
Doppler Radar Speed Measurement 
Based On A 24 GHz Radar Sensor

Joacim Dybedal

Master of Science in Electronics

Supervisor: Morten Olavsbråten, IET
Co-supervisor: Anders Hagen, Q-Free

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology



 



Abstract

This thesis will present the implementation of an on-board speed
measurement system using a single 24.1 GHz Doppler radar sensor and
specialized algorithms to measure the true speed of a vehicle. Two
different algorithms are implemented, the first based on estimating the
Doppler power density spectrum and extracting the strongest frequency
component, and the second based on correlation between the Doppler
spectrum and pre-estimated theoretical spectra. The output can be
displayed to the user in real-time as well as stored for future reference.

An ARM Cortex M4 microcontroller with digital signal processing
capabilities is used as the hardware platform, with an audio CODEC
chip used as the analog to digital converter. The software is implemented
using the C programming language.

The system is tested and the measurements are compared to a GPS
reference system, with results showing statistical mean errors down to as
little as 0.03 km/h and -0.18 %, and a standard deviation of 0.87 km/h
during the final test runs.





Preface

This thesis was written as part of completing the Master’s degree in Electronics at
the Department of Electronics and Telecommunications (IET) at the Norwegian
university of science and technology (NTNU).

During the six months in which this thesis was written I have gained much new
knowledge, especially in the fields of radar technology and signal processing,
but also about the challenges one is faced with when implementing a large
project using unfamiliar tools and equipment. My time at NTNU have been
one of the best periods in my life, and I leave with experience and knowledge
that will be invaluable in the forthcoming years.

I would like to express my gratitude to my supervisor Morten Olavsbråten at
IET and to my co-supervisor Anders Hagen at Q-Free ASA for all the help and
support they have given me during these six months. A special thanks also
goes out to the rest of the staff at Q-Free ASA that were involved during the
testing of the system.

Finally, I would like to thank the fellow students at the study room, Magne,
Lars and Jonathan, for making this last semester at NTNU both interesting
and fun.

Trondheim, June 12, 2013

Joacim Dybedal

iii



iv



Contents

Contents
1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 The Problem Text . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 System Specifications . . . . . . . . . . . . . . . . . . . 1

1.3 Speed Measurement Systems . . . . . . . . . . . . . . . . . . . 2
1.3.1 The Speedometer . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Satellite Positioning Systems . . . . . . . . . . . . . . . 3

1.4 Doppler Radar Speed Measurement - Previous Approaches . . 3
1.4.1 Doppler Radar Speed Measurement 1 . . . . . . . . . . 3
1.4.2 Doppler Radar Speed Measurement 2 . . . . . . . . . . 4
1.4.3 Doppler Radar Speed Measurement 2 . . . . . . . . . . 4

1.5 The Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical Background 7
2.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Radar Equation . . . . . . . . . . . . . . . . . . . . 7
2.2 The Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Doppler Spectrum . . . . . . . . . . . . . . . . . . . 10
2.3 The CW Doppler Radar . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Theoretical Received Power Spectrum . . . . . . . . . . . . . . 11

2.4.1 The Radar Equation Expanded to Two Dimensions . . . 11
2.4.2 Radar Cross Section of Asphalt (σ(α)) . . . . . . . . . . 12
2.4.3 Antenna Gain (φ(α)) . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Doppler spectrum estimation for different velocities . . . 15
2.4.5 Some Estimations . . . . . . . . . . . . . . . . . . . . . 16

2.5 Digital Signal Processing Theory . . . . . . . . . . . . . . . . . 17
2.5.1 The Fast Fourier Transform (FFT) . . . . . . . . . . . . 17
2.5.2 The Power Density Spectrum (Periodogram) . . . . . . 18
2.5.3 The Barlett and Welch Methods for Power Spectrum

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Comparing Power Density Spectra . . . . . . . . . . . . 20

3 Available Hardware 23
3.1 The MDU2410 Doppler Radar Module . . . . . . . . . . . . . . 23

3.1.1 The Intermediate-Frequency signal . . . . . . . . . . . . 24
3.2 Signal Processing Hardware . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Development Kit . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Block Diagram of the Hardware Setup . . . . . . . . . . 26
3.2.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . 27

v



Contents

4 Analog to Digital Conversion 29
4.1 Using an Audio Codec to Sample the IF signal . . . . . . . . . 29
4.2 Digital Data Transfer over the I2S Bus . . . . . . . . . . . . . . 30
4.3 IF Signal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Speed Measurement Algorithms 35
5.1 Selecting the Strongest Frequency Component . . . . . . . . . . 35
5.2 Selecting the Strongest Component from a Welch Estimate . . 36
5.3 Correlating with Pre-Estimated Power Spectra . . . . . . . . . 39
5.4 Matlab simulations . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Speed measurement based on Algorithm 2 . . . . . . . . 41
5.4.2 Speed measurement based on Algorithm 3 . . . . . . . . 41

5.5 Refresh Rate vs. Resolution . . . . . . . . . . . . . . . . . . . . 44
5.5.1 Non-overlapping Calculation . . . . . . . . . . . . . . . 44
5.5.2 Overlapping Calculation . . . . . . . . . . . . . . . . . . 45

6 Software Development 47
6.1 Application Overview and Menu System . . . . . . . . . . . . . 47
6.2 LPCOpen and ARM Libraries . . . . . . . . . . . . . . . . . . . 48
6.3 ARM CMSIS DSP Library functions . . . . . . . . . . . . . . . 49
6.4 Initial Setup of the Development Board . . . . . . . . . . . . . 50
6.5 LCD Display Driver (display_mcb4300.c) . . . . . . . . . . 50
6.6 UDA1380 CODEC driver (uda1380_mcb4300.c) . . . . . . . 51

6.6.1 Sampling Frequency and Other I2S Parameters . . . . . 51
6.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . 52
6.6.3 Important Functions . . . . . . . . . . . . . . . . . . . . 53

6.7 SD/MMC driver (sdmmc_mcb4300.c) . . . . . . . . . . . . . 53
6.7.1 File System . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7.2 Wave File Format . . . . . . . . . . . . . . . . . . . . . 53
6.7.3 Important functions . . . . . . . . . . . . . . . . . . . . 54

6.8 DSP Functions (dsp_funcs.c) . . . . . . . . . . . . . . . . . 55
6.9 A Simple Spectrum Analyzer (spectrum.c) . . . . . . . . . . 56

6.9.1 Drawing the Spectrum . . . . . . . . . . . . . . . . . . . 56
6.9.2 Adjusting the Sensitivity . . . . . . . . . . . . . . . . . 58
6.9.3 Important functions . . . . . . . . . . . . . . . . . . . . 58

6.10 Recording and Storing the raw IF Signal . . . . . . . . . . . . . 58
6.11 Implementation of Speed Measurement Algorithms (speed.c) 59
6.12 Logging and Storing the Speed Measurements . . . . . . . . . . 62

6.12.1 File Format . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.13 Memory Management . . . . . . . . . . . . . . . . . . . . . . . 63

7 Testing the System 65
7.1 Initial Tests (Data Recording) . . . . . . . . . . . . . . . . . . . 66
7.2 Initial Test Results . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



Contents

7.3 Final Test of Speed Measuring Algorithms . . . . . . . . . . . . 66

8 Statistical Analysis and Error Correction 69
8.1 Aligning Measurements with Reference values . . . . . . . . . . 69
8.2 Analyzing The Results . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Results 71
9.1 Unaligned Measurements vs GPS reference . . . . . . . . . . . 71
9.2 Aligned Measurements vs GPS reference . . . . . . . . . . . . . 74
9.3 Error Corrected Measurements vs GPS reference . . . . . . . . 78
9.4 Complete Measurement sequences vs GPS reference . . . . . . 82
9.5 Measurement Rates . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6 Measurement Resolutions . . . . . . . . . . . . . . . . . . . . . 87

10 Discussion 89
10.1 Measurable Range of Speeds . . . . . . . . . . . . . . . . . . . . 89
10.2 Alignment of the Measurement Samples with Reference Samples 89
10.3 Statistics and Accuracy Before Error Correction . . . . . . . . . 89

10.3.1 Excerpts 1 to 3 . . . . . . . . . . . . . . . . . . . . . . . 90
10.3.2 Excerpt 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.3.3 Excerpts 4 and 6 . . . . . . . . . . . . . . . . . . . . . . 90
10.3.4 The Complete Test Runs . . . . . . . . . . . . . . . . . 90

10.4 Statistics and Accuracy After Error Correction . . . . . . . . . 90
10.4.1 Excerpts . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.4.2 The Complete Test Runs . . . . . . . . . . . . . . . . . 91
10.4.3 Unlinearity of Mean Error . . . . . . . . . . . . . . . . . 91

10.5 Measurement Rates and Resolution . . . . . . . . . . . . . . . . 91
10.6 Comparing the Results with Previous Solutions . . . . . . . . . 92

11 Concluding Remarks 93
11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Source Code 97
A.1 Main Application . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 DSP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.3 Speed Measuring Algorithms . . . . . . . . . . . . . . . . . . . 108
A.4 CODEC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.5 SD Card Interface Drives . . . . . . . . . . . . . . . . . . . . . 117
A.6 Display Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.7 Spectrum Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Matlab Scripts 130
B.1 Simulation of Direct Welch Method . . . . . . . . . . . . . . . . 130
B.2 Simulation of Correlation Method . . . . . . . . . . . . . . . . . 131

vii



Contents

B.3 Estimation of Theoretical Doppler Spectra . . . . . . . . . . . . 132
B.4 Plot Measurements vs GPS reference including errors . . . . . . 133

viii



List of Figures

List of Figures
1 Janus configuration of Doppler radar sensors [1] . . . . . . . . . 4
2 High-level block diagram of the proposed system . . . . . . . . 5
3 Orientation of a Doppler radar with respect to the surface . . . 9
4 CW Doppler radar block diagram . . . . . . . . . . . . . . . . . 11
5 The geometry of the radar setup in two dimensions . . . . . . . 12
6 Measured back-scattering coefficient for asphalt roads. . . . . . 13
7 The geometry of radar cross section area . . . . . . . . . . . . . 13
8 Antenna diagrams from the radar module data sheet. . . . . . . 14
9 A plot of the antenna gain distribution φ(α) in the vertical plane 14
10 Estimates of received power spectra. 0◦ is along the horizontal

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11 Estimated power spectra for three different speeds when θ = 45◦ 16
12 Eight-point FFT Algorithm [2] . . . . . . . . . . . . . . . . . . 18
13 Plot of the received power spectrum when the vehicle is stationary 25
14 The Keil MCB4357 evaluation kit . . . . . . . . . . . . . . . . . 26
15 Block Diagram of the Hardware Setup . . . . . . . . . . . . . . 27
16 Simple block diagram of the UDA1380 CODEC’s ADC Features 30
17 Simple system configurations of the I2S bus . . . . . . . . . . . 31
18 I2S bus timing diagram . . . . . . . . . . . . . . . . . . . . . . 31
19 Filtered and unfiltered IF signal. Speed = 0 km/h . . . . . . . 33
20 FIR filter frequency and phase response . . . . . . . . . . . . . 33
21 Estimated Doppler frequencies vs time. Speed is approximately

70 km/h [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
22 Plots of the Welch Power Spectrum Estimation performed on an

input signal where the speed is approximately 70 km/h . . . . 38
23 Simulation of the spectrum correlation algorithm performed on

an input signal where the speed is approximately 70 km/h . . . 40
24 Speed measurement using the Welch method directly . . . . . . 42
25 Speed measurement by correlating power spectra . . . . . . . . 43
26 FFT Transform with non-overlapping samples . . . . . . . . . . 44
27 FFT Transform with overlapping samples . . . . . . . . . . . . 45
28 Application Overview . . . . . . . . . . . . . . . . . . . . . . . 48
29 LPCOpen Library Structure . . . . . . . . . . . . . . . . . . . . 48
30 FIR Filter Configuration [3] . . . . . . . . . . . . . . . . . . . . 50
31 Photo of spectrum analyzer display . . . . . . . . . . . . . . . . 57
32 Spectrum Analyzer State Diagram . . . . . . . . . . . . . . . . 57
33 "Record and Store" State Diagram . . . . . . . . . . . . . . . . 59
34 Speed Module Initialization Block Diagram . . . . . . . . . . . 60
35 Speed Measurement Block Diagram . . . . . . . . . . . . . . . 61
36 Photo of speed measurement display . . . . . . . . . . . . . . . 62
37 Possible radar sensor positions on vehicle . . . . . . . . . . . . 65
38 Photographs of the radar test setup . . . . . . . . . . . . . . . 65

ix



List of Figures

39 Doppler spectra for high (upper) and low mounting positions.
Speed = 40 km/h. . . . . . . . . . . . . . . . . . . . . . . . . . 67

40 Map of the route driven during speed measurement tests . . . . 68
41 Measurement using Alg. 3 vs GPS Reference. Excerpt 1. . . . . 72
42 Measurement using Alg. 3 vs GPS Reference. Excerpt 2. . . . . 72
43 Measurement using Alg. 3 vs GPS Reference. Excerpt 3. . . . . 72
44 Measurement using Alg. 3 vs GPS Reference. Excerpt 4. . . . . 73
45 Measurement using Alg. 2 vs GPS Reference. Excerpt 5. . . . . 73
46 Measurement using Alg. 2 vs GPS Reference. Excerpt 6. . . . . 73
47 Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 1. 74
48 Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 2. 75
49 Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 3. 75
50 Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 4. 76
51 Aligned Measurement using Alg. 2 vs GPS Reference. Excerpt 5. 76
52 Aligned Measurement using Alg. 2 vs GPS Reference. Excerpt 6. 77
53 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Excerpt 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
54 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Excerpt 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
55 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Excerpt 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
56 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Excerpt 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
57 Error Corrected Measurement using Alg. 2 vs GPS Reference.

Excerpt 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
58 Error Corrected Measurement using Alg. 2 vs GPS Reference.

Excerpt 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
59 Aligned Measurement using Alg. 3 vs GPS Reference. Test run 1 82
60 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Test run 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
61 Aligned Measurement using Alg. 3 vs GPS Reference. Test run 2 83
62 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Test run 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
63 Aligned Measurement using Alg. 2 vs GPS Reference. Test run 3 84
64 Error Corrected Measurement using Alg. 2 vs GPS Reference.

Test run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
65 Aligned Measurement using Alg. 2 vs GPS Reference. Test run 4 85
66 Error Corrected Measurement using Alg. 2 vs GPS Reference.

Test run 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
67 Error Corrected Measurement using Alg. 3 vs GPS Reference.

Test run 1. Error correction factor = 1.20. Only measurements
in the range of 20 to 70 km/h are taken into account. . . . . . 86

x



List of Tables

List of Tables
1 MDU2410 Radar Specifications . . . . . . . . . . . . . . . . . . 23
2 Decimation Filter characteristics . . . . . . . . . . . . . . . . . 30
3 Welch Power Density Estimate Parameters. K: Number of

segments without overlap. L: Number of M -length segments
with overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 UDA1380 CODEC settings . . . . . . . . . . . . . . . . . . . . 52
5 Wave File Header for 32-bit mono PCM data . . . . . . . . . . 54
6 File format for logged speed measurements . . . . . . . . . . . 63
7 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8 Initial test scenarios . . . . . . . . . . . . . . . . . . . . . . . . 66
9 Test run description for speed measurement tests . . . . . . . . 68
10 Test result excerpts . . . . . . . . . . . . . . . . . . . . . . . . . 71
11 Measurement Errors, Uncorrected Measurements Excerpts . . . 77
12 Measurement Errors, Error Corrected Measurements Excerpts . 81
13 Measurement Errors, Uncorrected and Corrected Full Test Runs. 87

xi



List of Algorithms

List of Algorithms
1 Speed measurement by Strongest Periodogram Component . . 36
2 Speed measurement by Welch Power Spectrum Estimates . . . 36
3 Speed measurement by Power Spectrum Correlation . . . . . . 40

xii



1 Introduction

1.1 Motivation

The problem solved in this thesis was presented by Q-Free ASA, a Trondheim
company focusing on solutions for Road User Charging and Advanced Trans-
portation Management. The problem is based on a need for a system for speed
measurements that is independent of other systems such as the speedometer
and GPS, that will be used in systems where the traveled distance is used as a
base for charging rates. Hence, a solution based on a Doppler radar system was
proposed.

1.2 Problem Description

This section will give a description of the problem which is to be solved in this
project.

1.2.1 The Problem Text

The given problem text reads as follows:

"Doppler radars are used for many applications, like door openers, range mea-
surement, speed radars etc. The radar microwave unit consist of a homodyne
transceiver, one path of the local oscillator is transmitted through an antenna
the other path is feed to a mixer, the RF input of the mixer is connected to an
other antenna, receiving the reflected signal. The IF output (the mixer product
or quadrature I and Q output) is the input to the signal processor. The RF
frequency is 24GHz. The task is to design a light embedded signalprocessing
SW to make reliable speed measurements. The HW is available, based on an
available RF unit and a microcontroller design-kit."

1.2.2 System Specifications

As the problem text does not specify any formal specifications that the speed
measurement system has to comply with, some specifications were developed in
the initial stages of the project. These specifications were made to set some
boundaries for the project, as well as to set a goal for what the project hopes
to accomplish.

• The system should be able to measure speeds from 0 to 250 km/h.

1



1 Introduction

• The system should be able to measure speeds with a resolution of at least
0.5 km/h, and with the best possible accuracy.

• The system should be able to update the speed measurements at intervals
no longer than 1 second.

• The system should be able to present the measurements in real-time, as
well as logging the speed data for later use.

1.3 Speed Measurement Systems

This section will give short presentations of some of the various solutions for
speed measurements that already exists, and some previous approaches using
radar.

1.3.1 The Speedometer

The speedometer is by far the most widespread type of speed measurement
system, as it exists in nearly all motorized vehicles that are allowed to use
public roads. There are different types of speedometers, and as an example, an
electronic speedometer works by interpreting the pulse signal generated from a
rotating magnet mounted on the drive shaft connecting the transmission to the
tires. The frequency of this signal represents the speed of the vehicle [4].

Because of how the measurement is performed, the indicated speed will vary
with the size of the tires used on the vehicle, air pressure of the tires, etc.

Accuracy Speedometers mounted on modern cars are subject to regulations
from different authorities, e.g. national governments, the United Nations
Economic Commission for Europe and the European Union. The European
Council Directive 75/443/EEC [5] states that the following relationship between
the true speed (V2) and the indicated speed (V1) must be satisfied:

0 ≤ V1 − V2 ≤
V2
10

+ 4km/h (1.1)

Hence, the indicated speed from the speedometer can not be seen as a very
accurate measurement, although it will never indicate a speed lower than the
true speed.

2



1.4 Doppler Radar Speed Measurement - Previous Approaches

1.3.2 Satellite Positioning Systems

There exists several satellite positioning systems, including the U.S. developed
Global Positioning System (GPS) and its Russian counterpart, the Global
Navigation Satellite System (GLONASS). Common for all these, are that they
use earth-orbiting satellites to determine the position and/or speed of a receiver
on the ground. The receiver can measure the distance between it and the
satellite by measuring the time a signal uses to reach the receiver.

Typically, four satellites must be visible from the receiver, three to triangulate
the position by measuring the distance to and position of the satellites, and a
fourth to correct for clock error in the receiver [6].

Accuracy GPS provides two different services, the Precise Positioning System
(PPS) intended for military use and only available to authorized users, and the
Standard Positioning Service (SPS) which is available to all GPS users. The
accuracy of GPS speed measurements using the SPS has been reported to be
as low as 0.05 m/s with a confidence of 99.9 %, and can therefore be seen as an
accurate measure of the true speed [7].

1.4 Doppler Radar Speed Measurement - Previous Ap-
proaches

The use of the Doppler effect to measure relative speed is well known, and
several approaches to speed measurement by radar systems have been proposed
and realized. However, most concentrate on the measurement of the speed of a
vehicle from a static point, e.g. police speed measurement radars, where the
vehicle approaches the point of measurement. But a few publications describe
on-board radar speed-measurement systems.

1.4.1 Doppler Radar Speed Measurement 1

A 1978 paper describes a speed measurement system for use by agricultural
tractors based on a single 10.525 GHz Doppler radar sensor [8]. The system
was tested a tractor running at a constant speed, using a frequency counter
with 10 s integration time to find the average Doppler frequency.

Accuracy Two different radar types were tested. An accuracy of 0.5 % was
reported when the first type was used, and 2.0 % for the other, compared to a
fifth wheel assembly connected to the front wheel of the tractor.

3



1 Introduction

1.4.2 Doppler Radar Speed Measurement 2

A U.S. patent from 1991 presents a simple Doppler radar measurement system
where the speed is measured by comparing the change in the Doppler frequency
from one measurement to the next [9]. Nothing is stated about the accuracy of
this system.

1.4.3 Doppler Radar Speed Measurement 2

The publications by W. Kleinhempel et al. propose a system based on a 61 GHz
radar module where two modules set up in a janus configuration (see Figure 1)
are used to measure vehicle, ground speed [1, 10, 11]. The Janus configuration
is used to eliminate the impact of the ever-changing pitch angles of the vehicle
and the system exploits the Doppler effect to measure the speed, as will be
described in Section 2.2. A measurement algorithm based on correlating the
received Doppler spectra with pre-estimated spectra of known speeds was used
to determine the speed of the vehicle. Techniques such as down-converting the
relevant part of the spectra and changing the sampling frequency and length of
the FFT transform was used improve the measurements as much as possible.
This system is the best documented earlier approach to Doppler radar speed

23?il*3f;f,1 {

Figure 1: Janus configuration of Doppler radar sensors [1]

measurement that was found. A system very similar to this is described in a
1993 U.S. patent by U.S. Philips Corporation [12].

Accuracy This approach reported a standard deviation (σ) of the measure-
ment errors in the range of 0.6 % compared to a Peiseler wheel mounted on the
side of the vehicle, using a measurement interval of 40 ms. Vehicle speeds up
to 250 km/h could be measured [1].

4



1.5 The Proposed Solution

1.5 The Proposed Solution

This section will present an outline of the speed measurement system that this
project aims to design. A simple block diagram is presented in Figure 2. The
system will be mounted on a suitable spot on the vehicle. As the problem

Figure 2: High-level block diagram of the proposed system

text states, the hardware was available at the time the project started. The
radar is a 24.100 GHz module from Microwave Solutions Inc., and the signal
processor is the ARM Cortex M4 processor incorporated on a microcontroller
chip produced by NXP Semiconductors.

The system will consist of a single Doppler radar module, so a Janus configura-
tion as described in Section 1.4.3 will not be possible. However, the algorithm
type used there, based on correlating the Doppler- and estimated spectra, stands
out as a promising method to test in this project. A simpler method, using
only the maximum value of the Doppler spectra itself to measure the speed will
also be tested.

1.6 Thesis Outline

The following points will briefly describe the contents of the different sections
in the rest of this thesis.

• Section 2 will start by describing some of the relevant and necessary theory
behind the Doppler radar and the signal processing used to perform the
speed measurements. It will also describe the process of theoretically
estimating the received Doppler frequency spectrum.

• Section 3 will describe the hardware that were made available by Q-Free
ASA.

• Section 4 describes the process of digitizing the intermediate-frequency
signal that is received from the Doppler radar sensor.

• Section 5 will present the speed measuring algorithms.

• Section 6 will then describe how the software was implemented, including
implementation of the speed measuring algorithms.

5



1 Introduction

• Section 7 presents how the system and algorithms were tested.

• Section 9 will then present the results obtained during the tests.

• Section 10 will discuss the results, comparing the different test cases and
algorithms.

• Section 11 summarizes the results and presents some future work that
can be done to improve the system.

• Appendix A includes the source code for the system.

• Appendix B includes Matlab scripts used for simulations, to estimate
Doppler power spectra, and to plot the results.

6



2 Theoretical Background

This section will present some of the necessary theoretical background, starting
with a description of the Doppler radar, continuing with the theory behind
theoretically estimating the received Doppler spectra, and finishing with some
relevant digital signal processing theory.

2.1 Radar

Radar, or Radio detection and ranging, has been widely used since the 1930’s,
and the technology dates back to Heinrich Hertz’s experiments with Maxwell’s
theories in 1886 [13]. As early as 1904, a German engineer named Christian
Hülsmeier obtained a patent entitled "Hertzian-wave Projecting and Receiving
Apparatus Adapted to Indicate or Give Warning of the Presence of a Metallic
Body, Such as a Ship or a Train, in the Line of Projection of Such Waves" [14].

In 1922, a wooden ship was detected by engineers at the U.S. Naval Research
Laboratory (NRL) by using a CWwave-interference radar, and the first detection
of an aircraft was made in 1930 [13]. The attack on Pearl Harbor, Hawaii, was
detected by long-range early warning pulse radars developed by the U.S. Army
Signal Corps. The British independently developed similar systems, and the
so-called Chain Home radar stations deployed on the East and South Coasts of
Britain was in operation from 1938 until the end of World War II [13].

After the war, the development of radar continued, and today, radar is used not
only for military purposes. Applications of radar includes Air Traffic Control, air
and sea navigation and safety, meteorological surveillance and law enforcement
[13].

2.1.1 The Radar Equation

The power radiated by a radar transmitter is Pt. When this power is radiated
out from an isotropic antenna (uniformly in all directions), the power density
at a range R from the antenna is given by

Pd =
Pt

4πR2
(2.1)

Radar systems use directional antennas to concentrate the transmitted power Pt
in a desired direction. The increase in power compared to an isotropic antenna
in this direction is the gain of the antenna, G [13]. This gain is expressed in
dBi, or dB compared to an isotropic antenna. The power density can now be

7



2 Theoretical Background

written as
Pd =

PtG

4πR2
(2.2)

When the energy described in Equation (2.2) hits an object, most of it is
absorbed and scattered, but some of it is reflected back in the direction of
the radar. Objects of different materials, sizes and shapes will reflect different
amounts of power and this amount is denoted as the radar cross section, σ, of
the object. The radar cross section is measured in area (m2) as seen by the
radar. For an arbitrary object, this area is expressed as the area of a flat metal
reflector which would reflect the same amount of power back to the radar [15].

When this is combined with Equation. (2.2), the reflected power from the target
becomes

Prf =
PtG

4πR2
σ (2.3)

This power is reflected in all directions and the power density of the reflected
radiation at the radar source is therefore [15]

Pd =
GPt
4πR2

σ

4πR2
=

PtGσ

(4π)2R4
(2.4)

If the effective area of the receiving antenna is Ae, the power received by the
radar is given by

Pr =
PtσGAe
(4π)2R4

(2.5)

The relationship between the area of the receiving antenna and its gain can be
described as [13]

G =
4πAe
λ2

(2.6)

and since most radars (including the module used in this project) use the
same antenna for transmission and reception, this can be substituted into
Equation (2.5) and the received power becomes

Pr =
PtG

2λ2σ

(4π)3R4
(2.7)

2.2 The Doppler Effect

When a source transmitting an electromagnetic (or any other) wave is moving
relative to an observer, a frequency shift between the transmitted signal and the
received signal will be observed. This effect is known as the Doppler effect and
the frequency change is known as the Doppler shift or the Doppler frequency.

