
Video metric measurements in an FPGA
for use in objective no-reference video
quality analysis

Eirik Tørud Nordeng

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Jørgen Linnerud, Cisco

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

The purpose of this assignment is to examine the possibility of using an FPGA for
extracting different metrics from a video stream. These metrics should provide
information regarding the state of the hardware, meaning that faulty hardware
and erroneous components should affect the metrics. Different algorithms are to
be evaluated and the most promising algorithms should be implemented using
VHDL code.

i

Abstract

This thesis presents a way of performing objective video quality analyses in order
to point out faults in the hardware of a video system that uses analogue video
transmission technologies. The approach focuses on performing simple digital
processing and analyses of the video data coherently using an FPGA. Several
metrics that correlates with specific distortions are developed. These metrics give
good indications of the state of the video system components. The algorithms
are tested using MATLAB and mapped to an FPGA. The key components are
implemented and verified in VHDL, and synthesized for an Altera Cyclone II
FPGA. The thesis concludes that the proposed system has the ability to discover
board-level faults in a video system that utilizes an FPGA and analogue video
transmission. The system also has the ability to supplement external quality
assessment systems in most cases, and function as a good alternative in cases
where a quick and simple assessment of a video system is desired.

Sammendrag

Denne rapporten presenterer et system for å utføre objektiv kvalitetsanalyse av
video. Dette systemet skal p̊apeke feil i maskinvaren i et videosystem som bruker
analoge videooverføringsteknologier. Tilnærmingen fokuserer p̊a å utføre enkel
digital prosessering og enkle analyser av video parallelt ved hjelp av en FPGA.
Flere algoritmer som regner ut verdier som korrelerer med bestemte distorsjoner
har blitt utviklet. Disse verdiene gir gode indikasjoner p̊a tilstanden til videosys-
temers komponenter. Algoritmene er testet ved hjelp av MATLAB og imple-
mentert for bruk i en FPGA. De viktigste komponentene er implementert og
verifisert i VHDL og syntetisert mot en Altera Cyclone II FPGA. Det konklud-
eres med at det foresl̊atte systemet har evnen til å oppdage feil i maskinvaren i
et videosystem som anvender en FPGA og analog videoverføring. Systemet har
ogs̊a muligheten til supplere eksterne systemer for kvalitetsanalyse i de fleste
tilfeller, og det vil fungere som et godt alternativ til disse i de tilfeller der en rask
og enkel vurdering av et videosystem er ønskelig.

iii

Preface

This thesis is written at the Institute of Electronics and Telecommunications
(IET) at the Norwegian University of Science and Technology (NTNU) during
the spring of 2013. The assignment is given by Cisco Norway. The work has
been done under the guidance of Professor Kjetil Svarstad at NTNU and Jørgen
Linnerud at Cisco Norway. The thesis is a continuation of my specialization
project which served as a preparatory study. I chose this assignment because of
its ties to image processing and FPGA development. I wish to thank Kjetil and
Jørgen for their many guidance hours and plenty of good advices.

Eirik Tørud Nordeng
Trondheim, June 2013

v

Contents

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Assignment specification . 1

1.2 Contribution . 3

1.3 Report layout . 3

2 The approach and previous work 5

3 Theoretical background 7

3.1 Field-programmable gate arrays . 7

3.2 Video representation . 9

3.3 Digital signal processing . 10

3.3.1 Convolution . 10

3.3.2 Median filter . 11

3.3.3 Histogram processing . 12

3.4 Video quality assessment . 15

3.4.1 Video quality metrics . 15

3.5 Electronic circuitry . 17

3.5.1 Fault sources . 17

3.5.2 Associated video distortions 18

3.5.3 Image noise models . 20

4 Equipment 23

4.1 Software for algorithm modelling and testing 23

4.2 Software for implementing FPGA circuits 23

4.3 Target hardware . 24

vii

viii CONTENTS

5 Presentation of the VQA algorithms 25

5.1 System specification . 26

5.2 Data Value Analyses . 27

5.2.1 Reduced-reference assessment tools 28

5.2.2 Testing for stuck-at faults 32

5.2.3 Histogram processing . 33

5.3 Random noise metrics . 34

5.3.1 Accumulate and differentiate metric 35

5.3.2 Median filtering metric . 36

5.4 Blur metrics . 38

5.4.1 Gaussian filtering metric . 38

5.4.2 Gradient metric . 39

5.5 Post processing . 41

6 Modelling and testing the algorithms 43

6.1 The tests and the criteria . 43

6.2 General algorithm modelling . 46

6.3 Data value analyses . 48

6.3.1 Testing for stuck-at faults 48

6.3.2 Histogram processing . 48

6.4 Random noise metrics . 49

6.4.1 Accumulate and differentiate metric 49

6.4.2 Median filtering metric . 50

6.5 Blur metrics . 51

6.5.1 Gradient metric . 51

6.5.2 Gaussian filtering metric . 52

7 Implementation and verification 53

7.1 Frequently used components and values 54

7.1.1 Row buffer . 54

7.1.2 Averaging . 56

7.2 Data value analyses . 57

7.2.1 Testing for stuck-at faults 57

7.2.2 Histogram processing . 58

7.3 Accumulate and differentiate metric 59

7.4 Median filtering metric . 61

7.5 Gradient metric . 62

7.6 Gaussian filtering metric . 65

7.7 Verification . 65

8 Results 67

8.1 Algorithm test results . 68

8.1.1 Data assessment tools . 68

CONTENTS ix

8.1.2 Accumulate and differentiate metric 69

8.1.3 Median filtering metric . 70

8.1.4 Gradient metric . 72

8.1.5 Gaussian filtering metric . 74

8.2 Synthesis results . 76

9 Discussion 77

9.1 Algorithm design and testing . 77

9.2 VHDL modelling . 80

9.3 Final discussion . 81

10 Concluding remarks 85

10.1 Future work . 86

A MATLAB scripts 87

A.1 Modelling of median filter metric 87

A.2 Modelling of A & D metric . 90

A.3 Modelling of gradient metric . 94

A.4 Modelling of smoothing metric . 96

B VQA systems test results 99

B.1 Results from PSNR analyses . 100

B.2 Results from testing the A & D metric 106

B.3 Results from testing the median filter metric 110

B.4 Results from testing the gradient metric 115

B.5 Results from testing the smoothing metric 120

Bibliography 125

List of Figures

1.1 Video quality assessment system overview 2

3.1 The mechanics of spatial convolution 11

3.2 The architecture of a three-input sorter 12

3.3 The architecture of a median filter 12

3.4 An example of a histogram . 13

3.5 Histograms from lightened and darkened images 14

3.6 A histogram from image with increased contrast 14

5.1 Video assessment system top level interface 26

5.2 Test pattern containing extreme values with steep transitions . . . 29

5.3 Test patterns containing a smooth gradient 30

5.4 Test pattern with line-wise increasing frequencies 31

5.5 Test pattern with section-wise increasing frequencies 31

5.6 Example of frequencies covered by the frequency test pattern . . . 32

5.7 Description of system for discovering stuck-at faults 33

5.8 Examples of images with stuck-at faults 34

5.9 A histogram plot showing the dynamic range of an image 35

5.10 Demonstration of median filtering of a noisy image 37

5.11 Comparison of a regular and a blurred image 38

5.12 Analysis of Gaussian-filtering images for blur estimation 40

5.13 Analysis of gradients in images for blur estimation 41

6.1 Images used for testing the metrics and assessment tools 45

6.2 Examples of distortions used for testing the metrics and assessment
tools . 46

6.3 Plot of the pixel values of a single image row 47

7.1 Implementation of the row buffer 55

7.2 Implementation of the averaging component 57

7.3 Implementation of the histogram accumulator 60

7.4 Implementation of the A & D metric system 61

7.5 Implementation of the median metric system 63

xi

xii LIST OF FIGURES

7.6 Implementation of the median filter 63

7.7 Implementation of the gradient metric system 65

7.8 Architecture of the convolution filter 65

8.1 Results from calculating PSNR on images with different distortions 69

8.2 Results from calculating A & D metric on different images con-
taminated with Gaussian noise . 70

8.3 Results from calculating median median metric on images contam-
inated with Gaussian noise . 71

8.4 Results from calculating gradient metric on smoothed images . . . 73

8.5 Results from calculating gradient metric on images contaminated
with salt & pepper noise . 73

8.6 Results from calculating gradient metric on an image containing
steep transitions . 74

8.7 Results from calculating gradient metric on smoothed images . . . 75

B.1 Results from PSNR calculations on image with different distortions 105

List of Tables

3.1 Overview of known physical faults in video systems 18

3.2 Overview of artifacts and distortions related to physical faults . . . 20

5.1 Video assessment system top level interface description 26

5.2 Resource specification summary . 27

6.1 Properties of the test bench images 44

7.1 Row buffer interface description . 55

7.2 Stuck-at analysis interface description 58

7.3 Histogram accumulator interface description 59

7.4 Accumulate and differentiate interface description 60

7.5 Median metric interface description 62

7.6 Gradient metric interface description 64

7.7 Gaussian metric interface description 66

8.1 Results from testing the median metric with the original images . . 71

8.2 Results from testing the gradient metric with the original images . 72

8.3 Results from testing the smoothing metric with the original images 75

8.4 Results from synthesizing frequently used components 76

8.5 Results from synthesizing the metric systems 76

9.1 Metric system distortion coverage 83

B.1 Result from PSNR with Gaussian noise on natural images 101

B.2 Result from PSNR with salt & pepper noise on natural images . . 102

B.3 Result from PSNR with speckle noise on natural images 103

B.4 Result from PSNR computations using blurred natural images . . 104

B.5 Result from the A & D with Gaussian noise in natural images . . . 107

B.6 Result from the A & D with salt & pepper noise in natural images 108

B.7 Result from the A & D with speckle noise in natural images 109

B.8 Result from the median filter-based VQA with Gaussian noise in
natural images . 111

xiii

xiv LIST OF TABLES

B.9 Result from the median filter-based VQA with salt & pepper noise
in natural images . 112

B.10 Result from median filter-based VQA with speckle noise in natural
images . 113

B.11 Result from median filter-based VQA with blurred natural images 114

B.12 Result from Laplace filter-based VQA with Gaussian noise in nat-
ural images . 116

B.13 Result from the Laplace filter-based VQA with salt & pepper noise
in natural images . 117

B.14 Result from Laplace filter-based VQA with speckle noise in natural
images . 118

B.15 Result from Laplace filter-based VQA with blurred natural images 119

B.16 Result from Gaussian filter-based VQA with Gaussian noise in
natural images . 121

B.17 Result from the Gaussian filter-based VQA with salt & pepper
noise in natural images . 122

B.18 Result from Gaussian filter-based VQA with speckle noise in nat-
ural images . 123

B.19 Result from Gaussian filter-based VQA with blurred natural images124

Abbreviations

ADC Analog to Digital Converter

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Product

DAC Digital to Analog Converter

DAC Discrete Cosine Transform

DFF Data/Delay Flip-Flop

DSP Digital Signal Processor

EOF End Of Frame

EOL End Of Line

FPGA Field-Programmable Gate Array

FRVQA Full-Reference VQA

HDL Hardware Descriptional Language

HVS Human Visual System

IC Integrated Circuit

IP Intellectual Property

LE Logical Element

LSB Least Significant Bit

LUT LookUp Table

MSB Most Significant Bit

MSE Mean Square Error

NRVQA No-Reference VQA

PLL Phase Locked Loop

PSNR Peak Signal to Noise Ratio

PWM Pulse-Width Modulation

RAM Random-Access Memory

xv

xvi ABBREVIATIONS

RRVQA Reduced-Reference VQA

SAD Sum of Absolute Differences

SSD Sum of Squared Differences

VQA Video Quality Assessment

VQM Video Quality Metric

Chapter 1

Introduction

This report and the work related to it is the product of the master thesis of

Eirik Tørud Nordeng at the Circuit and Systems group of the Department of

Electronics and Telecommunications (IET) at the Norwegian University of Sci-

ence and Technology (NTNU). The work is a continuation of the specialization

project [1] which served as a preparatory study. The following sections present

the assignment specifications and the structure of the report.

1.1 Assignment specification

Objective video quality analysis means measuring the quality of a video stream

by utilizing a system running one or more VQA (Video Quality Assessment)

algorithms. The algorithms produce outputs that correlates with the level of

distortion in a video stream. The term no-reference quality analysis means that

there is no original version of the video signal available for comparison to the

VQA system. When designing such metric systems, one therefore has to assume

that the video stream has some certain properties, or simplify the analysis by

feeding the system with known test patterns. This work focuses on pure no-

reference analyses, but investigates the use of such test patterns and their effects

on the metrics as well.

1

2 Introduction

The objective of the assignment is to develop video quality metrics for detecting

artifacts that are results of board-level failures. It is therefore natural to look

for artifacts related to analogue transmissions and physical defects such as stuck-

at-faults and faulty filter components. Although it is not the main objective, it

is also of interest to detect errors caused by faults in digital systems, and faults

that are introduced in the design phase.

The intended application for the system is testing at the production site, where it

can be beneficial to not have to rely on expensive external equipment or a person

with a trained eye. In-house regression testing is also a possible application for

the system, as it can help speed up the design process. It is important to notice

that this system is not intended as an alternative to complex external quality

assessment systems, but rather as a quick and simple supplement. The desire is

to be able to quickly configure an on-board FPGA for analysing a video stream

and point out known distortions and artifacts related to board-level faults, as

figure 1.1 shows. The system should input a 24-bit RGB video signal with explicit

synchronization signals and output the video quality metrics as a range of values

consistent with the developed metric models.

FPGA
Video input

24-bit RGB with
external sync

Resulting metric values

describing the state of
the video system

Figure 1.1: Simple overview of the desired video quality assessment system.

The assignment is divided into two parts. The first part, which was carried

out during the specialization project, involved studying different methods for

performing qualitative analyses of run-time video. This included a clear overview

showing the use of resources, the estimated real time capabilities of the systems

and an analysis of the benefits and drawbacks regarding mapping of the different

algorithms to an FPGA. The second part, which is the focus of this thesis, involves

modeling and writing HDL modules for measuring the video metrics based on

the procedures and approaches found in the first phase of the project. All VQA

models are to be tested thoroughly using different images with specific properties.

In the end, the project should result in several suggestions for VHDL modules

Introduction 3

that can be used for evaluating a video stream in real time using an FPGA with

and without knowledge of the input signal.

1.2 Contribution

Earlier work related to objective no-reference analogue video metric measure-

ments is concerned about visual distortions in video. These metric systems are

designed solely to provide information related to how well a human can perceive

distortions, and does not go into the underlying cause of the faults. The contri-

bution from this assignment is a set of video quality analysis systems that are

designed to uncover physical failures on the board-level of a video system. In

addition, the video metric measurements are developed specifically for use coher-

ently in an FPGA. This provides the possibility for using several simple metrics

together in order to discover failures in a video system. The algorithms and their

VHDL models are tested and analysed thoroughly in order to ensure that they

work as intended.

1.3 Report layout

The approach taken for solving the task at hand is presented in chapter 2, together

with a review of relevant previous work.

Chapter 3 presents the theory that is necessary for understanding how video, im-

age processing and video quality metrics work. It also presents basic information

on relevant electronic systems and their relations to video artifacts. Chapter 4

presents the tools used for developing the algorithms and their implementations.

The target electronics are also presented here.

The developed VQA systems are presented in chapter 5, and models of these

systems are presented in chapter 6, together with the approach for testing them.

The implementation and verification of the FPGA-specific algorithms is presented

in chapter 7.

4 Introduction

The assignment results can be found in chapter 8. This includes results from

testing the models and results from synthesizing the circuits described in VHDL.

An analysis of these results and an analysis of the metrics in general can be found

in chapter 9, while some concluding remarks are found in chapter 10.

All results from testing and modeling in MATLAB can be found in appendix B,

and the scripts modeling the systems are included in appendix A.

Chapter 2

The approach and previous

work

This chapter presents the approach taken when working with this project, to-

gether with the results and contributions from relevant previous work.

A literature study concerning no-reference video quality analysis was presented

in the authors specialization project, which preceded the work on this thesis. In

the specialization project, the methods for calculating many previously devel-

oped no-reference metrics were analysed and the possibilities for performing the

calculations on an FPGA were evaluated. The results from this study has formed

the background for the video quality metrics presented later in this report.

The evaluated metrics were based on several different approaches, ranging from

methods based on spatial filtering to complex statistical models and analyses

in other domains. All of the metrics were developed for running in software,

which meant that an analysis of the possibilities for mapping the algorithms

to an FPGA was essential. In addition, many of the newly developed video

metrics were designed for discovering artifacts related to digital video and the

HVS (Human Visual System). An important part of the work was therefore to

distinguish the essential algorithm components from the processing related to

these issues.

5

6 The approach and previous work

The results from the analyses point towards creating many simple algorithms

that together say a lot about the state of the board components. Since the algo-

rithms are to run on an FPGA, the possibility for resource sharing, i.e. using the

same modules for calculating different metrics, is important. Expensive transfor-

mations and complex computations are undesirable since such components may

demand a high amount of resources.

DSPs (Digital Signal Processors) are normally the desired platform for metric

measurements of video quality. However, since FPGAs are usually used for pre-

processing of video, they are often the first component in the video processing

system. They are also inherently suited for parallel processing of image data, pro-

viding the possibility for calculating several video metrics in real time without

influence from other processing devices.

The combination of real time processing on FPGAs, and focus on discovering dis-

tortions that can be traced back to physical board-level faults using simple met-

ric calculations, provide a new perspective on the field of objective no-reference

video quality analysis. Although this work does not present a fully developed

video quality analysis system, the model simulation and synthesis results indi-

cates that the proposed system will function as a valuable addition to production

testing and regression testing in the production and design phase of new video

systems.

The work with the project is divided into three sections. First, the algorithms

are developed based on video and image processing, knowledge of the target

platform and the results from the specialization project. The video input used

for testing is based on the VGA standard. Second, the algorithms are modelled in

MATLAB and tested using a series of specially developed tests. The last part of

the work consists of implementing the key algorithm components for evaluating

their resource consumption and their real time capabilities.

The conclusion is presented based on the results from this approach. It gives a

clear indication on whether such a system is usable and desirable compared to

already existing systems on other platforms.

Chapter 3

Theoretical background

The following sections will take a look at the theory behind video quality assess-

ment systems. This includes theory of electronic video systems, video transmis-

sion and digital signal processing. Some relevant previously developed algorithms

are also presented.

The chapter begins by presenting properties of the field-programmable gate array

and the advantages and limitations of this device compared to other signal pro-

cessing platforms. Next, the representation of video in a computer is examined.

Since most VQA systems use digital signal processing in order to output a good

metric, some essential processing principles are described, before some previously

developed VQA algorithms are presented. Because it is important to know how

to relate distortions to specific artifacts, the last section examines how physical

faults can lead to specific artifacts in analogue video transmission.

3.1 Field-programmable gate arrays

An FPGA (Field-Programmable Gate Array) is an electronic device that can

represent functionality as a digital circuit. FPGAs are especially well suited for

low level image processing since they are inherently parallel and therefore easily

can exploit the parallelism that is present in images [2, Chapter 2].

7

8 Theoretical background

The smallest unit in an FPGA is the logic cell [2, Chapter 2]. This is a basic

building block that normally contains a LUT (LookUp Table) and a DFF (Data

Flip-Flop). By combining several logic cells through router blocks, digital circuits

are formed. The logic cells in Altera’s devices are called LEs (Logical Elements)

[3].

FPGAs are heavily bound by the memory bandwidth and therefore rely greatly

on internal memory known as block RAM. In order to properly exploit the capa-

bilities of an FPGA, most systems therefore rely only on a small amount of data,

of which there is room for in the target FPGA. This is especially significant in

image processing, since most FPGAs will have problems buffering an entire image

frame, and instead have to rely on smart memory techniques and processing in

order to stay within the resource specifications [2, Chapter 5].

