector(SMPL_LEN - 1 downto 0)

);
end entity dec_modeling;

architecture RTL of dec_modeling is
signal e : std_logic_vector(C_LEN downto 0);
signal A_t1 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t1 : std_logic_vector(C_LEN downto 0);
signal C_t1 : std_logic_vector(C_LEN downto 0);
signal N_t1 : std_logic_vector(C_LEN downto 0);
signal A_t2 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t2 : std_logic_vector(C_LEN downto 0);
signal C_t2 : std_logic_vector(C_LEN downto 0);
signal N_t2 : std_logic_vector(C_LEN downto 0);
signal A_t3 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t3 : std_logic_vector(C_LEN downto 0);
signal C_t3 : std_logic_vector(C_LEN downto 0);
signal N_t3 : std_logic_vector(C_LEN downto 0);
signal e_abs : std_logic_vector(C_LEN downto 0);
signal A_t0 : std_logic_vector(A_LEN - 1 downto 0);
signal B_t0 : std_logic_vector(B_LEN - 1 downto 0);
signal C_t0 : std_logic_vector(C_LEN - 1 downto 0);
signal N_t0 : std_logic_vector(N_LEN - 1 downto 0);
signal P_t0 : std_logic_vector(SMPL_LEN - 1 downto 0);
signal A_temp : std_logic_vector(A_LEN - 1 downto 0);
signal B_temp : std_logic_vector(C_LEN downto 0);
signal C_temp : std_logic_vector(C_LEN downto 0);
signal N_temp : std_logic_vector(C_LEN downto 0);
signal B_t2t1 : std_logic_vector(C_LEN downto 0);
signal B_t2t2 : std_logic_vector(C_LEN downto 0);
signal C_t2t1 : std_logic_vector(C_LEN downto 0);
signal C_t2t2 : std_logic_vector(C_LEN downto 0);
signal sign_t0 : std_logic;

124

Appendix A. VHDL code

signal e_t0 : std_logic_vector(7 downto 0);
signal data_t1 : std_logic_vector(C_LEN downto 0);

begin
mapping : process(clk) is

variable temp2B : std_logic_vector(6 downto 0);
begin

if rising_edge(clk) then
if rst = ’1’ then
e_t0 <= (others => ’0’);

else
-- map error to two sided function:
if data(0) = ’1’ then

e_t0(6 downto 0) <= not data(7 downto 1);
e_t0(7) <= ’1’;

else
e_t0(6 downto 0) <= data(7 downto 1);
e_t0(7) <= ’0’;

end if;
end if;

end if;
end process mapping;

-- decode input:
adj_e : process(clk, rst) is

variable temp_e : std_logic_vector(C_LEN downto 0);
variable temp_data1 : std_logic_vector(C_LEN downto 0);
variable temp_data2 : std_logic_vector(C_LEN downto 0);

begin
if rising_edge(clk) then

if rst = ’1’ then
e <= (others => ’0’);
e_abs <= (others => ’0’);
A_t1 <= (others => ’0’);
B_t1 <= (others => ’0’);
C_t1 <= (others => ’0’);
N_t1 <= (others => ’0’);
A_t0 <= (others => ’0’);
B_t0 <= (others => ’0’);
C_t0 <= (others => ’0’);
N_t0 <= (others => ’0’);
P_t0 <= (others => ’0’);
data_t1 <= (others => ’0’);
sign_t0 <= ’0’;

else
-- Pipeline signals:
A_t0 <= A;
B_t0 <= B;
C_t0 <= C;
N_t0 <= N;
P_t0 <= P;
sign_t0 <= sign;

-- find absolute value of e:
temp_e := e_t0(7) & e_t0(7) & e_t0;
if e_t0(7) = ’1’ then

e_abs <= 0 - temp_e;
else

125

A.5. Modeling and signals - decoder

e_abs <= temp_e;
end if;
e <= temp_e;

-- Find original sample value based on predictor (P) and
-- context (C):
temp_data1 := (P_t0(7) & P_t0(7) & P_t0)
+ (C_t0(8) & C_t0) + (e_t0(7) & e_t0(7) & e_t0);

temp_data2 := (P_t0(7) & P_t0(7) & P_t0)
- (e_t0(7) & e_t0(7) & e_t0) - (C_t0(8) & C_t0);

-- Select right value based on sign value:
if (sign_t0 = ’1’) then
data_t1 <= temp_data1;

else
data_t1 <= temp_data2;

end if;

-- Extend bit lengths and half if N >= 32:
if N_t0(5) = ’0’ then
A_t1 <= A_t0;
B_t1 <= B_t0(5) & B_t0(5) & B_t0(5) & B_t0(5) & B_t0;
C_t1 <= C_t0(8) & C_t0;
N_t1 <= "0000" & N_t0;

else
A_t1 <= A_t0(A_LEN - 1) & A_t0(A_LEN - 1 downto 1);
B_t1 <= B_t0(5) & B_t0(5) & B_t0(5)

& B_t0(5) & B_t0(5) & B_t0(B_LEN - 1 downto 1);
C_t1 <= C_t0(8) & C_t0;
N_t1 <= "0000001111";

end if;
end if;

end if;
end process adj_e;

modeling : process(clk, rst) is
begin

if rising_edge(clk) then
if loco_w_rst = ’1’ then

A_out <= (others => ’0’);
B_out <= (others => ’0’);
C_out <= (others => ’0’);
N_out <= (others => ’0’);
A_t2 <= (others => ’0’);
B_t2 <= (others => ’0’);
C_t2 <= (others => ’0’);
N_t2 <= (others => ’0’);
A_t3 <= (others => ’0’);
B_t3 <= (others => ’0’);
C_t3 <= (others => ’0’);
N_t3 <= (others => ’0’);
B_t2t1 <= (others => ’0’);
B_t2t2 <= (others => ’0’);
C_t2t1 <= (others => ’0’);
C_t2t2 <= (others => ’0’);
A_temp <= (others => ’0’);
B_temp <= (others => ’0’);

126

Appendix A. VHDL code

C_temp <= (others => ’0’);
N_temp <= (others => ’0’);

else

-- Context modeling procedure:
A_t2 <= A_t1 + e_abs;
B_t2 <= B_t1 + e;
C_t2 <= C_t1;
N_t2 <= N_t1 + 1;
B_t2t1 <= B_t1 + e + N_t1 + 1;
B_t2t2 <= B_t1 + e - N_t1 - 1;
C_t2t1 <= C_t1 - 1;
C_t2t2 <= C_t1 + 1;

if ((B_t2 <= "0" - N_t2) and B_t2(C_LEN) = ’1’) then
A_t3 <= A_t2;
B_t3 <= B_t2t1;
C_t3 <= C_t2t1;
N_t3 <= N_t2;
if ((B_t3 <= 0 - N_t3) and B_t3(C_LEN) = ’1’) then
A_temp <= A_t3;
B_temp <= 0 - N_t3 + 1;
C_temp <= C_t3;
N_temp <= N_t3;

else
A_temp <= A_t3;
B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;
elsif (B_t2 > 0 and B_t2(C_LEN) = ’0’) then

A_t3 <= A_t2;
B_t3 <= B_t2t2;
C_t3 <= C_t2t2;
N_t3 <= N_t2;
if ((B_t3 <= 0 - N_t3) and B_t3(C_LEN) = ’1’) then
A_temp <= A_t3;
B_temp <= (others => ’0’);
C_temp <= C_t3;
N_temp <= N_t3;

else
A_temp <= A_t3;
B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;
else

A_t3 <= A_t2;
B_t3 <= B_t2;
C_t3 <= C_t2;
N_t3 <= N_t2;
A_temp <= A_t3;
B_temp <= B_t3;
C_temp <= C_t3;
N_temp <= N_t3;

end if;

127

A.5. Modeling and signals - decoder

-- Output new A,B,C,N:
A_out <= A_temp;
B_out <= B_temp(B_LEN - 1 downto 0);
C_out <= C_temp(C_LEN - 1 downto 0);
N_out <= N_temp(N_LEN - 1 downto 0);

end if;
end if;

end process modeling;

-- Output decoded data:
update_output : process(clk, rst) is
begin

if rst = ’1’ then
Q_out <= (others => ’0’);

elsif rising_edge(clk) then
Q_out <= data_t1(SMPL_LEN - 1 downto 0);

end if;
end process update_output;

end architecture RTL;

128

Appendix A. VHDL code

dec_signal_delays.vhd

entity dec_signal_delays is
port(

clk : in std_logic;
rst : in std_logic;
index_in : in std_logic_vector(7 downto 0);
sign_in : in std_logic;
k_less_in : in std_logic_vector(8 downto 0);
k_in : in std_logic_vector(8 downto 0);
k_int_in : in std_logic_vector(3 downto 0);
index_out1 : out std_logic_vector(7 downto 0);
index_out2 : out std_logic_vector(7 downto 0);
sign_out : out std_logic;
k_int_out : out std_logic_vector(3 downto 0)

);
end entity dec_signal_delays;

architecture RTL of dec_signal_delays is
type k_array is array (DEC_K_DELAY downto 0)

of std_logic_vector(8 downto 0);
type k_less_array is array (DEC_K_DELAY downto 0)

of std_logic_vector(8 downto 0);
type k_int_array is array (DEC_K_DELAY downto 0)

of std_logic_vector(3 downto 0);
type index_array is array (DEC_INDEX_DELAY downto 0)

of std_logic_vector(7 downto 0);
type sign_array is array (DEC_SIGN_DELAY downto 0)

of std_logic;

signal k : k_array;
signal k_less : k_less_array;
signal k_int : k_int_array;
signal index : index_array;
signal sign : sign_array;

begin
propagate_signals : process(clk, rst) is
begin

if rising_edge(clk) then

-- Propagate signals through registers:
index(DEC_INDEX_DELAY downto 1)
<= index(DEC_INDEX_DELAY - 1 downto 0);

sign(DEC_SIGN_DELAY downto 1)
<= sign(DEC_SIGN_DELAY - 1 downto 0);

k(DEC_K_DELAY downto 1)
<= k(DEC_K_DELAY - 1 downto 0);

k_less(DEC_K_DELAY downto 1)
<= k_less(DEC_K_DELAY - 1 downto 0);

k_int(DEC_K_DELAY downto 1)
<= k_int(DEC_K_DELAY - 1 downto 0);