8



2.2 The Doppler Effect

Figure 3: Orientation of a Doppler radar with respect to the surface

Consider a system where the transmitter and receiver is in the same position, and
the system is moving relative to some surface (see Figure 3). The transmitted
and received signals can be represented as [16, 17]

ET = A sin 2πft (2.8)

ER = B sin [2πft− ϕ] (2.9)

where A and B are constants and ϕ is the phase shift due to the propagation
delay time. This phase shift can be described as

ϕ = 2π
2ρ

λ
(2.10)

where ρ is the distance from the system to the point of reflection and λ is the
wavelength of the transmitted signal. When the system is moving relative to the
point of reflection, ρ, and hence ϕ, varies with time. Over a short time-period
ρ may be represented by [16]

ρ(t) = ρ0 − vt cosα (2.11)

where ρ0 is the value of ρ at t = 0 and α is the angle between the direction
of the velocity v and the direction towards to the point of reflection. Now,
Equation (2.9) can be written as

ER = B sin

[
2πft− 4π

λ
(ρ0 − vt cosα)

]
= B sin

[(
2πf +

4πv cosα

λ

)
t− ϕ0

]
(2.12)

where ϕ0 = 4πρ0
λ is a fixed and insignificant phase lag. The more important

fact seen here is that the received signal differs from the transmitted signal by
a time varying term, i.e. a frequency:

fR = f +
2v

λ
cosα (2.13)

9



2 Theoretical Background

The Doppler frequency shift fd is therefore:

fd = fR − f =
2v

λ
cosα (2.14)

When the target is closing (when v is positive), the sign of the Doppler frequency
is positive. Similarly, the sign of the Doppler frequency is negative when the
target is receding.

2.2.1 The Doppler Spectrum

The Doppler frequency equation (2.14) gives the Doppler frequency for one
single angle α, but in reality, the radar radiates out inn all directions, with a
peak power in the direction towards the target. Hence, the received Doppler
frequencies compose a spectrum of many different frequencies. As will be shown
graphically when estimating the Doppler frequency spectrum, the width of the
spectral peak is not only dependent of the radiation pattern of the radar, but
directly proportional to v:

∆f = fdl − fdu =
2v

λ
(cosαl − cosαu) (2.15)

where αl and αu are some lower and upper angles, e.g. the 3 dB point of the
antenna pattern [1].

2.3 The CW Doppler Radar

The CW, or continuous-wave, radar transmits an unmodulated and continuous
signal of frequency f , and the portion of the signal that is reflected by the
target is received and compared to the output signal.

When the target is moving relative to the radar, the received signal is shifted
in frequency as given by Equation (2.14). As shown in Figure 4, an oscillator
generates a stable signal with a given amplitude and frequency. This signal
is filtered and divided into to approximately equal signals [15]. One of the
signals is radiated by the transmit antenna, and the other is used as a reference
signal to a balanced mixer. The mixer compares the received signal with the
transmitted signal and produces an intermediate frequency (IF) signal with the
Doppler frequency fd.

The received signal will be on the form f ± fd, but the sign will be lost in
the process, and only the positive Doppler frequency will be detected. Hence,
the unmodulated CW Doppler radar will only detect that the presence and
magnitude of a relative motion, and not its direction [13].

10



2.4 Theoretical Received Power Spectrum

Figure 4: CW Doppler radar block diagram

2.4 Theoretical Received Power Spectrum

The Doppler signal received from the radar is not a single frequency, and to be
able to better determine the velocity of the vehicle, a method for estimating
the received power spectrum of the different Doppler frequencies is desired.
This estimate can be used to detect the velocity by correlating the measured
spectrum with estimated spectra for different velocities, as will be shown in
Section 5.3.

A relatively simple estimate of the Doppler spectrum can be found when
expanding the radar equation to two or three dimensions. As was shown by [1],
expanding to two dimensions by taking into account the vertical plan, yields a
good estimate of the true spectrum.

2.4.1 The Radar Equation Expanded to Two Dimensions

The radar equation derived in Section 2.1.1 is valid only in one direction from
the radar to a target, i.e. at constant angles both in the horizontal and vertical
planes, with the radar pointing directly at the target. This is sufficient for
estimating the maximum received power and range, but not for estimating the
complete received power spectrum.

When adding the vertical dimension, the gain G, the radar cross section σ,
and the distance R, all varies with the inclination angle α (see Figure 5). The
gain also depends on the tilt, θ, of the radar sensor (45◦ in the figure). When
inserting these factors in the radar equation, an expression of the power of the

11



2 Theoretical Background

Figure 5: The geometry of the radar setup in two dimensions

received signal as a function of the inclination angle can be written as [1]

Pd(α) = c0
σ(α)φ2(α)

r4(α)
(2.16)

where c0 = Ptλ
2

(4π)3 is the constants of the radar equation, σ(α) is the radar cross
section of the target, φ(α) is the antenna gain, and r(α) = h

sin(α) is the distance
from the radar to a point on the target.

2.4.2 Radar Cross Section of Asphalt (σ(α))

The radar cross section as described in Section 2.1.1 can be further expressed as

σ = σ0A0 (2.17)

where σ0 is the back-scattering coefficient of the target (in dB) and A0 is the
illuminated area [18, 19].

Measurements done by [18] has shown the back-scattering coefficient for a 24
GHz radar to be as shown in Figure 6b for different incidence angles. These
results will be used for σ0(α) in the power spectrum estimate.

The area A0 can be approximated by calculating the area within the 3 dB
beam-width of the antenna beam that illuminates the target [18], see Figure 7.

12



2.4 Theoretical Received Power Spectrum

(a) Incidence angle used in Fig. 6b re-
lated to the surface [18] (b) Back-scattering coeff. at 24 GHz

[18]

Figure 6: Measured back-scattering coefficient for asphalt roads.

This area varies with the radar tilt θ, and can be written as:

A0d(θ) =
1

h
tan

(
θ − θ3dBv

2

)
− 1

h
tan

(
θ +

θ3dBv
2

)
(2.18)

A0w(θ) =
h

sin(θ)
· tan

(
θ3dBh

2

)
· 2 (2.19)

A0(θ) = A0d ·A0w (2.20)

where A0d is the depth of the illuminated field, A0w is the width of the field,
θ3dBv is the vertical 3 dB beam-width, and θ3dBh is the horizontal 3 dB beam-
width.

Figure 7: The geometry of radar cross section area

The area also varies with α, but this is left out of this approximation.

13



2 Theoretical Background

2.4.3 Antenna Gain (φ(α))

The antenna diagram supplied by the radar manufacturer gives the gain at all
360◦ in the vertical and horizontal planes around the antenna (Figure 8). By
measuring the diagram, the resulting curve together with the antenna gain can
be used as φ(α) in Equation (2.16).

Figure 8: Antenna diagrams from the radar module data sheet.

According to the manufacturer, the gain of the antenna is 10 dBi [20], so this
must be added to the value from the antenna diagram, giving 10 dBi gain at
the direction of maximum power (0◦). A plot of φ(α) from −90◦ to +90◦ in
the vertical plane can be seen in Figure 9.

Figure 9: A plot of the antenna gain distribution φ(α) in the vertical plane

14



2.4 Theoretical Received Power Spectrum

2.4.4 Doppler spectrum estimation for different velocities

Equation (2.16) gives an estimate of the received power at different angles.
Plots of Pd(α) are shown in Figures 10a,10b and 10c.

(a) Pd(α) when θ = 45◦ (b) Zoomed-in view of figure 10a

(c) Zoomed-in view when θ = 35◦

Figure 10: Estimates of received power spectra. 0◦ is along the horizontal line.

In these figures, one can see how the received spectrum is estimated to be, and
how the power drops when the tilt angle is lowered. But this does not show
how the Doppler spectra changes with different velocities. Hence, an estimate
of the different Doppler frequencies at different velocities is desired.

To calculate the velocity from the received signal, the Doppler equation as
described in Section 2.2 is used. When Equation (2.14) is inverted, α can be
given as a function of fd and v0, where fd is the Doppler frequency, and v0 is
the velocity of the vehicle [1]:

α = arccos(
fdλ

2v0
) (2.21)

This can be inserted into Equation (2.16) to produce an estimate of the Doppler

15



2 Theoretical Background

spectral distribution Pd(fd, v0). When choosing a velocity v0, the spectrum can
be plotted for the different frequencies:

Pd(fd, v0) = c0
σ(arccos( fdλ2v0

))φ2(arccos( fdλ2v0
))

r4(arccos( fdλ2v0
))

(2.22)

2.4.5 Some Estimations

Using Equation (2.22), some estimations with different parameters will be
shown. The parameters obtained from the radar module data sheet are as
follows [20]:

• Pt = 7 dBm = 5 mW

• G = 10 dBi

• λ = 0.0124 m

• θ3dBv = 18◦

• θ3dBh = 72◦

With these parameters, the constant c0 becomes: c0 = 5×10−3×0.01242
(4π)3 = 2.55×

10−6. All estimations use h = 0.5m (assuming the radar is placed on the rear
bumper of the vehicle), and the spectra are estimated for 20, 40, 80 and 160
km/h. Figure 11 show plots of the estimations, where the radar tilt θ is 45◦.

Figure 11: Estimated power spectra for three different speeds when θ = 45◦

These estimations clearly show how the with of the spectrum is proportional to
v0, as shown in Section 2.2.1. The rugged structure of the estimations is due to

16



2.5 Digital Signal Processing Theory

the fact that the antenna gain values used has a resolution of 1◦, so rounding
was used to find the closest value during the estimation.

2.5 Digital Signal Processing Theory

This section will give a brief introduction to some of the digital signal processing
techniques used in the project.

2.5.1 The Fast Fourier Transform (FFT)

The Fourier Transform is the transformation of a signal from the time-domain
to the frequency-domain. The following gives a very brief introduction to the
Fast Fourier Transform algorithm used to effectively calculate the Discrete
Fourier Transform.

Let x(n) be a finite-duration discrete-time sequence of length L (i.e. x(n) = 0
outside the range 0 ≤ n ≤ L − 1). This sequence has a Fourier transform
described as

X(ω) =

L−1∑
n=0

x(n)e−jωn, 0 ≤ ω ≤ 2π [2] (2.23)

The Discrete Fourier Transform (DFT) is found by evaluating this Fourier trans-
form at a set of N equally spaced frequencies ωk = 2πk/N, k = 0, 1, 2, . . . , N−1,
where N ≥ L, essentially sampling the frequency domain of the signal. This
gives a DFT with the samples

X(k) = X(
2πk

N
) =

L−1∑
n=0

x(n)e−j2πkn/N

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2, . . . , N − 1 [2] (2.24)

where the upper index is increased from L − 1 to N − 1 since x(n) = 0 for
n ≥ L.

The sequence x(n) can be recovered from X(k) by the inverse DFT (IDFT)
formula:

x(n) =
1

N

N−1∑
k=0

X(k)ej2πkn/N , n = 0, 1, 2, . . . , N − 1 [2] (2.25)

17



2 Theoretical Background

The direct calculation of the DFT requires N2 complex multiplications [2].
Hence, it is clear that the workload of directly calculating the DFT becomes
massive when N increases, with 4.194.304 complex multiplications at N = 2048.
However, when N is selected to be a number 2v, the calculations can be
divided up into smaller and smaller elements, all the way down to a 2-point
DFT (see Figure 12). This algorithm is called the radix-2 FFT (Fast Fourier
Transform) and a detailed explanation of it can be found in many digital signal
processing textbooks, including [2]. In short, the divide-and-conquer approach

x(0)

x(4)

x(2)

.r(0)

;( 1)

x(2)

x( l)

x(5)

x(3)

Figure 12: Eight-point FFT Algorithm [2]

and other techniques used in the FFT algorithm reduces the number of complex
calculations to (N/2) log2N . This gives just 11.264 complex calculations at
N = 2048, a significant improvement compared to the direct calculation, making
the radix-2 algorithm the most widely used FFT algorithm [2], and suitable for
digital signal processors. Other basic building blocks, such as a 4-point DFT,
can be used, e.g. to construct a radix-4 type FFT.

2.5.2 The Power Density Spectrum (Periodogram)

A finite-energy deterministic signal xa(t) has a total energy of

E =

∫ ∞
−∞
|xa(t)|2dt =

∫ ∞
−∞
|X(F )|2dF (2.26)

18



2.5 Digital Signal Processing Theory

where X(F ) is the Fourier transform of xa(t), and |X(F )|2 represents the
signal’s energy distribution [2]. This quantity can also represented by the
symbol Sxx(F ), that can be shown to be the Fourier transform of the auto-
correlation of xa(t). The energy density spectrum of a sampled version x(n) of
the signal, will be

Sxx(f) = |X(f)|2 (2.27)

However, many natural signals are best characterized statistically as random
processes, including the IF signal from the radar sensor. Such signals does not
have finite energy and does not possess a Fourier Transform. Hence, the energy
density spectrum cannot be calculated. But these signals have finite average
power and can be characterized by a power density spectrum [2].

The power density spectrum can be estimated to form a Power Density Estimate,
or periodogram. This thesis will not go into the details of the derivation of this
estimate, but it includes using an estimate for the auto-correlation function to
calculate the power density estimate Pxx(f) from samples of a realization of
the random process. This power density estimate can be expressed as

Pxx(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn

∣∣∣∣∣
2

=
1

N
|X(f)|2 [2] (2.28)

where N is the number of samples.

The variance of the periodogram does not converge to zero as N →∞. In fact,
is can be shown that the variance is

var [Pxx(f)] = Γ2
xx(f)

[
1 +

(
sin 2πfN

N sin 2πf

)2
]

(2.29)

lim
N→∞

var [Pxx(f)] = Γ2
xx(f) (2.30)

where Γxx is the true power density spectrum of the process. Hence, the
periodogram is not a consistent estimate, as it does not converge to the true
power density spectrum [2]. Several methods have been developed to reduce
the variance, and some of them will be presented in the following sections.

2.5.3 The Barlett and Welch Methods for Power Spectrum Estima-
tion

The Barlett and Welch methods are non-parametric methods for power spectrum
estimations, i.e. they make no assumptions about the process that generated the
data. Both methods apply techniques to reduce the variance of the estimation,
at the cost of reducing the spectral resolution.

19



2 Theoretical Background

Barlett’s method is to average multiple periodograms by dividing the N -point
sequence into K non-overlapping segments of length M . The K periodograms
are calculated and averaged to obtain the Barlett power spectrum estimate:

PBxx(f) =
1

K

K−1∑
i=0

P (i)
xx (f) [2] (2.31)

This reduces the variance of the estimate with a factor K, and the frequency
resolution is reduced by the same factor [2].

The Welch method introduces two modifications to the Barlett method: The
K segments are allowed to overlap, and the data segments are windowed prior
to calculating the periodogram. If there is zero overlap, L = K segments are
obtained, if there is 50% overlap, L = 2K − 1 segments are obtained, and so on.
The windowed, or modified, periodogram can now be described as [2, 21]

P̃ (i)
xx (f) =

1

MU

∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e−j2πfn

∣∣∣∣∣
2

, i = 0, 1, . . . , L− 1 (2.32)

where w(n) is the window function and U is a normalization factor for the
power in this function such that

U =
1

M

M−1∑
n=0

w2(n) [21] (2.33)

When these modified periodograms are averaged, we get the Welch power
spectrum estimate

PWxx (f) =
1

L

L−1∑
i=0

(P̃ )(i)xx(f) [21] (2.34)

If a triangular window (Barlett window) is used, the variance is reduced by a
factor of L if there is zero overlap, and a factor of 8

9L if there is 50% overlap.
[2, 21].

Both the Barlett and Welch methods yields consistent estimates for the power
density spectrum, as the variance converges to zero when N →∞, and M and
K are allowed to grow with N [2].

2.5.4 Comparing Power Density Spectra

The mathematical operation of correlation is used to measure the similarity
of two signals. The operation is closely related to convolution, and can be

20



2.5 Digital Signal Processing Theory

expressed as

rxy(l) =

∞∑
n=−∞

x(n)y(n− l), l = 0,±1,±2, . . . [2] (2.35)

The result is a new signal, where l represents a time lag, and the value of
rxy(l) represents the similarity between the signals at the relative lag l. When
x(n) = y(n), rxy(l) is known as the auto-correlation sequence, with a maximum
value at l = 0, meaning that the signal matches best with itself at zero lag
[2]. When x(n) 6= y(n), rxy(l) is known as the cross-correlation sequence, and l
represents the time lag at which the signals match best.

As can be shown, correlation in the time-domain corresponds to a multiplication
in the frequency domain. If the Fourier-transform of the correlation sequence is
Sxy(f), and the Fourier-transforms of x(n) and y(n) are X(ω) and Y (ω), the
correlation can be expressed as [2]:

Sxy(ω) =

∞∑
l=−∞

rxy(l) =

∞∑
l=−∞

[ ∞∑
n=−∞

x(n)y(n− l)

]
e−jωl

= X(ω)Y (−ω)

= X(ω)Y ∗(ω), if y(n) is real (2.36)

Unfortunately, the Fourier-transforms of the signals that must be compared in
one of the speed measuring algorithms are not available. However, the estimated
Power Density Spectra are available, and a similar approach will be taken when
comparing these:

When multiplying the frequency components of the two power spectra, com-
ponents with high values in both spectra will yield a component with a high
value in the correlation spectrum. Similarly, components with low values in
one or both of the spectra will yield a relatively low valued component in the
correlation spectrum. Hence, the function

Pxy = Pxx · P ∗yy (2.37)

will give a representation of the "likeness" of the two power spectra Pxx and
Pyy.

21



2 Theoretical Background

22



3 Available Hardware

This section will describe the hardware equipment that were made available by
Q-Free ASA and used to implement the radar measuring system.

3.1 The MDU2410 Doppler Radar Module

The Doppler radar module provided for use in this project is the MDU2410
module from Microwave Solutions Ltd. This module is a K-band (24.100 GHz)
motion detector unit that uses the principle of the continuous-wave Doppler
radar as described in Section 2.3. The module outputs the Doppler frequency
shift fd as an analog signal that can be amplified and interpreted by signal
processing techniques. A detailed description can be found in the official data
sheet [20], and the most important characteristics are shown in Table 1:

Item Symbol Value

Output frequency f 24.100 GHz
Wavelength λ 0.0124 m
Antenna gain G 10 dBi
Power output Pt 7 dBm (5 mW)
Equivalent Isotropically Radiated Power EIRP 17 dBm (min.)
Receiver sensitivity Ps -76 dBm (25 pW)
Horizontal 3 dB beam width θ3dBh 72◦
Vertical 3 dB beam width θ3dBv 18◦

Table 1: MDU2410 Radar Specifications

Although the module is intended for indoor motion detection, the specifications
implies that it should also be suitable for a velocity-measurement system like
the one implemented in this project, where the distance from the radar to
the target (road) is smaller than the distance from the ceiling to the floor in
an average room. By using the above characteristics and Equation (2.7), the
maximum theoretical range of the radar module can be calculated as:

Rmax =

[
PtG

2λ2σ

(4π)3Ps

] 1
4

=

[
5× 10−3 · 102 · 0.01242

(4π)3 · 2.5× 10−11

] 1
4

= 6.27m (3.1)

where σ is set to 1, and Ps is the maximum sensitivity of the radar. This is, of
course, a theoretical maximum range, as the radar cross section σ will greatly
affect this range.

23



3 Available Hardware

3.1.1 The Intermediate-Frequency signal

As shown in Section 2.2.1, the Intermediate-Frequency (IF) signal will be
composed of a spectrum of all the received Doppler shift frequencies. This
section will briefly describe some of the properties of this signal.

Frequencies and Bandwidth
The lowest possible frequency that can be received will always be 0 Hz, corre-
sponding to no relative velocity, i.e. the vehicle is not moving. The highest
frequency of interest corresponds to the highest speed that the system should
be able to measure. From the specifications, this speed is set to 250 km/h,
or approximately 70 m/s. The tilt of the radar, θ, will affect the relevant
bandwidth, but for the purpose of this calculation it is set to 45◦ = π

4 rad.
Using the Doppler equation from (2.14), the frequency corresponding to 250
km/h can be calculated:

fpeak =
2v

λ
cos θ =

2 · 70

0.0124
· cos

π

4
≈ 8000 Hz (3.2)

When the radar is tilted 45◦ the peak of the Doppler spectrum should therefore
be at around 8 kHz. But when looking at the radar beam pattern in Section 2.4.3,
it is evident that the radar radiates in all directions. Thus, the maximum possible
received Doppler frequency at a relative velocity of 250 km/h will be at θ = 0◦:

fmax =
2v

λ
cos θ =

2 · 70

0.0124
· cos 0 ≈ 11300 Hz, (3.3)

corresponding to a speed of 358 km/h.

The relevant bandwidth of the signal, B, is therefore ∼ 11300 Hz, when the
radar tilt θ = 45◦. Section 6.6.1 will show that a sampling frequency of 22050
Hz was selected. Hence, the final bandwidth becomes 11025 Hz.

DC Component
A DC level of < ±150mV will be present in the IF signal when the radar is
operating [15]. This is a sum of all the reflected signals from the radar module
itself and static objects in its surroundings. The DC signal will also vary as a
function of the ambient temperature.

Noise
After the initial data recording tests were completed, a significant amount of
noise was found to be present, especially in the form of what appears to be pink
(or 1/F) noise at the lower frequencies. Figure 13 shows a plot of the frequency
components of the signal when the vehicle is stationary.

24



3.2 Signal Processing Hardware

Figure 13: Plot of the received power spectrum when the vehicle is stationary

Amplification
The IF signal is relatively weak, and to apply an amplification of 70dB is
described as typical by the radar module manufacturer for a 10 GHz module
[15].

3.2 Signal Processing Hardware

In addition to the radar sensor, a hardware platform based on the NXP LPC4357
chip was provided. This is a high-end microcontroller containing both an ARM
Cortex M4 processor and a Cortex M0 co-processor, as well as many peripheral
units for communication, including USB, networking, display driver, etc. The
Cortex M4 core contains functionality that is especially useful for digital signal
processing (DSP) applications, such as dedicated floating-point hardware and
special SIMD (Single Instruction Multiple Data) instructions [22].

3.2.1 Development Kit

To develop and test the speed measurement application, the MCB4357 evalu-
ation kit from ARM Keil containing the NXP LPC4357 chip was used. The
use of such a development kit greatly simplifies the development process, as
all the required hardware is placed on the same circuit board. Listed below
are some of the most important features of the development board. The full
specifications can be found at the Keil website [23].

• NXP LPC4357 Micro-controller, capable of running at frequencies up to
204 MHz and containing up to 136 kB SRAM (72 kB local)

• On-Board Memory: 16MB NOR Flash, 4MB Quad-SPI Flash, 16 MB
SDRAM, 16KB EEPROM

• Color QVGA TFT LCD with touch-screen

25



3 Available Hardware

• MicroSD Card Interface

• Audio CODEC with Line-In/Out and Microphone connector

• JTAG Debug Interface

The microSD card interface is essential for storing the captured data during
development and testing of the system, and the audio CODEC (Coder/Decoder)
incorporates all the necessary functions for sampling and filtering the analog
intermediate frequency signal from the radar. A photograph of the board can
be seen in Figure 14.

Figure 14: The Keil MCB4357 evaluation kit

3.2.2 Block Diagram of the Hardware Setup

This section will give an overview of the different hardware modules used to
capture, analyze and present the speed measurements. A block diagram of the
setup can be seen in Figure 15. All of these blocks are part of the MCB4357
development board described in the previous section.

A 3.5mm Jack Connector is used to connect the radar module to the
system. The connector is mounted on the board and is connected to the
microphone input of the UDA1380 CODEC chip.

The UDA1380 CODEC is used to sample and digitize the analog signal
from the radar. It converts the signal into 32 bit two’s compliment format, and
transmits this to the microcontroller over the I2S bus. The CODEC is further
described in Section 4.1.

26



3.2 Signal Processing Hardware

Figure 15: Block Diagram of the Hardware Setup

The LPC4357 microcontroller is used as a Digital Signal Processor and
is the core of the system. Here, the digital data is received, signal processing
algorithms are applied, and the results are presented using an LCD display. A
joystick and buttons are used to enable the user to interact with the system, and
external memory is available for storing temporary data. The microcontroller is
running a custom made application that will be described in detail in Section 6.

A microSD Card Slot enables the system to store the untreated sampled
data. This data can then be used for simulation and algorithm development pur-
poses on a computer, e.g. by using Matlab. In addition, the speed measurements
will be stored for future reference.

3.2.3 Power Supply

To minimize the noise generated from the power supply, three Lithium battery-
cells were used as the power supply for the complete system. These generated
a 10.8 V supply that were regulated to 5 volts using a standard 7805 voltage
regulator.

27



3 Available Hardware

28



4 Analog to Digital Conversion

As shown in Section 2.3, the radar sensor outputs an intermediate-frequency
signal with a frequency that corresponds to the Doppler frequency shift. In
reality, this signal will contain a spectrum of Doppler frequencies as described
in Section 3.1.1.

This section will describe how the IF signal was converted from analog to digital
format.

4.1 Using an Audio Codec to Sample the IF signal

The bandwidth of the IF signal received from the radar module is ∼ 11300 Hz
as shown in Section 3.1.1, which is well within the audible range of frequencies.
Knowing this, one can take advantage of the audio CODEC included on the
MCB4357 development board. This audio CODEC chip, the UDA1380 from
NXP Semiconductors, contains all the functionality that is needed to filter,
amplify and digitize the IF signal [24]. The most relevant specifications are as
follows:

• 24-bit data path for Analog-to-Digital Converter (ADC)

• Sample frequencies (fs) from 8 to 55 kHz

• Mono microphone input with a Low Noise Amplifier (LNA) incorporating
29 dB fixed gain and a Variable Gain Amplifier (VGA) from 0 to 30 dB
in steps of 2 dB.

• ADC Signal-to-Noise ratio at fs = 48 kHz: 92 dB (min.), 97 dB (typ.)

• ADC + LNA (Microphone input) Signal-to-Noise ratio at fs = 48 kHz:
85 dB (typ.)

• I2C control interface

• I2S data transfer interface

The CODEC also contains a Digital-to-Analog part, Line in/out and a head-
phone driver, but none of these are relevant for this application, and will be
disabled.

As the specifications show, the CODEC is well suited for sampling the IF
signal: The 24 bit A/D Converter ensures high dynamic resolution and low
quantification error, a sampling frequency of ∼ 22600 Hz is possible, and the
microphone input amplifier can provide a total gain of 59 dB. The CODEC can
be programmed by using the I2C bus interface. Here, the different components
can be enabled or disabled, gain settings can be adjusted, etc.

29



4 Analog to Digital Conversion

Figure 16: Simple block diagram of the UDA1380 CODEC’s ADC Features

Figure 16 gives an overview of the relevant features of the CODEC chip. The
signal first enters the Low Noise Amplifier (LNA). Here, the signal is amplified
with a fixed gain of 29 dB, in addition to the programmable gain from the
Variable Gain Amplifier (VGA) of up to 30 dB. After the LNA, the signal
is converted by the Single-Ended to Differential Converter (SDC) to form a
differential signal from v− to v+ instead of a signal from 0 V to vmax. This
signal is then fed to the A/D-converter which samples the signal at 128 · fs,
before the signal is sent through the decimation filter. This filter decimates the
signal in two stages: The first realizes a sin x

x characteristic with a decimation
factor of 16. The second stage consists of 3 half-band filters, each decimating by
a factor of two [24]. Table 2 shows the filter characteristics of the decimation
filter.

Item Condition Value (dB)

Pass-band ripple 0 to 0.45fs 0.01
Stop band >0.55fs - 70
Dynamic range 0 to 0.45fs > 135
Digital output level at 0 dB input analog - 1.5

Table 2: Decimation Filter characteristics

In addition to the decimation filter, a DC filter can be used to remove the DC
component of the signal. Finally, the signal is converted to the I2S format and
transmitted to the micro-controller (see the next section for details).

4.2 Digital Data Transfer over the I2S Bus

The I2S, or Inter-IC Sound, is a serial bus developed by Philips Semiconductors
for transferring digital audio data [25]. As shown in Figure 17 [25], the bus
consists of three lines: A serial clock (SCK), word select (WS), and serial data

30



4.2 Digital Data Transfer over the I2S Bus

(SD). The bus is organized in a master-slave configuration where the master
transmits both the SCK and the WS signals. When the master is transmitting,
all lines are driven by the master, and when the master is receiving, the SD
line is driven by the slave. The SCK and WS lines can also be shared by the
sender and transmitter.

Figure 17: Simple system configurations of the I2S bus

The serial data line transfers 32-bit words of data, where the MSB is
transferred first (See Figure 18 [25]). Because the MSB is transferred first, the
master and slave can operate with different word lengths: The least significant
bits is simply ignored when receiving or set to zero when transferring if the
word length is not 32 bits. The data is transferred in two’s compliment format.

