
Trade-offs between Performance and
Robustness for Ultra Low Power/Low
Energy Subthreshold D flip-flops in 65nm
CMOS

Magne Værnes

Master of Science in Electronics

Supervisor: Snorre Aunet, IET
Co-supervisor: Anders Hagen, Q-Free ASA

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

The need for Ultra Low Power systems has increased with increasing
number of portable devices. The maintenance costs of battery powered
systems can be greatly reduced by improving the battery time, especially
in places where battery replacement is hard or impossible. Implementation
of subthreshold D flip-flops in layout is one step closer to having a sub-
threshold building block library. The task for this thesis is to implement
D flip-flop blocks, which are highly suitable for subthreshold operation in
layout. These are the PowerPC 603, C2MOS, a Classic NAND-based D flip-
flop, and two Minority3-based D flip-flops. The D flip-flops are first custom
designed for 250mV in schematic at transistor level, and then implemented
in layout. The implementation in layout focuses on high robustness against
process variations, by using high regularity for the cost of area.

The D flip-flops are simulated in both schematic and layout, and the
results are compared to each other and earlier results found in papers. The
results show that the PowerPC 603 has the lowest PDP, the lowest power
consumption, very low propagation delay, and an average relative standard
deviation for delay. The C2MOS has the lowest propagation delay, low
power consumption and low PDP results. However, it has the highest rel-
ative standard deviation on delay. The Minority3-based D flip-flops have
a very low relative standard deviation for delay, which makes them the
most robust against process variations in this sense. However, they have
the highest propagation delay, highest power consumption and PDP, and
consumes the highest chip area. The Classic NAND-based D flip-flop has
good PDP and power consumption results, but a high delay and average
standard deviation for delay. Earlier papers show similar results for the
C2MOS and the PowerPC 603, but no results are found for the rest. Fu-
ture work consists of implementing and testing forced-stacked blocks, body
biasing, high threshold voltage transistors, and tape-out measurements.

Preface

This Thesis is the finishing part of the degree Master of Science in Circuit and
System design at the Department of Electronics and Telecommunication, Faculty
of Information Technology, Mathematics and Electrical Engineering, at the Nor-
wegian University of Science and Technology (NTNU). It is done in cooperation
with Q-free ASA Trondheim, with Professor Snorre Aunet at NTNU and Anders
Hagen from Q-free as supervisors, and Professor Trond Ytterdal at NTNU as co-
supervisor. I chose low power design for my Thesis because I find it interesting,
and because I believe it will be an important part of everyday electronics in the
future. The task was challenging, and gave me valuable knowledge in subthresh-
old operation, IC-design at schematic and layout, process variations, D flip-flop
functionality and more.
I will firstly like to thank my supervisor Professor Snorre Aunet for his help and
guidance through the project. He has shown great interest to the task, and always
been available for help in his office, on the phone or through email. Secondly,
I would like to thank co-supervisors Anders Hagen and Trond Ytterdal for the
help provided by working with my Thesis.

Third, I would like to thank my fellow students Joacim Dybedal, Jonathan
Bjerkedok and Lars-Frode Schjolden at the study room for the support and the
RC-helicopter flying in the breaks.

Forth, I would like to thank my family for their support.
Last, but not least, I would like to thank my partner Tuva for supporting me

through the whole process.

iii

iv

Contents

Contents

1 Introduction 1
1.1 Overview of the Thesis . 2

2 Problem Description 3

3 Theoretical Background 5
3.1 Subthreshold Operation . 5

3.1.1 Subthreshold Delay . 6
3.1.2 Subthreshold Power Consumption 6
3.1.3 Subthreshold Leakage Current 7

3.2 Transistor Matching . 8
3.3 Robustness . 8

3.3.1 Temperature Variations . 8
3.3.2 Process Variations . 9
3.3.3 Well-Proximity-Effect . 9

3.4 The Building Blocks . 10
3.4.1 Inverter . 10
3.4.2 Transmission Gate . 10
3.4.3 Clocked Inverter . 10
3.4.4 Minority3 Gate . 10
3.4.5 D-latches . 11
3.4.6 The D flip-flop . 14

3.5 D flip-flop Design Structures . 15
3.5.1 The Classic NAND-based D flip-flop 15
3.5.2 Minority3-based D flip-flop 15
3.5.3 C2MOS D flip-flop . 16
3.5.4 PowerPC 603 D flip-flop . 16

3.6 Timing and Delay . 17
3.7 Transistor Layout . 18

3.7.1 Substrate Connection . 18
3.7.2 Dummy transistors . 18
3.7.3 Design Rules . 19
3.7.4 Parasitic Extraction . 19

4 Selecting D flip-flop Implementation and Design in Schematics 21
4.1 Selecting D flip-flop Designs . 21

4.1.1 Classic NAND-based D flip-flop 21
4.1.2 Minority3-based D flip-flop 22
4.1.3 Minority3-based D flip-flop without Set Input 22
4.1.4 C2MOS D flip-flop . 22
4.1.5 PowerPC 603 D flip-flop . 22

4.2 Designing Schematics for D flip-flop building blocks 23
4.2.1 Sizing of Transistors . 23
4.2.2 Deciding the Supply Voltage 24
4.2.3 Designing the Inverter . 24
4.2.4 Designing the Clocked Inverter 24

v

Contents

4.2.5 Designing the Transmission Gate 25
4.2.6 Designing the Minority3-Gate 25
4.2.7 Designing the Minority3-based NAND-gate 26
4.2.8 Designing the two-input NAND 27

4.3 Designing the Schematics for the D flip-flops 28
4.3.1 Designing the Classic NAND D flip-flop 28
4.3.2 Designing the Minority3 D flip-flop 28
4.3.3 Designing the Minority3 no-set D flip-flop 29
4.3.4 Designing the C2MOS D flip-flop 29
4.3.5 Designing the PowerPC 603 D flip-flop 30
4.3.6 D flip-flop Transistor Count 31

4.4 Modifying the Transistor Dimensions To Improve the Regularity . 31

5 Implementation in Layout 33
5.1 Transistor Layout . 33

5.1.1 Substrate Connection . 33
5.1.2 Parasitic Extraction . 33
5.1.3 nWell placement and sizing 33
5.1.4 Regularity . 34
5.1.5 Design Rules . 35

5.2 D Flip-Flop Implementation in Layout 37

6 Testbenches 39
6.1 Balancing Testbench . 39
6.2 The Delay Testbench . 39
6.3 The Power and PDP Testbench . 40

7 Simulations 43
7.1 Transistor Layout . 43

7.1.1 Parasitic Extraction . 43
7.1.2 nWell placement and sizing 43

7.2 D flip-flop functionality . 43
7.3 Delay Simulation . 43
7.4 Maximum D flip-flop frequency based on maximum delay 44
7.5 Static Power Simulation . 45
7.6 Total Power Consumption . 45
7.7 Maximum Power Consumption . 46
7.8 Power-Delay-Product . 46
7.9 Monte Carlo Delay Simulation . 46

7.9.1 Average Mean Delay and Standard Deviation for Schematic
and Layout . 47

7.9.2 Average Mean Delay for Schematic and Layout at different
Temperatures . 47

7.9.3 Worst Case Mean Delay for Schematic and Layout at dif-
ferent Temperatures . 47

7.9.4 Relative Standard Deviation Comparison 47
7.10 Running Simulations with OCEAN scripts 47

vi

Contents

7.11 Simulation Input Signals . 48

8 Results from Simulations 49
8.1 Transistor Layout . 49

8.1.1 Parasitic Extraction . 49
8.1.2 nWell Placement and Sizing 50

8.2 D flip-flop functionality . 51
8.3 Delay Comparison of D flip-flops 52

8.3.1 Master latch delay . 52
8.3.2 Slave latch delay . 58
8.3.3 Total D flip-flop delay . 64

8.4 Maximum D flip-flop frequency based on maximum delay 70
8.5 Static Power Consumption . 74

8.5.1 Static Power Comparison at Different Temperatures 78
8.6 Total Power Consumption . 79

8.6.1 Total Power Consumption Schematic versus Layout Com-
parison . 82

8.6.2 Total Power Consumption Temperature Comparison 84
8.7 Maximum Power Consumption . 85
8.8 Power-Delay-Product . 88
8.9 Monte Carlo Delay Simulation . 91

8.9.1 Average Mean Delay and Standard Deviation for Schematic
and Layout . 91

8.9.2 Average Mean Delay for Schematic and Layout at different
temperatures . 92

8.9.3 Worst Case Mean Delay for Schematic and Layout at dif-
ferent temperatures . 93

8.9.4 Relative Standard Deviation Comparison 94

9 Discussion 95
9.1 Transistor Layout . 95

9.1.1 Parasitic Extraction . 95
9.1.2 nWell Placement and Sizing 95

9.2 D flip-flop functionality . 96
9.3 Delay Comparison of D flip-flops 96

9.3.1 Master latch delay . 96
9.3.2 Slave latch delay . 96
9.3.3 Total D flip-flop delay . 97

9.4 Maximum D flip-flop frequency based on maximum delay 98
9.5 Static power consumption at different inputs 98

9.5.1 Static power comparison at different temperatures 99
9.6 Total power consumption . 99

9.6.1 Total Power Consumption Schematic vs Layout Comparison 99
9.6.2 Total Power Consumption Temperature Comparison 99

9.7 Maximum Power Consumption . 100
9.8 Power-Delay-Product . 100
9.9 Monte Carlo Delay Simulation . 101

vii

Contents

9.9.1 Average Mean Delay and Standard Deviation for Schematic
and Layout . 101

9.9.2 Average Mean Delay for Schematic and Layout at different
temperatures . 102

9.9.3 Worst Case Mean Delay for Schematic and Layout at dif-
ferent temperatures . 102

9.9.4 Relative Standard Deviation Comparison 102
9.10 The Total Results . 103

10 Concluding Remarks 105
10.1 Improvements of the D flip-flops and Future Work 105

A Monte Carlo Results 110
A.1 Monte Carlo Delay Data . 110
A.2 Average Monte Carlo Delay Data 116
A.3 Relative Sigma Results . 117

B Layout 117

C Source Code 126
C.1 Python Scripts . 126
C.2 OCEAN Scripts . 136

viii

List of Figures

List of Figures

1 Transmission Gate . 10
2 The Clocked Inverter . 11
3 The Minority3 Gate . 12
4 The NAND-coupled Minority3 Gate 12
5 Gated D-latch symbol . 12
6 Logic Diagram for NAND-based D-latch 13
7 Logic Diagram for inverter-based latch 13
8 CMOS Diagram for inverter-based D-latch with Transmission Gates

[30] . 13
9 CMOS Diagram for clocked inverter-based D-latch[30] 14
10 The D flip-flop symbol . 14
11 Master-slave D flip-flop, Master latch to the left, and Slave latch

to the right . 15
12 Classic NAND-based D flip-flop [12] 15
13 Min3-based D flip-flop Schematics [8] 16
14 C2MOS D flip-flop structure . 16
15 The PowerPC 603 D flip-flop structure 17
16 The two delays in a waveform, where tsu is the setup time, tco is

the propagation delay . 17
17 Dummy transistors on the end of a pMOS transistor row 19
18 Master-Slave D flip-flop with X node 23
19 Measurement of tsu and tco, with the X node 23
20 Clocked Inverter schematics . 24
21 Clocked Inverter schematics . 25
22 Transmission Gate Schematics . 25
23 Minority3 Schematics . 26
24 Minority3 Schematics . 27
25 Two-input NAND Schematics . 27
26 Classic NAND D flip-flop Schematics 28
27 Minority3-based D flip-flop Schematics 29
28 Minority3-based D-latch Schematics 29
29 Minority3-based no-set D flip-flop Schematics 30
30 C2MOS D flip-flop Schematics . 30
31 PowerPC 603 D flip-flop Schematics 30
32 p-tap/n-tap connection . 33
33 Test circuit for comparing xRC and xACT 3D Parasitic Extraction 34
34 Inverter layout for WPE simulation, nWell edge distance is 1µm

from nMOS and pMOS . 35
35 Layout Placement, Distances and Positions 36
36 Wire positions in Layout . 37
37 The Balancing Testbench . 39
38 The Delay Testbench . 40
39 The power testbench . 41
40 Delay testbench waveforms, tsu is setup time, tco is propagation

delay, r is rising edge, f is falling edge 44

ix

List of Figures

41 The power testbench waveforms 46
42 WPE chart for inverter circuit, Dashed lines are the schematic

threshold voltage . 50
43 The confirmed functionality of the D flip-flops at 250mV ,27◦C . . 51
44 Setup delay for schematic and layout at −40◦C, Rising edge . . . 52
45 Setup delay for schematic and layout at −40◦C, Falling edge . . . 53
46 Setup delay for schematic and layout at 27◦C, Rising edge 54
47 Setup delay for schematic and layout at 27◦C, Falling edge 55
48 Setup delay for schematic and layout at 80◦C, Rising edge 56
49 Setup delay for schematic and layout at 80◦C, Falling edge 57
50 Propagation delay for schematic and layout at −40◦C, Rising edge 58
51 Propagation delay for schematic and layout at −40◦C, Falling edge 59
52 Propagation delay for schematic and layout at 27◦C, Rising edge . 60
53 Propagation delay for schematic and layout at 27◦C, Falling edge 61
54 Propagation delay for schematic and layout at 80◦C, Rising edge . 62
55 Propagation delay for schematic and layout at 80◦C, Falling edge 63
56 Total delay for schematic and layout at −40◦C, Rising edge . . . 64
57 Total delay for schematic and layout at −40◦C, Falling edge . . . 65
58 Total delay for schematic and layout at 27◦C, Rising edge 66
59 Total delay for schematic and layout at 27◦C, Falling edge 67
60 Total delay for schematic and layout at 80◦C, Rising edge 68
61 Total delay for schematic and layout at 80◦C, Falling edge 69
62 Maximum frequency for all D flip-flops at −40◦C 70
63 Maximum frequency for all D flip-flops at 27◦C 71
64 Maximum frequency for all D flip-flops at 80◦C 72
65 Maximum frequency for all D flip-flops across temperatures 73
66 Static Power Consumption for layout and schematic with D high,

Clk high . 74
67 Static Power Consumption for layout and schematic with D high,

Clk low . 75
68 Static Power Consumption for layout and schematic with D low,

Clk high . 76
69 Static Power Consumption for layout and schematic with D low,

Clk low . 77
70 Static Power Consumption DH CL at all temperatures 78
71 Total Power Consumption at −40◦C 79
72 Total Power Consumption at 27◦C 80
73 Total Power Consumption at 80◦C 81
74 Total Power Consumption Comparison between schematic and lay-

out at −40◦C . 82
75 Total Power Consumption Comparison between schematic and lay-

out at 27◦C . 83
76 Total Power Consumption Comparison between schematic and lay-

out at 80◦C . 83
77 Total Power Consumption Comparison between Temperatures for

schematic . 84

x

List of Tables

78 Total Power Consumption Comparison between Temperatures for
layout . 84

79 Maximum Power Consumption at −40◦C 85
80 Maximum Power Consumption at 27◦C 86
81 Maximum Power Consumption at 80◦C 87
82 Power-Delay-Product at −40◦C 88
83 Power-Delay-Product at 27◦C . 89
84 Power-Delay-Product at 80◦C . 90
85 Monte Carlo Analysis Average Results and std. Deviation for

schematic and layout at −40◦C 91
86 Monte Carlo Analysis Average Results and std. Deviation for

schematic and layout at 27◦C . 92
87 Monte Carlo Analysis Average Results and std. Deviation for

schematic and layout at 80◦C . 92
88 Monte Carlo Analysis Average Results for schematic and layout . 93
89 Monte Carlo Analysis Worst Case Results for schematic and layout 93
90 Relative Standard Deviation for all D flip-flops. The Y-value is

average Standard Deviation divided by the average Mean Delay . 94
91 The Inverter Layout . 118
92 The Clocked Inverter Layout . 119
93 The Transmission Gate Layout . 120
94 The Simple NAND Layout . 121
95 The Minority3-gate Layout . 122
96 The Minority-based NAND-gate Layout 123
97 The Classic NAND D flip-flop Layout 124
98 The Minority-based D-latch Layout 124
99 The Minority3-based D flip-flop Layout 124
100 The Minority3-based D flip-flop no-set Layout 125
101 The C2MOS D flip-flop Layout . 125
102 The PowerPC 603 D flip-flop Layout 125

List of Tables

1 Truth Table for the Minority-3 gate 11
2 Design Rules for 65nm STMicroelectronics [7] 19
3 Inverter dimensions . 24
4 Clocked inverter dimensions . 25
5 Simulating the different Min3 inputs to find the pMOS balance point 26
6 Minority3 dimensions . 26
7 Minority3 dimensions . 27
8 Two-Input NAND dimensions . 27
9 Transistor count for the different D flip-flops in Schematics 31
10 Block dimensions . 31
11 Modified Block dimensions . 32
12 D flip-flop Area, Size and Transistor Count in Layout 38
13 Input combinations for static power consumption measurements . 45

xi

List of Tables

14 Input Variables for the different Tests 48
15 Layout parasitics for test circuit using xRC extraction tool 49
16 Layout parasitics for test circuit using xACT 3D extraction tool . 49
17 Layout parasitics Simulation Results comparing the xRC and xACT

3D extraction tools . 49
18 Delay Comparison at 300mV, 27◦C, Layout 98
19 Maximum Frequency of D flip-flops, 250mV supply voltage at

27◦C Layout . 103
20 Total Power Consumption of D flip-flops, 250mV supply voltage

at 27◦C Layout . 104
21 Power-Delay-Product of D flip-flops, 250mV supply voltage at

27◦C Layout . 104
22 Transistor count in the current design, and the transistor count in

the new proposed design, for the RX/TX-module 106
23 Monte Carlo Delay Results for Master latch, rising edge at −40◦C 110
24 Monte Carlo Delay Results for Master latch, falling edge at −40◦C 110
25 Monte Carlo Delay Results for Slave latch, rising edge at −40◦C . 111
26 Monte Carlo Delay Results for Slave latch, falling edge at −40◦C 111
27 Monte Carlo Delay Results for Master latch, rising edge at 27◦C . 112
28 Monte Carlo Delay Results for Master latch, falling edge at 27◦C 112
29 Monte Carlo Delay Results for Slave latch, rising edge at 27◦C . . 113
30 Monte Carlo Delay Results for Slave latch, falling edge at 27◦C . 113
31 Monte Carlo Delay Results for Master latch, rising edge at 80◦C . 114
32 Monte Carlo Delay Results for Master latch, falling edge at 80◦C 114
33 Monte Carlo Delay Results for Slave latch, rising edge at 80◦C . . 115
34 Monte Carlo Delay Results for Slave latch, falling edge at 80◦C . 115
35 Average Monte Carlo Delay Results, µ is mean delay, σ is standard

deviation . 116
36 Relative Sigma Results . 117

xii

1 Introduction

Ultra low power systems and circuits are getting more and more desired for
applications where the power supply is limited. Battery supplied systems like
pacemakers and subsea electronic equipment, where battery charging or battery
replacement is hard or impossible, could have a great economic saving from im-
proving the battery life time. With ultra low power systems, arises the possibility
to use energy harvesting to power the devices. Energy harvesting is a technique
to extract energy from external sources like heat, vibration, electromagnetic ra-
diation and more, which could remove the need of batteries and greatly reduce
the maintenance and battery cost.

Today there are many integrated-circuit building blocks for circuits operating
in the super-threshold region. Super-threshold building blocks are well-tested
and developed by large companies, and used in systems and circuits for many
years. Subthreshold operation has recently become more popular as the need
for battery powered systems has increased. Since the use of subthreshold design
started relatively recent, there are not many well-tested and developed building
blocks. Building blocks like the D flip-flop are much used in larger systems, and
contributes a lot to the total system area. By creating robust D flip-flop building
blocks, which are simulated on schematic and layout, the path to well-tested and
reliable subthreshold building blocks shortens.

Some papers has been published which looks into different subthreshold D
flip-flop implementations, but only with simulations on schematics like [6], [13]
and [14]. In this Thesis, five known D flip-flop implementations will be custom
designed for subthreshold operation, and simulated on Schematic and Layout.
The transition from schematic to layout introduces many new non-idealities like
parasitic capacitances, electric fields, mismatch from process variations, and more
which affects the functionality of the circuit.

1

1 Introduction

1.1 Overview of the Thesis

The chapters and appendixes contain the following:

• Chapter 1 contains the Introduction and motivation towards subthreshold
design.

• Chapter 2 presents the Problem Description, and the tools and technology
used.

• Chapter 3 presents all the theoretical background needed to fully under-
stand the implementation and results.

• Chapter 4 explains the process of choosing D flip-flop structures and the
procedure of the schematic design.

• Chapter 5 presents the layout implementation method and steps towards a
highly regular design.

• Chapter 6 explains the different testbenches used to simulate both schematic
and layout design.

• Chapter 7 explains the different simulation methods, tests, and input signals
used.

• Chapter 8 presents the simulation results based on the tests described in
Chapter 7.

• Chapter 9 discuss and compare the results to each other and to earlier
results found in papers.

• Chapter 10 gives a summary of the results and discuss future work and
improvements.

• Appendix A presents all Monte Carlo results.

• Appendix B shows the layout view of the D flip-flops.

• Appendix C presents the source code used to initiate simulations, and pro-
cess results data.

2

2 Problem Description

The task is to implement D flip-flop structures which are highly suitable for sub-
threshold operation, and can be used as building block for greater design. The
D flip-flops are custom designed in Schematics at transistor level, and imple-
mented in layout by using techniques for high process variation robustness. The
schematic and layout implementations are simulated to find delays, power con-
sumption, PDP and susceptibility against process variations. These results are
compared to find differences between schematic and layout implementations.

The tool used to implement both schematic and layout designs are Cadence
Virtuoso Design Environment version IC6.1.5. The simulator used for both
schematic and layout is the Cadence Virtuoso Spectre Circuit Simulator.

The transistor technology used is the STMircroelectronics 65nm SVTGP. The
SVTGP is a standard threshold voltage general purpose transistor, as the name
points out.

3

2 Problem Description

4

3 Theoretical Background

This Section contains the theory for understanding the basics in the design, lay-
out, simulation and results chapters. First, subthreshold operation and difficulties
around operating in that region, will be mentioned. Secondly, transistor match-
ing, balancing and robustness will be described. Thirdly, the different D flip-flop
functionality and design will be explained. At the end, timing and layout will be
commented.