Timing constraints is another important issue, especially in real time video and

image processing. It is required that all of the computations in a system have

been finished before the next clock cycle. However, if the computations are to

intense and cannot be completed within the required period, one can resort to

pipelining, which is a technique where logic is split into smaller blocks, spread

over multiple clock cycles. Pipelining can be utilized at most levels in the circuit,

but may introduce the need for some extra control logic, as the timing of the

data is being altered. As with all forms of data buffering, pipelining increases

the latency of the system [2, Chapter 5].

Sometimes there is a necessity of different clock domains in an FPGA system.

Multiple clock domains are used in video and image processing when it is re-

quired that the pixel data is processed at a different rate than the rate of the

arriving pixels. Employing such techniques allows for more elaborate processing

and better interfacing with external devices. However, it does make designing the

systems harder, since communication and passing of data between the different

domains requires complex synchronisation components [2, Chapter 5].

For a more thorough examination of FPGAs, see the report from the preliminary

study [1, Chapter 1] or Compton’s survey on FPGAs [4].

Theoretical background 9

3.2 Video representation

In computers, a video signal is represented as a stream of images. The images

are represented as a number of lines consisting of a number of picture elements,

or pixels. The pixels are formatted in a specific way, for instance in the additive

RGB colour space or in the YCbCr colour space. By changing the values of the

pixels, all available colours are created [5, Chapter 3].

VGA (Video Graphics Array) has for a long time been a very popular stan-

dard for transmitting video between computers and from computers to monitors.

It is currently used as a high-resolution video standard in some computer and

consumer equipment, where the ability to transmit a sharp, detailed image is

essential [5, Chapter 2].

The VGA standard transmits the video as three separate colour components

representing red, green and blue. The components are transmitted using separate

wires together with horizontal and vertical synchronization signals called end of

line (EOL) and end of frame (EOF). An active resolution equal to 1920 × 1080

of a 1080p digital RGB signal, as defined within BT.709 and SMPTE 274M1, has

a sample rate of 148.5 MHz and a frame rate of 60 Hz [5, Chapter 4].

A VGA system divides the video frames into single rows. These rows are transmit-

ted in sequence, using analogue representations of the pixel values. The sampling

of the component values using an ADC are triggered using the pixel clock. When

the end of a row is reached, EOL goes high, and after a short period, this signal

is set low again and the next row of pixel values is transmitted. When an entire

frame worth of rows has been transferred, EOF goes high. When EOF is set low,

the next frame is to be transmitted in the same way as the previous one.

For a more comprehensive description of the VGA standard and other ways of

representing video, see the report from the preliminary studies [1].

1The SMPTE (Society of Motion Picture and Television Engineers), together with the EBU
(European Broadcasting Union), have presented the main parameters for coding, filtering and
timing of video [5, Chapter 4]. The BT.709 and the SMPTE 274M present the parameter values
for the HDTV standards and defines the 1080 line high definition video formats, respectively.

10 Theoretical background

3.3 Digital signal processing

When the analogue video representation has been sampled, it is possible to em-

ploy digital processing on the resulting digital signal. Since a video stream is

inherently a stream of images, it has been considered desirable to use image pro-

cessing on single frames to obtain the required information. The image processing

components that are significant for the work presented in the following chapters

are described below.

3.3.1 Convolution

A popular way of looking at the spatial correlation of images is by employing

a convolution filter. Convolution is a form of linear spatial filtering which is

performed by moving a filter mask (a template) over the image and computing the

sum of products at each location [6, Chapter 3.4]. A 2-dimensional convolution,

or spatial convolution, is shown in equation 3.1, and its mechanism is shown in

figure 3.1.

m(x, y) ∗ i(x, y) =
w∑

k=−w

w∑
l=−w

m(k, l)i(x− k, y − l) (3.1)

The filter mask in figure 3.1 is a matrix consisting of nine cells. The template

values of the filter are set static according to a known working pattern, resulting

in a specific filter behaviour. The input of the filter is the nine pixels from the

image. As shown in the figure, these elements are spatially correlated in that

they are neighbours. The filter mask moves through the image from left to right,

one row at a time until the whole frame has been filtered. It then starts over

again with the next frame.

A problem occurs when the border values of the image are to be filtered. The

filter mask will then exceed the image borders, which causes unknown behaviour.

In order to reduce these issues, the border of the image can be padded with values

according to for example the border pixel values or a constant value [6].

The implementation of this component for an FPGA requires buffering of two

image rows, in addition to a circuit performing the filter computations. One of

Theoretical background 11

Image

Filter mask

Figure 3.1: The mechanics of linear spatial filtering using a 3×3 filter mask.

the more efficient ways of doing this is by using a row buffer component connected

to a filter component [2, Chapter 8]. A parallel row buffer consists of two shift

registers for the buffering of the rows and three shift registers for the 3× 3 filter

mask.

3.3.2 Median filter

Another popular filter type is the median filter. This is an order-statistic nonlin-

ear filter which is heavily used for reducing the amount of salt-and-pepper noise

in images (see section 3.5.3). A median filter finds the median in a set of values

by sorting them and outputting the value that is greater than or equal to half

the values and smaller than or equal to the other half [6, Chapter 3].

The filter mask moves through the image in the same way as the convolution

filter, but the filter computation is significantly different. The nine values must

be sorted in order to find the median. This should not be done iteratively since

the system is to run on an FPGA. Instead, an architecture relying on parallel

processing can be utilized. A common way of doing this is by using combinatorial

sorter components [7]. A two-input sorter component is made from a magnitude

detector, which detects whether the one input is larger than the other, and a

swapper, which swaps the two inputs according to the output from the magnitude

detector. As shown in figure 3.2, by combining three pipelines and three instances

of this component, a three-input sorter can be created.

A functional median filter is achieved by combining these sorters with the row

buffer and two pipeline stages, as shown in figure 7.6 [7]. The result is a cleverly

12 Theoretical background

Three-input sorter

Pipeline
Data
input

Pipeline Pipeline

Two-input
sorter

Two-input
sorter

Two-input
sorter

Sorted
data

Figure 3.2: The architecture of a three-input sorter used in median filter
components. The figure is adapted from [7].

pipelined module that filters the image with a latency of 11 clock cycles for the

filter computation alone.

Median filter

Data
input

Three-
input
sorter

Pipeline Pipeline

Three-
input
sorter

Three-
input
sorter

Three-
input
sorter

Three-
input
sorter

Figure 3.3: A common median filter architecture for utilization in an FPGA.
The figure is adapted from [7].

3.3.3 Histogram processing

A histogram is developed by collecting data for representing the distribution of

intensity levels in an image. Using histograms allows for visualising properties

Theoretical background 13

such as the brightness level and the level of contrast in an image [6, Chapter

3]. Figure 3.4 shows a grey scale representation of the red pixels in the Lena

photography and its corresponding histogram.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

Figure 3.4: A histogram with 256 bins showing the values of the red picture
elements in the Lena photography.

Histograms can present properties of an image that are hard to quantize other-

wise. For example, a histogram where the values are contained at its lower parts

signifies that the image is dark. In the same way, higher pixel values means that

the image is bright [6, Chapter 3]. Figure 3.5 shows two examples of this.

A histogram can also help in determining if an image is high or low in contrast.

If the image contrast is high, the values in the histogram will be spread out and

be close to uniform, as shown in figure 3.6. In the opposite case, a low contrast

image results in a histogram values that are contained in a small, spiked area [6,

Chapter 3].

The architecture of a histogram accumulator consists of a decoder, an array of

counters and a multiplexer for choosing which counter value to output [2, Chapter

7]2. The image data serves as input to the decoder, which enables one of the

counters. There is one counter per bin in the histogram, meaning that when data

is input, the one counter belonging to the respective bin is enabled. The counter

values can be read out in parallel or one by one using the multiplexer. The latter

2There is also an alternative way of realising a histogram accumulator. A design that utilizes
dual-port memory needs fewer resources, but requires sequential resetting of the register. This
demands a fast processing clock, which is not desirable in this system [2, Chapter 7].

14 Theoretical background

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

Figure 3.5: Histograms showing the values of the pixels in darkened and
lightened grey scale versions of the red channel in the Lena photography.

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

Figure 3.6: A histogram showing the values of the picture elements in the
red channel of the Lena photography when the contrast is increased.

Theoretical background 15

does however require an amount of clock cycles equal to the number of bins in

the histogram.

3.4 Video quality assessment

A VQM (Video Quality Metric) can be based on both subjective and objective

data [8, Chapter 3.4]. A subjective VQA system looks at how video is perceived

by a number of test viewers. The output of such an assessment is a metric that

is based on how the viewers perceived specific distortions or the overall quality of

the video. An objective VQA system is based solely on an algorithm running on a

computer. For the rest of this report, all mentioned VQA systems are objective.

3.4.1 Video quality metrics

After video started becoming popular in electronic devices, a lot of effort was

put in to creating metrics for determining the quality of video. This has resulted

in a large range of both simple and very complex metrics. Some of the more

advanced metrics are based on the HVS (Human Visual System) and complex

statistical analyses [8]. Although these metrics often are the most accurate ones,

many simple quality metrics can achieve usable results by exploiting familiar

knowledge about the general nature of some specific artifact. Artifacts such as

blurring can for example be measured by analysing the sharpness of an image.

The sharpness, which is the opposite of blurriness, can be measured by looking

at spatial characteristics such as the image edge properties [8, Chapter 3].

The VQM that is most often utilized for determining the quality of an image is

the PSNR (Peak Signal-to-Noise Ratio) [8, Chapter 3.4]. This metrics looks at

the differences between the distorted image and the original version of the image.

The metric is calculated by finding the ratio between the squared maximum data

value and the MSE (Mean Square Error). It is usually expressed in the decibel

scale because of the high dynamic range. Because PSNR is a widely used metric

that is easily related to, it is often used as a reference for other metrics. The

ways of calculating the metric is shown in equation 3.3, where I is the original

image, Ĩ is the distorted image and m is the maximum value of one pixel.

16 Theoretical background

MSE =
1

XY

∑
X

∑
Y

[
I(x, y)− Ĩ(x, y)

]2
(3.2)

PSNR = 10 log
m2

MSE
(3.3)

Since PSNR relies on the original image, it is characterized as an objective Full-

Reference VQA (FRVQA). Unfortunately, by operating solely on a pixels-by-pixel

basis, this measurement neglects the important influence of the image content

[8, Chapter 3]. The requirement of having access to the original image and

the limitations caused by the simplicity of the measurement therefore makes it

undesirable for use as a metric for measuring most artefacts and distortions,

especially in real time systems.

VQA systems that are not reliant on a copy of the original image are called No-

Reference VQAs (NRVQA). These systems are often harder to develop and have

to rely on certain assumptions about an image. The assumptions are often based

on parameters such as the dynamic range of the frames, the frequency bandwidth

or statistical or spatial correlations [9–15].

A VQM from a NRVQA based on natural images is sometimes very hard to

analyse because of the vast differences that can occur between the images. In

a video sequence, changing between such images will cause the metric values

to jump heavily and it will be impossible to see any correlation between them.

Therefore, in many cases, the resulting metric provided by NRVQA systems can

be analysed more easily if some demands can be made regarding the video input.

This can for example be the requirement that the video input must consists of

one static frame.

Many new NRVQA systems have to rely on using a lot of resources in order to

find the quality of a video. Expensive transforms such as wavelets [12], DCTs [13]

and colour space conversion, and complex statistical models [13, 16–18] are often

utilized. Because most of these algorithms are designed for software, they are also

inherently composed of highly iterative solutions with high memory footprints.

Additionally, many of the metrics are designed for quantifying the perceptual

quality of video and are therefore based on human perception[9, 10], which is

rarely efficient when looking for all distortions caused by physical faults.

Theoretical background 17

For a larger survey on some interesting NRVQA systems, see the report from the

preliminary studies [1, Chapter 3].

When it is possible to feed a specific input into the VQA system, it is often

desirable to increase the performance of the systems by actively relating the

algorithms to this input. By using such signals, one can test for specific values

in certain areas of a frame without having to buffer the entire original frame

in the device. In this report, systems utilizing such methods are referred to as

Reduced-Reference VQA (RRVQA) systems.

3.5 Electronic circuitry

There are many different concepts of video systems, including large variations

of design techniques. However, all modern video systems rely on electronics

for transferring visual information from one point to another. The transfer dis-

tance varies greatly, and consequently so does the technology used for different

scenarios. VGA uses a technique where digital representations of video signals

are converted to analogue signals using a DAC, before transmitting this signal

through a medium such as a VGA cable. At the other end of this medium, the

analogue signal is sampled by an ADC and fed into the core video system, where

it is presented to a user or processed according to the nature of the system. There

can also be some digital pre- and post-processing related to this transmission.

There are many cases where unwanted behaviour and deviations can be intro-

duced into such a system. The failures come from unexpected behaviour internal

to the system, which somehow manifest themselves in its external behaviour. The

algorithmic or mechanical causes of these failures are called faults, while the prob-

lems themselves are called errors [19, Chapter 2]. The faults can be permanent,

transient or intermittent, making them occasionally very hard to discover.

3.5.1 Fault sources

The typical faults that occur in a system utilizing VGA transmission revolves

around the analogue representation of the video signal [20] (when distortions

18 Theoretical background

caused by digital compression issues are excluded). Since the data is transferred

as analogue values, it is receptive to any kind of electrical interference caused by

stray electromagnetic fields. It is also susceptible to any kind of errors caused by

faults in physical components such as analogue filters, voltage sources and oscil-

lators. Table 3.1 shows some of the problems one may encounter when designing

and testing video systems.

Table 3.1: Overview of possible faults caused by physical defects and un-
wanted interference.

Fault Example
Electrical interference Sporadic, periodic and consistent random

noise.
Faults in passive component
values

Failure in analogue filters and slow signals.

Clock jitter Faulty sampling of values.
Faulty voltage circuits Sporadic failure and problems with reaching

all voltage levels.

3.5.2 Associated video distortions

The faults mentioned in table 3.1 are believed to be able to manifest themselves

into a range of distortions in a video stream. It is assumed that the types of

faults can appear as different types of random noise, and as specific types of

artifacts, as described below. Some of these assumptions are based on personal

communication with engineers at Cisco [21].

If the components of a filter are faulty, for instance if the value of a component

is erroneous or if a component is missing or broken, one might experience that

the analogue signal is less resistant to noise, or that it is losing high frequency

components. This leads to noise and blurring, respectively [20, 21].

If there are large deviations from the periodicity of a clock signal, hereinafter

referred to as clock jitter, there will be problems with the sampling of the analogue

signals. Erroneous sampling can create distortions that resemble noise, but has

spatial correlations with the neighbouring samples. This effect can both blur the

image and create a noisy type of distortion.

Theoretical background 19

Problems with the voltage levels in the electronic circuitry can manifest them-

selves into sporadic failures of certain ICs or ASSPs, or there can be problems

reaching certain voltage values [21]. The first problem can appear as sporadic

erroneous values in the video stream, while the latter would result in the lack of

certain pixel values, such as very small and very large values.

The analogue system is believed to be susceptible mostly to additive noise with

a Gaussian probability distribution [22, Chapter 4.5]. However, such as speckle

noise and salt and pepper noise are also believed to occur. If there is interference

from electronic devices driven by for example a PWM (Pulse Width Modulator),

the interference may appear as vertical or horizontal lines in the frame. These

lines appear sporadic, according to the frequency of the device.

Jitter or failures linked to vertical and horizontal sync signals are common in

many analogue video systems [21]. An erroneous vertical or horizontal synchro-

nization signal results in displacement in the frame, by a scrolling3 or a slanting

effect4, respectively [20].

Failures due to stuck-at-faults in the circuit or in ICs may also appear [21]. These

faults can lead to failures such as difficulties in reaching specific values, and can

be both sporadic, periodic and consistent due to the several possible states of a

digital component.

Table 3.2 shows an overview of the faults and distortions discussed above. It

is important to notice that most of the faults described here may or may not

result in distortions that are easily noticed in the video. The nature of the faults

and the complexity of the surrounding system determines if the failures surface

as highly visible distortions, small and nearly undetectable artefacts, or if they

surface at all.

In addition to failures caused by physical faults, failures related to digital process-

ing of a video signal will cause distortions in a video stream. The most common

type of digital distortions are blocking and blurring artifacts [8, 23]. The video

coding standards that rely on motion compensation and block-based DCTs are

especially susceptible for blocking artifacts. Blurring is caused by the loss of high

3The start of the frame appears further down on the screen, while the bottom section appears
at the top.

4Imagine that the image consists of a text box. If there are faults in the horizontal sync
signal, the text will appear as if it were in italic.

20 Theoretical background

Table 3.2: Overview of possible failures that are caused by physical faults.

Problem Example of distortion
Consistent random noise

Salt and pepper noise, multiplicative noise and
Gaussian noise.

Periodic random noise
Sporadic random noise
Passive component faults Blurring of the individual frames due to slowly

changing values on the channels.
Clock jitter Seemingly random noise.
Slow signals Bad sampling of colour values. The colours are

distorted.
Voltage problems Bad sampling of colour values. The brightest and

darkest colours can not be reached.

frequency information as a result of quantisation. For a list of common artifacts

caused by digital video compression, see chapter 3.2 in ”Digital Video Quality -

Vision Models and Metrics” by Stefan Winkler [8]. This report will not cover any

more artifacts caused by digital processing, although one must remember that

artifacts caused by digital compression algorithms will affect most metrics.

3.5.3 Image noise models

Since the focus of this report is to discover artifacts related to analogue trans-

mission of data, the nature of random noise in images is described here. Noise

in video is usually defined as the unwanted components in each frame of a video

stream [7, Chapter 4.5]. We wish to quantize these components and analyse their

influence on each frame. Different noise sources may distort a frame with dif-

ferent types of noise. The random noise models used in this report is additive

Gaussian noise, salt and pepper noise and multiplicative speckle noise.

Additive noise is described as shown in equation 3.4, where f(·) is the distorted

image, g(·) is the original image and q(·) is the noise component [7, Chapter 4.5].

f(·) = g(·) + q(·) (3.4)

Gaussian noise is modelled using the equation above, where q(·) is described as

shown in equation 3.5. Here, µ is the mean, while σ is the variance of the noise.

Theoretical background 21

The Gaussian noise model is widely used, and is a very good model for thermal

noise and, sometimes, film grain noise [7, Chapter 4].

pq(x) = (2π)−
1
2 e−(x−µ)2/2σ2

(3.5)

Salt and pepper noise can occur as a response to a range of events. Its character-

istics is a few very noisy pixels in the image. The amount of noisy pixels, or the

noise density, determines how badly distorted the image is. Salt and pepper noise

can for example arise because of a bad digital link [7, Chapter 4.5] or because of

faulty electronic components.

Multiplicative noise is another commonly used noise decomposition. Its descrip-

tion is shown in equation 3.6.

f(·) = g(·) · q(·) (3.6)

Multiplicative speckle noise in images appear as a result of the actual capturing

of the image, and is therefore often related to the camera itself.

Chapter 4

Equipment

The sections below describe the equipment used for developing the algorithms

and for designing the FPGA circuits. Keep in mind that the VQA system are

designed towards, but not tested on the described hardware.

4.1 Software for algorithm modelling and testing

MATLAB R2012b, together with the image processing toolbox was used for test-

ing and developing the algorithms and metric data. This was also the software

used in order to generate the resulting images and figures used in this report.

4.2 Software for implementing FPGA circuits

All circuit descriptions are written in VHDL, with the use of some external

IP (Intellectual Property) components provided by Altera. Simulation of the

HDL code was done using Aldec Active-HDL 9.2. Synopsys Synplify Pro version

fpga G201209SP1 was used for synthesizing the code during development, while

the end results are provided by Altera Quartus II 11.1sp2 Web Edition.