-- Input signals
index(0) <= index_in;
k(0) <= k_in;
k_less(0) <= k_less_in;

129

A.5. Modeling and signals - decoder

k_int(0) <= k_int_in;
sign(0) <= sign_in;

-- Output signals:
index_out1 <= index(4);
index_out2 <= index(DEC_INDEX_DELAY);
sign_out <= sign(DEC_SIGN_DELAY);
k_int_out <= k_int(DEC_K_DELAY);

end if;
end process propagate_signals;

end architecture RTL;

130

Appendix A. VHDL code

dec_reset.vhd

entity dec_reset is
port(

clk : in std_logic;
rst : in std_logic;
new_frame : in std_logic;
ready : out std_logic;
ctxt_addr : out std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
ctxt_rst : out std_logic;
cache_rst : out std_logic;
index_rst : out std_logic;
loco_k_rst : out std_logic;
loco_rst : out std_logic;
loco_w_rst : out std_logic;
gol_rst : out std_logic

);
end entity dec_reset;

architecture RTL of dec_reset is
signal counter : std_logic_vector(12 downto 0);
signal index_rst0 : std_logic_vector(DEC_INDEX_RST downto 0);
signal loco_k_rst0 : std_logic_vector(DEC_K_RST downto 0);
signal loco_rst0 : std_logic_vector(DEC_LOCO_RST downto 0);
signal gol_rst0 : std_logic_vector(DEC_GOL_RST downto 0);
signal loco_w_rst0 : std_logic_vector(DEC_LOCO_W_RST downto 0);

begin

-- Count through all addresses in context memory and write 0:
empty_cache : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then
counter <= (others => ’0’);
ctxt_addr <= (others => ’0’);

else
if new_frame = ’1’ then

counter <= counter + 1;
ctxt_addr <= counter(CTXT_ADDR_SIZE - 1 downto 0);

else
counter <= (others => ’0’);
ctxt_addr <= (others => ’0’);

end if;
end if;

end if;
end process empty_cache;

-- Delay reset signals to all modules in the design:
reset : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then
ready <= ’0’;
index_rst <= ’1’;
index_rst <= ’1’;
loco_k_rst <= ’1’;

131

A.5. Modeling and signals - decoder

loco_rst <= ’1’;
loco_w_rst <= ’1’;
gol_rst <= ’1’;
index_rst0 <= (others => ’1’);
loco_k_rst0 <= (others => ’1’);
loco_rst0 <= (others => ’1’);
gol_rst0 <= (others => ’1’);

else

if new_frame = ’1’ then
-- After counting two lines and line cache is empty:
if counter(12) = ’1’ then

-- Set input value:
ready <= ’1’;
index_rst0(0) <= ’0’;
loco_k_rst0(0) <= ’0’;
loco_rst0(0) <= ’0’;
loco_w_rst0(0) <= ’0’;
gol_rst0(0) <= ’0’;

-- Propagate signals:
index_rst0(DEC_INDEX_RST downto 1)

<= index_rst0(DEC_INDEX_RST - 1 downto 0);
loco_k_rst0(DEC_K_RST downto 1)

<= loco_k_rst0(DEC_K_RST - 1 downto 0);
loco_rst0(DEC_LOCO_RST downto 1)

<= loco_rst0(DEC_LOCO_RST - 1 downto 0);
loco_w_rst0(DEC_LOCO_W_RST downto 1)

<= loco_w_rst0(DEC_LOCO_W_RST - 1 downto 0);
gol_rst0(DEC_GOL_RST downto 1)

<= gol_rst0(DEC_GOL_RST - 1 downto 0);
else

-- Else keep reset:
ready <= ’0’;
index_rst0 <= (others => ’1’);
loco_k_rst0 <= (others => ’1’);
loco_rst0 <= (others => ’1’);
loco_w_rst0 <= (others => ’1’);
gol_rst0 <= (others => ’1’);

end if;
else
-- Keep not reset after new frame has started:
ready <= ’0’;
index_rst0(0) <= ’0’;
loco_k_rst0(0) <= ’0’;
loco_rst0(0) <= ’0’;
loco_w_rst0(0) <= ’0’;
gol_rst0(0) <= ’0’;

index_rst0(DEC_INDEX_RST downto 1)
<= index_rst0(DEC_INDEX_RST - 1 downto 0);

loco_k_rst0(DEC_K_RST downto 1)
<= loco_k_rst0(DEC_K_RST - 1 downto 0);

loco_rst0(DEC_LOCO_RST downto 1)
<= loco_rst0(DEC_LOCO_RST - 1 downto 0);

loco_w_rst0(DEC_LOCO_W_RST downto 1)

132

Appendix A. VHDL code

<= loco_w_rst0(DEC_LOCO_W_RST - 1 downto 0);
gol_rst0(DEC_GOL_RST downto 1)
<= gol_rst0(DEC_GOL_RST - 1 downto 0);

end if;
-- Output delayed reset signals:
index_rst <= index_rst0(DEC_INDEX_RST);
loco_k_rst <= loco_k_rst0(DEC_K_RST);
loco_rst <= loco_rst0(DEC_LOCO_RST);
loco_w_rst <= loco_w_rst0(DEC_LOCO_W_RST);
gol_rst <= gol_rst0(DEC_GOL_RST);
ctxt_rst <= index_rst0(DEC_INDEX_RST);
cache_rst <= index_rst0(DEC_INDEX_RST);

end if;
end if;

end process reset;
end architecture RTL;

133

A.6. Source coding - decoder

A.6 Source coding - decoder

update_registers.vhd

entity update_registers is
port(

clk : in std_logic;
k_in : in std_logic_vector(3 downto 0);
k_in_bit : in std_logic_vector(8 downto 0);
get_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
data_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
end_q_out : out std_logic_vector(DEC_REG_SIZE - 1 downto 0);
get_out : out std_logic_vector(DEC_REG_SIZE - 1 downto 0);
k_out : out std_logic_vector(3 downto 0)

);
end entity update_registers;

-- Top module for golomb index registers and counter:
architecture RTL of update_registers is

signal end_q : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal k8 : std_logic;

begin
end_q_out <= end_q;
find_end_q_module : entity work.find_end_q port map(

clk => clk,
end_q => end_q,
get_in_in => get_in,
data_in => data_in

);
k8_module : entity work.k8 port map(

clk => clk,
get_in => get_in,
end_q_in => end_q,
k8 => k8

);
find_end_r_module : entity work.find_end_r port map(

clk => clk,
end_q => end_q,
k8 => k8,
get_out => get_out,
k_in => k_in,
k_in_bit => k_in_bit,
k_out => k_out

);
end architecture RTL;

134

Appendix A. VHDL code

find_end_q.vhd

entity find_end_q is
port(

clk : in std_logic;
end_q : out std_logic_vector(DEC_REG_SIZE - 1 downto 0);
get_in_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
data_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0)

);
end entity find_end_q;

architecture RTL of find_end_q is
type end_q_arr is array (DEC_REG_SIZE - 1 downto 0)

of std_logic_vector(7 downto 0);
signal end_q_n : end_q_arr;
type data_arr is array (DEC_REG_SIZE - 1 downto 0)

of std_logic_vector(7 downto 0);
signal data : data_arr;
signal get_in : std_logic_vector(DEC_REG_SIZE - 1 downto 0);

begin
get_in <= get_in_in;

-- Divide input portitons to the different ’q’ counters:
connect : for n in DEC_REG_SIZE - 8 downto 0 generate

data(n) <= data_in(n + 7 downto n);
end generate;
data(DEC_REG_SIZE - 7) <= data_in(0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 7);
data(DEC_REG_SIZE - 6) <= data_in(1 downto 0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 6);
data(DEC_REG_SIZE - 5) <= data_in(2 downto 0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 5);
data(DEC_REG_SIZE - 4) <= data_in(3 downto 0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 4);
data(DEC_REG_SIZE - 3) <= data_in(4 downto 0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 3);
data(DEC_REG_SIZE - 2) <= data_in(5 downto 0)

& data_in(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 2);
data(DEC_REG_SIZE - 1) <= data_in(6 downto 0)

& data_in(DEC_REG_SIZE - 1);

-- Instantiate n ’q’ counters to find end of ’q’:
n_q_reg : for n in DEC_REG_SIZE - 1 downto 0 generate

q_reg : entity work.count_q port map(
clk => clk,
data => data(n),
get => get_in(n),
end_q => end_q_n(n)

);
end generate;

-- Select and output the ’q’ counter that found the end of ’q’:
output : for n in DEC_REG_SIZE - 1 downto 0 generate

output_proc : process(end_q_n) is
begin

135

A.6. Source coding - decoder

end_q(n) <= (
end_q_n(n)(0)
or end_q_n((n - 1) mod DEC_REG_SIZE)(1)
or end_q_n((n - 2) mod DEC_REG_SIZE)(2)
or end_q_n((n - 3) mod DEC_REG_SIZE)(3)
or end_q_n((n - 4) mod DEC_REG_SIZE)(4)
or end_q_n((n - 5) mod DEC_REG_SIZE)(5)
or end_q_n((n - 6) mod DEC_REG_SIZE)(6)
or end_q_n((n - 7) mod DEC_REG_SIZE)(7)
);

end process;
end generate;

end architecture RTL;

