NTNU - Trondheim
Norwegian University of

Science and Technology

Computation of prime cubes of a complex
boolean function based on BDDs -
continuation on probability of time
unfolded prime cubes

Snorre Nilssen Vestli

Electronics Engineering
Submission date: July 2013
Supervisor: Kjetil Svarstad, IET

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Project description

The goal of this project is to:

e Rework the PState program to extract cube sets with an efficient algorithm.

e Adapt PState to perform calculations over several states of the state machine under
evaluation.

Abstract

With decreasing feature size and increasing complexity of integrated circuits, effective
tools for verification and testing are in high demand.
When testing large and complex state machines, effective tools for calculating probabili-
ties of future states are often needed.
The PState program calculates these with an adapted form of Binary Desicion Diagrams.
This project is part of an effort to extend this to search for functions to reach these states
by extracting prime cube covers of these BDDs.
This report documents my work with the PState program, the adaptation of the cube ex-
traction algorithm, and attempting to unfold the computation over several cycles of a state
machine, the problems encountered, and outlines possible ways to solve these challenges.

ii

Norsk sammendrag

Med en utvikling i halvlederindustrien med stadig kraftigere og mer komplekse kretser,
gker ogsa behovet for effektive verktgy for testing og verifisering.
Ved testing av store og komplekse tilstandsmaskiner er det ofte gnskelig 4 beregne sansyn-
lighet for fremtidige tilstander.
PState- programmet beregner disse ved hjelp av en variant av binzre avgjgrelsesdiagram.
Dette prosjektet bidrar til et forsgk pa a generere funksjoner for & finne disse tilstandene
ved a trekke ut dekkende kube-sett for disse diagrammene.
I denne oppgaven dokumenterer jeg mitt arbeid med PState-programmet, tilpassning av en
algoritme for uttrekking av primkuber, og mitt forsgk pa a folde ut beregning av sannsyn-
lighet over flere perioder av tilstandsmaskinen.

iii

iv

Table of Contents

Project description
Abstract

Norsk sammendrag

Table of Contents
List of Tables
List of Figures
1 Theory
1.1 Binary Decision Diagrams
1.1.1 Primecubes
1.2 Haskell e
1.3 CUDDandhBDD e
1.4 PState e e
1.5 Algorithm
2 Implementation
2.1 Adaptations e
22 Testing. e e
2.3 Possiblecauses e
2.4 Furtherwork
24.1 Debugging
242 Optimization
243 Timeunfolding

3 Conclusion

Bibliography

i

iii

vi

vii

ix

DD WL LW —

~N 99

10
10
10

11

13

Appendix
3.0.4 Cube extraction algorithm
3.0.5 Code for reading out functions of a [PNetNode]
3.0.6 Output BDD list fortestcase

vi

List of Tables

1.1 Table showing encoding scheme for tristate logic
1.2 Operation extracting truth-overlap on fy from f;
1.3 Operation comparing resulting cover and original function
1.4 Operation generating don’t-care function from cross result of table 1.3 ap-

pliedtobothbranches,

~ b

vii

viii

List of Figures

1.1 Binary decision diagram representing the 3-input AND function
1.2 Excerpt from [Minato (1993)], ~algorithm for generating prime irredun-
dantcovers”

Chapter

Theory

1.1 Binary Decision Diagrams

A Binary Decision diagram (BDD) is an efficient representation of a large boolean func-
tion, representing a function as a series of yes-no decisions in a directed acyclic graph,
with each path leading to an end result of true or false. These diagrams allow a lot of
otherwise difficult-to-represent functions to be efficiently described and manipulated.

Figure 1.1: Binary decision diagram representing the 3-input AND function

F(V:Vs)=V -F(1:Vs)+V-F(0:Vs) (1.1)

A BDD consists of a series of variable-nodes representing function (1.1) recursively
down to the special value nodes representing true and false (fig. 1.1), by having pointers

1

to either a lower node or to the terminal nodes for both the high and low cases of the
variable represented. This structure is usually further restricted by limiting the variables to
a fixed ordering (Ordered BDD or OBDD), allowing the function to be evaluated in linear
time. If it also has the properties of irredundancy and uniqueness, it is said to be reduced
(ROBDD). Irredundancy requires that no node points to the same node for both the high
and low case (Representing evaluation of a dont-care term). Uniqueness requires that no
two nodes be identical (evaluating the same variable and pointing to the same nodes). The
ROBDD then becomes both a minimal and unique representation of the function for that
particular variable ordering, and thus allows constant-time tests for both the tautology and
satisfiability of the function[Andersen (1997)].