23

24 Equipment

4.3 Target hardware

The target platform of the system is an Altera Cyclone II FPGA [3] with ver-

sion number EP2C70F896C6. The target FPGA contain 250 M4K blocks, the

dedicated memory resources internal on the Cyclone II FPGA, which contain

4096 memory bits each. This equals to about 1 Mbit of internal storage that

can be configured in various ways. The target FPGA also contain 150 dedicated

multipliers that can be configured to support one 18× 18 or two 9× 9 multipli-

cations. The target VGA circuit is an Analog Design AD9388A [24], which is a

high quality, single-chip graphics digitizer.

Chapter 5

Presentation of the VQA

algorithms

The following three chapters present and describe the design, modelling, imple-

mentation and verification of several VQA algorithms. The different algorithms

are modelled and tested using MATLAB and implemented using VHDL code.

Keep in mind that the design process that is depicted here is a naturally iter-

ative process, meaning that the algorithms, the models and the code has been

frequently changed in order to fit the specifications and in order to achieve the

best results possible.

This chapter looks at how an FPGA can discover artifacts in a video stream

and trace it back to board-level faults, such as the ones described in section 3.5

and in table 3.2. The chapter starts off by defining the system specifications by

setting some specific boundaries. The next section looks at how one can utilize

simple data value analyses in order to measure distortions. The latter sections

look at specific algorithms for measuring the level of random noise and blurring

of frames.

25

26 Presentation of the VQA algorithms

5.1 System specification

The VQA system inputs three 8-bit channels and explicit vertical and horizontal

synchronization signals. There is also the pixel clock which is used to sample the

pixel values. The systems have to support an input resolution of up to 1920×1080

pixels at 60 frames per second. This mandates a pixel clock frequency of at least

148.5 MHz [5, Chapter 4]. All models are to be implemented with a synchronous

active high reset and a data enable signal for simple interfacing to the systems.

Figure 5.1 shows the in- and outputs of the standard top module and table 5.1

includes a description of each signal.

Video Quality Analysis

red

green

blue

vsync

hsync

reset

clock

metric

data_enable

Figure 5.1: The top level module and its inputs and outputs.

Table 5.1: Description of the signals of the top level module.

Signal Description
clock Pixel clock.
data enable Signals that there is active data on the input.
red Red channel. 8 bits.
green Green channel. 8 bits.
blue Blue channel. 8 bits.
vSync Vertical sync signal. End of frame.
hSync Horizontal sync signal. End of line.
reset Synchronous active high reset signal.
metric Output containing values describing the quality of the video.

Because of the inherent latencies provided with use of external memory, the

system must only rely on internal block RAM for any buffering of the video

Presentation of the VQA algorithms 27

signal. The systems will therefore only be able to buffer a few lines of an image

at any time.

To keep the systems simple, multiple clock domains are undesired. The calcula-

tion of the metrics should therefore happen within the time it takes for one frame

to arrive, and with the clock cycles available from the pixel clock.

It is desirable to be able to fit all VQA systems in one medium range FPGA.

This means that the entire system should not use more than 70 kLEs and 1

Mbit of internal block RAM (≈ 250 M4K RAM). However, the point of this

assignment is not to create a fully functioning VQA system, but rather to examine

and evaluate different possibilities for VQMs on an FPGA. Resource sharing

is therefore not a requirement in this specification. One should also keep in

mind that the specifications presented here are not all hard demands, but rather

guidelines for the development of the metric algorithms. A summary of the

resource specifications is presented in table 5.2.

Table 5.2: Summary of the system resource specifications.

Resource specification Maximum value
Minimum system clock frequency 150 MHz.
Maximum system area 70 kLEs
Maximum block RAM usage 1 Mbit

It is important to ensure that the correlation between physical faults and the

distortions are always sustained so that it is possible to both discover artifacts

and to trace these back to the decisive faults. This will normally be upheld by

keeping the processing of the color channels separate by avoiding transforms to

other colour spaces.

5.2 Data Value Analyses

It is important to test whether the three color channels in a RGB video stream

function as they should. In order to examine this, a module that analyses the

basic properties of each color channel has been designed. The output of this

system will consist of multiple metrics describing the maximum and minimum

intensity of the red, blue and green channels and the occurrence of specific errors

28 Presentation of the VQA algorithms

such as stuck-at faults. The different metrics for a single channel can be combined

at the output into one metric for better overview. On the other hand, the metrics

for the three channels should be treated separately throughout the analysis in

order to enable the user to trace artifacts back to the correct physical faults.

The data value analysis is based on simple threshold testing of the incoming

signal. The amounts of values that are higher or lower than a given threshold

are logged, giving the possibility of creating a metric that describes the video

systems ability to reach these values. If a well-designed test pattern is employed,

this simple test system is believed to provide good data on the condition of the

video stream hardware.

5.2.1 Reduced-reference assessment tools

It is possible to run a comparative check of the incoming stream of pixel values

if some of the properties of the original input is known or can be predicted.

The input can for example behave after a mathematical model, or have special

properties such as a fully uniform histogram.

A test signal can be a static frame such as the one shown in figure 5.2. This

signal is designed to verify that the values from the video transmission can reach

its highest and lowest values, thereby validating the physical channels ability to

pull the signal to the extremes. The quick change from low to high values also

help in identifying other possible erroneous behaviour in the physical channels,

such as the response time of the data transmission lines.

A similar test pattern that can be used to retrieve information on the video

quality is another static image where the pixel values move from the lowest to

the highest intensity values, as shown in figure 5.3. This linear signal distributes

all values evenly and in a very predictable way.

By employing such a signal to the video input it is possible to test for both

deviations in the linearity of the signal and loss of certain values. This signal

pattern can also help in discovering noise, or even help in mapping the noise to

a specific model. This can be done by comparing the values pixel values of the

video stream to the mathematical model that describes the line in the plot in

Presentation of the VQA algorithms 29

Image signal Red channel

Green channel Blue channel

Figure 5.2: A possible version of a test signal that can help in revealing
errors on the board-level of a circuit. The black line on the image signal
representation shows which row is depicted for the red, green and blue channel
in this setting.

figure 5.3. The deviations between the signal and the mathematical model poses

as a good and very simple VQM.

It is also important to verify that the horizontal and vertical synchronization

signals are working properly. The test image depicted in figure 5.3a can be used

to test for faults related to the horizontal sync by reading the values at the start

and end of each line. If the values are not consistent with the test signal, there

is an issue with the synchronization of the lines.

Similarly, the vertical sync signals the arrival of a new frame. It is not possible

to utilize the signal in figure 5.3b in order to detect faults related to this, since

all rows in this image are equal. However, by turning the image sideways, the

same principle can be used for detecting video signals with poor vertical sync.

The frequency response of the video system can be tested by utilizing a test

image similar to the one in figure 5.4 and figure 5.5. The first image consists

30 Presentation of the VQA algorithms

0 100 200 300 400 500
0

50

100

150

200

250

Pixel number

P
ix

el
 v

al
ue

(a) Test signal used for discovering faults related to horizontal syn-
chronization signals and a systems ability to create a linear signal.

0 100 200 300 400 500
0

50

100

150

200

250

Row number

P
ix

el
 v

al
ue

(b) Test signal used for discovering faults related to vertical synchro-
nization signals.

Figure 5.3: Two test images used for detecting synchronization errors and
a video systems ability to produce a linear signal. The two signals are equal,
but rotated. The plots show the signals when visualising the pixel values
column-wise and row-wise, respectively.

of a sinus signal with increasing frequencies along the image width, allowing for

measuring the frequency response of the system. The latter image is based on

the same approach, but separates the different frequencies into different rows,

allowing for an easier, but more time consuming analysis. Figure 5.6 shows plots

of the different signals used for creating figure 5.5. The frequencies depicted in

these images are only meant as descriptive examples, and are a lot lower then

what should be used in an actual test scenario. In similar test equipment, the

frequencies used range from 0.25 MHz to 5 MHz [20].

Presentation of the VQA algorithms 31

0 500 1000 1500
0

50

100

150

200

250

Pixel number

P
ix

el
 v

al
ue

Figure 5.4: A test signal that helps in detecting inadequate bandwidth in
video systems. The plot on the right shows the row data. All rows are the
same.

Figure 5.5: A test signal that helps in detecting inadequate bandwidth in
video systems.

The test signals presented here can be used one at a time, or they can be combined

into one frame containing sections of each test signal. In the latter case, the

VQA systems must be specifically designed with a control unit for reading out

the metric values at the correct times.

32 Presentation of the VQA algorithms

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

Pixel number

P
ix

el
 v

al
ue

Figure 5.6: An example of the signals used for detecting inadequate band-
width in video systems.

5.2.2 Testing for stuck-at faults

Figure 5.8 depicts the worst and best case of stuck-at faults when it comes to

visual distortion. As the figure shows, depending on the significance of the faulty

bit, it can be nearly impossible to spot stuck-at faults with the naked eye. An

objective test for discovering the occurrence of such an error is therefore desirable.

An analysis of such faults is possible by testing for the occurrence of both high

and low representations of each channel bit, as long as the fault is not transient

and is always active. However, if the error is somewhat transient, for instance

because of a state machine or because of physical disturbances, then this test will

require much greater complexity. A description of the intended functionality of

the test system is shown in figure 5.7.

The system simply reads the input video stream from the specified channel and

marks the registers if the different bit values have occurred. When the input

consists of natural images, the testing may take a while since there is no way of

Presentation of the VQA algorithms 33

8-bit pixel

MSB LSB

High bit passed

Low bit passed

Figure 5.7: Eight bits are input to the assessment system. Depending on
whether each bit is low or high, the appropriate cell is marked in the ap-
propriate register. If one of the upper or lower cells fails to be marked, the
respective location has a stuck-at-one or stuck-at-zero fault, respectively.

knowing weather all cases can be reached. However, if the test signal in figure

5.3 is employed, it is certain that all bit are set both high and low in just one

frame. If the registers that are tracing the bit values are not all set to one, there

is a stuck-at fault in the video system.

5.2.3 Histogram processing

Another extension to the data assessment algorithms is a histogram processing

component. When studying histograms, one can determine if there are unnatural

deviations by comparing it to some expected properties. For natural images, it

is for example possible to look at the correlation between neighbouring bins.

Sudden drops to zero and very high spikes at certain bins signifies that there

may be faulty data because of for instance stuck-at faults.

The distribution of values may also point to faults in the system. The dynamic

range of a frame signifies how well distributed the values are. Figure 5.9 shows a

histogram plot of the Lena image. The dynamic range of the image is plotted as

a line above the histogram. The covered values are all within the dynamic range

of the image, however, the highest and lowest values are not covered. In order to

test specifically for the system ability to reach the highest and lowest values, one

can utilize test patterns such as the ones presented in figure 5.3.

34 Presentation of the VQA algorithms

(a) Image with the most significant
bit stuck at zero.

(b) Image with the most significant
bit stuck at one.

(c) Image with the least significant
bit stuck at zero.

(d) Image with the least significant
bit stuck at one.

Figure 5.8: Images showing that different stuck-at faults can result in very
different visual outputs.

5.3 Random noise metrics

The amount of random noise in a video frame is assumed to correlate heavily with

the level of oscillations in the data. To find the level of random noise in a video

frame or a video stream, it is therefore possible to look at the intensity of these

oscillations. To be able to compare the information in one frame to another, it

is necessary to store some information. Keeping within the specifications of the

system requires that relevant and significant information must be extracted from

Presentation of the VQA algorithms 35

Figure 5.9: This figure contains a histogram plot showing the dynamic range
of the grey scale Lena image. The blue line at the top indicates the full
dynamic range of the image values.

the frame and stored efficiently, and then computed into understandable values

that form the quality metric.

5.3.1 Accumulate and differentiate metric

A possible system that estimates the level of noise in a video stream is comprised

by comparing the values of each row in adjacent frames. The values of a row are

set according to the values of the pixels in the row, for instance by adding all

values together. The values must then be stored in a register of a suitable size

and compared to the value of the row of the next frame. The difference between

the two values can then be used as a metric describing the level of noise in the

video sequence.

This metric will discover unwanted oscillations in the intensity of the pixels in

one row. The accumulation of the pixel values will function as a filter, removing

36 Presentation of the VQA algorithms

random noise that oscillates at higher frequencies then the image frequency. To-

gether with a metric that focuses on spatial noise in a single frame, this metric

is believed to give good indications on whether a video stream is contaminated

with any form of unwanted oscillations.

The metric may also provide information on horizontal lines caused by periodic

and sporadic interference, since these lines often jump across the screen according

to differences between the noise frequency and the video sampling frequency.

5.3.2 Median filtering metric

It is possible to use a median filter for discovering the level of noise in a single

frame from a video stream. A median filter is a filter type that is heavily used in

digital image processing for removing defective pixels in an image. The filter is

especially effective when dealing with extreme outliers, such as when dealing with

salt-and-pepper noise, but functions fairly well when working with other types of

noise as well. If the output from this filter is subtracted from the original signal,

one obtains an SAD which correlates with the amount of heavy changes in the

spatial domain. This value therefore functions as a metric for the level of noise

in a single video frame. Figure 5.10 demonstrates the principles of the system.

This metric will provide best results when utilized on images that are low on

naturally occurring oscillations. However, it is believed that when looking at

large, natural images and most artificial images, the resulting metric will correlate

well with the intensity level of the distortion.

Median filters are great when working with salt and pepper noise, but for better

results when trying to detect Gaussian noise and speckle noise, alternate filter

types may be used. Wiener filters, bilateral filters and Frost filters have been

used for detecting speckle earlier and may therefore prove to give more accurate

results when such distortions are introduced to the video system. These filters

are not further investigated in this thesis, and will be the result of further work.

Presentation of the VQA algorithms 37

(a) Lena image distorted with salt
and pepper noise.

(b) Image in 5.10a sent through a
median filter.

(c) The absolute differences be-
tween the distorted image and the
filtered image.

Figure 5.10: Figures demonstrating the principles behind the median filter-
based VQA system. It is believed that the sum of the pixels in figure 5.10c
will function as a good metric for random noise.

38 Presentation of the VQA algorithms

5.4 Blur metrics

Figure 5.11 shows how blurring affects both the visual impression and the pixel

values of an image. It shows that when an image loses some frequency compo-

nents, it appears less sharp, or blurry. In order to determine weather the video

stream has been blurred one can therefore look at the intensity of the edges in

the image. It is also possible to look at the difference between a blurred version

of the signal and the original signal, since a signal that consists of sharp edges

will be more significantly altered by a blurring filter than a signal that contain

smoother edges. Based on these properties, two approaches are proposed in the

following sections.

0 100 200 300
0

100

200

Original image

Pixel number

P
ix

el
 v

al
ue

0 100 200 300
0

100

200

Blurred image

Pixel number

P
ix

el
 v

al
ue

Figure 5.11: This figure shows two images with a highlighted blue row. The
pixel values of this row are shown in the graphs above the images. It is easily
noticed that the number of edges and the intensity of these are significantly
lower in the blurred image.

5.4.1 Gaussian filtering metric

When an image is blurred because of a faulty electrical component, it loses some

of its frequency components. Blurring an image using a Gaussian filter has a very

similar effect, removing large changes between neighbouring data. An effect of

Presentation of the VQA algorithms 39

this is that once the image has been blurred, it will be less affected by blurring

the next time. This can be exploited in a VQA system by filtering the incoming

image data using such a Gaussian filter and comparing the filtered image with

the original one. The difference between the values signify whether the original

image contains high frequency components.

Figure 5.12 shows the functionality of this approach by displaying the absolute

differences between the original image and a blurred version of the image, in

addition to the absolute differences between the blurred version and a version

that has been blurred twice. As one can see, the plot from the first filtering

contain far lower values than the plot from the second filtering.

A summation of the absolute differences should produce a metric that correlates

well with the sharpness of an image or video frame.

5.4.2 Gradient metric

A more advanced way of analysing the sharpness of an image is performed by

measuring the width of an edge [11]. This algorithm relies on an edge detection

component for discovering the location of an edge, before it looks for the local

extremes adjacent to all edge pixels. The length between the two local extremes

provides a good measure for the blurriness of a video frame.

This method is, however, unnecessarily complex and sequential, requiring the

filtering of the image, a threshold analysis, edge marking and hysteresis calcula-

tions in order to compute the metric. A better suited method is performed by

utilizing the characteristics of gradients [14]. This is a much simpler and more

efficient way of finding the hardness of an edge, since it only requires one filtering

and a simple analysis of this result.

By filtering an image through a convolution kernel utilizing a Laplace operator

one can find a good measure of the steepness and size of the edges in the signal.

A disadvantage to this method is that this approach is very sensitive to heavy

outliers, meaning that random salt and pepper noise will greatly affect the results.

The algorithm is still believed to provide a very good metric in cooperation with

other VQMs. The output from filtering the Lena image using a Laplace operator

is shown in figure 5.13.

40 Presentation of the VQA algorithms

Figure 5.12: The upper plot shows the pixel values in one row of the Lena
image. The middle plot shows the absolute differences between the original
row and the row from the Gaussian-filtered version of the image. The lower
plot shows the absolute differences between the rows in the filtered image and
a version of the image that has been Gaussian-filtered twice.

Presentation of the VQA algorithms 41

Figure 5.13: The upper plot shows the pixel values in one row of the Lena
image. The lower plot shows the equivalent gradient values obtained from
filtering with a Laplace operator.

5.5 Post processing

It is in most cases desirable to perform some form of post processing on the raw

metric data from a VQA system. In many cases, the metric is naturally presented

as an SAD (Sum of Absolute Differences). However, if the raw metric data has

a very high dynamic range, it is often desirable to use an SSD (Sum of Squared

Differences) to represent the metric. This will give a better representation when

dealing with large differences. It is also usual to normalize the metrics in order

to make the numbers more comprehensible.

Most video metrics are based on image metrics that are performed on each frame.

It is however not possible to relate to all the frames in a video stream. Therefore,

an averaging component is often part of the post processing. This component

simply averages the value of the metric over a predetermined number of frames.

42 Presentation of the VQA algorithms

It may also be of interest to use this component for removing large outliers, such

as black frames, from the data pool.

Chapter 6

Modelling and testing the

algorithms

This chapter describes the modelling and testing of the algorithms. The mod-

els are designed to fit the specifications presented in chapter 5 and are tested

according to the testing procedure presented below.

The first section of this chapter presents the design and execution of the different

test benches. The general algorithm model is then presented, before the modelling

and testing of each specific VQM is explained. The MATLAB model scripts are

included in appendix A.

6.1 The tests and the criteria

To be able to test and evaluate the algorithms that are presented in chapter 5, a

test bench involving the three natural still images presented in figure 6.1 has been

developed. These images contain different levels of frequency components and

different variations in scenery, and should therefore function well in the evaluation

of the algorithms. Table 6.1 presents the size of the images and the dynamic

range of the different color channels. To get a proper data pool for describing the

performance of the metric systems, the images are contaminated with different

43

44 Modelling and testing the algorithms

distortions at different intensity levels. The correlation between the resulting

metric and the level of distortion determines how well the algorithm performs.

In addition to these results, the complexity of the algorithm and the difficulty of

mapping the algorithms towards an FPGA is relevant to the metric evaluation.

Table 6.1: The properties of the images used for testing the different VQA
systems.

Metric test bench properties

Lena Sky Lake
Size 512× 512 559× 356 704× 528
Dynamic range, red channel 15→ 255 63→ 122 0→ 255
Dynamic range, green channel 3→ 238 109→ 167 0→ 255
Dynamic range, blue channel 0→ 255 168→ 211 0→ 255

The images are contaminated with four types of distortions, in addition to some

specific artifacts for evaluation with some special cases and for testing with the

data value analysis tools. The four general distortions are random additive Gaus-

sian noise, salt and pepper noise, multiplicative speckle noise and blurring. The

VQA systems are tested using all distortions at eleven incremental intensity lev-

els, including the non-distorted versions of the images. This is to be able to

evaluate both the sensitivity and the consistency of the different metrics. The

commonly known PSNR metric is also calculated for all images with all of the

distortions. Together with the visual impression of the images, this allows for

better relations with the metric results.