136

Appendix A. VHDL code

count_q.vhd

entity count_q is
port(

clk : in std_logic;
get : in std_logic;
data : in std_logic_vector(7 downto 0);
end_q : buffer std_logic_vector(7 downto 0)

);
end entity count_q;

architecture RTL of count_q is
type q_arr is array (0 to 7) of std_logic;
signal q : q_arr;

-- Find end of ’q’ based on get index and data index:
begin

q(1) <= data(0) and get;
end_q(0) <= not data(0) and get;
n_dec_reg : for n in 1 to 6 generate

q((n + 1) mod 8) <= data(n) and q(n);
end_q(n) <= not data(n) and q(n);

end generate;
end_q(7) <= not data(7) and q(7);

end architecture RTL;

137

A.6. Source coding - decoder

k8.vhd

entity k8 is
port(

clk : in std_logic;
get_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
end_q_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
k8 : out std_logic

);
end entity k8;

architecture RTL of k8 is
signal k8_arr : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal end_q : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal get : std_logic_vector(DEC_REG_SIZE - 1 downto 0);

begin
get <= get_in;
end_q <= end_q_in;

-- Create AND array for all 8 bit distances between get and end_q:
find_unenc : process(end_q, get, k8_arr) is
begin

for n in 0 to DEC_REG_SIZE - 1 loop
k8_arr(n) <= get(n) and end_q((n + 7) mod DEC_REG_SIZE);

end loop;
end process;

-- If none of the ANDs are ’1’ output ’1’, else output ’0’
or_k8 : process(k8_arr, clk) is
begin

if k8_arr = 0 then
k8 <= ’1’;

else
k8 <= ’0’;

end if;
end process or_k8;

end architecture RTL;

138

Appendix A. VHDL code

find_end_r.vhd

entity find_end_r is
port(

clk : in std_logic;
end_q : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
k8 : in std_logic;
get_out : out std_logic_vector(DEC_REG_SIZE - 1 downto 0);
k_in : in std_logic_vector(3 downto 0);
k_in_bit : in std_logic_vector(8 downto 0);
k_out : out std_logic_vector(3 downto 0)

);
end entity find_end_r;

architecture RTL of find_end_r is
type end_r_arr is array (8 downto 0)

of std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal end_r : end_r_arr;

begin

-- Parallel shift of get index for all 9 ’k’ values:
end_r(0) <= end_q(DEC_REG_SIZE - 2 downto 0)

& end_q(DEC_REG_SIZE - 1);
end_r(1) <= end_q(DEC_REG_SIZE - 3 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 2);
end_r(2) <= end_q(DEC_REG_SIZE - 4 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 3);
end_r(3) <= end_q(DEC_REG_SIZE - 5 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 4);
end_r(4) <= end_q(DEC_REG_SIZE - 6 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 5);
end_r(5) <= end_q(DEC_REG_SIZE - 7 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 6);
end_r(6) <= end_q(DEC_REG_SIZE - 8 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 7);
end_r(7) <= end_q(DEC_REG_SIZE - 9 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 8);
end_r(8) <= end_q(DEC_REG_SIZE - 10 downto 0)

& end_q(DEC_REG_SIZE - 1 downto DEC_REG_SIZE - 9);

-- Select end_r based on ’k’:
get_out_proc : process(clk, k_in, end_r, k8, k_in_bit) is
begin

if k8 = ’1’ then
k_out <= k_in;
for n in 0 to DEC_REG_SIZE - 1 loop
get_out(n) <=

(end_r(0)(n) and k_in_bit(0))
or (end_r(1)(n) and k_in_bit(1))
or (end_r(2)(n) and k_in_bit(2))
or (end_r(3)(n) and k_in_bit(3))
or (end_r(4)(n) and k_in_bit(4))
or (end_r(5)(n) and k_in_bit(5))
or (end_r(6)(n) and k_in_bit(6))
or (end_r(7)(n) and k_in_bit(7))
or (end_r(8)(n) and k_in_bit(8));

139

A.6. Source coding - decoder

end loop;
else

k_out <= "1000";
get_out <= end_r(8);

end if;
end process;

end architecture RTL;

140

Appendix A. VHDL code

decode_q.vhd

entity decode_q is
port(

clk : in std_logic;
rst : in std_logic;
end_q_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
get_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
q_out : out std_logic_vector(2 downto 0)

);
end entity decode_q;

architecture RTL48 of decode_q is
signal end_q : std_logic_vector(DEC_REG_LEN - 1 downto 0);
signal get : std_logic_vector(DEC_REG_LEN - 1 downto 0);
signal q_temp : std_logic_vector(DEC_REG_LEN - 1 downto 0);

begin
q_out <= q_temp(2 downto 0);

-- Calculate difference between get bit and end_q bit,
-- represented in binary code:
calc_diff : process(clk) is
begin

if rising_edge(clk) then
q_temp <= end_q - get;

end if;
end process calc_diff;

-- Decode position of get bit in get_index,
-- to binary representation:
with end_q_in select end_q <=

"000000" when "0001",
"000001" when "0010",
"000010" when "000100",
"000011" when "001000",
"000100" when "00010000",
"000101" when "00100000",
"000110" when "0001000000",
"000111" when "0010000000",
"001000" when "000000000000000000000000000000000000000100000000",
"001001" when "000000000000000000000000000000000000001000000000",
"001010" when "000000000000000000000000000000000000010000000000",
"001011" when "000000000000000000000000000000000000100000000000",
"001100" when "000000000000000000000000000000000001000000000000",
"001101" when "000000000000000000000000000000000010000000000000",
"001110" when "000000000000000000000000000000000100000000000000",
"001111" when "000000000000000000000000000000001000000000000000",
"010000" when "000000000000000000000000000000010000000000000000",
"010001" when "000000000000000000000000000000100000000000000000",
"010010" when "000000000000000000000000000001000000000000000000",
"010011" when "000000000000000000000000000010000000000000000000",
"010100" when "000000000000000000000000000100000000000000000000",
"010101" when "000000000000000000000000001000000000000000000000",
"010110" when "000000000000000000000000010000000000000000000000",
"010111" when "000000000000000000000000100000000000000000000000",
"011000" when "000000000000000000000001000000000000000000000000",

141

A.6. Source coding - decoder

"011001" when "000000000000000000000010000000000000000000000000",
"011010" when "000000000000000000000100000000000000000000000000",
"011011" when "000000000000000000001000000000000000000000000000",
"011100" when "000000000000000000010000000000000000000000000000",
"011101" when "000000000000000000100000000000000000000000000000",
"011110" when "000000000000000001000000000000000000000000000000",
"011111" when "000000000000000010000000000000000000000000000000",
"100000" when "000000000000000100000000000000000000000000000000",
"100001" when "000000000000001000000000000000000000000000000000",
"100010" when "000000000000010000000000000000000000000000000000",
"100011" when "000000000000100000000000000000000000000000000000",
"100100" when "000000000001000000000000000000000000000000000000",
"100101" when "000000000010000000000000000000000000000000000000",
"100110" when "000000000100000000000000000000000000000000000000",
"100111" when "000000001000000000000000000000000000000000000000",
"101000" when "0000000100",
"101001" when "0000001000",
"101010" when "00000100",
"101011" when "00001000",
"101100" when "000100",
"101101" when "001000",
"101110" when "0100",
"101111" when "1000",
"XXXXXX" when others;

-- Decode position of end_q bit in end_q_index,
-- to binary representation:
with get_in select get <=

"000000" when "0001",
"000001" when "0010",
"000010" when "000100",
"000011" when "001000",
"000100" when "00010000",
"000101" when "00100000",
"000110" when "0001000000",
"000111" when "0010000000",
"001000" when "000000000000000000000000000000000000000100000000",
"001001" when "000000000000000000000000000000000000001000000000",
"001010" when "000000000000000000000000000000000000010000000000",
"001011" when "000000000000000000000000000000000000100000000000",
"001100" when "000000000000000000000000000000000001000000000000",
"001101" when "000000000000000000000000000000000010000000000000",
"001110" when "000000000000000000000000000000000100000000000000",
"001111" when "000000000000000000000000000000001000000000000000",
"010000" when "000000000000000000000000000000010000000000000000",
"010001" when "000000000000000000000000000000100000000000000000",
"010010" when "000000000000000000000000000001000000000000000000",
"010011" when "000000000000000000000000000010000000000000000000",
"010100" when "000000000000000000000000000100000000000000000000",
"010101" when "000000000000000000000000001000000000000000000000",
"010110" when "000000000000000000000000010000000000000000000000",
"010111" when "000000000000000000000000100000000000000000000000",
"011000" when "000000000000000000000001000000000000000000000000",
"011001" when "000000000000000000000010000000000000000000000000",
"011010" when "000000000000000000000100000000000000000000000000",
"011011" when "000000000000000000001000000000000000000000000000",
"011100" when "000000000000000000010000000000000000000000000000",

142

Appendix A. VHDL code

"011101" when "000000000000000000100000000000000000000000000000",
"011110" when "000000000000000001000000000000000000000000000000",
"011111" when "000000000000000010000000000000000000000000000000",
"100000" when "000000000000000100000000000000000000000000000000",
"100001" when "000000000000001000000000000000000000000000000000",
"100010" when "000000000000010000000000000000000000000000000000",
"100011" when "000000000000100000000000000000000000000000000000",
"100100" when "000000000001000000000000000000000000000000000000",
"100101" when "000000000010000000000000000000000000000000000000",
"100110" when "000000000100000000000000000000000000000000000000",
"100111" when "000000001000000000000000000000000000000000000000",
"101000" when "0000000100",
"101001" when "0000001000",
"101010" when "00000100",
"101011" when "00001000",
"101100" when "000100",
"101101" when "001000",
"101110" when "0100",
"101111" when "1000",
"XXXXXX" when others;

end architecture RTL48;