3.1 Subthreshold Operation

A MOS transistor is either n-channel or p-channel depending on the doping of
the substrate and the doping of the Source and Drain terminals[18]. By applying
a positive voltage to the gate of an n-channel MOS transistor, the gate attracts
negative charge from the source and drain regions, creating a channel with mobile
electrons connecting the source and the drain. By applying a sufficiently large
gate-to-source voltage at the transistor, the p-region under the gate is changed
to an n-channel, and is said to be inverted. The minimum gate-to-source voltage
for this to happen is said to be the Threshold Voltage. The Threshold Voltage
Vt of a MOS transistor is the gate-to-source Voltage where the concentration of
electrons under the gate is equal to the concentration of holes in the substrate.
Normally, a gate-to-source Voltage VGS under the threshold voltage is said to
cause the transistor to be turned off, since the current flow through the channel
is significantly smaller than when applying a high voltage. However, this sub-
threshold current is still usable to create functional CMOS circuitry.
A MOS transistor is said to be in the subthreshold region or weak inversion when
VGS − Vt < −100mV . When operating in the subthreshold region, the current
through the Drain terminal ID should not be modelled by the square-law func-
tion. The subthreshold current is more accurately modelled by the exponential
relationship. This approximation is shown in Equation 1 through Equation 4[31].

ID = ID0e
VG
nUT (e

− VS
UT − e−

VD
UT) (1)

ID0 ∼ βe
VTH
nUT (2)

β = µCOX
W

L
(3)

The slope factor n is

n = 1 +
γ

2
√

2φF + VS
(4)

UT is the thermal voltage, VTH is the threshold voltage, µ is the charge-carrier
effective mobility, COX is the gate oxide capacitance per unit area, W and L is

5

3 Theoretical Background

the gate width and gate length of the MOS transistor. γ is the substrate factor,
φF is the Fermi potential in the substrate.

As the supply voltage is reduced, the current charging the switching capaci-
tances is also reduced, causing an increased propagation delay through the logic,
so the maximum frequency of the circuit is reduced. This reduction in maximum
switching frequency is one of the main drawbacks with subthreshold operation as
it limits the usage area, since many applications have real-time demands which
needs high frequencies to be met.

3.1.1 Subthreshold Delay

The delay of a logic gate in subthreshold operation is estimated by the time
the subthreshold current uses to charge the output node. By using balanced
blocks, the delay should be the same for both nMOS and pMOS. The expression
for subthreshold delay can be seen in Expression 5[22], where K is a fitting
parameter.

td =
Qoutput
ID

=
KCoutputVDD

ID
(5)

3.1.2 Subthreshold Power Consumption

The main purpose for operating a system in the subthreshold region is the sig-
nificant decrease in power consumption. An electric system uses a combination
of static and dynamic power which depends on many parameters, but especially
the supply voltage. The expression for total Power consumption is

PTOT = PDYNAMIC + PSTATIC (6)

where the dynamic part can be expressed as

PDYNAMIC = αCOV
2
DDf (7)

and the static part as

PSTATIC = VDDIOFF (8)

The α parameter in the expression for dynamic power consumption is the av-
erage activity factor for the system. CO is the switched capacitance, VDD is the
supply voltage and f is the clock frequency of the system. The IOFF parameter
for the static power consumption is the average leakage current[31].

Expression 7 shows that the supply voltage has quadratic effect on the Dy-
namic Power Consumption, making it the most dominating factor. This means

6

3.1 Subthreshold Operation

that lowering the supply voltage to half will reduce the Dynamic power by a fac-
tor of four. In addition will the static power consumption decreases linearly with
a decrease in the Supply Voltage. These are the main reasons why subthreshold
design are preferred for some applications where low power is the most important
factor.

3.1.3 Subthreshold Leakage Current

The subthreshold leakage currents affects the static power consumption, as seen
in Expression 8. The leakage current is seen in Expression 9 and Expression 10[5].

IOFF = β2e
λDSVDD/n·Ut

(
1− e−VDD

)
(9)

where

β2 = I0
W

L
e−(VTH0−λBSVBS)/nUt (10)

λDS is the DIBL coefficient, λBS is the body effect coefficient, VTH0 is the
zero-bias threshold voltage, n is the subthreshold factor and I0 is the technology-
dependent subthreshold current extrapolated for VGS = V TH. The Threshold
Voltage is affected by the drain-source voltage and the bulk-source voltage as
seen in Expression 11.

VTH = VTH0 − λDSVDS − λBSVBS (11)

This means that keeping VBS to a minimum reduces threshold voltage varia-
tions.

The Body effect occurs because the source-bulk voltage VSB increases, and
causes the Threshold voltage of the transistor to increase[18]. The body effect
coefficient λBS > 0 is a technology dependent parameter.

Drain Induced Barrier Lowering occurs in short channel transistors, where
the source and drain depletion width in the vertical direction and the source-drain
potential have strong effect on the band bending over a significant portion of the
device. This causes the threshold voltage and consequently the subthreshold
current to vary with the drain bias[24].

7

3 Theoretical Background

3.2 Transistor Matching

It is desired to have equal drive strength for the nMOS and the pMOS transistors.
Since the nMOS transistors charge mobility is naturally higher than pMOS, equal
nMOS and pMOS transistors will have a different drain currents. The current
through a transistor operating in the subthreshold region is described by Expres-
sion 1. The current is proportionally dependent on the β value as described in
Expressions 1 to 4. Expression 3 shows that the mobility factor µ, the transistor
width W , the transistor length L and the gate oxide capacitance COX determines
the value of β. This means that increasing the width W or reducing the length
L of the pMOS transistor can compensate for its lower mobility. One other pos-
sibility is to tune the bulk voltage VBS of the nMOS or pMOS so that the drain
currents are equal[5].

The nMOS/pMOS strength must be comparable to ensure a good noise mar-
gin and to achieve reasonably symmetric rise-fall times[5]. Imbalance in the
system forces VDD,min to increase, and gives exponentially higher power con-
sumption, if operating at VDD,min.

In addition, the threshold voltages for an nMOS and a pMOS transistor of
the same technology are usually different. For the transistors used in this Thesis,
the STMicroelectronic SVTGP, the threshold voltage at 27◦C is approximately
−315.6mV for pMOS, and 344.3mV for nMOS, but for some other technology
the difference can be higher or lower.

3.3 Robustness

When operating in the subthreshold region, the channel under the gate is not
inverted, so the tolerance of the transistor when it comes to temperature, process
variations and mismatch are different than when operating in the superthreshold
region[27]. An increase or decrease in the Drain current changes the drive of the
transistor, making blocks and gates imbalanced. The exponential relationship
between the subthreshold Drain current and threshold voltage increases the effect
of threshold voltage variations[33] compared to superthreshold operation. The
threshold voltage is affected by many variables, including temperature variations,
local and global process variations and nWell distance to gate of transistor. These
situations will be mentioned in this section.

3.3.1 Temperature Variations

Temperature variations affects CMOS circuits mainly for two reasons. As the
temperature rises, the mobility factor µ decreases which gives lower Drain cur-
rent, and an increased CMOS gate delay. However, the Threshold Voltage also
decreases as the temperature rises, giving a higher Drain Current and a decreased
CMOS gate delay. This can be seen in equation 12 and equation 13[9],

µ(T) = µ(T0)(
T

T0
)−M (12)

8

3.3 Robustness

VT (T) = VT (T0)−KT (13)

where T0 is 300K ,K is the threshold voltage temperature coefficient (typical
2.4mV/K) and M is the mobility-temperature exponent (typical 1.5).

For superthreshold operation, it is known that an increase in the temperature
causes an increase in the CMOS gate delay, giving a slower circuit. This is because
the decrease in the mobility factor µ dominates for superthreshold operation. For
subthreshold operation it is opposite, the decrease in threshold voltage dominates.
So an increase in the temperature causes a decrease in the CMOS gate delay,
causing a faster circuit. In subthreshold operation, the increased temperature
also gives an increased leakage current[33], as the threshold voltage rises.

3.3.2 Process Variations

Process variations can be split up into global process variations and local process
variations.

Global Process Variations are variations which are equal over the die, like
wafer-to-wafer misalignment or processing temperatures. These variations nor-
mally affects all transistors in the system in the same degree. However, some parts
of the circuit can be more susceptible to process variations and cause threshold
voltage variations.

Local Process Variations are variations which only affects parts of the die or
circuit. The local process variations can consist of both systematic and random
components. These can typically be aberrations in the processing equipment
which can give systematic variations. Or placement and number of dopant atoms
in the device which contributes to random variations[33].

3.3.3 Well-Proximity-Effect

The Well-Proximity-Effect or WPE is an effect that arises when the pMOS tran-
sistors are placed too close to the egde of the nWell. In the manufacturing process,
high energy ions are scattered at the well photo resist edge and introduces extra
dopant atoms in the silicon near the well edge[26]. The closer a transistor is to
the nWell edge, the higher concentration of dopant in the n-channel. In [21] it
is mentioned that the nWell should be placed > 2µm from gate of the pMOS
transistor to prevent the Well-Proximity-Effect (WPE), which could produce a
threshold voltage increase.

9

3 Theoretical Background

3.4 The Building Blocks

The building blocks for the D flip-flops will be described in this Section. These
are the inverter, Transmission Gate, the Clocked Inverter, the Minority3-gate,
the D-latch and the D flip-flop.

3.4.1 Inverter

The inverter takes an input signal and inverts it to the output. It consists of one
nMOS and one pMOS transistor.

3.4.2 Transmission Gate

The transmission gate consists of one nMOS and one pMOS transisitor connected
in parallel as shown in Figure 1. The transmission gate functions as a switch
where the s signal is either high or low[30]. When s is high, both nMOS and
pMOS conducts, and while s is low, both nMOS and pMOS is off. The parallel
connection makes the transmission gate conduct the whole voltage range from 0
to VDD.

Figure 1: Transmission Gate

3.4.3 Clocked Inverter

The clocked inverter is like an ordinary inverter except that it is controlled by a
set-signal. The schematic of the clocked inverter can be seen in Figure 2, where
signals c and c′ are the set-signals. These are normally connected to the clock
signal so that the inverter either inverts while the clock is low or while it is high.
The control transistors are placed between the input-signal transistors to remove
the unwanted effects of charge sharing, which decreases the output swing and can
cause instability[29].

3.4.4 Minority3 Gate

The Minority3 gate is a logic circuit with three inputs which outputs logic one
if the minority of the inputs are logic one[20]. The truth table can be seen in

10

3.4 The Building Blocks

Figure 2: The Clocked Inverter

Table 1. In addition to the minority functionality, the minority-3 gate can take
the form of a NAND by forcing one input to ground, it can get the functionality
of a NOR by forcing one input to VDD, and it can be an inverter by forcing one
input to ground and one input to VDD. This gives the opportunity to create
a D flip-flop composed of only minority-3 gates and inverters as proposed in
[8]. The 10 transistor Minority3-gate is chosen because it is relative reliable in
subthreshold[8].The Minority3-gate schematic is shown in Figure 3.

X Y Z Output

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 1: Truth Table for the Minority-3 gate

The NAND-coupled Minority3-gate can be seen in Figure 4, with one input
pin removed, and the involved transistors coupled to ground.

3.4.5 D-latches

A D-latch is a logic device that can hold the value of a single input bit[30]. A
standard D-latch is transparent, which means that a change on the input D will
be seen on the output Q and Q̄ immediately after the logic delay time. To control

11

3 Theoretical Background

Figure 3: The Minority3 Gate

Figure 4: The NAND-coupled Minority3 Gate

when the D-latch should read a new input and propagate it to the output, an
Enable signal is implemented. By setting a clock signal to the Enable input of
the gated D-latch, the input value at D will be propagated to the output Q only
while the clock signal is high.

The typical symbol for a gated D-latch is shown in Figure 5.

Figure 5: Gated D-latch symbol

The D-latch circuit can be constructed by four 2-input NAND-gates as seen
in Figure 6. This configuration is based on an D-latch which is controlled by the
Enable signal. By setting Enable to 0, the input values are blocked by setting
the D-latch to a hold state.

12

3.4 The Building Blocks

Figure 6: Logic Diagram for NAND-based D-latch

Another possibility is to construct D-latches with inverters, clocked inverters
or transmission gates. This construction uses significantly less transistors and
have a shorter critical path, so they should have a lower propagation delay.

Figure 7: Logic Diagram for inverter-based latch

Figure 7 shows the idea of the inverter-based D-latch without Enable-input[30].
The inverters work as a feedback loop providing the desired latching, but need
different sizing. It is also slow since the bistable circuit tries to hold onto the
stored value when a new value is present on the input. A solution to this problem
is to add either transmission gates, or replace the inverters with clocked invert-
ers. This will give the ability to control the loading, and break the feedback loop
while a value is stored.

A D-latch with transmission gates is shown in Figure 8. The transmission
gates are oppositely clocked so that the feedback is open as the clock is high, and
value D is stored in the inverters. As the clock goes low, the feedback is closed,
and the value is stored.

Figure 8: CMOS Diagram for inverter-based D-latch with Transmission Gates [30]

The same functionality can be made by using clocked inverters instead of

13

3 Theoretical Background

Figure 9: CMOS Diagram for clocked inverter-based D-latch[30]

transmission gates, as seen in Figure 9. This circuit is called the C2MOS latch.

3.4.6 The D flip-flop

This section contains information about the basic functionality of a D flip-flop,
and describes the different D flip-flop implementations used in this Thesis.

A D flip-flop holds the value of a single bit, as the latch, but is not transparent.
For standard D flip-flops, the stored value is updated when a rising edge event
occurs at the Clock input. The standard symbol for a D flip-flop is shown in
Figure 10.

Figure 10: The D flip-flop symbol

A basic D flip-flop is designed by using two gated D-latches with opposite
clock signals. The first is called the master latch, and the second is called slave
latch. Figure 11 shows this design.

The master latch detects changes in the Data signal at the low clock level, and
propagates the signal to the input of the slave latch. As the clock signal switches
to high, the slave latch propagates this input value to the D flip-flop output Q.
If the clock is non-overlapping, the D flip-flop will be non-transparent, which is
required for normal functionality.

14

3.5 D flip-flop Design Structures

Figure 11: Master-slave D flip-flop, Master latch to the left, and Slave latch to the
right

3.5 D flip-flop Design Structures

There are different ways to implement the functionality of a D flip-flop. Some have
higher switching frequencies, some have a lower power consumption, and others
may be more robust against process variations and mismatch. This section will
describe the D flip-flops used in this Thesis.

3.5.1 The Classic NAND-based D flip-flop

The Classic NAND-based D flip-flop is shown in Figure 12. It consists of five
two-input NANDs and one three-input NAND. The design can be split into a
master latch and a slave latch to ease the delay measurements, and to get a
better understanding of the functionality. The master latch output, and the
slave latch input is node P3 in Figure 12.

Figure 12: Classic NAND-based D flip-flop [12]

The transistor count for this design with standard CMOS logic is 5 ·4 for two-
input NANDs, and 1 ·6 for the three-input NAND, which sums up to 5 ·4+6 = 26
transistors.

3.5.2 Minority3-based D flip-flop

The Minority3-based D flip-flop will be referred to as the the Min3, and is
constructed by using the Minority3 gates as mentioned in Section 3.5.2. Two

15

3 Theoretical Background

Minority3-based D-latches as described in [8], are used as master and slave latch
to create the Minority3 D flip-flop. The schematics can be seen in Figure 13,
where the three-input objects are minority-3 gates.

Figure 13: Min3-based D flip-flop Schematics [8]

3.5.3 C2MOS D flip-flop

C2MOS stands for clocked CMOS and is an inverter-based master-slave D flip-flop
which uses clocked inverters to control the loading of a new value, and to break
the feedback loop. It is based on using two clocked inverter-based D-latches, as
described in Section 3.4.5. The schematic for the C2MOS is shown in Figure 14.

Figure 14: C2MOS D flip-flop structure

3.5.4 PowerPC 603 D flip-flop

The PowerPC 603 D flip-flop were introduced in the PowerPC 603 RISC Micro-
processor, designed for low power operation and battery-saving power manage-
ment modes[15]. The structure is two identical D-latches which forms a master
and a slave latch. The D-latches are similar to the clocked inverter-based D-latch
as described in section 3.4.5 and Figure 9, but uses a transmission gate on the
input to load a new value instead of a clocked inverter. This design is shown in
Figure 15.

16

3.6 Timing and Delay

Figure 15: The PowerPC 603 D flip-flop structure

3.6 Timing and Delay

Both master and slave latches have propagation delays which must be considered
before implementing them in designs. These delays limit the maximum switching
frequency of the clock signal and input data signal. Two different delays are used
for these D flip-flops:

The Setup Time tsu is the delay through the master latch, and is the min-
imum time needed for the data signal to be stable on the input D before the
rising-edge clock event occurs[19]. For a master-slave D flip-flop, the input signal
needs to be available at the slave latches input before the rising edge of the clock.
A violation of the setup time can give incorrect data at the output, or set the D
flip-flop to a metastable state.

The Propagation delay tco is the delay through the slave latch. It is the time
from a rising edge on the clock and to a new input value is stable on the output
Q.

Figure 16 shows the two delays on a waveform.

Figure 16: The two delays in a waveform, where tsu is the setup time, tco is the
propagation delay

17

3 Theoretical Background

3.7 Transistor Layout

The layout is the the physical drawing of the circuit. It is how the chip will be
fabricated with different silicon layers, metal wires, contacts and vias, to get the
desired functionality. The introduction of non-ideal metal wires, electric fields,
parasitic capacitances, and process variations to the circuit typically affects its
total functionality, increases the propagation delay, increases the power consump-
tion, and could cause a non-functional physical circuit. However, there are some
design procedures and techniques which could decrease these effects. These will
be described in this Section.

3.7.1 Substrate Connection

The source of a MOS transistor should be connected to the bulk or substrate to
prevent second-order effects like the body effect[18]. The body effect causes the
threshold voltage for a transistor to increase given by the equation 14

Vtn = Vtn0 + γ(
√
VSB + |2φF | −

√
|2φF |) (14)

where Vtn0 is the threshold voltage with zero VSB . γ is the body-effect con-
stant and is given by

γ =

√
2qNAKSε0
COX

(15)

Equation 14 shows that the threshold voltage increases for a given transistor
as the source-to-substrate reverse-bias voltage increases[18]. A good technique
to reduce the body effect is to ensure a low resistance between the source termi-
nal and the substrate by placing multiple n-taps/p-taps close to the transistor.
Missing substrate connection or high substrate-to-source resistance can cause
transistor latch-up[16].

3.7.2 Dummy transistors

Transistors operating in the subthreshold region are very susceptible to mismatch
from process variations and layout irregularity. At the end of a long row of active
transistors in layout, the end-transistors does not see the same surroundings as
the other active transistors. Higher regularity can be achieved by placing dummy
transistors at the end of these transistor rows, so that all active transistor has a
neighbour transistor at both sides. Figure 17 shows the pMOS row of a layout
block with active transistors and dummy transistors at the end. Blocks like the
inverter and the transmission gate, which has only one nMOS and one pMOS,
can benefit of having dummy transistors on the top and bottom to increase the
regularity and cause equal surroundings for the transistors.

18

3.7 Transistor Layout

Figure 17: Dummy transistors on the end of a pMOS transistor row

3.7.3 Design Rules

For every transistor technology, there are design rules which must be satisfied
to verify the correctness of the mask net. By violating these rules, close objects
could be shorted, an object could be too thin or split, or an object could be
misplaced[30]. These design rules are often published by the technology provider.
The design rules for the STMicroelectronics 65nm technology can be seen in
Table 2.

Design Rules Minimum Pitch Line/Space

OD (nm) 190 90/100
PO (nm) 180 70/110
CO (nm) 200 90/110
M1 (nm) 180 90/90
Via-x (nm) 210 100/110
M-x (nm) 210 100/110
PO-CO distance (nm) 210 100/110
N+/p+ distance (nm) 190 100/110

Table 2: Design Rules for 65nm STMicroelectronics [7]

3.7.4 Parasitic Extraction

The introduction of non-ideal metal wires, parasitic capacitances and electric
fields to the circuit will affect the total functionality. The resistance in the
poly-silicon and the metal wires can give small voltage drops, so small voltages
differences are present at the terminals at matched transistors. The parasitic ca-
pacitances normally affects the circuit in a larger degree, since the capacitances
causes an increase in both dynamic power consumption and propagation delay,
which is seen in Expression 7 and Expression 5.

Cadence uses Mentor Graphics Calibre xRC or xACT 3D to extract post-
layout parasitic data. These two tools use different procedures to extract the
parasitics, so the results may differ from each other. From Mentor Graphics
web page [3] [2], the xACT 3D should be the most accurate one, as it uses 3
Dimensional field models to calculate the parasitics.

19

3 Theoretical Background

20

4 Selecting D flip-flop Implementation and De-
sign in Schematics

This section contains argumentation for the D flip-flop selection, it describes the
building blocks and D flip-flops design procedure, and at the end explains D
flip-flop modifications to improve the layout regularity.

4.1 Selecting D flip-flop Designs

There are static and dynamic D flip-flop designs, which has different advantages
and disadvantages depending on the application.

Dynamic D flip-flops can be designed with less transistors, they typically have
lower power consumption and lower propagation delay than the static designs.
However, dynamic design uses the transistors parasitic capacitances to store a
value for a short period of time, which requires the circuit to be clocked in a fre-
quency such that the data is updated before it is lost due to leakage currents[30].
For low switching speeds, dynamic designs can output invalid data.

Static D flip-flops stores the data value in a buffer, and does not need updates
regularly to keep the data. Because of the buffer, Static D flip-flops are typically
larger, uses more transistors, they have a higher power consumption and a higher
propagation delay. However, Static D flip-flops should be more robust, since they
do not depend on a constant switching to maintain their functionality, and are
less dependant on the propagation delay. In addition is the leakage current very
sensitive to temperature variations in subthreshold operation[5], which makes
Dynamic D flip-flops less suitable.

Based on the discussion above, only static D flip-flops are chosen for com-
parison, because of their higher reliability when it comes to timing and process
variations. The chosen D flip-flops are as follows:

• Classic NAND-based D flip-flop

• Minority 3-based D flip-flop

• Minority 3-based D flip-flop without set input

• C2MOS D flip-flop

• PowerPC 603 D flip-flop

4.1.1 Classic NAND-based D flip-flop

The Classic NAND-based D flip-flop has the well known structure as seen in
Figure 12. It consists of seven two-input NANDs, and one inverter if the three-
input NAND is converted to two-input. A three-input NAND should be avoided
as it has larger fan-in, which has higher propagation delay, and causes larger
nMOS/pMOS imbalance, which increases V DD,min[5].