1.1.1 Prime cubes

Cube sets are another common structure used to represent logical functions. Also known
as covers or sum-of-product forms (SOP), these structures are important in several forms
of logic implementations. Efficient cube sets mininimize both the number of terms and
cubes. In this project, i will be atempting to compute prime irredundant cube sets. These
are minimal cube covers, meaning that no term can be removed from any cube and no cube
can be removed without changing the expression.

1.2 Haskell

Haskell is a very high level “polymorphically statically typed, lazy, purely functional lan-
guage” [web (2012b)].

As a purely functional language, haskell functions are required to be deterministic for a
given input and free of side effect. This means haskell functions can only (except in IO
code) receive data through its argument, and write it throygh its return value.

Haskell also uses “Lazy” evaluation, meaning that expressions are evaluated when their
value is needed, not when the expression is presented. This allows for logical structures
and optimization not otherwise possible.

Haskell also has a powerfull static type system, allowing a large class of bugs to be de-
tected at compile time, rather than at evaluation (or not at all).

The PState program is written in haskell, so i will mainly be working with haskell for this
project.

1.3 CUDD and hBDD

”The CUDD package provides functions to manipulate Binary Decision Diagrams” [web
(2012a)]. It is an efficient package implemented in C that can handle a large number of
operations on BDD’s quickly.

The haskell hBDD package is a high-level API to the CUDD and CMU Boolean Decision
Diagram libraries” [web (2013)]. It provides an easy to use interface between haskell and
CUDD.

They are used together in the PState program to enable efficient calculations of, on and
with BDDs.

Ideally, a natively functional BDD implementation would be used, but no such imple-
mentation known to be available. The connection between Haskell and C requires certain
adaptations and “assumptions” on the part of the Haskell compiler/interpreter. The func-
tions called all need to either conform to haskells expectations of functional strictness, or
run as IO code. In reality, the CUDD package is unlikely to fit with these restrictions, but
we “get away with” declaring that it may not technically be correct, but it will not be so
in a way that causes invalid data or computation. If this in some corner case turns out not
to be true, problems may arise. Jan Christiansen of Christian-Albrechts-Universitit claims
in [Christiansen (2006)] to have made an efficient implementation in Haskell, but no code
has been made available as far as i have found.

1.4 PState

The PState program is intended to calculate probabilities of next states in a state machine,
given bit-for bit probabilities for inputs and input state. This is done by building a BDD
for each bit of state, and then calculating probabilities node by node through the state ma-
chine.

PState takes as input an xml-coded netlist, and builds a list of input, output and intermedi-
ary values for each signal/variable in the netlist. It then builds a bdd from the function for
each of these values.

1.5 Algorithm

I have choosen to use Shin-ichi Minato’s algorithm from [Minato (1993)]. This algorithm
works by computing covers for the function given the first variable set to true and false
recursively, and then for the remaining don’tcare set.

The two subcovers for v = 0 and v = 1 are found by generating tristate func-
tions encoding the requirements for the subcovers to be '1’,/0" or don’t care (x) for any
given input. These are generated by comparing the then and else branches, encoding a
1" whenever the current branch is true but the alternate branch is false, a ‘0’ where the
current branch is false, and * for all other combinations (these should be covered by the
grander cover, but need not be covered by that specific subcover, thus rendering them
don’t care) as shown in table 1.2. Since the resulting algorithm operates on a tri-state
structure, the function is encoded as two BDD’s according to the scheme seen in table
1.1. The overlap test then become a matter of logical operations on the BDDs. Work-
ing from table 1.2, we get (| f3], [f0']) = (|fo] - [f1],[f0]) Minato (1993). Having
extracted the subcovers, we then generate a new function encoding a 1 where one of
the original subfunctions is not covered by the matching subcover, 0 where the original
function was false and a * in any remaining case. This is achieved with the operations
from (tables 1.3,1.4). The covers are then appended together to form the total cover:
v - cover(f(zy=1)) + T - cover(f(x|y=0)) + cover(f(z|y=+))

f]
0

1

Table 1.1: Table showing encoding scheme for tristate logic

K ==
EE R S

(=i} N}

Table 1.2: Operation extracting truth-overlap on fy from f;

