
Low Energy Implementation of Robust
Digital Arithmetic in Sub/Near-Threshold
Nanoscale CMOS
For Ultrasound Beamforming

Lars-Frode Schjolden

Master of Science in Electronics

Supervisor: Snorre Aunet, IET
Co-supervisor: Trond Ytterdal, IET

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

This thesis will show combinatorial digital design using the 65nm tran-
sistor technology operating in near/sub-threshold region. Designing a 16By9Bit
adder optimized with regard to power consumption with a speed require-
ment of 50MHz per operation for micro-beamforming. To optimize the
addition of the 16, 9 bit numbers, studies of different building block are
performed to find the best building blocks optimized for low power con-
sumption, robustness and regular layout design without breaking the speed
requirement. A new digital building block for standard digital building
blocks optimized for subthreshold performance are proposed. In addition
there will be shown a way to make regular layout designs.

As a final result there will be shown a 16by9bit adder layout design with
a delay equal to 17.7nS = 56.5MHz with a power consumption of 25µW
at 20◦C and delay equal to 10nS = 100MHz with a power consumption of
36.2µW at 80◦C. The design are build up from 6736 transistor and uses a
area of 240µm * 84µm = 20.1mm2.

i

ii

Preface
This thesis is the final part of the master of science degree in electronics within
the field of circuit and system design at NTNU(Norwegian University of Science
and Technology) at the Department of Electronics and Telecommunication.

Working with this project has been very interesting and given me a grate
insight in IC design, designing circuits for sub/near-threshold operations and the
challenges by doing circuit layouts.

I want to thank my supervisor Snorre Aunet, and co-supervisor Trond Yt-
terdal for valuable technical support and guidance trough the master thesis. As
well i want to thank the other master students at the study room Joacim, Magne
and Jonathan. At last i want to thank my family that has supported me trough
my 5 years as a student.

iii

iv

Contents

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Previous Work . 1
1.3 Overview of the Thesis . 1

2 Ultrasound Beamforming 3

3 Sub/Near-threshold Operations and Basic Design Challenges 5
3.1 Subthreshold Operation . 5
3.2 Nearthreshold Operation . 5
3.3 The 65nm Technology Library . 5
3.4 CMOS Power Consumption . 6

3.4.1 Dynamic Power Consumption 6
3.4.2 Subthreshold Static Power Consumption 7
3.4.3 Short Circuit Power . 8

3.5 Delay . 8
3.6 Power Delay Product and Energy Delay Product 9
3.7 PMOS / NMOS Imbalance and Transistor Sizing 9
3.8 Process Variation and Robustness 10
3.9 Temperature Variations . 10
3.10 Monte Carlo Simulation . 10
3.11 Parasitic Effects . 11
3.12 Verilog-A . 11

4 Basic Building Block Implemantation for Sub/Near-Threshold
Operations 13
4.1 Basic Building Block . 13

4.1.1 Minority-3 Gate . 13
4.1.2 4T Inverter . 14
4.1.3 8T Implementation . 15
4.1.4 XOR Gate . 16

4.2 Adder Implementations . 17
4.2.1 Half Adder . 17
4.2.2 Full Adder . 18
4.2.3 N-Bit Ripple-Carry Adder 20
4.2.4 N-Bit Kogge-Stone Adder 21
4.2.5 16By9Bit Adder Design . 23

v

Contents

5 Comparison of 2-input NAND for Subthreshold Operations 27
5.1 Balancing the Gates . 27
5.2 Test-Bench . 28
5.3 Results . 28

5.3.1 Dimension Results . 28
5.3.2 Delay Results . 29
5.3.3 Power Consumption Result 30
5.3.4 Power Delay Product Results 31
5.3.5 Static Leakage Results . 32

5.4 Quantification . 33
5.4.1 Delay . 33
5.4.2 Power Consumption . 33
5.4.3 Power Delay Product . 34
5.4.4 Static Leakage . 34

5.5 Discussion . 34

6 Method 35
6.1 Threshold Voltages . 35

6.1.1 Threshold Voltage Test-Bench 35
6.1.2 Transistor Sizing Effect on the Threshold Voltage 35
6.1.3 nWell Sizing Effect on the Threshold Voltage 36
6.1.4 Threshold Voltage Summation 37

6.2 Transistor sizing . 37
6.3 Transistor Choice . 37

6.3.1 Transistor Comparison Test-Bench 37
6.3.2 Transistor Comparison Result 38
6.3.3 Summation . 40

6.4 Layout Design . 40
6.4.1 65nm Design Rules . 40
6.4.2 Well Proximity Effect . 41
6.4.3 Guard Rings . 41
6.4.4 Dummy Transistors . 41
6.4.5 Set Poly Pitch . 42
6.4.6 The Layout Outline . 42

6.5 Kogge-Stone vs Ripple-Carry . 43
6.5.1 8Bit Adder Test-Bench . 44
6.5.2 Transistor Size . 45
6.5.3 Kogge-Stone and Ripple-Carry Simulations 46
6.5.4 Adder Conclusion . 47

6.6 16By9Bit Adder Design . 48
6.6.1 Adders . 48

vi

Contents

6.6.2 Transistor Sizing . 48
6.6.3 16By9Bit Adder Verification 49
6.6.4 16By9Bit Adder Test-Bench 50
6.6.5 Process Variation, Mismatch and Temperature Simulations 51

7 Simulations and Results 53
7.1 Transistor Count and Area . 53
7.2 Delay and Power . 53
7.3 Process Variation and Mismatch 56

8 Discussion 61
8.1 Delay . 61
8.2 Power Consumption . 61
8.3 Process Variation and Mismatch 62
8.4 Improvements . 62

9 Conclusion 65
9.1 Future Work . 65

A appendix 69
A.1 verilogA . 69

A.1.1 Sample And Hold . 69
A.1.2 Comparator . 70
A.1.3 FullAdder . 71

A.2 Layout . 73
A.3 Schematic . 79

vii

List of Figures

List of Figures
1 Signal Process Architecture . 3
2 Dynamic, leakage and short circuit power cunsumption in a basic

inverter . 6
3 Punch trough illustration . 7
4 Short circuit power illustration . 8
5 10T Minority-3 . 14
6 4T inverter . 15
7 8T implementation . 16
8 XOR . 17
9 Half Adder . 18
10 Minoruty-3 based Full Adder . 19
11 FullAdder implementations . 20
12 Adder schematic . 22
13 Black and Gray Building Blocks 22
14 Black and Gray Building Blocks 23
15 16 By 9 Bit Adder . 24
16 Propagation of the signal in the 16 By 9 Bit Adder 25
17 NAND Implementations . 27
18 Delay at different temperatures. 29
19 Power consumption at different temperatures. 30
20 PDP at different temperatures. 31
21 Leakage at different temperatures. 32
22 Gate length effect on the threshold voltage 36
23 nWell effect on the threshold voltage 36
24 Minority-3 gates oscillation . 38
25 Minority-3 Delays . 39
26 Minority-3 Power . 39
27 Minority-3 PDP . 40
28 Layout Outline . 43
29 8Bit Adder test-bench . 45
30 Kogge-Stone and Ripple carry Power and Delay 46
31 Kogge-Stone and Ripple carry Deviation 47
32 16 times 9 Bit Adder verification test-bench 50
33 16 times 9 Bit Adder test-bench . 51
34 Delay at different temperatures after schematic simulations 53
35 Power at different temperatures after schematic simulations 54
36 Delay at different temperatures after layout simulations 55
37 Power at different temperatures after layout simulations 56
38 Delay simulations in schematic for the 16by9bit adder 57

viii

List of Tables

39 Power simulations in schematic for the 16by9bit adder 58
40 Delay simulations in layout and schematic for the 9Bit adder . . . 59
41 Power simulations in layout and schematic for the 9Bit adder . . . 60
42 4T inverter layout . 73
43 Minority3 layout . 74
44 Xor layout . 75
45 HalfAdder layout . 76
46 FullAdder layout . 77
47 9BitAdder layout . 78
48 16By9Bit Adder layout . 79
49 8Bit Ripple-Carry Adder Schematic 80
50 8Bit Kogge-Stone Adder Schematic 80

List of Tables
1 Truth Table Minority-3 . 13
2 Half Adder Truth Table . 18
3 Full Adder Truth Table . 19
4 Gate widths and lengths after balancing 28
5 Delay reduction going from -40C to 80C. 29
6 Power increasing when going from -40 to 80C. 30
7 Power delay product increasing when going from -40 to 80C. . . . 31
8 Leakage power increasing when going from -40 to 80C. 32
9 NAND implementation quantification 33
10 Widths and lengths for a 4T inverter balanced for 200mV gate

lenght = 90nm . 35
11 Widths and lengths balanced for 200mV gate lenght = 90nm . . . 38
12 65nm Design Rules . 41
13 Widths and lengths balanced for 200mV gate lenght = 90nm . . . 46
14 Kogge-Stone and Ripple carry Power and Delay 47
15 Widths and lengths balanced for 270mV gate lenght = 60nm . . . 49
16 Delay simulations in schematic for the 16by9bit adder 57
17 Power simulations in schematic for the 16by9bit adder 58
18 Delay simulations in layout and schematic for the 9Bit adder . . . 59
19 Power simulations in layout and schematic for the 9Bit adder . . . 60

ix

List of Tables

x

1 Introduction
Arithmetic operations play an important part in most VLSI applications, and one
of the commonly used arithmetic operations is the adder. Upgrading the adder
performance will have a great impact on the circuit performance. And with a
increased demand for battery operated applications the need for power efficient
design has grown significantly[1]. Scaling the threshold voltage downto the sub-
threshold and nearthreshold region is a method to achieve low power solutions,
but it comes at the cost of slower operating speed and increased sensitivity due
to process variation[2].

1.1 Motivation
The motivation for this project is to make a 16 times 9 Bits adder used for ultra-
sound beamforming used in a probe fore image views. This is further described in
section 2. The additions have a time requirement of 50Mhz in room temperature
and above. When it comes to power consumption the goal is to uses as little
power as possible where the final goal of power usage is set to be bellow 50µW.
The adder are named 16by9bit adder in the thesis.