21

4 Selecting D flip-flop Implementation and Design in Schematics

This sums up to 7 · 4 transistors +2 transistors = 30 transistors, which is 4
transistors more than using a three-input NAND. The Classic NAND D flip-flop
has a relatively high transistor count and should not compete with the best when
it comes to performance and power consumption, but is used as a reference for
the other D flip-flops.

4.1.2 Minority3-based D flip-flop

The Min3 D flip-flop is designed as in [8], with 6 Min3 gates where 4 are NAND
coupled, and 7 inverters. In addition is a Set input implemented to gate the D
flip-flop. The Set Input introduces one more NAND-coupled Min3 and two more
inverters, which sums up to 7 Minority3-gates and 9 inverters. With 10 transistor
Minority3-gates the total transistor count is 7 · 10 transistors +9 · 2 transistors
= 88 transistors. Earlier simulations of the Minority3-based SR-latch shows that
it has a higher yield than a traditional SR-latch using NANDs and NORs at low
Supply Voltages[8]. The Full Adders used to implement a Ripple-Carry Adder
in [32] is constructed by Minority3 gates, and were able to function down to
the supply voltage of 106mV with the help of body biasing. A Minority3-based
modulation/demodulation system developed for Q-free ASA showed a correct
functionality at 185mV at 6MHz without body biasing[32]. These results indi-
cate that the Minority3 is relatively robust against process variations. The result
of these simulation can help improving the Q-free modulation/demodulation sys-
tem, and will be discussed in the Discussion and Conclusion Section.

4.1.3 Minority3-based D flip-flop without Set Input

A Minority3-based D flip-flop without the Set input is also designed, which gives a
more fair compare to the other no-set D flip-flops. It is designed as the Minority3-
based D flip-flop, but without the Set input. This reduces the Minority3 gate
count to 6 and gives a total of 78 transistors.

4.1.4 C2MOS D flip-flop

The C2MOS D flip-flop is a well known design, used in several D flip-flop com-
parisons like [6] and [13]. Simulations from these papers show that the C2MOS D
flip-flop has good power consumption and delay results compared to other static
D flip-flops. The structure is relatively simple, using only inverters and clocked
inverters as seen in Figure 14. The total transistor count is 20, which is the
second lowest of the chosen D flip-flop structures. The C2MOS D flip-flop can
also be found in IC’s by Toshiba, like the TC7W74FU[4].

4.1.5 PowerPC 603 D flip-flop

The PowerPC 603 D flip-flop can also be found in several papers comparing
different D flip-flops. In [6] it scores best of all static D flip-flops when it comes
to delay, power consumption, PDP and EDP. [14] also compares the PowerPC
603 to other D flip-flops, with good results. It has the lowest transistor count of

22

4.2 Designing Schematics for D flip-flop building blocks

all D flip-flops in this Thesis with a total of 16 transistors. The structure can be
seen in Figure 15.

4.2 Designing Schematics for D flip-flop building blocks

The D flip-flop structures are designed in Cadence Virtuoso on transistor level.
The design procedure starts with drawing the schematics for each building block
like inverters, clocked inverters and NAND-gates, which are connected together
to form the D flip-flops. Each of these building blocks are balanced so that
both nMOS and pMOS have the same strength as mentioned in Section 3.2. The
balancing procedure is a bit different for some building blocks, as mentioned later
in this Section.

To able to measure the setup time tsu of the D flip-flops, the node X is
inserted at the output of the master latch, as shown in Figure 18. The X node
is placed between the master and slave latch for all D flip-flops. For the Classic
NAND D flip-flop this point is node P3 in Figure 12. The measurement of the
tsu and tco can be seen in Figure 19.

Figure 18: Master-Slave D flip-flop with X node

Figure 19: Measurement of tsu and tco, with the X node

4.2.1 Sizing of Transistors

The transistors for the different D flip-flop block are sized using the same proce-
dure. The length of both nMOS and pMOS transistors are set to 1.5Lmin = 90nm
to reduce the variation of propagation delay and other process variation conse-
quences, as proposed in [11]. The nMOS width for all transistors are set to
200nm, which is above twice the length of the transistor. The pMOS width is
determined while balancing the the logic, so that the nMOS and pMOS transistor
have the same drive strength.

23

4 Selecting D flip-flop Implementation and Design in Schematics

The transistor size balancing procedure for a building block depends on its
functionality. The idea is that an input signal of VDD/2 should give an output
signal of VDD/2, if a change on that single bit would change the output of the
block. For an inverter, a logic change on the input will always cause a change on
the output. So by putting VDD/2 on the input, the pMOS width can be sweeped
to find the balance point where the block also outputs VDD/2.

For more complicated blocks like the NAND-gate and the minority-3 gate,
the procedure is a bit more complicated, and can have more than one balance
points depending on the input values. To understand which input values that
needs to be tested to balance the block, the blocks truth table must be examined.

4.2.2 Deciding the Supply Voltage

As the threshold voltage for SVTGP transistors is between |314.6mV | and |344.3mV |,
the supply voltage should be kept under 300mV to ensure subthreshold opera-
tion. All blocks and D flip-flops in this design are balanced for 250mV to make
sure the transistors are in weak inversion, and at the same time function under
normal circumstances.

4.2.3 Designing the Inverter

The Inverter is designed as a standard Inverter with one pMOS and one nMOS
as shown in Figure 20.

By sweeping the pMOS width while having VDD/2 on the input, the output
shows VDD/2 at 310nm as shown in Table 3

Figure 20: Clocked Inverter schematics

dimension length

nmos width 200 nm
nmos length 90 nm
pmos width 310 nm
pmos length 90 nm

Table 3: Inverter dimensions

4.2.4 Designing the Clocked Inverter

The clocked inverter is designed as shown in Figure 21, with the dimensions as
shown in Table 4. Figure 21 shows that the input transistors are placed clos-
est to the rail, which prevents charge sharing, which will cause a more stable

24

4.2 Designing Schematics for D flip-flop building blocks

operation[29]. The balancing procedure is the same as for the inverter. The
pMOS width is sweeped from 100nm to 1µm to find the point where the clocked
inverter outputs VDD/2 while inputting VDD/2.

Figure 21: Clocked Inverter schematics

dimension length

nmos width 200 nm
nmos length 90 nm
pmos width 305 nm
pmos length 90 nm

Table 4: Clocked inverter dimensions

4.2.5 Designing the Transmission Gate

The transmission gate can not be balanced in the same way as the other blocks,
as the transistors are coupled in parallel. The size of the transistors should
be set equal to the other designs to improve regularity. The transmission gate
schematics can be seen in Figure 22.

Figure 22: Transmission Gate Schematics

4.2.6 Designing the Minority3-Gate

The Minority3-Gate is designed as described in Section 3.4.4, with 10 transistors.
The balancing procedure for this gate is a bit more complicated than the previous
ones since there are more input pins, and most likely several balance points,
depending on the input values. The procedure to find these balance points is

25

4 Selecting D flip-flop Implementation and Design in Schematics

found by looking at the Minority3 truth table (Table 1). If one input is logic 0
and one input is logic 1, the third input will switch the output if itself is switched.
Therefore, this third input must be set to VDD/2 and the p-Width sweeped to
find the balance point. Table 5 shows the different inputs, and the balance point
for each input combination.

X Y Z pmos bal. width

1 0 sweep 313nm
0 1 sweep 313nm
0 sweep 1 304.5nm
1 sweep 0 307nm
sweep 1 0 288nm
sweep 0 1 312.5nm

Table 5: Simulating the different Min3 inputs to find the pMOS balance point

The average of the Minority3 balance points are used as the final point and
can be seen in Table 6.

Figure 23: Minority3 Schematics

dimension length

nmos width 200 nm
nmos length 90 nm
pmos width 306 nm
pmos length 90 nm

Table 6: Minority3 dimensions

4.2.7 Designing the Minority3-based NAND-gate

The Minority3-based NAND-gate is balanced for 250mV , and the same procedure
as for the Minority3-gate is used. The balanced pMOS width is 313nm and can
be seen in Table 7. The Schematics for the Minority3-based NAND is shown in
Figure 24.

26

4.2 Designing Schematics for D flip-flop building blocks

Figure 24: Minority3 Schematics

dimension length

nmos width 200nm
nmos length 90nm
pmos width 313nm
pmos length 90nm

Table 7: Minority3 dimensions

4.2.8 Designing the two-input NAND

The two-input NAND-gate is used in the Classic NAND D flip-flop, and is a stan-
dard CMOS NAND as displayed in Figure 25. It is balanced like the Minority3
blocks, and gets a pMOS width value of 261nm.

Figure 25: Two-input NAND Schematics

dimension length

nmos width 200 nm
nmos length 90 nm
pmos width 261 nm
pmos length 90 nm

Table 8: Two-Input NAND dimensions

27

4 Selecting D flip-flop Implementation and Design in Schematics

4.3 Designing the Schematics for the D flip-flops

The building blocks from Section 4.2 are used to design the D flip-flops mentioned
in Section 4.1.

4.3.1 Designing the Classic NAND D flip-flop

The Classic NAND D flip-flop is designed as the one described in Section 3.5.1,
using the two-input NAND gates as described in Subsection 4.2.8, and can be seen
in Figure 12. The only exception is the 3-input NAND, which is transformed into
two 2-input NANDs and one inverter, which can be done as seen in Expression 16.
This will simplify the layout construction, since it only consists of 2-input NANDs
and the already constructed inverter.

Y = ¬(A ∧B ∧ C) = ¬((A ∧B) ∧ C) (16)

The complete Classic NAND D flip-flop design in Schematics is shown in
Figure 26.

Figure 26: Classic NAND D flip-flop Schematics

4.3.2 Designing the Minority3 D flip-flop

The Minority3 D flip-flop is designed based on the construction described in
Subsection 3.5.2, but with a Set input, as used in the circuits described in [32].

28

4.3 Designing the Schematics for the D flip-flops

The Set input needs an additional Minority3-based NAND to control the D flip-
flop. The Minority3-based D flip-flop schematics can be seen in Figure 27, and
consists of two Minority3-based D-latches as seen in Figure 28.

Figure 27: Minority3-based D flip-flop Schematics

Figure 28: Minority3-based D-latch Schematics

4.3.3 Designing the Minority3 no-set D flip-flop

The Minority3 no-set D flip-flop or Min3ns, is basically the same as the Minor-
ity3 D flip-flop from Subsection 4.3.2, but without the Set input. The removal
of the Set input reduces the total amount of transistors in the D flip-flop and
should decrease the power consumption and the setup time. The schematics for
the Minority3 no-set D flip-flop can be seen in Figure 29, and uses the same
Minority3-based D-latches as the other Minority3 D flip-flop, which is described
in the Section 4.3.2. Since the Minority3-based NAND is removed at the input,
the signal through the D flip-flop will be inverted compared to the Minority3 D
flip-flop with Set input. This is fixed by setting Q to QN and opposite instead
of inserting an extra inverter at the input.

4.3.4 Designing the C2MOS D flip-flop

The C2MOS D flip-flop is designed exactly as the one described in Section 3.5.3.
In addition, two inverters are added to create the two clock signal used to control
the clocked inverters. The schematic for the C2MOS D flip-flop can be seen in
Figure 30.

29

4 Selecting D flip-flop Implementation and Design in Schematics

Figure 29: Minority3-based no-set D flip-flop Schematics

Figure 30: C2MOS D flip-flop Schematics

4.3.5 Designing the PowerPC 603 D flip-flop

The PowerPC 603 is designed as described earlier in Subsection 3.5.4 and Fig-
ure 15. Like for the C2MOS, two inverters are used to generate the clock signals
used to control the transmission gates and clocked inverters. The schematic for
the PowerPC 603 can be seen in Figure 31.

Figure 31: PowerPC 603 D flip-flop Schematics

30

4.4 Modifying the Transistor Dimensions To Improve the
Regularity

4.3.6 D flip-flop Transistor Count

With the alterations done in this section, some D flip-flops have increased the
transistor count. The total amount of transistors for each D flip-flop can be seen
in Table 9.

Transistors

Classic NAND 30
Min3 88
Min3ns 78
C2MOS 24
PowerPC 603 20

Table 9: Transistor count for the different D flip-flops in Schematics

4.4 Modifying the Transistor Dimensions To Improve the
Regularity

All building blocks except the simple four-transistor NAND have pMOS transis-
tors widths close to 310nm when balancing them to 250mV , as seen in Table 10.
The minimum transistor gate width step size is 5nm, which means that these
pMOS widths must be set to either 305nm, 310nm or 315nm when implementing
them in layout. The similarity of these pMOS widths can be taken in advantage
by setting all to the same dimension and achieve great improvement in regularity,
and consequently improve the robustness against process variations. The average
pMOS width for the Inverter, Clocked Inverter, Minority3, and Minority3-based
NAND is 308.5nm, which can be rounded off to 310nm. The trade-off by rounding
off to 310nm is that some block can be slightly imbalanced, but the improvement
in regularity, and ease of construction, outweighs this small imbalance. However,
the CMOS NAND has a balance point for 250mV at a pMOS width of 261nm,
which is too far away from the 310mV area of the other blocks to achieve an
overall improvement of modifying the width. The CMOS NAND pMOS width is
therefore set to 260nm. The modified pMOS widths for all building blocks can
be seen in Table 11.

Block pMOS width

Inverter 310nm
Clocked Inverter 305nm
Minority3 306nm
Minority3-based NAND 313nm
CMOS NAND 261nm

Table 10: Block dimensions

31

4 Selecting D flip-flop Implementation and Design in Schematics

The new pMOS dimensions for the blocks is shown in Table 11. It shows that
the deviation for the every block is below 6nm. The transmission gate is not
balanced as the other blocks, so it is set to 310nm to improve regularity.

Block pMOS width

Inverter 310nm
Clocked Inverter 310nm
Minority3 310nm
Minority3-based NAND 310nm
Transmission Gate 310nm
CMOS NAND 260nm

Table 11: Modified Block dimensions

The lower pMOS dimensions for the CMOS NAND can give the Classic NAND
D flip-flop a lower power consumption than the others, based on the reduced gate
capacitance on smaller gate areas[18]. However, the reduced pMOS width also
reduces the subthreshold current, which can give an increased gate delay.

32

5 Implementation in Layout

This Section contains the techniques and procedures used to implement the design
in layout.

5.1 Transistor Layout

Different procedures and techniques can be used to generate good layout with
low parasitic capacitances, resistances and low threshold voltage variations. This
is important to keep the propagation delay low, the power consumption low, and
to make the system robust against process variations. In this section, different
layout procedures, and design techniques will be described.

5.1.1 Substrate Connection

The substrate should be connected with multiple p-taps/n-taps placed close to the
transistor as shown in Figure 32. This implementation causes low resistance to the
substrate and should ensure a source-bulk voltage VSB very close to zero. This is
important to keep the threshold variations low, as explained in Subsection 3.1.3.

Figure 32: p-tap/n-tap connection

5.1.2 Parasitic Extraction

As mentioned in Section 3.7.4, Cadence uses Mentor Graphics Calibre xRC or
xACT 3D to extract post-layout parasitic data. To find the difference between
the xRC and the xACT3D parasitic extraction tools, an inverter is designed in
layout and run through both extraction tools. The inverter circuit is two inverters
in series and the layout can be seen in Figure 33. This simulation is described in
Section 7.1.1.

5.1.3 nWell placement and sizing

As mentioned in Section 3.3.3, the distance from the gate of the pMOS transistor
to the edge of the nWell can increase the threshold Voltage. This effect (WPE)

33

5 Implementation in Layout

Figure 33: Test circuit for comparing xRC and xACT 3D Parasitic Extraction

is investigated with Cadence, by increasing the size of the nWell for an inverter
circuit. It is a copy of an earlier drawn inverter layout, where the nMOS transistor
and the pMOS transistor are placed 2µm from each other, so that the nWell can
be increased from minimum size 160nm to 2µm distance from gate. As the nWell
increases, its edge gets further away from the pMOS gate and the WPE should
decrease (pMOS Threshold Voltage should decrease). However, as the nWell
increases it gets closer to the nMOS, and its Threshold voltage could be affected.
Figure 34 shows the layout and the nWell as the big the Orange rectangle at the
top. The nWell distance is 1µm from both nMOS and pMOS in this Figure.

5.1.4 Regularity

Regular designs are important to maintain a high yield when it comes to print-
ability. For sub-100nm technology, the regularity becomes more important to
maintain manufacturability[21]. [28] shows that the standard deviation of per-
formance can improve by 16% by using regular poly patterns and dummy poly
between blocks. The effect can be even greater by using more techniques de-
scribed in this Subsection. However, some of these techniques causes the layout
area to increase, so there is a trade-off for the improved yield.

Below are some techniques to improve the robustness and decrease some lay-
out parasitics.

• Regular polysilicon patterns should be used for the nMOS and pMOS
transistors. The geometry of these should be identical for high transis-
tor matching. This also means that all transistors must be placed in the
same direction[16]. All polysilicon connections to the metal wires are placed
such that the distance to both nMOS and pMOS are the same.

• Place transistors in parallel orientation to reduce stress and tilt-induced
variations[16]. Also keep the of layout transistors as compact as possible.

34

5.1 Transistor Layout

Figure 34: Inverter layout for WPE simulation, nWell edge distance is 1µm from
nMOS and pMOS

The use of same-sized transistors, as mentioned in Section 4.4 eases this
parallel orientation.

• Put dummy transistors at the end of transistor arrays to increase regularity
for the active transistors as described in Section 3.7.2. Connect the dummy
gates to the back-gate of the transistor (Ground for nMOS and VDD for
the pMOS)[16].

• Do not route metal or place contacts on top of active silicon area[16].

• Keep pMOS gate > 2µm and nMOS gate > 500nm from the nWell edge
to prevent threshold voltage increase as mentioned is Subsection 5.1.3, and
found in the results in Subsection 8.1.2.

• Keep metal wire layer 1 in vertical direction and metal wire layer 2 in
horizontal direction to ease the routing of the D flip-flops and reduce the
capacitance from parallel wires.

5.1.5 Design Rules

The design rules for the 65nm STMicroelectronic which are defined in Sec-
tion 3.7.3 are used for the layout. In addition are these design rules checked
by the Design Rule Check in Cadence Virtuoso. Beacuse of the minimum nWell
edge distance of > 2µm for the pMOS, there is much room between the nMOS
and pMOS transistors that give lots of room for metal wires and vias to be placed

35

5 Implementation in Layout

between the transistors. Figure 35 shows the transistor positions, distances, and
rail placement for layout. This configuration is kept for all layouts, to achieve a
good regularity. The 700nm distance between the transistors in the horizontal
direction makes room for metal wires to go vertically between the transistors
without using metal layer 2. Between the two rows of pMOS transistors and
between the two row of nMOS transistors, there is 500nm space to route two
wires horizontally, or three wires without room for vias.

Figure 35: Layout Placement, Distances and Positions

Figure 36 shows the wire positions between the nMOS and pMOS transistors.
With 170nm distance between each wire, there is room for vias to be placed on
the same horizontal position without breaking any design rules. All horizontal
wires (Metal layer 2) are set to a width of 100nm, and all vertically wires (Metal
layer 1) are set to a width of 90nm, as described in the design rules. The only
exception is the the vertically wires used for the substrate connection for both
nMOS and pMOS. They are kept at a width of 170nm to match the guard ring
thickness, and to minimize the source-bulk voltage VSB . These wires can be seen
in Figure 32.

36

5.2 D Flip-Flop Implementation in Layout

Figure 36: Wire positions in Layout

5.2 D Flip-Flop Implementation in Layout

This Section describes the procedure of implementing the D flip-flop designs from
schematic to layout, and the layout design solutions for the building blocks and
D flip-flops.

First, the D flip-flop building blocks described in Section 4.2 are implemented
in layout. The implementation are based on the design rules and regularity rules
described in Section 5.1. The D flip-flop layout is then implemented with the
already designed building blocks. The layout for all building blocks and D flip-
flops are shown in Appendix B.

The inverter and transmission gate are both two-transistor blocks, which
means they must be implemented with dummy transistors to improve regularity.
The dummy transistors are placed next to the rail on the top and the bottom,
with all transistor terminals shorted to the closest rail. The Minority3-gate and
the Minority3-based NAND-gate are also implemented with dummy transistors,
to achieve regularity.

The Classic NAND Dff that uses CMOS NAND blocks will have a problem
regarding regularity in layout because of different sized blocks. One solution is
to use dummy transistors between the 260nm pMOS and the 310nm pMOS in
the inverter, so that the active transistors only see same size transistors as their
neighbours. This can also be done for the transistors at the end of the block row,
so that the next blocks sees 310nm transistors. However, this is not done in these
layouts and simulation, but should be noted for future improvements.

Table 12 shows the layout area of the D flip-flops and the total transistor
count, with the number of dummy transistors. In addition, the area with the
complete nWell in the horizontal direction is shown.

37

5 Implementation in Layout

Area Area with nWell Total Transistors (Dummy)

Classic NAND 92.23µm2 114.18µm2 32(2)
Min3 345.40µm2 367.35µm2 120(32)
Min3ns 310.88µm2 332.83µm2 108(30)
C2MOS 92.23µm2 114.18µm2 32(8)
PowerPC 603 92.23µm2 114.18µm2 32(12)

Table 12: D flip-flop Area, Size and Transistor Count in Layout

38

6 Testbenches

The simulation of the D flip-flop schematics and layouts are done with Cadence
Virtuoso Spectre Circuit Simulator. The simulations are executed on testbenches
designed to give the correct input signals at the correct time, and to make the D
flip-flops function as if they were implemented in a real system.

6.1 Balancing Testbench

The balancing testbench were made to find the nMOS-pMOS balance point for
each D flip-flop at a specific supply voltage, as mentioned in Section 4.2.1. The
testbench is displayed in Figure 37, with a Minority3 NAND gate being tested.
Signal D is the input signal, set to VDD/2, and Q is the output signal which can
be plotted on a graph to find the nMOS-pMOS balance point. This testbench is
also used to measure the effects of different parasitic extraction tools.