IFOP(f{x]) {
/* (impat) F(x) : {0,1)" = {0,1,4} ¥/
J* (ontpat) dsep : prime-irredundant covers® |
(Ve {01} flx)#£1){isop—0;}
elae if (Wx e {0,1}% flx)£0) {ds0p+—1;}
elge |
i — one of x
[* v iz the mput with highest order in BDD *f
fo — F{x |yt) 5 /¥ the subfunction on v = 0 */
fio— fix |y=1) 5 /* the subfunction on 0= 1%/
Compute ff, f1 in the following rules;

A0 1 ﬁnf“n 1 s
fa: ojog I + f: 0 o 0
! 110 *= = 111 = =

|0 &« =% = [+ = =

isapy = ISOP(f);

J* recursively generates cubes including @ *f
isop — TSOP(f) ;

J¥ recursively generates cubes including v */
Let gg,q; be the covers of tsopy, is0p, 1espactively;
Cl:rm].:ut-c f[, ,,.I'] in the following rules;

f
moha 1=
B T

[| — % =

teop, — ISOP(f)
/* recussively generates cubes excluding 5,0 */
imp — T - igopy + © - 150py + LE0P, ;
1

return a0 ;

i

Figure 1.2: Excerpt from [Minato (1993)], algorithm for generating prime irredundant covers”

g |0
01lo

1 *

Table 1.3: Operation comparing resulting cover and original function

{Ifé/ 0 1 =x
0 0 0 O
1 0 1 1
* 0 1 =

Table 1.4: Operation generating don’t-care function from cross result of table 1.3 applied to both
branches

I have chosen to use this algorithm for the cube extraction as i have an implementation
ready from my specialization project [Vestli (2012)], to which this project is a continua-
tion.

Chapter

Implementation

2.1 Adaptations

the implementation The performance of the algorithm being dependent on the size of the
bdd, the order of the variables greatly impacts the running time and space of the algorithm.
It may then be of interest to experiment with different settings and methods for dynamic
variable reordering when running the algorithm. This makes it desirable to use version
2.5.0 of CUDD, as it introduces the ability to set timeouts. This, however breaks the actual
probability calculation, but these features can without too much work be disabled, and
later be reenabled when compatibility with 2.5.0 is reached.

With this out of the way, implementing cubbe extraction is a matter of writing some simple
interface code and importing the algorithm.

2.2 Testing

Before any further optimization could be done, a test enviroment was needed, and the
modified top level code was altered to generate the BDD-represented list from the input,
run the algorithm on each one, and then simply output the calculated cube sets in plain
text. The algorithm was then tested in place with one of the test files, and proceeded to
crash partway through the list, returning a segfault (memory access violation) error code.
Further testing showed that the algorithm crashed even for the smallest of the test cases
provided, consistently on the same expression, partway through the list.

To test wether the error could lie in the algorithm itself, the test was rerun with the original
(hbdd built-in) sum of product algorithm, with the same result. Testing with several dif-
ferent input files with both algorithms repeatedly show both algorithms returning the same
segmentation fault at the same point in the input list.

Listing 2.1: Crash output

TOP: 4,6,23,26

In: clk, 0.5, clk

In: one, 0.5, one

In: rst, 0.5, rst

Out: ol, 40, 0.5, “counter_0

Out: 02, 41, 0.5, “counter_0& counter_l&counter_2
Local counter_0, 23,

counter_0

Local counter_1, 24,
counter_1

Local counter_2, 25,
counter_2

Local nx100, 26,
counter_O&counter_1& counter_2

Local nx112, 27,
“one | “counter_-O& counter_l&counter_2

Local nx114, 28,
counter_0 | counter_1 | “counter_2

Local nx118, 29,
Segmentation fault

With the segmentation fault immediately stopping the program, little information was
available for debuging, beyond the basic information of where along the list the fault hap-
pens. A tool was then made to recursively print the contents of a BDD in a human- and
machine readable form. A new test was then run, with the program first loading and build-
ing the diagrams, then printing them and finally trying to run the algorithm.

The output was then used to load the same set of functions into the interpreter sepa-
rately from the PState program, and therefore isolated from the process of building them
from the netlist. Both algorithms was run on this list, succesfully computing covers for the
functions.