Figure 18: I2S bus timing diagram

The word select line is used to indicate the channel that is being trans-
mitted: When the line is a logical 0, channel 1 (left) is transmitted, when the
line is logical 1, channel 2 (right) is transmitted. When the audio is on mono
format (only one channel), only the left channel is used. The WS line changes
one clock period before the MSB is transmitted on the SD line.

31



4 Analog to Digital Conversion

The serial clock needs to cycle once per transferred bit on the SD line, as
shown in Figure 18. If the sampling frequency is 22, 050 Hz, the word length
is 32 bits, and there are two channels, the frequency of the SCK line must be
fSCK = 22050 · 32 · 2 = 1.411 MHz.

4.3 IF Signal Filtering

As mentioned in Section 3.1.1, the IF signal contains a low level DC signal and
some noise at the lower frequencies. These frequencies must hence be filtered
out, as this noise would hinder the speed measurement algorithms, leading to
poor speed measurements.

The ARM CMSIS DPS library used for the software development contains func-
tions for filtering signals using a finite impulse response (FIR) filter. Exploiting
this, a FIR filter was designed using a trial-and-error approach in Matlab. A
high-pass filter cutoff frequency of 3 to 80 Hz is recommended by the radar
module manufacturer for a 10 GHz module [15], but different cut-off frequencies
and filter orders were tested to get the best possible filter.

After some testing, a filter with a cut-off frequency of 160 Hz and 100 coefficients
were selected. Figure 19 shows the spectrum of the radar module before and
after filtering, using an input signal where the vehicle is stationary, and Figure 20
show the frequency and phase response of the filter. As can be seen here, a
100th order FIR filter is just enough to lower the frequency components close
to 0 Hz to an acceptable level.

The 100 coefficients of the filter can be found in Appendix A.2.

32



4.3 IF Signal Filtering

Figure 19: Filtered and unfiltered IF signal. Speed = 0 km/h

Figure 20: FIR filter frequency and phase response

33



4 Analog to Digital Conversion

34



5 Speed Measurement Algorithms

After the IF signal has been amplified, digitized and filtered, an algorithm to
calculate the correct speed must be applied. The next sections will present differ-
ent speed measuring algorithms that can be used. Section 5.4 will present some
simulations done in Matlab to test these different algorithms, and Section 6.11
will describe how they were implemented on the LPC4357 microcontroller.

Intentionally, a complimentary set of algorithms, and a more accurate estimate
of the Doppler spectrum was to be provided through a second Master’s thesis
written by a fellow student. However, those results were not ready in due time,
and hence, only the algorithms described in this section were implemented
and tested, using the Doppler spectrum estimate from Section 2.4.4 in the last
algorithm.

5.1 Selecting the Strongest Frequency Component

The simplest way to try and estimate the vehicle speed is to simply pick the
strongest component from the FFT transform, or in this case, the periodogram.
This frequency should represent the correct speed, but earlier research have
shown that this is not accurate enough as the FFT spectrum exhibits high
variance [1]. An experiment with a 61 GHz radar was conducted, and the
results can be seen in Figure 21. From this figure, it can be seen that the speed
measured by the maximum of the spectrum (crosses in the figure) varies greatly
compared to the true speed (curve 1).

7000

6800
N

.g 6600

6400

6200
0 500 1000 1500 2000 2500 3000 3500 ,m00

time in ms -->

Figure 21: Estimated Doppler frequencies vs time. Speed is approximately 70 km/h
[1]

Algorithm 1 shows the steps of this very simple algorithm.

35



5 Speed Measurement Algorithms

Algorithm 1 Speed measurement by Strongest Periodogram Component
1: Estimate a single periodogram of the IF signal
2: Pick the Strongest Component
3: Calculate Speed from the Component’s frequency

When the strongest frequency have been found, Equation (2.14) is inverted and
used to calculate the corresponding speed:

fd =
2v

λ
cosα

v =
fdλ

2 cosα
(5.1)

The next section will describe an enhanced version of this algorithm, where
a better power spectrum estimate is calculated before selecting the strongest
frequency component.

5.2 Selecting the Strongest Component from a Welch Es-
timate

Instead of using a single periodogram and picking the strongest component,
better estimates of the Power Density Spectrum can be made using the Welch
method described in Section 2.5.3. As described, this method reduces the
variance of the spectrum estimate, and should therefore yield a better estimate
of the vehicle speed. The rest of the algorithm is similar to the first, in the way
that the strongest component of the Welch estimate is converted to the speed
by using Equation (5.1). This algorithm will also be referred to as the Direct
Welch method.

Algorithm 2 Speed measurement by Welch Power Spectrum Estimates
1: Perform a Welch Power Spectrum Estimate on the IF signal
2: Pick the Strongest Component
3: Calculate Speed from the Component’s frequency

As the IF signal is not a realization of a statistically stationary process, the
length N in the estimate cannot be chosen to be too long. This is because the
vehicle does not travel at a constant speed or over constant ground conditions.
Acceleration or deceleration can impact the speed with several m/s at every
second (a car accelerating from 0 to 100 km/h over 10 seconds has an average
acceleration of 2.8 m/s2), so the time needed to sample the IF signal must be
kept short to minimize distortion of the spectrum. Changing road conditions

36



5.2 Selecting the Strongest Component from a Welch Estimate

will also affect the spectrum, because of the different radar cross sections of the
different surfaces.

The maximum number of points in the FFT function provided by the ARM
CMSIS DSP library is 2048, so the lengthM is set to 2048 in all cases to get the
best possible frequency resolution. Overlaps of 0%, 50,% and 75% was tested,
as well as sequences of 2, 5 and 10 times the length of M . This results in a
maximum total sampling time of 2048 · 10/22050 Hz = 0.93 seconds. Table 3
lists the different cases that was used during Matlab simulations, that will be
shown in Section 5.4.

Case K Total Samples Overlap L Sampling Time

1 2 4096 0 % 2 0.19 s
2 2 4096 50 % 4 0.19 s
3 2 4096 75 % 8 0.19 s
4 5 10240 0 % 5 0.46 s
5 5 10240 50 % 10 0.46 s
6 5 10240 75 % 20 0.46 s
7 10 20480 0 % 10 0.93 s
8 10 20480 50 % 20 0.93 s
9 10 20480 75 % 40 0.93 s

Table 3: Welch Power Density Estimate Parameters. K: Number of segments
without overlap. L: Number of M -length segments with overlap.

Figure 22 shows plots of the different cases of the Welch estimate from Table 3
applied to an input signal where the speed of the vehicle is approximately 70
km/h. Here, one can clearly see how the fraction of overlap and total number
of samples affect the quality of the power spectrum estimate. As more samples
and higher percentage of overlap are used, the variance of the estimations seem
to decrease, as described in Section 2.5.3.

37



5 Speed Measurement Algorithms

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

(i) Case 9

Figure 22: Plots of the Welch Power Spectrum Estimation performed on an input
signal where the speed is approximately 70 km/h

38



5.3 Correlating with Pre-Estimated Power Spectra

5.3 Correlating with Pre-Estimated Power Spectra

The method suggested by [1] and briefly described in Section 1.4.3 uses correla-
tion with multiple pre-estimated power spectra to find the spectrum, and hence
the speed, with the best possible match. The estimate of the IF signal power
spectrum is done by the Welch method as described in Section 2.5.3, but the
speed is not simply calculated from the strongest component of the spectrum
as in the previous algorithm. Instead, the spectrum is compared (or correlated)
with estimated power spectra for different speeds.

The pre-estimated spectra are calculated using the estimation method from
Section 2.4.4. A Matlab script is used to produce these estimated spectra, and
save them to a file that can read by the measurement system using the microSD
card interface.

As described in Section 2.5.4, a time-domain correlation is equivalent to a
frequency-domain multiplication. Hence, a simple method to find the correlation
between the measured and estimated spectra can be described as:

P ixy(f) = Pxx(f) · P iyy(f)∗ (5.2)

where Pxx is the Welch estimate of the IF signal spectrum, Pyy is the pre-
estimated power spectrum, i is the index of the different pre-estimated spectra,
and ∗ denotes the complex conjugate. As both Pxx and Pyy are real-valued, the
complex conjugate of P ∗yy is the same as Pyy itself.

When P ixy has been found, the values are summed to form an estimate of the
total correlation, C(i), of the two spectra. High values indicates that the spectra
are closely correlated, and low values that they are less correlated.

C(i) =

M/2+1∑
f=0

P ixy(f) (5.3)

When this procedure is repeated for all the pre-estimated spectra, the index of
the maximum value in C(i) will correspond to the pre-estimated spectrum with
the best match (highest correlation). The result of this algorithm will therefore
be the speed used to estimate P iyy, as shown in Algorithm 3.

As described in Section 1.2.2, the system should be able to measure speeds up to
250 km/h with a resolution of at least 0.5 km/h. To satisfy these specifications,
the number of pre-estimated power spectra must be at least 250/0.5 = 500.

Figure 23 shows one simulation where an input signal is compared with 500
spectra, and the input spectrum Pxx, C(i) and the Pyy spectrum with the best
match are plotted. Here, it can be seen that C(i) produces a curve where the
maximum point stands out much more clearly than the maximum of Pxx itself,
confirming the findings presented by [1].

39



5 Speed Measurement Algorithms

Algorithm 3 Speed measurement by Power Spectrum Correlation
1: Pre-estimate power spectra for a given number of speeds
2: Perform a Welch Power Spectrum Estimate on the IF signal
3: for i = 0→ Number of pre-estimated spectra do
4: Pxy ← Pxx · P iyy
5: C(i)← sum(Pxy)
6: end for
7: index ← index of max(C(i))
8: Result ← Speed corresponding to P indexyy

Figure 23: Simulation of the spectrum correlation algorithm performed on an input
signal where the speed is approximately 70 km/h

40



5.4 Matlab simulations

5.4 Matlab simulations

This section will present Matlab simulations where Algorithms 2 and 3 are used
to find the speed of the vehicle. Algorithm 1 was not tested, as it has been
shown that this simple algorithm performs poorly [1]. The IF signal used as
inputs to the simulations are the signals recorded during the initial testing of
the system, which will be further described in Section 7.1. The Matlab scripts
used to perform the simulations can be found in Appendix B.

The simulations were done using several test scenarios that will be described in
Section 7.1. The simulations shown here use an input where the vehicle starts at
0 km/h, accelerates to 50 km/h before decelerating back to 0 km/h. The initial
tests were performed without a reference measurement: These simulations were
done to get an early indication of how the algorithm would perform when
implemented, not as a measure of accuracy. The final tests in Section 7.3 will
compare real measurements with reference measurements to check the accuracy
of the algorithms.

5.4.1 Speed measurement based on Algorithm 2

The different cases from Table 3 were used when simulating speed measurements
using the Welch method directly. Figure 24 shows the results for the different
cases. As can be seen here, the first three cases produce a lot of measurements,
as the number of samples needed are only 4096, but apparently with large
variance. The last three cases need 20480 samples, hence the measurements are
spaced further apart. But even in Case 9, the measurements seem to inhabit a
significant variance, especially around the top of the curve.

5.4.2 Speed measurement based on Algorithm 3

The measurement method based on spectral correlation was tested using the
same cases as Algorithm 2. As Figure 25 shows, the variance of the results are
clearly a lot smaller than when the previous algorithm was used. Even with
10240 samples used, the curve smooths out notably, and in Case 9, the results
seem to be close to what one would expect. Case 9 of the Welch algorithm was
thus selected as the one to be implemented in this project.

As can be seen, both algorithms struggle with measuring speeds under ap-
proximately 5 km/h, which is due to the filtering of the signal described in
Section 4.3. This will be further discussed in Section 10.1.

41



5 Speed Measurement Algorithms

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

(i) Case 9

Figure 24: Speed measurement using the Welch method directly

42



5.4 Matlab simulations

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

(i) Case 9

Figure 25: Speed measurement by correlating power spectra

43



5 Speed Measurement Algorithms

5.5 Refresh Rate vs. Resolution

Sampling an analog signal and using the Fourier transform to convert the
signal into the frequency domain always proposes the same dilemma: If a high
refresh rate is desired, the time used to sample the signal must be short. But
this results in fewer available samples, and this will result in lower spectral
resolution. On the other hand, if high spectral resolution is desired, a high
number of samples are required, which requires more time. Hence, the refresh
rate becomes low. When the Welch power spectrum estimation method is used,
even more samples are needed, further reducing the refresh rate. The following
sections will describe a method where the samples used for the calculations
allowed to overlap, using the basic FFT transform calculation as an example.
The same principle can be used for the complete speed measuring calculations
including the Welch estimate and spectral coherence estimations.

5.5.1 Non-overlapping Calculation

In this project, the sampling frequency used is 22,050 Hz, which is relatively low.
When using a 2048 point FFT, the time needed to sample these 2048 samples
will be 2048

22050Hz = 0.093 seconds. When this is done, the FFT is calculated,
before sampling 2048 new samples. Hence, the maximum possible refresh rate
should be around 10 Hz, and this does not include the time to actually calculate
the FFT and other necessary signal processing. Figure 26 shows the time line
for such a non-overlapping calculation of the frequency spectrum.

Figure 26: FFT Transform with non-overlapping samples

One might think that increasing the the sampling frequency will solve the
problem, but this is not true. If the sampling frequency is doubled, the time to
sample the 2048 samples will be twice as short, but these samples will now form
2048 points in a frequency domain which is twice as large. Hence, the spectral
resolution is actually halved. To obtain the same resolution, the number of
samples must be doubled to 4096, which will take just as much time to sample

44



5.5 Refresh Rate vs. Resolution

as 2048 samples with half the sampling frequency. Hence, the refresh rate will
be the same.

5.5.2 Overlapping Calculation

When the time used to calculate the FFT and do all the necessary signal
processing is much smaller than the time needed to sample the signal, the
refresh rate can be increased by using overlapping windows of samples [26].
Instead of waiting for 2048 new samples to be collected before performing a
new FFT, one can re-use some of the samples used in the last transform. This
results in a "pipelined" form of calculation, as shown in Figure 27, and will
allow the refresh rate to be increased dramatically, while retaining the same
spectral resolution.

Figure 27: FFT Transform with overlapping samples

After the first 2048 samples have been recorded, FFT transforms can be
performed using overlapping samples.

45



5 Speed Measurement Algorithms

46



6 Software Development

This section will describe the software application that was developed for
the speed measuring system. First, an overview of the different parts of the
application will be given, next, the different libraries and drivers used to build
the application will be described, and finally, a detailed description of each of
the parts in the application will be given.

The application was developed in the C programming language using the
ARM Keil tool chain, which includes a compiler, linker, assembler, and the
µVision 4 integrated development environment (IDE). To program and debug
the application, a J-Link JTAG adapter was used.

The relevant sections of application source code can be found in Appendix A.
In the following sections, direct references to the source code and will be kept to
a minimum. This is done to increase the readability of the thesis, and to focus
on how the application is implemented. Important functions will be described
in English rather than with source code examples. However, if the reader
wishes to reference the code while reading these sections, it is well documented
and it should therefore be easy to find and understand the correct functions /
modules in the appendix. The source code for the different libraries used in the
application is left out of the appendix, as this is not a product of this project.
These libraries are open-source and can be downloaded from the respective
developers’ web sites ([3, 23]).

6.1 Application Overview and Menu System

The application that was developed consists of three main parts (modes): A
spectrum analyzer developed to visually inspect the radar IF signal during
testing, a speed-measuring module for signal processing and presentation of
results, and a module for recording and storing the IF signal on a microSD
memory-card. The application lets the user choose between these different
modes via a menu system presented on the LCD display (see Figure 28). The
menu system is a simple text-based system, using the input from the on-board
joystick for navigation.

The application was implemented as a state machine, where the system is in
different states depending on which mode it is in. In the following sections,
details on the different states and modes will be given.

47



6 Software Development

Figure 28: Application Overview

6.2 LPCOpen and ARM Libraries

To support the implementation of the application, the LPCOpen library was
used. LPCOpen is an open-source platform built for the NXP LPC-series
microcontrollers. It contains chip drivers, development board support drivers,
example code etc [27]. The platform is constantly being developed and improved,
and is verified by NXP Semiconductors. Figure 29 shows how the library is
built up in different layers.

Figure 29: LPCOpen Library Structure

The ARM Cortex Microcontroller Software Interface Standard (CMSIS) is
a standardized hardware abstraction layer (HAL) that provides an interface
to the Cortex M processors and its peripheral units [3]. In addition to this

48



6.3 ARM CMSIS DSP Library functions

core functionality, it provides a digital signal processing (DSP) library with
over 60 fixed- and floating-point functions, e.g. functions for real and complex
FFT-transforms, statistics, filtering etc. It also specifies some standard intrinsic
functions to directly manipulate the processor registers, as well as standardized
initialization methods. It is up to the hardware vendors, such as NXP, to
implement the functions in the CMSIS interface.

The LPCOpen library is built on the CMSIS core interface, but it also contains
higher-level functions and drivers. An IP (intellectual property) layer imple-
ments processor and peripheral drivers that are chip-independent, a Chip driver
layer implements chip-specific functions and can use the IP drivers, and finally
a board support layer implements board-specific functions, such as drivers for
initializing and using displays, memory, I/O modules etc. In addition to these
drivers, the library contains a real-time operating system (FreeRTOS), network
and USB protocol stack, FAT file system, and the emWin and SWIM graphics
libraries. It also includes the CMSIS DSP library.

When the application was implemented, some of the examples from the LP-
COpen library were used as templates, but major rewriting and restructuring
was necessary. For efficiency, the CMSIS DSP functions were used when appli-
cable.

6.3 ARM CMSIS DSP Library functions

Below are brief descriptions of the most important DSP functions from the
ARM CMSIS DSP library that were used in the software part of this project.
For detailed description, refer to the CMSIS documentation ([3]).

arm_rfft_f32
Implements the Real Fast Fourier Transform for 32-bit floating-point data. Uses
the Radix-4 type FFT transform to calculate the results from a real-valued
input, as outlined in Section 2.5.1. The output is complex. Supported FFT
lengths are 128, 512 and 2048 samples.

arm_cmplx_mag_f32
Computes the magnitude of the elements of a complex data vector.

arm_fir_f32
Implements a Finite Impulse Response (FIR) filter for 32-bit floating-point
data. The FIR filter algorithm is based upon a sequence of multiply-accumulate
operations, as seen in Figure 30.

49



6 Software Development

Figure 30: FIR Filter Configuration [3]

arm_mult_f32
Element-by-element multiplication of two vectors.

arm_max_f32
Computes the maximum value of an array of data. The function returns both
the maximum value and its position within the array.

6.4 Initial Setup of the Development Board

Before the main application could be implemented, the MCB4357 development
board had to be set up and the main components such as external memory and
LCD display had to be initialized to ensure correct behavior. Fortunately, the
LPCOpen library includes startup- and initialization functions for this purpose
that only need to be included in and called from the main application. The
"board.h" file from the LPCOpen library is included, and a BoardInit()
function is used to set up the board. This function initializes all the necessary
on-board hardware, and leaves it ready to be used by the application.

6.5 LCD Display Driver (display_mcb4300.c)

To implement a driver for the LCD display, an example from the LPCOpen
library was used as a base. This included, among others, simple functions for
writing characters to the display, but it was very limited and needed added
functionality.

The driver uses the board- and chip-level functions from the LPCOpen library
to interface with the LCD display. A frame buffer located in the external

50



6.6 UDA1380 CODEC driver (uda1380_mcb4300.c)

SRAM memory contains information about all the pixels on the display, and the
microcontroller’s LCD controller peripheral is set up to automatically update
the display with the contents of this buffer. Hence, the display driver only
needs to update the frame buffer to display information on the screen.

The following list describes the most important functions of this driver:

• display_init: Calls the board- and chip-specific initialization func-
tions, sets up the frame buffer, turns on LCD backlight and sets the font
type and colors to use on the display.

• display_print_string: Prints a string of characters at the desired
row and column. If the newline character ’\n’ or the end of a row is
encountered, the string is continued on the next line. If the form feed
character ’\f’ is encountered, the screen is cleared.

• display_draw_line: Draws a horizontal or vertical line of any length
from any point on the display. Used to draw simple screen layouts and for
printing the power spectrum from the spectrum analyzer (see Section 6.9).

In addition, the standard output used by printf is redirected to the display
for debugging purposes.

6.6 UDA1380 CODEC driver (uda1380_mcb4300.c)

As shown in Section 4.1, the UDA1380 audio CODEC chip is well suited for
sampling and digitizing the IF signal from the radar. Hence, it was necessary
to develop a driver that could handle all the communication with the CODEC.
The I2C bus is used for interfacing with the CODEC’s control registers and
this connection has to be set up as a part of the initialization routine for the
CODEC. After this connection is set up, the CODEC is programmed with the
desired parameters. Table 4 shows the different settings used in the actual
application. To minimize noise, all features that are not necessary are disabled
if possible.

6.6.1 Sampling Frequency and Other I2S Parameters

Section 3.1.1 shows that the sampling frequency should be ∼ 22,600 Hz. This
frequency is very close to the standard sampling frequency of 22,050 Hz (half of
44,100 Hz which is used in Audio CD’s, MP3 files, etc.). Hence, this frequency
is chosen as the sampling frequency. This ensures flexibility of the system: If
the CODEC is replaced, it will almost certainly be able to use this frequency.
It is also very unlikely that speeds as high as 250 km/h will ever occur, so the
loss of the top 450 Hz will not be a problem.

51



6 Software Development

Feature Setting

ADC Left channel enabled
DAC Disabled
LNA (Microphone input) Enabled, with 30 dB VGA Gain
PGA (Line input) Disabled
DC Filter Enabled
All Volume Controls Set to 0 dB
Headphone Driver Disabled

Table 4: UDA1380 CODEC settings

The I2S peripheral unit can handle 8, 16, or 32 bit data. As the AD converter
in the CODEC is 24 bit, 32 bit is selected as the I2S data word length, and as
only the left channel is used, the peripheral is set to work in mono mode (only
the left channel data is placed in the receive buffer).

6.6.2 Modes of Operation

After the CODEC has been programmed, the microcontroller’s I2S peripheral is
set up to be able to receive the data from the CODEC. An interrupt routine is
used to receive the data: When the buffer for incoming data is half full (4 32-bit
words), the interrupt routine is invoked and the data is stored. Depending on
the mode of operation, two different methods for storing the data are used:

• UDA1380REC: When in record mode, the driver is set up to store the data
in a single sequential memory chunk. The external memory is used for
this purpose, and it will allow the driver to record data until the system
is out of memory. This mode is used when storing data on the microSD
card (see Section 6.10).

• UDA1380STREAM: When in streaming mode, the data is stored in a ring-
buffer. This ensures that the system will never run out of memory, but
the oldest data will always be replaced by the newest, meaning that data
will be lost if it is not copied to another location before it is overwritten.
This mode is used by the spectrum analyzer and the speed-measuring
algorithms, where snapshots of the ring-buffer are used in the calculations
(see Sections 6.9 and 6.11).

52



6.7 SD/MMC driver (sdmmc_mcb4300.c)

6.6.3 Important Functions

These are the most important functions of the CODEC driver:

• uda1380_init: Sets up the I2C and I2S connections. Programs the
CODEC with the correct settings.

• uda1380_start_rec: Starts to record a specified number of samples
to a specified memory location.

• uda1380_stop_rec: Stops the recording.

• uda1380_start_stream: Starts to stream from the CODEC to the
ring-buffer.

• uda1380_stop_stream: Stops the streaming.

6.7 SD/MMC driver (sdmmc_mcb4300.c)

The SD/MMC (Secure Digital / Multimedia Card) interface included on the
NXP LPC4357 chip supports reading from and writing to memory cards. The
MCB4300 board contains a microSD card slot, which is used to store recorded
data.

6.7.1 File System

To utilize a memory card, a file system is necessary. The LPCOpen library
contains an example where the FAT file system is used. This file system is one
of the most widely used file systems, and can be read from and written to by
almost any computer regardless of the operating system. The file system is
included with the LCPOpen library and was set up following an example, but
some functions had to be custom built to fit this application.

6.7.2 Wave File Format

To be able to load the recorded IF signal into Matlab for simulation purposes,
or even listen to the signal with an audio player, a file format had to be chosen.
As the data that is received from the CODEC is on 32 bit two’s complement
format, this can be directly used as Pulse-code modulated (PCM) audio data.
The PCM format is a standard audio format used in computers, CD’s, etc. To
store PCM data, a Waveform Audio File (.WAV) can be used. Wave files follow
the Resource Interchange File Format (RIFF) container specification, which
specifies a file header with different blocks (chunks) containing information

53



6 Software Development

about the file. An audio player or another program can read this header to
interpret the data format, sampling frequency, etc.

For the 32-bit PCM data in this application, the RIFF header is shown in
Table 5. The header is written before the data in the file, with the strings
"RIFF", "WAVE", "fmt " and "data" written as ASCII characters, and other
values written as 16 or 32 bit numbers.

Header field Value

RIFF Chunk "RIFF"
Chunk size Header size + Data size (bytes)
WAVE ID "WAVE"
FORMAT Chunk "fmt "
Chunk Size 16
WAVE Format 1 (PCM)
Channels 1 (mono)
Samples per Second 22050
Bytes per Second 22050 * 4
Bytes per Sample 4
Bits per Sample 32

DATA Chunk "data"
Chunk Size Data Size (bytes)
Data PCM Data

Table 5: Wave File Header for 32-bit mono PCM data

6.7.3 Important functions

The following are the most important functions from the SD/MMC driver:

• sdmmc_init: Initializes the SD/MMC interface, sets up and mounts the
file system. It also starts the Real-Time Counter (RTC) which is used for
time stamping by the FAT file system.

• sdmmc_save_wav: Saves a number of bytes of 32-bit PCM data to a
Waveform Audio File (.wav). Sets up and writes the RIFF header before
writing the data.

• sdmmc_load_float: Loads a file containing 32-bit floating-point values
to a specified location in memory.

• sdmmc_save_speed: Saves speed measurement values to file, including
a header with measurement type and time-stamp at the beginning of the
file.

54



6.8 DSP Functions (dsp_funcs.c)

6.8 DSP Functions (dsp_funcs.c)

Both the spectrum analyzer and the speed-measurement functionality need
to perform some sort of digital signal signal processing on the radar signal,
as they both depend on knowing the frequency components of the signal. As
described in Section 6.3, the ARM CMSIS interface contains a number of
DSP functions. However, additional processing is needed, and hence some
custom DSP functions were developed and collected in the file dsp_funcs.c.
This section will describe the purpose of these functions and how they were
implemented.

dsp_periodogram
This function calculates the power density spectrum (periodogram) of the IF
signal received from the radar module, as described in Section 2.5.2, and returns
a pointer to the buffer with the output values. It uses the CODEC driver to
sample the signal, and the ARM CMSIS DSP library functions to do the main
signal processing calculations. As described in Section 5.5, doing calculations
using overlapping sample segments ensures a high refresh rate while keeping a
high resolution, and this principle can be exploited by this function as it uses
snapshots of the samples in the ring-buffer to do the calculations. The overlap
is determined by how often the function is called.

The function assumes that the CODEC has been started in the streaming mode
(see Section 6.6) before it is called. This means that the ring-buffer will contain
a set of the newest samples of the signal. Before the calculations are started, a
snapshot of the ring-buffer is taken by copying the contents to another memory
location. During this process, interrupts are disabled to ensure that the buffer
is not overwritten while it is being copied.

After the samples have been copied from the ring-buffer, the function imple-
ments Equation (2.28) to calculate the power density spectrum using, the
arm_rfft_f32 function with 2048 points to calculate the FFT and the
arm_cmplx_mag_f32 function to calculate the magnitude of the complex
result of the FFT.