The random noise distortions are introduced using the function imnoise() from

the MATLAB image processing toolbox, while the sharpness reduction is done by

filtering the images using the function fspecial() as a Gaussian filter with a kernel

size of 3 × 3 pixels. This filter is often referred to as a blurring or a smoothing

filter. The mean of the speckle and Gaussian noise are set to zero, while the

variances range from 0.01 to 0.1. The density of the salt and pepper noise also

ranges from 0.01 to 0.1, while the variance of the Gaussian filter ranges from

0.3 to 1.0. The visual impairments of the distortions are shown in figure 6.2.

These images contain distortions at the highest intensity levels available in the

test bench.

Modelling and testing the algorithms 45

(a) The famous Lena image contain-
ing both smooth areas and areas with
high frequencies. The size of the im-
age is 512×512 pixel. It is coded as an
RGB bitmap using 8 bits per channel.

(b) An image of the blue sky with
very small intensity changes. The size
of the image is 559 × 356 pixels. It is
coded as an RGB bitmap using 8 bits
per channel.

(c) An image of a lake with surrounding nature. There is a large amount of both small and
large frequency changes all over the image. Notice especially the reeds, the water and the
branches of the tree in the foreground. The size of the image is 868× 614 pixels. It is coded as
an RGB bitmap using 8 bits per channel.

Figure 6.1: Different images used in the testing of the algorithms. The im-
ages have different frequency components and are very different with respect
to both colors and the dynamic range of the image values.

46 Modelling and testing the algorithms

(a) Additive Gaussian noise. (b) Salt and pepper noise.

(c) Multiplicative speckle noise. (d) Blurring.

Figure 6.2: The Lake image contaminated with the different distortion types
used in the testing. The distortions are of the highest intensity available in
the test bench.

The test signals presented in section 5.2.1 are only used for testing some specific

properties of certain metrics and are not used for testing in the same extent as

the images presented in figure 6.1.

6.2 General algorithm modelling

The various no-reference assessment systems rely only on the video signal that is

input to the system for computing the metric. This video signal is, as explained

in chapter 3, a 24-bit RGB signal with external synchronization signals. The

video signal can in theory represent anything, picturing any scenery and forming

any abstract model. For the algorithms to be pure no-reference, they can not

assume to know anything about this video signal. This requirement is not broken

for any of the proposed VQA systems. It is, however, considered to be of great

Modelling and testing the algorithms 47

benefit to be able to compare the metric values with values calculated beforehand,

or to values from previous tests. This is especially beneficial for the metrics

that do not correlate well between image sceneries. For most metrics presented

below, assumptions about video properties such as the frequency components of

the input and the consistency of the scenery is believed to help greatly in their

analysis.

To ease the use of memory, all analyses are done using image processing compo-

nents that can be performed on small sections of the video frame. In order to

keep within the system specification, filters utilizing data from more than two

rows should not be used. This means that the largest available filter utilizes a

3 × 3 filter window. Since all of the metrics presented here must keep the color

channels separate in order to not contaminate important data, there is a need

for three processing components per metric; one for each color channel. This is

taken into consideration in the modelling of all the algorithms below. Figure 6.3

shows a plot of a single color channel from an image row.

Figure 6.3: Plot of the red data in row 50 of the Lena image. The amount
of internal memory made available by the system specification allows only for
the buffering of two such rows per color channel.

48 Modelling and testing the algorithms

6.3 Data value analyses

These simple quality assessment systems are tested and modelled individually

using specific MATLAB scripts and information about the test signals presented

in section 5.2.1. The systems include methods for analysing the frequency re-

sponse, the highest and lowest pixel values, the systems ability to construct a

linear signal, horizontal line flicker and faults in the synchronization signals.

6.3.1 Testing for stuck-at faults

The system is modelled as an iterative sequence, testing the state of all incoming

bits. Whenever a specific bit state occurs, a variable is marked accordingly.

One channel contains eight bits, meaning that there are 16 possible states. A

minimum of eight states is always set, since the bits must have one of two values

at any time.

The design of the module is relatively simple, meaning that no detailed tests

or analyses are required. The model is tested using a small amount of natural

images with stuck-at faults introduced. It is also tested with the images from

figure 5.3, which covers all possible bit values.

6.3.2 Histogram processing

The histogram processing module is modelled and tested using the MATLAB

image histogram function imhist(). Throughout these tests, the number of bins

in the histogram is set to 256, which matches the number of possible pixel values.

The simplest test consists of checking the two extreme values, i.e. the highest and

the lowest bins. A higher value than zero in these bins proves that the system can

reach the extreme values. By reducing the number of bins, the model can be used

to tests for groups instead of single values. Doing so lowers the complexity and the

resource consumption of the component, but reduces the amount of information

retrieved from the module. It will for example no longer be possible to test for the

extremes, though this is easily complemented by the simple analyses presented

in the prior sections.

Modelling and testing the algorithms 49

The other test is a analysis on the dynamic range of the frames. This is found

by iteratively searching for the first and last bin containing a value larger than

zero. This is a demanding task on an FPGA, especially if there is a large number

of bins. However, it can be combined with searching for bins containing zero, or

bins that are very different from its neighbours. Such deviation in the histogram

may point towards stuck-at faults or faulty sampling.

Overall, these analyses are hard to utilize without using the test signals, which

allows for simple data comparisons. Using the test signal presented in figure 5.3

will for example produce a completely uniform histogram, where all bins contain

the same specific value, while the signal presented in figure 5.2 will result in a

histogram where only the lowest and highest bins contain a value above zero.

This is verified in the testing of the tool.

6.4 Random noise metrics

The random noise metrics are tested primarily with images contaminated with

random additive Gaussian noise. The metrics are also tested with images con-

taminated with salt and pepper noise and speckle noise to see how the resulting

metric correlates with different random noise models. Lastly, they are tested

using blurred images to see whether the metrics react to different levels of sharp-

ness.

6.4.1 Accumulate and differentiate metric

For the testing of this algorithm, two images, representing two consecutive frames

from a video stream, are used. The three color channels are separated and the

algorithm is performed on each of them separately. The values of the channel

pixels in the rows of both images are accumulated to form a sum representing the

intensity of each row. The difference between the accumulated values from one

frame, and the accumulated value from the other is calculated. The SAD from

these calculations forms a value describing the changes between successive rows.

By averaging this value over several frames, a metric describing the random noise

in consecutive frames is formed.

50 Modelling and testing the algorithms

The model is designed according to the algorithm shown below:

1. Load in the first image.

2. Accumulate the values of the pixels in the first row of the image and store

the value.

3. Repeat point 2 for all rows in the image.

4. Load in the next frame.

5. Perform point 2 to 3 for this frame as well.

6. Find the absolute difference between the the values of the first row of the

first image and the first row of the second image.

7. Repeat point 6 for all rows.

8. Find the sum of the absolute differences and store it as the metric value.

The algorithm has been tested using the test signals presented in section 6.1, and

by using specific images containing horizontal line flickering. The line flickering

is believed to affect the metric by creating large deviations in the accumulated

values corresponding to the row where the flicker occurs. The behaviour of the

algorithm when exposed to noise oscillating at frequencies lower than the image

refresh rate, has not been tested.

6.4.2 Median filtering metric

This model analyses an image by filtering each color component through a two-

dimensional median filter using the MATLAB medfilt2() function. The function

uses a 3×3 filter window and sorts the nine inputs, before outputting the median

value. This output is subtracted from the pixel element in the middle of the filter

mask. The sum of the absolute values from this subtraction forms a sum of

absolute differences (SAD).

An overview of the algorithm used for implementing the model is presented below:

1. Filter the image using a median filter.

Modelling and testing the algorithms 51

2. Calculate the absolute differences between the input image channels and

the result from the filtering.

3. Calculate the SAD and store it as the metric value.

The metric has been tested using the standard test bench presented above. It is

believed that this metric will function well with all types of random noise, but

that the best results will be achieved when testing with salt and pepper noise.

Blurring is also believed to have a small, but present affect on the metric.

6.5 Blur metrics

The blur metrics are tested specifically using the images with reduced sharpness.

They are also tested with the other distortions to see how they react on noise

with different characteristics.

6.5.1 Gradient metric

The gradients in an image can be found by employing a convolution filter with the

Laplacian kernel presented in 6.1. This model uses the function conv2() with the

image and the Laplace operator as the input parameters. The different gradients

are compared and the largest gradient forms the metric.


0 1 0

1 −4 1

0 1 0

 (6.1)

In addition to being tested with the images from the test bench, the metric is

tested using the test signals from section 5.2.1. This is to determine how the

gradients behave when affected by different frequency values.

The model is implemented according to the algorithm below.

1. Filter the image using a convolution filter with a Laplace convolution kernel.

52 Modelling and testing the algorithms

2. Scan through the filtered image, comparing each gradient with the next.

The largest value is stored in a register.

3. Store the largest gradient as the metric value.

6.5.2 Gaussian filtering metric

This metric system uses the same approach as the system presented in section

6.4.2, where the input image is filtered and the sum of absolute differences is

calculated using the input and the results from the filtering.

The filter behaviour is implemented using a convolution filter and the kernel

presented in equation 6.2. The MATLAB model uses the function conv2() with

the image and this kernel as its parameters.


1 2 1

2 4 2

1 2 1

× 1

16
(6.2)

The model is tested using the standard test bench. The metric system is believed

to produce good results, especially when looking at images with few natural high

frequency components. It is believed to have great robustness towards other

distortions.

The model is implemented according to the algorithm below.

1. Filter the image using a convolution filter with the Gaussian convolution

kernel.

2. Calculate the absolute difference between the original input and the result

from the filtering.

3. Find the sum of the absolute differences.

4. At the end of the frame, store the sum of absolute differences as the metric

value.

Chapter 7

Implementation and

verification

The implementation and verification of the algorithms are presented in this chap-

ter. All implementation is done using VHDL and simulated using Active-HDL

with a range of test benches. There has been a focus on making the modules as

generic as possible in order to allow for heavy reuse of the components.

The estimated clock frequency and the amount of LEs used are the main concerns

of the implementation of the algorithms. Apart from certain tweaking of the

system in order to meet these concerns, the systems are implemented so that

they closely resemble the models provided in chapter 6.

The different VQA systems are implemented separately, allowing for individual

verification and testing of the metrics. This means that there are five separate

systems; one for each of the specially developed NRVQA systems and one for

the data value assessment system. Certain issues such as resource sharing have

not been dealt with here, as they are not part of the assignment. The issues

are however commented in the respective sections and thoroughly discussed in

chapter 9.

The first section describes the implementation of the most frequently used com-

ponents. The successive texts describe how all VQA systems are implemented in

53

54 Implementation and verification

detail, and the last section describes how the general verification of the VHDL

implementations has been done.

7.1 Frequently used components and values

Some important generics recur in several component entities. These values rep-

resent the size of the frame, the bit width of the pixel data and the number of

samples used in the averaging of the metric values. All modules are implemented

so that they should function with most values, but are only tested and verified

using a frame size of 1920× 1080, a data width of 8 bits and a sample number of

32 for metric averaging.

Two components occur in several of the VQA systems. These are the row buffer

and the averaging component. The interfacing to these modules and their imple-

mentation is explained in the following sections.

7.1.1 Row buffer

The row buffer is a component that is needed whenever a frame is to be spatially

filtered using a filter window. This includes both median filtering and convo-

lution filtering. The implementation of the row buffer is done according to the

architecture described in section 3.3.1.

The module has the inputs and outputs as presented in table 7.1. Since the

systems developed here only utilize a 3 × 3 filter mask, there has been made no

effort in making the filter mask size generic. The module is, however, generic

with respect to the channel width and the size of the frame.

The data out channels present the data corresponding to three consecutive rows.

As the data is fed into the component, the internal buffers are filled up, and after

a start up latency equal to twice the number of columns in the frame, the correct

row values appear at the output. The architecture of the buffer is shown in figure

7.1.

As shown in the figure, when utilizing this module with a convolution filter,

the filter window must consist of three shift registers of three cells each. The

Implementation and verification 55

Table 7.1: Description of the input and output signals of the row buffer
module.

Row buffer interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
rows The number of rows as an integer. The default value is

1080.
cols The number of columns as an integer. The default value is

1920.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
data in The data values represented as a natural number with a

generic range depending on the channel width.
Outputs
data out 1 The data corresponding to the first row represented as a

natural number.
data out 2 The data corresponding to the second row represented as a

natural number.
data out 3 The data corresponding to the third row represented as a

natural number.

a1 b1 c1 d1 e1 f1 g1 h1 i1 j1

a2 b2 c2 d2 e2 f2 g2 h2 i2 j2Buffer
2

Buffer
1

SR1

SR4 SR5

SR7 SR9SR8

SR2 SR3

SR6

Data input

Row buffer

Figure 7.1: Architecture of the row buffer module.

outputs of these registers make the input to the filter computations. The median

filter does not require these additional registers, as they are included in the filter

computation architecture.

56 Implementation and verification

The internal buffers are implemented as one component using Alteras RAM-

based shift register IP component. The component is called ALT SHIFT TAPS

and contains some additional features not found in a conventional shift register

[25]. The component is part of the altera mf library. Specifying the number of

taps in the register allows for data to be read out at specific points. By utilizing

this, the desired behaviour of the row buffer is easily achieved. The configuration

of the shift register is shown in listing 7.1.

1 ALTSHIFT TAPS component : ALTSHIFT TAPS

GENERIC MAP (

3 i n t e n d e d d e v i c e f a m i l y => ” Cyclone I I ” ,

lpm hint => ”RAM BLOCK TYPE=M4K” ,

5 lpm type => ” a l t s h i f t t a p s ” ,

number of taps => 2 ,

7 t a p d i s t a n c e => co l s ,

width => channel width

9)

PORT MAP (

11 a c l r => r e s e t ,

c l o ck => c lk ,

13 c lken => clken ,

s h i f t i n => data to ram ,

15 s h i f t o u t => s h i f t o u t ,

taps => data from ram

17) ;

Listing 7.1: Configuration of the shift register.

7.1.2 Averaging

Since the metrics are based on analyses of single frames in the video stream, a

component that averages the metric over several frames is needed in order to

be able to relate to the metric data. This averaging component is constructed

as shown in figure 7.2, using an n-bit shift register, where n − 1 is the number

of averaging samples, and circuits for adding and subtracting the first and last

values in the register, respectively. The sum resulting from this is divided by the

number of averaging elements, and the result is presented at the output. It is

Implementation and verification 57

important that the number of averaging elements is set to a power of two in order

to save resources when doing the division. No block-RAM is explicitly used in

the implementation of this module.

Averaging

Add Subtract

Divide by n

n1 Shift registerData in

Average data out

Figure 7.2: Description of the implementation of the averaging register.

7.2 Data value analyses

The simplest data value analysis is implemented by logging the occurrence of the

extremes in each data channel. The number of such occurrences is stored in a

register, which forms a metric correlated to possible faults in the video system.

The occurrence of simple stuck-at faults is logged using the specific stuck-at fault

testing module, which is presented below. The tests related to the distribution

of the data values are implemented using the histogram processing component.

7.2.1 Testing for stuck-at faults

The stuck-at fault analysis module is designed as a component in the data value

analysis system, but can also function by itself, providing information on a data

channels ability to reach both high and low values. The module is generic with

respect to the channel width, but is only tested and verified using 8-bit data

values. An overview of the inputs and outputs of the module is shown in table

7.2.

This simple module consists of two 8-bit registers, one for high and one for low

bits, for storing whether the bit values has been covered or not. A low bit signifies

58 Implementation and verification

Table 7.2: Description of the signals of the stuck-at fault testing module.

Stuck-at analysis system interface description
Generics
channel width The width of the data input channel as an integer. Default

value is 8.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
data in Generic length std logic vector. Default length is 8 bits.
Outputs
stuck at one Generic length std logic vector. Default length is 8 bits.
stuck at zero Generic length std logic vector. Default length is 8 bits.

that the bit values have not yet been proven to occur, while a high value means

that the values have occurred.

The registers are set to zero at reset and a process sets the registers according

to the input data channel. A decoder generates a value based on these registers,

creating a metric that can be used directly in order to establish the probability

of stuck-at faults in the video system.

7.2.2 Histogram processing

In order to be able to process the histogram, the data must first be gathered

from the incoming frames. This is done by accumulating the counts for each

pixel value. For simplicity, this histogram accumulator is implemented using an

array of counters enabled by the different data values, as described in section

3.3.3. Although the decoding of the data requires a lot of expensive logic, this

was considered to be the best approach compared to an implementation using

dual-port memory.

An overview of the interface to the histogram accumulator is shown in table 7.3.

The module is generic with respect to the input data channel width, the number

of bins and the size of the registers containing the accumulated values.

Figure 7.3 describes the implementation of the histogram accumulator. The

counter array is an array of counter components with enable signals coming from

Implementation and verification 59

Table 7.3: Description of the signals of the histogram accumulator module.

Histogram accumulator interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
bin max value The max value of the registers as an integer. The default

value is 4095.
number of bins The number of bins as an integer. The default value is 256.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
index Natural integer for choosing the which counter value to out-

put. It has a generic range from 0 to number of bins.
data enable Signals when the data input is active.
data in Natural integer connected to a decoder for enabling the

accumulation of a single counter. Generic size set by chan-
nel width.

Outputs
count Natural integer with generic range from 0 to bin max value.

the decoder. The decoder makes sure that only one of the counters is enabled at

one time. A multiplexer is connected at the output of the counter array, allowing

for the readout of one specific bin. The counters used in the counter array are

generic with respect to the register size and the channel width. They increment

the register values if the clock enable signal is high at the rising edge of the clock.

The greatest issue of this component is the readout and analysis of the histogram

values. An analysis of the data to form a metric is complex and requires multiple

clock cycles. This is solved most easily by pipelining the process, utilizing the

arrival of the next frame for going through all of the bins. Since this method

relies on the use of a lot of resources, it is not of great interest for this thesis.

It is is therefore not discussed further here, and will instead be the product of

further work.

7.3 Accumulate and differentiate metric

The inputs and outputs of the top module is presented in table 7.4.

60 Implementation and verification

Counter array

Image
data

Index

Reset

Decoder

Output
multiplexing

Histogram accumulator

Figure 7.3: Description of the implementation of the histogram accumulator.

Table 7.4: Description of the signals of the accumulate and differentiate
module.

A & D interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
rows The number of rows as an integer. The default value is

1080.
cols The number of columns as an integer. The default value is

1920.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
vSync Control signal for signalling the EOF.
hSync Control signal for signalling the EOL.
red The red channel pixel values represented as a natural inte-

ger with a generic range from 0 to 2channel width − 1.
green The green channel pixel values represented as a natural

integer with a generic range from 0 to 2channel width − 1.
blue The blue channel pixel values represented as a natural in-

teger with a generic range from 0 to 2channel width − 1.
Outputs
data out Metric data represented as a natural integer.

The system is implemented using an accumulator, a shift register and an SAD

component, as shown in figure 7.4. The shift register has a generic length and

width in order to function with different frames and data inputs. The control

module is not shown in the figure in order to simplify the system overview.

The accumulator adds the values of a single row together, forming a sum of image

Implementation and verification 61

SAD

Image data

Metric data

Shift register

Accumulator

Figure 7.4: Realization of system for detecting random noise using row
comparison.

values. At the end of each line, the output from the accumulator is fed into the

SAD component and into the shift register. When the whole frame worth of rows

are accumulated, the values of the first row is at the output of the shift register.