143

A.6. Source coding - decoder

decode_r.vhd

entity decode_r is
port(

clk : in std_logic;
rst : in std_logic;
end_q_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
data_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
data_out : out std_logic_vector(7 downto 0)

);
end entity decode_r;

-- Top module for mux array that produces ’r’:
architecture RTL of decode_r is

type data_arr is array (DEC_REG_SIZE - 1 downto 0)
of std_logic_vector(7 downto 0);

signal data : data_arr;

begin
r_MUX_array0 : for i in 7 downto 0 generate

r_MUX_array1 : for j in DEC_REG_SIZE - 2 downto 0 generate
r_MUXs : entity work.decode_r_mux port map(

clk => clk,
data_in => data_in(j),
active => end_q_in((j - i - 1) mod DEC_REG_SIZE),
data_out => data(j)(i),
prev_data => data(j + 1)(i)

);
end generate;
r_MUX : entity work.decode_r_mux port map(

clk => clk,
data_in => data_in(DEC_REG_SIZE-1),
active => end_q_in((DEC_REG_SIZE-1 - i - 1) mod DEC_REG_SIZE),
data_out => data(DEC_REG_SIZE-1)(i),
prev_data => ’0’

);
end generate;
data_out <= data(0);

end architecture RTL;

144

Appendix A. VHDL code

decode_r_mux.vhd

entity decode_r_mux is
port(

clk : in std_logic;
data_in : in std_logic;
prev_data : in std_logic;
active : in std_logic;
data_out : out std_logic

);
end entity decode_r_mux;

-- MUX to select ’r’ in data register based on active signal
-- which is given by end_r bit.
architecture RTL of decode_r_mux is
begin

process(data_in, prev_data, active) is
begin

if active = ’1’ then
data_out <= data_in;

else
data_out <= prev_data;

end if;
end process;

end architecture RTL;

145

A.6. Source coding - decoder

comb_qr.vhd

entity comb_qr is
port(

clk : in std_logic;
rst : in std_logic;
q : in std_logic_vector(2 downto 0);
r : in std_logic_vector(7 downto 0);
k : in std_logic_vector(3 downto 0);
data_out : out std_logic_vector(7 downto 0)

);
end entity comb_qr;

architecture RTL of comb_qr is
-- function to reverse any vector

function rev_lv(a : in std_logic_vector) return std_logic_vector is
variable result : std_logic_vector(a’RANGE);
alias aa : std_logic_vector(a’REVERSE_RANGE) is a;

begin
for i in aa’RANGE loop

result(i) := aa(i);
end loop;
return result;

end;
begin

-- Combine ’q’ and ’r’ based on ’k’:
qr : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

data_out <= (others => ’0’);
else

if k = 0 then
data_out <= "00000" & q;

elsif k = 1 then
data_out <= "0000" & q & r(0);

elsif k = 2 then
data_out <= "000" & q & rev_lv(r(1 downto 0));

elsif k = 3 then
data_out <= "00" & q & rev_lv(r(2 downto 0));

elsif k = 4 then
data_out <= "0" & q & rev_lv(r(3 downto 0));

elsif k = 5 then
data_out <= q & rev_lv(r(4 downto 0));

elsif k = 6 then
data_out <= q(1 downto 0) & rev_lv(r(5 downto 0));

elsif k = 7 then
data_out <= q(0) & rev_lv(r(6 downto 0));

else
data_out <= rev_lv(r);

end if;
end if;

end if;
end process qr;

end architecture RTL;

146

Appendix A. VHDL code

data_in_reg.vhd

entity data_in_reg is
port(

clk : in std_logic;
rst : in std_logic;
data_in : in std_logic_vector(DATA_IN_REG_SIZE - 1 downto 0);
ready_in : in std_logic_vector(DATA_IN_REG_NUM - 1 downto 0);
data_out : out std_logic_vector(DEC_REG_SIZE - 1 downto 0)

);
end entity data_in_reg;

architecture RTL of data_in_reg is
type data_arr is array (0 to DATA_IN_REG_NUM - 1)

of std_logic_vector(DATA_IN_REG_SIZE - 1 downto 0);
signal data_reg : data_arr;

begin

-- Output register array:
clocked : process(clk, data_reg) is
begin

for n in 1 to DATA_IN_REG_NUM loop
data_out(
DATA_IN_REG_SIZE * n - 1 downto DATA_IN_REG_SIZE * (n - 1)

) <= data_reg(n - 1);
end loop;

end process clocked;

process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then
for n in 0 to DATA_IN_REG_NUM - 1 loop

-- Initial data to start golomb decoder:
data_reg(n) <= "1111111101111111";

end loop;
else

-- Select part of register to update:
for n in 0 to DATA_IN_REG_NUM - 1 loop

if ready_in(n) = ’1’ then
data_reg(n) <= data_in;

else
data_reg(n) <= data_reg(n);

end if;
end loop;

end if;
end if;

end process;
end architecture RTL;

147

A.6. Source coding - decoder

load_data_in.vhd

entity load_data_in is
port(

clk : in std_logic;
rst : in std_logic;
get_in : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
get_out : in std_logic_vector(DEC_REG_SIZE - 1 downto 0);
ready : out std_logic_vector(DATA_IN_REG_NUM - 1 downto 0)

);
end entity load_data_in;

architecture RTL of load_data_in is
type bank_arr is array (DATA_IN_REG_NUM - 1 downto 0) of std_logic;
signal get_out_bank : bank_arr;
signal get_in_bank : bank_arr;
signal get_in_t : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal get_out_t : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal ready_t : std_logic_vector(DATA_IN_REG_NUM - 1 downto 0);

begin
check_ready : process(clk, get_in, get_out, get_in_bank,

get_out_bank, get_in_t, get_out_t, ready_t, rst
) is
begin

for n in 0 to DATA_IN_REG_NUM - 1 loop

-- Reset and update signals:
if rising_edge(clk) then

if rst = ’1’ then
get_in_t <=

"0001";
get_out_t <=

"0001";
else
get_in_t <= get_in;
get_out_t <= get_out;

end if;
end if;

-- Use banks to determine where get_bit and end_q_bit
-- is positioned:
if get_in_t(

DATA_IN_REG_SIZE * (n + 1) - 1 downto DATA_IN_REG_SIZE * n
) = 0 then

get_in_bank(n) <= ’0’;
else

get_in_bank(n) <= ’1’;
end if;

if get_out_t(
DATA_IN_REG_SIZE * (n + 1) - 1 downto DATA_IN_REG_SIZE * n

) = 0 then
get_out_bank(n) <= ’0’;

else
get_out_bank(n) <= ’1’;

end if;

148

Appendix A. VHDL code

-- Check if get_bit and next_bit is in two adjacent registers:
ready_t(n) <=
get_in_bank(n) and get_out_bank((n + 1) mod DATA_IN_REG_NUM);

-- Output signals:
if rst = ’1’ then
ready <= "000";

else
ready <= ready_t;

end if;
end loop;

end process check_ready;
end architecture RTL;

149

A.6. Source coding - decoder

gol_dec_top.vhd

entity gol_dec_top is
port(

clk : in std_logic;
rst : in std_logic;
-- write data:
data_out : out std_logic_vector(7 downto 0);
k_out_t3 : out std_logic_vector(3 downto 0);
-- get data:
k_in : in std_logic_vector(3 downto 0);
k_in_bit : in std_logic_vector(8 downto 0);
data_in : in std_logic_vector(DATA_IN_REG_SIZE - 1 downto 0);
ready_out : out std_logic

);
end entity gol_dec_top;

architecture RTL of gol_dec_top is
signal get_in : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal end_q_out : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal get_out : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal end_q_in : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal q : std_logic_vector(2 downto 0);
signal r : std_logic_vector(7 downto 0);
signal get_in_prev : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal r_temp1 : std_logic_vector(7 downto 0);
signal k_out : std_logic_vector(3 downto 0);
signal k_in_t1 : std_logic_vector(3 downto 0);
signal k_in_t2 : std_logic_vector(3 downto 0);
signal ready : std_logic_vector(DATA_IN_REG_NUM - 1 downto 0);
signal data : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal data_r : std_logic_vector(DEC_REG_SIZE - 1 downto 0);
signal k_c1 : std_logic_vector(3 downto 0);
signal k_bit_c1 : std_logic_vector(8 downto 0);
signal k_out_t1 : std_logic_vector(3 downto 0);
signal k_out_t2 : std_logic_vector(3 downto 0);

begin

-- Pipeline signals:
delay_signals : process(clk) is
begin

if rising_edge(clk) then
if rst = ’1’ then

get_in(DEC_REG_SIZE - 1 downto 1) <= (others => ’0’);
get_in(0) <= ’1’;
get_in_prev(DEC_REG_SIZE - 1 downto 1) <= (others => ’0’);
get_in_prev(0) <= ’1’;
end_q_in <= (others => ’0’);

else
get_in <= get_out;
end_q_in <= end_q_out;
get_in_prev <= get_in;

end if;
r_temp1 <= r;

150

Appendix A. VHDL code

k_in_t1 <= k_out;
k_in_t2 <= k_in_t1;
data_r <= data;
k_out_t1 <= k_out;
k_out_t2 <= k_out_t1;
k_out_t3 <= k_out_t2;

end if;
end process delay_signals;