The offending function in the simple test, constructed from the BDD printout is as fol-
lows:
nxll8 = countergy - countery - counters 4+ countery - counters + countery - counters

2.3 Possible causes

The fact that both algorithms crash on the same expression makes it highly improbable
that the algorithms themselves are fundamentally to blame, as this would require both im-
plementations or underlying algorithms to have fundamental flaws triggered (or not) by
the same expressions.

For much of the same reasons, the complexity (memory) is not likely to be the cause,
as the minato-based implementation has been tested to handle expressions far beyond the
capabilities of the one it replaces. The simplest expression found to cause the crash is a
function of three variables. Even the assuming a worst possible functional complexity and
variable ordering would amount to a bdd of five nodes or less !.

The cause of the errors cannot be simple access of the data, as the print function used
recursively walks every path and node of the BDD.

From this it seems probable that the error must be associated with creating or modifying
the structures, as this is the only difference in kind between the reading function and the
algorithms. Since the algorithms work correctly on equal functions in separate processes,
it stands to reason that if this is the case the diference must somehow be in the construction
or treatment of the data structures prior to the algorithms getting hold of them.

The function causing the crash is the first in the set both to have overlapping cubes, as
well as the first BDD with shared nodes?.

This suggests that the problem may be that due to some assumption (incorrectly) made by
the program, a calculation that should have created a new BDD from a subset of another
is instead modifying the BDD or a reference to it.

Alternately, the problem may be caused by a garbage collector, either in CUDD or Haskell
incorrectly freeing space after the data is used the first time.

In both of these cases, the problem is likely to lie in the friction created between the
lazy, functional Haskell, and the imperative C. For the two to work together, a number
of adaptations, assertions and assumptions must be made. For the lazy, strictly functional
haskell to work, the C code called needs to conform to the requirements of a functional
language, e.g. no side effects, no mutation of variables, deterministic behaviour, and so
on. C obviously cannot naturally guarantee all of these properties to hold, so the functions
called must do so. On the Haskell side, these properties are then assumed to hold. If they
do not, undefined behaviour is the expected result.

One entry node for the first variable, two for the second (There are only two paths from the first node), and
two for the final variable (A final node can only lead to a combination of the two exit nodes, leaving only two
possible non-redundant nodes).

2Containing nodes with multiple paths leading to it

2.4 Further work
2.4.1 Debugging

For the project to proceed, the bug causing the access violations must obviously be found
and solved.

o Further tests could be run to determine wether the algorithms consistently crash on
all all shared nodes. If not, Why?

e In what way is the construction of BDDs different in PState from programs where
the same functions compute correctly? Alternatively, in what ways does PStates use
of the hBDD library differ from other programs?

2.4.2 Optimization

If and when the fault is found, the algorithm may need further optimization/adaptations
to work on the larger BDD sizes. The main path for further inquiry seems to be into
variable reordering, as the variable order can greatly change the number of nodes needed
to represent the function. CUDD 2.5.0 has support for automatic reordering schemes and
timeouts for BDD operations, which could be used to shuffle around the variables until it
completes.

2.4.3 Time unfolding

Going on to work on the calculation of probabilities through several iterations of the state
machine, there are a few strategies and potential problems.

The current implementation generates a list of inputs, outputs, states and local variables, as
a function of each other. The states BDDs are in other words not directly functions of the
previous state and inputs, but a function of local inputs, previous state and local variables.
These relationships will have to be unrolled in the same way as the states.

This can either be done at the BDD level, by replacing the variables by their function. This
leads to the individual BDDs being larger, but there is a lower number of them to work
with.

Alternatively, this can be done at the cube level, by replacing each instance of a term with
its cube set. This sacrifices the prime-irredundant- properties of the cubes, but may save a
lot of computing power, depending on how the algorithm ends up scaling with bdd size.

10

Chapter

Conclusion

e [have attempted to use my implementation of Shin-ichi Minatos algorithm for prime
cube generation into PState, with limited success due to segmentation faults on sim-
ple expressions.

e [have made some progress towards determining the cause of these problems, and
found some paths for further inquiry.

e [have shown that the data structures can be traversed, proving that they are succes-
fully generated.

e | have shown that the algorithms can be succesfully run on the algorithms outside
the PState context, indicating that the problem is preexisting within PState

e [have been able to do little practical work towards unfolding the computation in the
time domain, due to the problems mentioned above.