The SAD component calculates the absolute differences between the output from

the shift register and the output from the accumulator, which now outputs the

accumulated values of the first row of the next frame. The SAD component

outputs the raw metric as the sum of the absolute differences between the row

values of two neighbouring frames.

The shifting of the values in the shift register is enabled and the accumulator is

reset at the rising edge of the horizontal sync signal. Likewise, the SAD module

and the accumulator is reset at the rising edge of the vertical sync signal.

7.4 Median filtering metric

This VQA system has the inputs and outputs as defined in table 7.5, and is

generic with respect to the size of the frames and the width of the data channel.

Figure 7.6 shows the architecture of the median filter component. The internal

architecture is based on the one presented in section 3.3.2. The filter can be used

with frames of arbitrary sizes and with arbitrary data bit widths.

The median filter component provides both the filtered data and the original data

to the upper module, so that the metric can be created by comparing the two

62 Implementation and verification

Table 7.5: Description of the input and output signals of the median metric
VQA module.

Median metric interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
rows The number of rows as an integer. The default value is

1080.
cols The number of columns as an integer. The default value is

1920.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
vsync Control signal for signalling the EOF.
hsync Control signal for signalling the EOL.
red The red channel pixel values represented as a natural inte-

ger with a generic range from 0 to 2channel width − 1.
green The green channel pixel values represented as a natural

integer with a generic range from 0 to 2channel width − 1.
blue The blue channel pixel values represented as a natural in-

teger with a generic range from 0 to 2channel width − 1.
Outputs
metric red The metric for the red channel represented as a natural

integer.
metric green The metric for the green channel represented as a natural

integer.
metric blue The metric for the blue channel represented as a natural

integer.

values. The original data is provided by a direct routing from the filter window.

Pipelines are added between the components in order to obtain a large enough

maximum frequency.

7.5 Gradient metric

This VQA system has the interface described in table 7.6. It is generic with

respect to the size of the frames and the width of the data.

Implementation and verification 63

Median noise
analysis

Median filter

Pipeline

Pipeline

Absolute
difference Pipeline AverageData in

Filtered

Original

Metric

Figure 7.5: Description of the implementation of the single channel median
noise metric architecture.

Median filter

Row bufferData in
Filter

architecture

Filtered data

Original data

Figure 7.6: Description of the implementation of the median filter architec-
ture.

The inner components of the module is shown in figure 7.7. A pipeline has been

introduced after the convolution filter in order to increase the max frequency to a

value above the minimum pixel clock frequency. The convolution filter outputs a

value between−1020 and 1020, which are the lowest and highest numbers possible

using the Laplace operator. Since only a positive value is needed, the absolute

value is calculated before a comparator circuit compares the filtered value with

the prior values from the current frame. If the new value is larger, it is replaced

with the prior value. When all values have been compared, the result is sent to

an averaging component. This component can be omitted, depending on the use

of the metric.

The convolution filter is employed in order to compute the gradients of the frames.

This component uses the same row buffer component as used in the median filter

module, except from a few modifications since the input signal is not needed for

the computation of this metric. The architecture of the convolution filter compo-

nent is shown in figure 7.8. The filter component inputs the filter parameters as

generics. The default values are the parameters for the Laplace operator, which

64 Implementation and verification

Table 7.6: Description of the input and output signals of the VQA module
using gradients.

Gradient metric interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
rows The number of rows as an integer. The default value is

1200.
cols The number of columns as an integer. The default value is

1920.
Inputs
clk Clock signal.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
vsync Control signal for signalling the EOF.
hsync Control signal for signalling the EOL.
red The red channel pixel values represented as a natural inte-

ger with a generic range from 0 to 2channel width − 1.
green The green channel pixel values represented as a natural

integer with a generic range from 0 to 2channel width − 1.
blue The blue channel pixel values represented as a natural in-

teger with a generic range from 0 to 2channel width − 1.
Outputs
metric red The metric for the red channel represented as an integer

with a range from 0 to 1020.
metric green The metric for the green channel represented as an integer

with a range from 0 to 1020.
metric blue The metric for the blue channel represented as an integer

with a range from 0 to 1020.

is the operator that is used in this VQA system. This component includes three

1 × 3 shift register. These are the cells forming the filter window to the left in

figure 7.1.

The border values are zero-padded by setting all non-defined values to zero. The

metric is not averaged, since its function is to prove that the video transmis-

sion systems response time is fast enough. An averaging would compromise this

information.

Implementation and verification 65

Gradient analysis

Convolution Pipeline Abs Comparator Averaging
Data
input

Metric

Figure 7.7: Overview of the components in the blur estimation module that
computes the gradients in order to analyse the sharpness of the frames in the
video stream.

Convolution filter

Row buffer Filter
Data
input

Filtered
data

Figure 7.8: Overview of the architecture of the convolution filter.

7.6 Gaussian filtering metric

The Gaussian filter is implemented in the same way as the Laplacian filter, utiliz-

ing convolution using a row buffer and a filter calculation component. However,

to apply the division by sixteen, a shifting by four places is performed after the

filter computations. An extra pipelining register was inserted to keep the maxiu-

mum frequency above the required 150 MHz. The computational analysis of the

filter results are done in the same way as with the median metric. That is, the

results from the filtering is compared to the original data and outputted as a sum

of absolute differences. The same pipelines are used, and there is an averaging of

the metric over a number of frames.

The interface to the module is described in table 7.7

7.7 Verification

The implemented components have been verified through simulation using spe-

cially developed test benches. The test vectors utilized by these test benches

are generated using MATLAB, by printing the values of test images to a text

file. The test vectors derive from both artificial and natural images of the sizes

512 × 512 and 1920 × 1080. The text file is read into the VHDL test benches

66 Implementation and verification

Table 7.7: Description of the input and output signals of the VQA module
utilizing a Gaussian filter.

Gradient metric interface description
Generics
channel width The width of the data input channel as an integer. The

default value is 8.
rows The number of rows as an integer. The default value is

1200.
cols The number of columns as an integer. The default value is

1920.
Inputs
clk Pixel clock.
reset Synchronous active high reset signal.
data enable Signals when the data input is active.
vsync Control signal for signalling the EOF.
hsync Control signal for signalling the EOL.
red The red channel pixel values represented as a natural inte-

ger with a generic range from 0 to 2channel width − 1.
green The green channel pixel values represented as a natural

integer with a generic range from 0 to 2channel width − 1.
blue The blue channel pixel values represented as a natural in-

teger with a generic range from 0 to 2channel width − 1.
Outputs
metric red The metric for the red channel represented as a natural

integer.
metric green The metric for the red channel represented as a natural

integer.
metric blue The metric for the red channel represented as a natural

integer.

and used as input to the different system components. The resulting values are

compared to the values from the MATLAB models, verifying that the VHDL

modules work as intended.

In addition to verification by simulation, the systems are verified by analysing

the synthesis results. These analyses consists of verifying that the a plausible

amount of resources are used and that the correct technologies are synthesized.

Chapter 8

Results

Several different video quality metric systems and video assessment tools have

been modelled and tested in MATLAB. The key components in these systems

have been implemented using VHDL code and synthesized for an Altera Cyclone

II FPGA using Altera’s software tools. The testing of the algorithms establishes

whether the metrics correlate sufficiently with different types of distortions and

if the assessment tools function as intended. The synthesizing of the components

ensures that the algorithms can be mapped to an FPGA, and that they work

within the given specifications.

The goal of this assignment is to provide a range of quality assessment algorithms

and analysis tools that can run on a single FPGA, providing information on the

state of the video system hardware. This chapter presents results from the testing

of these tools and the results from the implementation and synthesizing of the

VHDL models of the systems.

All results regarding the metric algorithms are provided from tests performed

using MATLAB, meaning that this report does not present results from any

working quality metric systems running on a physical FPGA. The behaviour of

the VHDL models are however validated by simulation and by comparing the

MATLAB model results with the VHDL model results.

67

68 Results

Section 8.1 present the most important results from the algorithm analysis done

in MATLAB, while section 8.2 presents the results from designing, implementing

and synthesising the prototype VQA systems, and some important sub compo-

nents specifically.

8.1 Algorithm test results

The algorithms were tested as described in chapter 6. The results from the most

important tests are rendered here, together with some illustrations showing the

key properties of the metrics. The results are presented to show how well the

different metrics correlate with the intensity of the specific distortions, and if the

metrics are heavily affected by other types of distortions. The data from both the

red, green and blue color channels are presented in each plot, marked with their

respective colours. Numerical results from all tests can be found in appendix B.

The images can be compared to the data from PSNR calculations. Figure 8.1

shows the resulting data from this metric when utilized on the image Lake with

different distortions at different intensities. It is apparent that the distortions

caused by the smoothing of the image are small at first, but significantly increas-

ing until it levels out at the latter samples. The distortions caused by the random

noise causes the PSNR to drop in a far more linear fashion.

8.1.1 Data assessment tools

The results from testing the various data assessment tools show that they work

as intended, providing information on key image data characteristics.

The histogram provides the data needed for calculating the dynamic range of the

images, giving the desired information about the highest and lowest pixel values.

It is worth noticing that many distortions does affect the histogram analysis,

but that these affects are neglected and not processed further because of the

inconsistency of these results.

Results 69

Figure 8.1: The plots shows the PSNR data when this metric is calculated
using the Lake image with different distortions at different intensities.

The simple model designed for discovering stuck-at faults works as predicted.

Images that are contaminated with such artifacts, even those with no clear visual

distortions are successfully marked with the appropriate fault.

8.1.2 Accumulate and differentiate metric

When the system is utilized on static video where all frames are identical, i.e.

contain no noise, this metric is equal to zero. Results from testing with the test

bench show that when this metric is utilized on frames that contain Gaussian,

salt and pepper and speckle noise, the metric increases steadily as the intensity

of the noise increases. This behaviour is shown in figure 8.2. The system does

not respond to blurring of the signal, since this does not imply any random

oscillations. A constantly blurred video signal therefore results in a metric value

equal to zero.

As figure 8.2 shows, the metric increases steadily when the intensity of the random

noise grows more intense. This proves the functionality of the metric with respect

70 Results

to spatial noise in single frames. The metric is consistent when utilized on low

intensity distorted frames of different sceneries, but is less consistent when used

on the highly distorted versions. For example, a highly distorted version of the

Sky image gives a metric value of 574 665, while the Lake image with the same

distortion intensity gives the value 961 209.

Figure 8.2: This figure depicts the metric output presented in table B.5.
The x-axis is the variance of the noise added to the image, while the y-axis is
the output from the metric.

When frames distorted by horizontal line flickering is input to the system, the

metric itself reacts poorly, increasing the value only slightly. However, a signifi-

cant change can be seen if the difference of each row value is analysed.

The metric value is very consistent when comparing the different color compo-

nents of the images. The values varies only by a fraction between the color

channels.

8.1.3 Median filtering metric

A seen in table 8.1, the median filter metric is far less consistent when it comes

to changes in scenery, when compared to the A & D metric. The results from

Results 71

testing with the different images show that the images which contain far less high

frequency components than the others results in a far lower metric value.

Table 8.1: Results from testing the median metric with the original test
bench images.

Original images

Channel Red Green Blue
Lena 912 663 823 329 929 216
Sky 167 827 101 753 124 613
Lake 3 471 989 3 522 159 3 233 420

The metric values increase as the intensity of the distortions increases for all

random noise. The amount of which they increase is very consistent, varying

only by a tiny fraction. For example, the changes in metric values from images

with Gaussian noise variance of 0.1 to 0.2 are 1.7 · 1010, 1.4 · 1010 and 1.8 · 1010

for the Lena, Sky and Lake images, respectively.

Figure 8.3: Results from testing the Median metric with the images from
the test bench contaminated with different levels of Gaussian noise.

72 Results

When tested with images exposed to frequency loss, the metric value is contin-

uously reduced with an increasing level of blurring, implying that the algorithm

reacts to blurring as well as the types of random noise.

8.1.4 Gradient metric

The gradient metric values resulting from calculations using the original test

bench images are shown in table 8.2. There is little consistency between the

metrics from the different images, in addition to less consistency between color

channels, when compared to the other metrics.

Table 8.2: Results from the median metric when the original images (no
introduced distortions) are used for testing.

Original images
Channel Red Green Blue
Lena 378 347 415
Sky 237 328 419
Lake 821 789 818

Slightly blurred images
Lena 376 344 408
Sky 233 326 413
Lake 803 771 803

When blurred images are input to the metric system, the metric decrease as the

intensity of the blurring is increased. The values decrease less as the sharpness of

the image is continuously reduced. This is depicted in figure 8.4, which contain

plots of the metric results from calculations with blurred images.

As shown in figure 8.5, when images are distorted with even low intensity noise,

the median metric reaches a high value very fast. In the case of salt and pepper

noise, the metric reaches the maximum already at very low density, while in the

case of Gaussian noise, the metric grows less consistently towards the maximum

value. Speckle noise does not seem to affect the metric to a large extent.

The tests with the artificial image in figure 5.2 shows that the metric reaches

the highest absolute gradient value at the corners of the blocks, while it holds

a steady value at the other block border areas. The metric is equal to zero at

all other times. A test with a slightly smoothed version of the image shows a

Results 73

Figure 8.4: The plot shows the metric values as the intensity of blur is
increased in all of the images in the test bench.

Figure 8.5: This figure depicts the metric output presented in table B.13.
The x-axis is the variance of the noise added to the image, while the y-axis is
the output from the metric.

74 Results

reduction of the metric value at these changes significantly, making this a very

valuable test when looking for blurred lines.

Figure 8.6: This plot shows the absolute values of the gradients from the
image in figure 5.2. The corners of the blocks appear as large spikes in the
plot. The large area containing values just above 200 is the border of a block.
The areas containing only zero values contain no changes in pixel values.

8.1.5 Gaussian filtering metric

Table 8.3 shows the metric values calculated from the original test bench images.

The metric is consistent between channels, but vary greatly between different

images.

The metric system reacts to all types of random noise by increasing the metric

value with increased distortion intensities. Blurred images result in decreased

metric values.

Results 75

Table 8.3: Results from the median metric when the original images (no
introduced distortions) are used for testing.

Original images
Channel Red Green Blue
Lena 993 441 846 952 927 407
Sky 187 160 146 060 193 219
Lake 3 279 286 3 320 218 3 093 170

Slightly blurred images
Lena 991 977 546 445 926 164
Sky 187 159 145 594 192 373
Lake 3 249 225 3 289 309 3 064 694

Figure 8.7: Plot showing the resulting metrics from the Gaussian assessment
algorithm versus the blur intensity of the images using in the testing.

76 Results

Table 8.4: Results from synthesizing some frequently used components in
the metric systems in Quartus II.

Synthesis results for frequently used components
Row buffer Averaging

component
Histogram
accumulator

Logical elements 32 573 6498
Registers 24 543 3072
Memory bits 30688 0 0
Embedded multipliers 0 0 0
Max frequency [MHz] 235 181 260

Table 8.5: Results from synthesizing the metric systems for the Altera Cy-
clone II FPGA in Quartus II.

Synthesis results for metric systems
A & D
metric

Median
metric

Gradient
metric

Gaussian
metric

Logical elements 1836 2042 927 653
Registers 1681 1885 727 543
Memory bits 57504 92064 92064 92064
Embedded multipliers 0 0 0 0
Max frequency [MHz] 162 176 183 203

8.2 Synthesis results

Table 8.5 and 8.4 shows the results from synthesising the systems for use in the

Altera Cyclone II FPGA. The results show that the resource consumption of

all metric systems are far below the maximum allowed use of any resource, as

specified in chapter 5.1. In addition, the maximum frequency of all circuits are

above the required pixel clock frequency used in the video resolution standard

that has been specified.

Chapter 9

Discussion

The success of the VQA systems is examined in this chapter. The results from

testing the algorithms in MATLAB, and the refinements these results point to-

wards, are discussed in the first section. Some improvements regarding other

algorithms for VQA and analyses of the metrics are also discussed. The next sec-

tion debates the success of running the algorithms on an FPGA. The last section

sums up the usefulness of the approach and evaluates the application area of the

entire system.

9.1 Algorithm design and testing

Most of the algorithms developed for assessing the quality of video have been

developed for use as no-reference assessment tools. However, in order to be able

to test for special types of faults, such as poor vertical and horizontal sync and

the video system’s ability to maintain a linear or constant signal, some reduced-

reference assessment tools have been proposed. The calculations of no-reference

metrics for these cases, without any control on the input signal, is very com-

plex since the behaviour we wish to study is unlikely to appear in any natural

images. The reduced-reference tools provide valuable information regarding the

mentioned artifacts, but does demand that the proper test pattern is input to

77

78 Discussion

the system and that the system is properly set up according to this pattern

beforehand.

The no-reference video quality assessment tools will work with an unknown ref-

erence. Still, when combined with the artificial images presented, they will give

even more information to the user. The reason for this is that the video assess-

ment tools look for specific behaviour in the video. Unknown references contain

unknown amounts of this behaviour, while the artificial images are designed with

the exact behaviour needed for the metric systems to provide good information

immediately. The test patterns allowing for the discovering of vertical and hori-

zontal sync errors and the system’s ability to uphold a linear signal are the only

ones that are completely necessary in order to discover a fault. The other test

patterns are included just to make the discovering of board-level failures easier

and to make the metrics more reliant.

The testing of the quality assessment algorithms were done mainly using a test

bench of four images contaminated with random noise and blur. Results from

these tests show that there is a correlation between all of the metrics and the

distortion they were designed for. In addition, all metrics correlate in some degree

with other distortions. Most apparent is the gradient metric when utilized on

images contaminated with salt and pepper noise. To be able to properly trace

the metric results back to a board-level fault it is necessary to run the metrics

together so that they can complement each other.

The results from the metric systems are consistent in that they always return a

similar value when utilized on the same images with equal distortion intensities.

On the other hand, the metrics vary greatly when utilized on different images.

This can make the systems very hard to comprehend when utilized as pure no-

reference systems. The metrics may also be hard to comprehend when they are

not normalized or treated in order to contain the values in a smaller dynamic

area. Provided you know the expected metric value, the metric can be used

as is, but in a complete assessment system where the frames are unknown and

not static, the raw metric data should be processed in a better way. Averaging,

normalization and perhaps a merging of metrics are of the post processing that

can be introduced.

Discussion 79

The different metric values from the colour channels react in the same way for all

of the tested images. It is also interesting to notice that results from analysing

the sharpness in the three colour channels from the same images are very similar

for all the natural images. In a refined system, this should be exploited by doing

an analysis of the differences between the colour channels.

The main purpose of the video assessment system is to provide information on

the state of the board-level components of the video device. The assessment

tools have been developed specifically to output values that correlate with faults

in the stream that are assumed to result from failures related to these board-level

components. The assumptions have not been verified physically, but have been

thoroughly investigated in theory. The success of the system relies on that the

assumptions made are correct. The system should therefore be tested on a phys-

ical device, where the different failures are introduced, so that the assumptions

can be properly verified.

Based on the test results of the metric systems, the algorithms will produce

results that provides enough information for finding most board-level faults, at

least when utilized together with the developed test patterns. However, issues

related to the clock and other signal jitter are some of the faults that are not

covered by the system, since their manifestations on the input signals are very

hard to quantize correctly.

Further testing of the algorithms should be done with more specialized test pat-

terns, such as a compilation of the test patterns presented. Utilizing such a test

bench together with a fully developed system containing all of the proposed met-

rics will provide comprehensible results in a very fast way when doing testing at

the production site and in the design phase of new systems. Compared to other

metrics that are designed for running complex calculations on one processor at

a time, this system is very well suited for the intended applications. However,

compared to external test equipment, this metric can not achieve as good results.

Therefore, if a comprehensive analysis of the perceptive quality of the video is

needed, this system should not be utilized.

The Laplacian filter is known for being very sensitive to noise, and especially salt

and pepper noise, since this noise generates very large gradients. If necessary,

the filter can be combined with a Gaussian filter, which smooth out the image.