1.2 Previous Work
There is not found any previous result for a 16 times 9 bits addition in the
sub/near-threshold region. It is presented a adder that sums 128 numbers for
micro-beamforming, made in VHDL and synthesized by the synopsis tool for
0.18µm CMOS logic, then to show a result for a 10bit adder to have a circuit
delay equal to 500MHz [3]. But the paper does not present anything about sup-
ply voltage or power consumption. It is shown some previous work implementing
a micro-beamformer in probes[4] where there are presented some numbers for
power consumption, this is further described in section 2.

1.3 Overview of the Thesis
• Section 1 gives a short introduction of the thesis, the motivation and pre-

vious work.

• Section 2 present a more complex description of the problem description
and present how this has been done earlier.

• Section 3 gives a description of the theory behind sub/near-threshold op-
erations and some basic design challenges.

1

1 Introduction

• Section 4 present the basic building blocks design for sub/near threshold
operations.

• Section 5 is a short study of a new 8T implementation, where comparison
of 2-input NAND implementations is performed.

• Section 6 shows testes of threshold voltages, comparison of transistor types
and comparison of adder topologies to find the best implementation for the
16by9bit adder. The method for layout will as well be shown in this section.

• Section 7 present the simulation and results from the 16by9bit adder.

• Section 8 is a discussion of the results in section 7.

• Section 9 state the conclusion of the thesis.
There are as well three appendix chapters:

• Appendix A.1 present the verilogA code used for the circuit verification.

• Appendix A.2 presents the circuit layout designs.

• Appendix A.3 will present some schematic circuits.

2

2 Ultrasound Beamforming
Beamforming is a process that are used in combination with an array of sensors
to give a flexible form of spatial filtering. The beamform sends out a echo signal
and the purpose is to form a beam of the returning echo signal summed together
to form a strong echo signal of the point of interest [5].

The beamforming will be used in a probe that should obtain image from
inside the human body, and one the mayor issues is the large numbers of signals
that had to be transmitted to the external imaging system. Connecting each
signal element with separate cables will not be possible, and applying micro-
beamforming inside the probe will reduce the channel count while maintaining
valuable information[6].

One way to handle this receive signal is to to use the sub-array beamforming
architecture[4]. The signal processing chain is divided into a front-end realized
in the probe tip and a back-end that is implemented in an external image system
as seen in figure 1.

Figure 1: Signal Process Architecture
[4]

As seen in figure 1 the electronic inside the probe consist of three function
blocks, low-noise amplifier(LNA), TGC amplifiers and a micro-beamformer cir-
cuit. The micro-beamformer is applied to align the signals for the elements and

3

2 Ultrasound Beamforming

then add them. This beamform addition is done using a analog design using
voltage to current converters then to sum the signals in the current domain[4].
In this project the purpose is to do this summation with a combinatorial digital
adder operating in sub/near-threshold to achieve savings in the power consump-
tion with a speed equal to and higher than 50MHz. The power usage for a anlaog
implementation of the micro-beamforming is previously shown to use 480µW with
a step size of 40nS = 1

40nS = 25MHz[4].

4

3 Sub/Near-threshold Operations and Basic De-
sign Challenges

In this section some basic theory about near/sub-threshold operations and some
theory for the understanding of these operations behaviour will be described.
Tools that are used for simulation and verification of the building blocks will
also be described in this section. All the schematic designs, layout designs and
simulations are performed in the Cadence Virtuoso platform.

3.1 Subthreshold Operation

Subthreshold design has emerged as a method to achieve low power consumption
for digital circuits where speed is of second concern. Operating circuits in weak
inversion at supply voltages bellow the transistor’s threshold voltage VT provides
considerable energy savings at the cost of slower operating speed and increased
sensitivity toward process variation. [2].

3.2 Nearthreshold Operation

Nearthreshold also called moderate inversion is the point between the weak-
inversion (subthreshold) and strong-inversion (super-threshold). The behaviour
of the transistor does not jump directly from the exponential behaviour of sub-
threshold to the quadratic behaviour of super threshold. There is a smooth tran-
sition between the two, where neither effect is dominant called the nearthreshold
region. The behaviour in this area can be understood as a cross between weak-
and strong-inversion[7].

3.3 The 65nm Technology Library

This project uses two transistors from a 65nm library. The lvtgp and the svtgp
transistors both are general purpose transistors but they behaves different be-
cause they have different threshold voltages (Vt). The svtgp is the transistor that
uses standard Vt voltage, while the lvtgp have a lower Vt voltage. Lower thresh-
old voltage will increase the speed but it comes at the cost of additional power
consumption. The transistor is further tested and bench-marked in section 6.1
and section 6.3.

5

3 Sub/Near-threshold Operations and Basic Design Challenges

3.4 CMOS Power Consumption
The power consumed by a CMOS transistor based circuits can be divided into
three different sources: dynamic, static and short circuit power consumption.
Static power consumption is also described as leakage power consumption. The
total power consumption in a CMOS circuit can be calculated from equation 1
[8].

PT otal = PDynamic + Pleakage + Pshortcircuit (1)

In figure 2 the three components of power consumption are shown.

[8]

Figure 2: Dynamic, leakage and short circuit power cunsumption in a basic inverter

Further down in this section these three types of power consumption will be
described.

3.4.1 Dynamic Power Consumption

The Dynamic power consumption occur when the logic state is changing (switch-
ing). The energy is drawn from the power supply to load the output capacitance.
This power consumption due to switching activity is given in equation 2.

P = α ∗ fclk ∗ V 2
dd ∗ C[1] (2)

Where fclk is the clock frequency, Vdd is the supply voltage, α is the switching
activity and C is the capacitive load. Reducing any of this factors leads to
reduction in the dynamic power consumption. This equation is given for static

6

3.4 CMOS Power Consumption

circuits with a system clock, but in this project all circuits are combinational
circuits with no clock. Hence equation 2 can be adjust simply by using the gate
input frequency instead of the clock frequency.

3.4.2 Subthreshold Static Power Consumption

The main contribution to leakage is the subthreshold current between the drain
and source [9]. The power consumption due to static power consumption are
shown from equation 3.

P = Vdd ∗ Ilsub[1] (3)

The source for current leakage in the subthreshold region mainly comes from
three sources. The weak inversion effect: when the gate voltage is below VT ,
carriers move by diffusion along the surface. This effect becomes significant when
the supply voltage is smaller then, and close to the threshold voltage [8]. The
Drain-Included Barrier Lowering(DIBL): The reduction of threshold voltage of
the transistor at higher drain voltages. The DIBL effect is enhanced at shorter
effective channel length and higher drain voltage [8]. The direct punch-through
current: This is the punch-trough of the electrons between drain and source.
When the drain and source depletion regions approach each other and electrically
touch deep in the channel as seen in figure 3. This effect can occur as a result of
the DIBL as well[8].

[10]

Figure 3: Punch trough illustration

Equation 4 shows the basic equation for modelling subthreshold current.

ID:sub−threshold = Io ∗ exp(VGS − VT

n ∗ UT
) (4)

7

3 Sub/Near-threshold Operations and Basic Design Challenges

Where Io er equal to:

Io = µo ∗ Cox ∗ W
L

∗ (n− 1) ∗ V 2
th (5)

where UT is the thermal voltage kT
q , n is the subthreshold slope factor(n =

1+ Cd

Cox
), VT is the transistor threshold voltage, µ is the carrier mobility, Cox is the

oxide capacitance and W and L are the effective transistor width and lengths[11].

3.4.3 Short Circuit Power

In digital circuits there is always a short time where pull-up and pull-down paths
of a CMOS gate are one simultaneously, thus creating a parasitic current that
is wasted as illustrated in figure 4. And this additional power consumption is
called short-circuit power. This effect can account for 10 percent of the dynamic
power consumption[12] depending on the technology that are used.

[8]

Figure 4: Short circuit power illustration

3.5 Delay
Propagation delay is is often described by equation 6 in subthreshold:

td = CL ∗ VDD ∗K
Io ∗ exp(VDD−VT

n∗UT
) (6)

8

3.6 Power Delay Product and Energy Delay Product

Where k is a constant, VDD is the supply voltage, VT is the transistor threshold
voltage and UT is the thermal voltage [11]. From equation 6 it is shown that the
delay is strongly affected by the supply voltage, when scaling down the supply
voltage it is seen from equation 2 and equation 3 that the power consumption
are decreased but this leads to a increase in the propagation delay. Moreover
the delay is effected by the slew rate, the equation for the slew rate are give in
equation 7 [10].

SR = ID

CL
(7)

Where Id is given by equation 8 in weak inversion.

ID = µ ∗ Cox ∗ W
L

∗ e− VT 0
nUT (8)

Where µ is the mobility of electrons in the channel, Cox is the gate capacitance
per unit area, W is the gate width, L is the gate length, BT 0 is the gate threshold
voltage for the channel at equilibrium and UT is the thermal voltage [13].

3.6 Power Delay Product and Energy Delay Product
Power delay product(PDP) is a measurement that describe the relation between
power and delay and are estimated from equation 9 [14].

PDP = Power ∗DELAY = Energy (9)

Energy delay product(EDP) is a measurement that then describe the relationship
between the energy and the delay and are estimated from equation 10 [14].

EDP = PDP ∗Delay (10)

As seen from equation 9 and equation 10 both EDP and PDP can be calculated
from the measured delay and power consumption.

3.7 PMOS / NMOS Imbalance and Transistor Sizing
Imbalance between NMOS and PMOS often occur due to different threshold
voltage between the P- and N- MOS transistors which can give large strength
difference. Imbalance between the NMOS and PMOS can then lead to Noise
Margin and Vdd,min degradation and a increase in leakage energy [15]. The

9

3 Sub/Near-threshold Operations and Basic Design Challenges

transistor sizing will as well have a great impact on the circuit performance. Gate
widths and lengths will affect both the subthreshold current and the threshold
voltage, meaning that finding good transistor lengths and widths can optimise
the circuit performance for the circuit specifications.