-- Instantiate modules:
data_in_reg_module : entity work.data_in_reg port map(

clk => clk,
rst => rst,
data_in => data_in,
ready_in => ready,
data_out => data

);

delay_k : process(clk) is

begin
if rising_edge(clk) then

if rst = ’1’ then
k_c1 <= "1000"; -- Initial value of ’k’:
k_bit_c1 <= "100000000";

else
k_c1 <= k_in;
k_bit_c1 <= k_in_bit;

end if;
end if;

end process delay_k;

count_module : entity work.update_registers port map(
clk => clk,
k_in => k_c1,
k_in_bit => k_bit_c1,
get_in => get_in,
data_in => data,
end_q_out => end_q_out,
get_out => get_out,
k_out => k_out

);
load_data_in_module : entity work.load_data_in port map(

clk => clk,
rst => rst,
get_in => get_in,
get_out => get_out,
ready => ready

);
ready_out <= ready(0) or ready(1) or ready(2);

decode_q_module : entity work.decode_q port map(
clk => clk,
rst => rst,
end_q_in => end_q_in,
get_in => get_in_prev,
q_out => q

151

A.6. Source coding - decoder

);
decode_r_module : entity work.decode_r port map(

clk => clk,
rst => rst,
end_q_in => end_q_in,
data_in => data_r,
data_out => r

);
comb_qr_module : entity work.comb_qr port map(

clk => clk,
rst => rst,
q => q,
r => r_temp1,
k => k_in_t2,
data_out => data_out

);
end architecture RTL;

152

Appendix A. VHDL code

A.7 Toplevel - decoder

dec_top.vhd

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.defs.all;

entity dec_top is
port(

clk : in std_logic;
rst : in std_logic;
data_in : in std_logic_vector(15 downto 0);
new_frame : in std_logic;
ready : out std_logic;
ready_gol : out std_logic;
data_out : out std_logic_vector(7 downto 0)

);
end entity dec_top;

architecture RTL of dec_top is
--index
signal index_rst : std_logic;
signal B_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal C_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal D_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal I_i : std_logic_vector(SMPL_LEN - 1 downto 0);
signal index_out : std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
signal sign_out : std_logic;

--k
signal loco_k_rst : std_logic;

signal A_k_out : std_logic_vector(A_LEN - 1 downto 0);
signal N_k_out : std_logic_vector(N_LEN - 1 downto 0);
signal k_out : std_logic_vector(8 downto 0);
signal k_less_out : std_logic_vector(8 downto 0);
signal k_int_out : std_logic_vector(3 downto 0);

--loco
signal loco_rst : std_logic;
signal A_out : std_logic_vector(A_LEN - 1 downto 0);
signal B_out : std_logic_vector(B_LEN - 1 downto 0);
signal C_out : std_logic_vector(C_LEN - 1 downto 0);
signal N_out : std_logic_vector(N_LEN - 1 downto 0);
signal B_l : std_logic_vector(SMPL_LEN - 1 downto 0);
signal sign_d : std_logic;
signal loco_w_rst : std_logic;
signal index_d2 : std_logic_vector(7 downto 0);
signal A_in : std_logic_vector(A_LEN - 1 downto 0);
signal B_in : std_logic_vector(B_LEN - 1 downto 0);
signal C_in : std_logic_vector(C_LEN - 1 downto 0);
signal N_in : std_logic_vector(N_LEN - 1 downto 0);

153

A.7. Toplevel - decoder

--gol
signal gol_rst : std_logic;
signal k_int_d : std_logic_vector(3 downto 0);

--context
signal ctxt_addr_rst : std_logic_vector(CTXT_ADDR_SIZE - 1 downto 0);
signal ctxt_rst : std_logic;

--output
signal data_out_c : std_logic_vector(7 downto 0);
signal cache_rst : std_logic;
signal not_rst : std_logic;
signal index_d1 : std_logic_vector(7 downto 0);
signal data_out_gol : std_logic_vector(SMPL_LEN - 1 downto 0);
signal k_out_gol : std_logic_vector(3 downto 0);

begin
not_rst <= not rst;

clocked_in_out : process(clk, rst) is
begin

if rising_edge(clk) then
if rst = ’1’ then

data_out <= (others => ’0’);
else

data_out <= data_out_c;
end if;

end if;
end process clocked_in_out;

index_module : entity work.index port map(
clk => clk,
rst => index_rst,
B_cache => B_i,
C_cache => C_i,
D_cache => D_i,
I_cache => I_i,
index_out => index_out,
sign_out => sign_out

);
find_k_module : entity work.find_k port map(

clk => clk,
rst => loco_k_rst,
A => A_k_out,
N => N_k_out,
k_out => k_out,
k_less_out => k_less_out,
k_int_out => k_int_out

);
modeling_module : entity work.dec_modeling port map(

clk => clk,
rst => loco_rst,
loco_w_rst => loco_w_rst,
data => data_out_gol,
sign => sign_d,
P => B_l,

154

Appendix A. VHDL code

k_int_in => k_out_gol,
k_orig => k_int_d,
A => A_out,
B => B_out,
C => C_out,
N => N_out,
A_out => A_in,
B_out => B_in,
C_out => C_in,
N_out => N_in,
Q_out => data_out_c

);
gol_module : entity work.gol_dec_top port map(

clk => clk,
rst => gol_rst,
data_out => data_out_gol,
k_out_t3 => k_out_gol,
k_in => k_int_out,
k_in_bit => k_out,
data_in => data_in,
ready_out => ready_gol

);
ctxt_reg_module : entity work.ctxt_reg port map(

clk => clk,
rst => rst,
write_0 => ctxt_rst,
write0_addr => ctxt_addr_rst,
read_index => index_d1,
read_k_index => index_out,
write_index => index_d2,
A_in => A_in,
B_in => B_in,
C_in => C_in,
N_in => N_in,
A_out => A_out,
A_k_out => A_k_out,
B_out => B_out,
C_out => C_out,
N_out => N_out,
N_k_out => N_k_out

);
cache_module : entity work.line_cache port map(

clk => clk,
shift => not_rst,
write_0 => cache_rst,
sr_in => data_out_c,
sr_tap_B => B_i,
sr_tap_C => C_i,
sr_tap_D => D_i,
sr_tap_I => I_i,
sr_tap_B_l => B_l

);
delay_module : entity work.dec_signal_delays port map(

clk => clk,
rst => rst,
index_in => index_out,
sign_in => sign_out,

155

A.7. Toplevel - decoder

k_less_in => k_less_out,
k_in => k_out,
k_int_in => k_int_out,
index_out1 => index_d1,
index_out2 => index_d2,
sign_out => sign_d,
k_int_out => k_int_d);

reset_module : entity work.dec_reset port map(
clk => clk,
rst => rst,
new_frame => new_frame,
ready => ready,
ctxt_addr => ctxt_addr_rst,
ctxt_rst => ctxt_rst,
cache_rst => cache_rst,
index_rst => index_rst,
loco_k_rst => loco_k_rst,
loco_rst => loco_rst,
loco_w_rst => loco_w_rst,
gol_rst => gol_rst

);
end architecture RTL;

156

Appendix A. VHDL code

A.8 Embedded memory

line_cache.vhd

entity line_cache IS
port(

clk : in STD_LOGIC;
shift : in STD_LOGIC;
write_0 : in std_logic;
sr_in : in STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);
sr_tap_B : out STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);
sr_tap_C : out STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);
sr_tap_D : out STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);
sr_tap_I : out STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);
sr_tap_B_l : out STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0)

);
end line_cache;

architecture arch OF line_cache IS
-- SUBTYPE sr_width IS STD_LOGIC_VECTOR(SMPL_LEN-1 DOWNTO 0);
type sr_length is array (CACHE_SIZE - 1 downto 0)

of STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);

signal sr : sr_length;

signal data : STD_LOGIC_VECTOR(SMPL_LEN - 1 downto 0);

begin
write0 : process(sr_in, write_0) is
begin

if write_0 = ’1’ then
data <= (others => ’0’);

else
data <= sr_in;

end if;
end process write0;

process(clk)
begin

if (clk’EVENT and clk = ’1’) then
if (shift = ’1’) then
sr(CACHE_SIZE - 1 downto 1) <= sr(CACHE_SIZE - 2 downto 0);
sr(0) <= data;

end if;
end IF;

end process;
sr_tap_B <= sr(CACHE_SIZE - 1920 - CACHE_INDEX_OFFSET - 1);
sr_tap_C <= sr(CACHE_SIZE - 1920 - CACHE_INDEX_OFFSET);
sr_tap_D <= sr(CACHE_SIZE - 1920 - CACHE_INDEX_OFFSET - 2);
sr_tap_I <= sr(CACHE_SIZE - CACHE_INDEX_OFFSET - 1);
sr_tap_B_l <= sr(CACHE_SIZE - 1920 - 1);

end arch;

157

A.8. Embedded memory

ctxt_reg.vhd

entity ctxt_reg is
port(

clk : in std_logic;
rst : in std_logic;
write_0 : in std_logic;
write0_addr : in std_logic_vector(7 downto 0);

read_index : in std_logic_vector(7 downto 0);
read_k_index : in std_logic_vector(7 downto 0);
write_index : in std_logic_vector(7 downto 0);

A_in : in std_logic_vector(A_LEN - 1 downto 0);
B_in : in std_logic_vector(B_LEN - 1 downto 0);
C_in : in std_logic_vector(C_LEN - 1 downto 0);
N_in : in std_logic_vector(N_LEN - 1 downto 0);

A_out : out std_logic_vector(A_LEN - 1 downto 0);
A_k_out : out std_logic_vector(A_LEN - 1 downto 0);
B_out : out std_logic_vector(B_LEN - 1 downto 0);
C_out : out std_logic_vector(C_LEN - 1 downto 0);
N_out : out std_logic_vector(N_LEN - 1 downto 0);
N_k_out : out std_logic_vector(N_LEN - 1 downto 0)