80 Discussion

This leads to a more robust metric, but also causes the metric to lose some one

of its advantages, since it can no longer determine if the system can operate with

the largest frequencies.

There is also the possibility of replacing the Laplacian filter with a horizontal

Sobel filter, a filter type that is commonly used for edge detection. There is no

need for filtering in the vertical direction, since the loss of frequency components

only happen as the lines of the frames are transmitted. The intensity of the edges

could work as a replacement for, or along with the gradient intensity. The testing

and implementation of this should be included as part of the future work.

9.2 VHDL modelling

The full implementation of a working metric system has not been modelled, as

information on the control logic and similar aspects are not of importance to the

task at hand. However, the verification has proven that the metric data from an

image are exactly the same as the results from the modelling and testing of the

algorithms.

By modelling and implementing the key metric components, we have proven

that the algorithms will function within the specifications of the assignment.

Verification of some relevant situations proves that the components work as they

should, suggesting that a final implementation of a working system will function

as intended. The real time capabilities of the system is also within specifications,

providing a maximum clock frequency of at least 150 MHz. Since the target

FPGA is made using relatively old technology, it is probable that newer FPGAs

can provide even better real time capabilities with the same configuration. The

memory consumption of the metrics are far below the requirements, even without

any attempt of resource sharing.

The modelling of the key algorithm components in VHDL, and the simulation

and synthesis of these models, proves that the algorithms will function as in-

tended on an FPGA. It also proves that the metric systems are small enough for

combining several metric calculations in one device, providing the collaboration

desired in order to find component faults. The simplicity of the algorithms and

Discussion 81

the possibility for reusing the components in similar metric systems gives the

indication that a system consisting of the proposed metrics not only will fit and

work in an FPGA, but also leave room for other systems or an expansion in the

number of metric systems.

There has been made no attempt on sharing resources and components between

the metric systems. This is, however, very possible, since the different metrics

are based on very much the same principles. For example, there is only need for

one row buffer for the metric systems utilizing 3× 3 spatial filters.

Some further implementation is required in order to make a functional quality

assessment system. The control logic must be designed, allowing for proper re-

ception of new frames and proper calculation of correct data values. In addition,

the entire system should be simulated, including metric system components for

each color channel. The models must also be tested on an FPGA, verifying that

the synthesis is correct and according to the specifications.

Since all VHDL modules are written with the frame size and data channel size

as generic parameters, it is possible to use the metric systems with any resolu-

tion. The systems are however only tested with parameters equal to that of the

tests signals. There is therefore a necessity of verifying that the systems work

with all common resolutions and that the systems still are within the required

specifications.

9.3 Final discussion

Using analyses of video specifically in order to detect failures in board-level com-

ponents is something which has not been done before. This report therefore

presents a new perspective on the field of video metric measurement. Although

the approach is unique, there are several algorithms that can detect some of the

relevant distortions and artifacts. However, the systems presented here are also

designed specifically towards FPGAs. This provides some opportunities that are

not possible on other devices. First, several different metrics can be run simul-

taneously in a single device. This allows for the calculation of a large number of

simple metrics, providing great coverage of the artifacts, and thereby increasing

82 Discussion

the possibility of tracing an artifact back to the correct hardware fault. Sec-

ond, the FPGA is often the first device in the video processing path, meaning

the signal that is fed into the video assessment system is uncontaminated by any

processing. This provides shorter setup time for the test that are to be performed,

since the FPGA is the only device that must be specifically configured.

Table 9.1 shows how the different assessment tools and metric systems cover

the mentioned board-level component faults. In some cases there are several

possible causes of a specific distortion. In order to distinguish between these

cases, the distortions must be modelled better, for instance by testing an actual

video system with the specific faults. There are also some distortions that are

covered by the same metrics. In these cases, the appropriate tests consist of

a combination of metrics. Salt and pepper noise, Gaussian noise and speckle

noise are examples of distortions that require combined metrics, since the Median

metric and the A & D metric responds to all cases, while the Gradient metric

response can be distinguished between the three cases. In addition, the fact that

the A & D metric does not respond to blurring of frames can be used to ensure

that an image is distorted only by blur.

Discussion 83

Table 9.1: Overview of board-level failures, their associated distortions and
the metrics that are able to distinguish them.

Metric system distortion coverage
Hardware fault Associated

failures
Appropriate tests

Faulty filter components
Low resistance to
noise

Median metric and A & D
metric.

Inadequate band-
width

Gradient metric and the
Gaussian filtering metric in
combination with the A & D
metric.

Bad frequency re-
sponse

Histogram analysis in combi-
nation with test patterns.

Clock jitter
Blurring Gradient metric and Gaus-

sian filtering metric.
Gaussian noise A & D metric and Median

metric.
Sync signal jitter Frame displace-

ment
Specialized reduced-
reference assessment tools.

Voltage failures
Difficulties in
reaching specific
values

Histogram analysis and data
value analysis.

Sporadic IC failure Histogram analysis.

Electromagnetic noise
Gaussian noise A & D metric and Median

metric.
Salt and pepper
noise

A & D metric, Median metric
and Gradient metric.

Camera noise
Speckle noise A & D metric and median

metric combined with Gradi-
ent metric.

Salt and pepper
noise

A & D metric and median
metric combined with Gradi-
ent metric.

Stuck-at faults Loss of specific val-
ues

Specialized assessment tool.

Chapter 10

Concluding remarks

The video metric measurements presented in this report constitutes new ways

of discovering failures in the hardware of analogue video systems. By using an

FPGA as a processing device and by focusing on utilizing several simple metrics

in parallel, hardware failures that otherwise requires experienced engineers or

expensive equipment to be discovered are shown to be quantifiable by a single

system operating in real time.

Although a fully functional video metric system has not been developed, the re-

sults from metric testing and component analyses show that the proposed system

is fully usable and possible to implement on even small, low-range FPGAs. The

system will function with all video systems utilizing an FPGA and transmis-

sion of video through analogue channels, making it reusable with most advanced

analogue video system platforms.

Most of the metric systems are usable without knowledge of the input signal, al-

though the resulting metric values are much more comprehensible when the out-

put or the input is known beforehand. Assessment tools developed for reduced-

reference testing are provided to be able to test for hardware faults that cannot

be discovered in any other fashion.

85

86 Concluding remarks

10.1 Future work

The future work necessary for making a functional VQA system include the

following points:

• Full implementation of the metric systems and the top level VQA system.

• Behavioural verification on an FPGA.

• Test with actual physical board-level failures.

It is also advised to extend the VQA system with the following metric systems:

• Assessment based on bilateral filters or Frost-filters for quantization of

speckle noise.

• Analyses based on the correlations of neighbouring bins in a histogram.

• Analyses based on the differences in metric values from different colour

channels.

Appendix A

MATLAB scripts

A.1 Modelling of median filter metric

./Scripts/noise estimation medfilt.m

1 c l o s e a l l ;

c l e a r a l l ;

3

%% Estimation o f random no i s e in a video sequence us ing the median

f i l t e r −based metr ic .

5

% Spec i f y which image to be t e s t e d .

7 image name = ’ sky ’ ;

n o i s e t y p e = ’ b lur ’ ;

9

% I n s t a n t i a t e the metr ic r e s u l t v e c t o r s .

11 metr i c r ed = ze ro s (10 ,1) ;

met r i c g r e en = ze ro s (10 ,1) ;

13 met r i c b lue = ze ro s (10 ,1) ;

p s n r v a l u e r e d = ze ro s (10 ,1) ;

15

% Load image

17 o r i g i n a l i m a g e = imread ([image name ’ .bmp ’]) ;

[rows , co l s , dims] = s i z e (o r i g i n a l i m a g e) ;

19

% Metric index i n s t a n t i a t i o n .

21 index = 1 ;

87

88 MATLAB scripts

23 % Loop f o r t e s t i n g with d i f f e r e n t no i s e i n t e n s i t i e s .

f o r n o i s e i n t e n s i t y = 0 . 1 : 0 . 1 : 1

25

di sp = [’ Ca l cu l a t ing median metr ic f o r no i s e i n t e n s i t y ’ num2str

(n o i s e i n t e n s i t y) ’ . ’] ;

27 d i s p l a y (d i sp) ;

29 % Read in generated frame with the s p e c i f i e d d i s t o r t i o n s .

image s t r i ng = [image name ’ ’ n o i s e t y p e ’

n o i s e w i t h i n t e n s i t y ’ num2str (n o i s e i n t e n s i t y) ’ f i r s t F ram e .

bmp ’] ;

31

noisy image = imread (image s t r i ng) ;

33

[rows , co l s , dims] = s i z e (no i sy image) ;

35

% Separate the channe l s :

37 red = noisy image (: , : , 1) ;

green = noisy image (: , : , 2) ;

39 blue = noisy image (: , : , 3) ;

41 % F i l t e r each channel through a 2D median f i l t e r :

f i l t e r e d r e d = med f i l t 2 (red) ;

43 f i l t e r e d g r e e n = med f i l t 2 (green) ;

f i l t e r e d b l u e = med f i l t 2 (blue) ;

45

% Find the abso lu te d i f f e r e n c e s :

47 d i f f r e d = abs (double (red)−double (f i l t e r e d r e d)) ;

d i f f g r e e n = abs (double (green)−double (f i l t e r e d g r e e n)) ;

49 d i f f b l u e = abs (double (blue)−double (f i l t e r e d b l u e)) ;

51 % Find the sum of abso lu t e d i f f e r e n c e s :

f o r i = 1 : rows

53 f o r j = 1 : c o l s

met r i c r ed (index) = met r i c r ed (index) + int32 (d i f f r e d (i

, j)) ;

55 metr i c g r e en (index) = met r i c g r e en (index) + int32 (

d i f f g r e e n (i , j)) ;

me t r i c b lue (index) = met r i c b lue (index) + int32 (

d i f f b l u e (i , j)) ;

57 end

end

59

MATLAB scripts 89

% Calcu la te the PSNR f o r comparison .

61 p s n r v a l u e r e d (index) = PSNR(o r i g i n a l i m a g e (: , : , 1) , no i sy image

(: , : , 1)) ;

63 % Update metr ic vec to r index .

index = index + 1 ;

65

end

67

% Save metr ic data to a text f i l e as a l a t e x ta b l e .

69

% Noise var i ance .

71 nv = 0 . 1 : 0 . 1 : 1 ;

nv = nv ’ ;

73

% Metric data as a matrix .

75 data = [nv met r i c r ed met r i c g r e en met r i c b lue] ;

77 % Cal l to func t i on f o r sav ing data to l a t e x format in f i l e .

saveDataToLatex (data , ’ n o i s e e s t i m a t i o n 0 0 1 0 1 ’ , ’ txt ’) ;

90 MATLAB scripts

A.2 Modelling of A & D metric

./Scripts/noise estimation ad.m

c l o s e a l l ;

2 c l e a r a l l ;

4 %% Estimation o f random no i s e in a video sequence (t e s t s over two

frames) us ing A&D metr ic .

6 % Spec i f y which image to be t e s t e d .

image name = ’ l ena ’ ;

8 n o i s e t y p e = ’ b lur ’ ;

10 % I n s t a n t i a t e the metr ic r e s u l t v e c t o r s .

% 10 t e s t s are performed .

12 metr i c r ed = ze ro s (10 ,1) ;

met r i c g r e en = ze ro s (10 ,1) ;

14 met r i c b lue = ze ro s (10 ,1) ;

p s n r v a l u e r e d f i r s t = ze ro s (10 ,1) ;

16 psn r va lu e r ed s e cond = ze ro s (10 ,1) ;

18 % Load image .

o r i g i n a l i m a g e = imread ([image name ’ .bmp ’]) ;

20

% Metric index i n s t a n t i a t i o n .

22 index = 1 ;

24 % Loop f o r t e s t i n g with d i f f e r e n t no i s e i n t e n s i t i e s .

f o r n o i s e i n t e n s i t y = 0 . 1 : 0 . 1 : 0 . 1

26

di sp = [’ Ca l cu l a t ing metr ic f o r no i s e var i ance ’ num2str (

n o i s e i n t e n s i t y) ’ . ’] ;

28 d i s p l a y (d i sp) ;

30 % Read in two generated frames with the s p e c i f i e d d i s t o r t i o n s .

32 i m a g e s t r i n g f i r s t F r a m e = [image name ’ ’ n o i s e t y p e ’

n o i s e w i t h i n t e n s i t y ’ num2str (n o i s e i n t e n s i t y) ’ f i r s t F ram e .

bmp ’] ;

image str ing secondFrame = [image name ’ ’ n o i s e t y p e ’

n o i s e w i t h i n t e n s i t y ’ num2str (n o i s e i n t e n s i t y) ’ secondFrame .

bmp ’] ;

34

MATLAB scripts 91

n o i s y f i r s t = imread (i m a g e s t r i n g f i r s t F r a m e) ;

36 no i sy second = imread (i m a g e s t r i n g f i r s t F r a m e) ;

38 [rows , co l s , dims] = s i z e (n o i s y f i r s t) ;

40 % Metric c a l c u l a t i o n s .

% I n s t a n t i a t e the prev ious row value r e g i s t e r s .

42 r e d r o w r e g i s t e r s = ze ro s (rows , 1) ;

g r e e n r o w r e g i s t e r s = ze ro s (rows , 1) ;

44 b l u e r o w r e g i s t e r s = ze ro s (rows , 1) ;

46 % I n s t a n t i a t e the cur rent row accumulation r e g i s t e r s .

r e d r o w a c c r e g i s t e r s = int32 (0) ;

48 g r e e n r o w a c c r e g i s t e r s = int32 (0) ;

b l u e r o w a c c r e g i s t e r s = int32 (0) ;

50

% Loop f o r a c c e s s i n g each p i x e l f o r f i r s t frame c a l c u l a t i o n s .

52 f o r i = 1 : rows

f o r j = 1 : c o l s

54 % Accumulate the va lue s in the cur rent row .

r e d r o w a c c r e g i s t e r s = r e d r o w a c c r e g i s t e r s + int32 (

n o i s y f i r s t (i , j , 1)) ;

56 g r e e n r o w a c c r e g i s t e r s = g r e e n r o w a c c r e g i s t e r s +

int32 (n o i s y f i r s t (i , j , 2)) ;

b l u e r o w a c c r e g i s t e r s = b l u e r o w a c c r e g i s t e r s + int32 (

n o i s y f i r s t (i , j , 3)) ;

58 end

60 % Store the accumulated va lue s in the prev ious row value

r e g i s t e r .

r e d r o w r e g i s t e r s (i) = r e d r o w a c c r e g i s t e r s ;

62 g r e e n r o w r e g i s t e r s (i) = g r e e n r o w a c c r e g i s t e r s ;

b l u e r o w r e g i s t e r s (i) = b l u e r o w a c c r e g i s t e r s ;

64

% Reset the r e g i s t e r s .

66 r e d r o w a c c r e g i s t e r s = 0 ;

g r e e n r o w a c c r e g i s t e r s = 0 ;

68 b l u e r o w a c c r e g i s t e r s = 0 ;

end

70

% Loop f o r a c c e s s i n g each p i x e l f o r second frame c a l c u l a t i o n s .

72 f o r k = 1 : rows

f o r l = 1 : c o l s

74 % Accumulate the va lue s in the cur rent row .

92 MATLAB scripts

r e d r o w a c c r e g i s t e r s = r e d r o w a c c r e g i s t e r s + int32 (

no i sy second (k , l , 1)) ;

76 g r e e n r o w a c c r e g i s t e r s = g r e e n r o w a c c r e g i s t e r s +

int32 (no i sy second (k , l , 2)) ;

b l u e r o w a c c r e g i s t e r s = b l u e r o w a c c r e g i s t e r s + int32 (

no i sy second (k , l , 3)) ;

78 end

80 % Store the abso lu t e d i f f e r e n c e between the accumulated

va lue s o f the f i r s t

% frame and the second frame .

82 metr i c r ed (index) = met r i c r ed (index) + abs (

r e d r o w a c c r e g i s t e r s − r e d r o w r e g i s t e r s (k)) ;

met r i c g r e en (index) = met r i c g r e en (index) + abs (

g r e e n r o w a c c r e g i s t e r s − g r e e n r o w r e g i s t e r s (k)) ;

84 met r i c b lue (index) = met r i c b lue (index) + abs (

b l u e r o w a c c r e g i s t e r s − b l u e r o w r e g i s t e r s (k)) ;

86 % Reset the r e g i s t e r s .

r e d r o w a c c r e g i s t e r s = 0 ;

88 g r e e n r o w a c c r e g i s t e r s = 0 ;

b l u e r o w a c c r e g i s t e r s = 0 ;

90 end

92 % Calcu la te the PSNR f o r comparrison .

p s n r v a l u e r e d f i r s t (index) = PSNR(o r i g i n a l i m a g e (: , : , 1) ,

n o i s y f i r s t (: , : , 1)) ;

94 psn r va lu e r ed s e cond (index) = PSNR(o r i g i n a l i m a g e (: , : , 1) ,

no i sy second (: , : , 1)) ;

96 % Update the metr ic vec to r index .

index = index + 1 ;

98 end

100 % Save metr ic data to a text f i l e as a l a t e x ta b l e .

102 % Noise var i ance .

nv = 1 : 1 0 ;

104 nv = nv ’ ;

106 % Metric data as a matrix .

data = [nv met r i c r ed met r i c g r e en met r i c b lue] ;

108

% Cal l to func t i on f o r sav ing data to l a t e x format in f i l e .

MATLAB scripts 93

110 saveDataToLatex (data , ’ n o i s e e s t i m a t i o n 0 0 1 0 1 ’ , ’ txt ’) ;

94 MATLAB scripts

A.3 Modelling of gradient metric

./Scripts/blur estimation laplace.m

c l o s e a l l ;

2 c l e a r a l l ;

4 %% Estimation o f b lur in a image with i n c r e a s i n g l o s s o f sharpness .

6 % Spec i f y which image to be t e s t e d .

image name = ’ b locks ’ ;

8 n o i s e t y p e = ’ b lur ’ ;

10 % I n s t a n t i a t e the metr ic r e s u l t v e c t o r s .

met r i c r ed = ze ro s (10 ,1) ;

12 metr i c g r e en = ze ro s (10 ,1) ;

met r i c b lue = ze ro s (10 ,1) ;

14 p s n r v a l u e r e d = ze ro s (10 ,1) ;

16 % Load image .

o r i g i n a l i m a g e = imread ([image name ’ .bmp ’]) ;

18

% Metric index i n s t a n t i a t i o n .

20 index = 1 ;

22 % Loop f o r t e s t i n g with d i f f e r e n t d i s t o r t i o n i n t e n s i t i e s .

f o r n o i s e i n t e n s i t y = 0 . 1 : 0 . 1 : 1

24

di sp = [’ Ca l cu l a t ing b lur metr ic f o r d i s t o r t i o n i n t e n s i t y ’

num2str (n o i s e i n t e n s i t y) ’ . ’] ;

26 d i s p l a y (d i sp) ;

28 % Read in a frame generated with the s p e c i f i e d d i s t o r t i o n s .

image s t r ing f r ame = ’ b locks .bmp ’%[image name ’ ’ n o i s e t y p e ’

n o i s e w i t h i n t e n s i t y ’ num2str (n o i s e i n t e n s i t y) ’ f i r s t F ram e .

bmp ’] ;

30 frame = imread (image s t r ing f r ame) ;

[rows , co l s , dims] = s i z e (frame) ;

32

% Find the l e v e l o f b l u r r i n e s s / sharpness by us ing a Laplace

f i l t e r .