11

12

Bibliography

, 2012a. Cudd homepage.
URL http://vlsi.colorado.edu/~fabio/CUDD/

, 2012b. Haskell.org.
URL Haskell.org/haskellwiki/introduction

, 2013. Hackage package repository, hbdd page.
URL http://hackage.haskell.org/package/hBDD

Andersen, H. R., 1997. An introduction to binary decision diagrams.
Christiansen, J., 2006. A purely functional implementation of robdds in haskell.

Minato, S.-i., 1993. Fast generation of prime-irredundant covers from binary decision di-
agrams.

Vestli, S. N., 2012. Computation of prime cubes of a complex boolean function based on
bdds.

13

http://vlsi.colorado.edu/~fabio/CUDD/
Haskell.org/haskellwiki/introduction
http://hackage.haskell.org/package/hBDD

14

Appendix

3.0.4 Cube extraction algorithm

Listing 3.1: Cube generation algorithm

module Cubes where

import Data.Boolean .CUDD

isop :: BDD — BDD —> String —> BDD —> (String , BDD)
isop f_ f argstack argbdd
— If f is always 0 or x, no prime cubes can exist and
the function returns nothing
| f_ == false = (7”7 , false)
— If f is always 1 or x, a prime cube has been found
and should be returned
| f == true = (argstack, argbdd)
— If f is sometimes I and sometimes 0, one or more
cubes can be found by further recursion

| otherwise =
let
— extract left and right branches of the function
fo._ = belse f_
fo = belse f
fl_ = bthen f_
fl = bthen f
—— turn overlapping true areas into don’t — cares
fo’_ = f0_ /\ neg fl
fo’ = f0
f1’_ = fl1_ /\ neg fO
f1° = fl

—recursively generate new covers

15

41

42

43

44

45

46

47

48

61

62

63

64

65

66

——appending the extracted variable onto the stack, (
negated for the else branch)
—returned string is cover, returned BDD is equivalent

to cover.
(isop0 , g0)
| argstack == ”” = isop f0’_ fO’ (""" ++ show (bif f)
) (neg (bif f))
| otherwise = isop fO’_ fO’ (argstack ++ "&” ++

»~» 4+ show (bif f)) (argbdd /\ (neg (bif f)))

(isopl , gl)

| argstack == ”” = isop fl’_ fl’ (show (bif f)) (bif
f)
| otherwise = isop fl1’_ fl’ (argstack ++ "& ++

show (bif f)) (argbdd /\ (bif f))

—construct a difference set between the function to be
covered, and the then and else covers
——generating a "dont—care cover”:

f0’’_ = f0_ /\ neg g0

fo’> = f0

f1°>>_ = f1_ /\ neg gl

f1°>> = fl

fdc_ = (f0° /\ f1°7_) \/ (f0°°_ /\ f1°")
fdc = fo’>’ /\ f1°

—vrecursively generate new cover, leaving out the
extracted variable from the stack.
(isopdc , gdc) = isop fdc_ fdc argstack argbdd

—— append together the found covers, inserting or—
strings between non—empty covers.
isoppart =
if isop0 == isopl ==
then isop0 ++ isopl
else isop0 ++ 7

2999 | ‘ 999

’9

++ isopl

>_4|>_4

isop_-total =

16

EIRT)

if isoppart == isopdc ==
then isoppart ++ isopdc
else isoppart ++ 7

9999 ||

2

.| .” ++ isopdc
—— calculate a total cover bdd
g_total = g0 \/ gl \/ gdc

in (

(isop_total , g_total)

)

17

3.0.5 Code for reading out functions of a [PNetNode]

Listing 3.2: Readout function

— Functions that take a list of PNetNode and try to
generate cube sets, or print recursively in different
formats

module TestPrint where

import Data.Boolean .CUDD
import Text.Printf
import Netlist.Data
import PState.Data
import PState .BDD

import Cubes

import Data.Maybe

bddprint a
|a == false = ”false”
|a == true = "true”
| otherwise = show (bif a) ++ ”(” ++ (bddprint $bthen a

) 4++ 7)|."" ++ show (bif a) ++ (7 ++ (bddprint
$belse a) ++ ”)”

bddexport a

|a == false = ”false”
|a == true = “true”
| otherwise = show (bif a) ++ "_/_-(” ++ (bddexport