Figure 37: The Balancing Testbench

6.2 The Delay Testbench

The delay testbench is used to find the setup time and propagation delay for
the D flip-flops at different temperatures and supply voltages. The testbench is
equipped with two inverters as a driver at every D flip-flop input pin, to get a
more natural input signal. This is shown in Figure 38, which shows the delay
testbench. In addition to the drivers, the testbench has inverter loads at the
output Q of each D flip-flop. The loads are suppose to give the D flip-flops a
typical load capacitance, as if they where implemented in a real system.

The delay testbench is set up with one voltage pulse source for the D signal,
and one for the clk signal. Both these pulse sources output a square signal
modified by variables in the testbench.

39

6 Testbenches

Figure 38: The Delay Testbench

6.3 The Power and PDP Testbench

The power and PDP testbench is used to measure the static power consumption,
the total power consumption, and the PDP power data. It is equal to the delay
testbench in many ways, but it has unique pulse sources for every D flip-flop
and unique voltage supplies to each D flip-flop as seen in Figure 39. The unique
pulse sources makes it possible to set a unique D signal and clk signal for each
D flip-flops as they have different limits when it comes to switching speed. The
unique voltage supplies make it possible to measure the exact power consumption
for each D flip-flop, by multiplying the supply voltage with the current drawn
from the D flip-flop.

40

6.3 The Power and PDP Testbench

Figure 39: The power testbench

41

6 Testbenches

42

7 Simulations

This Section describes the different tests and simulations on the D flip-flops.
These include a Basic Functionality test, delay measurements, power measure-
ments, pdp-calculations and Monte Carlo analysis off the Delay.

All delay, power and pdp simulations are executed for three different tem-
peratures. One is normal temperature condition at 27◦C, one is extreme cold
temperature condition at −40◦C, and the last is extreme warm temperature con-
dition at 80◦C. These simulations are done for the supply voltages from 100mV
to 300mV with voltage steps of 20mV . All output and input pins on the D flip-
flops in the testbenches has initial condition set to 0V to make sure they start at
zero.

7.1 Transistor Layout

The simulation procedure for the Parasitic Extraction test is presented first in
this Section. Secondly comes the nWell edge and placement simulation procedure.

7.1.1 Parasitic Extraction

The parasitic capacitance and resistance of a two-inverter buffer as shown in
Figure 33 is extracted by both xRC and xACT3D tools, and compared directly,
and through a testbench to find the delay and power consumption differences.
The balancing testbench were used to test the circuit at 250mV and 27◦C.

7.1.2 nWell placement and sizing

The Well-Proximity-Effect is described in Section 3.3.3, and is measured as the
function of distance from the pMOS-gate, and the nMOS-gate. The minimum
nWell distance from the pMOS is 160nm as standard for this technology, so that
distance will be the lowest for this simulation. By simulating the schematics
for the circuit, the absolute threshold voltage is |315.6mV | for the pMOS, and
|344.3mV | for the nMOS, which is the ideal values. The measurements are done
by increasing the nWell size from the minimum distance 160nm from the pMOs
active gate, to 2µm, with 200nm steps.

7.2 D flip-flop functionality

The basic functionality of the different D flip-flops are first tested by inputting a
clock signal clk and a data signal D. The output signal Q for all D flip-flops are
plotted in a chart to confirm their functionality. The input signals can be seen
in Table 14 in Section 7.11.

7.3 Delay Simulation

The Setup time tsu and the propagation delay tco is measured by using the Delay
Testbench from Section 6.2. The inputs used are the clock signal clk and the
data signal D. The output signals used to measure are X, which is the output

43

7 Simulations

from the master latch, and the D flip-flop output signal Q, which also is the slave
latch output.

The waveforms for the input signals and the expected output signals can be
seen in Figure 40. The clk period must be minimum 4 times the worst case
delay for the slowest D flip-flop in the measurement, but should be even higher
to ensure correct behaviour. The D signal is set to 2 · clk, and the D-delay is set
to −3/4 · clk.

Since all D flip-flops except the Classic NAND and the Min3 no-set inverts
the data signal through the master latch, the X signal is inverted compared to
the value it holds as seen in the waveform. As mentioned, the testbench is used
to measure the setup time (tsu) and the propagation delay (tco). The setup time
is measured as the delay between the D signal reaches 80% of its new value until
the X signal reaches 80% of its new value. The propagation delay is measured
as the delay between the the clk signal is 80% at rising edge until the output Q
signal is 80% of its new value. These measurements are done for both falling and
rising edge, as it could be differences in the delay.

Figure 40: Delay testbench waveforms, tsu is setup time, tco is propagation delay, r
is rising edge, f is falling edge

The Delay simulations will be presented as:

• Master Latch Delay (Setup time tsu)

• Slave Latch Delay (Propagation delay tco)

• Total delay (Setup time + Propagation delay)

• Maximum Frequency ((2·Worst Case delay)−1)

7.4 Maximum D flip-flop frequency based on maximum de-
lay

The maximum delay is the worst case delay of the Setup time and Propagation
delay for rising and falling edge. The absolute highest clock frequency the D flip-
flops can operate under is 2· Maximum delay. This is because the clock needs to
be stable while the master latch and slave latch propagates data, and the highest
propagation time a D flip-flop can have is its maximum delay. The maximum
delay will be calculated for all D flip-flops and plotted as a function of the supply
voltage.

44

7.5 Static Power Simulation

7.5 Static Power Simulation

The static power consumption is measured by having static signals at the inputs
of the D flip-flops. Four different combinations of the input signals D and clk
to will be simulated to check for differences, and to find the worst case scenario.
These combinations can be seen in Table 13.

D clk Name

0 0 DL CL
0 1 DL CH
1 0 DH CL
1 1 DH CH

Table 13: Input combinations for static power consumption measurements

The Static Power Consumption simulations will be presented as:

• DL CL - D low, clk low

• DL CH - D low, clk high

• DH CL - D high, clk low

• DH CH - D high, clk high

7.6 Total Power Consumption

The total power consumption is the sum of static power consumption and dy-
namic power consumption. The total power consumption measurement is meant
to be a fair comparison of all D flip-flops, so the switching frequency clk is set
to the same value for all D flip-flops. This frequency is set to the maximum
frequency of the slowest D flip-flop at layout, so that all D flip-flops give correct
functionality. The input signal D is set so that the output Q switch value at
every rising edge of the clock signal clk. Figure 41 shows the waveforms of the
input signals and the output signals. Every change on X and Q will cause a
current to charge/discharge the output capacitance of the switched latch. These
current spikes causes the dynamic power consumption which usually dominates
the total power consumption at high switching speeds. The simulations are set
to run for exactly 15 clock cycles for each D flip-flop, and the average current
over this period is multiplied with the supply voltage to find the total power
consumption.

45

7 Simulations

Figure 41: The power testbench waveforms

The clk signal period is set to twice the value of the highest Minority3 delay
at layout, since the Minority3 is the slowest D flip-flop. Signal D period is set to
twice the value of clk, and the D delay is set to −clk. This can also be seen in
Table 14.

7.7 Maximum Power Consumption

For the Max Power measurement, each D flip-flop is clocked with a clk signal
that match its maximum switching frequency. The maximum frequency is set to
2 · tmax, where tmax is the maximum delay of the setup times and propagation
delays for that given temperature and supply voltage. The D signal period is
set to 2 · clk, and D delay is set to −clk. By doing this the input signals are
set as seen in Figure 41, and the D flip-flops should always be at its maximum
frequency limit. This can also be seen in Table 14

7.8 Power-Delay-Product

The results from the Max Power measurements are multiplied with the delay used
for the simulation to find the Power-Delay-Product. The Power-Delay-Product
or PDP is the measure of Energy used in the circuit per switching operation.
The PDP can be plotted as a function of the supply voltage to find the point
where the circuit consumes its minimum power per transition. By operating at
this supply voltage, the circuit is at its highest efficiency.

7.9 Monte Carlo Delay Simulation

Monte Carlo analysis are used to simulate the effects of process variations by using
random statistical process variation data provided by the technology manufac-
turer. Multiple simulations are run with random process variations to simulate
the yield of the design.

For this design, Monte Carlo simulations are run for delay measurements at
250mV for the temperatures −40◦C, 27◦C and 80◦C. All measured objects are
simulated with a 300 run Monte Carlo Analysis to get accurate results. 100 Monte
Carlo runs were first used when running Monte Carlo analysis, but the simulations
showed that the standard deviation (sigma) still changed significantly around 100
runs. By using 300 runs, the sigma were more stable. The seed number is 200.

The analysis gives four results, the mean delay, the minimum delay, the max-
imum delay, and the standard deviation. The process variations are disabled for

46

7.10 Running Simulations with OCEAN scripts

the loads and drivers in the testbench, so that the D flip-flops process variations
affect themselves.

7.9.1 Average Mean Delay and Standard Deviation for Schematic and
Layout

The Mean Delay for the cases: Master latch rising edge, Master latch falling
edge, Slave latch rising edge and Slave latch falling edge, for each D flip-flop are
averaged to get an overview of each D flip-flop delay. The standard deviation for
all cases are also averaged. These data will be plotted into charts to compare the
schematic results with the layout results.

7.9.2 Average Mean Delay for Schematic and Layout at different
Temperatures

The average mean delays are plotted into a chart to compare the results across the
different temperatures. This will give a better perspective of how the temperature
affects the mean delay.

7.9.3 Worst Case Mean Delay for Schematic and Layout at different
Temperatures

Next, the worst case delay for all D flip-flops at schematic and layout are plotted,
to show how these changes with the temperature. This plot should give a better
comparison than the average delay since the maximum frequency is limited by
the worst case delay, not the average delay.

7.9.4 Relative Standard Deviation Comparison

The relative standard deviation (relative sigma, σrelative) indicates the size of the
delay standard deviation compared to the size of the mean delay. It shows the
percentage delay deviation for a D flip-flop, and should give a indication of the
robustness. It is found by dividing the average sigma by the average delay for
the given D flip-flop and temperature, as seen in Expression 17.

σrelative =
σaverage
µaverage

(17)

This is done for all D flip-flops to find the one with the least delay variations.

7.10 Running Simulations with OCEAN scripts

The running and test setup of the Power-Delay-Product Simulations are time
consuming and needs a lot of manual inputting of delay data from previous
simulations. All D flip-flops need to be clocked with the maximum frequency
clock signal for the given supply voltage and temperature. In addition must the
D signal be set so that the D flip-flop switches the output signal Q at every rising
edge of the clock. The results from the PDP simulations also need to be stored
in data files, to ease the chart creation process.

47

7 Simulations

OCEAN is a text-based process which allows the user to set up, simulate,
and analyze circuit data. It can be run from the UNIX shell or from Cadence
Virtuoso[1]. The produced results from a simulation can be exported into data
files directly from the OCEAN-initiated test.

The OCEAN scripts are generated by a Python script that imports delay
data from previous simulations and calculates clock period and input signal for
each D flip-flop. The Python script generates multiple tests simultaneously and
run them in parallel from the UNIX shell. The exported output data files from
the OCEAN script, are read with a Python script which calculates the PDP. All
these scripts can be seen in Appendix C.

7.11 Simulation Input Signals

The input signals for all D flip-flop simulations are presented in Table 14. Dp is
the period of the D signal, Dd is the delay on the D signal, clkp is period of the
clock signal and clkd is the delay on the clock signal.

Test Sect. Temp. VDD [mV] Dp Dd clkp clkd

Basic Func. 7.2 27◦C 250 240ns −90ns 120ns −2fs

Delay 7.3 −40◦C 100− 300 160µs −60µs 80µs −2fs
& 7.3 27◦C 100− 300 20µs −7.5µs 10µs −2fs
Max. freq. 7.3 80◦C 100− 300 8µs −3µs 4µs −2fs

Static Pow. 7.5 All 100− 300 - - - -

Total Pow. 7.6 All 100− 300 2 · clkp −clkp 2·Min3max −2fs

Max. Pow. 7.7 All 100− 300 2 · clkp −clkp 2·Dffmax −2fs

PDP 7.8 All 100− 300 2 · clkp −clkp 2·Dffmax −2fs

7.9 −40◦C 250 1.2µs −450ns 600ns −2fs
Delay MC 7.9 27◦C 250 400ns −150ns 200ns −2fs

7.9 80◦C 250 200ns −75ns 100ns −2fs

Table 14: Input Variables for the different Tests

48

8 Results from Simulations

The results from the simulations described in Section 7 is found in this Section.

8.1 Transistor Layout

The results for the parasitic extraction simulation, and the results for the nWell
edge placement can be seen in this Section.

8.1.1 Parasitic Extraction

By running the extraction tools, parasitic data are extracted for the different nets
in the layout. For the xRC tool, they are shown in Table 15. The parasitic data
extracted by using the xACT 3D tool are shown in Table 16.

Nets R Count CTOT [F] CCTOT [F] C + CCTOT [F]
in 14 1.762 · 10−19 4.100 · 10−16 4.102 · 10−16

2 27 2.520 · 10−19 8.514 · 10−16 8.516 · 10−16

gnd 45 2.382 · 10−19 9.249 · 10−16 9.251 · 10−16

Vdd 50 7.575 · 10−20 6.247 · 10−16 6.248 · 10−16

out 15 2.382 · 10−19 4.366 · 10−16 4.368 · 10−16

Table 15: Layout parasitics for test circuit using xRC extraction tool

Nets R Count CTOT [F] CCTOT [F] C + CCTOT [F]
in 14 4.048 · 10−18 7.252 · 10−16 7.292 · 10−16

2 27 3.817 · 10−17 1.233 · 10−15 1.271 · 10−15

gnd 45 3.883 · 10−18 6.638 · 10−16 6.676 · 10−16

Vdd 50 4.734 · 10−18 7.715 · 10−16 7.762 · 10−16

out 15 3.284 · 10−17 5.895 · 10−16 6.223 · 10−16

Table 16: Layout parasitics for test circuit using xACT 3D extraction tool

The test bench results for propagation delay and power consumption are
shown in Table 17.

xRC xACT 3D
Delay 1.419ns 1.860ns
Power 20.04nW 31.86nW

Table 17: Layout parasitics Simulation Results comparing the xRC and xACT 3D
extraction tools

49

8 Results from Simulations

8.1.2 nWell Placement and Sizing

Figure 42 shows the threshold voltages for both nMOS and pMOS transistors as
the nWell distance to the active gate area increases, and also shows the schematic
threshold voltage.

Figure 42: WPE chart for inverter circuit, Dashed lines are the schematic threshold
voltage

50

8.2 D flip-flop functionality

8.2 D flip-flop functionality

The D flip-flops are tested at 27◦C with 250mV supply voltage to confirm the
functionality. The results can be seen in Figure 43.

Figure 43: The confirmed functionality of the D flip-flops at 250mV ,27◦C

51

8 Results from Simulations

8.3 Delay Comparison of D flip-flops

The different D flip-flop delays will be presented in this Section.

8.3.1 Master latch delay

(a) Rising edge Schematic at −40◦C

(b) Rising edge Layout at −40◦C

Figure 44: Setup delay for schematic and layout at −40◦C, Rising edge

52

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at −40◦C

(b) Falling edge Layout at −40◦C

Figure 45: Setup delay for schematic and layout at −40◦C, Falling edge

53

8 Results from Simulations

(a) Rising edge Schematic at 27◦C

(b) Rising edge Layout at 27◦C

Figure 46: Setup delay for schematic and layout at 27◦C, Rising edge

54

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 27◦C

(b) Falling edge Layout at 27◦C

Figure 47: Setup delay for schematic and layout at 27◦C, Falling edge

55

8 Results from Simulations

(a) Rising edge Schematic at 80◦C

(b) Rising edge Layout at 80◦C

Figure 48: Setup delay for schematic and layout at 80◦C, Rising edge

56

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 80◦C

(b) Falling edge Layout at 80◦C

Figure 49: Setup delay for schematic and layout at 80◦C, Falling edge

57

8 Results from Simulations

8.3.2 Slave latch delay

The slave latch delay or propagation delay tco are presented here.

(a) Rising edge Schematic at −40◦C

(b) Rising edge Layout at −40◦C

Figure 50: Propagation delay for schematic and layout at −40◦C, Rising edge

58

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at −40◦C

(b) Falling edge Layout at −40◦C

Figure 51: Propagation delay for schematic and layout at −40◦C, Falling edge

59

8 Results from Simulations

(a) Rising edge Schematic at 27◦C

(b) Rising edge Layout at 27◦C

Figure 52: Propagation delay for schematic and layout at 27◦C, Rising edge

60

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 27◦C

(b) Falling edge Layout at 27◦C

Figure 53: Propagation delay for schematic and layout at 27◦C, Falling edge

61

8 Results from Simulations

(a) Rising edge Schematic at 80◦C

(b) Rising edge Layout at 80◦C

Figure 54: Propagation delay for schematic and layout at 80◦C, Rising edge

62

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 80◦C

(b) Falling edge Layout at 80◦C

Figure 55: Propagation delay for schematic and layout at 80◦C, Falling edge

63

8 Results from Simulations

8.3.3 Total D flip-flop delay

The total delay is the sum of setup time tsu and propagation delay tco.

(a) Rising edge Schematic at −40◦C

(b) Rising edge Layout at −40◦C

Figure 56: Total delay for schematic and layout at −40◦C, Rising edge

64

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at −40◦C

(b) Falling edge Layout at −40◦C

Figure 57: Total delay for schematic and layout at −40◦C, Falling edge

65

8 Results from Simulations

(a) Rising edge Schematic at 27◦C

(b) Rising edge Layout at 27◦C

Figure 58: Total delay for schematic and layout at 27◦C, Rising edge

66

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 27◦C

(b) Falling edge Layout at 27◦C

Figure 59: Total delay for schematic and layout at 27◦C, Falling edge

67

8 Results from Simulations

(a) Rising edge Schematic at 80◦C

(b) Rising edge Layout at 80◦C

Figure 60: Total delay for schematic and layout at 80◦C, Rising edge

68

8.3 Delay Comparison of D flip-flops

(a) Falling edge Schematic at 80◦C

(b) Falling edge Layout at 80◦C

Figure 61: Total delay for schematic and layout at 80◦C, Falling edge

69

8 Results from Simulations

8.4 Maximum D flip-flop frequency based on maximum de-
lay

The maximum delay for all D flip-flops are used to find the maximum frequency.
The maximum delay is multiplied with 2 to find the maximum clock period. The
results can be seen in this Section.

(a) Schematic

(b) Layout

Figure 62: Maximum frequency for all D flip-flops at −40◦C

70

8.4 Maximum D flip-flop frequency based on maximum delay

(a) Schematic

(b) Layout

Figure 63: Maximum frequency for all D flip-flops at 27◦C

71

8 Results from Simulations

(a) Schematic

(b) Layout

Figure 64: Maximum frequency for all D flip-flops at 80◦C

72

8.4 Maximum D flip-flop frequency based on maximum delay

(a) Schematic

(b) Layout

Figure 65: Maximum frequency for all D flip-flops across temperatures

73

8 Results from Simulations

8.5 Static Power Consumption

The static power consumption is found by having stable values at the inputs.

(a) Schematic with D high and Clk high

(b) Layout with D high and Clk high

Figure 66: Static Power Consumption for layout and schematic with D high, Clk high

74

8.5 Static Power Consumption

(a) Schematic with D high and Clk low

(b) Layout with D high and Clk low

Figure 67: Static Power Consumption for layout and schematic with D high, Clk low

75

8 Results from Simulations

(a) Schematic with D low and Clk high

(b) Layout with D low and Clk high

Figure 68: Static Power Consumption for layout and schematic with D low, Clk high

76

8.5 Static Power Consumption

(a) Schematic with D low and Clk low

(b) Layout with D low and Clk low

Figure 69: Static Power Consumption for layout and schematic with D low, Clk low

77

8 Results from Simulations

8.5.1 Static Power Comparison at Different Temperatures

Since the static power consumption with D high and Clk low, had the overall
highest results, these inputs are also tested at −40◦C and 80◦C. The results are
below.

(a) Schematic

(b) Layout

Figure 70: Static Power Consumption DH CL at all temperatures

78

8.6 Total Power Consumption

8.6 Total Power Consumption

The Total Power Consumption is measured at the highest clk frequency where
all Dffs function normally. This frequency is the Min3 D flip-flops maximum
frequency in layout1.

(a) Schematic

(b) Layout

Figure 71: Total Power Consumption at −40◦C

79

8 Results from Simulations

(a) Schematic

(b) Layout

Figure 72: Total Power Consumption at 27◦C

80

8.6 Total Power Consumption

(a) Schematic

(b) Layout

Figure 73: Total Power Consumption at 80◦C

81

8 Results from Simulations

8.6.1 Total Power Consumption Schematic versus Layout Compari-
son

These charts show the total power consumption for schematic and layout com-
pared.

Figure 74: Total Power Consumption Comparison between schematic and layout at
−40◦C

82

8.6 Total Power Consumption

Figure 75: Total Power Consumption Comparison between schematic and layout at
27◦C

Figure 76: Total Power Consumption Comparison between schematic and layout at
80◦C

83

8 Results from Simulations

8.6.2 Total Power Consumption Temperature Comparison

These charts show how the total power consumption changes with temperature.

Figure 77: Total Power Consumption Comparison between Temperatures for
schematic

Figure 78: Total Power Consumption Comparison between Temperatures for layout

84

8.7 Maximum Power Consumption

8.7 Maximum Power Consumption

The D flip-flops consumes its maximum power when operating at its maximum
frequency and switching the output at every clock cycle. These results are pre-
sented here.

(a) Schematic

(b) Layout

Figure 79: Maximum Power Consumption at −40◦C

85

8 Results from Simulations

(a) Schematic

(b) Layout

Figure 80: Maximum Power Consumption at 27◦C

86

8.8 Power-Delay-Product

(a) Schematic

(b) Layout

Figure 81: Maximum Power Consumption at 80◦C

87

8 Results from Simulations

8.8 Power-Delay-Product

The Power-Delay-Product results are presented here.

(a) Schematic

(b) Layout

Figure 82: Power-Delay-Product at −40◦C

88

8.8 Power-Delay-Product

(a) Schematic

(b) Layout

Figure 83: Power-Delay-Product at 27◦C

89

8 Results from Simulations

(a) Schematic

(b) Layout

Figure 84: Power-Delay-Product at 80◦C

90

8.9 Monte Carlo Delay Simulation

8.9 Monte Carlo Delay Simulation

Monte Carlo analysis are run for delay measurements using statistical process
variation data. The results can be seen in this Subsection. The Statistical data
can be seen in Appendix A. The supply voltage for all results are 250mV .