);
end entity ctxt_reg;

architecture RTL of ctxt_reg is
type Aarr is array (CTXT_INDEX_RANGE - 1 downto 0)

of std_logic_vector(A_LEN - 1 downto 0);
type Barr is array (CTXT_INDEX_RANGE - 1 downto 0)

of std_logic_vector(B_LEN - 1 downto 0);
type Carr is array (CTXT_INDEX_RANGE - 1 downto 0)

of std_logic_vector(C_LEN - 1 downto 0);
type Narr is array (CTXT_INDEX_RANGE - 1 downto 0)

of std_logic_vector(N_LEN - 1 downto 0);

signal A : Aarr;
signal B : Barr;
signal C : Carr;
signal N : Narr;
signal dataA : std_logic_vector(A_LEN - 1 downto 0);
signal dataB : std_logic_vector(B_LEN - 1 downto 0);
signal dataC : std_logic_vector(C_LEN - 1 downto 0);
signal dataN : std_logic_vector(N_LEN - 1 downto 0);
signal write_addr : std_logic_vector(7 downto 0);

begin
write0 : process(

A_in, B_in, C_in, N_in, write_0, write0_addr, write_index
) is
begin

if write_0 = ’1’ then
dataA <= (others => ’0’);
dataB <= (others => ’0’);
dataC <= (others => ’0’);

158

Appendix A. VHDL code

dataN <= (others => ’0’);
write_addr <= write0_addr;

else
dataA <= A_in;
dataB <= B_in;
dataC <= C_in;
dataN <= N_in;
write_addr <= write_index;

end if;
end process write0;

ctxt_mem : process(clk) is
begin

if rising_edge(clk) then
A_out <= A(conv_integer(unsigned(read_index)));
A_k_out <= A(conv_integer(unsigned(read_k_index)));
B_out <= B(conv_integer(unsigned(read_index)));
C_out <= C(conv_integer(unsigned(read_index)));
N_out <= N(conv_integer(unsigned(read_index)));
N_k_out <= N(conv_integer(unsigned(read_k_index)));

A(conv_integer(unsigned(write_addr))) <= dataA;
B(conv_integer(unsigned(write_addr))) <= dataB;
C(conv_integer(unsigned(write_addr))) <= dataC;
N(conv_integer(unsigned(write_addr))) <= dataN;

end if;
end process ctxt_mem;

end architecture RTL;

159

A.9. Testbenches

A.9 Testbenches

Encoder

library ieee;
library modelsim_lib;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_textio.all;
use std.textio.all;
use modelsim_lib.util.all;
use work.defs.all;

-- Encoder testbench:
-- Instantiates 3 encoders (R,G,B)
-- Reads input from a single (proprietary) input file,
-- built from 24b bitmap image data
-- Produces 3 output files, one per color component,
-- containing compressed data
-- Compression rate is calculated and displayed at the end

entity enc_tb is
generic(

constant IN_WIDTH : integer := 8;
constant OUT_WIDTH : integer := 16;
-- Half the clock period.
-- The frequency will be 1/(2*PERIOD) = 100 MHz
constant PERIOD : time := 50 ns;

-- file name affix (Note: the simulation expects the file
-- to have ’vhdl’ as an suffix)
constant fil : string := "t7";

-- Folder where input file is located
constant path : string := "../";

-- Used to scale the compression calculation
-- Should be the number of pixels in the input
constant size : real := 1920.0 * 1080.0

);
end entity enc_tb;

architecture RTL of enc_tb is
signal clk : std_logic;
signal rst : std_logic;
signal inputR : std_logic_vector(IN_WIDTH - 1 downto 0);
signal inputG : std_logic_vector(IN_WIDTH - 1 downto 0);
signal inputB : std_logic_vector(IN_WIDTH - 1 downto 0);
signal newFrame : std_logic;
signal rdyR : std_logic;
signal rdyG : std_logic;
signal rdyB : std_logic;

signal outputR : std_logic_vector(OUT_WIDTH - 1 downto 0);

160

Appendix A. VHDL code

signal outputG : std_logic_vector(OUT_WIDTH - 1 downto 0);
signal outputB : std_logic_vector(OUT_WIDTH - 1 downto 0);

signal writeR : std_logic;
signal writeG : std_logic;
signal writeB : std_logic;

-- Enc -> wbuf connect
signal encRwbufR : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal encGwbufG : std_logic_vector(GOL_MAX_LEN - 1 downto 0);
signal encBwbufB : std_logic_vector(GOL_MAX_LEN - 1 downto 0);

signal sizeOutR : std_logic_vector(3 downto 0);
signal sizeOutG : std_logic_vector(3 downto 0);
signal sizeOutB : std_logic_vector(3 downto 0);

signal wbufEmptyR : std_logic;
signal wbufEmptyG : std_logic;
signal wbufEmptyB : std_logic;

signal wbufEn : std_logic;

shared variable numPixelsIn : integer := 0;
shared variable bitsR, bitsG, bitsB : real := 0.0;
shared variable bR, bG, bB : integer := 0;

signal qR, qG, qB : std_logic_vector(7 downto 0);

signal delayWbufEn : std_logic := ’0’;
signal writeQ : std_logic := ’0’;

begin

-- ENCODER INIT
encR : entity work.enc_top

port map(clk => clk,
rst => rst,
data_in => inputR,
new_frame => newFrame,
ready => rdyR,
data_out => encRwbufR,
size_out => sizeOutR

);
encG : entity work.enc_top

port map(clk => clk,
rst => rst,
data_in => inputG,
new_frame => newFrame,
ready => rdyG,
data_out => encGwbufG,
size_out => sizeOutG

);

encB : entity work.enc_top
port map(clk => clk,

rst => rst,
data_in => inputB,

161

A.9. Testbenches

new_frame => newFrame,
ready => rdyB,
data_out => encBwbufB,
size_out => sizeOutB

);

-- GOLOMB PACKER (WRITE BUFFER) INIT
wbufR : entity work.wbuf

port map(clk => clk,
rst => rst,
in_wbuf => encRwbufR,
word_length => sizeOutR,
wbuf_enable => wbufEn,
out_wbuf => outputR,
wbuf_empty => wbufEmptyR,
wbuf_write => writeR);

wbufG : entity work.wbuf
port map(clk => clk,

rst => rst,
in_wbuf => encGwbufG,
word_length => sizeOutG,
wbuf_enable => wbufEn,
out_wbuf => outputG,
wbuf_empty => wbufEmptyG,
wbuf_write => writeG);

wbufB : entity work.wbuf
port map(clk => clk,

rst => rst,
in_wbuf => encBwbufB,
word_length => sizeOutB,
wbuf_enable => wbufEn,
out_wbuf => outputB,
wbuf_empty => wbufEmptyB,
wbuf_write => writeB);

clock_generator : process
begin

clk <= ’1’;
wait for PERIOD / 2;
clk <= ’0’;
wait for PERIOD / 2;

end process;

--/ ---------------------------------
--/ CONNECT SIGNALS ACROSS DIFFERENT
--/ MODULES
--/ Used to probe entity signals that aren’t
--/ connected directly to ports
drive_sig_process : process
begin

init_signal_driver("/enc_tb/encR/Q", "qR");
init_signal_driver("/enc_tb/encG/Q", "qG");
init_signal_driver("/enc_tb/encB/Q", "qB");
wait;

end process drive_sig_process;
-- ---------------------------------

162

Appendix A. VHDL code

--/ ---------------------------------
--/ CONTROLLING WHEN WBUF IS ENABLED
--/ AND WHEN TO START WRITING Q’s
--/ The Golomb packer is enabled 1 cycle before the output is valid
--/ and stopped when the last valid output has passed.
--/ writeQ is only used to probe the Q signals within the encoder
--/ entities for debugging convenience.
wbufEnable : process(clk) is

variable count : std_logic_vector(3 downto 0) := (others => ’0’);
begin

if (rising_edge(clk)) then
if (delayWbufEn = ’1’) then
if (count > "0101") then

wbufEn <= ’1’;
writeQ <= ’1’;

elsif (count > "0011") then
writeQ <= ’1’;
wbufEn <= ’0’;
count := count + "1";

else
wbufEn <= ’0’;
writeQ <= ’0’;
count := count + "1";

end if;
else
if (count > "0101") then

wbufEn <= ’1’;
writeQ <= ’1’;
count := count - "1";

elsif (count > "0001") then
wbufEn <= ’1’;
writeQ <= ’0’;
count := count - "1";

else
wbufEn <= ’0’;
writeQ <= ’0’;

end if;
end if;

end if;
end process;
-- ---------------------------------
--/ PROCESS CONTROLLING INPUT
--/ Input is read from the file defined with the constants
--/ Loops new input every clock cycle until the input file
--/ is empty.
--/ Disable signal is triggered, and statistics are calculated

inputctrl : process
file inn : text is in path & fil & "vhdl";
variable buf_in, buf_nSymb : line;
variable inV : std_logic_vector(23 downto 0)

:= (others => ’0’);
variable cR, cG, cB, cT : real;
variable overhead : integer;

begin
rst <= ’1’;
wait for PERIOD;

163

A.9. Testbenches

inputR <= (others => ’0’);
inputG <= (others => ’0’);
inputB <= (others => ’0’);
rst <= ’0’;

wait for PERIOD;
newFrame <= ’1’;
while (rdyR = ’0’ or rdyG = ’0’ or rdyB = ’0’) loop

wait for PERIOD;
end loop;
wait for PERIOD;
wait for 5 ns;
newFrame <= ’0’;
WAIT FOR 45 ns;
wait for 9 * PERIOD;
delayWbufEn <= ’1’;

while not ENDFILE(inn) loop
-- Get line from input file
READLINE(inn, buf_in);
-- Save value to variable
HREAD(buf_in, inV);