$bthen a) ++ ”)_\\/.(neg.” ++ show (bif a) ++ "_/\\.
(” ++ (bddexport $belse a) ++ 7))”

bddarglist a
|1 f—— [] = 9999

| otherwise = foldl (\s x —> s ++ ”".” ++ x) 7”7 [show x
X <— 1]
where 1 = support $unmbdd a

unmbdd a = fromMaybe false a

9999

sop_isop a = fst $isop a a false
isopList :: [PNetNode] —> I0 a0
isopList [] = printf “end!\n”
isopList (x:xs) = do

18

40

41

42

64

case x of
Top (a, b, ¢, d) —> printf ”TOP: _%d,%d,%d,%d_\n" a
b cd
In a b ¢ —> printf "In: %s, %f, %s\n” a b $sop_isop
$unmbdd ¢
Out a b ¢ d —> printf "Out: %s, %d, %f, %s\n” a b c
$sop_isop $unmbdd d
Local a b ¢ —> printf ”Local %s, %d,.\n_%s._.\n\n" a
b $sop_isop $unmbdd c— $sop_isop ¢
Func a b c d e f g —> printf ”Func: %s, %s., %f, %s
\An” a ¢ f $sop-isop $unmbdd g — $sop_isop g
State a b c de f g h—> printf ”state: _%s, %S, %s,
Jed , A\n %s , .\n_-%s._.\n\n.” a b c d (sop_isop
$unmbdd g) (sop_isop $unmbdd h)
isopList xs

printList :: [PNetNode] —> I0 a0
printList [] = printf ”end!\n”
printList (x:xs) = do
case x of
Top (a, b, ¢, d) —> printf "TOP: _%d,%d,%d,%d_\n" a
b cd
In a b ¢ —> printf "In: %s, %f, %s\n” a b $bddprint
$unmbdd ¢
Out a b ¢ d —> printf ”Out: %s, %d, %f, %s\n” a b c
$bddprint $unmbdd d
Local a b ¢ —> printf ”"Local %s, . %d,_\n_%s._\n\n" a
b $bddprint $unmbdd ¢
Func a b c de f g —> printf "Func: %s, _%s., %f, _ %s
-\n” a ¢ f $bddprint $unmbdd g
State a b c de f gh —> printf ”state: _%s, _%s, %s,
Jed , A\n %s , .\n-%s.\n\n.” a b ¢ d (bddprint
$unmbdd g) (bddprint $unmbdd h)
printList xs

dumpltem :: PNetNode —> Int — IO a0
dumpltem x y= do

case x of
Top - —> printf 77
In a - b—> printf ”f%d_%s.=_%s\n” y (
bddarglist b) $bddexport $unmbdd b
Out a - _ b —> printf ”f%d. %s.=_%s\n” y (

bddarglist b) $bddexport $unmbdd b

19

65

66

67

Local a _ b —> printf ”f%d. %s.=_%s\n” y (
bddarglist b) $bddexport $unmbdd b

Func a - _ _ _ _ b —> printf " f%d_%s.=_%s\n” y (
bddarglist b) $bddexport $unmbdd b
State a - - - - _ _ b —> printf 7f%d. %s.=%s\n” y (

bddarglist b) $bddexport $unmbdd b

testltem :: PNetNode —> Bool
testltem x = case x of
Top - —> False
otherwise —> True

dumpList :: [PNetNode] —> I0 a0
dumpList xs = foldl (>>) (printf ””) [dumpltem x y| (x,y)
<— zip [a | a <— xs, testltem a] [l ..]]

20

6

3.0.6 Output BDD list for test case

Listing 3.3: List of BDDs for main test case

f1
f2
f3
f4

f5

f6

f7

f8

f9

f10

fl1

f12

f13

f14

f15
f16

clk clk /\ (true) \/ (neg clk /\ (false))

one one /\ (true) \/ (neg one /\ (false))

rst = rst /\ (true) \/ (neg rst /\ (false))

counter_-0 = counter_0 /\ (false) \/ (neg counter.0 /\ (
true))

counter_2 counter_1 counter_0 = counter_0 /\ (false) \/
(neg counter_0 /\ (counter_1 /\ (false) \/ (neg
counter_1 /\ (counter_2 /\ (true) \/ (neg counter-2 /\ (

false))))))

counter_0 = counter_0 /\ (true) \/ (neg counter-0 /\ (
false))

counter_1 = counter_1 /\ (true) \/ (nmeg counter_1 /\ (
false))

counter-2 = counter_-2 /\ (true) \/ (neg counter-2 /\ (
false))