As the spectrum is symmetric around 0 and mirrored around Fs/2, all compo-
nents except 0 and Fs/2 are doubled, and only the one-sided spectra from 0 to
Fs/2 is returned, resulting in 1025 frequency components.

dsp_welch
The function for calculating the Welch power spectrum estimate is similar to
the dsp_periodogram function in the way that it needs the CODEC to run
in streaming mode and how it copies samples from the ring-buffer. The total

55



6 Software Development

length N of the Welch estimate determines how many sampled that are copied
from the buffer.

When the samples have been copied from the buffer, the signal is filtered by the
arm_fir_f32 using the filter described in Section 4.3. For each overlapping
segment, M = 2048 samples are windowed by multiplying with the Hamming
window.

The Hamming window function can be described as

w(n) = 0.54− 0.46 cos
2πn

M − 1
[2] (6.1)

thus, the scaling factor U calculated from Equation (2.33) becomes

U =
1

2048

2047∑
n=0

w2(n) = 0.3972 (6.2)

After the segments have been windowed, the periodogram is calculated by using
the arm_rfft_f32 and arm_cmplx_mag_f32 functions. The scaling factors
1/MU and 1/L from Equations (2.32) and (2.34) are applied, and the modified
periodograms are summed as shown in Equation (2.34).

Finally, a pointer to the buffer with the result are returned. Similarly to the
dsp_periodogram function, the components between 0 and Fs/2 are doubled,
and only the one-sided spectra from 0 to Fs/2 is returned.

6.9 A Simple Spectrum Analyzer (spectrum.c)

The spectrum analyzer utilizes the display and CODEC drivers, as well as
the dsp_periodogram function from dsp_funcs.c. It is started by calling
an initialization function which sets up the display and starts the CODEC
in streaming mode. Once initialized, the spectrum function can be called
whenever the spectrum should be updated on the display. By varying the
period of which this function is called, the update frequency on the display
varies accordingly. An update frequency of at least 20 Hz is recommended if a
"real-time" appearance is desired. Figure 31 shows a photo of how the spectrum
analyzer appears on the screen of the MCB4300 development board.

6.9.1 Drawing the Spectrum

After the power spectrum has been calculated by the dsp_periodogram
function, the spectrum is displayed on the screen. As the screen is only 320
pixels wide, every single one of the 1025 spectrum components cannot be

56



6.9 A Simple Spectrum Analyzer (spectrum.c)

Figure 31: Photo of spectrum analyzer display

displayed at once. To solve this, adjacent components are averaged and merged
into one frequency bin so that the spectrum to be displayed can fit on the
display. When this is done, each bin is drawn as a vertical line on the display
using the display_draw_line function from the display driver. A simple
state diagram for the spectrum analyzer is shown in Figure 32.

Figure 32: Spectrum Analyzer State Diagram

57



6 Software Development

The spectrum is displayed with a dB scale on the vertical axis, with 0 dB as
the maximum value and -80 dB as the minimum value. The 0 dB reference can
be manually adjusted, as will be described in the next paragraph.

6.9.2 Adjusting the Sensitivity

To adjust the sensitivity, or more specifically the 0 dB reference used in the
spectrum analyzer, a potentiometer on the MCB4300 board can be used. This
is connected to one of the analog inputs of the microcontroller, and the value
from the AD converter is used to set the sensitivity. This way, when signal is
weak, the spectrum analyzer can be "zoomed" in to better display the various
frequencies.

6.9.3 Important functions

The following are the most important (and the only public) functions from the
spectrum.c file:

• spectrum_init: Sets up the display for the spectrum analyzer. Starts
the UDA1380 CODEC in streaming mode. Starts the AD converter that
is used for setting the 0 dB reference.

• spectrum: Calls the dsp_periodogram function to calculate the power
spectrum. Displays the spectrum on the display by utilizing internal
functions to merge frequency bins and calculate the dB value before using
display driver functions to draw the spectrum.

• spectrum_uninit: Stops the UDA1380 CODEC and the AD converter.

6.10 Recording and Storing the raw IF Signal

One of the functions available from the application’s main menu is to record
and store a portion of the received IF signal. By storing the data on a microSD
card, it is possible to use the raw unprocessed samples in simulations and tests
on a computer.

When the "Record and Store" function is selected, the UDA1380 driver is used
to start the CODEC in record mode. The recording can be stopped by pushing
a button on the development board. If the recording is not stopped manually,
the application will record until the memory destination is full. Figure 33 shows
a state diagram of how the recording process behaves.

When the recording is finished, the user is prompted to enter a name for the
file. The name can contain any characters from ’a’ to ’z’ and numbers from 0

58



6.11 Implementation of Speed Measurement Algorithms (speed.c)

Figure 33: "Record and Store" State Diagram

to 9. As the development board does not include a keyboard, the characters
can be entered by scrolling through them with the on-board joystick. When
the desired character is found, the joystick is moved to the next position, or
pushed to save the file with the entered name.

To save the file, the sdmmc_save_wav function from the SD/MMC driver is
used. The function takes the name of the file and the location of the data as
parameters, and saves the file to the memory card.

6.11 Implementation of Speed Measurement Algorithms
(speed.c)

The actual speed calculation was implemented as a single function, using
a switch case to select the appropriate calculations based on the type of
algorithm that is selected. The two different settings are SPEED_WELCH and
SPEED_CORRELATION, corresponding to Algorithms (2) and (3). The type is
set during the initialization phase of the speed measurement module. The next
paragraphs will describe the different functions in this module in greater detail.

59



6 Software Development

speed_init
When the initializing function is called, it sets up the display to present the speed
measurements. It then starts the CODEC in streaming mode, and based on
the type of algorithm selected, it initializes the necessary variables and buffers.
When SPEED_CORRELATION is selected, the pre-estimated Pyy spectra are
loaded from the microSD card to the memory using the sdmmc_load_float
function. If the file is not found, an error message is displayed, and the
measurement is aborted.

In addition to this, the function also takes a time-stamp from the real-time
clock to mark the start of the measurements, and sets up the file name to use
when storing the data (see Section 6.12). Figure 34 shows a block diagram that
outlines the behavior of the initialization function.

Figure 34: Speed Module Initialization Block Diagram

speed_deinit
The de-initializing function stops the CODEC, takes a time-stamp to mark
the end of the measurement and saves the logged speed values to a file on the
memory card using the sdmmc_save_speed function (see Section 6.12).

60



6.11 Implementation of Speed Measurement Algorithms (speed.c)

speed
This is the main function of the speed measurement module. It implements
Algorithms 2 and 3 described in Section 5. The dsp_welch function is used
to perform the Welch power spectrum estimate, with N = 20480,M = 2048
and a 75 % overlap. The ARM CMSIS DSP functions arm_mult_f32 and
arm_max_f32 are used to do the correlation and find the maxima of Pxx or
C(i), respectively. Figure 35 shows a block diagram of the behavior of the
speed function.

Figure 35: Speed Measurement Block Diagram

As described earlier, the DSP functions used here are able to perform calculations
using overlapping samples. Hence, the speed function can be called as often
as needed/possible, to allow for as many measurements per second as possible.

After a speed has been calculated, it is presented on the screen as seen in
Figure 36.

61



6 Software Development

Figure 36: Photo of speed measurement display

6.12 Logging and Storing the Speed Measurements

When a speed measurement has been performed, the result has to be stored.
This was solved in the following manner:

1. When the measurement is started, a time-stamp from the real-time clock
is saved to mark the starting time of the measurement.

2. During the measurement sequence, each result is saved to a buffer in the
external memory

3. When the measurement is stopped, a second time-stamp is saved to mark
the end of the measurement.

4. Finally, the results are composed into a single file and saved to the microSD
memory card.

As the interval between single measurements is constant, the start and end
time-stamps can be used to find the point in time for each single measurement,
by dividing the total time with the total number of measurements to get the
time-distance between them.

6.12.1 File Format

The file format used to store the recorded speed measurements is presented in
Table 6. The first 16 bytes are the header of the file and contains the type of
measurement (SPEED_WELCH or SPEED_CORRELATION) as well as the start
and end times. The file extension is ".DOP".

62



6.13 Memory Management

Byte Number Content Format

1 Measurement Type 8-bit Unsigned Integer
2 Start Time Hour 8-bit Unsigned Integer
3 Start Time Minute 8-bit Unsigned Integer
4 Start Time Second 8-bit Unsigned Integer
5, 6 Start Time Year 16-bit Unsigned Integer
7 Start Time Month 8-bit Unsigned Integer
8 Start Time Day 8-bit Unsigned Integer
9 End Time Hour 8-bit Unsigned Integer
10 End Time Minute 8-bit Unsigned Integer
11 End Time Second 8-bit Unsigned Integer
12, 13 End Time Year 16-bit Unsigned Integer
14 End Time Month 8-bit Unsigned Integer
15 End Time Day 8-bit Unsigned Integer
16 → EOF Speed Measurements 32-bit Floating Point

Table 6: File format for logged speed measurements

A Matlab script was developed to read and plot the speed measurements on a
computer. This script can be found in Appendix B.

6.13 Memory Management

In any computer program, memory management is critical, and this application
is not an exception. When using external memory in addition to the on-chip
memory, the memory address space has to be managed manually. Hence, a
memory map was developed to ensure that there were no overlapping memory
segments or illegal addresses used.

As mentioned in Section 3.2.1, the microcontroller itself only contains 72 kB of
local SRAM memory, with up to 136 kB of total on-chip memory. As seen from
Table 7, the frame-buffer alone exceeds this limit, and when adding the other
large buffers, it is clear that extra external memory was necessary. The table
also shows the most memory-using buffers, and the total memory requirement
for these buffers. Clearly, a lot of other variables and small buffers increases
the system-wide memory requirement.

The MCB4357 development board contains 16 MB of external SDRAM. Table 7
also shows the memory map that was used in the application. The NXP
LPC4357 data sheet [22] was used to find the correct address range to use. In
short, the external memory address space starts at 0x2800 0000 and ends at
0x28FF FFFF.

63



6 Software Development

Address Size Comment

0x28000000 Start of external memory
0x28000000 153600 B Frame-buffer for display
0x28027800 8192*2 B Buffer for FFT output (Complex)
0x2802B800 8192 B Magnitude buffer
0x2802D800 8192 B Window function buffer
0x2802F800 40960 B Welch input signal
0x28057800 40960 B Filtered input signal
0x2807F800 40960 + 8 B Ring buffer
0x280A7808 4100 B PXX buffer
0x280A880C 4100 B PXY buffer
0x280A9814 2 050 000 B PYY buffer (1025 · 500 · 4)

522 456 B Subtotal

0x28300000 12 MB Space left for recording
0x28FFFFFF End of external memory

Table 7: Memory Map

The last 12 MB of the buffer is reserved for the CODEC’s recording buffer.
This enables the application to record sequences of raw data samples up to
almost 2.4 minutes:

12MB
(22050 · 4)B/s

= 142s (6.3)

64



7 Testing the System

To test the system, the equipment (development board, power supply and radar)
was set up and mounted on a test vehicle. Different positions for the radar was
tested, as shown in Figure 37.

Figure 37: Possible radar sensor positions on vehicle

The vehicle was provided by Q-Free ASA, and contained equipment for accurate
reference measurements using a GPS system. Figure 38 shows some pictures of
the radar setup on the actual test vehicle.

(a) Close-up photo of the radar sensor
mounted on the rear bumper

(b) Photo of the different parts of the
system at the test vehicle

Figure 38: Photographs of the radar test setup

The testing of the system was done in two stages: The first stage was to record
raw data used in the Matlab simulations to test the different speed measuring
algorithms as described in Section 5.4. The second stage was to do real speed
measurements using the developed algorithms. The next sections will describe
these two stages in more detail.

A 45◦ radar tilt, θ, was used in all the tests. This angle was selected based
on the findings in [8], which suggests angles within 30 to 45 degrees, and the

65



7 Testing the System

back-scattering coefficients of asphalt shown in Figure 6.

7.1 Initial Tests (Data Recording)

The first tests were done after the development of the recording functionality
of the system (described in Section 6.10) had finished. The system was set
up as described in the previous section, and a number of tests were executed.
The same test cases were used for both the high positions (A and B), and the
low position (C). Table 8 shows the different test scenarios. All scenarios were
tested for all the mounting positions. The tests were performed on dry asphalt
roads.

Test nr Scenario

1 20 km/h constant speed.
2 40 km/h constant speed
3 60 km/h constant speed
4 70 km/h constant speed
5 Acceleration/deceleration to and from 50 km/h

Table 8: Initial test scenarios

No speed measuring algorithms were used for these tests, as the goal was
to record raw signal data for use in Matlab simulations. The IF signal was
simply sampled and stored directly to .wav format files on the microSD card,
as described in Section 6.10.

7.2 Initial Test Results

After the initial tests had been completed, the results were imported into
Matlab to be used in speed-algorithm simulations. It became evident from
power spectrum estimations that the high positions (A and B) does not provide
a sufficiently strong signal to be used for speed measurements. Figure 39 shows
a comparisons of the spectra from the high and low positions, where the vehicle
is moving at approximately 40 km/h. Hence, only the low position, C, was used
during the final tests that will be described in the next section.

7.3 Final Test of Speed Measuring Algorithms

The final tests of the speed-measuring system was done with the same radar
setup as the initial tests, but only position C was used. Both the direct Welch

66



7.3 Final Test of Speed Measuring Algorithms

Figure 39: Doppler spectra for high (upper) and low mounting positions. Speed =
40 km/h.

method (Algorithm 2) and the spectral correlation method (Algorithm 3) were
tested.

The system was tested on a route in and around the city of Trondheim, Norway,
with speeds varying from 0 to approximately 80 km/h. The road conditions
were mostly dry, but some moisture resided from a rainfall earlier in the day.
All the roads were covered with asphalt. A GPS reference system was used to
measure the true speed of the vehicle during the whole duration of the test.
Unfortunately, Q-Free ASA was not able to provide data on the accuracy of
this system, but it will be assumed that it is at least as accurate as the GPS
system described in Section 1.3.2.

The tests were done in the time period between 03-Jun-2013 12:33:14 (UTC)
and 03-Jun-2013 14:47:14 (UTC). Four different test runs were completed, the
first two using Algorithm 3, and the latter two using Algorithm 2, to measure
the speed of the vehicle. The different test runs are shown in Table 9. Figure 40
show the complete test route. The results of the final tests will be presented
in Section 9.

67



7 Testing the System

Run nr Alg. Duration Scenario

1 3 949 s

Route from Ranheim to Trondheim city center,
using urban roads with many intersections
and relatively low speeds.

2 3 1479 s

Route from Trondheim city center to Nardo,
including periods with traffic jams and
highways with relatively high speeds.

3 2 658 s

Route within Trondheim city center, using
urban roads with many intersections and
relatively low speeds.

4 2 1008 s

Route from Nardo to Ranheim, including
periods with traffic jams and highways with
relatively high speeds.

Table 9: Test run description for speed measurement tests

Figure 40: Map of the route driven during speed measurement tests

68



8 Statistical Analysis and Error Correction

This section will describe the method that was used to align the measurement
values with the reference data, as well as the statistical properties used to
describe the accuracy of the results.

8.1 Aligning Measurements with Reference values

To be able to compare the measured speeds with the reference speed from the
reference GPS system, the samples need to be aligned. The reference system
uses a 1 Hz sampling rate, so the speed measurement samples need to be
down-sampled to the same frequency.

This down-sampling was done in Matlab using interpolation and decimation.
First the sampling rate of the measurements was calculated by measuring
the period between the samples. For the samples taken using the correlation
algorithm, this frequency was 2.922 Hz. The measurements were down-sampled
using the following method:

1. Interpolate (up-sample) by a factor of 1000

2. Decimate (down-sample) by a factor of 2922

This method gives a total down-sampling factor of 2.292, ensuring that the
samples will match the 1 Hz sampling frequency of the reference measurements.
The same method were used to down-sample the measurements where the other
algorithm was used.

8.2 Analyzing The Results

After the samples from the reference system and the radar measurements had
been aligned, they could be compared to analyze the error of the measurements.

To describe the accuracy of the results, the following quantities are used: Mean
error in km/h (Êkm/h), standard deviation in km/h (σkm/h), mean error in
percentage (Ê%) and standard deviation in percentage points (σ%). The mean
errors represents the expected error of the measurement, and the standard
deviation reflects the accuracy of the measurements. The errors are assumed to
be normally distributed, and hence, 68.3 % of the errors falls within ±1σ from
the mean value, 95.4 % falls withing ±2σ, and 99.7 % falls within ±3σ.

69



8 Statistical Analysis and Error Correction

8.3 Error Correction

As the results in Section 9.2 will show, there is a negative mean error both in
km/h and %. This error is likely to stem from the fact that the radar tilt angle,
θ, was not accurately adjusted when the radar was mounted on the vehicle.
This will yield a measurement error proportional to the error in the tilt angle,
as can be seen from Equation (5.1), meaning that the speed algorithms will
match the measured Doppler spectra to the wrong speed.

To correct for this, the radar measurements were multiplied with a scaling
factor to compensate for the angle error. After several trial-and-error attempts,
it was found that a scaling factor of 1.18 was optimal for the results from the
test runs. However, as will be shown, the error is not completely linear, as the
mean error increases when measurements of lower speeds are left out of the
analysis.

The results obtained after this error correction are presented in Section 9.3 and
further discussed in Section 10.4.

70



9 Results

This section will present the results of the main system test. The results that
are shown in the first sections are excerpts of the complete range measurement.
This is done to present some different cases such as high speeds, low speeds,
start/stop conditions and to get a better visual impression of the results when
reading the plots.

Section 9.4 presents the statistical results for the complete measurements. All
results shown will be discussed further in Section 10.

Table 10 describes the six different excerpts used throughout this section.

Nr. Test period Description

1 3920 - 3980 s 0 - 45 km/h, Low speed variation. Using Alg. 3
2 4110 - 4270 s 0 - 55 km/h, High speed variation. Using Alg. 3
3 5605 - 5680 s 0 - 40 km/h, Using Alg. 3
4 6400 - 6500 s 60 - 95 km/h, High speed. Using Alg. 3
5 4950 - 5010 s 0 - 45 km/h, Using Alg. 2
6 7000 - 7100 s 50 - 80 km/h, High Speed. Using Alg. 2

Table 10: Test result excerpts

9.1 Unaligned Measurements vs GPS reference

The following figures and tables present plots the results at their original sample
rate vs the results from the reference system.

Figures 41 through 44 show plots for excerpts 1 to 4, using Algorithm 3.
Figures 45 and 46 show plots for excerpts 5 and 6, using Algorithm 2.

71



9 Results

Figure 41: Measurement using Alg. 3 vs GPS Reference. Excerpt 1.

Figure 42: Measurement using Alg. 3 vs GPS Reference. Excerpt 2.

Figure 43: Measurement using Alg. 3 vs GPS Reference. Excerpt 3.

72



9.1 Unaligned Measurements vs GPS reference

4

Figure 44: Measurement using Alg. 3 vs GPS Reference. Excerpt 4.

Figure 45: Measurement using Alg. 2 vs GPS Reference. Excerpt 5.

Figure 46: Measurement using Alg. 2 vs GPS Reference. Excerpt 6.

73



9 Results

9.2 Aligned Measurements vs GPS reference

The following figures present plots of the down-sampled results vs the results
from the reference system. In addition to plots of the speed measurements,
histograms of the error in km/h and percentage are also shown. Only measure-
ment values between 5 and 70 km/h are taken into account when the errors are
calculated. Table 11 shows the statistical properties of the same excerpts.

Figures 47 through 50 show plots where the correlation algorithm was used.
Figures 51 through 52 show plots where the direct Welch method was used to
calculate the speed.

Figure 47: Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 1.

74



9.2 Aligned Measurements vs GPS reference

Figure 48: Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 2.

Figure 49: Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 3.

75



9 Results

Figure 50: Aligned Measurement using Alg. 3 vs GPS Reference. Excerpt 4.

Figure 51: Aligned Measurement using Alg. 2 vs GPS Reference. Excerpt 5.

76



9.2 Aligned Measurements vs GPS reference

Figure 52: Aligned Measurement using Alg. 2 vs GPS Reference. Excerpt 6.

Excerpt Nr. Êkm/h σkm/h Ê% σ%

1 -5.17 2.04 -15.72 3.10
2 -3.98 2.60 -13.71 4.98
3 -3.02 1.89 -13.73 4.65
4 -24.52 21.90 -31.06 24.98
5 -9.15 7.70 -29.25 17.60
6 -31.92 21.24 -46.96 28.25

Table 11: Measurement Errors, Uncorrected Measurements Excerpts

77



9 Results

9.3 Error Corrected Measurements vs GPS reference

The following figures present plots of the down-sampled and error corrected
results vs the results from the reference system. An error correction factor of
1.18 was used. In addition to plots of the speed measurements, histograms of
the error in km/h and percentage are also shown. Only measurement values
between 5 and 70 km/h are taken into account when the errors are calculated.
Table 12 shows the statistical properties of the same excerpts.

Figures 53 through 56 show plots where the correlation algorithm was used.
Figures 57 through 58 show plots where the direct Welch method was used to
calculate the speed.

Figure 53: Error Corrected Measurement using Alg. 3 vs GPS Reference. Excerpt 1.

78



9.3 Error Corrected Measurements vs GPS reference

Figure 54: Error Corrected Measurement using Alg. 3 vs GPS Reference. Excerpt 2.

Figure 55: Error Corrected Measurement using Alg. 3 vs GPS Reference. Excerpt 3.

79



9 Results

Figure 56: Error Corrected Measurement using Alg. 3 vs GPS Reference. Excerpt 4.

Figure 57: Error Corrected Measurement using Alg. 2 vs GPS Reference. Excerpt 5.

80



9.3 Error Corrected Measurements vs GPS reference

Figure 58: Error Corrected Measurement using Alg. 2 vs GPS Reference. Excerpt 6.

Excerpt Nr. Êkm/h σkm/h Ê% σ%

1 -0.41 0.77 -0.55 3.66
2 0.03 1.06 1.82 5.88
3 0.15 0.77 1.80 5.48
4 -15.34 24.97 -18.65 29.47
5 -5.57 8.05 -16.52 20.77
6 -25.90 24.16 -37.41 33.33

Table 12: Measurement Errors, Error Corrected Measurements Excerpts

81



9 Results

9.4 Complete Measurement sequences vs GPS reference

The following figures present plots of the down-sampled results vs the results
from the reference system for the complete four test runs described in Table 9.
Both uncorrected and corrected measurements are shown, as well as histograms
of the error in km/h and percentage. An error correction factor of 1.18 was
used. Only measurement values between 5 and 70 km/h are taken into account
when the errors are calculated. Table 13 shows the statistical properties of the
same test runs.

Figures 59 and 60 show results from a 949 s continuous test run using Algorithm 3
to measure the speed, without and with error correction, respectively.

Figures 61 and 62 show results from a 1479 s continuous test run using Algo-
rithm 3 to measure the speed, without and with error correction, respectively.

Figures 63 and 64 show results from a 658 s continuous test run using Algorithm 2
to measure the speed, without and with error correction, respectively.

Figures 65 and 66 show results from a 1008 s continuous test run using Algo-
rithm 2 to measure the speed, without and with error correction, respectively.

Figure 67 shows a special case from test run 1 where only measurements between
20 and 70 km/h are taken into account when calculating the error, and an error
correction factor of 1.20 was used. This case will be discussed in Section 10.4.3.

Figure 59: Aligned Measurement using Alg. 3 vs GPS Reference. Test run 1

82



9.4 Complete Measurement sequences vs GPS reference

Figure 60: Error Corrected Measurement using Alg. 3 vs GPS Reference. Test run 1

Figure 61: Aligned Measurement using Alg. 3 vs GPS Reference. Test run 2

83



9 Results

Figure 62: Error Corrected Measurement using Alg. 3 vs GPS Reference. Test run 2

Figure 63: Aligned Measurement using Alg. 2 vs GPS Reference. Test run 3

84



9.4 Complete Measurement sequences vs GPS reference

Figure 64: Error Corrected Measurement using Alg. 2 vs GPS Reference. Test run 3

Figure 65: Aligned Measurement using Alg. 2 vs GPS Reference. Test run 4

85



9 Results

Figure 66: Error Corrected Measurement using Alg. 2 vs GPS Reference. Test run 4

Figure 67: Error Corrected Measurement using Alg. 3 vs GPS Reference. Test run
1. Error correction factor = 1.20. Only measurements in the range of 20 to 70 km/h
are taken into account.

86



9.5 Measurement Rates

Run Nr. Corr. Êkm/h σkm/h Ê% σ%

1 1 -4.35 2.51 -14.93 4.79
1 1.18 -0.21 1.02 0.38 5.65
1 (20-70 km/h) 1.20 -0.09 0.87 -0.18 2.44
2 1 -3.83 3.05 -13.73 5.80
2 1.18 0.03 1.79 1.80 6.85
3 1 -8.94 7.66 -31.41 19.91
3 1.18 -5.70 8.13 -19.07 23.49
4 1 -13.14 12.34 -33.82 22.89
4 1.18 -9.15 12.88 -21.91 27.01

Table 13: Measurement Errors, Uncorrected and Corrected Full Test Runs.

9.5 Measurement Rates

The number of measurements per second outputted by the two algorithms were
calculated by measuring the time between the measurement samples, and were
as follows:

• Measurement rate for Algorithm 2: 5.211 Hz

• Measurement rate for Algorithm 3: 2.922 Hz

9.6 Measurement Resolutions

Algorithm 2
The resolution of this Algorithm 2 with respect to speed estimates are equivalent
to the number of points in the Welch estimates. 2048/2 + 1 = 1025 points in
the one-sided spectra yields a resolution of 348km/h/1025 = 0.34km/h, when
the sampling frequency is 22050 Hz and the radar tilt angle is 45◦.

Algorithm 3 The resolution of Algorithm 3 is identical to the maximum
measurable speed divided by number of Pyy estimates: 250km/h/500 = 0.5
km/h.

87



9 Results

88



10 Discussion

This section will discuss the results that was presented in Section 9.

10.1 Measurable Range of Speeds

As can be clearly seen in Figure 44, the correlation algorithms struggles to
measure speeds above approximately 70 km/h. The reason for this was not
fully investigated in this thesis, but it can be assumed that the widening and
flattering effect on the Doppler spectra when the speed is increased makes it hard
to distinguish the Doppler spectra from the background noise. This, combined
with the simple estimate described in Section 2.4 used when comparing the
received spectrum, seams to yield poor measurement results when the speeds
extend over 70 km/h.

As can also be seen in Figures 41 through 43, the coherence algorithm measure-
ments seem to be unreliable for speed measurements under 5 km/h. This is due
to the considerable amount of low frequency noise in the Doppler spectrum, and
the subsequent filtering described in Section 4.3. Even though a FIR filter with
100 coefficients were used, the frequency response curve is not steep enough at
the cut-off frequency to only reduce the noise at the lowest frequencies. Hence,
the measurements at low speeds are effected, reducing the reliability.

However, in the range between 5 and 70 km/h, the measurements are reliable,
and hence only the measurements that fall within this range were used when
the error and accuracy of the measurements were analyzed.

10.2 Alignment of the Measurement Samples with Refer-
ence Samples

The figures in Section 9.2 show how the samples from the measurements
were aligned with the samples from the GPS system. This shows that the
interpolation/decimation method described in Section 8.1 worked as intended.

10.3 Statistics and Accuracy Before Error Correction

This part of the discussion is divided into four parts: The first discusses the
results for measurement excerpts 1 to 3, as they have in common that no speeds
over 70 km/h are encountered and that Algorithm 3 is used. The second part
discusses Excerpt 4 which measures high speeds. Then Excerpts 4 and 5 are
discussed, as they both use Algorithm 2. Finally, the results from the complete
test runs are discussed.

89



10 Discussion

10.3.1 Excerpts 1 to 3

When looking at the statistics presented in the figures and table in Section 9.2
for excerpts 1 to 3, the measurements have a mean percentage error in the
range of -3.02 to -5.17 km/h. This implied that there was a constant error in
the measurements, as is clearly shown in the figures. The standard deviations
are relatively low, implying that the measurements are fairly accurate.