-- Spectral decorrelation of the inputs.
inputR <= inV(23 downto 16) - inV(15 downto 8);
inputG <= inV(15 downto 8);
inputB <= inV(7 downto 0) - inV(15 downto 8);

-- TESTING UTEN R-G,G,B-G DEBUG!!!
-- inputR <= inV(23 downto 16);
-- inputG <= inV(15 downto 8);
-- inputB <= inV(7 downto 0);

-- Count pixels
numPixelsIn := numPixelsIn + 1;
wait for PERIOD;

end loop;
inputR <= (others => ’1’);
inputG <= (others => ’1’);
inputB <= (others => ’1’);
wait for PERIOD;
delaywbufEn <= ’0’;

wait for 10 * PERIOD;

-- -------------------------------------
-- END SIMULATION : CALCULATE STATISTICS
-- Compression per component and total
-- Overhead added for different packet
-- sizes. (large packets, not golomb packets)
-- -------------------------------------
cR := bitsR / real’(size);
cG := bitsG / real’(size);
cB := bitsB / real’(size);
overhead := (bR + bG + bB) * 2 / 16 / 8000;
cT := (bitsR + bitsG + bitsB) / real’(size * 3.0);
write(OUTPUT, "Ending simulation." & LF);

164

Appendix A. VHDL code

write(OUTPUT, "Simulation statistics for " & fil & ":" & LF);
write(OUTPUT, " ----------------- " & LF);
write(OUTPUT, "R : " & real’image(cR) & LF);
write(OUTPUT, "G : " & real’image(cG) & LF);
write(OUTPUT, "B : " & real’image(cB) & LF);
write(OUTPUT, " - - - - - - - - - " & LF);
write(OUTPUT, "Tot : " & real’image(cT) & LF);
write(OUTPUT, " - - - - - - - - - " & LF);
write(OUTPUT, "Head 16 : " & natural’image(overhead)&" KB" & LF);
overhead := overhead / 2;
write(OUTPUT, "Head 32 : " & natural’image(overhead)&" KB" & LF);
overhead := overhead / 2;
write(OUTPUT, "Head 64 : " & natural’image(overhead)&" KB" & LF);
overhead := overhead / 2;
write(OUTPUT, "Head 128: " & natural’image(overhead)&" KB" & LF);
overhead := overhead / 2;
write(OUTPUT, "Head 256: " & natural’image(overhead)&" KB" & LF);

write(OUTPUT, " ----------------- " & LF);
write(OUTPUT, "Simulation complete.");
report "" severity failure;

-- -------------------------------------
end process;

-- ---------------------------------
--/ PROCESS CONTROLLING OUTPUT
--/ Output is written every time the write signals are high
--/ 3 output files, 1 per color component.
--/ The total number of bits outputted are counted for use
--/ in compression calculation.
--/ Additional information is written for information (packet order)
--/ and debugging (probed Q from within encoder entities) purposes.

writectrl : process(clk)
file outR : text open WRITE_MODE

is path & fil & "\" & fil & "_outR";
file outG : text open WRITE_MODE

is path & fil & "\" & fil & "_outG";
file outB : text open WRITE_MODE

is path & fil & "\" & fil & "_outB";

file wrorder : text open WRITE_MODE
is path & fil & "\" & fil & "_wrorder";

file qoutR : text open WRITE_MODE
is path & fil & "\" & fil & "_qR";

file qoutG : text open WRITE_MODE
is path & fil & "\" & fil & "_qG";

file qoutB : text open WRITE_MODE
is path & fil & "\" & fil & "_qB";

variable buf_outR, buf_outG, buf_outB, buf_qR,
buf_qG, buf_qB, buf_wOrdr : line;

begin
if (rising_edge(clk)) then

if (writeR = ’1’) then

165

A.9. Testbenches

WRITE(buf_outR, outputR(15 downto 0), RIGHT, OUT_WIDTH / 2);
WRITELINE(outR, buf_outR);
bitsR := bitsR + 16.0;
bR := bR + 16;

WRITE(buf_wOrdr, 1);
WRITELINE(wrorder, buf_wOrdr);

end if;
if (writeG = ’1’) then

WRITE(buf_outG, outputG(15 downto 0), RIGHT, OUT_WIDTH / 2);
WRITELINE(outG, buf_outG);
bitsG := bitsG + 16.0;
bG := bG + 16;

WRITE(buf_wOrdr, 2);
WRITELINE(wrorder, buf_wOrdr);

end if;
if (writeB = ’1’) then

WRITE(buf_outB, outputB(15 downto 0), RIGHT, OUT_WIDTH / 2);
WRITELINE(outB, buf_outB);
bitsB := bitsB + 16.0;
bB := bB + 16;

WRITE(buf_wOrdr, 3);
WRITELINE(wrorder, buf_wOrdr);

end if;

if (writeQ = ’1’) then
HWRITE(buf_qR, qR, RIGHT, 2);
WRITELINE(qoutR, buf_qR);

HWRITE(buf_qG, qG, RIGHT, 2);
WRITELINE(qoutG, buf_qG);

HWRITE(buf_qB, qB, RIGHT, 2);
WRITELINE(qoutB, buf_qB);

end if;

end if;
end process;

end architecture RTL;

166

Appendix A. VHDL code

Decoder

library ieee;
library modelsim_lib;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_textio.all;
use std.textio.all;
use modelsim_lib.util.all;
use work.defs.all;

-- Decoder testbench:
-- Instantiates 3 decoders (R,G,B)
-- Reads inputs from 3 (proprietary) input files,
-- created by the Encoder testbench
-- Produces 1 output file, containing uncompressed data,
-- identical to the Encoder input file
-- No statistics are calculated.
--
-- NOTE: Input files read from ’path\fil’ , output file written to
-- ’path\’, where ’path’ and ’fil’ are defined below.
-- ’fil’ folder must be created manually within the ’path’ folder.
-- The simulation cannot create folders.

entity dec_tb is
generic(

constant IN_WIDTH : integer := 16;
constant OUT_WIDTH : integer := 8;
-- Half the clock period.
-- The frequency will be 1/(2*PERIOD) = 100 MHz
constant PERIOD : time := 50 ns;
-- file name affix (Note: the simulation expects the file
-- to have ’vhdl’ as an suffix)
constant fil : string := "t6";

-- Folder where input file is located
constant path : string := "../";
-- Number of pixels in frame data
constant size : integer := 1920 * 1080

);
end entity dec_tb;

architecture RTL of dec_tb is
signal clk : std_logic;
signal rst : std_logic;
signal inputR : std_logic_vector(IN_WIDTH - 1 downto 0);
signal inputG : std_logic_vector(IN_WIDTH - 1 downto 0);
signal inputB : std_logic_vector(IN_WIDTH - 1 downto 0);

signal outputR : std_logic_vector(OUT_WIDTH - 1 downto 0);
signal outputG : std_logic_vector(OUT_WIDTH - 1 downto 0);
signal outputB : std_logic_vector(OUT_WIDTH - 1 downto 0);

signal readR, readG, readB : std_logic;
signal rdyR, rdyG, rdyB : std_logic;

167

A.9. Testbenches

signal newFrame : std_logic;

signal active : std_logic := ’0’;

shared variable activate : std_logic := ’0’;
shared variable numPixelsIn : integer := 0;
shared variable numPixelsOut : integer := 1;
shared variable bitsR, bitsG, bitsB : real := 0.0;

-- Function that reverses a std_logic_vector
function reverse_any_vector(a : in std_logic_vector)

return std_logic_vector is
variable result : std_logic_vector(a’RANGE);
alias aa : std_logic_vector(a’REVERSE_RANGE) is a;

begin
for i in aa’RANGE loop

result(i) := aa(i);
end loop;
return result;

end;

begin

-- DECODER INIT
decR : entity work.dec

port map(
clk => clk,
rst => rst,
data_in => inputR,
new_frame => newFrame,
ready => rdyR,
ready_gol => readR,
data_out => outputR

);

decG : entity work.dec
port map(

clk => clk,
rst => rst,
data_in => inputG,
new_frame => newFrame,
ready => rdyG,
ready_gol => readG,
data_out => outputG

);

decB : entity work.dec
port map(

clk => clk,
rst => rst,
data_in => inputB,
new_frame => newFrame,
ready => rdyB,
ready_gol => readB,
data_out => outputB

);

168

Appendix A. VHDL code

--/ ---------------------------------
--/ GENERATES THE CLOCK
--/
clock_generator : process
begin

clk <= ’1’;
wait for PERIOD / 2;
clk <= ’0’;
wait for PERIOD / 2;

end process;

--/ ---------------------------------
--/ CONNECT SIGNALS ACROSS DIFFERENT
--/ MODULES
--/ Used to probe entity signals that aren’t
--/ connected directly to ports
--drive_sig_process : process
-- begin
-- init_signal_driver("/dec_tb/encR/Q", "qR");
-- init_signal_driver("/dec_tb/encG/Q", "qG");
-- init_signal_driver("/dec_tb/encB/Q", "qB");
-- wait;
--end process drive_sig_process;
-- ---------------------------------

--/ ---------------------------------
--/ ACTIVATE OUTPUT WRITING
--/ Sets the active signal high at the
--/ right time after activate has been
--/ set in the input process below
act : process(clk)

variable count : integer := 0;
begin

if (rising_edge(clk)) then
if (activate = ’1’) then
if (count > 13) then

active <= ’1’;
else

count := count + 1;
end if;

else
active <= ’0’;

end if;
end if;

end process;