3.8 Process Variation and Robustness
Process variation is a production error, as CMOS technology scale down there
is more exposed to process variation. The major factors leading to process vari-
ation are wafer misalignment, random doping fluctuations, and imperfections in
planarizarion steps [16]. Different transistors at a chip can get a variation in crit-
ical process parameters such as threshold voltage or effective channel length and
can result in fluctuations in the switching speed and leakage power consumption
[16]. The MOS transistor’s in the subthreshold region is extra sensitive to both
temperature and process variation. That because the variation in the threshold
voltage will affect the subthreshold current exponentially[17].

3.9 Temperature Variations
For higher temperatures the effective threshold voltage and the mobility factor
µo both decreases as seen from equation 11.

µ(T) = µ(T0) ∗ (T
T0

)−M

VT (T0) = K ∗ T
(11)

In strong inversion the lower mobility will dominate and lead to slower circuits
at high temperatures. In the subthreshold region the lower VT dominates, and
hot carriers grows faster exponentially. This lead to raised leakage currents and
to decreased circuits delay at high temperatures [11].

3.10 Monte Carlo Simulation
To check the circuits robustness to process variation (described in section 3.8) and
mismatch the Monte Carlo simulations are used. The Monte Carlo simulations
perform risk analyses by building models of possible results by randomly changing
the transistor parameters. The cadence Monte Carlo simulators that are used in
this project allow random variation of process parameters, mismatch parameters
and process & mismatch parameters. This is done because wafer production
always gives some variations of the technology parameters and the Monte Carlo
simulations is used as a tool to estimate the effect of these variations. The

10

3.11 Parasitic Effects

Monte Carlo simulations will as a result present the mean value of the simulations
together with a sigma(σ) value, where this sigma value is the standard deviation.
Typical 30 to 50 Monte Carlo runs are enough to get meaningful statistics [18].

3.11 Parasitic Effects
When doing layout simulations the circuit performance changes because of the
parasitic extraction. This parasitic extraction is necessary because not all of the
electrical parameters can be considered during schematic analyses. The para-
sitic extraction includes capacitance, resistance and inductance from wiring. The
parasitic parameters can account for 70% or more of the circuit delays depend-
ing on the technology used. For near/sub-threshold circuits the delay caused by
wiring is of great importance, and today four main parasitic extractions of layout
design are used: one, two and three-dimensional and extraction of dynamic ca-
pacitance effects. In this project the three dimensional extraction is used because
it consider the capacitance between neighbouring wires, as well as capacitance by
different levels of metallization. This level of accuracy comes of the cost of CPU
time and main memory requirement but it is as well the most exact parasitic
extraction[19].

3.12 Verilog-A
Verilog-A is a hardware description Language (HDL) and is derived from the
IEEE 1364 Verilog HDL specification. The intention of Verilog-A is to let de-
signers make high performance modules, that describe the module behaviour
mathematically in terms of the external parameters applied to the module[20].

11

3 Sub/Near-threshold Operations and Basic Design Challenges

12

4 Basic Building Block Implemantation for Sub/Near-
Threshold Operations

In this chapter all the building blocks used in the project will be presented. All
basic building blocks uses stacked transistors because this is shown to increase
the robustness for minority-3 gates [21]. For the other standard building blocks
a new stacked 8 transistor implementation is introduced in this section and fur-
ther tested in section 5. The stacked transistors are as well shown to reduce the
subthreshold leakage current [22]. Bringing the standard of stacked transistors
into all the building blocks will as well contribute to a more regular layout de-
signs. The layouts are presented in the appendix A.2 and will be referred to
in the different sections. The way of doing the layouts are further explained in
section 6.4.

4.1 Basic Building Block
In this section the basic building blocks used for larger designs will be presented.

4.1.1 Minority-3 Gate

The minority-3 gate is a basic digital building block that has 3 binary inputs and
one binary output. As a result of two or more logic 1 at the input the output
will be zero. And if there are one or less digital 1 at the input the result will be
a logical 1 at the output, as seen in table 1.

X Y Z OUT
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 1: Truth Table Minority-3

The minority-3 gate can be a base for many different building blocks and
can depending on their input wiring, implement either NAND, NOR, Inverter
or Inverter Carry[21]. If an extra inverter is available and set on the output the
AND, OR and CARRY gates can be implemented as well. There are various

13

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

alternatives of how the minority-3 gates are implemented and each of them have
their advantages. In this project a 10T implementation of the minority-3 gate
will be used as seen in figure 5.

Figure 5: 10T Minority-3

Previous studies have looked at different minority-3 topologies[21]. Their
results show that a 10T implementation used the smallest amount of power con-
sumption and that a 22T implementation has the best robustness potential. In
addition the 10T implementation is shown to, in most cases dominate the 6T
implementation on robustness and the 12T implementation on circuit delay[21].
The minority 3 layout is shown in figure 43.

4.1.2 4T Inverter

The inverter is a very simple logic gate with one logic input and one logic output
where the logical input are inverted to the output. The inverter normally consist
of one NMOS and one PMOS gate, but in this project the robustness can be a
issue, therefore the inverter implementation used in this project is based on a 4T
inverter as seen in figure 6. The 4T implementation will as well contribute to the
regular layout with stacked transistors.

14

4.1 Basic Building Block

Figure 6: 4T inverter

The layout of the 4T inverter are shown in figure 42.

4.1.3 8T Implementation

There are several ways to implement basic building blocks for digital design, in
subthreshold circuits the minority-3 gate are in some cases chosen to get more
robust circuits. This because it has been reported to be a more reliable design
compared to implementation based on boolean logic [23]. As an alternative to
these two implementations a new standard implementation has been made. This
new implementation is called an 8T (8 Transistor) implementation, after an idea
by Snorre Aunet and Jonathan Bjerkedok.

By making the 8T design the idea is to keep the basic building block for all
part of the design. In the same way as minority-3 it are made to implement
blocks like NAND, NOR, INVERTER, XOR, AND and OR only by changing
the wiring and using inverted signals. The 8T implementation take the design
from the basic boolean NAND and NOR and add transistors either by stacking
or setting two extra in parallel to make a basic building block as seen in figure 7.
This is done to make a robust design of the basic boolean building blocks that
shod outperform the minority-3 gate on delay times and the boolean gates on
robustness. The implementation of a 8T NAND is further tested compared to
boolean NAND and a minority-3 NAND in section 5.

15

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

Figure 7: 8T implementation

4.1.4 XOR Gate

In figure 8 a implementation of a Xor gate are shown using a standard Xor im-
plementation because this implementation already consist of stacked transistors,
and the 4T inverter described in section 4.1.2. This way of design is chosen to
keep the regular design with stacked transistor. The Xor gate layout are shown
in figure 44.

16

4.2 Adder Implementations

Figure 8: XOR

4.2 Adder Implementations
In this section the different adder are shown, this section start by showing the
implementation of a half- and full Adder. Then the Ripple-Carry adder and
Kogge-Stone adder are presented follow-up by a 16by9bit adder implementation.

4.2.1 Half Adder

The half adder is a combinational circuit that add two inputs, that provide two
outputs sum and carry[24]. The half adder is build from the Xor and 8T And
gates seen in section 4.1.4 and section 4.1.3 as shown in figure 9. The 8T And
uses the 8T implementation of a NAND gate as seen in figure 17b and a 4T
inverter to create the 8T AND gate.

17

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

A

B

S

Co

Figure 9: Half Adder

The Half Adder truth table is shown in table 2.

Table 2: Half Adder Truth Table

A B Sum Co

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The half adder delays and power consumption can roughly be calculated as
seen in equation 12.

Sum = XORDelay

Co = ANDDelay

Power = XORP ower +ANDP ower

(12)

This type of adder is used for adder stages that not receive any carry input.
Using the 8T implementation technique this implementation will consist of 28
transistors. The layout for the half adder are shown in figure 45.

4.2.2 Full Adder

A full-adder is one of the basic blocks in digital design. The Full-Adder is a
combinational circuit with three inputs A, B and a carry (Cin) and two outputs

18

4.2 Adder Implementations

Sum and carry out (Cout) [25]. This combinational circuit is based on minority-3
gates, consisting of three minority-3 gates and two inverters as seen in figure 10[1].

[1]

Figure 10: Minoruty-3 based Full Adder

The Full Adder truth table is shown in table 3.

Table 3: Full Adder Truth Table

A B Ci Sum Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The full adder delays and power consumption can roughly be calculated as
seen in equation 13.

Sum = 2 ∗miority − 3Delay + inverterDelay

Co = minority − 3Delat + inverterDelay

Power = 3 ∗minority − 3P ower + 2 ∗ inverterP ower

(13)

This type of adder is different from the half adder because it handles a carry
input. But this adder is bigger and consists of 38 transistors in schematic design,

19

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

in addition 6 dummy transistors are used to create a regular layout and the tran-
sistor count raise to 44 transistors in layout. The full adder layout are shown in
figure 46.

This design is chosen for the full adder because this implementation is proved
to be as fast and faster than the standard CMOS implementation and direct
synthesis implementation[26], the standard CMOS implementation and the Di-
rect synthesis implementation are shown in figure 11 .In addition the minority-3
implementation provide stacked transistors that lead to more robust and regular
design than the standard CMOS. One possibility could have been to implement
a direct synthesis implementation using the 8T implementation but this would
give a transistor count of 64 that will require more area and higher power con-
sumption.

(a) Direct synthesis (b) Standard CMOS

Figure 11: FullAdder implementations
[26]

4.2.3 N-Bit Ripple-Carry Adder

Binary addition has previously been studied starting with the ripple-carry adder
going toward parallel implementations, such as the Kogge-Stone adder. It is
commonly accepted that the Ripple-Carry Adder is the slowest, while the Kogge-
Stone Adder is the theoretically fastest [27]. It is shown that the 32-bit Kogge-
Stone Adder is 4.5 times faster than the 32-Bit Ripple-Carry Adder not consid-
ering the wire delays [28]. While this factor is reduced to 2.2-2.4 taking wire
delays into account. The number of layer the signals need to go trough can be
calculated to be [27]:

20

4.2 Adder Implementations

LayersRCA = n (14)

LayersKS = 2 + log2(n) (15)

Where n is the number of bit, RCA is short for the ripple carry adder and KS
is short for the kogge-stone adder.