10.3.2 Excerpt 4

As described in Section 10.1, speeds over 70 km/h are not measured correctly.
This is confirmed by the statistical data, which show a mean error of -24.52
km/h and a standard deviation of as much as 21.9 km/h. Hence, these results
can not be seen as reliable.

10.3.3 Excerpts 4 and 6

The measurements using the strongest component of the Welch estimate to
calculate the speed, exhibits a large mean errors, as well as large standard
deviations, both in percentage and in km/h. As can be seen from Figure 51,
the measurements are very unreliable even at fairly low speeds.

10.3.4 The Complete Test Runs

The uncorrected measurements presented in Section 9.4 show that the first two
runs exhibit a relatively small standard deviation in km/h, but relatively large
mean errors, confirming that a constant error is present.

10.4 Statistics and Accuracy After Error Correction

As described in Section 8.3, an error correction factor of 1.18 was used to
compensate for the constant measurement error. When comparing the uncor-
rected results with the corrected results presented in Section 9.3, a significant
improvement of the results can be observed.

10.4.1 Excerpts

The standard deviation drops down to 0.77 km/h for both excerpts 1 and 3, and
the mean error for excerpt 2 is only 0.03 km/h. This confirms that a scaling

90



10.5 Measurement Rates and Resolution

factor can greatly improve the results, and that an inaccurate radar tilt angle
can be compensated for by scaling the results.

The results from excerpts 4 confirms the unreliability when measuring speeds
above 70 km/h and the poor measurements generated by Algorithm 2.

10.4.2 The Complete Test Runs

When looking at the results from the complete test runs presented in Table 13,
a similar improvement can be observed. Run 1 has mean errors of only -0.21
km/h and 0.38 %, and a standard deviation of 1.02 km/h.

Run 2 has an even lower mean error of just 0.03 km/h. A slightly higher mean
error in percentage results from the measurements in the last section where the
speeds approaches 70 km/h, as can be seen in Figure 61.

When keeping in mind that the resolution used in the correlation algorithm is
0.5 km/h, these results seem very reliable.

The results from run 3 and 4 again confirms that Algorithm 2 is not reliable,
even at low speeds. Hence, Algorithm 3 should be used as the preferred method
for measuring the speeds.

10.4.3 Unlinearity of Mean Error

To show that the error in the results are not completely linear, a special case
was added where only measurements within the range of 20 - 70 km/h were
taken into account. The results from this case are shown in Figure 67 and in
line three of Table 13.

Here, it can be seen that using an error correction factor of 1.20 further improves
the accuracy of the results. The mean errors are now -0.09 km/h and -0.18 %,
with low standard deviations of 0.87 and 2.44 in km/h and %, respectively.

More accurate estimations of the theoretical power spectra used in the correlation
algorithm should remove some of this unlinearity.

10.5 Measurement Rates and Resolution

The measurement rates of 5.211 and 2.922 Hz are both within the specifications
set in Section 1.2.2. The rates can be further improved by reducing the number
of samples used in the Welch estimate, and by comparing the measured power
spectra to a smaller amount of theoretical spectra, i.e. comparing to spectra

91



10 Discussion

close to the previous estimated speed, or reducing the maximum measurable
speed.

The resolution of the measurements were 0.34 km/h for Algorithm 2 and
0.5 km/h for Algorithm 3, as shown in Section 9.6. These fall within the
set specifications, but can also be improved. Choosing a lower sample rate
will increase the resolution of the Welch estimate, but lower the maximal
measurable speed. Increasing the number of theoretical spectra used in the
correlation algorithm will also improve the resolution, but will require more
computational power, i.e. more time, reducing the measurement rate unless
further improvements of the algorithm are implemented.

10.6 Comparing the Results with Previous Solutions

The speed measurements are much more accurate than the output from a
speedometer, as can be seen by comparing the corrected results with Equation 1.1
which states that the error of a speedometer is less than 10 % of the true speed
+ 4 km/h.

Compared to a GPS system, the accuracy is as described in the results, as a
GPS system was used as the reference.

The earlier Doppler radar that were presented in Section 1.4 reports an accu-
rateness in the range of 0.5 to 2.0 %. The first approach reports 0.5 to 2.0 %
accuracy, but the vehicle in question runs at a constant speed, and the system
outputs values at 10 second intervals, making it hard to compare to the system
described in this thesis.

The last approach uses two radar sensors to effectively eliminate the impact
of the pitch angle of the vehicle, thereby improving the results and obtaining
a standard deviation in percentage points of 0.6 %. However, this system is
more sophisticated, and a direct comparison is therefore unfair to the system
implemented in this thesis. But with more work invested in solving the problems
with the limited measurable range, and in improving the theoretical estimates
of the doppler spectra, the performance of the implemented system should
improve significantly.

92



11 Concluding Remarks

A system for measuring the speed of vehicles using Doppler radar was developed
and implemented. The system can make use of two different algorithms to
measure the speed: Selecting the strongest frequency component of a Welch
power density spectrum estimate, or correlating the Welch estimate with pre-
estimated theoretical Doppler spectra for different speeds to find the best
possible match, and hence the speed of the vehicle.

The system was tested using a test vehicle and a GPS reference system. The
results show that a mean error as low as 0.03 km/h and -0.18 % was observed,
with standard deviations of 0.87 km/h and 2.44 %, during test runs of 949 and
1479 seconds. These results were obtained using the correlation algorithm for
speed measurement (Algorithm 3), which was proven to be the most reliable of
the algorithms that were tested. It was also found that an error in the radar
tilt angle can be compensated for using an error correction factor.

Measurement rates of 2.911 Hz were obtained using the correlation algorithm,
and 5.211 Hz using the direct Welch method, both well within the set specifica-
tions for the system.

11.1 Future Work

Future work have to be invested to improve the measurable range of speeds,
and some recommendations to areas that should be explored are mentioned in
the following paragraphs.

Improving the Measurable Range
Research should be done on the possibility of using an analog filter to amplify
and filter the IF signal before it is fed to the AD converted in the CODEC.
This to remove as much noise as possible before the signal is digitized, and
hence make it easier to measure higher speeds where the Doppler spectrum
components are weaker and low speeds where large amounts of noise distorts
the signal.

Improving the Accuracy
The most obvious way to improve the accuracy is to improve the theoretical
Doppler spectrum estimates, Pyy, used by the correlation algorithm. This is
the area that mostly affects the outcome of the measurements.

Averaging subsequent measurements could also be a way to improve the accuracy,
as well as discarding measurements that are illogical, e.g. extreme speed changes
that are impossible for a car.

93



References

References

[1] W. Kleinhempel, W. Stammler, and D. Bergmann. Radar signal processing
for vehicle speed measurements. In EUSIPCO’92. Proceedings of, pages
1533–1536, 1992.

[2] John G. Proakis and Dimitris G. Manolakis. Digital signal processing.
Pearson Prentice Hall, Upper Saddle River, N.J., 4th edition, 2007.

[3] ARM Ltd. CMSIS - Cortex Microcontroller Software Interface Stan-
dard. http://www.arm.com/products/processors/cortex-m/
cortex-microcontroller-software-interface-standard.
php. Accessed: 08 June 2013.

[4] William Harris. How Speedometers Work. http:
//auto.howstuffworks.com/car-driving-safety/
safety-regulatory-devices/speedometer.htm. Accessed:
08 June 2013.

[5] European Council. Directive 75/443/EEC of 26 June 1975 on the ap-
proximation of the laws of the Member States relating to the reverse and
speedometer equipment of motor vehicles. OJ L 196, pp. 1-5, 26 June 1975.

[6] The Navigation Center of Excellence. NAVSTAR GPS User Equipment
Introduction. United States Government, 1996.

[7] Tom Chalko. Estimating Accuracy of GPS Doppler Speed Measurement
using Speed Dilution of Precision (SDOP) parameter, 2009.

[8] S. S. Stuchly, A. Thansandote, J. Mladek, and J. S. Townsend. A Doppler
radar velocity meter for agricultural tractors. Vehicular Technology, IEEE
Transactions on, 27(1):24–30, 1978.

[9] Masao Kodera, Seishin Mikami, Kunihiko Sasaki, and Jyunshi Utsu.
Doppler radar speed detecting method and apparatus therefor, 1991.

[10] W. Kleinhempel, D. Bergmann, and W. Stammler. Speed measure of vehi-
cles with on-board Doppler radar. In Radar 92. International Conference,
pages 284–287, 1992.

[11] W. Kleinhempel. Automobile Doppler speedometer. In Vehicle Navigation
and Information Systems Conference, 1993., Proceedings of the IEEE-IEE,
pages 509–512, 1993.

[12] Patrick D. L. Beasley. Doppler radar speed sensor, 1993.

[13] Merrill I. Skolnik. Introduction to Radar Systems. McGraw-Hill, Inc., 1981.

94

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/speedometer.htm
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/speedometer.htm
http://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/speedometer.htm


References

[14] Christian Hülsmeier. Hertzian-wave Projecting and Receiving Apparatus
Adapted to Indicate or Give Warning of the Presence of a Metallic Body,
Such as a Ship or a Train, in the Line of Projection of Such Waves, 1904.

[15] Microwave Solutions Ltd. Application Note: Using Microwave Solutions
Ltd Motion Detector Snits, 2012.

[16] F. B. Berger. The Nature of Doppler Velocity Measurement. Aeronautical
and Navigational Electronics, IRE Transactions on, ANE-4(3):103–112,
1957.

[17] F. Placentino, F. Alimenti, A. Battistini, W. Bernardini, P. Mezzanotte,
V. Palazzari, S. Leone, A. Scarponi, N. Porzi, M. Comez, and L. Roselli.
Measurements of length and velocity of vehicles with a low cost sensor
radar Doppler operating at 24GHz. In Advances in Sensors and Interface,
2007. IWASI 2007. 2nd International Workshop on, pages 1–5, 2007.

[18] Ville Viikari, Timo Varpula, and Mikko Kantanen. Automotive Radar
Technology for Detecting Road Conditions. Backscattering Properties
of Dry, Wet, and Icy Asphalt. In EuRAD, 2008 5th European Radar
Conference, pages 276–279, 2008.

[19] Adrian K. Fung. Microwave Scattering and Emission Models and Their
Applications. Boston: Artech House, 1994.

[20] Microwave Solutions Ltd. Datasheet: K-Band Doppler Motion Detector
Units, Model Numbers MDU2400/2410, 2013.

[21] Peter D. Welch. The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms. Audio and Electroacoustics, IEEE Transactions on, 15(2):70–
73, 1967.

[22] NXP Semiconductors. LPC43xx ARM Cortex-M4/M0 dual-core microcon-
troller User Manual, 2012.

[23] KEIL Tools by ARM Ltd. MCB4300 Evaluation Board. http://www.
keil.com/mcb4300/. Accessed: 08 June 2013.

[24] NXP Semiconductors. Datasheet: UDA1380 Stereo audio coder-decoder
for MD, CD and MP3, 2010.

[25] Philips Semiconductors. Datasheet: I2S bus specificaion, 1996.

[26] Tektronix Inc. Primer: Understanding FFT Overlap Processing Funda-
mentals, 2009.

[27] LPCOpen Platform for NCP LPC Microcontrollers, Online Documentation.
http://docs.lpcware.com/lpcopen/v1.03/. Accessed: 08 June
2013.

95

http://www.keil.com/mcb4300/
http://www.keil.com/mcb4300/
http://docs.lpcware.com/lpcopen/v1.03/


References

96



A Source Code

A.1 Main Application

1 #include "app.h"
2 #include "app_config.h"
3 #include "board.h"
4 #include "chip.h"
5 #include "spectrum.h"
6 #include "speed.h"
7 #include "memory_map.h"
8 #include "dsp_funcs.h"
9 #include "uda1380_mcb4300.h"

10 #include "display_mcb4300.h"
11 #include "sdmmc_mcb4300.h"
12 #include "rtc.h"
13 #include <stdlib.h>
14
15 // Text color for menu
16 #define MENU_TEXT_COLOR Cyan
17 #define MENU_BACK_COLOR Black
18 #define SAVE_TEXT_COLOR Yellow
19
20 // Menu line numbers for different items
21 // Main menu
22 #define SPECTRUM 2
23 #define SPEED 1
24 #define RECORD 3
25
26 // Speed menu
27 #define PERIOD 1
28 #define WELCH 2
29 #define COHERE 3
30
31 // Total items in menu
32 #define MAIN_MENU_ITEMS 3
33 #define SPEED_MENU_ITEMS 3
34
35 // sprintf buffer size
36 #define BUF_SIZE 200
37
38 // Strings to print.
39 static const char arrow_s[] = "->";
40 static const char arrow_clr_s[] = " ";
41 static const char angle_s[] = "\fPlease enter radar tilt angle (in degrees),\n"
42 "where the horizontal axis is 0 degrees:";
43 static const char recording_s[] = "\fRecording...\nPress to stop.\n\n";
44 static const char save_file_s[] = "\fSave file to *.WAV:\n"
45 "- Max name length: 8 characters\n"
46 "- Joystick up/down to select characters\n"
47 "- Joystick right to enter next character\n"
48 "- Press to save\n\n\n\n";
49 static const char done_s[] = "Done.\nPress to return.\n";
50 static const char save_s[] = "\fSaving file, please wait..";
51 static const char rtc_init_s[] = "\fInitializing RTC (might take few seconds)...";
52
53 // File ending to use when saving files
54 static const char file_ext[] = "WAV";
55
56 // Main Menu
57 static const char main_menu_s[] = "SELECT OPERATION\n"
58 " Speed Measurement\n"
59 " Spectrum Analyzer\n"
60 " Record Raw Data Sequence";
61 // Speed Menu
62 static const char speed_menu_s[] = "SELECT ALGORITHM TYPE\n"
63 " Single Periodogram\n"
64 " Welch Estimation\n"
65 " Spectral Coherence";
66
67 // List of menus

97



A Source Code

68 static const char* menus[2] = {main_menu_s, speed_menu_s};
69
70
71 /*-----------------------------------------------------------------------------
72 App function
73 *----------------------------------------------------------------------------*/
74 void app_system(void){
75 // Shared variables from uda1380_mcb4300.c
76 extern volatile int play_done;
77 extern volatile int rec_done;
78
79 // Angle variable
80 static float32_t angle;
81
82 // Local variables
83 static int init = 0;
84 static int i;
85 static int a = 45;
86 static char buf[BUF_SIZE];
87 static char fname[16];
88 static char c;
89 static int menu_nr = 0;
90 static int item_nr = 1;
91 static int nr_of_items = 0;
92 static RTC rtctime;
93 static int count = 0;
94 static uint8_t blank = 0;
95 static uint8_t joy = NO_BUTTON_PRESSED;
96 static uint8_t joyMask = NO_BUTTON_PRESSED;
97
98 // The different menus
99 static enum{main_menu, speed_menu} Menu = main_menu;

100
101 // Application states
102 static enum{set_angle, show_clock, set_clock, print_menu, menu_active,
103 speed_active, spectrum_active, rec_active, play_active,
104 save_file, load_file, wait_for_back} State = set_angle;
105
106 // Application state machine;
107 switch (State) {
108 case set_angle:
109 // Initial state to set the tilt angle of the radar. Prompts the
110 // user to enter the correct angle in degrees
111 if(!init){
112 init = 1;
113 display_set_font_size(SMALL_FONT);
114 display_set_text_color(MENU_TEXT_COLOR);
115 display_set_back_color(MENU_BACK_COLOR);
116 display_clear(MENU_BACK_COLOR);
117 display_print_string(0,0,angle_s);
118 sprintf(buf,"%02d\n",a);
119 display_print_string(4,1,buf);
120 }
121 // Read joystick input
122 joyMask = Joystick_GetStatus();
123 if(joyMask != joy){
124 joy = joyMask;
125 if(joy & JOY_RIGHT){
126 // Decrease value
127 if (a == 90) a = 0;
128 else a--;
129 sprintf(buf,"%02d\n",a);
130 display_print_string(4,1,buf);
131 }
132 else if(joy & JOY_LEFT){
133 // Increase value
134 if (a == 0) a = 90;
135 else a++;
136 sprintf(buf,"%02d\n",a);
137 display_print_string(4,1,buf);
138 }
139 else if(joy & JOY_PRESS){
140 // Save value
141 angle = ((float)a*PI)/180.0f;

98



A.1 Main Application

142 count = 0;
143 display_clear(MENU_BACK_COLOR);
144 State = show_clock;
145 }
146 }// end if (joyMask != joy)
147 break; // End case set_angle
148
149 case show_clock:
150 // Checks the rurrent RTC time, and prompts the user to
151 // verify or change the time and date.
152 if(count == 0){
153 rtc_gettime(&rtctime);
154 sprintf(buf,"Current time: %02d:%02d:%02d\n"
155 "Current date: %04d/%02d/%02d\n\n"
156 "Press to verify, Up to change.",
157 rtctime.hour,rtctime.min,rtctime.sec,
158 rtctime.year,rtctime.month,rtctime.mday);
159 display_print_string(0,0,buf);
160 }
161 count++;
162 if(count == 10) count = 0;
163
164 joyMask = Joystick_GetStatus();
165 if(joyMask != joy){
166 joy = joyMask;
167 if(joy & JOY_LEFT){
168 // Time is not correct...
169 // Initialize RTC
170 display_print_string(0,0,rtc_init_s);
171 Chip_RTC_Init();
172
173 // Set default time and date to make it easier to set a new one
174 if (rtctime.year < 2013){
175 rtctime.sec = 0;
176 rtctime.min = 0;
177 rtctime.hour = 0;
178 rtctime.wday = 3;
179 rtctime.mday = 30;
180 rtctime.month = 5;
181 rtctime.year = 2013;
182 }
183 snprintf(buf,BUF_SIZE,"\fPlease set correct time:\n\n"
184 "New time: %02d:%02d:%02d\n"
185 "New date: %04d/%02d/%02d\n\n"
186 "- Up/down to change value.\n"
187 "- Left/right to choose item.\n"
188 "- Press to verify and set time.\n",
189 rtctime.hour,rtctime.min,rtctime.sec,
190 rtctime.year,rtctime.month,rtctime.mday);
191 display_print_string(0,0,buf);
192 count = 0;
193 State = set_clock;
194 }
195 else if(joy & JOY_PRESS){
196 // Time is correct
197 // Initialize SDMMC Peripheral
198 sdmmc_init();
199 count = 0;
200 State = print_menu;
201 }
202 }// end if (joyMask != joy)
203 break; // end case show_clock
204
205 case set_clock:
206 // The user is promted to enter the correct time and date
207 // for the system.
208 joyMask = Joystick_GetStatus();
209 if(joyMask != joy){
210 joy = joyMask;
211 if(joy & JOY_UP){
212 // Next element
213 if(i < 5) i++;
214 }
215 else if(joy & JOY_DOWN){

99



A Source Code

216 // Previous element
217 if(i > 0) i--;
218 }
219 else if(joy & JOY_RIGHT){
220 // Decrement value
221 switch(i){
222 case 0:
223 rtctime.hour--;
224 if(rtctime.hour > 23) rtctime.hour = 23;
225 break;
226 case 1:
227 rtctime.min--;
228 if(rtctime.min > 59) rtctime.min = 59;
229 break;
230 case 2:
231 rtctime.sec--;
232 if(rtctime.sec > 59) rtctime.sec = 59;
233 break;
234 case 3:
235 rtctime.year--;
236 if(rtctime.year < 1) rtctime.year = 4095;
237 break;
238 case 4:
239 rtctime.month--;
240 if(rtctime.month < 1) rtctime.month = 12;
241 break;
242 case 5:
243 rtctime.mday--;
244 if(rtctime.mday < 1) rtctime.mday = 31;
245 break;
246 }
247 }
248 else if(joy & JOY_LEFT){
249 // Increment Value
250 switch(i){
251 case 0:
252 rtctime.hour++;
253 if(rtctime.hour > 23) rtctime.hour = 0;
254 break;
255 case 1:
256 rtctime.min++;
257 if(rtctime.min > 59) rtctime.min = 0;
258 break;
259 case 2:
260 rtctime.sec++;
261 if(rtctime.sec > 59) rtctime.sec = 0;
262 break;
263 case 3:
264 rtctime.year++;
265 if(rtctime.year > 4096) rtctime.year = 1;
266 break;
267 case 4:
268 rtctime.month++;
269 if(rtctime.month > 12) rtctime.month = 1;
270 break;
271 case 5:
272 rtctime.mday++;
273 if(rtctime.mday > 31) rtctime.mday = 1;
274 break;
275 }
276 }
277 else if(joy & JOY_PRESS){
278 // Set new time and enable RTC counter
279 rtc_settime(&rtctime);
280 Chip_RTC_Enable(ENABLE);
281 // Initialize SDMMC Peripheral
282 sdmmc_init();
283 State = print_menu;
284 }
285 }// end if (joyMask != joy)
286
287 count ++;
288 if (count == 5){ // @ 0.5 seconds
289 count = 0;

100



A.1 Main Application

290 if(blank){
291 // Clear the active time/date value to make it "blink"
292 switch(i){
293 case 0:
294 display_print_string(2,10,arrow_clr_s);
295 break;
296 case 1:
297 display_print_string(2,13,arrow_clr_s);
298 break;
299 case 2:
300 display_print_string(2,16,arrow_clr_s);
301 break;
302 case 3:
303 display_print_string(3,10,arrow_clr_s);
304 display_print_string(3,12,arrow_clr_s);
305 break;
306 case 4:
307 display_print_string(3,15,arrow_clr_s);
308 break;
309 case 5:
310 display_print_string(3,18,arrow_clr_s);
311 break;
312 }
313 }
314 else{
315 // Update the display with the new time
316 sprintf(buf,"New time: %02d:%02d:%02d\n"
317 "New date: %04d/%02d/%02d\n",
318 rtctime.hour,rtctime.min,rtctime.sec,
319 rtctime.year,rtctime.month,rtctime.mday);
320 display_print_string(2,0,buf);
321 }
322 blank = !blank;
323 }// end if(count == 5)
324 break; // end case set_clock
325
326 case print_menu:
327 // Clear the screen and print the menu selected by the Menu variable.
328 switch (Menu) {
329 case main_menu:
330 menu_nr = 0;
331 nr_of_items = MAIN_MENU_ITEMS;
332 break;
333 case speed_menu:
334 menu_nr = 1;
335 nr_of_items = SPEED_MENU_ITEMS;
336 break;
337 }// end switch(menu)
338 display_set_font_size(SMALL_FONT);
339 display_set_text_color(MENU_TEXT_COLOR);
340 display_set_back_color(MENU_BACK_COLOR);
341 display_clear(MENU_BACK_COLOR);
342 display_print_string(0,0,menus[menu_nr]);
343 display_print_string(item_nr,0,arrow_s);
344 State = menu_active;
345 break;//end case print_menu
346
347 case menu_active:
348 // Print "->" at selected menu item. Go to correct state when an item is

selected
349 joyMask = Joystick_GetStatus();
350 if(joyMask != joy){
351 joy = joyMask;
352 if(joy & JOY_LEFT){
353 // Go to previous item
354 display_print_string(item_nr,0,arrow_clr_s);
355 if(item_nr == 1)
356 item_nr = nr_of_items;
357 else
358 item_nr--;
359 display_print_string(item_nr,0,arrow_s);
360 }
361 else if(joy & JOY_RIGHT){
362 // Go to next item

101



A Source Code

363 display_print_string(item_nr,0,arrow_clr_s);
364 if(item_nr == nr_of_items)
365 item_nr = 1;
366 else
367 item_nr++;
368 display_print_string(item_nr,0,arrow_s);
369 }
370 else if(joy & JOY_PRESS){
371 switch(Menu){
372 // Enter correct state according to the active menu
373 case main_menu:
374 switch(item_nr){
375 case RECORD:
376 // Start recording and go to rec_active state
377 display_print_string(0,0,recording_s);
378 uda1380_start_rec((REC_END_ADDR-REC_START_ADDR)/4,
379 (int32_t * )REC_START_ADDR);
380 State = rec_active;
381 break;
382
383 case SPECTRUM:
384 // Initialize the spectrum analysator.
385 spectrum_init(SAMPLE_RATE, FFT_POINTS/2+1);
386 State = spectrum_active;
387 break;
388
389 case SPEED:
390 // Set the Speed menu as active menu
391 Menu = speed_menu;
392 item_nr = 1;
393 State = print_menu;
394 break;
395 }// end switch(item_nr)
396 break; // end case main_menu
397
398 case speed_menu:
399 switch(item_nr){
400 case PERIOD:
401 speed_init(angle,SPEED_PERIODOGRAM);
402 State = speed_active;
403 break;
404
405 case WELCH:
406 speed_init(angle,SPEED_WELCH);
407 State = speed_active;
408 break;
409
410 case COHERE:
411 speed_init(angle,SPEED_COHERENCE);
412 State = speed_active;
413 break;
414 }// end switch(item_nr)
415 break; // end case speed_menu
416 }// end switch(Menu)
417 }// end if (joy & JOY_PRESS)
418 }// end if (joyMask != joy)
419 break;// end case menu_active
420
421 case speed_active:
422 // Wait for the user to press the joystick, ending
423 // the speed measurement
424 joyMask = Joystick_GetStatus();
425 if(joyMask != joy){
426 joy = joyMask;
427 if(joy & JOY_PRESS){
428 display_set_font_size(SMALL_FONT);
429 display_print_string(0,0,save_s);
430 // Deinitialize speed module
431 speed_deinit();
432 display_print_string(2,0,done_s);
433 Menu = main_menu;
434 item_nr = SPEED;
435 State = wait_for_back;
436 }

102



A.1 Main Application

437 }
438 break; // end case speed_active
439
440 case spectrum_active:
441 // Wait for user to press joystick, deinitialize the spectrum analysator
442 // and return to main menu.
443 joyMask = Joystick_GetStatus();
444 if(joyMask != joy){
445 joy = joyMask;
446 if(joy & JOY_PRESS){
447 spectrum_uninit();
448 State = print_menu;
449 }
450 }
451 break;// end case spectrum_active
452
453 case rec_active:
454 // Wait for the recording to finish or for the user to press the joystick
455 // before going to the save_file state
456 joyMask = Joystick_GetStatus();
457 if(joyMask != joy){
458 joy = joyMask;
459 if(joy & JOY_PRESS){
460 rec_done = 1;
461 }
462 }
463 if(rec_done){
464 rec_done = 0;
465 uda1380_stop_rec();
466 i = 0;
467 c = ’A’;
468 display_print_string(0,0,save_file_s);
469 display_set_text_color(SAVE_TEXT_COLOR);
470 display_print_char(6,i,c);
471 State = save_file;
472 }
473 break;// end case rec_active
474
475 case save_file:
476 // Get the file-name to use from user input, then add the
477 // file extention and save the file, before going to the
478 // wait_for_back state.
479 joyMask = Joystick_GetStatus();
480 if(joyMask != joy){
481 joy = joyMask;
482 if(joy & JOY_UP){
483 display_set_text_color(MENU_TEXT_COLOR);
484 display_print_char(6,i,c);
485 fname[i] = c;
486 if(i<7) i++;
487 display_set_text_color(SAVE_TEXT_COLOR);
488 display_print_char(6,i,c);
489 }
490 else if(joy & JOY_DOWN){
491 //if(i>0) i--;
492 }
493 else if(joy & JOY_RIGHT){
494 if (c == ’9’) c = ’A’;
495 else if (c == ’Z’) c = ’0’;
496 else c++;
497 display_set_text_color(SAVE_TEXT_COLOR);
498 display_print_char(6,i,c);
499 }
500 else if(joy & JOY_LEFT){
501 if (c == ’0’) c = ’Z’;
502 else if (c == ’A’) c = ’9’;
503 else c--;
504 display_set_text_color(SAVE_TEXT_COLOR);
505 display_print_char(6,i,c);
506 }
507 else if(joy & JOY_PRESS){
508 display_set_text_color(MENU_TEXT_COLOR);
509 display_print_char(6,i,c);
510 fname[i] = c;