34

% Laplace operator :

36 template = [0 1 0 ; 1 −4 1 ; 0 1 0] ;

MATLAB scripts 95

38 % F i l t e r the image through the Laplace f i l t e r

f i l t e r e d f r a m e r e d = conv2 (double (frame (: , : , 1)) , double (template

)) ;

40 f i l t e r e d f r a m e g r e e n = conv2 (double (frame (: , : , 2)) , double (

template)) ;

f i l t e r e d f r a m e b l u e = conv2 (double (frame (: , : , 3)) , double (

template)) ;

42

% Update the metr ic r e s u l t vec to r .

44 metr i c r ed (index) = max(max(abs (f i l t e r e d f r a m e r e d))) ;

met r i c g r e en (index) = max(max(abs (f i l t e r e d f r a m e g r e e n))) ;

46 met r i c b lue (index) = max(max(abs (f i l t e r e d f r a m e b l u e))) ;

48 % Calcu la te the PSNR f o r comparison .

p s n r v a l u e r e d (index) = PSNR(o r i g i n a l i m a g e (: , : , 1) , frame (: , : , 1))

;

50

% Update the metr ic index .

52 index = index + 1 ;

54 end

56 % Save metr ic data to a text f i l e as a l a t e x ta b l e .

58 % Noise var i ance .

nv = 0 . 0 1 : 0 . 0 1 : 0 . 1 ;

60 nv = nv ’ ;

62 % Metric data as a matrix .

data = [nv met r i c r ed met r i c g r e en met r i c b lue] ;

64

% Cal l to func t i on f o r sav ing data to l a t e x format in f i l e .

66 saveDataToLatex (data , ’ d a t a t o l a t e x ’ , ’ tx t ’) ;

96 MATLAB scripts

A.4 Modelling of smoothing metric

./Scripts/blur estimation gaussian.m

c l o s e a l l ;

2 c l e a r a l l ;

4 %% Estimation o f b l u r r i n g in a a video frame .

6 % Spec i f y which image to be t e s t e d .

image name = ’ l ena ’ ;

8 n o i s e t y p e = ’ gauss ian ’ ;

10 % I n s t a n t i a t e the metr ic r e s u l t v e c t o r s .

% 10 t e s t s are performed .

12 metr i c r ed = ze ro s (10 ,1) ;

met r i c g r e en = ze ro s (10 ,1) ;

14 met r i c b lue = ze ro s (10 ,1) ;

p s n r v a l u e r e d f i r s t = ze ro s (10 ,1) ;

16

% Load image .

18 o r i g i n a l i m a g e = imread ([image name ’ .bmp ’]) ;

20 % Metric index i n s t a n t i a t i o n .

index = 1 ;

22

% Loop f o r t e s t i n g with d i f f e r e n t no i s e i n t e n s i t i e s .

24 f o r n o i s e i n t e n s i t y = 0 . 0 1 : 0 . 0 1 : 0 . 1

26 di sp = [’ Ca l cu l a t ing metr ic f o r no i s e var i ance ’ num2str (

n o i s e i n t e n s i t y) ’ . ’] ;

d i s p l a y (d i sp) ;

28

% Read in two generated frames with the s p e c i f i e d d i s t o r t i o n s .

30

image s t r ing f r ame = ’ lake .bmp ’%[image name ’ ’ n o i s e t y p e ’

n o i s e w i t h v a r i a n c e ’ num2str (n o i s e i n t e n s i t y) ’ f i r s t F ram e .bmp

’] ;

32

frame = imread (image s t r ing f r ame) ;

34

[rows , co l s , dims] = s i z e (frame) ;

36

% Separate the channe l s :

MATLAB scripts 97

38 red = frame (: , : , 1) ;

green = frame (: , : , 2) ;

40 blue = frame (: , : , 3) ;

42 % Metric c a l c u l a t i o n s .

% Gaussian operator :

44 template = [1/16 2/16 1/16 ; 2/16 4/16 2/16 ; 1/16 2/16 1 / 1 6] ;

46 % F i l t e r the image through the Gaussian f i l t e r .

f i l t e r e d f r a m e r e d = conv2 (double (red) , double (template)) ;

48 f i l t e r e d f r a m e g r e e n = conv2 (double (green) , double (template)) ;

f i l t e r e d f r a m e b l u e = conv2 (double (blue) , double (template)) ;

50

f i l t e r e d f r a m e r e d = uint8 (f i l t e r e d f r a m e r e d (2 : rows+1, 2 : c o l s

+1)) ;

52 f i l t e r e d f r a m e g r e e n = uint8 (f i l t e r e d f r a m e g r e e n (2 : rows+1, 2 :

c o l s +1)) ;

f i l t e r e d f r a m e b l u e = uint8 (f i l t e r e d f r a m e b l u e (2 : rows+1, 2 : c o l s

+1)) ;

54

% Find the d i f f e r e n c e s :

56 d i f f r e d = abs (double (frame (: , : , 1)) − double (f i l t e r e d f r a m e r e d)

) ;

d i f f g r e e n = abs (double (frame (: , : , 2)) − double (

f i l t e r e d f r a m e g r e e n)) ;

58 d i f f b l u e = abs (double (frame (: , : , 3)) − double (

f i l t e r e d f r a m e b l u e)) ;

60 % Find the SAD.

f o r i = 1 : rows

62 f o r j = 1 : c o l s

met r i c r ed (index) = met r i c r ed (index) + int32 (d i f f r e d (i

, j)) ;

64 metr i c g r e en (index) = met r i c g r e en (index) + int32 (

d i f f g r e e n (i , j)) ;

me t r i c b lue (index) = met r i c b lue (index) + int32 (

d i f f b l u e (i , j)) ;

66 end

end

68

% Calcu la te the PSNR f o r comparrison .

70 p s n r v a l u e r e d f i r s t (index) = PSNR(o r i g i n a l i m a g e (: , : , 1) , frame

(: , : , 1)) ;

98 MATLAB scripts

72 % Update the metr ic vec to r index .

index = index + 1 ;

74 end

76 % Save metr ic data to a text f i l e as a l a t e x ta b l e .

78 % Noise var i ance .

nv = 0 . 0 1 : 0 . 0 1 : 0 . 1 ;

80 nv = nv ’ ;

82 % Metric data as a matrix .

data = [nv met r i c r ed met r i c g r e en met r i c b lue] ;

84

% Cal l to func t i on f o r sav ing data to l a t e x format in f i l e .

86 saveDataToLatex (data , ’ n o i s e e s t i m a t i o n 0 0 1 0 1 ’ , ’ txt ’) ;

Appendix B

VQA systems test results

99

100 VQA systems test results

B.1 Results from PSNR analyses

VQA systems test results 101

Table B.1: Results from PSRN using natural images with different levels of
Gaussian noise introduced.

PSNR

Gaussian noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 20.17 20.20 20.28
0.02 17.33 17.43 17.55
0.03 15.76 15.86 16.02
0.04 14.67 14.76 14.96
0.05 13.88 13.97 14.18
0.06 13.22 13.35 13.52
0.07 12.70 12.79 12.97
0.08 12.27 12.36 12.53
0.09 11.86 11.97 12.14
0.10 11.56 11.62 11.79

Sky

0.01 20.04 20.02 20.11
0.02 17.11 17.04 17.36
0.03 15.46 15.32 15.85
0.04 14.34 14.14 14.84
0.05 13.54 13.29 14.07
0.06 12.91 12.63 13.43
0.07 12.37 12.08 12.90
0.08 11.96 11.64 12.46
0.09 11.62 11.30 12.06
0.10 11.26 10.99 11.74

Lake

0.01 20.47 20.61 21.19
0.02 17.79 17.85 18.43
0.03 16.22 16.31 16.82
0.04 15.17 15.24 15.73
0.05 14.35 14.41 14.87
0.06 13.69 13.74 14.17
0.07 13.14 13.21 13.60
0.08 12.67 12.71 13.09
0.09 12.27 12.35 12.70
0.10 11.93 11.96 12.31

102 VQA systems test results

Table B.2: Results from PSRN using natural images with different levels of
salt & pepper noise introduced.

PSNR

Salt & pepper noise

Noise density Red channel Green channel Blue channel

Lena

0.01 25.04 25.04 25.11
0.02 22.32 22.08 21.87
0.03 20.39 20.39 20.19
0.04 19.27 19.13 18.84
0.05 18.21 18.09 18.00
0.06 17.44 17.28 17.25
0.07 16.76 16.65 16.46
0.08 16.23 16.07 15.93
0.09 15.67 15.53 15.39
0.10 15.16 15.16 14.98

Sky

0.01 25.68 25.94 24.87
0.02 22.60 22.98 22.06
0.03 20.94 21.20 20.33
0.04 19.60 20.02 19.05
0.05 18.67 19.08 18.12
0.06 17.77 18.28 17.37
0.07 17.23 17.55 16.59
0.08 16.66 16.96 16.05
0.09 16.08 16.40 15.49
0.10 15.65 15.99 15.10

Lake

0.01 24.69 24.68 24.17
0.02 21.68 21.54 21.12
0.03 19.99 19.91 19.35
0.04 18.67 18.70 18.09
0.05 17.72 17.72 17.11
0.06 16.97 16.91 16.29
0.07 16.30 16.24 15.64
0.08 15.68 15.56 15.08
0.09 15.20 15.10 14.64
0.10 14.69 14.65 14.10

VQA systems test results 103

Table B.3: Results from PSRN using natural images with different levels of
speckle noise introduced.

PSNR

Speckle noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 24.98 29.00 30.51
0.02 22.08 25.99 27.50
0.03 20.35 24.22 25.73
0.04 19.17 22.99 24.49
0.05 18.28 22.03 23.52
0.06 17.54 21.22 22.74
0.07 16.92 20.58 22.08
0.08 16.40 20.00 21.49
0.09 15.93 19.50 20.99
0.10 15.53 19.03 20.52

Sky

0.01 29.15 25.69 22.56
0.02 26.14 22.70 19.57
0.03 24.38 20.93 17.84
0.04 23.14 19.67 16.69
0.05 22.16 18.72 15.83
0.06 21.39 17.91 15.16
0.07 20.70 17.25 14.60
0.08 20.12 16.66 14.14
0.09 19.61 16.16 13.74
0.10 19.15 15.69 13.39

Lake

0.01 25.41 25.29 25.76
0.02 22.67 22.60 22.84
0.03 21.05 20.99 21.17
0.04 19.92 19.86 19.94
0.05 19.06 18.97 19.03
0.06 18.34 18.25 18.30
0.07 17.73 17.63 17.66
0.08 17.24 17.09 17.09
0.09 16.78 16.65 16.59
0.10 16.38 16.21 16.18

104 VQA systems test results

Table B.4: FEIL Results from PSNR calculations using natural images with
different levels of blurring.

PSNR

Blurring

Noise variance Red channel Green channel Blue channel

Lena

0.3 68.01 73.07 70.42
0.4 46.24 48.06 47.04
0.5 38.30 40.23 39.26
0.6 34.74 36.74 35.86
0.7 32.95 34.99 34.17
0.8 31.96 34.02 33.24
0.9 31.34 33.42 32.68
10 30.93 33.03 32.31

Sky

0.3 93.37 71.52 68.52
0.4 56.38 53.74 50.80
0.5 47.33 45.09 42.18
0.6 43.72 41.21 38.33
0.7 41.82 39.23 36.35
0.8 40.75 38.11 35.22
0.9 40.09 37.40 34.51
1.0 39.66 36.94 34.05

Lake

0.3 58.28 58.15 58.56
0.4 38.56 38.44 38.77
0.5 30.79 30.66 30.99
0.6 27.52 27.37 27.70
0.7 25.96 25.80 26.13
0.8 25.11 24.95 25.27
0.9 24.61 24.44 24.76
1.0 24.29 24.11 24.43

VQA systems test results 105

(a) Plot of the PSNR values from table B.1.

(b) Plot of the PSNR values from table B.2.

(c) Plot of the PSNR values from table B.3.

Figure B.1: The three plots show how the PSNR evolves as the intensity of
Gaussian noise, salt & pepper noise and speckle noise increases.

106 VQA systems test results

B.2 Results from testing the A & D metric

VQA systems test results 107

Table B.5: Results from simulating the accumulate and differentiate metric
using natural images with different levels of Gaussian noise introduced.

Accumulate and differentiate

Gaussian noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 334684 330662 331414
0.02 466105 442788 425789
0.03 561571 504404 524452
0.04 625327 626501 607679
0.05 699278 622373 647622
0.06 707652 717766 696144
0.07 768655 736291 721965
0.08 838667 760053 785522
0.09 793399 830853 757306
0.10 918612 838086 852211

Sky

0.01 242668 249930 247850
0.02 333377 342969 344006
0.03 400671 425026 390437
0.04 464236 490683 425486
0.05 512504 520438 468611
0.06 564553 537663 520748
0.07 561937 586286 544413
0.08 677665 590814 529439
0.09 654674 669207 583883
0.10 653771 662077 574665

Lake

0.01 390186 376567 326101
0.02 503126 496457 459724
0.03 609025 630384 566524
0.04 704280 694316 644091
0.05 765685 713730 693002
0.06 758743 835483 758533
0.07 893655 853045 779963
0.08 930516 913447 864386
0.09 913433 955711 911517
0.10 964555 1010820 961209

108 VQA systems test results

Table B.6: Results from simulating the accumulate and differentiate metric
using natural images with different levels of salt & pepper noise.

Accumulate and differentiate

Salt & pepper noise

Noise density Red channel Green channel Blue channel

Lena

0.01 191551 178918 188649
0.02 248940 260724 273242
0.03 324408 337767 344010
0.04 349694 370443 361123
0.05 397113 391388 417737
0.06 423619 441191 452206
0.07 450773 516700 482878
0.08 505202 489954 543323
0.09 560966 547529 560895
0.10 596789 591578 580511

Sky

0.01 132655 116235 133226
0.02 187116 178913 197764
0.03 222323 216069 225012
0.04 239588 242399 263938
0.05 298546 288007 296991
0.06 321228 283584 346003
0.07 322815 322609 367539
0.08 351343 341617 371554
0.09 365928 345714 398157
0.10 397170 369705 395519

Lake

0.01 226861 225958 241283
0.02 328354 328300 334554
0.03 388571 418121 446960
0.04 460313 449038 506641
0.05 510779 501314 562893
0.06 577045 612069 589616
0.07 638158 653929 642952
0.08 652647 635766 668095
0.09 699095 714336 759944
0.10 758484 723237 770447

VQA systems test results 109

Table B.7: Results from simulating the accumulate and differentiate metric
using natural images with different levels of speckle noise.

Accumulate and differentiate

Speckle noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 184416 124087 93990
0.02 254774 168264 133622
0.03 325261 218504 171667
0.04 371029 235214 196788
0.05 411125 264996 208636
0.06 456683 308200 227730
0.07 481731 306382 255053
0.08 481009 338283 282435
0.09 532456 349358 296499
0.10 555515 383830 313606

Sky

0.01 78936 132117 163696
0.02 102544 175991 250053
0.03 148373 221192 317371
0.04 167275 254204 365534
0.05 192712 301225 392650
0.06 214531 315783 411659
0.07 225722 350805 446511
0.08 235643 361931 460386
0.09 261010 378169 531422
0.10 268234 396573 534966

Lake

0.01 196903 191364 177304
0.02 276574 288752 238592
0.03 323568 338643 286589
0.04 373821 373717 330994
0.05 399699 395051 358645
0.06 427678 455010 377425
0.07 500371 477257 440884
0.08 493617 502474 458405
0.09 536811 537894 495496
0.10 576543 540459 537711

110 VQA systems test results

B.3 Results from testing the median filter metric

VQA systems test results 111

Table B.8: Results from simulating the median filter-based metric using
natural images with different levels of Gaussian noise introduced.

Median filter and SAD

Gaussian noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 4913313 4890370 4877412
0.02 6762193 6663023 6626283
0.03 8061861 7963160 7854952
0.04 9131804 8993836 8830205
0.05 9986123 9849536 9622042
0.06 10749044 10544812 10326682
0.07 11445561 11240398 10970763
0.08 12005326 11814176 11512375
0.09 12605568 12333161 12027002
0.10 13026455 12815593 12475062

Sky

0.01 3690953 3690724 3676566
0.02 5159099 5197207 5081958
0.03 6291165 6378118 6060828
0.04 7202224 7324333 6839968
0.05 7902416 8098197 7453557
0.06 8566118 8798671 7991072
0.07 9111458 9437555 8496039
0.08 9602881 9931748 8913510
0.09 9972337 10404944 9317002
0.10 10450917 10828605 9641268

Lake

0.01 7832916 7744973 6787682
0.02 9896935 9781194 8564327
0.03 11441746 11272618 9894879
0.04 12645097 12444621 11000850
0.05 13738173 13512697 11927856
0.06 14644436 14448499 12796746
0.07 15437628 15185811 13517000
0.08 16224109 15971446 14224020
0.09 16891162 16616612 14804162
0.10 17442700 17193317 15421615

112 VQA systems test results

Table B.9: Results from simulating the median filter-based metric using
natural images with different levels of salt & pepper noise.

Median filter and SAD

Salt & pepper noise

Noise density Red channel Green channel Blue channel

Lena

0.01 1253892 1159403 1245412
0.02 1555204 1480634 1586747
0.03 1910087 1794591 1904827
0.04 2216150 2129376 2252859
0.05 2565114 2478555 2542296
0.06 2878066 2809993 2844384
0.07 3215302 3128173 3225652
0.08 3517618 3455104 3528894
0.09 3865278 3794746 3867057
0.10 4227065 4079874 4154346

Sky

0.01 417799 357488 387752
0.02 673480 608432 628556
0.03 915817 866291 880934
0.04 1182300 1102258 1139513
0.05 1418894 1344665 1380311
0.06 1700985 1597547 1620974
0.07 1919299 1867381 1913520
0.08 2163944 2131316 2150473
0.09 2432307 2409866 2428063
0.10 2673469 2632558 2646827

Lake

0.01 3907658 3952600 3665144
0.02 4349528 4408883 4104084
0.03 4760735 4808378 4543031
0.04 5218099 5235151 4979705
0.05 5657254 5664657 5421495
0.06 6064378 6102262 5867417
0.07 6507318 6535193 6312280
0.08 6969966 7027328 6722281
0.09 7390852 7434459 7109451
0.10 7852429 7851400 7602769

VQA systems test results 113

Table B.10: Results from simulating the median filter-based metric using
natural images with different levels of speckle noise.

Median filter and SAD

Speckle noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 2915053 1892599 1719823
0.02 3924058 2507192 2202158
0.03 4732492 3001224 2613471
0.04 5400977 3419331 2945763
0.05 5968986 3798061 3260968
0.06 6476285 4141681 3543010
0.07 6931635 4452297 3804218
0.08 7341124 4728217 4033519
0.09 7759832 5015447 4258372
0.10 8085022 5281904 4489150

Sky

0.01 1366819 2036942 2919382
0.02 1932455 2865980 4134893
0.03 2349996 3506148 5037761
0.04 2726061 4062721 5749638
0.05 3039261 4524007 6373510
0.06 3311711 4981862 6872448
0.07 3606207 5376821 7311647
0.08 3838158 5748848 7746472
0.09 4064583 6078712 8099165
0.10 4290988 6413692 8413304

Lake

0.01 5487479 5587482 4861616
0.02 6473436 6511418 5679942
0.03 7224899 7256319 6329385
0.04 7864370 7914399 6918206
0.05 8419499 8451622 7392018
0.06 8917608 8973146 7864382
0.07 9396185 9421179 8274878
0.08 9813727 9894801 8690871
0.09 10219168 10285924 9100667
0.10 10601818 10686036 9393059

114 VQA systems test results

Table B.11: Results from simulating the median filter-based metric using
natural images with different levels of blurring.