counter-2 counter-1 counter_0 = counter_0 /\ (counter_1

/\ (counter_2 /\ (false) \/ (neg counter_2 /\ (true)))
\/ (neg counter_1 /\ (false))) \/ (neg counter_0 /\ (
false))

counter_2 counter_1 counter_0 one = one /\ (counter_0
/\ (false) \/ (neg counter_0 /\ (counter_1 /\ (false) \/
(neg counter_1 /\ (counter_2 /\ (true) \/ (neg
counter_2 /\ (false))))))) \/ (neg one /\ (true))
counter_2 counter-1 counter-0 = counter-0 /\ (true) \/
(neg counter_0 /\ (counter_1 /\ (true) \/ (neg
counter-1 /\ (counter_2 /\ (false) \/ (neg counter_-2 /\
(true))))))

counter_2 counter_1 counter .0 = counter_0 /\ (
counter_1 /\ (counter-2 /\ (true) \/ (neg counter-2 /\ (
false))) \/ (neg counter_1 /\ (counter-2 /\ (false) \/ (
neg counter_2 /\ (true))))) \/ (neg counter-0 /\ (
counter_2 /\ (false) \/ (neg counter_2 /\ (true))))
counter-2 = counter_2 /\ (false) \/ (neg counter_-2 /\
(true))

counter_1 counter_-0 = counter-0 /\ (false) \/ (neg
counter-0 /\ (counter_1 /\ (false) \/ (neg counter_-1 /\
(true))))

rst = rst /\ (false) \/ (neg rst /\ (true))

counter_1 counter-0 = counter-0 /\ (counter_-1 /\ (
false) \/ (neg counter-1 /\ (true))) \/ (neg counter-0
/\ (true))

21

21

22

24

28

f17

f18

f19

20

f21

22

f23

24

f25

f26

f27

f28

counter_1 counter-0 = counter-0 /\ (counter_1 /\ (true
) \/ (neg counter_1 /\ (false))) \/ (neg counter_0 /\ (
false))

counter_2 counter_1 counter_.0 rst one = one /\ (rst /\
(counter-0 /\ (false) \/ (neg counter_O /\ (counter-1
/\ (true) \/ (neg counter_1 /\ (counter-2 /\ (false) \/
(neg counter_-2 /\ (true))))))) \/ (neg rst /\ (false)))
\/ (neg one /\ (false))

counter_1 counter_0 rst one = one /\ (rst /\ (
counter-0 /\ (counter_-1 /\ (false) \/ (neg counter_1 /\
(true))) \/ (neg counter_0 /\ (counter_1 /\ (true) \/ (
neg counter_1 /\ (false))))) \/ (neg rst /\ (false))) \/
(neg one /\ (false))

counter_2 counter_1 counter_0 rst one = one /\ (rst /\
(counter-0 /\ (counter_-1 /\ (counter_-2 /\ (false) \/ (
neg counter_2 /\ (true))) \/ (neg counter_-1 /\ (
counter-2 /\ (true) \/ (neg counter_2 /\ (false))))) \/
(neg counter_0 /\ (counter_1 /\ (counter-2 /\ (true) \/
(neg counter_2 /\ (false))) \/ (neg counter_1 /\ (false)
)))) \/ (neg rst /\ (false))) \/ (neg one /\ (false))
counter_2 counter-1 counter_-0 = counter-0 /\ (
counter_1 /\ (false) \/ (neg counter_1 /\ (counter-2 /\
(true) \/ (neg counter_2 /\ (false))))) \/ (neg
counter_0 /\ (counter_2 /\ (true) \/ (neg counter_2 /\ (
false))))

counter_2 counter-1 counter-0 = counter_0 /\ (false)
\/ (neg counter_0 /\ (counter_1 /\ (false) \/ (neg
counter-1 /\ (counter_2 /\ (true) \/ (neg counter-2 /\ (
false))))))

counter_0 = counter_0 /\ (true) \/ (neg counter 0 /\ (
false))

counter_-1 = counter_1 /\ (true) \/ (neg counter_1 /\ (
false))

counter-2 = counter_-2 /\ (true) \/ (neg counter-2 /\ (
false))

counter_2 counter_1 counter_0 = counter_0 /\ (

counter-1 /\ (counter-2 /\ (false) \/ (neg counter-2 /\
(true))) \/ (neg counter_1 /\ (false))) \/ (neg
counter-0 /\ (false))

counter-2 counter-1 counter_0 one = one /\ (counter_0
/\ (false) \/ (neg counter_0 /\ (counter_1 /\ (false) \/
(neg counter_1 /\ (counter_-2 /\ (true) \/ (neg
counter_2 /\ (false))))))) \/ (neg one /\ (true))
counter-2 counter-1 counter_0 = counter_0 /\ (true) \/
(neg counter_0 /\ (counter_1 /\ (true) \/ (neg