103



A Source Code

511 fname[i+1] = ’.’;
512 fname[i+2] = file_ext[0];
513 fname[i+3] = file_ext[1];
514 fname[i+4] = file_ext[2];
515 fname[i+5] = ’\0’;
516 sprintf(buf,"\fSaving file \"%s\"...",fname);
517 display_print_string(0,0,buf);
518 sdmmc_save_wav(fname, (int32_t * )REC_START_ADDR, uda1380_stop_rec

());
519 display_print_string(1,0,done_s);
520 State = wait_for_back;
521 }
522 }// end if (joyMask != joy)
523 break;// end case save_file
524
525 case wait_for_back:
526 // Wait for the user to press the joystick before
527 // returning to the main menu.
528 joyMask = Joystick_GetStatus();
529 if(joyMask != joy){
530 joy = joyMask;
531 if(joy & JOY_PRESS){
532 State = print_menu;
533 }
534 }
535 break; // end case wait_for_back
536 }// end switch(state)
537 }

Listing 1: app.c

104



A.2 DSP Functions

A.2 DSP Functions

1 #include "dsp_funcs.h"
2 #include "ring_buff.h"
3 #include "uda1380_mcb4300.h"
4 #include "arm_math.h"
5 #include "display_mcb4300.h"
6 #include <stdio.h>
7
8 // Maximum number of samples to use in the Welch estimate
9 #define WELCH_MAX RING_BUFF_SIZE

10
11 // Number of FIR filter coefficients and block size
12 #define NUM_TAPS 101
13 #define BLOCK_SIZE 2048
14
15 // Privcate variables
16 static uint32_t fftSize = FFT_POINTS;
17 static uint32_t ifftFlag = 0;
18 static uint32_t bitReverseFlag = 1;
19
20 // FIR filter coefficients (from Matlab)
21 const float32_t firCoeffs32[NUM_TAPS] = {
22 5.03081370520049e-04f,5.09718215847710e-04f,5.23382468375693e-04f,
23 5.43181681258115e-04f,5.67589845240078e-04f,5.94439943084953e-04f,
24 6.20931471269369e-04f,6.43653243113658e-04f,6.58621471099649e-04f,
25 6.61332803876887e-04f,6.46831671973846e-04f,6.09790982194298e-04f,
26 5.44604900684948e-04f,4.45492185109446e-04f,3.06608273293462e-04f,
27 1.22164114699374e-04f,-1.13450452885947e-04f,-4.05541121724168e-04f,
28 -7.58983765706644e-04f,-1.17810181377248e-03f,-1.66654883522986e-03f,
29 -2.22719877875602e-03f,-2.86204620916925e-03f,-3.57211874031211e-03f,
30 -4.35740367090286e-03f,-5.21679059624895e-03f,-6.14803149645711e-03f,
31 -7.14771949617298e-03f,-8.21128715764269e-03f,-9.33302481429553e-03f,
32 -1.05061190828937e-02f,-1.17227113156839e-02f,-1.29739753772868e-02f,
33 -1.42502137616257e-02f,-1.55409707093645e-02f,-1.68351606531324e-02f,
34 -1.81212100129610e-02f,-1.93872100939972e-02f,-2.06210786082141e-02f,
35 -2.18107271562588e-02f,-2.29442318686705e-02f,-2.40100043204098e-02f,
36 -2.49969598009351e-02f,-2.58946800448127e-02f,-2.66935676049380e-02f,
37 -2.73849891805852e-02f,-2.79614053934583e-02f,-2.84164847333577e-02f,
38 -2.87451996668110e-02f,-2.89439032119143e-02f,9.70488023154390e-01f,
39 -2.89439032119143e-02f,-2.87451996668110e-02f,-2.84164847333577e-02f,
40 -2.79614053934583e-02f,-2.73849891805852e-02f,-2.66935676049380e-02f,
41 -2.58946800448127e-02f,-2.49969598009351e-02f,-2.40100043204098e-02f,
42 -2.29442318686705e-02f,-2.18107271562588e-02f,-2.06210786082141e-02f,
43 -1.93872100939972e-02f,-1.81212100129610e-02f,-1.68351606531324e-02f,
44 -1.55409707093645e-02f,-1.42502137616257e-02f,-1.29739753772868e-02f,
45 -1.17227113156839e-02f,-1.05061190828937e-02f,-9.33302481429553e-03f,
46 -8.21128715764269e-03f,-7.14771949617298e-03f,-6.14803149645711e-03f,
47 -5.21679059624895e-03f,-4.35740367090286e-03f,-3.57211874031211e-03f,
48 -2.86204620916925e-03f,-2.22719877875602e-03f,-1.66654883522986e-03f,
49 -1.17810181377248e-03f,-7.58983765706644e-04f,-4.05541121724168e-04f,
50 -1.13450452885947e-04f,1.22164114699374e-04f,3.06608273293462e-04f,
51 4.45492185109446e-04f,5.44604900684948e-04f,6.09790982194298e-04f,
52 6.46831671973846e-04f,6.61332803876887e-04f,6.58621471099649e-04f,
53 6.43653243113658e-04f,6.20931471269369e-04f,5.94439943084953e-04f,
54 5.67589845240078e-04f,5.43181681258115e-04f,5.23382468375693e-04f,
55 5.09718215847710e-04f,5.03081370520049e-04f
56 };
57
58 // FIR state buffer
59 static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1];
60
61 // ARM FFT and FIR instances
62 arm_rfft_instance_f32 S;
63 arm_cfft_radix4_instance_f32 S_CFFT;
64 arm_fir_instance_f32 FS;
65
66 // Buffers used by the DSP functions
67 float32_t window[FFT_POINTS]__attribute__((at(FFT_WINDOW_ADDR)));
68 float32_t in[FFT_POINTS]__attribute__((at(FFT_IN_ADDR)));
69 float32_t out[FFT_POINTS*2]__attribute__((at(FFT_OUT_ADDR)));
70 float32_t mag[FFT_POINTS]__attribute__((at(FFT_MAG_ADDR)));
71 float32_t pxx[FFT_POINTS/2+1]__attribute__((at(PXX_BUFF_ADDR)));

105



A Source Code

72 float32_t welch_buff[WELCH_MAX]__attribute__((at(WELCH_BUFF_ADDR)));
73 float32_t xfilt[WELCH_MAX]__attribute__((at(XFILT_ADDR)));
74
75 // External variables
76 extern volatile int rec_done;
77
78 /*-----------------------------------------------------------------------------
79 Initialize the DSP module, i.e. initialise FFT module and calculate the
80 window to use for windowing the signal.
81 *----------------------------------------------------------------------------*/
82 void dsp_init(void){
83 static int i;
84 uint32_t blockSize = BLOCK_SIZE;
85
86 // Initialize the RFFT module
87 arm_rfft_init_f32(&S, &S_CFFT, fftSize, ifftFlag, bitReverseFlag);
88
89 // Initialize filter module
90 arm_fir_init_f32(&FS, NUM_TAPS, (float32_t *)&firCoeffs32[0], &firStateF32[0],

blockSize);
91
92 // Initialize the window function
93 for(i = 0; i < FFT_POINTS; i++){
94 // Hamming window
95 window[i] = 0.54 - 0.46 * cos ( 2 * PI * i /(FFT_POINTS-1));
96 }
97 }
98
99 /*-----------------------------------------------------------------------------

100 Calculate the periodogram of the sampled signal
101 - return: Pointer to the buffer that contains the periodogram values
102 *----------------------------------------------------------------------------*/
103 float32_t * dsp_periodogram(void){
104 static int i;
105
106 __disable_irq(); // Start critical section
107 ring_buff_set_read_index(FFT_POINTS);
108
109 // Copy samples to buffer for FFT transform
110 // and apply window function.
111 for(i = 0; i < FFT_POINTS; i++){
112 in[i] = (float32_t)ring_buff_read();
113 }
114 __enable_irq(); // End critical section
115
116 // Process the data through the real FFT module
117 arm_rfft_f32(&S, in, out);
118
119 // Process the data through the Complex Magnitude Module to extraxt |X(f)|
120 arm_cmplx_mag_f32(out, mag, fftSize/2+1);
121
122 // Calculate one-sided Periodogram
123 for(i = 0; i < FFT_POINTS/2+1; i++){
124 // Correct for negative frequencies except 0 Hz and f_Nyquist
125 if(i!=0 || i != FFT_POINTS/2){
126 mag[i] *= 2;
127 }
128 //Pxx = (1/N)|X(f)|^2
129 mag[i] = (1.0f/(float32_t)FFT_POINTS)*mag[i]*mag[i];
130 }
131 return mag;
132 }
133
134 /*-----------------------------------------------------------------------------
135 Calculate the Welch Estimate of the sampled signal
136 - welch_length: Number of samples to use in the estimate
137 - welch_overlap: Number of samples to overlap the periodograms
138 - return: Pointer to the buffer that contains the estimate values
139 *----------------------------------------------------------------------------*/
140 float32_t * dsp_welch(uint32_t welch_length, uint32_t welch_overlap){
141 uint32_t blockSize = BLOCK_SIZE;
142 uint32_t numBlocks = welch_length/BLOCK_SIZE;
143 float32_t scale;
144 static int i,j;

106



A.2 DSP Functions

145 int D = fftSize / (fftSize - welch_overlap); // Overlap fraction
146 int K = welch_length/fftSize; // Number of estimates without overlap
147 int L = D*(K-1)+1; // Total umber of estimates with overlap
148
149 // Cakcykate scale to use for Pxx estimate
150 scale = (1.0f/((float32_t)FFT_POINTS*(float32_t)L*0.3972f));
151
152 __disable_irq(); // Start critical section
153 ring_buff_set_read_index(welch_length);
154
155 // Copy samples to buffer and scale down to -1 < x < 1.
156 for(i = 0; i < welch_length; i++){
157 welch_buff[i] = (float32_t)ring_buff_read()/2147483648.0f;
158 }
159 __enable_irq(); // End critical section
160
161 // Clear Pxx buffer
162 for(i = 0;i < FFT_POINTS/2+1;i++)
163 pxx[i] = 0;
164
165 // Filter the signal with FIR high-pass filter
166 for(i=0; i < numBlocks; i++)
167 {
168 arm_fir_f32(&FS, welch_buff + (i * blockSize), xfilt + (i * blockSize), blockSize

);
169 }
170
171 i = 0;
172 // Non-circular overlapping segments
173 while((i + FFT_POINTS - 1) < welch_length){
174
175 // Perform windowing of current segment
176 arm_mult_f32(xfilt+i,window,in,FFT_POINTS);
177
178 // Process the data through the real FFT module
179 arm_rfft_f32(&S, in, out);
180
181 // Process the data through the Complex Magnitude Module to extraxt |X(f)|
182 arm_cmplx_mag_f32(out, mag, fftSize/2+1);
183
184 // Calculate one-sided power spectrum estimate
185 for(j = 0; j < FFT_POINTS/2+1; j++){
186 // Correct for negative frequencies except 0 Hz and f_Nyquist
187 if(j != 0 || j != (FFT_POINTS/2)){
188 mag[j] *= 2;
189 }
190 //Pxx = (1/MLU)|X(f)|^2
191 pxx[j] += scale*(mag[j]*mag[j]);
192 }
193 // Update start index of next segment
194 i += FFT_POINTS-welch_overlap;
195 }
196 //pxx[0] = pxx[1] = 0;
197 return pxx;
198 }

Listing 2: dsp_funcs.c

107



A Source Code

A.3 Speed Measuring Algorithms

1 #include "speed.h"
2 #include "display_mcb4300.h"
3 #include "uda1380_mcb4300.h"
4 #include "sdmmc_mcb4300.h"
5 #include "dsp_funcs.h"
6 #include "arm_math.h"
7 #include "rtc.h"
8 #include "spectrum.h"
9 #include "board.h"

10 #include <stdio.h>
11
12 // Colors used by the speed module
13 #define SPEED_TEXT_COLOR LightGrey
14 #define SPEED_BACK_COLOR Black
15 #define SPEED_HEAD_COLOR Red
16
17 // Radar output frequency (24.100GHz)
18 #define F_OUT 24.1e9f
19 // Wave propagation speed
20 #define V_C 3e8f
21
22 // Parameters for Welch estimate
23 #define WELCH_N 20480
24 #define WELCH_OVERLAP 1536
25 #define WELCH_M FFT_POINTS
26
27 // Number of spectra for coherence estimate
28 #define NR_OF_SPEEDS 500
29 // Speed of the highest spectrum for coherence estimate
30 #define MAX_SPEED 250
31
32 // Filename whith spectra for coherence estimates
33 static char fname_s[] = "pyy.bin";
34
35 // Strings
36 static const char heading_s[] = "Speed Measurement";
37 static const char error_s[] = "ERROR:\nSPECTRUM FILE NOT FOUND!";
38 static const char calib_s[] = "Calibrating sensor. Please wait...";
39 static const char load_s[] = "Loading...";
40
41 // Local variables
42 static float32_t cos_th;
43 static int first = 1;
44 static char fname [16];
45 static uint8_t type;
46 static speed_alg_t algorithm = SPEED_WELCH;
47 static uint32_t npyy;
48 static uint32_t num_bytes;
49 static uint32_t timestamp[4];
50 static float32_t * v_vals;
51 static float32_t mean, var;
52 static RTC rtctime;
53
54 // Buffers used by speed algorithms
55 float32_t pyy_vals[NR_OF_SPEEDS*(WELCH_M/2+1)]__attribute__((at(PYY_START_ADDR)));
56 float32_t pxy[WELCH_M/2+1]__attribute__((at(PXY_START_ADDR)));
57 float32_t c_vals[NR_OF_SPEEDS];
58
59 // Shared variables
60 int speed_on = 0;
61
62 // External variables
63 extern volatile float maxval;
64 extern int adc_on;
65
66 /*-----------------------------------------------------------------------------
67 Calculate speed in km/h from Doppler frequency
68 - f: Doppler Frequency
69 - return: Speed in km/h
70 *----------------------------------------------------------------------------*/
71 static float32_t speed_from_f(float32_t f){

108



A.3 Speed Measuring Algorithms

72 return (f*V_C)/(2*F_OUT*cos_th)*3.6f;
73 }
74
75 /*-----------------------------------------------------------------------------
76 Save a timestamp of the current time to the timestamp[] array
77 - n: If 1, save start time. If 2, save end time.
78 *----------------------------------------------------------------------------*/
79 static void do_timestamp(uint8_t n){
80 // Get the current time
81 rtc_gettime(&rtctime);
82
83 if(n == 1){
84 timestamp[0] = type << 24 | rtctime.hour << 16 | rtctime.min << 8 | rtctime.sec

;
85 timestamp[1] = rtctime.year << 16 | rtctime.month << 8 | rtctime.mday;
86 }
87 else if (n == 2){
88 timestamp[2] = rtctime.hour << 16 | rtctime.min << 8 | rtctime.sec;
89 timestamp[3] = rtctime.year << 16 | rtctime.month << 8 | rtctime.mday;
90 }
91 }
92
93 volatile int timer = 0;
94
95 /*-----------------------------------------------------------------------------
96 Calibrate the speed module
97 *----------------------------------------------------------------------------*/
98 void speed_calibrate(void){
99 float32_t *pxx;

100 float32_t mean1;
101 float32_t var1;
102 uint32_t i;
103
104 display_print_string(0,0,calib_s);
105 // Start the codec
106 uda1380_start_stream();
107
108 // Wait 1 second to get the number of samples needed to do one estimate.
109 timer = 200;
110 while(timer);
111
112 mean = 0;
113 var = 0;
114
115 for(i=0;i<10;i++){
116 // Get a welch estimate
117 pxx = dsp_welch(WELCH_N,WELCH_OVERLAP);
118
119 // Calculate mean value and standard deviation
120 arm_mean_f32(pxx,(WELCH_M/2+1),&mean1);
121 arm_var_f32(pxx,(WELCH_M/2+1),&var1);
122
123 mean += mean1;
124 var += var1;
125 }
126
127 mean /= 10.0f;
128 var /= 10.0f;
129
130 // Stop the codec
131 uda1380_stop_stream();
132 }
133
134
135 /*-----------------------------------------------------------------------------
136 Initialize the speed module
137 - angle: The radar tilt angle in radians
138 - alg: The algorithm type to use: SPEED_PERIODOGRAM, SPEED_WELCH or
139 SPEED_COHERENCE
140 *----------------------------------------------------------------------------*/
141 void speed_init(float32_t angle, speed_alg_t alg){
142 static ADC_Clock_Setup_Type ADCSetup;
143
144 // Set estimation time and load spectra from file if

109



A Source Code

145 // coherence estimate is selected.
146 switch(alg){
147 case SPEED_PERIODOGRAM:
148 type = SPEED_PERIODOGRAM;
149 break;
150 case SPEED_WELCH:
151 type = SPEED_WELCH;
152 break;
153 case SPEED_COHERENCE:
154 if(sdmmc_read_dir() == -1){
155 display_print_string(1,0,error_s);
156 return;
157 }
158 display_print_string(2,0,load_s);
159 sdmmc_load_float(fname_s, pyy_vals, &npyy);
160 if(npyy == 0){
161 display_print_string(1,0,error_s);
162 return;
163 }
164 type = SPEED_COHERENCE;
165 break;
166 }
167
168 // Set up display
169 display_clear(SPEED_BACK_COLOR);
170 display_set_font_size(BIG_FONT);
171 display_set_back_color(SPEED_BACK_COLOR);
172 display_set_text_color(SPEED_HEAD_COLOR);
173 display_print_string(0,0,heading_s);
174 display_set_text_color(SPEED_TEXT_COLOR);
175 first = 1;
176
177 // Calculate cos(theta)
178 cos_th = cos(angle);
179
180 // Save algorithm type and initialize pointer to where to save
181 // the estimates
182 algorithm = alg;
183 v_vals = (float32_t *)REC_START_ADDR;
184 num_bytes = 0;
185
186 // Save start timestamp
187 do_timestamp(1);
188
189 // Save filename - on form DDHHMMSS.DOP
190 snprintf(fname,16,"%02d%02d%02d%02d.DOP",
191 rtctime.mday,rtctime.hour,rtctime.min,rtctime.sec);
192
193 // ENABLE ADC TO CONTROL MAX LEVEL SENSITIVITY
194 Board_ADC_Init();
195 Chip_ADC_Init(LPC_ADC0, &ADCSetup);
196 Chip_ADC_Channel_Enable_Cmd(LPC_ADC0, ADC_CH1, ENABLE);
197 Chip_ADC_Set_Resolution(LPC_ADC0, &ADCSetup, ADC_10BITS);
198 Chip_ADC_Set_SampleRate(LPC_ADC0, &ADCSetup, 400000);
199 // Enable ADC Interrupt
200 NVIC_ClearPendingIRQ(ADC0_IRQn);
201 NVIC_EnableIRQ(ADC0_IRQn);
202 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, ENABLE);
203
204 // Start the codec and set flag for SysTick handler
205 uda1380_start_stream();
206 adc_on = 1;
207 speed_on = 1;
208 }
209
210 /*-----------------------------------------------------------------------------
211 De-Initialize the speed module. Saves the estimate to file on SD card.
212 *----------------------------------------------------------------------------*/
213 void speed_deinit(void){
214 // Stop codec and clear flag for SysTick handler
215 uda1380_stop_stream();
216 speed_on = 0;
217
218 // Save timestamp

110



A.3 Speed Measuring Algorithms

219 do_timestamp(2);
220
221 // Save measurements to file
222 sdmmc_save_speed(fname,timestamp,(float32_t *)REC_START_ADDR,num_bytes);
223
224 // Stop the ADC
225 NVIC_DisableIRQ(ADC0_IRQn);
226 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, DISABLE);
227 Chip_ADC_Channel_Enable_Cmd(LPC_ADC0, ADC_CH1, DISABLE);
228 Chip_ADC_DeInit(LPC_ADC0);
229
230 // Clear flags for SysTick handler
231 adc_on = 0;
232 }
233
234 /*-----------------------------------------------------------------------------
235 The main function for speed calculation
236 *----------------------------------------------------------------------------*/
237 void speed(void){
238 char b[128];
239 float32_t *pxx;
240 float32_t max_val, mean_val;
241 float32_t dv, df;
242
243 uint32_t i,j,k;
244 static float32_t dv_old = 0;
245
246 // Do estimation according to selected algorithm
247 switch(algorithm){
248 case SPEED_PERIODOGRAM:
249 // Get one single periodogram
250 pxx = dsp_periodogram();
251 // Calculates max value and returns corresponding value and index
252 arm_max_f32(pxx, FFT_POINTS/2+1, &max_val, &i);
253 // Calculate the corresponding frequency
254 df = (((float32_t)i/(float32_t)FFT_POINTS)*(float32_t)SAMPLE_RATE);
255 // Calculate relative speed in km/h
256 dv = speed_from_f(df);
257 break; // end case SPEED_PERIODOGRAM
258
259 case SPEED_WELCH:
260 // Get the welch estimate
261 pxx = dsp_welch(WELCH_N,WELCH_OVERLAP);
262
263 // Get max value
264 arm_max_f32(pxx, WELCH_M/2+1, &max_val, &i);
265 // Calculate the corresponding frequency
266 df = (((float32_t)i/(float32_t)WELCH_M)*(float32_t)SAMPLE_RATE);
267 // Calculate relative speed in km/h
268 dv = speed_from_f(df);
269
270 // Check if max value is large enough
271 arm_mean_f32(pxx, WELCH_M/2+1, &mean_val);
272 if (mean_val < (mean * 3.0f * maxval)){
273 dv = 0;
274 df = 0;
275 i = 0;
276 }
277 break; // end case SPEED_WELCH
278
279 case SPEED_CORRELATION:
280 // Clear coherence value array
281 for(j = 0; j < NR_OF_SPEEDS; j++){
282 c_vals[j] = 0;
283 }
284 // Get the Welch estimate
285 pxx = dsp_welch(WELCH_N,WELCH_OVERLAP);
286
287 // Compare coherence with pre-estimated spectra
288 for(j = 0; j < NR_OF_SPEEDS; j++){
289 // PXY = PXX * PYY
290 arm_mult_f32(pxx,&pyy_vals[j*(WELCH_M/2+1)],pxy,WELCH_M/2+1);
291 // sum(pxy)
292 for(k = 0; k < WELCH_M/2+1; k++){

111



A Source Code

293 c_vals[j] += pxy[k];
294 }
295 }
296 // Calculates max coherence value and returns corresponding value and index
297 arm_max_f32(c_vals, NR_OF_SPEEDS, &max_val, &i);
298 // Calculate the corresponding speed
299 dv = ((float32_t)i/((float32_t)NR_OF_SPEEDS/(float32_t)MAX_SPEED));
300
301 // Check if max value is large enough
302 arm_mean_f32(pxx, WELCH_M/2+1, &mean_val);
303 if (mean_val < (mean * 3.0f * maxval)){
304 dv = 0;
305 df = 0;
306 i = 0;
307 }
308 break;// end case SPEED_COHERENCE
309 }// End switch(alg)
310
311 // If the speed has changed, update the display
312 if(dv != dv_old || first){
313 if(first)
314 first = 0;
315
316 dv_old = dv;
317 // Logic to make shure that sudden, unrealistic increases or decreases of
318 // speed is not recorded. Speed is set to previous value in stead.
319 /* if((dv > dv_old + 20.0f) || (dv < dv_old - 20.0f))
320 dv = dv_old;
321 else
322 dv_old = dv;
323 */
324 // Print result on screen
325 snprintf(b,128,"Max @ %04d/%05.0fHz\n\nSpeed: %05.1f m/s\n %05.1f km/h",
326 i,df,dv/3.6f,dv);
327 display_print_string(2,0,b);
328 }
329
330 // Record values until out of memory
331 if(v_vals < (float32_t *)REC_END_ADDR){
332 *v_vals = dv;
333 v_vals ++;
334 num_bytes += 4;
335 }
336 }// end speed()

Listing 3: speed.c

112



A.4 CODEC Driver

A.4 CODEC Driver

1 #include "uda1380_mcb4300.h"
2 #include "board.h"
3 #include "ring_buff.h"
4 #include "sdmmc_mcb4300.h"
5
6 // UDA1380 Register variables
7 // System Register Data Set
8 uint16_t UDA1380_sys_regs_dat[] = {
9 UDA1380_REG_EVALCLK_VAL,

10 UDA1380_REG_I2S_VAL,
11 UDA1380_REG_PWRCTRL_VAL,
12 UDA1380_REG_ANAMIX_VAL,
13 UDA1380_REG_HEADAMP_VAL
14 };
15
16 // Interpolator Register Data Set
17 uint16_t UDA1380_interfil_regs_dat[] = {
18 UDA1380_REG_MSTRVOL_VAL,
19 UDA1380_REG_MIXVOL_VAL,
20 UDA1380_REG_MODEBBT_VAL,
21 UDA1380_REG_MSTRMUTE_VAL,
22 UDA1380_REG_MIXSDO_VAL
23 };
24 // Decimator Register Data Set
25 uint16_t UDA1380_decimator_regs_dat[] = {
26 UDA1380_REG_DECVOL_VAL,
27 UDA1380_REG_PGA_VAL,
28 UDA1380_REG_ADC_VAL,
29 UDA1380_REG_AGC_VAL
30 };
31
32 // Pointer to memory for writing
33 static volatile int32_t *wrptr = (int32_t *)REC_START_ADDR;
34
35 // Private variables
36 static int uda1380_mode = 0;
37 static uint32_t rec_samples;
38 static volatile uint32_t br;
39 static int32_t rec_was_stopped = 1;
40
41 // Shared variables
42 volatile int rec_done = 0;
43 volatile int play_done = 0;
44
45 /*-----------------------------------------------------------------------------
46 IRQ Handler for the I2S Peripheral
47 *----------------------------------------------------------------------------*/
48 void I2S0_IRQHandler(void)
49 {
50 if(uda1380_mode == UDA1380REC){
51 // Copy the samples from the I2S RX buffer to the wrptr destination.
52 // When done, stop recording and set flag.
53 while ((Chip_I2S_GetLevel(LPC_I2S0, I2S_RX_MODE) > 0)) {
54 if (wrptr <= (int32_t *)REC_START_ADDR + rec_samples-1){
55 *wrptr = Chip_I2S_Receive(LPC_I2S0);
56 wrptr++;
57 br+=4;
58 }
59 else{
60 uda1380_stop_rec();
61 rec_done = 1;
62 break;
63 }
64 }
65 }
66 else if(uda1380_mode == UDA1380STREAM){
67 // Copy samples from the I2S RX buffer to the ring buffer
68 while (Chip_I2S_GetLevel(LPC_I2S0, I2S_RX_MODE) > 0) {
69 ring_buff_write(Chip_I2S_Receive(LPC_I2S0));
70 }
71 }

113



A Source Code

72 }
73
74
75 /*-----------------------------------------------------------------------------
76 Very simple (inaccurate) delay function
77 - i: delay time in cycles
78 *----------------------------------------------------------------------------*/
79 static void delay(uint32_t i) {
80 while (i--) {}
81 }
82
83 /*-----------------------------------------------------------------------------
84 Write data to UDA registers
85 - reg: Address of the register
86 - value: Value to write
87 - I2C_Config: Pointer to the I2C config structure
88 *----------------------------------------------------------------------------*/
89 static void UDA_Reg_write(UDA1380_REG_t reg, unsigned short value, I2C_M_SETUP_Type *

I2C_Config) {
90 I2C_Config->tx_data[0] = reg;
91 I2C_Config->tx_data[1] = value >> 8;
92 I2C_Config->tx_data[2] = value & 0xFF;
93 Chip_I2C_MasterTransmitData(LPC_I2C0, I2C_Config, I2C_TRANSFER_POLLING);
94 delay(10000);
95 }
96
97 /*-----------------------------------------------------------------------------
98 Read data from UDA registers
99 - reg: Address of the register