8.9.1 Average Mean Delay and Standard Deviation for Schematic and
Layout

The Average Mean Delay and Standard Deviation Results for −40◦C can be seen
in Figure 85. The Results for 27◦C in Figure 86, and the Results for 80◦C in
Figure 87.

Figure 85: Monte Carlo Analysis Average Results and std. Deviation for schematic
and layout at −40◦C

91

8 Results from Simulations

Figure 86: Monte Carlo Analysis Average Results and std. Deviation for schematic
and layout at 27◦C

Figure 87: Monte Carlo Analysis Average Results and std. Deviation for schematic
and layout at 80◦C

8.9.2 Average Mean Delay for Schematic and Layout at different tem-
peratures

Figure 88 shows the average mean delays for all D flip-flops at schematic and
layout, and how these changes with the temperature.

92

8.9 Monte Carlo Delay Simulation

Figure 88: Monte Carlo Analysis Average Results for schematic and layout

8.9.3 Worst Case Mean Delay for Schematic and Layout at different
temperatures

Figure 89 shows the worst case delay for all D flip-flops at schematic and layout,
and how these changes with the temperature.

Figure 89: Monte Carlo Analysis Worst Case Results for schematic and layout

93

8 Results from Simulations

8.9.4 Relative Standard Deviation Comparison

Figure 90 shows the relative standards deviation for all D flip-flops at schematic
and layout for all temperatures. These results can also be seen in Appendix A.3.

Figure 90: Relative Standard Deviation for all D flip-flops. The Y-value is average
Standard Deviation divided by the average Mean Delay

94

9 Discussion

This Section contains the discussion of the results from Section 8.

9.1 Transistor Layout

The transistor layout results will be discussed in this Section. First the parasitic
extraction, and then the nWell edge placement.

9.1.1 Parasitic Extraction

Table 15 and Table 16 shows that the xACT3D extraction gives higher capaci-
tances for most nets, and significantly higher for net in and net 2. The layout with
xRC parasitic extraction, and xACT3D extraction are run through the same test
bench to calculate the delay and power consumption differences. The results are
displayed in Table 17, and shows that the difference is significant when it comes
to both propagation delay and power consumption. The propagation delay in-
creases with over 31% and the power consumption increases with approximately
59% at the same time. The xACT3D extraction is more time consuming than
the xRC, but since the creator of the extraction tools claim that xACT3D is the
most accurate one[2], all layout parasitics extraction are done by xACT3D.

9.1.2 nWell Placement and Sizing

The results in Figure 42 shows that the threshold voltage of the pMOS increases
with 38mV , or 12% from the schematic value when using the minimum nWell size
of 160nm. An increase in the threshold voltage by 38mV causes a large increase
in the Drain current, and consequently increases the nMOS/pMOS imbalance.
As the nWell size increases, and the distance from the nWell edge to the active
gate area increases, the Figure shows the Threshold value for the pMOS tran-
sistor approaches its schematic value, but at 2µm distance there is still around
3mV deviation. Because of the exponential relationship between threshold volt-
age and drain current in subthreshold operation, the threshold voltage variation
should be kept to a minimum. So the distance from the nWell edge to the pMOS
transistors active gate area are kept to minimum 2µm for all D flip-flop layouts.
The nMOS transistors are also affected by the nWell edge distance to its active
gate area, but not in the same degree. As the distance passes 1µm, the threshold
curve starts to flatten and slowly approach its schematic value. The nMOS active
gate area distance to the nWell is therefore kept to 1µm.

The trade-off for this relatively high nMOS to pMOS distance is the chip
area, since it increases with the distance between the transistors, but also for the
increased nWell area above the pMOS transistors.

One other problem with the nWell is the relative distance for each transistor.
If one transistor is closer to the edge of the nWell than others, its threshold
voltage will be different and can cause mismatch between balanced transistors.
The WPE could also be higher for transistors at the end of transistor rows, as

95

9 Discussion

they are surrounded by the nWell edge at one side, in contrast to transistors in
the middle of the row.

9.2 D flip-flop functionality

Figure 43 shows that the D flip-flops function with 250mV supply voltage at
27◦C. The C2MOS and the PowerPC 603 D flip-flops seems to be the fastest,
atleast at the falling edge of Q.

9.3 Delay Comparison of D flip-flops

The Setup time, the propagation delay and the total delay measurements will be
discussed in this section.

9.3.1 Master latch delay

The master latch delay (Setup time tsu) results are shown in Section 8.3.1 and
shows the delay as a function of the supply voltage.

The −40◦C results are shown in Figure 44 and Figure 45, and shows four
figures which compares the Setup time results for schematic and layout. In all
sub-figures, the PowerPC 603 gives the best result for all supply voltage values.
The C2MOS and the Classic NAND D flip-flop shows similar results, where the
C2MOS is a bit faster at rising edge, and the Classic NAND is a bit faster at falling
edge. The Minority3 D flip flop is the overall slowest one, with the Minority3
no-set D flip-flop a bit faster.

The 27◦C results can be seen in Figure 46 and Figure 47, and shows much
the same as the −40◦C results. The PwrPC 603 is still the fastest for all supply
voltages, with C2MOS and the Classic NAND D flip-flop a bit slower. The
Minority3 is the slowest, with the Minority3 no-set D flip-flop a bit faster.

The 80◦C results are shown in Figure 48 and Figure 49, with the PowerPC
603 as the fastest for all supply voltages. The Classic NAND D flip-flop is still
a bit faster than the C2MOS at the falling edge condition, and is also faster at
voltages lower than 200mV at rising edge condition. The Minority3 D flip-flop
is the slowest, with the Minority3 no-set D flip-flop is a bit faster.

The delay increases by roughly 2.8 times from schematic to layout, which
should be expected with the introduction of parasitics.

9.3.2 Slave latch delay

The slave latch delay (propagation delay tco) will be discussed in this Subsection.
The results are shown in Section 8.3.2.

96

9.3 Delay Comparison of D flip-flops

The −40◦C results are shown in Figure 50 and Figure 51. The C2MOS has the
lowest propagation delay at rising edge, especially in layout. At falling edge, the
PowerPC 603 is fastest for both schematic and layout. One thing that is noticed
is that the Classic NAND is among the fastest at rising edge, but is among the
slowest at falling edge. The reason for this is the increased critical path for the
signal, at this exact condition. The clock signal needs to propagate through two
NAND gates and one inverter before changing the last D-latch, where the signal
must propagate through the two last NANDs. This sums up to 4 NAND gates
and on inverter, in contrast to two NAND gates for the other conditions. The
C2MOS seems to do be less affected by layout non-idealities at rising edge, than
for falling edge.

The 27◦C results can be seen in Figure 52 and Figure 53, and show much
the same as for −40◦C. The Classic NAND has still a much higher propagation
delay for falling edge.

The 80◦C results are displayed in Figure 54 and Figure 55, and shows that
C2MOS is the fastest D flip-flop at rising edge, and PowerPC 603 is fastest at
falling edge. The Classic NAND is still very slow at falling edge compared to
rising edge.

The total results, show that the propagation delays across the D flip-flops are
closer to each other than for the setup time. The Minority3 D flip-flop has lower
propagation delay than the Minority3 no-set D flip flop, in contrast to the setup
delay. This can be explained by the change in structure because of the removal
of the Set input. The Minority3 no-set has less transistors in the master latch,
but one more inverter in the slave latch.

9.3.3 Total D flip-flop delay

The total delay is the sum of propagation delay and total delay and should show
the overall fastest D flip-flops. The results are presented in Section 8.3.3.

The −40◦C results are shown in Figure 56 and Figure 57, and shows that
the Classic NAND, the C2MOS and the PowerPC 603 have very similar delay at
rising edge schematics. At layout rising edge, the C2MOS is fastest. At falling
edge the differences are more clear, the PowerPC 603 is fastest at both schematics
and layout. The C2MOS and Classic NAND are number two and three, while
the Minority3 is the slowest one.

The 27◦C results are shown in Figure 58 and Figure 59, and shows exactly
the same as the −40◦C results.

The 80◦C results also gives much the same results as for the lower tempera-
tures, as seen in Figure 60 and Figure 61.

The total results for total delay shows that the PowerPC 603 and C2MOS is
the fastest D flip-flops. Even though the total delay shows which D flip-flop that

97

9 Discussion

has the lowest total delay, it does not necessarily means that D flip-flop is the
fastest. The worst case delay of all delays should set the maximum frequency,
to be sure that the D flip-flop functions under all circumstances. The Maximum
total delay, the lowest delay, and the highest delay for all D flip-flops can be seen
in Table 18.

Dff Max. Total Delay Min. Delay Max. Delay

Classic NAND 10.44ns 2.798ns 7.645ns
Minority3 19.45ns 7.568ns 11.93ns
Minority3 no-set 16.90ns 8.030ns 8.652ns
C2MOS 7.950ns 2.832ns 4.560ns
PowerPC 603 7.391ns 2.234ns 5.102ns

Table 18: Delay Comparison at 300mV, 27◦C, Layout

9.4 Maximum D flip-flop frequency based on maximum de-
lay

The D flip-flop maximum frequency is as mentioned in Section 7.7, the frequency
based on the maximum delay. The calculated maximum frequency for all D flip-
flops can be seen in Figure 62, Figure 63 and Figure 64. The PowerPC is the
fastest D flip-flop at Schematic at all temperatures, just in front of the C2MOS.
The Classic NAND D flip-flop and the Min3 no-set D flip-flop shows similar
results, but with the Classic NAND a bit faster. The Min3 D flip-flop is the
slowest for all temperatures. At layout, the results are the same, except that
the C2MOS is faster than the PowerPC D flip-flop at higher supply voltages.
Figure 65 shows how the maximum frequencies changes with temperature.

These results agrees with previous results in [6], where the PowerPC 603
showed the best delay results of the Static D flip-flops on schematic. It also
compares a NAND-based D flip-flop to the PowerPC 603 and the C2MOS, but
the structure and functionality is different. The C2MOS results consists with
the results in [6], with a schematic delay a little higher than the PowerPC 603.
[14] compares PowerPC 603 with C2MOS at schematic level and shows that the
PowerPC 603 is slightly faster than the C2MOS. However, [17] shows that the
C2MOS is faster than the PowerPC 603 at schematic simulations. The Classic
NAND results were meant to be compared to the results of the NAND-based D
flip-flop implementation presented in [6], but the basic NAND cell presented as
a figure in the paper appeared to be non-functional, and the reference shows a
NANDNOR D flip-flop.

9.5 Static power consumption at different inputs

The static power consumption results are shown in Figure 66, Figure 67, Figure 68
and Figure 69. The figures show that different input values affects the static power
consumption of the D flip-flops. The PowerPC 603 has an increase in static power

98

9.6 Total power consumption

consumption when D is high and clk is low. The C2MOS has a bit higher static
power consumption when D is high, and Classic NAND has its highest when D
is low and clk is high. The Minority3-based D flip-flops are not affected much by
the change in input values.

By comparing the schematic results with the layout results, all D flip-flops
seems reduce their static power consumption by around 5% when moving from
schematic to layout. This reduction in the static power consumption is a result
by a reduction in the leakage current of the transistors. By looking at the leakage
current Expression 9 and Expression 10 in Subsection 3.1.3, the reduced leakage
current most likely comes from increased threshold voltage when moving from
schematics to layout.

9.5.1 Static power comparison at different temperatures

The results in Figure 70 shows the static power consumption for D high and Clk
low for the temperatures −40◦C, 27◦C and 80◦C.

In Subsection 3.3.1, Expression 13 shows that the threshold voltage decreases
as the temperature rises for subthreshold operation. This threshold voltage de-
crease causes the leakage current to rise as seen in Figure 70. It can also be seen
that the static power consumption in layout is slightly lower than for schematic.

9.6 Total power consumption

The results for the total power consumption measurements can be seen in Fig-
ure 71, Figure 72 and Figure 73. The results show that the PowerPC 603 has the
lowest total power consumption at all temperatures for both schematic and lay-
out. Right behind the PowerPC 603 is C2MOS and the Classic NAND D flip-flop,
which shows very similar results. The Minority3-based D flip-flops stands out by
having a significantly higher total power consumption, as seen in the Figures.
The no-set D flip-flop has still a slightly lower total power consumption than the
Minority3 D flip-flop at all temperatures.

[6] compares the PowerPC 603 and C2MOS D flip-flops total power consump-
tion in the same way as done in this thesis. It also shows that the PowerPC 603
has a slightly lower power consumption while operating at the same frequency.
[14] shows the same results.

9.6.1 Total Power Consumption Schematic vs Layout Comparison

Figure 74, Figure 75 and Figure 76 compares the schematic and layout total
power consumption as the supply voltage changes. The results show that the to-
tal power consumption is close to equal for the schematic and layout at 100mV ,
but as the supply voltage increases, the layout gradually consumes more power
than the schematic. The equal total power consumption at 100mV can be ex-
plained by the domination of static power consumption, which is around 5% lower
for layout than schematic as explained in Section 9.5. But as the supply voltage
increases, the dynamic power consumption starts to dominate, and the increase
in parasitic output capacitance causes the layout to have a higher total power

99

9 Discussion

consumption.

9.6.2 Total Power Consumption Temperature Comparison

By comparing the total power consumption over different temperatures as seen
in Figure 77 and Figure 78, the effect of the threshold voltage increase at low
temperatures becomes visible. At 100mV the total power consumption is close
to the static power consumption, since it dominates at this supply voltage. As
the supply voltage increases, the total power consumption starts to dominate.
This causes the total power consumption differences between the temperatures to
decrease, since the dynamic power consumption is not as temperature dependent
as the static.

9.7 Maximum Power Consumption

For the Maximum Power Consumption Results in Figure 79, Figure 80 and Fig-
ure 81, all D flip-flops operates at its maximum frequency. The results show that
the Classic NAND consumes the least power while operating at maximum speed.
The PowerPC has the second lowest consumption, followed by the C2MOS. The
Min3 no-set D flip-flop has the highest maximum power consumption, and the
Min3 is a little lower.

The main reason for the low Maximum Power Consumption for the Classic
NAND D flip-flop is its maximum frequency. The maximum frequency is limited
to its worst case delay at falling edge of the slave latch, and is around twice as
high than its other delays. This causes the Classic NAND to spend much of the
working waiting, and not consuming dynamic power. A second reason can be
the lower pMOS transistor area of the NAND-gates used in the Classic NAND D
flip-flop, which gives lower Capacitances, and can lower the subthreshold current
(Drive).

9.8 Power-Delay-Product

The results for the Power-Delay-Product simulation can be seen in Figure 82,
Figure 83 and Figure 84.

At −40◦C , the PowerPC has the lowest Energy per switching at schematic,
but for layout the Classic NAND has a lower Energy per switching for supply
voltages above 180mV . The C2MOS has similar results to the Classic NAND
in schematic and PowerPC in layout. The Minority3-based D flip-flop has the
highest Energy per switching, with the Minority3-based no-set D flip-flop a little
lower. While no D flip-flop meet its minimum point of Energy used per transition
at schematic, both Min3 and Min3ns meet their minimum at 120mV in layout.
This is because the layout adds parasitic capacitances to the circuit, which gives
a higher propagation delay and pushes the minimum point to a higher supply
voltage.

100

9.9 Monte Carlo Delay Simulation

At 27◦C , the PowerPC D flip-flop has the lowest Energy per transition at both
schematic and layout. The C2MOS is the second best at supply voltages under
180mV , but over 180mV , the Classic NAND is the second best. The Min3 has
the highest energy per transition, with the Min3ns as the second highest. All D
flip-flops except the PowerPC D flip-flop shows a minimum Energy per transition
point, or a point close to minimum. For the Min3 and the Classic NAND D flip-
flop, the minimum Energy per transition point is around 120mV . The C2MOS
and Min3ns shows a minimum Energy per transition point around 100mV .

At 80◦C , the PowerPC has still the lowest Energy per transition, with the
C2MOS as the second best for supply voltages under 240mV . The Classic NAND
has the second lowest Energy per transition for supply voltages over 240mV .

By comparing the results across temperatures, the Energy per transition in-
creases as the temperature rises for low supply voltages. This happens because
the static power consumption starts to dominate at this point, and the static
power consumption is dependent on the temperature, because of the change in
threshold voltage. At higher supply voltages, the difference is minimal since the
dynamic power dominates.

The overall PDP results show that the PowerPC 603 is the D flip-flop with
the lowest Energy consumption per transition. The Classic NAND has the sec-
ond lowest Energy consumption per transition for supply voltages over around
240mV . The C2MOS is the second best for supply voltages under 160mV . For
the voltages between 160mV and 240mV , the C2MOS and the Classic NAND
are very similar. The Min3 D flip-flop has the highest Energy consumption at all
supply voltages and temperatures, with the Min3ns a little lower.

The Classic NAND D flip-flop has a significantly higher worst case delay
than the C2MOS and the PowerPC D flip-flop, because of reasons mentioned in
Section 9.3.2. However, it shows very good results in PDP, which is connected
to the low Maximum Power Consumption. This may also be connected to the
reduced gate area of the Classic NAND D flip-flop.

[6] compares C2MOS and PowerPC 603 PDP results on schematic, with results
showing that the PDP of the C2MOS is a little higher than for PowerPC 603,
which consists with the PDP results in this thesis. [14] gives the same conclusions.

9.9 Monte Carlo Delay Simulation

This Section will be used to discuss the Monte Carlo results seen in Section 8.9.

9.9.1 Average Mean Delay and Standard Deviation for Schematic and
Layout

Figure 85, Figure 86 and Figure 87 shows the average mean delay and average
standard deviation for the D flip-flops at schematic and layout. The results show
that the Min3 has the highest average delay at both schematic and layout. The

101

9 Discussion

Min3 no-set D flip-flop has a bit lower average mean delay than the Min3. The
Classic NAND, the C2MOS and the PowerPC D flip flop are relatively close in
both average delay and standard deviation, though the PowerPC has a marginally
lower delay and standard deviation. The average data can be seen in Table 35 in
Appendix A.2. As the temperature rises the

9.9.2 Average Mean Delay for Schematic and Layout at different tem-
peratures

Figure 88 shows the average mean delay for each D flip-flop at the different
temperatures. The results show that an increase in temperature from −40◦C to
27◦C reduces the relative delay by approximately the same for all D flip-flops.
The average relative reduction is 3.29, which means that the delay at 27◦C is
3.29 times lower than for −40◦C. With an increase in temperature from 27◦C to
80◦C the relative reduction in delay is 1.79.

9.9.3 Worst Case Mean Delay for Schematic and Layout at different
temperatures

The Worst Case Results can be seen in Figure 89, and shows the worst case delay
for the D flip-flops for schematic and layout at all temperatures. As mentioned
earlier, the worst case delay limits the maximum D flip-flop frequency, so this
results give a more realistic delay comparison. The results show that the PowerPC
and the C2MOS gives the best and very similar results. The Classic NAND has
fallen behind, because of its high propagation delay at falling edge. The Min3
and Min3 no-set is still the slowest.

9.9.4 Relative Standard Deviation Comparison

Figure 90 shows the relative standard deviation for the different D flip-flops at
the different temperatures. It shows that the Min3 D flip-flop has the lowest
relative standard deviation for all temperatures, at both schematic and layout.
It goes from around 15% at −40◦C, to around 11% at 27◦C, and around 9% at
80◦C. The Min3 no-set D flip-flop is very close to the Min3, with an average of
0.36 percentage points above. The PowerPC and the Classic NAND shows very
similar results at layout with results around 22%, 16% and 13% for the temper-
atures −40◦C, 27◦C and 80◦C, respectively. Their differences are a bit larger in
schematic. The C2MOS D flip-flop shows the overall highest relative standard
deviation at all temperatures. At layout the results are approximately 27.8%,
20.1% and 15.4% at the temperatures −40◦C, 27◦C and 80◦C, respectively.

The low relative standard deviation delay results for the Minority-3 gate
makes it the most robust to process variations in this sense. The low supply
voltage results in [32], can be linked to this, where the Minority-3 based Ripple-
Carry Adder showed correct functionality down to 106mV with tuning the body
bias, and 119mV without the body voltage set to VDD. This very low supply
voltage indicates a good nMOS/pMOS balance as mentioned in Section 3.2.

[10] proposes a 8-transistor logic configuration which will be called the 8T-
gate here. It has a forced stacking of 2, and it can take the form of a NAND or

102

9.10 The Total Results

NOR gate. [25] compares the 8T-gate configuration to the Minority3-gate, and
the 8T-gate shows a lower PDP and a lower delay, but the static leakage is higher.
The most important results for the 8T-gate is that the relative standard deviation
is significantly lower than for the Minority3, for all results. The advantages of
this will be mentioned in the future work Section 10.1.

9.10 The Total Results

By looking at the results in total, the D flip-flops have different usage advantages
and disadvantages.

The fastest D flip-flop were found by looking at the delay measurements, and
the Monte Carlo analysis. Early in the simulations, the C2MOS, the PowerPC
and the Classic NAND stood out as the best for most of the simulations. By us-
ing the highest delay measurement as the maximum frequency limit, the Classic
NAND D flip-flop falls behind, because of its high propagation delay at falling
edge. By looking at Figure 65 in Section 8.4, the PowerPC shows the highest
maximum frequency at schematic, at all temperatures, with the C2MOS right
behind. The Layout results show that the C2MOS is the fastest at supply volt-
ages above around 200mV , which makes it the fastest at the balance voltage
250mV . The PowerPC is the second fastest and the Classic NAND is number
three, right in front of the Min3 no-set D flip-flop. The Min3 D flip-flop has the
lowest maximum frequency for all temperatures. Table 19 shows the maximum
frequency at 250mV supply voltage at 27◦C. The 250mV data is interpolated
by the values for 240mV and 260mV .

Dff Maximum Frequency

Classic NAND 28.61MHz
Minority3 18.87MHz
Minority3 no-set 25.48MHz
C2MOS 47.42MHz
PowerPC 603 43.20MHz

Table 19: Maximum Frequency of D flip-flops, 250mV supply voltage at 27◦C Layout

The Static Power Consumption results show that the PowerPC 603 D flip-flop
consumes the least power when there is no switching on the inputs. The C2MOS
is second and the Classic NAND is third. The Min3 and the Min3 no-set D
flip-flops consumes over twice as much static power than the rest.