Median filter and SAD

Blurring

Noise variance Red channel Green channel Blue channel

Lena

0.30 911084 822685 927834
0.40 781209 706382 794164
0.50 568956 509720 573258
0.60 416170 369014 415405
0.70 325514 284219 320803
0.80 276798 239439 270769
0.90 250611 215149 243540
1.00 236076 201860 228569

Sky

0.30 167821 101556 124273
0.40 163679 101065 123526
0.50 105597 80736 88689
0.60 67139 48132 54114
0.70 44494 30578 35059
0.80 33870 22052 26204
0.90 28798 16804 21178
1.00 27192 16489 20497

Lake

0.30 3438949 3488204 3202801
0.40 2855667 2902961 2651254
0.50 1963643 2002786 1821165
0.60 1318460 1351312 1218971
0.70 955009 981778 882770
0.80 770420 792359 712347
0.90 679151 699244 628489
1.00 637483 655617 589173

VQA systems test results 115

B.4 Results from testing the gradient metric

116 VQA systems test results

Table B.12: Results from simulating the Laplace filter-based metric using
natural images with different levels of Gaussian noise.

Absolute value of gradient

Gaussian noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 598.00 537.00 649.00
0.02 708.00 724.00 744.00
0.03 900.00 848.00 819.00
0.04 961.00 959.00 937.00
0.05 925.00 978.00 976.00
0.06 1011.00 988.00 993.00
0.07 1011.00 1000.00 1020.00
0.08 1011.00 1019.00 1020.00
0.09 1013.00 1020.00 1020.00
0.10 1020.00 1020.00 1020.00

Sky

0.01 543.00 565.00 501.00
0.02 760.00 684.00 689.00
0.03 856.00 781.00 806.00
0.04 945.00 947.00 895.00
0.05 953.00 953.00 960.00
0.06 1014.00 999.00 984.00
0.07 1008.00 958.00 1020.00
0.08 1020.00 998.00 1020.00
0.09 1020.00 994.00 1020.00
0.10 1020.00 984.00 1020.00

Lake

0.01 906.00 865.00 897.00
0.02 944.00 960.00 904.00
0.03 1007.00 1007.00 922.00
0.04 975.00 956.00 975.00
0.05 986.00 1015.00 1000.00
0.06 1020.00 1003.00 1020.00
0.07 1020.00 1016.00 1019.00
0.08 1020.00 1020.00 1020.00
0.09 1020.00 1020.00 1020.00
0.10 1020.00 1020.00 1020.00

VQA systems test results 117

Table B.13: Results from simulating the Laplace filter-based metric using
natural images with different levels of salt & pepper noise.

Absolute value of gradient

Salt & pepper noise

Noise density Red channel Green channel Blue channel

Lena

0.01 1001.00 930.00 936.00
0.02 1011.00 953.00 931.00
0.03 1013.00 958.00 957.00
0.04 1006.00 952.00 969.00
0.05 1011.00 968.00 960.00
0.06 1012.00 974.00 958.00
0.07 1018.00 980.00 968.00
0.08 1016.00 962.00 996.00
0.09 1020.00 982.00 975.00
0.10 1020.00 970.00 984.00

Sky

0.01 816.00 724.00 876.00
0.02 813.00 729.00 888.00
0.03 877.00 816.00 914.00
0.04 864.00 810.00 928.00
0.05 926.00 816.00 921.00
0.06 878.00 896.00 970.00
0.07 944.00 909.00 926.00
0.08 943.00 876.00 965.00
0.09 934.00 909.00 963.00
0.10 946.00 900.00 1020.00

Lake

0.01 1020.00 1019.00 1020.00
0.02 1011.00 1009.00 1020.00
0.03 1019.00 1020.00 1020.00
0.04 1020.00 1020.00 1020.00
0.05 1020.00 1020.00 1020.00
0.06 1020.00 1020.00 1020.00
0.07 1020.00 1020.00 1020.00
0.08 1020.00 1020.00 1020.00
0.09 1020.00 1020.00 1020.00
0.10 1020.00 1020.00 1020.00

118 VQA systems test results

Table B.14: Results from simulating the Laplace filter-based metric using
natural images with different levels of speckle noise.

Absolute value of gradient

Speckle noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 494.00 388.00 464.00
0.02 540.00 469.00 486.00
0.03 552.00 494.00 597.00
0.04 573.00 601.00 531.00
0.05 606.00 517.00 638.00
0.06 657.00 653.00 599.00
0.07 646.00 597.00 724.00
0.08 686.00 663.00 689.00
0.09 704.00 676.00 630.00
0.10 699.00 668.00 739.00

Sky

0.01 273.00 321.00 536.00
0.02 278.00 395.00 581.00
0.03 312.00 433.00 557.00
0.04 364.00 469.00 573.00
0.05 385.00 494.00 658.00
0.06 450.00 597.00 649.00
0.07 420.00 633.00 653.00
0.08 424.00 634.00 689.00
0.09 495.00 672.00 795.00
0.10 480.00 734.00 742.00

Lake

0.01 864.00 814.00 873.00
0.02 882.00 901.00 877.00
0.03 872.00 859.00 817.00
0.04 902.00 852.00 839.00
0.05 847.00 873.00 893.00
0.06 873.00 868.00 895.00
0.07 873.00 930.00 906.00
0.08 911.00 875.00 908.00
0.09 960.00 910.00 931.00
0.10 869.00 905.00 970.00

VQA systems test results 119

Table B.15: Results from simulating the Laplace filter-based metric using
natural images with different levels of blurring.

Absolute value of gradient

Blurring

Noise variance Red channel Green channel Blue channel

Lena

0.03 376.00 344.00 408.00
0.04 334.00 295.00 351.00
0.05 269.00 221.00 257.00
0.06 213.00 169.00 186.00
0.07 201.00 146.00 155.00
0.08 193.00 141.00 138.00
0.09 188.00 137.00 130.00
0.10 184.00 134.00 123.00

Sky

0.03 233.00 326.00 413.00
0.04 210.00 290.00 367.00
0.05 164.00 231.00 295.00
0.06 131.00 183.00 231.00
0.07 108.00 150.00 193.00
0.08 92.00 132.00 165.00
0.09 90.00 123.00 156.00
0.10 88.00 120.00 153.00

Lake

0.03 803.00 771.00 803.00
0.04 638.00 632.00 668.00
0.05 426.00 433.00 462.00
0.06 283.00 289.00 309.00
0.07 202.00 218.00 232.00
0.08 194.00 194.00 204.00
0.09 189.00 189.00 189.00
0.10 185.00 185.00 185.00

120 VQA systems test results

B.5 Results from testing the smoothing metric

VQA systems test results 121

Table B.16: Results from simulating the Gaussian filter-based metric using
natural images with different levels of Gaussian noise.

Excessive blurring

Gaussian noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 4411531 4346250 4330319
0.02 6016291 5896842 5856248
0.03 7161986 7046300 6959717
0.04 8107044 7970917 7824750
0.05 8862740 8728193 8544282
0.06 9552712 9361418 9189918
0.07 10176095 9991604 9774152
0.08 10679183 10517031 10283809
0.09 11214735 10986847 10747650
0.10 11614524 11428337 11171034

Sky

0.01 3261581 3278474 3286061
0.02 4557912 4597591 4516015
0.03 5538728 5616959 5372169
0.04 6339357 6451129 6054879
0.05 6955050 7124335 6602802
0.06 7529692 7745426 7091914
0.07 8019252 8287573 7553730
0.08 8454760 8738771 7940092
0.09 8788080 9148644 8309588
0.10 9205300 9515678 8622354

Lake

0.01 6989491 6931811 6204916
0.02 8809067 8729109 7813162
0.03 10198806 10074879 9048099
0.04 11286756 11147762 10053222
0.05 12276802 12114551 10934290
0.06 13113605 12990291 11746921
0.07 13859511 13667273 12427343
0.08 14570862 14386053 13099495
0.09 15194594 14984203 13641295
0.10 15717802 15550433 14228083

122 VQA systems test results

Table B.17: Results from simulating the Gaussian filter-based metric using
natural images with different levels of salt & pepper noise.

Excessive blurring

Salt & pepper noise

Noise density Red channel Green channel Blue channel

Lena

0.01 1435314 1289844 1342313
0.02 1819109 1706971 1781164
0.03 2264569 2102495 2186955
0.04 2633973 2514342 2622842
0.05 3048413 2941422 2966962
0.06 3422714 3342083 3332053
0.07 3810177 3712710 3781252
0.08 4157331 4090998 4134698
0.09 4543032 4480905 4528894
0.10 4937278 4790857 4848368

Sky

0.01 543842 513886 572058
0.02 898133 864923 909618
0.03 1223562 1210752 1254392
0.04 1570421 1520496 1601571
0.05 1870908 1824934 1915916
0.06 2225211 2137050 2225034
0.07 2480202 2462818 2590452
0.08 2776715 2766016 2887157
0.09 3083068 3072877 3212452
0.10 3354285 3320670 3468970

Lake

0.01 3805560 3842950 3632645
0.02 4337434 4386844 4179989
0.03 4825799 4863453 4717384
0.04 5366380 5368405 5257254
0.05 5862867 5864689 5787975
0.06 6331658 6366581 6325987
0.07 6827649 6849659 6849875
0.08 7342704 7425450 7333615
0.09 7815611 7879283 7792017
0.10 8333864 8338936 8355868

VQA systems test results 123

Table B.18: Results from simulating the Gaussian filter-based metric using
natural images with different levels of speckle noise.

Excessive blurring

Speckle noise

Noise variance Red channel Green channel Blue channel

Lena

0.01 2696633 1758392 1594703
0.02 3567762 2285293 2010787
0.03 4270082 2709036 2360136
0.04 4849784 3070702 2647632
0.05 5349207 3395705 2919494
0.06 5793872 3690925 3170280
0.07 6199283 3964596 3388391
0.08 6564687 4208619 3599151
0.09 6929044 4459570 3797350
0.10 7229341 4688599 3986374

Sky

0.01 1232655 1836012 2637070
0.02 1726408 2564272 3693473
0.03 2094707 3124588 4489529
0.04 2418491 3606987 5114855
0.05 2697567 4015237 5660785
0.06 2937405 4407547 6113300
0.07 3191411 4755695 6514098
0.08 3397541 5083001 6884177
0.09 3599883 5376205 7210858
0.10 3795695 5670864 7495271

Lake

0.01 4998202 5103418 4550159
0.02 5863339 5928901 5293799
0.03 6525663 6589182 5880903
0.04 7096494 7174560 6415837
0.05 7594657 7666355 6873351
0.06 8042664 8135537 7291878
0.07 8473655 8549102 7680391
0.08 8850803 8963755 8057763
0.09 9215027 9329943 8421559
0.10 9567923 9689349 8711611

124 VQA systems test results

Table B.19: Results from simulating the Gaussian filter-based metric using
natural images with different levels of blurring.

Excessive blurring

Blurring

Noise variance Red channel Green channel Blue channel

Lena

0.30 991977 846445 926164
0.40 877667 746640 810104
0.50 687697 574813 616467
0.60 547011 448875 475441
0.70 461245 371455 390428
0.80 413222 328775 343243
0.90 385783 304548 317027
1.00 369580 290662 301908

Sky

0.30 187159 145594 192373
0.40 180990 142664 188059
0.50 124182 115340 146882
0.60 83489 80762 107940
0.70 60405 65095 88053
0.80 49949 57750 79031
0.90 45265 52784 74026
1.00 43499 52011 72344

Lake

0.30 3249225 3289309 3064694
0.40 2733260 2771852 2573886
0.50 1945478 1978079 1839343
0.60 1376414 1400726 1304416
0.70 1046835 1066274 997522
0.80 873932 889480 835964
0.90 784711 797980 752541
1.00 741017 752734 711915

Bibliography

[1] Eirik Tørud Nordeng. Video metric measurements in an FPGA for use in

objective no-reference video quality analysis, 2012.

[2] Donald G. Bailey. Design for Embedded Image Processing on FPGAs. John

Wiley & Sons, May 2011. ISBN 9780470828502.

[3] Altera Corporation. Embedded multipliers in cyclone II devices, Febru-

ary 2007. URL http://www.altera.com/literature/hb/cyc2/cyc2_

cii51012.pdf.

[4] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey

of systems and software. ACM Comput. Surv., 34(2):171210, June 2002.

ISSN 0360-0300. doi: 10.1145/508352.508353. URL http://doi.acm.org/

10.1145/508352.508353.

[5] Keith Jack. Video Demystified: A Handbook for the Digital Engineer. Else-

vier, April 2011. ISBN 9780080553955.

[6] Rafael C Gonzalez and Richard E Woods. Digital image processing. Prentice

Hall, 2008. ISBN 9780131687288.

[7] G.L. Bates and S. Nooshabadi. FPGA implementation of a median filter. In

, Proceedings of IEEE TENCON ’97. IEEE Region 10 Annual Conference.

Speech and Image Technologies for Computing and Telecommunications, vol-

ume 2, pages 437–440 vol.2, 1997. doi: 10.1109/TENCON.1997.648210.

[8] Stefan Winkler. Digital Video Quality: Vision Models and Metrics. Wiley,

March 2005. ISBN 9780470024041.

125

http://www.altera.com/literature/hb/cyc2/cyc2_cii51012.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51012.pdf
http://doi.acm.org/10.1145/508352.508353
http://doi.acm.org/10.1145/508352.508353

126 BIBLIOGRAPHY

[9] R. Ferzli and L.J. Karam. A no-reference objective image sharpness metric

based on just-noticeable blur and probability summation. In IEEE Interna-

tional Conference on Image Processing, 2007. ICIP 2007, volume 3, pages

III – 445–III – 448, 2007. doi: 10.1109/ICIP.2007.4379342.

[10] R. Ferzli and L.J. Karam. A no-reference objective image sharpness metric

based on the notion of just noticeable blur (JNB). IEEE Transactions on

Image Processing, 18(4):717–728, 2009. ISSN 1057-7149. doi: 10.1109/TIP.

2008.2011760.

[11] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi. A no-reference

perceptual blur metric. In 2002 International Conference on Image Pro-

cessing. 2002. Proceedings, volume 3, pages III–57 – III–60 vol.3, 2002. doi:

10.1109/ICIP.2002.1038902.

[12] M. Masry, S.S. Hemami, and Y. Sermadevi. A scalable wavelet-based video

distortion metric and applications. IEEE Transactions on Circuits and Sys-

tems for Video Technology, 16(2):260–273, 2006. ISSN 1051-8215. doi:

10.1109/TCSVT.2005.861946.

[13] N.D. Narvekar and L.J. Karam. A no-reference perceptual image sharpness

metric based on a cumulative probability of blur detection. In International

Workshop on Quality of Multimedia Experience, 2009. QoMEx 2009, pages

87–91, 2009. doi: 10.1109/QOMEX.2009.5246972.

[14] Xiang Zhu and P. Milanfar. A no-reference sharpness metric sensitive to blur

and noise. In International Workshop on Quality of Multimedia Experience,

2009. QoMEx 2009, pages 64–69, 2009. doi: 10.1109/QOMEX.2009.5246976.

[15] R. Dosselmann and Xue Dong Yang. A prototype no-reference video quality

system. In Fourth Canadian Conference on Computer and Robot Vision,

2007. CRV ’07, pages 411–417, 2007. doi: 10.1109/CRV.2007.6.

[16] J.S. Lee and K. Hoppel. Noise modeling and estimation of remotely-sensed

images. In Geoscience and Remote Sensing Symposium, 1989. IGARSS’89.

12th Canadian Symposium on Remote Sensing., 1989 International, vol-

ume 2, pages 1005–1008, 1989. doi: 10.1109/IGARSS.1989.579061.

[17] J. Caviedes and Sabri Gurbuz. No-reference sharpness metric based on local

edge kurtosis. In 2002 International Conference on Image Processing. 2002.

BIBLIOGRAPHY 127

Proceedings, volume 3, pages III–53–III–56 vol.3, 2002. doi: 10.1109/ICIP.

2002.1038901.

[18] Yongfeng Wang, Haiqing Du, Jingtao Xu, and Yong Liu. A no-reference per-

ceptual blur metric based on complex edge analysis. In 2012 3rd IEEE In-

ternational Conference on Network Infrastructure and Digital Content (IC-

NIDC), pages 487–491, 2012. doi: 10.1109/ICNIDC.2012.6418801.

[19] Alan Burns and Andrew J. Wellings. Real-Time Systems and Program-

ming Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-

Wesley, April 2009. ISBN 9780321417459.

[20] National Instruments. How to identify common video defects with the NI

analog video analyzer, 2011.

[21] Jørgen Linnerud. Personal communication via e-mail: Known analog video

system issues, November 2012.

[22] Alan C. Bovik. Handbook of Image and Video Processing. Academic Press,

July 2010. ISBN 9780080533612.

[23] National Instruments. Picture quality analysis: Real-time measurements for

objective video quality, June 2012.

[24] Analog Devices. AD9388A, 2010. URL http://www.analog.com/static/

imported-files/data_sheets/AD9388A.pdf. Rev. F.

[25] Altera Corporation. RAM-Based shift register (ALTSHIFT TAPS) mega-

function - user guide, 2013.

http://www.analog.com/static/imported-files/data_sheets/AD9388A.pdf
http://www.analog.com/static/imported-files/data_sheets/AD9388A.pdf

	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Assignment specification
	1.2 Contribution
	1.3 Report layout

	2 The approach and previous work
	3 Theoretical background
	3.1 Field-programmable gate arrays
	3.2 Video representation
	3.3 Digital signal processing
	3.3.1 Convolution
	3.3.2 Median filter
	3.3.3 Histogram processing

	3.4 Video quality assessment
	3.4.1 Video quality metrics

	3.5 Electronic circuitry
	3.5.1 Fault sources
	3.5.2 Associated video distortions
	3.5.3 Image noise models

	4 Equipment
	4.1 Software for algorithm modelling and testing
	4.2 Software for implementing FPGA circuits
	4.3 Target hardware

	5 Presentation of the VQA algorithms
	5.1 System specification
	5.2 Data Value Analyses
	5.2.1 Reduced-reference assessment tools
	5.2.2 Testing for stuck-at faults
	5.2.3 Histogram processing

	5.3 Random noise metrics
	5.3.1 Accumulate and differentiate metric
	5.3.2 Median filtering metric

	5.4 Blur metrics
	5.4.1 Gaussian filtering metric
	5.4.2 Gradient metric

	5.5 Post processing

	6 Modelling and testing the algorithms
	6.1 The tests and the criteria
	6.2 General algorithm modelling
	6.3 Data value analyses
	6.3.1 Testing for stuck-at faults
	6.3.2 Histogram processing

	6.4 Random noise metrics
	6.4.1 Accumulate and differentiate metric
	6.4.2 Median filtering metric

	6.5 Blur metrics
	6.5.1 Gradient metric
	6.5.2 Gaussian filtering metric

	7 Implementation and verification
	7.1 Frequently used components and values
	7.1.1 Row buffer
	7.1.2 Averaging

	7.2 Data value analyses
	7.2.1 Testing for stuck-at faults
	7.2.2 Histogram processing

	7.3 Accumulate and differentiate metric
	7.4 Median filtering metric
	7.5 Gradient metric
	7.6 Gaussian filtering metric
	7.7 Verification

	8 Results
	8.1 Algorithm test results
	8.1.1 Data assessment tools
	8.1.2 Accumulate and differentiate metric
	8.1.3 Median filtering metric
	8.1.4 Gradient metric
	8.1.5 Gaussian filtering metric

	8.2 Synthesis results

	9 Discussion
	9.1 Algorithm design and testing
	9.2 VHDL modelling
	9.3 Final discussion

	10 Concluding remarks
	10.1 Future work

	A MATLAB scripts
	A.1 Modelling of median filter metric
	A.2 Modelling of A & D metric
	A.3 Modelling of gradient metric
	A.4 Modelling of smoothing metric

	B VQA systems test results
	B.1 Results from PSNR analyses
	B.2 Results from testing the A & D metric
	B.3 Results from testing the median filter metric
	B.4 Results from testing the gradient metric
	B.5 Results from testing the smoothing metric

	Bibliography