The ripple-carry adder are build from the 10T minority-3 gates 4.1.1 in com-
bination with the 4T inverters4.1.2. Making FullAdders 4.2.2 put in series de-
pending in the number of bits for the adder. The delay can then be calculated
from the following equation.

Delay = (N − 1) ∗ Cout+ SUM =>
(N − 1)(min3Delay ∗ inverterDelay) + ((2 ∗min3Delay) ∗ inverterDelay) (16)

The schematic of a 8 Bit ripple-carry adder is shown in appendix A.3.

4.2.4 N-Bit Kogge-Stone Adder

The Kogge-Stone adder consist of three basic stages [29]. Bitwise PG Logic,
Group PG Logic and Sum logic as seen in figure 12.

21

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

Figure 12: Adder schematic
[29]

The group PG stage is build on black and gray building blocks as seen in
figure 13.

Figure 13: Black and Gray Building Blocks
[29]

A schematic of the Kogge-Stone adder are shown in figure14.

22

4.2 Adder Implementations

Figure 14: Black and Gray Building Blocks
[29]

From equation 14 a 8 Bit Kogge-stone adder will have five layers of blocks
to propagate trough. These five layers will consist of one start block from the
Bitwise PG Logic, three black cells and one cell from the sum Logic. Giving the
following calculation for the 8-Bit Kogge-Stone delay seen in equation 17.

Delay = StartBlockDelay + 3 ∗ blackCellDelay + SumBlockDelay =>
Delay = XORDelay + 3(ANDDelay +ORDelay) + (ANDDelay +ORDelay)

(17)

The kogge-stone adder logic gates are not made from the minority-3 gate al-
though that is possible, but from some the new 8T implementation of NAND
and NOR gates because they are proven to work better than the minority 3 basic
gates as seen in section 5. The schematic of a 8 Bit kogge-stone adder is shown
in appendix A.3.

4.2.5 16By9Bit Adder Design

The 16by9Bit adders purpose is to add 16 9bit numbers and are shown in fig-
ure 15. This adder consist of eight 9 Bit Adders (stage 1) followed up by four 10
Bit Adders (stage 2), two 11 Bit Adders (stage 3) and one 12Bit Adder (stage
4) working in parallel as seen in figure 15. Each adder stage propagate the re-
sult to the next adder with the carry as the highest bit, meaning that the adder
increasing with one bit for each stage. This is done to avoid overflow and the
result from 16, 9 Bit numbers added together will give a 13 Bit answer. By doing
the addition this way there will not flow any carry into the adder stages and the
9,10,11 and 12 bit adders can be made without a carry input, how to do this is
described in section 6.6.1.

23

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

9Bit
Adder

9Bit
Adder

9Bit
Adder

9Bit
Adder

9Bit
Adder

9Bit
Adder

9Bit
Adder

9Bit
Adder

10Bit
Adder

10Bit
Adder

10Bit
Adder

10Bit
Adder

11Bit
Adder

11Bit
Adder

12Bit
Adder

Figure 15: 16 By 9 Bit Adder

The layout for the 16by9bit adder are shown in figure 48.

The propagation out from each stage in the 16by9bit adder are shown as an
example in figure 16, all 16 9 Bit inputs are in this example are set to toggle
between zero and one, and shows the output of each adder stage. The delay is
the working time before the signal settle and the delay time increase with the
numbers of stages the signal has to propagate trough. Stage one are represented
by S1, stage two by S2, stage three by S3 and stage four by S4.

24

4.2 Adder Implementations

Figure 16: Propagation of the signal in the 16 By 9 Bit Adder

25

4 Basic Building Block Implemantation for Sub/Near-Threshold Operations

26

5 Comparison of 2-input NAND for Subthresh-
old Operations

In this section the study of three different ways making basic building blocks
for subthreshold operations are shown. A 2-input NAND implementation using
Minority-3, standard boolean implementation and the 8T implementation de-
scribed in section 4.1.3 are tested looking at delay, power consumption, PDP,
leakage and robustness. The implementations of the NAND gates are shown in
figure 17.

(a) Boolean 4T (b) 8T
(c) Minority 3

Figure 17: NAND Implementations

5.1 Balancing the Gates
For testing of the 2-input NAND gates the svtgp transistors from the 65nm library
is chosen using a standard gate length equal to 90nm, because it is shown to give
the best compromise between good circuit performance and low sensitivity toward
process variation[2]. The threshold voltages for the p- and nMos transistors
are then measured to be 318mV and 361mV respectively. The circuits are then
balanced for 250mV supply voltage(VDD) by setting VDD

2 at the inputs then to
tune the transistor widths until the output is VDD

2 .
For a NAND gate there will be two ways of sizing the transistors, either by

putting both inputs at VDD

2 or by setting one input to VDD and the other to
VDD

2 then to tune the transistor widths. All the implementations are balanced
with both methods then the gates are run through the test-bench described in
section 5.2 to check which way of balancing that gives the best power delay
product(PDP).

27

5 Comparison of 2-input NAND for Subthreshold Operations

5.2 Test-Bench
The test-bench takes the 2-input NAND implementations and put three of them
in series, and connect them as a ring oscillator. Then by getting the output
to toggle the delays, max power consumption and power delay product can be
measured. This because the oscillator will work at maximum speed with each
NAND-gate having two NAND-gates as input/output load. The output of the
NAND gate will toggle either when one input toggle and the other input is set to
VDD or when both inputs are set to toggle. The result shows the cases where the
worst PDP is found. The static leakage is tested by setting static inputs to the
oscillator, then there will not be any switching by the transistors and the static
leakage can be measured.

To check the robustness due to process variation and mismatch 200 Monte-
Carlo runs are used for each simulation, this because 50 Monte Carlo runs are
needed to get meaningful statistics as described in section 3.10 and 200 runs was
used to be shore to get enough data. The simulation times is still short when
running 200 Monte Carlo runs for this circuits. Then to check the robustness
towards temperature variations, the gates are simulated at -40 degrees, 20 degrees
and 80 degrees. The simulations are only done in schematic not taking parasitics
from wiring into account.

5.3 Results
Here the results for the comparison of the 2-input NAND implementations will
be shown.

5.3.1 Dimension Results

In table 4 the gate length and widths that are found after balancing the circuits
are shown.

Table 4: Gate widths and lengths after balancing

Gate implementation Plength Nlength Pwidth Nwidth

Boolean(4T) 90nm 90nm 290nm 300nm
8t 90nm 90nm 339nm 300nm

Minority-3 90nm 90nm 372nm 300nm

28

5.3 Results

5.3.2 Delay Results

In figure 18 the mean delay after 200 Monte-Carlo runs are shown together with
the % deviation measured by one sigma(σ).

Figure 18: Delay at different temperatures.

In table 5 the % deviation due to temperature variation is shown.

Table 5: Delay reduction going from -40C to 80C.

Topology Reduction

4T 82.54%
8T 83.47%

Min3 82.57%

29

5 Comparison of 2-input NAND for Subthreshold Operations

5.3.3 Power Consumption Result

In figure 19 the mean power consumption after 200 Monte-Carlo runs are shown
together with the % deviation measured by one sigma(σ).

Figure 19: Power consumption at different temperatures.

In table 6 the % deviation due to temperature variation is shown.

Table 6: Power increasing when going from -40 to 80C.

Topology Increasing

4T 665.67%
8T 671.11%

Min3 732.76%

30

5.3 Results

5.3.4 Power Delay Product Results

In figure 20 the mean power delay product(PDP) after 200 Monte-Carlo runs are
shown together with the % deviation measured by one sigma(σ).

Figure 20: PDP at different temperatures.

In table 7 the % deviation due to temperature variation is shown.

Table 7: Power delay product increasing when going from -40 to 80C.

Topology Increasing

4T 118.43%
8T 110.54%

Min3 128.06%

31

5 Comparison of 2-input NAND for Subthreshold Operations

5.3.5 Static Leakage Results

In figure 21 the mean static leakage after 200 Monte-Carlo runs are shown to-
gether with the % deviation measured by one sigma(σ).

Figure 21: Leakage at different temperatures.

In table 8 the % deviation due to temperature variation is shown.

Table 8: Leakage power increasing when going from -40 to 80C.

Topology Increasing

4T 1791%
8T 792%

Min3 11111%

32

5.4 Quantification

5.4 Quantification
In table 9 the different NAND implementations are quantified by rating each
implementation with regard to delay, power, pdp and leakage. The rating are
given from one to three stars where three stars are is the best and one star is the
worst.

Table 9: NAND implementation quantification

Measurements Boolean NAND 8T NAND minority-3 NAND
Delay FFF FF F

DelayRobustness F FFF FF
Power FF F FFF

PowerRobustness F FFF FF
PDP FFF FF F

PDPRobustness FF FFF F
Leakage F FF FFF

LeakageRobustness F FFF FF

5.4.1 Delay

It is shown in figure 18 that the boolean implementation is the fastest while the
minority-3 is the slowest while the 8T implementation delay is between the two
other. When looking at robustness it is shown that the 8T implementation is
far better than both the minority-3 and the boolean implementation. Looking
at the robustness to temperature variation there is no big difference between the
topologies as seen in table 5.

5.4.2 Power Consumption

From figure 19 It is shown that the 8T implementation have the highest power
consumption while the minority-3 have the lowest power consumption. But when
looking at power there is just minor differences, it is only 4nW between the 8T
and the minority-3 power consumption at 20 degrees. But it is yet again shown
that the 8T implementation is more robust than the two other implementations.
And as with the delay the deviation due to temperature variation seems to be
close to equal as seen from table 6.

33

5 Comparison of 2-input NAND for Subthreshold Operations

5.4.3 Power Delay Product

Figure 20 shows that the boolean 4T implementation have the best power delay
product while the minority-3 gate have the worst power delay product. It is again
shown that the 8t implementation is the most robust looking at the PDP. And as
seen in table 7 the deviation due to temperature is miner between the different
implementation.