-- ---------------------------------
--/ PROCESS CONTROLLING INPUT
--/ Input is read from the files defined with the constant ’fil’
--/ Waits until decoder module is ready, then sets input,
--/ listens to ’read’ port, updates inputs when requested.
--/ Loops as long as at least one input file is not empty
--/ Leaves loop when files are empty, waits for Output process
--/ to finish and end the simulation.

inputctrl : process

169

A.9. Testbenches

file infileR : text is in path & fil & "\" & fil & "_outR";
file infileG : text is in path & fil & "\" & fil & "_outG";
file infileB : text is in path & fil & "\" & fil & "_outB";

file readorder : text open WRITE_MODE
is path & fil & "\" & fil & "_readorder";

variable buf_inR, buf_inG, buf_inB, buf_nSymb, buf_rOrdr
: line;
variable inR, inG, inB
: std_logic_vector(IN_WIDTH - 1 downto 0) := (others => ’0’);
variable readVector
: std_logic_vector(2 downto 0) := "000";

begin
rst <= ’1’;
wait for PERIOD;
inputR <= (others => ’0’);
inputG <= (others => ’0’);
inputB <= (others => ’0’);
rst <= ’0’;

wait for 5 * PERIOD;
newFrame <= ’1’;
READLINE(infileR, buf_inR);
READ(buf_inR, inR);
readVector(2) := ’1’;

READLINE(infileG, buf_inG);
READ(buf_inG, inG);
readVector(1) := ’1’;

READLINE(infileB, buf_inB);
READ(buf_inB, inB);
readVector(0) := ’1’;

inR := reverse_any_vector(inR);
inG := reverse_any_vector(inG);
inB := reverse_any_vector(inB);

inputR <= inR;
inputG <= inG;
inputB <= inB;
while (rdyR = ’0’ or rdyG = ’0’ or rdyB = ’0’) loop

wait for PERIOD;
end loop;
wait for 5 ns;
newFrame <= ’0’;
wait for 45 ns;
activate := ’1’;

-- LOOP AS LONG AS AT LEAST ONE FILE IS NOT EMPTY
while (not ENDFILE(infileR)) or (not ENDFILE(infileG))
or (not ENDFILE(infileB)) loop

readVector := "000";
if (readR = ’1’ and not ENDFILE(infileR)) then

READLINE(infileR, buf_inR);
READ(buf_inR, inR);

170

Appendix A. VHDL code

inR := reverse_any_vector(inR);

readVector(2) := ’1’;
end if;

if (readG = ’1’ and not ENDFILE(infileG)) then
READLINE(infileG, buf_inG);
READ(buf_inG, inG);
inG := reverse_any_vector(inG);

readVector(1) := ’1’;
end if;

if (readB = ’1’ and not ENDFILE(infileB)) then
READLINE(infileB, buf_inB);
READ(buf_inB, inB);
inB := reverse_any_vector(inB);

readVector(0) := ’1’;
end if;

WRITE(buf_rOrdr, conv_integer(readVector(2)));
WRITE(buf_rOrdr, string’(" "));
WRITE(buf_rOrdr, conv_integer(readVector(1)));
WRITE(buf_rOrdr, string’(" "));
WRITE(buf_rOrdr, conv_integer(readVector(0)));
WRITELINE(readorder, buf_rOrdr);

-- Set input signals
wait for 5 ns;
inputR <= inR;
inputG <= inG;
inputB <= inB;
-- Count pixel
wait for 45 ns;

-- wait for PERIOD;
end loop;

wait for 8 * PERIOD;
wait;

end process;

-- ---------------------------------
--/ PROCESS CONTROLLING OUTPUT
--/ Output starts writing when active is high.
--/ Continues until the correct number of pixels is reached,
--/ as defined by the ’size’ constant.
--/ Compares outputs with the values in the original input file.
--/

writectrl : process(clk)
file originalFile : text open READ_MODE is path & fil & "vhdl";
file outFile : text open WRITE_MODE is path & fil & "_out";

variable buf_inOriginal, buf_out : line;
variable decoded, original : std_logic_vector(24 - 1 downto 0);

171

A.9. Testbenches

begin
if (rising_edge(clk)) then

if (active = ’1’ and numPixelsOut < (size) + 1) then

-- Spectral "recorrelation"
decoded := (outputR + outputG)&outputG&(outputB + outputG);

-- DEBUG UTEN R-G,G,B-G:
--decoded := outputR & outputG & outputB;

HWRITE(buf_out, decoded, RIGHT, 6);
WRITELINE(outFile, buf_out);
numPixelsOut := numPixelsOut + 1;
if (not ENDFILE(originalFile)) then
READLINE(originalFile, buf_inOriginal);
HREAD(buf_inOriginal, original);
if (original /= decoded) then

WRITE(OUTPUT, "Output did not match the original value ");
WRITE(

OUTPUT, "on pixel number "
& natural’image(numPixelsOut) & "." & LF

);
end if;

end if;
elsif (numPixelsOut > size) then

-- -------------------------------------
-- END SIMULATION :
-- -------------------------------------
write(OUTPUT, " ----------------- " & LF);
write(OUTPUT, "Simulation complete.");
report "" severity failure;

-- -------------------------------------
else
-- something , waiting for active.
end if;

end if;
end process;

end architecture RTL;

172

Appendix A. VHDL code

A.10 Definitions

defs.vhd

-- DEFINITIONS
--
constant A_LEN : integer := 13;
constant B_LEN : integer := 6;
constant C_LEN : integer := 9;
constant N_LEN : integer := 6;
constant CTXT_INDEX_RANGE : integer := 256;
constant CTXT_ADDR_SIZE : integer := 8;
constant SMPL_LEN : integer := 8;
constant GOL_MAX_LEN : integer := 16;
constant DEC_REG_SIZE : integer := 48;
constant DEC_REG_LEN : integer := 6;
constant DATA_IN_REG_SIZE : integer := 16;
constant DATA_IN_REG_NUM : integer := 3;

constant CACHE_SIZE : integer := 1917 + 1920;
constant CACHE_INDEX_OFFSET : integer := 10;

constant ENC_K_DELAY : integer := 5;
constant ENC_INDEX_DELAY : integer := 11;
constant ENC_SIGN_DELAY : integer := 5;

constant ENC_INDEX_RST : integer := 1;
constant ENC_K_RST : integer := 5;
constant ENC_LOCO_RST : integer := 11;
constant ENC_LOCO_W_RST : integer := 13;
constant ENC_GOL_RST : integer := 14;

constant DEC_K_DELAY : integer := 2;
constant DEC_INDEX_DELAY : integer := 11;
constant DEC_SIGN_DELAY : integer := 5;

constant DEC_INDEX_RST : integer := 1;
constant DEC_K_RST : integer := 5;
constant DEC_LOCO_RST : integer := 11;
constant DEC_LOCO_W_RST : integer := 13;
constant DEC_GOL_RST : integer := 5;

end defs;

173

A.10. Definitions

174

BIBLIOGRAPHY

[1] Hafskjold, Stian R. ; Fagerheim, Fredrik J. (2012) Lossless video compression
in an FPGA for reducing DDR memory bandwidth usage (Preliminary work).

[2] Hong-Sik Kim ; Joohong Lee ; Hyunjin Kim ; Sungho Kang ; Woo Chan
Park (2011) A Lossless Color Image Compression Architecture Using a Paral-
lel Golomb-Rice Hardware CODEC IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY, Vol. 21, No. 11, NOVEM-
BER 2011

[3] Xiaowen Li ; Xinkai Chen ; Xiang Xie ; Guolin Li ; Li Zhang ; Chun Zhang
; Zhihua Wang (2007) A Low Power, Fully Pipelined JPEG-LS Encoder for
Lossless Image Compression

[4] Tsung-Han Tsai ; Yu-Hsuan Lee ; Yu-Yu Lee (2010) Design and Analysis of
High-Throughput Lossless Image Compression Engine Using VLSI-Oriented
FELICS Algorithm. IEEE TRANSACTIONS ON VERY LARGE SCALE IN-
TEGRATION (VLSI) SYSTEMS, Vol. 18, No. 1, JANUARY 2010

[5] Chen, X. ; Canagarajah, N. ; Nunez-Yanez, J. L. ; Vitulli, R. (2007) Hardware
Architecture for Lossless Image Compression Based on Context-based Model-
ing and Arithmetic Coding

[6] Seroussi, G. (2000) lossless compression of continuous-tone images. HP labo-
ratories

[7] Seroussi, G. (2000) Optimal Prefix Codes for Sources with Two-Sided Geomet-
ric Distributions. IEEE transactions on information theory, vol. 46, no. 1

[8] Golomb, S. W. (1966) Run-length Encodings. IEEE transactions on informa-
tion theory, vol. IT-12, pp. 399-401

[9] Sayood, K. (2003) Lossless Compression Handbook. Elsevier Science (USA)

[10] Gonzales, R. C. (2007) Digital Image Processing. Pearson Prentice Hall

175

Bibliography

[11] Weinberger, M. J. (1996) LOCO-I: A low complexity, context-based, lossless
inage compression algorithm. HP laboratories

[12] New LZW Data Compression Algorithm and Its FPGA Implementation. Wei
Cui (

[13] Arruebo, B. (2004) Arithmetic compression software. Downloaded from:
http://sourceforge.net/projects/aricom/ [accessed 20.12.2012].

[14] Duce, D. (2003) Portable Network Graphics (PNG) Specification (Second
Edition) http://www.w3.org/TR/PNG/ [accessed 20.12.2012]. W3C Recom-
mendation

[15] Wallace, G. K. (1992) The JPEG Still Picture Compression Standard. IEEE
transactions on consumer electronics, vol. 3, no. 1

176