The D flip-flop with the lowest total power consumption is the PowerPC,
which is marginally better than the Classic NAND and the C2MOS at all sup-
ply voltages and temperatures. At low supply voltage values, the C2MOS has
the second lowest power consumption, but the Classic NAND is the second low-
est at higher supply voltages. The Min3 D flip-flop has the highest total power

103

9 Discussion

consumption, with the Min3 no-set a little better. The interpolated total power
consumption for Layout operating at 250mV with the temperature 27◦C can be
seen in Table 20.

Dff Total Power Consumption

Classic NAND 65.55nW
Minority3 165.10nW
Minority3 no-set 142.18nW
C2MOS 67.84nW
PowerPC 603 61.35nW

Table 20: Total Power Consumption of D flip-flops, 250mV supply voltage at 27◦C
Layout

The Power-Delay-Product simulations shows that the PowerPC 603 overall
uses the least Energy per transition at all supply voltages and temperatures,
except at −40◦C, where the Classic NAND is slightly better at higher supply
voltages. The Classic NAND has the second lowest Energy per transition at
higher supply voltages (over 240mV). The C2MOS is second best at low supply
voltages (under 180mV). The Min3 and the Min3 no-set shows a significantly
higher PDP than the rest of the D flip-flops. The interpolated PDP on Layout
at 250mV , 27◦C is shown in Table 21.

Dff Total Power Consumption

Classic NAND 1.591fJ
Minority3 4.314fJ
Minority3 no-set 3.895fJ
C2MOS 1.716fJ
PowerPC 603 1.545fJ

Table 21: Power-Delay-Product of D flip-flops, 250mV supply voltage at 27◦C Layout

The Monte Carlo Delay Simulations showed that Min3 and the Min3 no-set
had the lowest relative standard deviation, at all temperatures. The Classic
NAND and the PowerPC had similar results some percentage points above the
Min3 and the Min3 no-set. The C2MOS gave the highest relative standard devi-
ation results at all temperatures.

104

10 Concluding Remarks

The results show that the PowerPC 603 D flip-flop has the lowest Static Power
Consumption, the lowest Total Power Consumption, and the overall best Power-
Delay-Product results in layout simulations. It also has the second best switch-
ing speed, right behind the C2MOS D flip-flop. It is well suited for high-speed
low-power systems, and is already used in the PowerPC 603 low-power micro-
processors. The C2MOS D flip-flop has the highest switching speed, good power
consumption and PDP results, but is the most susceptible to propagation delay
variations because of process variations. When it comes to delay and power con-
sumption, [6], [14] and [17] show similar results for the C2MOS and PowerPC
603 for simulations based on the schematic.

For subthreshold systems where the yield is of the highest priority, the Mi-
nority3 D flip-flop is the best choice. It is relatively slow compared to the other
D flip-flops, it has a higher power consumption and higher Energy consumption
per transition, but has a low relative standard deviation on delay measurements
compared to the other D flip-flops. The Minority3 no-set D flip-flop shows similar
results to the Minority3. It is a bit faster, has a slightly lower power consumption
and PDP results. However, the relative standard deviation is little higher.

The Classic NAND has a relative high propagation delay compared to the
best. Static power consumption is average, but the total power consumption and
maximum power consumption is among the best. The PDP results are second
best, right behind the PowerPC. The relative standard deviation when it comes
to delay is average.

10.1 Improvements of the D flip-flops and Future Work

There are some methods that can improve the D flip-flops further. [23] describes
how forced stacking of devices can reduce the leakage current, which can give
large power savings for devices with low switching activity. Some blocks are al-
ready stacked, like the clocked inverter, so the forced stacking is mainly ment for
the inverter gate, Minority3-gate and the CMOS NAND-gate.

By using the 8T-gates, the Minority3-based NAND-gates in the Minority3 D
flip-flop can be implemented with less transistors, and at the same using more
robust building blocks, which can improve the total robustness against process
variations. The current Minority3 D flip-flop has a total transistor count of 88,
but with the 8T-improvement, the total transistor count will be 78, which is a
11.36% reduction.

This 8T-gate transistor reduction technique can also be used with the high
regularity layout structure used in this Thesis. The total transistor count for the
Minority3 D flip-flop will be reduced from 120 to 100 transistors in this case,
which is a 16.67% reduction. This reduction is in addition to keeping a highly
regular layout, which should improve the yield, and by using more robust build-
ing blocks, which can further improve the yield.

A possible improvement of the RX/TX-module made by Q-free ASA men-

105

10 Concluding Remarks

tioned in [32], is to replace the Minority3-based NANDs and NORs with the 8T-
gates, which is shown to have a better robustness against process variations. In
addition will the 8T-gates reduce the total transistor count by reducing a NAND-
gate from 12 transistors to 8 transistors. In addition does the RX/TX-module
consists of 2 XOR-gates constructed by 3 Minority3-gates and two inverters. The
XOR-configuration can be simplified to a 8-transistor CMOS XOR-gate with two
inverters, and reduce the transistor count from 34 to 12 for each XOR.

By quick calculations, the total block count of the RX/TX-module is 140
inverters, 24 Min3, 67 NAND-coupled Min3, 1 NOR-coupled Min3 and 2 Min3-
based XOR-gate. The transistor count for each block for the current design and
the new proposed design can be seen in Table 22.

Inv. Min3 NAND NOR XOR Tot.

Current Design 280 240 670 10 68 1268
New Design 280 240 536 8 24 1088

Table 22: Transistor count in the current design, and the transistor count in the new
proposed design, for the RX/TX-module

The new proposed design reduces the total transistor count from 1268 to 1088
transistors, which is a 14.2% reduction. In addition should the new design show
a low relative standard deviation, because of the 8T-gates, and could cause a
better robustness against process variations, and therefore provide an improved
yield.

Body biasing can be used to tune the threshold voltage of the transistors to
achieve better nMOS/pMOS balance. It can also reduce the leakage currents by
increasing the threshold voltage. Pins to the bulk-gate of the transistors can be
implemented to statically or dynamically tune the VSB to achieve the desired
functionality.

By switching to high-threshold voltage transistors, the total power consump-
tion can be greatly reduced, for the cost of reduced switching speed. This Thesis
mainly compares D flip-flop structures, but most results should be comparable
in other transistor technologies.

The high regularity should make the designs more robust against manufac-
turing process-created process variations. A tape-out of the D flip-flops and
measurements on chip can show if the designs functions, and the results can be
compared to the layout results simulated in Cadence Virtuoso.

Papers regarding the results found in this Thesis are in the making.

106

References

References

[1] Cadence ocean referance, product version 4.4.6. http://www.ece.
gatech.edu/academic/courses/ece4430/ECE4430/Unit1/EKV_
Model_Extraction/oceanref.pdf. Accessed: 2013-06-01.

[2] Mentor Graphics Calibre xACT3D. http://www.mentor.com/
products/ic_nanometer_design/verification-signoff/
circuit-verification/calibre-xact/. Accessed: 2013-04-21.

[3] Mentor Graphics Calibre xRC. http://www.mentor.com/
products/ic_nanometer_design/verification-signoff/
circuit-verification/calibre-xrc/. Accessed: 2013-04-21.

[4] Tc7w74fu datasheet (pdf) - toshiba semiconductor - d-type flip flop with
preset and clear. http://www.alldatasheet.com/datasheet-pdf/
pdf/32075/TOSHIBA/TC7W74FU.html. Accessed: 2013-05-20.

[5] M. Alioto. Ultra-low power vlsi circuit design demystified and explained:
A tutorial. Circuits and Systems I: Regular Papers, IEEE Transactions on,
59(1):3–29, 2012.

[6] H.P. Alstad and S. Aunet. Seven subthreshold flip-flop cells. In Norchip,
2007, pages 1–4, 2007.

[7] F. Arnaud, F. Boeuf, F. Salvetti, D. Lenoble, F. Wacquant, C. Regnier,
P. Morin, N. Emonet, E. Denis, J.-C. Oberlin, D. Ceccarelli, P. Vannier,
G. Imbert, A. Sicard, C. Perrot, O. Belmont, I. Guilmeau, P. O Sassoulas,
S. Delmedico, R. Palla, F. Leverd, A. Beverina, V. DeJonghe, M. Broekaart,
L. Pain, J. Todeschini, M. Charpin, Y. Laplanche, D. Neira, V. Vachellerie,
B. Borot, T. Devoivre, N. Bicais, B. Hinschberger, R. Pantel, N. Revil,
C. Parthasarathy, N. Planes, H. Brut, J. Farkas, J. Uginet, P. Stolk, and
M. Woo. A functional 0.69 mu;m2 embedded 6t-sram bit cell for 65 nm
cmos platform. In VLSI Technology, 2003. Digest of Technical Papers. 2003
Symposium on, pages 65–66, 2003.

[8] S. Aunet and Amir Hasanbegovic. Memory elements based on minority-3
gates and inverters implemented in 90 nm cmos. In Design and Diagnostics
of Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International
Symposium on, pages 267–272, 2010.

[9] A. Bellaouar, A. Fridi, M.I. Elmasry, and K. Itoh. Supply voltage scaling
for temperature insensitive cmos circuit operation. Circuits and Systems II:
Analog and Digital Signal Processing, IEEE Transactions on, 45(3), 1998.

[10] Jonathan Bjerkedok. Real Time Clock in Subthreshold CMOS. Master’s
thesis, Department of Electronics and Telecommunications, Norwegian Uni-
versity of Science and Technology.

[11] M. Blesken, S. Lutkemeier, and U. Ruckert. Multiobjective optimization for
transistor sizing sub-threshold cmos logic standard cells. In Circuits and

107

References

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,
pages 1480–1483, 2010.

[12] Stephen Brown and Zvonko Vranesic. Fundamentals of Digital Logic with
VHDL Design. The McGraw-Hill Companies, Inc, 2009.

[13] A. Chavan, G. Dukle, B. Graniello, and E. MacDonald. Robust ultra-low
power subthreshold logic flip-flop design for reconfigurable architectures. In
Reconfigurable Computing and FPGA’s, 2006. ReConFig 2006. IEEE Inter-
national Conference on, pages 1–7, 2006.

[14] Bo Fu and P. Ampadu. Comparative analysis of ultra-low voltage flip-flops
for energy efficiency. In Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on, pages 1173–1176, 2007.

[15] G. Gerosa, S. Gary, C. Dietz, Dac Pham, K. Hoover, J. Alvarez, H. Sanchez,
P. Ippolito, Tai Ngo, S. Litch, J. Eno, J. Golab, N. Vanderschaaf, and
J. Kahle. A 2.2 w, 80 mhz superscalar risc microprocessor. Solid-State
Circuits, IEEE Journal of, 29(12):1440–1454, 1994.

[16] Alan Hastings. The Art of Analog Layout. Prentice Hall, 2001.

[17] Wei Jin, Sheng Lu, Weifeng He, and Zhigang Mao. Robust design of sub-
threshold flip-flop cells for wireless sensor network. In VLSI and System-
on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th International Conference on,
pages 440–443, 2011.

[18] David Johns and Ken Martin. Analog Integrated Circuit Design. Wiley,
1996.

[19] William Kleitz. Digital Electronics, A Practical Approach with VHDL, Ninth
Edition. Pearson Education, Inc., 2012.

[20] H. Kristian, O. Berge, and S. Aunet. Multi-objective optimization of
minority-3 functions for ultra-low voltage supplies. In Circuits and Sys-
tems (ISCAS), 2011 IEEE International Symposium on, pages 2313–2316,
2011.

[21] L.L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin. Analog circuit design
in nanoscale cmos technologies. Proceedings of the IEEE, 97(10):1687–1714,
2009.

[22] Tong Lin, Kwen-Siong Chong, Bah-Hwee Gwee, Joseph S. Chang, and Zhao-
Xiang Qiu. Analytical delay variation modeling for evaluating sub-threshold
synchronous/asynchronous designs. In NEWCAS Conference (NEWCAS),
2010 8th IEEE International, pages 69–72, 2010.

[23] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan. Scal-
ing of stack effect and its application for leakage reduction. In Low Power
Electronics and Design, International Symposium on, 2001., pages 195–200,
2001.

108

References

[24] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer cmos
circuits. Proceedings of the IEEE, 91(2):305–327, 2003.

[25] Lars-Frode Schjolden. Low Energy Implementation of Robust Digital Arith-
metic in Sub/Near-Threshold Nanoscale CMOS. Master’s thesis, Depart-
ment of Electronics and Telecommunications, Norwegian University of Sci-
ence and Technology.

[26] Yi-Ming Sheu, KeWei Su, Sheng-Jier Yang, Hsien-Te Chen, Chih-Chiang
Wang, Ming-Jer Chen, and S. Liu. Modeling well edge proximity effect
on highly-scaled mosfets. In Custom Integrated Circuits Conference, 2005.
Proceedings of the IEEE 2005, pages 831–834, 2005.

[27] H. Soeleman, K. Roy, and B.C. Paul. Robust subthreshold logic for ultra-
low power operation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 9(1):90–99, 2001.

[28] H. Sunagawa, H. Terada, A. Tsuchiya, K. Kobayashi, and Hidetoshi On-
odera. Erect of regularity-enhanced layout on printability and circuit per-
formance of standard cells. In Quality of Electronic Design, 2009. ISQED
2009. Quality Electronic Design, pages 195–200, 2009.

[29] V. Suzuki, K. Odagawa, and T. Abe. Clocked cmos calculator circuitry.
Solid-State Circuits, IEEE Journal of, 8(6):462–469, 1973.

[30] John P. Uyemura. Introduction to VLSI Circuits and Systems. Wiley, 2002.

[31] Eric A. Vittoz. Design of vlsi circuits for telecommunication and signal
processing, micropower techniques. 1994.

[32] Magne Værnes. Ultra low power/low energy cmos/sub-threshold asic char-
acterization. Semester report, Department of Electronics and Telecommuni-
cations, Norwegian University of Science and Technology, December 2012.

[33] Calhoun Benton Highsmith Chandrakasan Anantha P. Wang, Alice. Sub-
threshold Design for Ultra Low-Power Systems. Springer, 2006.

109

A Monte Carlo Results

A Monte Carlo Results

A.1 Monte Carlo Delay Data

Min. Delay Max. Delay Mean Delay Sigma

Schematic 4.058ns 25.53ns 8.374ns 2.329ns
Classic NAND

Layout 11.09ns 63.54ns 25.25ns 6.828ns

Schematic 22.05ns 49.86ns 33.13ns 5.042ns
Minority3

Layout 63.91ns 132.7ns 92.2ns 13.43ns

Schematic 15.65ns 35.87ns 23.01ns 3.796ns
Minority3 no-set

Layout 43.46ns 94.3ns 63.67ns 9.715ns

Schematic 3.035ns 15.19ns 7.107ns 2.439ns
C2MOS

Layout 9.781ns 66.26ns 21.96ns 8.197ns

Schematic 3.764ns 12.6ns 6.109ns 1.274ns
PowerPC 603

Layout 9.437ns 35.16ns 17.81ns 4.341ns

Table 23: Monte Carlo Delay Results for Master latch, rising edge at −40◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 4.067ns 13.03ns 7.048ns 1.581ns
Classic NAND

Layout 11.32ns 39.3ns 21.13ns 4.941ns

Schematic 20.44ns 48.44ns 34.47ns 4.429ns
Minority3

Layout 64.23ns 144.1ns 93.54ns 11.7ns

Schematic 16.01ns 35.03ns 23.15ns 3.285ns
Minority3 no-set

Layout 42.23ns 105.9ns 66.12ns 10.06ns

Schematic 4.573ns 16.49ns 8.565ns 1.983ns
C2MOS

Layout 12.22ns 49.6ns 24.31ns 5.401ns

Schematic 3.534ns 9.434ns 5.851ns 1.147ns
PowerPC 603

Layout 9.512ns 32.44ns 17.72ns 3.904ns

Table 24: Monte Carlo Delay Results for Master latch, falling edge at −40◦C

110

A.1 Monte Carlo Delay Data

Min. Delay Max. Delay Mean Delay Sigma

Schematic 5.87ns 23.50ns 10.80ns 2.860ns
Classic NAND

Layout 14.28ns 62.81ns 32.26ns 8.239ns

Schematic 12.82ns 31.66ns 19.83ns 3.300ns
Minority3

Layout 33.26ns 83.61ns 56.01ns 9.632ns

Schematic 15.82ns 42.94ns 24.73ns 3.805ns
Minority3 no-set

Layout 43.88ns 96.58ns 66.26ns 9.432ns

Schematic 5.265ns 19.19ns 10.15ns 2.225ns
C2MOS

Layout 10.48ns 60.25ns 24.43ns 6.780ns

Schematic 7.834ns 21.31ns 12.17ns 2.170ns
PowerPC 603

Layout 24.28ns 69.19ns 40.03ns 7.722ns

Table 25: Monte Carlo Delay Results for Slave latch, rising edge at −40◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 13.71ns 40.83ns 21.87ns 3.508ns
Classic NAND

Layout 41.33ns 97.95ns 59.78ns 9.727ns

Schematic 13.64ns 39.28ns 21.95ns 4.153ns
Minority3

Layout 37.09ns 94.12ns 57.30ns 10.60ns

Schematic 13.39ns 36.97ns 23.37ns 3.647ns
Minority3 no-set

Layout 40.50ns 105.7ns 64.04ns 11.13ns

Schematic 5.885ns 21.11ns 12.03ns 2.908ns
C2MOS

Layout 17.23ns 82.20ns 35.58ns 9.152ns

Schematic 5.618ns 19.63ns 10.19ns 2.144ns
PowerPC 603

Layout 15.62ns 67.77ns 31.06ns 7.545ns

Table 26: Monte Carlo Delay Results for Slave latch, falling edge at −40◦C

111

A Monte Carlo Results

Min. Delay Max. Delay Mean Delay Sigma

Schematic 1.514ns 5.656ns 2.624ns 508.5ps
Classic NAND

Layout 4.123ns 14.43ns 7.628ns 1.471ns

Schematic 7.656ns 14.04ns 10.24ns 1.126ns
Minority3

Layout 21.23ns 34.81ns 27.27ns 2.798ns

Schematic 5.346ns 9.716ns 7.092ns 830.5ps
Minority3 no-set

Layout 14.22ns 25.31ns 18.81ns 2.048ns

Schematic 1.285ns 4.316ns 2.441ns 622.2ps
C2MOS

Layout 3.899ns 16.26ns 7.144ns 1.943ns

Schematic 1.146ns 3.262ns 1.786ns 329.1ps
PowerPC 603

Layout 3.198ns 8.860ns 5.172ns 1.006ns

Table 27: Monte Carlo Delay Results for Master latch, rising edge at 27◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 1.506ns 3.600ns 2.245ns 370.7ps
Classic NAND

Layout 4.035ns 10.36ns 6.471ns 1.112ns

Schematic 7.208ns 13.24ns 10.51ns 958.2ps
Minority3

Layout 20.88ns 37.01ns 27.48ns 2.488ns

Schematic 5.311ns 9.911ns 7.106ns 765.6ps
Minority3 no-set

Layout 14.09ns 27.67ns 19.41ns 2.235ns

Schematic 1.727ns 4.449ns 2.762ns 470.2ps
C2MOS

Layout 4.503ns 12.54ns 7.539ns 1.243ns

Schematic 1.134ns 2.504ns 1.744ns 276.5ps
PowerPC 603

Layout 3.331ns 8.319ns 5.115ns 807.5ps

Table 28: Monte Carlo Delay Results for Master latch, falling edge at 27◦C

112

A.1 Monte Carlo Delay Data

Min. Delay Max. Delay Mean Delay Sigma

Schematic 2.161ns 6.113ns 3.390ns 655.0ps
Classic NAND

Layout 5.240ns 16.30ns 9.711ns 1.817ns

Schematic 4.824ns 9.008ns 6.395ns 737.0ps
Minority3

Layout 11.92ns 23.05ns 17.36ns 2.069ns

Schematic 5.556ns 11.48ns 7.730ns 842.9ps
Minority3 no-set

Layout 14.88ns 26.01ns 19.98ns 2.034ns

Schematic 2.223ns 5.392ns 3.462ns 536.1ps
C2MOS

Layout 4.023ns 14.78ns 7.770ns 1.507ns

Schematic 2.784ns 5.710ns 3.838ns 490.9ps
PowerPC 603

Layout 8.270ns 17.71ns 11.92ns 1.623ns

Table 29: Monte Carlo Delay Results for Slave latch, rising edge at 27◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 4.791ns 10.76ns 6.802ns 655.0ps
Classic NAND

Layout 13.87ns 25.83ns 17.91ns 2.118ns

Schematic 4.939ns 10.61ns 7.066ns 946.3ps
Minority3

Layout 12.99ns 24.97ns 17.75ns 2.344ns

Schematic 4.684ns 9.963ns 6.929ns 848.3ps
Minority3 no-set

Layout 13.62ns 27.40ns 19.16ns 2.427ns

Schematic 2.420ns 6.587ns 4.073ns 738.2ps
C2MOS

Layout 6.626ns 20.72ns 11.16ns 2.068ns

Schematic 2.123ns 5.436ns 3.323ns 518.6ps
PowerPC 603

Layout 5.725ns 16.22ns 9.493ns 1.638ns

Table 30: Monte Carlo Delay Results for Slave latch, falling edge at 27◦C

113

A Monte Carlo Results

Min. Delay Max. Delay Mean Delay Sigma

Schematic 905.9ps 2.681ns 1.448ns 230.6ps
Classic NAND

Layout 2.731ns 6.556ns 4.191ns 673.8ps

Schematic 4.455ns 7.348ns 5.615ns 512.9ps
Minority3

Layout 10.66ns 20.56ns 14.39ns 1.328ns

Schematic 3.071ns 5.029ns 3.892ns 373.0ps
Minority3 no-set

Layout 7.393ns 13.02ns 10.03ns 910.2ps

Schematic 845.8ps 2.394ns 1.457ns 310.1ps
C2MOS

Layout 2.324ns 8.442ns 4.077ns 829.0ps

Schematic 598.4ps 1.630ns 935.4ps 167.1ps
PowerPC 603

Layout 1.651ns 4.029ns 2.691ns 460.1ps

Table 31: Monte Carlo Delay Results for Master latch, rising edge at 80◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 897.1ps 1.905ns 1.258ns 173.9ps
Classic NAND

Layout 2.229ns 5.190ns 3.482ns 504.3ps

Schematic 4.186ns 6.881ns 5.713ns 426.9ps
Minority3

Layout 11.67ns 18.07ns 14.51ns 1.147ns

Schematic 3.029ns 5.250ns 3.902ns 365.8ps
Minority3 no-set

Layout 8.049ns 13.86ns 10.36ns 993.3ps

Schematic 1.061ns 2.324ns 1.573ns 220.7ps
C2MOS

Layout 2.936ns 5.856ns 4.180ns 550.0ps

Schematic 607.6ps 1.272ns 913.5ps 133.6ps
PowerPC 603

Layout 1.797ns 3.650ns 2.655ns 352.4ps

Table 32: Monte Carlo Delay Results for Master latch, falling edge at 80◦C

114

A.1 Monte Carlo Delay Data

Min. Delay Max. Delay Mean Delay Sigma

Schematic 1.289ns 3.100ns 1.887ns 303.9ps
Classic NAND

Layout 3.133ns 8.571ns 5.243ns 861.9ps

Schematic 2.825ns 4.714ns 3.563ns 335.5ps
Minority3

Layout 6.991ns 12.29ns 9.466ns 964.8ps

Schematic 3.231ns 5.874ns 4.260ns 380.8ps
Minority3 no-set

Layout 8.050ns 14.37ns 10.70ns 1.046ns

Schematic 1.434ns 2.914ns 2.028ns 250.5ps
C2MOS

Layout 3.216ns 7.078ns 4.598ns 657.5ps

Schematic 1.626ns 2.929ns 2.128ns 252.2ps
PowerPC 603

Layout 4.627ns 8.882ns 6.362ns 718.2ps

Table 33: Monte Carlo Delay Results for Slave latch, rising edge at 80◦C

Min. Delay Max. Delay Mean Delay Sigma

Schematic 2.785ns 5.526ns 3.758ns 369.0ps
Classic NAND

Layout 7.309ns 13.00ns 9.580ns 957.1ps

Schematic 2.956ns 5.455ns 3.979ns 424.6ps
Minority3

Layout 7.628ns 13.15ns 9.878ns 1.034ns

Schematic 2.731ns 5.183ns 3.819ns 401.5ps
Minority3 no-set

Layout 7.726ns 13.32ns 10.35ns 985.3ps

Schematic 1.569ns 3.603ns 2.399ns 362.4ps
C2MOS

Layout 4.193ns 8.917ns 6.151ns 898.8ps

Schematic 1.281ns 2.883ns 1.884ns 251.4ps
PowerPC 603

Layout 3.669ns 7.776ns 5.234ns 709.3ps

Table 34: Monte Carlo Delay Results for Slave latch, falling edge at 80◦C

115

A Monte Carlo Results

A
.2

A
v
e
ra

g
e

M
o
n
te

C
a
rl

o
D

e
la

y
D

a
ta µ
−

4
0◦
C

σ
−

4
0
◦ C

µ
2
7◦
C

σ
2
7
◦ C

µ
8
0
◦ C

σ
8
0
◦ C

S
ch

em
a
ti

c
1
2
.0

1n
s

2.
5
7
0
n
s

3
.7

6
5
n
s

5
8
2
.4
p
s

2.
0
8
8
n
s

2
6
9
.4
p
s

C
la

ss
ic

N
A

N
D

L
ay

o
u

t
3
4.