5.4.4 Static Leakage

Looking at the static leakage in figure 21 it is shown that the minority-3 im-
plementation consumes least power while the boolean implementation is shown
to be the worst. Again the 8T implementation is the most robust. But when
looking at static leakage the different temperatures have different effects on the
implementations as seen from table 8.

5.5 Discussion
In subthreshold design robustness is a issue and by this mini study it is shown
that the 8T implementation contributes to a much more robust design than the
standard boolean and the minority-3 implementation of standard digital building
blocks like the NAND gate. The minority-3 gate is proven to be a bit more robust
than a standard implementation of a NAND gate but it is much slower. Therefore
a it is not recommend to use the minority-3 gates for basic building block designs
like NAND, NOR ,AND etc. Still the minority 3 gate will be useful in other design
like the Full-Adder as seen from section 4.2.2. In super-threshold the boolean
implementation of the NAND gate should still be the best alternative because
in super-threshold the robustness is not that big of a issue as in subthreshold.
In subthreshold the 8T implementation of basic digital building blocks seems to
be the better alternative because of the improved robustness without increasing
the delay as much as the minority-3 gate, compared to the standard boolean
implementation. The 8T implementation will as well contribute to much more
regular layout design than the boolean implementation.

34

6 Method
In this section testes of threshold voltages, comparison of transistor types and
comparison of adder topologies are shown to find the best implementation for
the 16by9Bit adder. A regular method for layout design are shown and the
test-benches for the 16By9Bit adder design are described.

6.1 Threshold Voltages
It is important to know the transistor used for the design, therefore some tests are
done to check the behaviour of the lvtgp and svtgp transistors threshold voltages,
the threshold voltage is important for the transistor choice as well. The change
in threshold voltages is tested as a factor of transistor lengths, and as a factor of
nWell doping in the layout design.

6.1.1 Threshold Voltage Test-Bench

The test-bench used to check the gate length effect on the threshold voltage uses
lvtgp and svtgp transistors implemented as 4T inverters balanced for 200mV.
The supply voltage VDD is set to 200mV, there are no additional load on the
test-bench and the input pulse is generated from a ideal voltage source, then to
measure the DC operation points. The sizes are shown in table 10

Table 10: Widths and lengths for a 4T inverter balanced for 200mV gate lenght =
90nm

Transistor Plength Nlength Pwidth Nwidth

lvtgp 90nm 90nm 590nm 300nm
svtgp 90nm 90nm 330nm 300nm

To check the nWell effect the same test-bench are used but this time the
4T inverter is drawn in layout and extracted with three dimensional parasitic
extraction. Then the nWell is put at different distances from the p- nMos gates,
then to measure the DC operation points of the transistors to check the threshold
voltages.

6.1.2 Transistor Sizing Effect on the Threshold Voltage

In figure 22 the threshold voltage is shown as a factor of transistor gate lengths.

35

6 Method

Figure 22: Gate length effect on the threshold voltage

6.1.3 nWell Sizing Effect on the Threshold Voltage

In figure 23 the threshold voltage is shown as a factor of distance from nWell edge
to the transistor gate.

Figure 23: nWell effect on the threshold voltage

36

6.2 Transistor sizing

6.1.4 Threshold Voltage Summation

As shown in figure 22 the transistor gate have a great impact on the threshold
voltage, smaller gate lengths gives higher threshold voltages. In figure 23 there is
shown that the distance from pMos gate to nWell edge will affect the threshold
voltage for a pMos transistor. But it is also shown that when the distance is
bigger than 2µm it will no longer have an impact on the threshold voltage.

6.2 Transistor sizing
It is previous shown that gate length Lp = Ln = 1.5 ∗ min will give a good
comparison between good circuit performance and low sensitivity toward process
variation in the 65nm technology[2]. With this gate length as a base the transistor
widths are adjust. To adjust the gate widths for a block Vdd

2 are set to the input
gate and the gate widths are adjust to get Vdd

2 at the output. This way of sizing
is used as a base for block comparison. When the blocks are chosen the sizing
is change to optimize the circuit performance for the 16By9Bit Adder. In this
project all blocks uses stacked transistors, leading to a proportional design where
all nMos transistors are equal and all pMos transistors are equal sized.

6.3 Transistor Choice
The choice of transistor type is based on the transistor threshold voltages, power
delay product, power and minimum delays. To check this effects a 10T imple-
mentation of the minority-3 gate are used and tested with both the svtgp and
the lvtgp transistors for comparison.

6.3.1 Transistor Comparison Test-Bench

To test the minority-3 performances the gates are put in a ring-oscillator as seen
in figure 24 to measure max speed, power usage at max speed and to calculate
the power delay product (PDP).

37

6 Method

Figure 24: Minority-3 gates oscillation

The gate are balanced for 200mV resulting in the sizes seen in table 11.

Table 11: Widths and lengths balanced for 200mV gate lenght = 90nm

Transistor Plength Nlength Pwidth Nwidth pMos Vth nMos Vth

lvtgp 90nm 90nm 590nm 300nm 244mV 294mV
svtgp 90nm 90nm 330nm 300nm 316mV 358mV

6.3.2 Transistor Comparison Result

In figure 25, figure 26 and figure 27 the delay, power and PDP is shown as a
factor of the supply voltage for both the svtgp and the lvtgp implementation.

38

6.3 Transistor Choice

Figure 25: Minority-3 Delays

Figure 26: Minority-3 Power

39

6 Method

Figure 27: Minority-3 PDP

6.3.3 Summation

As seen in figure 25 the lvtgp implementation is faster than the svtgp imple-
mentation at the same supply voltage. And from figure 26 and figure 27 it is
shown that the svtgp are more energy friendly at the same supply voltages. The
svtgp is as well shown to give the best PDP product at set speeds. This results
show that the svtgp transistors have better potential for energy saving for circuits
with slower working speed, but in this project it is foreseen that time requirement
can be hard to accomplish in sub/near-threshold therefore the lvtgp transistor is
chosen although it comes at the cost at some more energy usage per operation.

6.4 Layout Design
In this section the a standard method for all layout designs in this thesis are
shown and described.

6.4.1 65nm Design Rules

In table 12 the major 65nm design rules are shown [30].

40

6.4 Layout Design

Table 12: 65nm Design Rules

Design Rules Minimum pitch Line/Space
OD(nm) 190 90/100
PO(nm) 180 70/110
CO(nm) 200 90/110
M1(nm) 180 90/90

Via-x(nm) 210 100/110
M-x(nm) 210 100/110

PO-CO distance(nm) 210 100/110
n+ /p+ distance(nm) 190 -

[30]

The figure describes minimum pitch, line and spacing for different layers and
vias.

6.4.2 Well Proximity Effect

The WPE (Well proximity effect) is the effect caused by substrate implant ions
being reflected off the well edge leading to increased threshold voltage [31]. This
effect is tested in section 6.1.3 and its shown that the WPE does not affect the
threshold voltage when using nWells equal to 2µm or wider from the pMos gates.

6.4.3 Guard Rings

The pMos transistors uses nWell vias connections to VDD as guard rings at the
left and right hand side while the nMos use pTap vias connected to GND as
guard rings at the right and left. This is to reduce small carrier disturbance, and
to minimize stray electrons and stray holes from affecting the transistors[32].

6.4.4 Dummy Transistors

Dummy transistors are used to sure that each element sees the same surround-
ings. The pMos dummy wire all connections to VDD while the nMos wire all
connections to GND. The dummies are used to fill empty spaces to achieve reg-
ular design as seen by the top middle pMos and the bottom middle nMos in the
minority 3 layout seen in figure 43. Dummies are as well used at the end of
building blocks to give the working transistors inside the blocks equal working

41

6 Method

environment and additional space for wiring between the building blocks.

6.4.5 Set Poly Pitch

In this project set poly pitch are used in a single direction. Poly pinching ore
rounding can contribute to mismatch errors and to increased gate leakage, es-
pecially at the gate edge [31]. Regular poly pattern with a set width require
less optical proximity correction in production, the high poly density will as well
reduce the poly Reactive-ion etching loading [31].

6.4.6 The Layout Outline

In figure 28a the outline used for layout design are shown. The long arrows indi-
cated the distance from the pMos gated to the nWell edge and are equal to 2µm.
The short arrows indicate the distance between the transistors and the distance
from the nMos to the nWell gate. This distance are set to 0.5µm to make space
for wiring. As seen in the figure the transistors are not wired, the wiring will
determine what type of building blocks this should be. By adding or removing
lines of stacked transistors the different blocks used in this project are created
from this outline. Blocks as seen in figure 28a can as well be set on top of each
other giving layout as seen in figure 28b where the small arrow still indicates a
distance equal to 0.5µm. It is then important to keep the poly pitch directly
under each other to keep the regular outline. This method is used when putting
together the 16by9bit adder seen in figure 48 to get a more quadratic layout and
shorter wiring distances.

42

6.5 Kogge-Stone vs Ripple-Carry

(a) General

(b) Stacked

Figure 28: Layout Outline

6.5 Kogge-Stone vs Ripple-Carry

It is commonly known that the kogge-stone adder is the fastest adder while the
ripple-carry adder is considered to be the slowest one. For a 32 Bit Adder the
Kogge-Stone adder are shown to be 4.5 times faster than the Ripple-Carry Adder,
while with wire delays it is shown to be only 2.2-2.4 times faster for a 32Bit
implementation[28]. In this project the each adder will only reach a maximum
number of additions equal to 12Bit. From the calculation in equation 14 and 15
the Ripple-Carry adder will consist of 8 block while the Kogge-Stone adder will
consist of 5 blocks for the 8Bit adders. But for a 32 bit adder the Ripple-Carry
adder will have 32 delay blocks and the Kogge-Stone adder will only have 7 delay
blocks. Based on this it is possible that it can lead to major energy saving using
Ripple-Carry Adders for smaller additions jet not have a major delay disadvan-

43

6 Method

tage. Therefore a comparison between a 8Bit Ripple-Carry and 8Bit Kogge-Stone
adder are executed.