100 - return: Value of the register
101 *----------------------------------------------------------------------------*/
102 static uint16_t UDA_Reg_read(UDA1380_REG_t reg) {
103 uint8_t rx_data[2];
104 Chip_I2C_MasterReadReg(LPC_I2C0, UDA1380_I2C_ADDR, reg, rx_data, 2);
105 return rx_data[0] << 8 | rx_data[1];
106 }
107
108 /*-----------------------------------------------------------------------------
109 Initialize UDA1380 codec
110 - audio_in_sel: UDA1380_AUDIO_LINE_IN_SELECT for line in or
111 UDA1380_AUDIO_MIC_SELECT for mic
112 - return: 0 if successful, -1 otherwise
113 *----------------------------------------------------------------------------*/
114 int uda1380_init(UDA1380_Input_Sel_t audio_in_sel){
115 uint16_t temp;
116 uint8_t i;
117 uint8_t uda1380_tx_data_buf[3];
118
119 Chip_I2S_Audio_Format_Type I2S_Config;
120 I2C_M_SETUP_Type I2C_Config;
121 // I2S Configuration
122 I2S_Config.SampleRate = SAMPLE_RATE;
123 I2S_Config.ChannelNumber = CHANNELS;
124 I2S_Config.WordWidth = WORDWIDTH;
125 // I2C Configuration
126 I2C_Config.sl_addr7bit = I2CDEV_UDA1380_ADDR;
127 I2C_Config.retransmissions_max = 5;
128 I2C_Config.tx_length = 3;
129 I2C_Config.tx_data = uda1380_tx_data_buf;
130 I2C_Config.rx_length = 0;
131 I2C_Config.rx_data = NULL;
132
133 // Initialize I2C peripheral
134 Chip_I2C_Init(LPC_I2C0);
135 Chip_I2C_SetClockRate(LPC_I2C0, 400000);
136 Chip_I2C_Cmd(LPC_I2C0, I2C_MASTER_MODE, ENABLE);
137
138 // Start I2S Peripheral to supply clock to UDA1380 before reset
139 Chip_I2S_Init(LPC_I2S0);
140 Chip_I2S_Config(LPC_I2S0, I2S_RX_MODE, &I2S_Config);
141 Chip_I2S_Config(LPC_I2S0, I2S_TX_MODE, &I2S_Config);
142
143 // Initialize UDA1380 CODEC
144 // Reset UDA1380 on board

114



A.4 CODEC Driver

145 Chip_SCU_PinMux(0x8, 0, MD_PUP, FUNC0);
146 Chip_GPIO_WriteDirBit(4, 0, true);
147 Chip_GPIO_WritePortBit(4, 0, true);
148 // delay 1us
149 delay(100000);
150 Chip_GPIO_WritePortBit(4, 0, false);
151 delay(100000);
152
153 // Write startup values to UDA13800 registers
154 // System regs
155 for (i = 0; i < 5; i++) {
156 UDA_Reg_write((UDA1380_REG_t) (UDA_REG_EVALM_CLK + i), UDA1380_sys_regs_dat[i],

&I2C_Config);
157 temp = UDA_Reg_read((UDA1380_REG_t) (UDA_REG_EVALM_CLK + i));
158 if (temp != UDA1380_sys_regs_dat[i]) {
159 return -1;
160 }
161 }
162
163 // Interpolator regs
164 for (i = 0; i < 5; i++) {
165 UDA_Reg_write((UDA1380_REG_t) (UDA_REG_MASTER_VOL_CTRL + i),

UDA1380_interfil_regs_dat[i], &I2C_Config);
166 temp = UDA_Reg_read((UDA1380_REG_t) (UDA_REG_MASTER_VOL_CTRL + i));
167 if (temp != UDA1380_interfil_regs_dat[i]) {
168 return -1;
169 }
170 }
171 // Decimator regs
172 for (i = 0; i < 4; i++) {
173 UDA_Reg_write((UDA1380_REG_t) (UDA_REG_DEC_VOL_CTRL + i),

UDA1380_decimator_regs_dat[i], &I2C_Config);
174 temp = UDA_Reg_read((UDA1380_REG_t) (UDA_REG_DEC_VOL_CTRL + i));
175 if (temp != UDA1380_decimator_regs_dat[i]) {
176 return -1;
177 }
178 }
179
180 // If mic is selected as the input
181 if (audio_in_sel == UDA1380_AUDIO_MIC_SELECT) {
182 // Disable Power On for ADCR, PGAR, PGAL
183 UDA_Reg_write((UDA1380_REG_t) (UDA_REG_POWER_CTRL), UDA1380_REG_PWRCTRL_VAL &

(~(0x000B)), &I2C_Config);
184 temp = UDA_Reg_read((UDA1380_REG_t) (UDA_REG_POWER_CTRL));
185 if (temp != (UDA1380_REG_PWRCTRL_VAL & (~(0x000B)))) {
186 return -1;
187 }
188 // Enable Microphone input
189 UDA_Reg_write((UDA1380_REG_t) (UDA_REG_ADC_CTRL), UDA1380_REG_ADC_VAL |

UDA1380_AUDIO_MIC_SELECT, &I2C_Config);
190 temp = UDA_Reg_read((UDA1380_REG_t) (UDA_REG_ADC_CTRL));
191 if (temp != (UDA1380_REG_ADC_VAL | UDA1380_AUDIO_MIC_SELECT)) {
192 return -1;
193 }
194 }// End if UDA1380_AUDIO_MIC_SELECT
195 return 0;
196 }
197
198 /*-----------------------------------------------------------------------------
199 Start recording
200 - samples: Number of samples to reord
201 - dst: Pointer to destination address
202 *----------------------------------------------------------------------------*/
203 void uda1380_start_rec(uint32_t samples, int32_t * dst){
204 rec_done = 0;
205 br = 0;
206 rec_samples = samples;
207 uda1380_mode = UDA1380REC;
208 wrptr = dst;
209 Chip_I2S_Int_Cmd(LPC_I2S0, I2S_RX_MODE, ENABLE, 4);
210 Chip_I2S_Start(LPC_I2S0, I2S_RX_MODE);
211 // Enable interrupts
212 NVIC_ClearPendingIRQ(I2S0_IRQn);
213 NVIC_EnableIRQ(I2S0_IRQn);

115



A Source Code

214 }
215
216 /*-----------------------------------------------------------------------------
217 Pause recording
218 *----------------------------------------------------------------------------*/
219 void uda1380_pause_rec(void){
220 NVIC_DisableIRQ(I2S0_IRQn);
221 Chip_I2S_Pause(LPC_I2S0, I2S_RX_MODE);
222 rec_was_stopped = 0;
223 }
224
225 /*-----------------------------------------------------------------------------
226 Resume recording (if paused)
227 *----------------------------------------------------------------------------*/
228 void uda1380_resume_rec(void){
229 if(rec_was_stopped)
230 return;
231 else{
232 rec_done = 0;
233 uda1380_mode = UDA1380REC;
234 Chip_I2S_Start(LPC_I2S0, I2S_RX_MODE);
235 // Enable interrupts
236 NVIC_ClearPendingIRQ(I2S0_IRQn);
237 NVIC_EnableIRQ(I2S0_IRQn);
238 }
239 }
240
241 /*-----------------------------------------------------------------------------
242 Stop Recording
243 - return: The number of BYTES recorded
244 *----------------------------------------------------------------------------*/
245 uint32_t uda1380_stop_rec(void){
246 NVIC_DisableIRQ(I2S0_IRQn);
247 Chip_I2S_Int_Cmd(LPC_I2S0, I2S_RX_MODE, DISABLE, 4);
248 Chip_I2S_Stop(LPC_I2S0, I2S_RX_MODE);
249 rec_was_stopped = 1;
250 return br;
251 }
252
253 /*-----------------------------------------------------------------------------
254 Start Streaming
255 *----------------------------------------------------------------------------*/
256 void uda1380_start_stream(void){
257 // Start I2S Audio Stream
258 Chip_I2S_Start(LPC_I2S0, I2S_RX_MODE);
259
260 // Enable interrupts
261 uda1380_mode = UDA1380STREAM;
262 Chip_I2S_Int_Cmd(LPC_I2S0, I2S_RX_MODE, ENABLE, 4);
263 NVIC_ClearPendingIRQ(I2S0_IRQn);
264 NVIC_EnableIRQ(I2S0_IRQn);
265 }
266
267 /*-----------------------------------------------------------------------------
268 Stop Streaming
269 *----------------------------------------------------------------------------*/
270 void uda1380_stop_stream(void){
271 NVIC_DisableIRQ(I2S0_IRQn);
272
273 // Disable interrupts
274 Chip_I2S_Int_Cmd(LPC_I2S0, I2S_RX_MODE, DISABLE, 4);
275
276 // Stop I2S Audio Stream
277 Chip_I2S_Stop(LPC_I2S0, I2S_RX_MODE);
278 }

Listing 4: uda1380_mcb4300.c

116



A.5 SD Card Interface Drives

A.5 SD Card Interface Drives

1 #include "sdmmc_mcb4300.h"
2 #include "uda1380_mcb4300.h"
3 #include "rtc.h"
4 #include "ff.h"
5 #include "board.h"
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9

10 // Buffer size (in bytes) for R/W operations
11 #define BUFFER_SIZE 4096
12
13 // File system object
14 static FATFS Fatfs;
15
16 // Variables
17 static volatile UINT Timer = 0;
18 static volatile int32_t sdio_wait_exit = 0;
19
20 // SDMMC card info structure
21 mci_card_struct sdcardinfo;
22
23 /*-----------------------------------------------------------------------------
24 WAVE file header fields
25 *----------------------------------------------------------------------------*/
26 static char ckID[] = "RIFF"; // RIFF chunk
27 static int32_t cksize; // Chunk size
28 static char WAVEID[] = "WAVE"; // WAVEID
29 static char ckID2[] = "fmt "; // Format Chunk
30 static int32_t cksize2 = 16; // Chunk size
31 static int16_t wFormatTag = 1; // WAVE_FORMAT_EXTENSIBLE
32 static int16_t nChannels = 1; // Channels = 1 (mono)
33 static int32_t nSamplesPerSec = SAMPLE_RATE; // Sampling Freq.
34 static int32_t nAvgBytesPerSec = SAMPLE_RATE*4; // Bytes Pr sec (Fs*4)
35 static int16_t nBlockAlign = 4; // Bytes Pr sample (4 = 32 bits)
36 static int16_t wBitsPerSample = 32; // Bits Pr sample (32)
37 static char ckID3[] = "data"; // Data chunk
38 static int32_t cksize3; // Chunk size
39
40 /*-----------------------------------------------------------------------------
41 Simple wait function
42 - time: Wait time in ms
43 *----------------------------------------------------------------------------*/
44 static void sdmmc_waitms(uint32_t time){
45 /* In an RTOS, the thread would sleep allowing other threads to run.
46 For standalone operation, we just spin on RI timer */
47 int32_t curr = (int32_t) Chip_RIT_GetCounter();
48 int32_t final = curr + ((SystemCoreClock / 1000) * time);
49
50 if (final == curr) return;
51
52 if ((final < 0) && (curr > 0)) {
53 while (Chip_RIT_GetCounter() < (uint32_t) final) {}
54 }
55 else {
56 while ((int32_t) Chip_RIT_GetCounter() < final) {}
57 }
58
59 return;
60 }
61
62
63 /*-----------------------------------------------------------------------------
64 Sets up the SD event driven wakeup
65 - bits : Status bits to poll for command completion
66 *----------------------------------------------------------------------------*/
67 static void sdmmc_setup_wakeup(uint32_t bits){
68 // Wait for IRQ - for an RTOS, you would pend on an event here with a IRQ based

wakeup.
69 NVIC_ClearPendingIRQ(SDIO_IRQn);
70 sdio_wait_exit = 0;

117



A Source Code

71 Chip_SDMMC_SetIntMask(bits);
72 NVIC_EnableIRQ(SDIO_IRQn);
73 }
74
75
76 /*-----------------------------------------------------------------------------
77 A better wait callback for SDMMC driven by the IRQ flag
78 - return: 0 on success, or failure condition (-1)
79 *----------------------------------------------------------------------------*/
80 static uint32_t sdmmc_irq_driven_wait(void){
81 uint32_t status;
82
83 // Wait for event, would be nice to have a timeout, but keep it simple
84 while (sdio_wait_exit == 0) {}
85 // Get status and clear interrupts
86 status = Chip_SDMMC_GetIntStatus();
87
88 return status;
89 }
90
91
92 /*-----------------------------------------------------------------------------
93 Print the result code
94 - rc: result code
95 *----------------------------------------------------------------------------*/
96 static void die(FRESULT rc){
97 printf("Failed with rc=%u.\n", rc);
98 }
99

100 /*-----------------------------------------------------------------------------
101 SDIO controller interrupt handler
102 *----------------------------------------------------------------------------*/
103 void SDIO_IRQHandler(void){
104 /* All SD based register handling is done in the callback
105 function. The SDIO interrupt is not enabled as part of this
106 driver and needs to be enabled/disabled in the callbacks or
107 application as needed. This is to allow flexibility with IRQ
108 handling for applicaitons and RTOSes. */
109 /* Set wait exit flag to tell wait function we are ready. In an RTOS,
110 this would trigger wakeup of a thread waiting for the IRQ. */
111 NVIC_DisableIRQ(SDIO_IRQn);
112 sdio_wait_exit = 1;
113 }
114
115 /*-----------------------------------------------------------------------------
116 SDIO controller init routine
117 *----------------------------------------------------------------------------*/
118 void sdmmc_init(void){
119
120 // Initialize SD/MMC
121 memset(&sdcardinfo, 0, sizeof(sdcardinfo));
122 sdcardinfo.evsetup_cb = sdmmc_setup_wakeup;
123 sdcardinfo.waitfunc_cb = sdmmc_irq_driven_wait;
124 sdcardinfo.msdelay_func = sdmmc_waitms;
125
126 Board_SDMMC_Init();
127 Chip_SDMMC_Init();
128
129 NVIC_DisableIRQ(SDIO_IRQn);
130 NVIC_EnableIRQ(SDIO_IRQn);
131 f_mount(0, &Fatfs); // Register volume work area (never fails)
132 NVIC_DisableIRQ(SDIO_IRQn);
133 }
134
135 /*-----------------------------------------------------------------------------
136 Save src to SD-card in WAV format
137 - fname: Filename
138 - src: Pointer to source address
139 - num_bytes: Mumber of bytes to write to file
140 *----------------------------------------------------------------------------*/
141 void sdmmc_save_wav(char * fname, int32_t * src, uint32_t num_bytes){
142 static FRESULT rc;
143 static FIL fd;
144 static unsigned int bw;

118



A.5 SD Card Interface Drives

145 char *wbuf = (char * ) src;
146
147 // Calculate WAV chunck sizes
148 cksize = 4+24+8+num_bytes; // 4 + 48 + 12 + (8 + M * Nc * Ns)
149 cksize3 = num_bytes; // M * Nc * Ns
150
151 NVIC_EnableIRQ(SDIO_IRQn);
152
153 // Open the file
154 rc = f_open(&fd, fname, FA_WRITE | FA_CREATE_ALWAYS);
155 if (rc) die(rc);
156
157 // Write WAV file header
158 rc = f_write(&fd, ckID, 4, &bw);
159 if (rc) die(rc);
160 rc = f_write(&fd, (char * )&cksize, 4, &bw);
161 if (rc) die(rc);
162 rc = f_write(&fd, WAVEID, 4, &bw);
163 if (rc) die(rc);
164 rc = f_write(&fd, ckID2, 4, &bw);
165 if (rc) die(rc);
166 rc = f_write(&fd, (char * )&cksize2, 4, &bw);
167 if (rc) die(rc);
168 rc = f_write(&fd, (char * )&wFormatTag, 2, &bw);
169 if (rc) die(rc);
170 rc = f_write(&fd, (char * )&nChannels, 2, &bw);
171 if (rc) die(rc);
172 rc = f_write(&fd, (char * )&nSamplesPerSec, 4, &bw);
173 if (rc) die(rc);
174 rc = f_write(&fd, (char * )&nAvgBytesPerSec, 4, &bw);
175 if (rc) die(rc);
176 rc = f_write(&fd, (char * )&nBlockAlign, 2, &bw);
177 if (rc) die(rc);
178 rc = f_write(&fd, (char * )&wBitsPerSample, 2, &bw);
179 if (rc) die(rc);
180 rc = f_write(&fd, ckID3, 4, &bw);
181 if (rc) die(rc);
182 rc = f_write(&fd, (char * )&cksize3, 4, &bw);
183 if (rc) die(rc);
184
185 // Write data to file
186 rc = f_write(&fd, wbuf, num_bytes, &bw);
187 if (rc) die(rc);
188
189 // Close the file
190 rc = f_close(&fd);
191 if (rc) die(rc);
192
193 NVIC_DisableIRQ(SDIO_IRQn);
194 }
195
196 /*-----------------------------------------------------------------------------
197 Load file with floating-point values from SD-card to dst
198 - fname: Filename
199 - dst: Floating-point pointer to destination address
200 - bytes_read: Will contain the number of bytes read when done
201 *----------------------------------------------------------------------------*/
202 void sdmmc_load_float(char * fname, float32_t * dst, uint32_t * bytes_read){
203 static int32_t buffer[BUFFER_SIZE/sizeof(int32_t)];
204 static FRESULT rc; /* Result code */
205 static FIL fd; /* File object */
206 static unsigned int br, i;
207 char *cbuf = (char * ) buffer;
208 char *rbuf = (char * ) dst;
209 uint32_t bufi = 0;
210
211 NVIC_EnableIRQ(SDIO_IRQn);
212
213 // Open the file
214 rc = f_open(&fd, fname, FA_READ);
215 if (rc) die(rc);
216
217 for (;; ) {
218 // Read a chunk of file

119



A Source Code

219 rc = f_read(&fd, (void *)cbuf, BUFFER_SIZE, &br);
220 if (rc || !br) {
221 break; // Error or end of file
222 }
223 for (i = 0; i < br; i++){ // Copy data to destination
224 rbuf[bufi] = cbuf[i];
225 bufi++;
226 }
227 }
228 if (rc) die(rc);
229
230 *bytes_read = bufi;
231
232 // Close the file
233 rc = f_close(&fd);
234 if (rc) die(rc);
235
236 NVIC_DisableIRQ(SDIO_IRQn);
237 }
238
239 /*-----------------------------------------------------------------------------
240 Save speed measurements to SD-card. First 16 bytes are timestamp info.
241 - fname: Filename
242 - timestamp: Pointer to the 16-byte timestamp array
243 - src: Pointer to source address
244 - num_bytes: Mumber of bytes to write to file
245 *----------------------------------------------------------------------------*/
246 void sdmmc_save_speed(char * fname, uint32_t * timestamp, float32_t * src, uint32_t

num_bytes){
247 static FRESULT rc; // Result code
248 static FIL fd; // File object
249 static unsigned int bw;
250 char *tbuf = (char * ) timestamp;
251 char *wbuf = (char * ) src;
252
253 NVIC_EnableIRQ(SDIO_IRQn);
254
255 // Open the file
256 rc = f_open(&fd, fname, FA_WRITE | FA_CREATE_ALWAYS);
257 if (rc) die(rc);
258
259 // Write timestamp
260 rc = f_write(&fd, tbuf, 16, &bw);
261 if (rc) die(rc);
262
263 // Write data
264 rc = f_write(&fd, wbuf, num_bytes, &bw);
265 if (rc) die(rc);
266
267 // Close the file
268 rc = f_close(&fd);
269 if (rc) die(rc);
270
271 NVIC_DisableIRQ(SDIO_IRQn);
272 }
273
274 /*-----------------------------------------------------------------------------
275 Read the root directory listing
276 - return: Number of files in directory
277 *----------------------------------------------------------------------------*/
278 int32_t sdmmc_read_dir(void){
279 static FRESULT rc;
280 static DIR dir;
281 static FILINFO fno;
282 static int i;
283
284 i = 0;
285 NVIC_EnableIRQ(SDIO_IRQn);
286
287 rc = f_opendir(&dir, "");
288 if (rc) die(rc);
289
290 //printf("\f");
291 for (;; ) {

120



A.5 SD Card Interface Drives

292 // Read a directory item
293 rc = f_readdir(&dir, &fno);
294 if (rc || !fno.fname[0]) {
295 break; // Error or end of dir
296 }
297 if (fno.fattrib & AM_DIR) {
298 //printf(" <dir> %s\r\n", fno.fname);
299 }
300 else {
301 //printf("\n %s", fno.fname);
302 i++;
303 }
304 }
305 if (rc) die(rc);
306
307 NVIC_DisableIRQ(SDIO_IRQn);
308 if(i == 0)
309 i=-1;
310 return i;
311 }

Listing 5: sdmmc_mcb4300.c

121



A Source Code

A.6 Display Driver

1 #include "display_mcb4300.h"
2 #include "memory_map.h"
3 #include "board.h"
4 #include "Font_6x8_h.h"
5 #include "Font_16x24_h.h"
6
7 #define PHYS_XSZ 240 /* Physical screen width */
8 #define PHYS_YSZ 320 /* Physical screen height */
9 #define DELAY_2N 18 /* Increase delay @ high freqs */

10 #define BG_COLOR 0 /* Background color */
11 #define TXT_COLOR 1 /* Text color */
12
13 #define BIG_FONT_HEIGHT 24
14 #define BIG_FONT_WIDTH 16
15 #define SMALL_FONT_HEIGHT 8
16 #define SMALL_FONT_WIDTH 6
17
18 // pointer to frame buffer
19 static uint16_t framebuffer[PHYS_XSZ*PHYS_YSZ]__attribute__((at(FRAME_BUFFER_ADDR)));
20
21 // Private variables
22 static uint16_t Color[2] = {White, Black};
23 static uint8_t landscape = 0;
24 static uint16_t width = PHYS_XSZ;
25 static uint16_t height = PHYS_YSZ;
26 static uint16_t font_size = 0;
27 static uint16_t font_width = SMALL_FONT_WIDTH;
28 static uint16_t font_height = SMALL_FONT_HEIGHT;
29
30 /*-----------------------------------------------------------------------------
31 Very simple (inaccurate) delay function. DELAY_2N will increase the delay
32 time by 2^N.
33 - cnt: delay time
34 *----------------------------------------------------------------------------*/
35 static void delay (int cnt) {
36 cnt <<= DELAY_2N;
37 while (cnt--);
38 }
39
40 /*-----------------------------------------------------------------------------
41 Draw character from font at x,y.
42 - x: X position
43 - y: Y position
44 - cw: Character width
45 - ch: Character height
46 - c: pointer to the character in the font file
47 *----------------------------------------------------------------------------*/
48 static void DrawChar (unsigned int x, unsigned int y, unsigned int cw, unsigned int ch,

char *c) {
49 unsigned int i, j, k, pixs;
50
51 k = (cw + 7)/8; // bytes pr char
52
53 if (k == 1) {
54 for (j = 0; j < ch; j++) {
55 pixs = *(char *)c;
56 c += 1;
57 for (i = 0; i < cw; i++) {
58 if (landscape == 0)
59 framebuffer[(y+j)*PHYS_XSZ + (x+i)] = Color[(pixs >> i) & 1];
60 else
61 framebuffer[(y+j) + ((PHYS_YSZ-1)-x-i)*PHYS_XSZ] = Color[(pixs >> i) & 1];
62 }
63 }
64 }
65 else if (k == 2) {
66 for (j = 0; j < ch; j++) {
67 pixs = *(unsigned short *)c;
68 c += 2;
69
70 for (i = 0; i < cw; i++) {

122



A.6 Display Driver

71 if (landscape == 0)
72 framebuffer[(y+j)*PHYS_XSZ + (x+i)] = Color[(pixs >> i) & 1];
73 else
74 framebuffer[(y+j) + ((PHYS_YSZ-1)-x-i)*PHYS_XSZ] = Color[(pixs >> i) & 1];
75 }
76 }
77 }
78 }
79
80 /*-----------------------------------------------------------------------------
81 Scroll the display from the bottom up
82 - dy: Scroll-distance in pixels
83 *----------------------------------------------------------------------------*/
84 static void ScrollVertical (unsigned int dy) {
85 if (landscape == 0){
86 uint32_t x, y;
87 for (y = 0; y < (PHYS_YSZ - dy); y++) {
88 for (x = 0; x < PHYS_XSZ; x++) {
89 framebuffer[y*PHYS_XSZ + x] = framebuffer[(y+dy)*PHYS_XSZ + x];
90 }
91 }
92 for (; y < PHYS_YSZ; y++) {
93 for (x = 0; x < PHYS_XSZ; x++) {
94 framebuffer[y*PHYS_XSZ + x] = Color[BG_COLOR];
95 }
96 }
97 }
98 }
99

100
101 /*-----------------------------------------------------------------------------
102 Clear the display
103 - color: Color
104 *----------------------------------------------------------------------------*/
105 void display_clear(unsigned short color) {
106 unsigned int i;
107 for (i = 0; i < (PHYS_XSZ*PHYS_YSZ); i++) {
108 framebuffer[i] = color;
109 }
110 }
111
112 /*-----------------------------------------------------------------------------
113 Put one pixel at x,y
114 - x: X position
115 - y: Y position
116 - color: Color
117 *----------------------------------------------------------------------------*/
118 void display_put_pixel (unsigned int x, unsigned int y, uint16_t color) {
119 if (landscape == 0)
120 framebuffer[y*PHYS_XSZ + x] = color;
121 else
122 framebuffer[x*PHYS_XSZ + y] = color;
123 }
124
125 /*-----------------------------------------------------------------------------
126 Draw a line from one point
127 - x: X start position
128 - y: Y start position
129 - len: Lenght in pixels
130 - dir: Direction - 0: Vertical, 1: Horizontal
131 - color: Color
132 *----------------------------------------------------------------------------*/
133 void display_draw_line (unsigned int x, unsigned int y, unsigned int len, unsigned int

dir, uint16_t color) {
134 uint32_t i;
135
136 if (dir == 0) { /* Vertical line */
137 for (i = 0; i < len; i++) { display_put_pixel (x, y - i, color); }
138 }
139 else { /* Horizontal line */
140 for (i = 0; i < len; i++) { display_put_pixel (x + i, y, color); }
141 }
142 }
143

123



A Source Code

144 /*-----------------------------------------------------------------------------
145 Print a character at line, col
146 - ln: Line number
147 - col: Column number
148 - c: Character to print
149 *----------------------------------------------------------------------------*/
150 void display_print_char (unsigned int ln, unsigned int col, char c) {
151 c -= 32;
152 switch (font_size) {
153 case SMALL_FONT: /* Font 6 x 8 */
154 DrawChar(col * 6, ln * 8, 6, 8, (char *)&Font_6x8_h [c * 8]);
155 break;
156 case BIG_FONT: /* Font 16 x 24 */
157 DrawChar(col * 16, ln * 24, 16, 24, (char *)&Font_16x24_h[c * 24]);
158 break;
159 }
160 }
161
162 /*-----------------------------------------------------------------------------
163 Print a string at line, col
164 - ln: Line number
165 - col: Column number
166 - c: Pointer to the string to print
167 *----------------------------------------------------------------------------*/
168 void display_print_string (unsigned int ln, unsigned int col, const char *s) {
169 while (*s) {
170 if(*s == ’\n’){ /* newline */
171 ln++;
172 col = 0;
173 }
174 else if (*s == ’\f’){ /* form feed (clr screen) */
175 ln = 0;
176 col = 0;
177 display_clear(Black);
178 }
179 else if (*s == ’\r’){ /* return */
180 col = 0;
181 }
182 else{
183 if(col >= (width/font_width)){
184 ln++;
185 col = 0;
186 }
187 if(ln >= height/font_height){
188 ln = height/font_height-1;
189 ScrollVertical(font_height);
190 }
191 display_print_char (ln, col++, *s);
192 }
193 s++;
194 }
195 }
196
197 /*-----------------------------------------------------------------------------
198 Set the text color
199 - color: Color
200 *----------------------------------------------------------------------------*/
201 void display_set_text_color (unsigned short color) {
202 Color[TXT_COLOR] = color;
203 }
204
205 /*-----------------------------------------------------------------------------
206 Set the background color
207 - color: Color
208 *----------------------------------------------------------------------------*/
209 void display_set_back_color (unsigned short color) {
210 Color[BG_COLOR] = color;
211 }
212
213 /*-----------------------------------------------------------------------------
214 Set if display is landscape or portrait
215 - ls: 0: Portrait, 1: Landscape
216 *----------------------------------------------------------------------------*/
217 void display_set_landscape (uint8_t ls){