6
1n
s

7.
4
3
4
n
s

1
0
.4

3
n
s

1
.6

3
0
n
s

5.
6
2
4
n
s

7
4
9
.3
p
s

S
ch

em
a
ti

c
2
7
.3

5n
s

4.
2
3
1
n
s

8
.5

5
3
n
s

9
4
1
.9
p
s

4.
7
1
8
n
s

4
2
4
.9
p
s

M
in

or
it

y
3

L
ay

o
u

t
7
4.

7
6
n
s

1
1.

3
4n
s

2
2
.4

7n
s

2
.4

2
3
n
s

1
2
.0

6
n
s

1.
1
1
8
n
s

S
ch

em
a
ti

c
2
3
.3

2
n
s

3.
6
3
3
n
s

7
.2

1
4
n
s

8
2
1
.8
p
s

3
.9

6
8
n
s

3
8
0
.3
p
s

M
in

or
it

y
3

n
o
-s

et
L

ay
o
u

t
6
5.

0
2
n
s

1
0.

0
8n
s

1
9.

3
4n
s

2
.1

8
6
n
s

1
0
.3

6
n
s

9
8
3
.7
p
s

S
ch

em
a
ti

c
9
.4

6
3
n
s

2.
3
8
9
n
s

3.
1
8
5
n
s

5
9
1
.7
p
s

1
.8

6
4
n
s

2
8
5
.9
p
s

C
2
M

O
S

L
ay

o
u

t
2
6.

6
7
n
s

7.
3
8
3
n
s

8.
3
9
6
n
s

1
.6

8
8
n
s

4
.7

5
2
n
s

7
3
1
.6
p
s

S
ch

em
a
ti

c
8
.5

8
0
n
s

1.
6
8
4
n
s

2.
2
7
8
n
s

4
0
3
.8
p
s

1
.4

6
5
n
s

1
9
4
.3
p
s

P
ow

er
P

C
6
0
3

L
ay

o
u

t
2
6.

6
6
n
s

5.
8
7
8
n
s

7.
9
2
5
n
s

1.
2
6
9
n
s

4
.2

3
6
n
s

5
6
0
.0
p
s

T
a
b
le

3
5
:

A
v
er

a
g
e

M
o
n
te

C
a
rl

o
D

el
ay

R
es

u
lt

s,
µ

is
m

ea
n

d
el

ay
,
σ

is
st

a
n
d
a
rd

d
ev

ia
ti

o
n

116

A.3 Relative Sigma Results

A.3 Relative Sigma Results

σ/µ −40◦C σ/µ 27◦C σ/µ 80◦C

Schematic 21.40% 15.47% 12.90%
Classic NAND

Layout 21.48% 15.62% 13.32%

Schematic 15.47% 11.01% 9.00%
Minority3

Layout 15.17% 10.78% 9.27%

Schematic 15.58% 11.39% 9.58%
Minority3 no-set

Layout 15.50% 11.30% 9.50%

Schematic 25.24% 18.57% 15.33%
C2MOS

Layout 27.79% 20.11% 15.40%

Schematic 19.62% 17.72% 13.26%
PowerPC 603

Layout 22.05% 16.00% 13.22%

Table 36: Relative Sigma Results

B Layout

117

B Layout

Figure 91: The Inverter Layout

118

Figure 92: The Clocked Inverter Layout

119

B Layout

Figure 93: The Transmission Gate Layout

120

Figure 94: The Simple NAND Layout

121

B Layout

Figure 95: The Minority3-gate Layout

122

Figure 96: The Minority-based NAND-gate Layout

123

B Layout

Figure 97: The Classic NAND D flip-flop Layout

Figure 98: The Minority-based D-latch Layout

Figure 99: The Minority3-based D flip-flop Layout

124

Figure 100: The Minority3-based D flip-flop no-set Layout

Figure 101: The C2MOS D flip-flop Layout

Figure 102: The PowerPC 603 D flip-flop Layout

125

C Source Code

C Source Code

C.1 Python Scripts

Imported files
import multiprocessing
import shlex, subprocess
from subprocess import call, Popen, PIPE

Function to run subprocess call in the UNIX shell
def work(cmd):

return subprocess.call(cmd, shell=True)

Varibles
output_string = []
Temperature = ’80’
Temp_write = ’80’

Output file name
out_name = "pdp_schematic_" + Temp_write

Run file name, must be run to start simulation
run_file_name = "dyn_pow_schematic_" + Temp_write

Open the Input data file, must be changed for each test
i = open(’python/inputs/dyn_power/max_delay_Schematic_80.txt’, ’r’)

Skip first line
temp = i.readline()

Second line is Classic NAND Data
Third line is Min3 Data
Forth line is Min3ns Data
Fifth line is C2mos Data
Sixth line is pwrPC Data

Import and generate data arrays
temp = i.readline()
Class_in = temp.split()
temp = i.readline()
Min3_in = temp.split()
temp = i.readline()
Min3ns_in = temp.split()
temp = i.readline()
C2mos_in = temp.split()
temp = i.readline()
PwrPC_in = temp.split()

i.close()

Define the D signal array, and D delay array
Class_in_D = []
Class_in_Dd = []
Min3_in_D = []
Min3_in_Dd = []
Min3ns_in_D = []
Min3ns_in_Dd = []

126

C.1 Python Scripts

C2mos_in_D = []
C2mos_in_Dd = []
PwrPC_in_D = []
PwrPC_in_Dd = []
Time_d = []
max_step = []

Creates the input signals for the tests, for the supply voltage
range 100mV - 300mV

for num in range(2,13):

Class_in[num] = float(Class_in[num])
Class_in[num] *= 1e9
Class_in[num] *= 2
Class_in_D.append(str(2*Class_in[num]) + ’n’) # D in
Class_in_Dd.append(str(-1*Class_in[num]) + ’n’) # D delay in
Class_in[num] = str(Class_in[num]) + ’n’ # Clk in

Min3_in[num] = float(Min3_in[num])
Min3_in[num] *= 1e9
Min3_in[num] *= 2
Min3_in_D.append(str(2*Min3_in[num]) + ’n’) # D in
Min3_in_Dd.append(str(-1*Min3_in[num]) + ’n’) # D delay in
Min3_in[num] = str(Min3_in[num]) + ’n’ # Clk in

Min3ns_in[num] = float(Min3ns_in[num])
Min3ns_in[num] *= 1e9
Min3ns_in[num] *= 2
Min3ns_in_D.append(str(2*Min3ns_in[num]) + ’n’) # D in
Min3ns_in_Dd.append(str(-1*Min3ns_in[num]) + ’n’) # D delay in
Min3ns_in[num] = str(Min3ns_in[num]) + ’n’ # Clk in

C2mos_in[num] = float(C2mos_in[num])
C2mos_in[num] *= 1e9
C2mos_in[num] *= 2
C2mos_in_D.append(str(2*C2mos_in[num]) + ’n’) # D in
C2mos_in_Dd.append(str(-1*C2mos_in[num]) + ’n’) # D delay in
C2mos_in[num] = str(C2mos_in[num]) + ’n’ # Clk in

PwrPC_in[num] = float(PwrPC_in[num])
PwrPC_in[num] *= 1e9
PwrPC_in[num] *= 2
PwrPC_in_D.append(str(2*PwrPC_in[num]) + ’n’) # D in
PwrPC_in_Dd.append(str(-1*PwrPC_in[num]) + ’n’) # D delay in
PwrPC_in[num] = str(PwrPC_in[num]) + ’n’ # Clk in

Run the test for 15*Min3 clock period
Time_d.append(str(Min3_in[num] * 15) + ’n’)

Supply Voltage array
Vdd_in = [’100m’, ’120m’, ’140m’, ’160m’, ’180m’, ’200m’, ’220m’, ’

240m’, ’260m’, ’280m’, ’300m’]

Creates the OCEAN script with the data arrays above
for tall in range(len(Class_in_D)):

Time_in = Time_d[tall]

Create the OCEAN script name

127

C Source Code

open_string = ’test_’+ run_file_name + "_" + str(tall) + ’.ocn’

Open the Ocean file and starts writing commands
f = open(open_string , ’w+’)
f.write(’;====================== Set to XL mode

===\nocnSetXLMode()\
nocnxlProjectDir("/work_local/magneva/simulation")\
nocnxlTargetCellView("65nm_mag" "testbenk_power" "adex3_’ +
Temp_write + ’_’ + str(tall) + ’")\nocnxlResultsLocation("")
\nocnxlSimResultsLocation("")\n;====================== Tests
setup ==\n\n’)

Ocean test data
f.write(’;---------- Test "65nm_mag:testbenk_power:1"

-------------\n\nocnxlBeginTest("65nm_mag:testbenk_power:1")\
nsimulator(\’spectre)\ndesign("65nm_mag" "testbenk_power" "
config")\nanalysis(\’tran ?stop "VAR(\\"Time\\")" ?method "
euler")\ndesVar("Time" ’ + Time_in + ’)\ndesVar("
C_in_c2mos" ’ + C2mos_in[tall+2] + ’)\ndesVar("c_in_classic
" ’ + Class_in[tall+2] + ’)\ndesVar("C_in_min3" ’ +
Min3_in[tall+2] + ’)\n’)

f.write(’desVar("C_in_min3ns" ’ + Min3ns_in[tall+2] + ’)\
ndesVar("C_in_pwrPC" ’ + PwrPC_in[tall+2] + ’)\ndesVar(
"D_in_c2mos" ’ + C2mos_in_D[tall] + ’)\ndesVar("

D_in_min3" ’ + Min3_in_D[tall] + ’)\ndesVar("
D_in_min3_delay" ’ + Min3_in_Dd[tall] + ’)\ndesVar("
D_in_min3ns" ’ + Min3ns_in_D[tall] + ’)\ndesVar("
D_in_min3ns_delay" ’ + Min3ns_in_Dd[tall] + ’)\ndesVar("
D_in_pwrPC" ’ + PwrPC_in_D[tall] + ’)\n’)

f.write(’desVar("D_in_pwrPC_delay" ’ + PwrPC_in_Dd[tall] + ’)
\ndesVar("vdd" ’ + Vdd_in[tall] + ’)\ndesVar("
D_in_classic_delay" ’ + Class_in_Dd[tall] + ’)\ndesVar("
D_in_classic" ’ + Class_in_D[tall] + ’)\ndesVar("
D_in_c2mos_delay" ’ + C2mos_in_Dd[tall] + ’)\n’)

f.write(’envOption(\n \’analysisOrder list("tran")\n)\noption(\’
temp "’ + Temperature + ’"\n)\noption(?categ \’turboOpts\n
\’uniMode "APS"\n)\n’)

f.write(’save(\’i "/V17/PLUS" "/V19/PLUS" "/V18/PLUS" "/V15/PLUS"
"/V16/PLUS")\n converge(\’ic "/D_min3" "0")\n converge(\’
ic "/C_min3" "0")\n converge(\’ic "/D_c2mos" "0")\n
converge(\’ic "/C_c2mos" "0")\n converge(\’ic "/D_min3_ns"
"0")\n converge(\’ic "/C_min3_ns" "0")\n converge(\’ic "/
D_pwrPC" "0")\n converge(\’ic "/C_pwrPC" "0")\n converge(\’
ic "/D_classic" "0")\n converge(\’ic "/C_classic" "0")\n
converge(\’ic "/Q_c2mos" "0")\n converge(\’ic "/Q_pwrPC" "0"
)\n converge(\’ic "/Q_classic" "0")\n converge(\’ic "/
Q_min3" "0")\n converge(\’ic "/Q_min3_ns" "0")\n temp(’ +
Temperature + ’)\n’)

f.write(’ ocnxlOutputSignal("/D_all")\n ocnxlOutputSignal("/
clk_all")\n ;ocnxlOutputSignal("/Q_classic" ?plot t)\n ;
ocnxlOutputSignal("/Q_pwrPC" ?plot t)\n ;ocnxlOutputSignal("/
Q_c2mos" ?plot t)\n ;ocnxlOutputSignal("/Q_min3" ?plot t)\n ;
ocnxlOutputSignal("/Q_min3_ns" ?plot t)\n ocnxlOutputTerminal(
"/V17/PLUS" ?save t)\n ocnxlOutputTerminal("/V19/PLUS" ?save
t)\n ocnxlOutputTerminal("/V18/PLUS" ?save t)\n
ocnxlOutputTerminal("/V15/PLUS" ?save t)\n ocnxlOutputTerminal
("/V16/PLUS" ?save t)\n ocnxlOutputSignal("/X_classic")\n

128

C.1 Python Scripts

ocnxlOutputSignal("/X_pwrPC")\n ocnxlOutputSignal("/X_c2mos
")\n ocnxlOutputSignal("/X_min3")\n ocnxlOutputSignal("/
X_min3_ns")\n ocnxlOutputSignal("/D_pwrPC")\n
ocnxlOutputSignal("/C_pwrPC")\n ocnxlOutputSignal("/D_c2mos
")\n ocnxlOutputSignal("/C_c2mos")\n ocnxlOutputSignal("/
D_min3")\n ocnxlOutputSignal("/C_min3")\n ocnxlOutputSignal(
"/D_min3_ns")\n ocnxlOutputSignal("/C_min3_ns")\n’)

f.write(’ocnxlSweepVar("Time" "’ + Time_in + ’")\nocnxlEndTest()\n’
)

f.write(’;====================== Model Group setup
==\n ocnxlModelGroup("
default"\n \’(\n ("/home/magneva/master/65nm_mag/
testbenk_power/adex3/modelgroups/spectre/default.scs" ?section
"default")\n)\n)\n\n ;====================== Corners
setup ==\n ocnxlCorner
("default"\n \’(\n ("modelGroup" "default")\n)\n)\n’
)

f.write(’;====================== Job setup
==\n
ocnxlJobSetup(\’(\n "blockemail" "1"\n "configuretimeout"
"300"\n "distributionmethod" "Local"\n "lingertimeout" "300"\
n "maxjobs" "8"\n "name" "ADE XL Default"\n "preemptivestart"
"1"\n "reconfigureimmediately" "1"\n "runtimeout" "-1"\n "
showerrorwhenretrying" "1"\n "showoutputlogerror" "0"\n "
startmaxjobsimmed" "1"\n "starttimeout" "300"\n))\n’)

f.write(’;====================== Run Mode Options
======================================\n
ocnxlMonteCarloOptions(?dutSummary "65nm_mag:testbenk_power
:1%/I69, /I68, /I66, /I65, /I63, /I64, /I57, /I55, /I49, /I56,
/I53, /I54, /I43, /I44, /I40, /I41, /I42, /I48, /I37, /I35, /
I29, /I36, /I33, /I34, /I28, /I27, /I23, /I22, /I24, /I21%
Schematic%Schematic#" ?ignoreFlag "1" ?mcMethod "all" ?
mcNumPoints "100" ?mcNumBins "" ?mcStopEarly "0" ?mcYieldTarget
"99.73" ?mcYieldAlphaLimit "0.05" ?samplingMode "random" ?
saveProcess "1" ?saveMismatch "1" ?useReference "0" ?donominal
"1" ?saveAllPlots "1" ?monteCarloSeed "1" ?mcStartingRunNumber
"")\n’)

f.write(’;====================== Run command
==\n ;out = outfile("
myResults/testout.ocn" "a")\n ocnxlRun(?mode \’
sweepsAndCorners ?nominalCornerEnabled nil ?allCornersEnabled t
?allSweepsEnabled t)\n ocnxlOutputSummary(?exprSummary t) ;?
specSummary t)\n\n’)

f.write(’ of1 = outfile("˜/master/out/’ + out_name + "_" + str(tall
) + ’.out" "w+")\n\n openResults()\n selectResult(\’tran)\n\n
fprintf(of1 "FirstLine")\n\n close(of1)\n\n of1 = outfile("˜/
master/out/’ + out_name + "_" + str(tall) + ’.out" "a")\n\n’)

f.write(’ openResults()\n selectResult(\’tran)\n declare(out_arr
[5])\n out_arr[0] = (average(clip(IT("/V16/PLUS") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))) * average(clip(VT("/I_Class") (
VAR("Time") * 0.1) (VAR("Time") * 0.999))))\n out_arr[1] = (
average(clip(IT("/V18/PLUS") (VAR("Time") * 0.1) (VAR("Time") *
0.999))) * average(clip(VT("/I_min3") (VAR("Time") * 0.1) (VAR
("Time") * 0.999))))\n ’)

f.write(’ out_arr[2] = (average(clip(IT("/V19/PLUS") (VAR("Time") *
0.1) (VAR("Time") * 0.999))) * average(clip(VT("/I_min3ns") (

129

C Source Code

VAR("Time") * 0.1) (VAR("Time") * 0.999))))\n out_arr[3] = (
average(clip(IT("/V17/PLUS") (VAR("Time") * 0.1) (VAR("Time") *
0.999))) * average(clip(VT("/I_c2mos") (VAR("Time") * 0.1) (
VAR("Time") * 0.999))))\n out_arr[4] = (average(clip(IT("/V15/
PLUS") (VAR("Time") * 0.1) (VAR("Time") * 0.999))) * average(
clip(VT("/I_pwrPC") (VAR("Time") * 0.1) (VAR("Time") * 0.999)))
) \n\n’)

f.write(’ ocnPrint((out_arr[0]) ?output of1 ?format "engineering")\
n ocnPrint((out_arr[1]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[2]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[3]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[4]) ?output of1 ?format "engineering")\n\n
close(of1)\n ocnPrint("Test number’ + str(tall) + ’ is
Finished")\n’)

f.write(’ ocnPrint("Simulation Finished!")\n;======================
End XL Mode command ===================================\
nocnxlEndXLMode()\n\nexit() ’)

f.close()

Create the OCEAN script to be run
output_string.append("ocean -replay " + open_string + " &")

Runs all tests in parallel for the given temperature
pool = multiprocessing.Pool(None)
r = pool.map_async(work, output_string)
r.wait() # Wait on the results

Listing 1: The Python Script for importing delay data and generating the Ocean
scripts and initite the simulations for PDP

Imported files
import multiprocessing
import shlex, subprocess
from subprocess import call, Popen, PIPE

Function to run subprocess call in the UNIX shell
def work(cmd):

return subprocess.call(cmd, shell=True)

Variables
output_string = []
Temperature = ’27.0’
Temp_write = ’27’

Output file name
out_name = "dyn_pow_schematic_" + Temp_write

Run file name, must be run to start simulation
run_file_name = "dyn_pow_schematic_" + Temp_write

Open the Input data file, must be changed for each test
i = open(’python/inputs/dyn_power/max_delay_Schematic_27.txt’, ’r’)

Skip first line
temp = i.readline()

130

C.1 Python Scripts

Second line is Classic NAND Data
Third line is Min3
Forth line is Min3ns
Fifth line is C2mos
Sixth line is pwrPC

Import and generate data arrays
temp = i.readline()
Class_in = temp.split()
temp = i.readline()
Min3_in = temp.split()
temp = i.readline()
Min3ns_in = temp.split()
temp = i.readline()
C2mos_in = temp.split()
temp = i.readline()
PwrPC_in = temp.split()

i.close()

Define the D signal array, and D delay array
Min3_in_D = []
Min3_in_Dd = []

Time_d = []

Creates the input signals for the tests, for the supply voltage
range 100mV - 300mV

Here, all is set to the Min3 frequency.
for num in range(2,13):