6.5.1 8Bit Adder Test-Bench

For adder comparison the lvtgp transistors operating at 200mV are chosen. The
Ripple-Carry adder are build from the Full Adder blocks shown in section 4.2.2.
While the Kogge-Stone Adder are build from the new 8T basic building blocks
shown in section 4.1.3. The Adder test bench set all 8 bits for one signal to
logic one(VDD) while setting all 8 Bits signals for the other signal equal to logic
zero(GND). Then the carry input is tuned to toggle between logic one and zero
at max frequency, to measure the maximum delay and power usage. The toggling
of the carry input will in this situation lead to a propagating of the carry through
the whole adder, leading to the longest timing delay at the highest summation
output. The test-bench is illustrated in figure 29.

44

6.5 Kogge-Stone vs Ripple-Carry

8BitAdder

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

Cin

S0

S1

S2

S3

S4

S5

S6

S7

Cout

VDD

Toggle

Figure 29: 8Bit Adder test-bench

To check the robustness due to process variation and mismatch 100 Monte-
Carlo runs are used for each simulation. This because 50 Monte Carlo runs are
needed to get meaningful statistics as described in section 3.10 and 100 Monte
Carlo runes are used to be sure that enough data is obtained still not having
very long simulation time. Then to check the robustness towards mismatch and
process variations, the gates are simulated at 27 degrees. The simulations are
only done in schematic not taking parasitics from wiring into account.

6.5.2 Transistor Size

After sizing the transistor widths with gate lengths equal to 90nm and supply
voltage equal to 200mV the transistor sizes used in this two 8Bit adders are shown
in table 13.

45

6 Method

Table 13: Widths and lengths balanced for 200mV gate lenght = 90nm

Plength Nlength Pwidth Nwidth

90nm 90nm 590nm 300nm

6.5.3 Kogge-Stone and Ripple-Carry Simulations

In figure 30 the result of delay and power simulations for the Kogge-Stone adder
and the Ripple-Carry adder are shown.

Figure 30: Kogge-Stone and Ripple carry Power and Delay

The results are as well shown in table 14.

46

6.5 Kogge-Stone vs Ripple-Carry

Table 14: Kogge-Stone and Ripple carry Power and Delay

Implementation VDD Delay in seconds Power in Watt
Kogge-Stone Adder 200mV 20.9nS 0.36µW
Ripple-Carry Adder 200mV 26.3nS 0.13µW
Ripple-Carry Adder 207mV 9.2nS 0.29µW

In figure 31 the deviation due to process variation and mismatch are shown
as percent deviation from the delay and power consumption shown in figure 30.
The deviation are set by sigma(σ) that represent the standard deviation from the
Monte Carlo simulations.

Figure 31: Kogge-Stone and Ripple carry Deviation

6.5.4 Adder Conclusion

As seen from figure 30 it is shown that the Kogge-Stone adder is 20% faster
than the Ripple-Carry adder at equal supply voltage, but it also uses 180% more
power at a supply voltage equal to 200mV. In figure 30 it is also shown that
when the Ripple-Carry supply voltage is turned up to 270mV the Ripple-Carry

47

6 Method

adder is 55% faster yet uses 35% less power than the Kogge-Stone adder working
at 200mV. In figure 31 the deviation due to process variation and mismatch are
shown, it is shown that the Ripple-Carry adder are more robust looking at delay
variation while the Kogge-Stone adder is shown to be more robust looking at
power in % deviation.

The simulations are schematic simulations that not consider wirering that are
foreseen to degrade the speed advantage for the Kogge-Stone adder[28]. This
results shows that the Ripple-Carry adder is the better alternative for smaller
adder implementations like the adders that will be used for the 16By9Bit adder.

6.6 16By9Bit Adder Design
The 16 time 9 Bit adder will add 144 inputs giving 2144 = 2.23 ∗ 1043 different
input stages. The testing of all this input stages will take a lot of time therefore
some restrictions are set. The circuit are made for beamforming for ultrasound,
and all the highest most important bits will be equal while there will be minor
differences in the smallest bits that not is so important for the image. Taking
this into consideration all high and low bits can be set equal for simulation and
testing of the circuit. Meaning that all the 9 bits from the 16 input signals are
set equal giving only 29 = 512 different input stages.

6.6.1 Adders

The adders used in the 16by9bit adder have no carry inputs meaning that there is
no need for a Full adder to calculate the first Bit. The fist bit are calculated from
a Half adder 4.2.1 while the rest of the adders uses Full adders 4.2.2. The N-Bit
adders delay and power consumption can then be calculated from equation 18

TDelay,P ower = HAdder + (N − 1)FAdder (18)

Where TDelay,P ower is the total delay or power consumption, HAdder can be
used as the Half adder delay or power consumption and FAdder can be used as
the Full adder delay or power consumption.

6.6.2 Transistor Sizing

Timing will become a issue therefore the lvtgp transistor are used. But when
sizing the lvtgp transistor it has been chosen to use a gate length equal to 60nm.
As seen in figure 22 this will increase the threshold voltage leading to a bit slower

48

6.6 16By9Bit Adder Design

circuit delay, but it will as well lead to savings in power consumption. The
transistor widths are found after balancing the minority-3 circuit for operation
voltage VDD equal to 270mV and gate lengths equal to 60nm, the transistor sizes
are shown in table 15.

Table 15: Widths and lengths balanced for 270mV gate lenght = 60nm

Transistor Plength Nlength Pwidth Nwidth pMos Vth nMos Vth

lvtgp 60nm 60nm 650nm 300nm 290mV 338mV

6.6.3 16By9Bit Adder Verification

A verification test bench is made to check if the 16by9bit adder works for all 512
different input combinations. The test bench are shown in figure 32 and consist
of a counter that count trough all 512 stages, the counter is a 9 bit adder that
always add one bit to the previous result giving a 9 Bit counter. To verify the
adder the 16by9bit adder are as well written in verilogA code for comparison
with the 16by9bit adder CMOS adder design. And as seen in figure 32 this two
adder results are run into a Sample and hold circuit that hold the signals at a
set time and run the signal into a comparator block that compare the output
from the two 16by9bit adders and gives a ’1’ on the output if a difference occurs.
The sample and hold, comparator and FullAdders used for the verilogA 16by9bit
adder are written in verilogA code and are shown in appendix A.1.1, A.1.2 and
A.1.3.

49

6 Method

Counter

0

1

2

3

4

5

6

7

8

Pipeline Adder Design

0

1

2

3

4

5

6

7

8 Out

Pipeline Adder VerilogA

0

1

2

3

4

5

6

7

8 Out

Sample and Hold

In Out

Sample and Hold

In Out

13 Bit Comperator
1

2 Out

13Bit Output

13Bit Output

13Bit Output

13Bit Output

Figure 32: 16 times 9 Bit Adder verification test-bench

6.6.4 16By9Bit Adder Test-Bench

The test bench in figure 33 are made to check the 16by9bit adder speed and
power consumption at a input signal of 50MHz. The inverters are set as load
to give the circuit a load and more real input signals. The worst delay time is
calculated to be when all inputs toggle between zero and one. At the time when
all inputs go from zero to one, the carry will propagate trough all the Full Adders
meaning that this cause the longest delay time for the 512 different input stages.
But this is only correct for this restrictions, meaning that longer delay times can
be found by not setting all the 9bit from the 16 input signals equal to each-other.
But this is not considered in this project.

50

6.6 16By9Bit Adder Design

Pipeline Adder Design

0

1

2

3

4

5

6

7

8

9

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

Co

Figure 33: 16 times 9 Bit Adder test-bench

6.6.5 Process Variation, Mismatch and Temperature Simulations

To check the temperature variations single runs at different temperatures are run
in schematic and of the three dimensional parasitic layout extraction. Check-
ing the robustness toward process variation and mismatch was done with Monte
Carlo simulations in schematic. But when running Monte-Carlo simulations of
the parasitic extracted layout for this design a problem occurs, a 12 core Intel(R)
Xeon(R) CPU X5680 @ 3.33GHz server with a main memory of 48G and swap-
ping memory of 50G can’t handle this data without running out of memory. A
downgrade of the parasitic extraction from three dimensional to two dimensional
that not considers wiring parasitics between the layers where done, yet the server
runs out of memory. Therefore there has been chosen to split up the 16By9Bit
adder to a simple 9Bit Ripple-Carry adder whit no carry input that is a part
of the 16by9bit adder design. Then to test the parasitic extracted layout design
of this adder to give some indication of the circuit’s robustness towards process
variation and mismatch. The test-bench for this adder uses the worst case condi-
tion shown in section 6.6.4 where all inputs switches from zero to one at 50Mhz
to check the variation in delay and power for analyses of the 16by9bit adder.

51

6 Method

The Ripple Carry adder simulations will give a opportunity to estimate the effect
the process variation and mismatch have on the 16by9bit adder in layout. The
layout of the 9Bit adder are shown in figure 47. The test-bench runs 100 Monte
Carlo runs, the deviation are measured at one sigma and the temperature is set
to 27◦C.

The process variation in a 9Bit adder can be used to estimate the process
in the 16By9Bit adder because it represent one of the four 16 times 9 adder
stages described in section 4.2.5. And because all the stages consist of adder this
simulation will give a understanding of the robustness towards mismatch and
process variation at each 16By9Bit adder stage.

52

7 Simulations and Results
After the 16by9bit adder has passed the verification test-bench described in sec-
tion 6.6.3 the adder are run trough the test-benches and the results are presented
in this section.

7.1 Transistor Count and Area
With Dummy transistors the 16by9bit adder consist of 6736 transistors where
172 of them are dummy transistors. The layout is 240µm long and 84µm high
giving a area of 20.1mm2 and are shown in figure 48.

7.2 Delay and Power
In figure 34 the delay as a function of temperature simulated in schematic are
shown. The figure shows rising and falling delay for the 16by9bit adder at differ-
ent supply voltages.

Figure 34: Delay at different temperatures after schematic simulations

In figure 35 the power as a function of temperature simulated in schematic

53

7 Simulations and Results

are shown. The figure shows the power consumption for the 16by9bit adder at
different supply voltages.

Figure 35: Power at different temperatures after schematic simulations

In figure 36 the delay as a function of temperature simulated from layout
are shown. The figure shows rising and falling delay for the 16by9bit adder at
different supply voltages.