124



A.6 Display Driver

218 landscape = ls;
219 if(ls){
220 width = PHYS_YSZ;
221 height = PHYS_XSZ;
222 }
223 else{
224 width = PHYS_YSZ;
225 height = PHYS_XSZ;
226 }
227 }
228
229 /*-----------------------------------------------------------------------------
230 Set the font size
231 - font: SMALL_FONT or BIG_FONT
232 *----------------------------------------------------------------------------*/
233 void display_set_font_size (unsigned short font) {
234 switch(font){
235 case SMALL_FONT:
236 font_size = 0;
237 font_width = SMALL_FONT_WIDTH;
238 font_height = SMALL_FONT_HEIGHT;
239 break;
240 case BIG_FONT:
241 font_size = 1;
242 font_width = BIG_FONT_WIDTH;
243 font_height = BIG_FONT_HEIGHT;
244 break;
245 default:
246 font_size = 0;
247 font_width = SMALL_FONT_WIDTH;
248 font_height = SMALL_FONT_HEIGHT;
249 break;
250 }
251 }
252
253 /*-----------------------------------------------------------------------------
254 Initialize the on-board display
255 *----------------------------------------------------------------------------*/
256 void display_init(void){
257 // Board spesific init
258 Board_LCD_Init();
259 // Clear frame buffer
260 display_clear(Black);
261 //delay(5);
262 // Turn on LCD
263 Chip_LCD_Init( (LCD_Config_Type *) &BOARD_LCD);
264 Chip_LCD_SetUPFrameBuffer( (void *) framebuffer);
265 Chip_LCD_Power(ENABLE);
266 delay(5);
267 Board_SetLCDBacklight(1);
268 // Set text color
269 display_set_font_size(SMALL_FONT);
270 display_set_back_color(Black);
271 display_set_text_color(Green);
272 }
273
274 /*-----------------------------------------------------------------------------
275 Implementation of sendchar function used in Retarget.c
276 *----------------------------------------------------------------------------*/
277 int sendchar(int ch){
278 static unsigned int ln = 0;
279 static unsigned int col = 0;
280
281 char c = (char) ch;
282 if(c == ’\n’){ /* newline */
283 ln++;
284 col = 0;
285 }
286 else if (c == ’\f’){ /* form feed (clr screen) */
287 ln = 0;
288 col = 0;
289 display_clear(Black);
290 }
291 else if (c == ’\r’){ /* return */

125



A Source Code

292 col = 0;
293 }
294 else{
295 if(col >= (width/font_width)){
296 ln++;
297 col = 0;
298 }
299 if(ln >= height/font_height){
300 ln = height/font_height-1;
301 ScrollVertical(font_height);
302 }
303 display_print_char(ln, col, (char) c);
304 col++;
305 }
306 return (int) ch;
307 }
308
309 /*-----------------------------------------------------------------------------
310 Implementation of getkey function used in Retarget.c
311 *----------------------------------------------------------------------------*/
312 int getkey(void){return 0;}

Listing 6: display_mcb4300.c

126



A.7 Spectrum Analyzer

A.7 Spectrum Analyzer

1 #include "spectrum.h"
2 #include "board.h"
3 #include "memory_map.h"
4 #include "display_mcb4300.h"
5 #include "uda1380_mcb4300.h"
6 #include "dsp_funcs.h"
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <stdlib.h>

10
11 // Remove sprintf not compatible with char* warning
12 #pragma diag_suppress 167
13
14 // Spectrum Parameters
15 #define SPECTRUM_SCREEN_X_SIZE 320
16 #define SPECTRUM_SCREEN_Y_ZIZE 240
17 #define SPECTRUM_HEIGHT 210
18 #define SPECTRUM_WIDTH 312
19 #define SPECTRUM_START_Y (SPECTRUM_HEIGHT + 15)
20 #define SPECTRUM_START_X (SPECTRUM_SCREEN_X_SIZE - SPECTRUM_WIDTH)
21
22 // Colors used by spectrum
23 #define SPECTRUM_BACK_CLR Black
24 #define SPECTRUM_TEXT_CLR Cyan
25 #define SPECTRUM_POINT_CLR Orange
26
27 // Parameters for Welch estimate
28 #define WELCH_N 20480
29 #define WELCH_OVERLAP 1536
30
31 // Private variables
32 static float valsprbin;
33 static uint32_t num_vals;
34
35 // Strings
36 static const char title_s[] = "AUDIO SPECTRUM ANALYZER";
37
38 // Shared variables
39 volatile float maxval = 1.0f;
40 int adc_on = 0;
41 int spectrum_on = 0;
42
43 /*-----------------------------------------------------------------------------
44 Draw the point on the spectrum by coloring a column of pixels ut to the
45 correct point, forming a bar. (Float version)
46 Will convert to dB scale with max_val as the reference value.
47 - val: The value of the point (float)
48 - xpos: The x position of the point
49 *----------------------------------------------------------------------------*/
50 static void putPointFl(float val, uint16_t xpos){
51 static int16_t ypos;
52
53 if(xpos < SPECTRUM_WIDTH){
54 // Convert to dB.
55 if(val == 0)
56 val = -9999;
57 else if(val < maxval)
58 val = 10*log10(val/maxval);
59 else val = 0;
60 // Convert to y position on screen
61 ypos = (val + 80) * SPECTRUM_HEIGHT/80;
62 if (ypos <= 0) ypos = 0;
63 // Draw the spectrum lines
64 display_draw_line(SPECTRUM_SCREEN_X_SIZE-SPECTRUM_START_X-xpos,
65 SPECTRUM_START_Y,ypos,0,SPECTRUM_POINT_CLR);
66 display_draw_line(SPECTRUM_SCREEN_X_SIZE-SPECTRUM_START_X-xpos,
67 SPECTRUM_START_Y-ypos,SPECTRUM_HEIGHT-ypos,0,SPECTRUM_BACK_CLR);
68 }
69 }
70
71 /*-----------------------------------------------------------------------------

127



A Source Code

72 Display the recorded spectrum on the screen. When there is more values than
73 pixels, it will display the averages of adjacent samples. (Float version)
74 - vals: Pointer to the array containing the magnitude values
75 - num_vals: Number of values in the array
76 *----------------------------------------------------------------------------*/
77 void spectrum_display_spectrum_f32(float32_t *vals){
78 static float i;
79 static float j;
80 uint16_t k = 1;
81 float bin = 0;
82 // Join adjacent values into bins to fit the pixels on the display
83 if (valsprbin >= 1) {
84 j = 0;
85 for (i = 0; i < num_vals; i++){
86 bin += vals[(uint32_t)i];
87 j++;
88 if((i+1.0f) / valsprbin >= k){
89 bin /= j;
90 putPointFl(bin,k-1);
91 bin = 0;
92 j = 0;
93 k++;
94 }
95 }
96 }
97 else{
98 //TODO: Bars larger than 1 pixel..
99 }

100 }
101
102 /*-----------------------------------------------------------------------------
103 Initialize the spectrum analyzer
104 - fs: Sampling frequency
105 *----------------------------------------------------------------------------*/
106 void spectrum_init(uint16_t fs, uint32_t bins){
107 static int i;
108 char buf[64];
109 static ADC_Clock_Setup_Type ADCSetup;
110
111 // Calculate number of values per bin
112 valsprbin = (float)bins / (float)SPECTRUM_WIDTH;
113 num_vals = bins;
114
115 // Set up the display
116 display_clear(SPECTRUM_BACK_CLR);
117 display_set_back_color(SPECTRUM_BACK_CLR);
118 display_set_text_color(SPECTRUM_TEXT_CLR);
119 display_set_font_size(SMALL_FONT);
120 display_set_landscape(1);
121 display_print_string(0,0,title_s);
122 display_print_string((240/8)-1,1,"0 kHz");
123 sprintf(buf, "%3.1f", (float)fs/4000);
124 display_print_string((240/8)-1,(320/12),buf);
125 sprintf(buf, "%2.0f", (float)fs/2000);
126 display_print_string((240/8)-1,(320/6)-2,buf);
127 display_draw_line(0,10,320,1,SPECTRUM_TEXT_CLR);
128 display_draw_line(0,229,320,1,SPECTRUM_TEXT_CLR);
129 for(i = 0; i <= SPECTRUM_WIDTH; i += 13){
130 display_draw_line(i,SPECTRUM_START_Y+5,3,0,SPECTRUM_TEXT_CLR);
131 }
132
133 // ENABLE ADC TO CONTROL MAX LEVEL SENSITIVITY
134 Board_ADC_Init();
135 Chip_ADC_Init(LPC_ADC0, &ADCSetup);
136 Chip_ADC_Channel_Enable_Cmd(LPC_ADC0, ADC_CH1, ENABLE);
137 Chip_ADC_Set_Resolution(LPC_ADC0, &ADCSetup, ADC_10BITS);
138 Chip_ADC_Set_SampleRate(LPC_ADC0, &ADCSetup, 400000);
139 // Enable ADC Interrupt
140 NVIC_ClearPendingIRQ(ADC0_IRQn);
141 NVIC_EnableIRQ(ADC0_IRQn);
142 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, ENABLE);
143
144 // Start the codec and set flags for SysTick handler
145 uda1380_start_stream();

128



A.7 Spectrum Analyzer

146 adc_on = 1;
147 spectrum_on = 1;
148 }// end spectrum_init()
149
150 /*-----------------------------------------------------------------------------
151 De-Initialize the spectrum analyzer, i.e. stop the AD converter
152 *----------------------------------------------------------------------------*/
153 void spectrum_uninit(void){
154 // Stop the codec
155 uda1380_stop_stream();
156
157 // Stop the ADC
158 NVIC_DisableIRQ(ADC0_IRQn);
159 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, DISABLE);
160 Chip_ADC_Channel_Enable_Cmd(LPC_ADC0, ADC_CH1, DISABLE);
161 Chip_ADC_DeInit(LPC_ADC0);
162
163 // Clear flags for SysTick handler
164 adc_on = 0;
165 spectrum_on = 0;
166 }
167
168 /*-----------------------------------------------------------------------------
169 Make an audio spectrum by taking a Welch estimate and displaying
170 the resulting spectrum on screen
171 *----------------------------------------------------------------------------*/
172 void spectrum(void){
173 static float32_t *res;
174
175 // Get Welch estimate
176 res = dsp_welch(WELCH_N, WELCH_OVERLAP);
177
178 // Display the magnitudes as a spectrum
179 spectrum_display_spectrum_f32(res);
180 }
181
182 /*-----------------------------------------------------------------------------
183 IRQ handler for the ADC0 to control the reference (max) value of the spectrum
184 *----------------------------------------------------------------------------*/
185 void ADC0_IRQHandler(void){
186 uint16_t dataADC;
187 float32_t new_val;
188
189 NVIC_DisableIRQ(ADC0_IRQn);
190 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, DISABLE);
191
192 // Read ADC value
193 Chip_ADC_Read_Value(LPC_ADC0, ADC_CH1, &dataADC);
194
195 // Calculate new max value
196 if(dataADC != 0){
197 new_val = (float)dataADC/1024.0f;
198 if((new_val > (maxval + 1.0f/40.0f))
199 || (new_val < (maxval - 1.0f/100.0f))){
200 maxval = new_val;
201 }
202 }
203 NVIC_EnableIRQ(ADC0_IRQn);
204 Chip_ADC_Channel_Int_Cmd(LPC_ADC0, ADC_CH1, ENABLE);
205 }

Listing 7: spectrum.c

129



B Matlab Scripts

B Matlab Scripts

B.1 Simulation of Direct Welch Method

1 O = 0; % Overlap in percent
2 M = 2048; % Length of M
3 D = M * O/100; % Number of samples overlap
4 N = 20480; % Total number of samples
5 ymin = 0; % Min y-value for plot
6 ymax = 50; % Max y-value for plot
7
8 fname=’0-50-0-low.wav’; % File to read
9

10 %Read the file
11 [x,fs]=wavread(fname);
12
13 % Filter the signal with FIR high-pass filter
14 fc = 160; % Cutoff frequency
15 B= fir1(100,fc*2/11025,’high’);
16 A = 1;
17 xfilt = filter(B,A,x);
18
19 % Set up arrays and variables
20 v = [];
21 j = 1;
22 f = 0 : 11025/1024 : 11025;
23 ff = 0 : 0.5 : 249.5;
24
25 % Go through the file and do measurements at N/2 intervals
26 for i = 1:N/1:length(x)-N
27 % Fine Welch estimate
28 Pxx = pwelch(xfilt(i:i+N),hamming(M),D,M,fs);
29
30 % Find highest compontent of estimate
31 [m, index] = max(Pxx);
32 fspeed = (index / M) * fs;
33 % Calculate speed based on highest component
34 v(j) = (fspeed*3e8)/(2*24.1e9*cos(pi/4)) * 3.6;
35
36 % Uptate index for next measurement
37 j = j+1;
38 end
39
40 % Plot measured speeds
41 figure(1);
42 t = 1:j-1;
43 plot(t,v,’*r’);
44 grid(’on’);
45 ylim([ymin,ymax]);
46 xlim([0 length(v)]);
47 xlabel(’Measurement number’);
48 ylabel(’Estimated Speed (km/h)’);
49 title(’Strongest Component from Welch Estimate’);

Listing 8: simulation_welch.m

130



B.2 Simulation of Correlation Method

B.2 Simulation of Correlation Method

1 O = 75; % Overlap in percent
2 M = 2048; % Length of M
3 D = M * O/100; % Number of samples overlap
4 N = 20480; % Total number of samples
5 ymin = 0; % Min y-value for plot
6 ymax = 50; % Max y-value for plot
7
8 fname=’0-50-0-low.wav’; % File to read
9

10 %Read the file
11 [x,fs]=wavread(fname);
12
13 % Filter the signal with FIR high-pass filter
14 fc = 160; % Cutoff frequency
15 B= fir1(100,fc*2/11025,’high’);
16 A = 1;
17 xfilt = filter(B,A,x);
18
19 % Set up arrays and variables
20 v2 = [];
21 Cs = zeros(1,400);
22 j = 1;
23 f = 0 : 11025/1024 : 11025;
24 ff = 0 : 0.5 : 249.5;
25
26 % Go through the file and do measurements at N/2 intervals
27 for i = 1:N:length(x)-N
28 % Fine Welch estimate
29 Pxx = pwelch(xfilt(i:i+N),hamming(M),D,M,fs);
30
31 % Compare Pxx and Pyy
32 for v1 = 1 : 1 : 500
33 Pyy = rot90(Pfv(v1,1:1025),1);
34 C = conj(Pxx) .* Pyy;
35 Cs(v1) = sum(C);
36 end
37 % Calculate speed baset on strongest correlation
38 [m, index] = max(Cs);
39 v2(j) = (index-1)/2;
40
41 % Uptate index for next measurement
42 j = j+1;
43 end
44
45 % Plot measured speeds
46 figure(1);
47 t = 1:j-1;
48 plot(t,v2,’*r’);
49 grid(’on’);
50 ylim([ymin,ymax]);
51 xlim([0 length(v2)]);
52 xlabel(’Measurement number’);
53 ylabel(’Estimated Speed (km/h)’);
54 title(’Strongest Spectral Correlation’);

Listing 9: simulation_correlation.m

131



B Matlab Scripts

B.3 Estimation of Theoretical Doppler Spectra

1 Pt = 5e-3; % Transmit power
2 L = 0.01245; % Wavelength
3 c0 = L^2 * Pt * (4*pi)^-3; % Radar equation constant
4
5 num_speeds = 500; % Number of speeds to estimate
6 fmax = 11025; % Max doppler frequency to estimate
7
8 h = 0.5; % Radar HoG
9 tilt = 45; % Sensor tilt in degrees

10 hwidth = 72; % horizontal 3dB beam with (72 deg. from datasheet)
11 vwidth = 18; % vertical 3dB beam with (18 deg. from datasheet)
12
13 % Illumination Area depth (3db bandwidth)
14 Ad = h/tan((tilt-vwidth/2)*pi/180) - h/tan((tilt+vwidth/2)*pi/180);
15 % Illumination Area width (3db bandwidth)
16 Aw = h/sin(tilt*pi/180) * tan((hwidth/2)*pi/180) * 2;
17 A = Ad * Aw; % Approx. illuminated area
18
19 f = 0 : fmax/1024 : fmax; % Number of frequencies to plot
20
21 Pfv = zeros(num_speeds,size(f,2));
22
23 for v = 0.5 : 0.5 : 249.5
24 v0 = v/3.6;
25 for i = 1 : size(f,2)
26 % Find number of values to estimate
27 am = real(acos(f(i)*(L/(2*v0))));
28 if am == 0
29 num = i;
30 break
31 end
32 end
33 a = real(acos(f.*(L/(2*v0)))); % Angles
34 a = a.*180/pi; % To degrees
35
36 % Estimate power specrtrum
37 for i = 1 : num
38 % Find radar cross section
39 sigma0 = findS0(a(i));
40 sigma = sigma0 * A;
41
42 % Find the antenna gain from antenna diagram (corrected for tilt)
43 phi = findPhi(a(i)+90-tilt);
44
45 % Find the distance to the road
46 r = h/sin(a(i)*pi/180);
47
48 % Calculate the power distribution
49 Pfv(v*2+1,i) = (1/num)*(c0 * sigma * phi^2) / r^4;
50 end
51 Pfv(v*2+1,1:1025) = rot90(Pfv(v*2+1,1:1025),2);
52 end
53
54 % Write the estemated spectra to file used by microcontroller
55 fid = fopen(’pyy.bin’, ’w’);
56 fwrite(fid, rot90(Pfv(1:num_speeds,1:1025)), ’float32’,0,’l’);
57 fclose(fid);

Listing 10: pyy_estimation.m

132



B.4 Plot Measurements vs GPS reference including errors

B.4 Plot Measurements vs GPS reference including er-
rors

1 % Define scale and limits:
2 scale = 1.20;
3 limit = 5;
4 uplimit = 70;
5
6 % Read measurement file
7 fid = fopen(’5.DOP’, ’r’);
8 % Timestamp is first 16 bytes
9 timestamp = fread(fid,4,’uint32’,0);

10 % Rest is measurement values
11 values = fread(fid,inf,’float32’,0,’l’);
12 fclose(fid);
13
14 % Read GPS file
15 fid = fopen(’result.txt’, ’r’);
16 SPD = textscan(fid, ’%s %s %f32’);
17 fclose(fid);
18
19 % Find start and end time for GPS results
20 formatIn = ’HHMMSS ddmmyy’;
21 datestring = sprintf(’%s %s’,SPD{1}{1},SPD{2}{1});
22 starttime = datenum(datestring,formatIn);
23 datestring = sprintf(’%s %s’,SPD{1}{end},SPD{2}{end});
24 endtime = datenum(datestring,formatIn);
25 seconds = etime(datevec(endtime),datevec(starttime));
26
27 % Plot GPS values
28 fig = figure(1);
29 subplot(2,1,1);
30 x = 0:seconds;
31 p1 = plot(x,SPD{3},’bo’);
32 hold(’on’);
33
34 % Bitmask
35 mask = hex2dec(’000000FF’);
36
37 % Measurement type
38 type = bitshift(timestamp(1,1),-24);
39 switch type
40 case 0
41 type_string = ’PERIODOGRAM’;
42 case 1
43 type_string = ’WELCH ESTIMATE’;
44 case 2
45 type_string = ’CORRELATION’;
46 otherwise
47 type_string = ’’;
48 end
49
50 % Measurement start time
51 shour = bitand(bitshift(timestamp(1,1),-16),mask);
52 smin = bitand(bitshift(timestamp(1,1),-8),mask);
53 ssec = bitand(bitshift(timestamp(1,1),-0),mask);
54 syear = bitshift(timestamp(2,1),-16);
55 smonth = bitand(bitshift(timestamp(2,1),-8),mask);
56 sday = bitand(bitshift(timestamp(2,1),-0),mask);
57 start = datenum(0,0,0,shour,smin,ssec);
58
59 % Measurement end time
60 fhour = bitand(bitshift(timestamp(3,1),-16),mask);
61 fmin = bitand(bitshift(timestamp(3,1),-8),mask);
62 fsec = bitand(bitshift(timestamp(3,1),-0),mask);
63 fyear = bitshift(timestamp(4,1),-16);
64 fmonth = bitand(bitshift(timestamp(4,1),-8),mask);
65 fday = bitand(bitshift(timestamp(4,1),-0),mask);
66 finish = datenum(0,0,0,fhour,fmin,fsec);
67
68 % Real Measurement start and end time
69 meas_start = starttime + start;

133



B Matlab Scripts

70 meas_end = starttime + finish;
71
72 % Number of measurements
73 num = length(values)-1;
74 zerotime = datenum(0,0,0,0,0,0);
75
76 % Elapsed time in seconds
77 seconds = etime(datevec(meas_end),datevec(meas_start));
78 startx = etime(datevec(meas_start),datevec(starttime));
79 endx = startx + seconds;
80
81 % Ignore values of 108 (should be 0).
82 for i = 1 : length(values)
83 if values(i) == 108
84 values(i) = 0;
85 else
86 values(i) = values(i)*scale;
87 end
88 end
89
90 % Find Downsampling fraction
91 Fs = num/seconds;
92 R = round(Fs * 1000);
93
94 % Downsample to 1 Hz to align with GPS results
95 upvalues = interp(values,1000);
96 yvalues = decimate(upvalues,R);
97
98 lag = 1; % Measurement started 1 second after GPS
99 x = startx+lag:1:endx+lag;

100 xlimit = [startx endx];
101
102 % Plot Aligned Values
103 p2 = plot(x,yvalues,’r*’);
104 xlabel(’Seconds since 03-Jun-2013 12:33:14 (UTC)’);
105 ylabel(’Speed (km/h)’);
106 grid(’on’);
107 xlim(xlimit);
108 title([’Aligned Speed Measurements. Start time: ’ datestr(meas_start) ’, End time: ’

datestr(meas_end)]);
109 hold(’off’);
110 leg1 = legend([p1,p2],’GPS’,’Radar’);
111 set(leg1,’Location’,’NorthEast’)
112
113 % Calculate and plot error in km/h and %
114 error1 = [];
115 error2 = [];
116 erri = 1;
117 for i = xlimit(1) : xlimit(2)
118 if( SPD{3}(i+lag) < limit || yvalues(i-startx) < limit*scale || SPD{3}(i+lag) >

uplimit)
119 %error(i-startx) = 0;
120 else
121 error1(erri) = (yvalues(i-startx) - SPD{3}(i+lag));
122 error2(erri) = 100*(yvalues(i-startx) - SPD{3}(i+lag))/SPD{3}(i+lag);
123 erri = erri+1;
124 end
125 end
126 m1 = sprintf(’%f’,mean(error1));
127 s1 = sprintf(’%f’,std(error1));
128 m2 = sprintf(’%f’,mean(error2));
129 s2 = sprintf(’%f’,std(error2));
130
131 subplot(2,2,3);
132 hist(error1,50);
133 grid(’on’);
134 ylabel(’Number of measurements’);
135 xlabel(’Error in km/h’);
136 title([’Mean: ’ m1 ’, Std: ’ s1]);
137
138 subplot(2,2,4);
139 hist(error2,50);
140 grid(’on’);
141 ylabel(’Number of measurements’);

134



B.4 Plot Measurements vs GPS reference including errors

142 xlabel(’Error in %’);
143 title([’Mean: ’ m2 ’, Std: ’ s2]);
144
145 % Save plot to PNG file
146 name = sprintf(’%d_%d_total_corr2’,xlimit(1),xlimit(2));
147 set(fig,’PaperUnits’,’inches’,’PaperSize’,[10,6],’PaperPosition’,[0 0 10 6]);
148 print(’-dpng’,’-r300’,name);

Listing 11: plot_all.m

135


	Introduction
	Motivation
	Problem Description
	The Problem Text
	System Specifications

	Speed Measurement Systems
	The Speedometer
	Satellite Positioning Systems

	Doppler Radar Speed Measurement - Previous Approaches
	Doppler Radar Speed Measurement 1
	Doppler Radar Speed Measurement 2
	Doppler Radar Speed Measurement 2

	The Proposed Solution
	Thesis Outline

	Theoretical Background
	Radar
	The Radar Equation

	The Doppler Effect
	The Doppler Spectrum

	The CW Doppler Radar
	Theoretical Received Power Spectrum
	The Radar Equation Expanded to Two Dimensions
	Radar Cross Section of Asphalt (())
	Antenna Gain (())
	Doppler spectrum estimation for different velocities
	Some Estimations

	Digital Signal Processing Theory
	The Fast Fourier Transform (FFT)
	The Power Density Spectrum (Periodogram)
	The Barlett and Welch Methods for Power Spectrum Estimation
	Comparing Power Density Spectra


	Available Hardware
	The MDU2410 Doppler Radar Module
	The Intermediate-Frequency signal

	Signal Processing Hardware
	Development Kit
	Block Diagram of the Hardware Setup
	Power Supply


	Analog to Digital Conversion
	Using an Audio Codec to Sample the IF signal
	Digital Data Transfer over the I2S Bus
	IF Signal Filtering

	Speed Measurement Algorithms
	Selecting the Strongest Frequency Component
	Selecting the Strongest Component from a Welch Estimate
	Correlating with Pre-Estimated Power Spectra
	Matlab simulations
	Speed measurement based on Algorithm 2
	Speed measurement based on Algorithm 3

	Refresh Rate vs. Resolution
	Non-overlapping Calculation
	Overlapping Calculation


	Software Development
	Application Overview and Menu System
	LPCOpen and ARM Libraries
	ARM CMSIS DSP Library functions
	Initial Setup of the Development Board
	LCD Display Driver (display_mcb4300.c)
	UDA1380 CODEC driver (uda1380_mcb4300.c)
	Sampling Frequency and Other I2S Parameters
	Modes of Operation
	Important Functions

	SD/MMC driver (sdmmc_mcb4300.c)
	File System
	Wave File Format
	Important functions

	DSP Functions (dsp_funcs.c)
	A Simple Spectrum Analyzer (spectrum.c)
	Drawing the Spectrum
	Adjusting the Sensitivity
	Important functions

	Recording and Storing the raw IF Signal
	Implementation of Speed Measurement Algorithms (speed.c)
	Logging and Storing the Speed Measurements
	File Format

	Memory Management

	Testing the System
	Initial Tests (Data Recording)
	Initial Test Results
	Final Test of Speed Measuring Algorithms

	Statistical Analysis and Error Correction
	Aligning Measurements with Reference values
	Analyzing The Results
	Error Correction

	Results
	Unaligned Measurements vs GPS reference
	Aligned Measurements vs GPS reference
	Error Corrected Measurements vs GPS reference
	Complete Measurement sequences vs GPS reference
	Measurement Rates
	Measurement Resolutions

	Discussion
	Measurable Range of Speeds
	Alignment of the Measurement Samples with Reference Samples
	Statistics and Accuracy Before Error Correction
	Excerpts 1 to 3
	Excerpt 4
	Excerpts 4 and 6
	The Complete Test Runs

	Statistics and Accuracy After Error Correction
	Excerpts
	The Complete Test Runs
	Unlinearity of Mean Error

	Measurement Rates and Resolution
	Comparing the Results with Previous Solutions

	Concluding Remarks
	Future Work

	Source Code
	Main Application
	DSP Functions
	Speed Measuring Algorithms
	CODEC Driver
	SD Card Interface Drives
	Display Driver
	Spectrum Analyzer

	Matlab Scripts
	Simulation of Direct Welch Method
	Simulation of Correlation Method
	Estimation of Theoretical Doppler Spectra
	Plot Measurements vs GPS reference including errors