Min3_in[num] = float(Min3_in[num])
Min3_in[num] *= 2e9
Min3_in_D.append(str(2*Min3_in[num]) + ’n’)
Min3_in_Dd.append(str(-1*Min3_in[num]) + ’n’)
Min3_in[num] = str(Min3_in[num]) + ’n’

Run the test for 15*Min3 clock period
Time_d.append(str(Min3_in[num] * 15) + ’n’)

Supply Voltage array
Vdd_in = [’100m’, ’120m’, ’140m’, ’160m’, ’180m’, ’200m’, ’220m’, ’

240m’, ’260m’, ’280m’, ’300m’]

Creates the OCEAN script with the data arrays above
for tall in range(len(Class_in_D)):

Time_in = Time_d[tall]

Create the OCEAN script name
open_string = ’test_’+ run_file_name + "_" + str(tall) + ’.ocn’

Open the Ocean file and starts writing commands
f = open(open_string , ’w+’)
f.write(’;====================== Set to XL mode

===\nocnSetXLMode()\
nocnxlProjectDir("/work_local/magneva/simulation")\
nocnxlTargetCellView("65nm_mag" "testbenk_power" "adex3_’ +

131

C Source Code

Temp_write + ’_’ + str(tall) + ’")\nocnxlResultsLocation("")
\nocnxlSimResultsLocation("")\n;====================== Tests
setup ==\n\n’)

Ocean test data
f.write(’;---------- Test "65nm_mag:testbenk_power:1"

-------------\n\nocnxlBeginTest("65nm_mag:testbenk_power:1")\
nsimulator(\’spectre)\ndesign("65nm_mag" "testbenk_power" "
config")\nanalysis(\’tran ?stop "VAR(\\"Time\\")" ?method "
euler")\ndesVar("Time" ’ + Time_in + ’)\ndesVar("
C_in_c2mos" ’ + Min3_in[tall+2] + ’)\ndesVar("c_in_classic"
’ + Min3_in[tall+2] + ’)\ndesVar("C_in_min3" ’ + Min3_in[
tall+2] + ’)\n’)

f.write(’desVar("C_in_min3ns" ’ + Min3_in[tall+2] + ’)\ndesVar
("C_in_pwrPC" ’ + Min3_in[tall+2] + ’)\ndesVar("
D_in_c2mos" ’ + Min3_in_D[tall] + ’)\ndesVar("D_in_min3"
’ + Min3_in_D[tall] + ’)\ndesVar("D_in_min3_delay" ’ +
Min3_in_Dd[tall] + ’)\ndesVar("D_in_min3ns" ’ + Min3_in_D
[tall] + ’)\ndesVar("D_in_min3ns_delay" ’ + Min3_in_Dd[
tall] + ’)\ndesVar("D_in_pwrPC" ’ + Min3_in_D[tall] + ’
)\n’)

f.write(’desVar("D_in_pwrPC_delay" ’ + Min3_in_Dd[tall] + ’)\
ndesVar("vdd" ’ + Vdd_in[tall] + ’)\ndesVar("
D_in_classic_delay" ’ + Min3_in_Dd[tall] + ’)\ndesVar("
D_in_classic" ’ + Min3_in_D[tall] + ’)\ndesVar("
D_in_c2mos_delay" ’ + Min3_in_Dd[tall] + ’)\n’)

f.write(’envOption(\n \’analysisOrder list("tran")\n)\noption(\’
temp "’ + Temperature + ’"\n)\noption(?categ \’turboOpts\n
\’uniMode "APS"\n)\n’)

f.write(’save(\’i "/V17/PLUS" "/V19/PLUS" "/V18/PLUS" "/V15/PLUS"
"/V16/PLUS")\n converge(\’ic "/D_min3" "0")\n converge(\’
ic "/C_min3" "0")\n converge(\’ic "/D_c2mos" "0")\n
converge(\’ic "/C_c2mos" "0")\n converge(\’ic "/D_min3_ns"
"0")\n converge(\’ic "/C_min3_ns" "0")\n converge(\’ic "/
D_pwrPC" "0")\n converge(\’ic "/C_pwrPC" "0")\n converge(\’
ic "/D_classic" "0")\n converge(\’ic "/C_classic" "0")\n
converge(\’ic "/Q_c2mos" "0")\n converge(\’ic "/Q_pwrPC" "0"
)\n converge(\’ic "/Q_classic" "0")\n converge(\’ic "/
Q_min3" "0")\n converge(\’ic "/Q_min3_ns" "0")\n temp(’ +
Temperature + ’)\n’)

f.write(’ ocnxlOutputSignal("/D_all")\n ocnxlOutputSignal("/
clk_all")\n ;ocnxlOutputSignal("/Q_classic" ?plot t)\n ;
ocnxlOutputSignal("/Q_pwrPC" ?plot t)\n ;ocnxlOutputSignal("/
Q_c2mos" ?plot t)\n ;ocnxlOutputSignal("/Q_min3" ?plot t)\n ;
ocnxlOutputSignal("/Q_min3_ns" ?plot t)\n ocnxlOutputTerminal(
"/V17/PLUS" ?save t)\n ocnxlOutputTerminal("/V19/PLUS" ?save
t)\n ocnxlOutputTerminal("/V18/PLUS" ?save t)\n
ocnxlOutputTerminal("/V15/PLUS" ?save t)\n ocnxlOutputTerminal
("/V16/PLUS" ?save t)\n ocnxlOutputSignal("/X_classic")\n
ocnxlOutputSignal("/X_pwrPC")\n ocnxlOutputSignal("/X_c2mos
")\n ocnxlOutputSignal("/X_min3")\n ocnxlOutputSignal("/
X_min3_ns")\n ocnxlOutputSignal("/D_pwrPC")\n
ocnxlOutputSignal("/C_pwrPC")\n ocnxlOutputSignal("/D_c2mos
")\n ocnxlOutputSignal("/C_c2mos")\n ocnxlOutputSignal("/
D_min3")\n ocnxlOutputSignal("/C_min3")\n ocnxlOutputSignal(
"/D_min3_ns")\n ocnxlOutputSignal("/C_min3_ns")\n’)

132

C.1 Python Scripts

f.write(’ocnxlSweepVar("Time" "’ + Time_in + ’")\nocnxlEndTest()\n’
)

f.write(’;====================== Model Group setup
==\n ocnxlModelGroup("
default"\n \’(\n ("/home/magneva/master/65nm_mag/
testbenk_power/adex3/modelgroups/spectre/default.scs" ?section
"default")\n)\n)\n\n ;====================== Corners
setup ==\n ocnxlCorner
("default"\n \’(\n ("modelGroup" "default")\n)\n)\n’
)

f.write(’;====================== Job setup
==\n
ocnxlJobSetup(\’(\n "blockemail" "1"\n "configuretimeout"
"300"\n "distributionmethod" "Local"\n "lingertimeout" "300"\
n "maxjobs" "8"\n "name" "ADE XL Default"\n "preemptivestart"
"1"\n "reconfigureimmediately" "1"\n "runtimeout" "-1"\n "
showerrorwhenretrying" "1"\n "showoutputlogerror" "0"\n "
startmaxjobsimmed" "1"\n "starttimeout" "300"\n))\n’)

f.write(’;====================== Run Mode Options
======================================\n
ocnxlMonteCarloOptions(?dutSummary "65nm_mag:testbenk_power
:1%/I69, /I68, /I66, /I65, /I63, /I64, /I57, /I55, /I49, /I56,
/I53, /I54, /I43, /I44, /I40, /I41, /I42, /I48, /I37, /I35, /
I29, /I36, /I33, /I34, /I28, /I27, /I23, /I22, /I24, /I21%
Schematic%Schematic#" ?ignoreFlag "1" ?mcMethod "all" ?
mcNumPoints "100" ?mcNumBins "" ?mcStopEarly "0" ?mcYieldTarget
"99.73" ?mcYieldAlphaLimit "0.05" ?samplingMode "random" ?
saveProcess "1" ?saveMismatch "1" ?useReference "0" ?donominal
"1" ?saveAllPlots "1" ?monteCarloSeed "1" ?mcStartingRunNumber
"")\n’)

f.write(’;====================== Run command
==\n ;out = outfile("
myResults/testout.ocn" "a")\n ocnxlRun(?mode \’
sweepsAndCorners ?nominalCornerEnabled nil ?allCornersEnabled t
?allSweepsEnabled t)\n ocnxlOutputSummary(?exprSummary t) ;?
specSummary t)\n\n’)

f.write(’ of1 = outfile("˜/master/out/’ + out_name + "_" + str(tall
) + ’.out" "w+")\n\n openResults()\n selectResult(\’tran)\n\n
fprintf(of1 "FirstLine")\n\n close(of1)\n\n of1 = outfile("˜/
master/out/’ + out_name + "_" + str(tall) + ’.out" "a")\n\n’)

f.write(’ openResults()\n selectResult(\’tran)\n declare(out_arr
[5])\n out_arr[0] = (average(clip(IT("/V16/PLUS") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))) * average(clip(VT("/I_Class") (
VAR("Time") * 0.1) (VAR("Time") * 0.999))))\n out_arr[1] = (
average(clip(IT("/V18/PLUS") (VAR("Time") * 0.1) (VAR("Time") *
0.999))) * average(clip(VT("/I_min3") (VAR("Time") * 0.1) (VAR
("Time") * 0.999))))\n ’)

f.write(’ out_arr[2] = (average(clip(IT("/V19/PLUS") (VAR("Time") *
0.1) (VAR("Time") * 0.999))) * average(clip(VT("/I_min3ns") (
VAR("Time") * 0.1) (VAR("Time") * 0.999))))\n out_arr[3] = (
average(clip(IT("/V17/PLUS") (VAR("Time") * 0.1) (VAR("Time") *
0.999))) * average(clip(VT("/I_c2mos") (VAR("Time") * 0.1) (
VAR("Time") * 0.999))))\n out_arr[4] = (average(clip(IT("/V15/
PLUS") (VAR("Time") * 0.1) (VAR("Time") * 0.999))) * average(
clip(VT("/I_pwrPC") (VAR("Time") * 0.1) (VAR("Time") * 0.999)))
) \n\n’)

133

C Source Code

f.write(’ ocnPrint((out_arr[0]) ?output of1 ?format "engineering")\
n ocnPrint((out_arr[1]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[2]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[3]) ?output of1 ?format "engineering")\n
ocnPrint((out_arr[4]) ?output of1 ?format "engineering")\n\n
close(of1)\n ocnPrint("Test number’ + str(tall) + ’ is
Finished")\n’)

f.write(’ ocnPrint("Simulation Finished!")\n;======================
End XL Mode command ===================================\
nocnxlEndXLMode()\n\nexit() ’)

f.close()

Create the OCEAN script to be run
output_string.append("ocean -replay " + open_string + " &")

Runs all tests in parallel for the given temperature
pool = multiprocessing.Pool(None)
r = pool.map_async(work, output_string)
r.wait() # Wait on the results

Listing 2: The Python Script for importing delay data and generating the Ocean
scripts and initite the simulations for Total Power Consumption

Function for data exported from the OCEAN script
The first 4 lines are not used
def get_res():

Read 4 headliners for each data
for num in range(0,4):
temp = i.readline()

Split the line
temp = temp.split()

return temp[1]

String Varibles for output and input files
Test = ’dyn_pow’
Type = ’layout’
Temp = ’40’

The output file
o = open(’out/file/’+ Test + ’_’ + Type + ’_’ + Temp + ’.txt’, ’w+’)

Arrays to store input data
Data_in = [’’,’’,’’,’’,’’]

Sorts the Total Power Consumption data for the supply voltage range
100mV -300mV

for num in range(0,11):

Open the Input data file
i = open(’out/’ + Test + ’_’ + Type + ’_’ + Temp + ’_’ + str(num) +

’.out’ , ’r’)

Stores data in arrays
Data_in[0] += (get_res() + ’ ’) # Classic

134

C.1 Python Scripts

Data_in[1] += (get_res() + ’ ’) # Min3
Data_in[2] += (get_res() + ’ ’) # Min3ns
Data_in[3] += (get_res() + ’ ’) # C2mos
Data_in[4] += (get_res() + ’ ’) # PwrPc

Print Total Power Consumption data to output file, ready for Matlab
.

for dff in range(0,5):

o.write(Data_in[dff] + ’\n’)

o.close()
i.close()

Listing 3: The Python Script for sorting and exporting Total Power Consumption
Data

Function for data exported from the OCEAN script
The first 4 lines are not used
def get_res():

Read 4 headliners for each data
for num in range(0,4):
temp = i.readline()

Split the line
temp = temp.split()

return float(temp[1])

String Varibles for output and input files
Test = ’pdp’
Type = ’Schematic’
Type2 =’schematic’
Temp = ’80’

Open output and input file
o = open(’out/file/’+ Test + ’_’ + Type + ’_’ + Temp + ’.txt’, ’w+’)
d = open(’python/inputs/dyn_power/max_delay_’ + Type + ’_’ + Temp + ’

.txt’, ’r’)

Arrays to store input and output data
Data_in = [’’,’’,’’,’’,’’]
Delay_in = [’’,’’,’’,’’,’’]

Skip first line
temp = d.readline()

Read delay data
temp = d.readline()
Delay_in[0] = temp.split()
temp = d.readline()
Delay_in[1] = temp.split()
temp = d.readline()
Delay_in[2] = temp.split()
temp = d.readline()
Delay_in[3] = temp.split()
temp = d.readline()
Delay_in[4] = temp.split()

135

C Source Code

Multiply delay data with power consumption for the supply voltage
range 100mV - 300mV

for num in range(0,11):

Open the Power Consumption data file
i = open(’out/’ + Test + ’_’ + Type2 + ’_’ + Temp + ’_’ + str(num)

+ ’.out’ , ’r’)

Multiplies Power with Delay
Data_in[0] += (str(get_res() * float(Delay_in[0][num+2]) * 2) + ’

’) # Classic
Data_in[1] += (str(get_res() * float(Delay_in[1][num+2]) * 2) + ’

’) # Min3
Data_in[2] += (str(get_res() * float(Delay_in[2][num+2]) * 2) + ’

’) # Min3ns
Data_in[3] += (str(get_res() * float(Delay_in[3][num+2]) * 2) + ’

’) # C2mos
Data_in[4] += (str(get_res() * float(Delay_in[4][num+2]) * 2) + ’

’) # PwrPc

Print PDP data to output file, ready for Matlab.
for dff in range(0,5):

o.write(Data_in[dff] + ’\n’)

o.close()
i.close()
d.close()

Listing 4: The Python Script for calculating and exporting PDP data

C.2 OCEAN Scripts

;====================== Set to XL mode
===

ocnSetXLMode()
ocnxlProjectDir("/work_local/magneva/simulation")
ocnxlTargetCellView("65nm_mag" "testbenk_power" "adex3_80_1")
ocnxlResultsLocation("")
ocnxlSimResultsLocation("")
;====================== Tests setup

==

;---------- Test "65nm_mag:testbenk_power:1" -------------

ocnxlBeginTest("65nm_mag:testbenk_power:1")
simulator(’spectre)
design("65nm_mag" "testbenk_power" "config")
analysis(’tran ?stop "VAR(\"Time\")" ?method "euler")
desVar("Time" 1202.7n)
desVar("C_in_c2mos" 46.88n)
desVar("c_in_classic" 66.56n)
desVar("C_in_min3" 80.18n)
desVar("C_in_min3ns" 61.46n)
desVar("C_in_pwrPC" 31.78n)
desVar("D_in_c2mos" 93.76n)

136

C.2 OCEAN Scripts

desVar("D_in_min3" 160.36n)
desVar("D_in_min3_delay" -80.18n)
desVar("D_in_min3ns" 122.92n)
desVar("D_in_min3ns_delay" -61.46n)
desVar("D_in_pwrPC" 63.56n)
desVar("D_in_pwrPC_delay" -31.78n)
desVar("vdd" 120m)
desVar("D_in_classic_delay" -66.56n)
desVar("D_in_classic" 133.12n)
desVar("D_in_c2mos_delay" -46.88n)
envOption(

’analysisOrder list("tran")
)
option(’temp "80"
)
option(?categ ’turboOpts

’uniMode "APS"
)
save(’i "/V17/PLUS" "/V19/PLUS" "/V18/PLUS" "/V15/PLUS" "/V16/PLUS"

)
converge(’ic "/D_min3" "0")
converge(’ic "/C_min3" "0")
converge(’ic "/D_c2mos" "0")
converge(’ic "/C_c2mos" "0")
converge(’ic "/D_min3_ns" "0")
converge(’ic "/C_min3_ns" "0")
converge(’ic "/D_pwrPC" "0")
converge(’ic "/C_pwrPC" "0")
converge(’ic "/D_classic" "0")
converge(’ic "/C_classic" "0")
converge(’ic "/Q_c2mos" "0")
converge(’ic "/Q_pwrPC" "0")
converge(’ic "/Q_classic" "0")
converge(’ic "/Q_min3" "0")
converge(’ic "/Q_min3_ns" "0")
temp(80)
ocnxlOutputSignal("/D_all")
ocnxlOutputSignal("/clk_all")
;ocnxlOutputSignal("/Q_classic" ?plot t)
;ocnxlOutputSignal("/Q_pwrPC" ?plot t)
;ocnxlOutputSignal("/Q_c2mos" ?plot t)
;ocnxlOutputSignal("/Q_min3" ?plot t)
;ocnxlOutputSignal("/Q_min3_ns" ?plot t)
ocnxlOutputTerminal("/V17/PLUS" ?save t)
ocnxlOutputTerminal("/V19/PLUS" ?save t)
ocnxlOutputTerminal("/V18/PLUS" ?save t)
ocnxlOutputTerminal("/V15/PLUS" ?save t)
ocnxlOutputTerminal("/V16/PLUS" ?save t)
ocnxlOutputSignal("/X_classic")
ocnxlOutputSignal("/X_pwrPC")
ocnxlOutputSignal("/X_c2mos")
ocnxlOutputSignal("/X_min3")
ocnxlOutputSignal("/X_min3_ns")
ocnxlOutputSignal("/D_pwrPC")
ocnxlOutputSignal("/C_pwrPC")
ocnxlOutputSignal("/D_c2mos")
ocnxlOutputSignal("/C_c2mos")
ocnxlOutputSignal("/D_min3")
ocnxlOutputSignal("/C_min3")

137

C Source Code

ocnxlOutputSignal("/D_min3_ns")
ocnxlOutputSignal("/C_min3_ns")

ocnxlSweepVar("Time" "1202.7n")
ocnxlEndTest()
;====================== Model Group setup

==
ocnxlModelGroup("default"
’(

("/home/magneva/master/65nm_mag/testbenk_power/adex3/
modelgroups/spectre/default.scs" ?section "default")

)
)

;====================== Corners setup
==

ocnxlCorner("default"
’(

("modelGroup" "default")
)

)
;====================== Job setup

==
ocnxlJobSetup(’(
"blockemail" "1"
"configuretimeout" "300"
"distributionmethod" "Local"
"lingertimeout" "300"
"maxjobs" "8"
"name" "ADE XL Default"
"preemptivestart" "1"
"reconfigureimmediately" "1"
"runtimeout" "-1"
"showerrorwhenretrying" "1"
"showoutputlogerror" "0"
"startmaxjobsimmed" "1"
"starttimeout" "300"
))

;====================== Run Mode Options
======================================

ocnxlMonteCarloOptions(?dutSummary "65nm_mag:testbenk_power:1%/I69
, /I68, /I66, /I65, /I63, /I64, /I57, /I55, /I49, /I56, /I53, /
I54, /I43, /I44, /I40, /I41, /I42, /I48, /I37, /I35, /I29, /I36
, /I33, /I34, /I28, /I27, /I23, /I22, /I24, /I21%Schematic%
Schematic#" ?ignoreFlag "1" ?mcMethod "all" ?mcNumPoints "100"
?mcNumBins "" ?mcStopEarly "0" ?mcYieldTarget "99.73" ?
mcYieldAlphaLimit "0.05" ?samplingMode "random" ?saveProcess
"1" ?saveMismatch "1" ?useReference "0" ?donominal "1" ?
saveAllPlots "1" ?monteCarloSeed "1" ?mcStartingRunNumber "")

;====================== Run command
==

;out = outfile("myResults/testout.ocn" "a")
ocnxlRun(?mode ’sweepsAndCorners ?nominalCornerEnabled nil ?

allCornersEnabled t ?allSweepsEnabled t)
ocnxlOutputSummary(?exprSummary t) ;?specSummary t)

of1 = outfile("˜/master/out/pdp_schematic_80_1.out" "w+")

openResults()
selectResult(’tran)

138

C.2 OCEAN Scripts

fprintf(of1 "FirstLine")

close(of1)

of1 = outfile("˜/master/out/pdp_schematic_80_1.out" "a")

openResults()
selectResult(’tran)
declare(out_arr[5])
out_arr[0] = (average(clip(IT("/V16/PLUS") (VAR("Time") * 0.1) (VAR

("Time") * 0.999))) * average(clip(VT("/I_Class") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))))
out_arr[1] = (average(clip(IT("/V18/PLUS") (VAR("Time") * 0.1) (VAR

("Time") * 0.999))) * average(clip(VT("/I_min3") (VAR("Time") *
0.1) (VAR("Time") * 0.999))))

out_arr[2] = (average(clip(IT("/V19/PLUS") (VAR("Time") * 0.1) (VAR
("Time") * 0.999))) * average(clip(VT("/I_min3ns") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))))
out_arr[3] = (average(clip(IT("/V17/PLUS") (VAR("Time") * 0.1) (VAR

("Time") * 0.999))) * average(clip(VT("/I_c2mos") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))))
out_arr[4] = (average(clip(IT("/V15/PLUS") (VAR("Time") * 0.1) (VAR

("Time") * 0.999))) * average(clip(VT("/I_pwrPC") (VAR("Time")

* 0.1) (VAR("Time") * 0.999))))

ocnPrint((out_arr[0]) ?output of1 ?format "engineering")
ocnPrint((out_arr[1]) ?output of1 ?format "engineering")
ocnPrint((out_arr[2]) ?output of1 ?format "engineering")
ocnPrint((out_arr[3]) ?output of1 ?format "engineering")
ocnPrint((out_arr[4]) ?output of1 ?format "engineering")

close(of1)
ocnPrint("Test number1 is Finished")
ocnPrint("Simulation Finished!")

;====================== End XL Mode command
===================================

ocnxlEndXLMode()

exit()

Listing 5: A typical generated OCEAN script

139