54

7.2 Delay and Power

Figure 36: Delay at different temperatures after layout simulations

In figure 37 the delay as a function of temperature simulated from layout
are shown. The figure shows the power consumption for the 16by9bit adder at
different supply voltages.

55

7 Simulations and Results

Figure 37: Power at different temperatures after layout simulations

7.3 Process Variation and Mismatch
In this section the results from 100 Monte Carlo runs at a temperature equal to
27◦C are shown.

In figure 38 the results after 100 Monte Carlo simulations are shown in delay
together with σ deviation for the 16by9bit adder at 285mV and 295mV after
schematic simulations.

56

7.3 Process Variation and Mismatch

Figure 38: Delay simulations in schematic for the 16by9bit adder

The results are as well shown in table 16 that also shows the % deviation.

Table 16: Delay simulations in schematic for the 16by9bit adder

VDD Delay Deviation %Deviation
285m 6.3nS 1.1nS 17.5%
295m 5.39nS 0.98nS 18.2%

In figure 39 the results after 100 Monte Carlo simulations are shown in power
consumption together with σ deviation for the 16by9bit adder at 285mV and
295mV after schematic simulations.

57

7 Simulations and Results

Figure 39: Power simulations in schematic for the 16by9bit adder

The results are as well shown in table 17 that also shows the % deviation.

Table 17: Power simulations in schematic for the 16by9bit adder

VDD Power Deviation %Deviation
285m 13.9µW 0.16µW 1%
295m 15.5µW 0.18µW 1%

In figure 40 the results after 100 Monte Carlo simulations are shown in delay
together with σ deviation for the 9Bit adder at 285mV and 295mV after both
schematic and layout simulations.

58

7.3 Process Variation and Mismatch

Figure 40: Delay simulations in layout and schematic for the 9Bit adder

The results are as well shown in table 18 that also shows the % deviation.
Where Dev is short for deviation schem is short for schematic and lay is short
for layout.

Table 18: Delay simulations in layout and schematic for the 9Bit adder

VDD Delaylay Delayschem Devlay Devschem %Devlay %Devschem

285m 3.9nS 1.75nS 0.48nS 0.21nS 12.1% 11.9%
295m 3.5nS 1.55nS 0.41nS 0.18nS 11.6% 11.5%

In figure 41 the results after 100 Monte Carlo simulations are shown in power
consumption together with σ deviationfor the 9Bit adder at 285mV and 295mV
after both schematic and layout simulations.

59

7 Simulations and Results

Figure 41: Power simulations in layout and schematic for the 9Bit adder

The results are as well shown in table 19 that also shows the % deviation.
Where Dev is short for deviation schem is short for schematic and lay is short
for layout.

Table 19: Power simulations in layout and schematic for the 9Bit adder

VDD Powerlay Powerschem Devlay Devschem %Devlay %Devschem

285m 1.3µW 0.66µW 13nW 10nW 1% 1.5%
295m 1.4µW 0.71µW 14nW 10.1nW 1% 1.5%

60

8 Discussion

In this section the results from the 16by9bit adder seen in section 7 will be
discussed.

8.1 Delay

As seen from figure 34 and figure 36 the delays increase with a factor of ap-
proximately 2.5 when going from schematic to layout implementation. This is
due to the parasitics created from the three dimensional parasitic extraction.
The circuit was benchmarked to work from 20 degrees up to 80 degrees with a
working speed faster than 50MHz that means that the delays has to be smaller
than 1

50Mhz = 20ns. As seen from the figure 36 the 16 times 9 bit adder will
at 20 degrees not meet the delay requirement when the power supply is equal to
285mV. But when tuning up the power supply voltage to 295mV the worst case
time delay is shown to be 17.7nS = 1

17.7ns = 56.5MHz at 20 degrees and will
then still have some margin towards process variation and mismatch. It is as well
shown that when the temperatures increase the delay time decreases as foreseen
from the temperature theory shown in section 3.9 meaning that the circuit have
the worst delay time at 20 degrees. The factor for decreased delay times due to
power supply scaling can be calculated from figure 36, and are calculated to be
6.5% faster per 5mV increasing of the supply voltage at 20◦C.

8.2 Power Consumption

As seen from the power simulation results the power consumption increase with
a factor of two approximately, from schematic to layout simulations. And in fig-
ure 37 it is shown that the power consumption reach 36.2µW at max when the
temperature is 80 degrees and the supply voltage is 295mV. This is well below the
goal of less than 50µW meaning that the supply voltage can be increased even
further to achieve even faster circuit delays without braking the goal for power
consumption. It is as well shown that the power consumption degrees with the
temperature, this because the leakage current are raised by the temperature as
described in section 3.9. The factor due to supply voltage scaling can be found
from figure 37 by looking at the increased power consumption when increasing
the supply voltage, this factor is calculated to be 4.3% per 5mV increase in supply
voltage at 80◦C.

61

8 Discussion

8.3 Process Variation and Mismatch
In figure 40 the delay Monte Carlo simulation results are shown from both layout
and schematic for a 9 Bit Adder. Calculating the relative deviation in percent
as seen in table 18 it is shown that the deviation % is almost equal looking at
delay deviation. This can indicate that the process and mismatch variation are
dominated by the changes in the transistors parameters, meaning that the wiring
parasitic variations has very little effect on the relative deviation when going from
schematic to layout Monte Carlo simulations. Meaning that a good estimate can
be done for the 16By9Bit adder when it comes to process variation and mismatch
in layout. In table 16 it shown that the % deviation is equal to 17.5% and 18.2%
in delay after Monte Carlo simulations in the schematic at power supply equal
to 285mV and 295mV. Then the layout delay times from the 16 time 9 bit adder
are read out from figure 36 at 27◦C at 285mV and 295mV to be 18.2nS and
16nS then to estimate the deviation due to process variation and mismatch to
be 18.2nS ∗ 0.175 = 3.2nS and 16nS ∗ 0.182 = 2.9nS. Meaning that the im-
plementation using 295mV power supply still will have a maximum delay under
20nS at 27◦C and higher temperatures. Using the same factor for calculations of
the impact caused by process variation and mismatch at 20◦C the deviation will
be equal to 17.7nS ∗ 0.182 = 3.2nS giving a max delay at 20.9nS, that breaks
the limit of 20nS but this can be fixed by tuning up the supply voltage even
further. The goal of power consumption was set to 50µW and the max power
consumption was measured to be 36.2µW at 295mV power supply, meaning that
the supply voltage can be set higher whit-out braking the goal of 50µW.

Looking at the power deviation after 100 Mote Carlo runs it is shown in
figure 39 and figure 41 that the deviation due to mismatch and power consumption
are small, close to 1%. This power deviation is probably this low because the
input has a frequency of 50MHz and the circuit is much faster than this in the
Monte Carlos simulations meaning that the circuit is in a steady state for longer
periods. When the temperature is 80 degrees the power consumption is highest
and the circuit have a low delay time meaning that a deviation of 1% is likely
because of longer steady state times. It is as well reasonable to assume that the
% deviation will increase when the circuits work at 20 degrees because of a slower
circuit and shorter steady time, but at 20 degrees the power consumption is lower
and the deviation most likely not cause the power consumption to be higher than
the power consumption at 80 degrees.

8.4 Improvements
After parasitic extraction of the 16 times 9 bit adder the delay increase with
more than a factor 2.5 compared with schematic simulation, this was more than

62

8.4 Improvements

accounted for and thereby the supply voltage has to been tuned above the 270mV
that the circuit was balanced for. For a improvement of the design it will may have
been better to stick to the 90nm gate length that would give a lower threshold
voltage and thereby a faster working speed, but this would had come at the cost
of higher power consumption. Another approach that may would have improved
the circuit performance could be to balance the circuit for a supply voltage equal
to 295mV still keeping gate length at 60nm. Instead of balancing for a power
supply at 270mV that was proven to not give a circuit that was fast enough. To
get a better estimate of the 16by9bit adders robustness towards mismatch and
process variation in layout. A idea could be to recreate the longest delay path
in the adder circuit, this can be done by setting one 9, 10, 11 and 12 bit adder
in series and measure the delay propagating trough this adders. A parasitic ex-
traction of this layout design is far smaller than the parasitic extraction of the
16by9bit adder and the computer would more likely be able to run a Monte Carlo
simulation on this circuit without running out of memory.

63

8 Discussion

64

9 Conclusion
The thesis shows a 16by9bit adder implementation with a working speed higher
than 50MHz for temperature between 20◦C and 80◦C after parasitic extraction
of the layout design. It is shown that designing the circuit for the near/sub-
threshold operating point it is achievable to get a working layout design with
a power consumption lower than 50µW, still not braking the 50MHz require-
ment. With a operating point equal to 295mV the adder are shown to have a
delay equal to 17.7nS = 56.5MHz with a power consumption of 25µW at 20◦C
and delay equal to 10nS = 100MHz with a power consumption of 36.2µW at
80◦C. There are as well calculated some robustness values towards process vari-
ation and mismatch after Monte Carlo simulations. Taking this variation into
account the time limit would be hard to hold at 20◦C. This value was calculated
to be 20.9µS at 20◦C. But it is shown that turning up the supply voltage will
solve this problem and still have a power consumption less than the goal of 50µW.

This result shows that a digital implementation of the micro-beamformer
shown in section 2 operating in the sub/near-threshold region leads to major
savings in the total power consumption compared to an analog implementation.

9.1 Future Work
• The next step will be to do a tape out on a circuit board for future testing

of circuit delay, power consumption and robustness.

• A paper regarding the 8T implementation are under working progress to-
gether with Snorre Aunet and Jonathan Bjerkedok.

65

References

References
[1] K. Granhaug and S. Aunet. Six subthreshold full adder cells characterized

in 90 nm cmos technology. In Design and Diagnostics of Electronic Circuits
and systems, 2006 IEEE, pages 25 –30, 0-0 2006.

[2] M. Blesken, S. Lu andtkemeier, and U. Ru andckert. Multiobjective opti-
mization for transistor sizing sub-threshold cmos logic standard cells. In Cir-
cuits and Systems (ISCAS), Proceedings of 2010 IEEE International Sym-
posium on, pages 1480 –1483, 30 2010-june 2 2010.