22

f29

f30

f31
f32

f33

f34

f35

f36

f37

f38

f39

counter-1 /\ (counter_2 /\ (false) \/ (neg counter-2 /\
(true))))))

counter_2 counter-1 counter_0 = counter_0 /\ (
counter_1 /\ (counter_2 /\ (true) \/ (neg counter_2 /\ (
false))) \/ (neg counter_1 /\ (counter_-2 /\ (false) \/ (
neg counter_2 /\ (true))))) \/ (neg counter-0 /\ (
counter_2 /\ (false) \/ (neg counter-2 /\ (true))))
counter_1 counter_.0 = counter_0 /\ (false) \/ (neg
counter_0 /\ (counter_1 /\ (false) \/ (neg counter_1 /\
(true))))

rst = rst /\ (false) \/ (neg rst /\ (true))

counter-1 counter_-0 = counter_0 /\ (counter_1 /\ (
false) \/ (neg counter_1 /\ (true))) \/ (neg counter_0
/\ (true))

counter_1 counter-0 = counter-0 /\ (counter_-1 /\ (true
) \/ (neg counter_1 /\ (false))) \/ (neg counter-0 /\ (
false))

counter-2 counter-1 counter_0 = counter_0 /\ (false)
\/ (neg counter_0 /\ (counter_1 /\ (false) \/ (neg
counter_1 /\ (counter_2 /\ (true) \/ (neg counter_2 /\ (
false))))))

counter_-2 counter-1 counter_0 rst one = one /\ (rst /\
(counter_0 /\ (false) \/ (neg counter_0 /\ (counter_1
/\ (true) \/ (neg counter_1 /\ (counter_2 /\ (false) \/
(neg counter_2 /\ (true))))))) \/ (neg rst /\ (false)))
\/ (neg one /\ (false))

counter_1 counter-0 rst one = one /\ (rst /\ (
counter-0 /\ (counter_1 /\ (false) \/ (neg counter_1 /\
(true))) \/ (neg counter_0 /\ (counter_1 /\ (true) \/ (
neg counter_1 /\ (false))))) \/ (neg rst /\ (false))) \/
(neg one /\ (false))

counter_2 counter-1 counter-0 rst one = one /\ (rst /\
(counter_0 /\ (counter_1 /\ (counter-2 /\ (false) \/ (
neg counter_2 /\ (true))) \/ (neg counter_1 /\ (
counter_2 /\ (true) \/ (neg counter_2 /\ (false))))) \/
(neg counter_0 /\ (counter_1 /\ (counter_2 /\ (true) \/
(neg counter_2 /\ (false))) \/ (neg counter_1 /\ (false)
)))) \/ (neg rst /\ (false))) \/ (neg one /\ (false))
counter-2 counter-1 counter_0 = counter_0 /\ (
counter_1 /\ (false) \/ (neg counter_1 /\ (counter_2 /\
(true) \/ (neg counter_2 /\ (false))))) \/ (neg
counter-0 /\ (counter-2 /\ (true) \/ (neg counter-2 /\ (
false))))

counter_2 = counter_2 /\ (false) \/ (neg counter_2 /\
(true))

23

40

41

f40

f41

counter-0 = counter_0 /\ (false) \/ (neg counter-0 /\
(true))

counter_2 counter_1 counter_.0 = counter_0 /\ (false)
\/ (neg counter_0 /\ (counter_1 /\ (false) \/ (neg
counter_1 /\ (counter-2 /\ (true) \/ (neg counter-2 /\ (
false))))))

24

	Project description
	Abstract
	Norsk sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Theory
	Binary Decision Diagrams
	Prime cubes

	Haskell
	CUDD and hBDD
	PState
	Algorithm

	 Implementation
	Adaptations
	Testing
	Possible causes
	Further work
	Debugging
	Optimization
	Time unfolding

	Conclusion
	Bibliography
	Appendix
	Cube extraction algorithm
	Code for reading out functions of a [PNetNode]
	Output BDD list for test case