[3] Liji Chen, Ruoyu Xu, and Jie Yuan. An efficient bscan-sample-based
#x03a3; #x0394; beamformer for medical ultrasound imaging. In Biomed-
ical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pages
285–288, 2009.

[4] Zili Yu, S. Blaak, Zu yao Chang, Jiajian Yao, J.G. Bosch, C. Prins, C.T.
Lancee, N. de Jong, M. A P Pertijs, and G. C M Meijer. Front-end receiver
electronics for a matrix transducer for 3-d transesophageal echocardiography.
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,
59(7):1500–1512, 2012.

[5] B.D. Van Veen and K.M. Buckley. Beamforming: a versatile approach to
spatial filtering. ASSP Magazine, IEEE, 5(2):4–24, 1988.

[6] Zili Yu, S. Blaak, Zu yao Chang, Jiajian Yao, J.G. Bosch, C. Prins, C.T.
Lancee, N. de Jong, M. A P Pertijs, and G. C M Meijer. Front-end receiver
electronics for a matrix transducer for 3-d transesophageal echocardiography.
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,
59(7):1500–1512, 2012.

[7] R.R.Harrison. Mosfet operation in weak and moderate inversion.

[8] P.R.Panda. Power-efficient System design. Springer Science+Business Me-
dia, 2010.

[9] P. Nilsson. Arithmetic reduction of the static power consumption in
nanoscale cmos. In Electronics, Circuits and Systems, 2006. ICECS ’06.
13th IEEE International Conference on, pages 656 –659, dec. 2006.

[10] Ken Martin David A. Johns. Analog Integrated Circuit Design. John Wiley
& Sons Inc, 2009.

[11] Alice Wang, Benton H Calhoun, and Anantha P Chandrakasan. Sub-
threshold design for ultra low-power systems. 2006.

66

References

[12] Philippe Royannez Amara Amara. Vhdl for low power. Taylor and Francis
Group, LLC, 2006.

[13] Eric A Vittoz. Micropower techniques. 1994.

[14] Jabulani Nyathi Robert R. Rydberg Walid Ibrahim Valeriu Beiu,
Snorre Aunet. Serial addition: Locally connected architectures. 2007.

[15] M. Alioto. Impact of nmos/pmos imbalance in ultra-low voltage cmos stan-
dard cells. In Circuit Theory and Design (ECCTD), 2011 20th European
Conference on, pages 536 –539, aug. 2011.

[16] K. Raghavendra and M. Mutyam. Process variation aware issue queue de-
sign. In Design, Automation and Test in Europe, 2008. DATE ’08, pages
1438 –1443, march 2008.

[17] H. Soeleman, K. Roy, and B.C. Paul. Robust subthreshold logic for ultra-
low power operation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 9(1):90–99, 2001.

[18] A.V.Kordesch P.B.Y.Tan and O.Sidek. How to design for analog yield using
monte carlo mismatch spice models, 2005.

[19] Michael Reinhardt. Automatic Layout Modification. Kluwer Academic Pub-
lishers, 2002.

[20] Verilog-a language reference manuall, 1996.

[21] H.K.O. Berge, A. Hasanbegovic, and S. Aunet. Muller c-elements based on
minority-3 functions for ultra low voltage supplies. In Design and Diagnos-
tics of Electronic Circuits Systems (DDECS), 2011 IEEE 14th International
Symposium on, pages 195 –200, april 2011.

[22] H. Al-Hertani, D. Al-Khalili, and C. Rozon. A new subthreshold leakage
model for nmos transistor stacks. In Circuits and Systems, 2007. NEWCAS
2007. IEEE Northeast Workshop on, pages 972–975, 2007.

[23] H. Kristian, O. Berge, and S. Aunet. Multi-objective optimization of
minority-3 functions for ultra-low voltage supplies. In Circuits and Sys-
tems (ISCAS), 2011 IEEE International Symposium on, pages 2313–2316,
2011.

[24] N.K. Tiwari, S. Akashe, J. Shrivas, and R. Sharma. Impact of technol-
ogy scaling and supply voltage variation on half adder design in nanometer
era. In Information and Communication Technologies (WICT), 2012 World
Congress on, pages 33–38, 2012.

67

References

[25] A. Ghosh and D. Ghosh. Optimization of static power, leakage power and
delay of full adder circuit using dual threshold mosfet based design and t-
spice simulation. In Advances in Recent Technologies in Communication
and Computing, 2009. ARTCom ’09. International Conference on, pages
903 –905, oct. 2009.

[26] K. Granhaug and S. Aunet. Six subthreshold full adder cells characterized
in 90 nm cmos technology. In Design and Diagnostics of Electronic Circuits
and systems, 2006 IEEE, pages 25–30, 2006.

[27] V. Beiu, S. Aunet, J. Nyathi, III Rydberg, R.R., and A. Djupdal. On the
advantages of serial architectures for low-power reliable computations. In
Application-Specific Systems, Architecture Processors, 2005. ASAP 2005.
16th IEEE International Conference on, pages 276 – 281, july 2005.

[28] Snorre Aunet Valeriu Beiu, Asbjørn Djupdal. Ultra low-power neural in-
spired addition: When serial might outperform parallel architectures. 2005.

[29] Z. Moudallal, I. Issa, M. Mansour, A. Chehab, and A. Kayssi. A low-power
methodology for configurable wide kogge-stone adders. In Energy Aware
Computing (ICEAC), 2011 International Conference on, pages 1 –5, 30 2011-
dec. 2 2011.

[30] F. Arnaud, F. Boeuf, F. Salvetti, D. Lenoble, F. Wacquant, C. Regnier,
P. Morin, N. Emonet, E. Denis, J.-C. Oberlin, D. Ceccarelli, P. Vannier,
G. Imbert, A. Sicard, C. Perrot, O. Belmont, I. Guilmeau, P. O Sassoulas,
S. Delmedico, R. Palla, F. Leverd, A. Beverina, V. DeJonghe, M. Broekaart,
L. Pain, J. Todeschini, M. Charpin, Y. Laplanche, D. Neira, V. Vachellerie,
B. Borot, T. Devoivre, N. Bicais, B. Hinschberger, R. Pantel, N. Revil,
C. Parthasarathy, N. Planes, H. Brut, J. Farkas, J. Uginet, P. Stolk, and
M. Woo. A functional 0.69 mu;m2 embedded 6t-sram bit cell for 65 nm
cmos platform. In VLSI Technology, 2003. Digest of Technical Papers. 2003
Symposium on, pages 65–66, 2003.

[31] L.L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin. Analog circuit design
in nanoscale cmos technologies. Proceedings of the IEEE, 97(10):1687–1714,
2009.

[32] Mark Lambert Cayanes Lee Eng Han, Valerio B.Perez and Mary Grace Sal-
aber. Cmos transistor layout kungfu, 2005.

68

A appendix
A.1 verilogA
A.1.1 Sample And Hold

1 // SH block
2

3 ‘include " constants .vams"
4 ‘include " disciplines .vams"
5 ‘define RISING +1
6 ‘define FALLING -1
7

8 module SH_work (vin ,clk ,vout);
9 input vin , clk;

10 output vout;
11 electrical vin , vout , clk;
12 parameter real vth = 0.187;
13 parameter real slack = 100.0 p from (0: inf);
14

15 real samp;
16

17

18 analog begin
19

20 // on Rise edges of clk , sample vin
21 @(cross (V(clk)-vth , ‘RISING , slack , clk. potential . abstol)

) begin
22

23 samp=V(vin);
24

25 end
26

27 // assign output
28 V(vout) <+ samp;
29

30 end
31

32 endmodule
33

34 ‘undef RISING
35 ‘undef FALLING

Listing 1: SA

69

A appendix

A.1.2 Comparator

1 // comporator made to check if two 13 bit signals matches .
2

3 ‘include " constants .vams"
4 ‘include " disciplines .vams"
5 ‘define RISING +1
6

7 module comp_working (A, B, OUT);
8 input [0:12] A;
9 input [0:12] B;

10

11 output OUT;
12 electrical [0:12] A;
13 electrical [0:12] B;
14 electrical OUT;
15

16 real Ai [0:12];
17 real Bi [0:12];
18 real high , low , out;
19 analog begin
20 @(initial_step ("dc","ac","tran")) begin
21 high = 0.250; // define 250 mV as high output
22 low = 0; // define 0 as low input
23 end
24

25 generate i (12 ,0) begin
26 Ai[i]= abs(V(A[i])); // set the A inputs to the Ai variable
27 Bi[i]= abs(V(B[i])); // set the B inputs to the Bi variable
28 end
29 // check if one of the bits are unequal
30 if ((Ai [0] != Bi [0]) || (Ai [1] != Bi [1]) || (Ai [2] != Bi [2])
31 || (Ai [3] != Bi [3]) || (Ai [4] != Bi [4]) || (Ai [5] !=

Bi [5]) || (Ai
32 [6] != Bi [6]) || (Ai [7] != Bi [7]) || (Ai [8] != Bi [8])

|| (Ai [9] != Bi
33 [9]) || (Ai [10] != Bi [10]) || (Ai [11] != Bi [11]) || (

Ai [12] != Bi [12]))
34 out = high; // set the out variable to high if one of the

bits are unequal
35 else
36 out = low; // set the output if all bits matches
37

38 V(OUT) <+ out; // set the out variable to the comparator
output

39 end
40 endmodule
41

42 ‘undef RISING

Listing 2: Comparator

70

A.1 verilogA

A.1.3 FullAdder

1 // simple fullAdder
2

3 ‘include " constants .vams"
4 ‘include " disciplines .vams"
5

6 module FullAdder (A, B, Ci , Co , Sum);
7 input A, B, Ci;
8 output Co , Sum;
9 electrical A, B, Ci , Co , Sum;

10

11 // variables
12 real tempA , tempB , tempC ;
13 integer x, y ,z, a,b,ci ,sum ,co;
14

15 analog begin
16

17 // set the inputs to the variables
18 tempA = V(A);
19 tempB = V(B);
20 tempC = V(Ci);
21

22 // define if the input shoud be a set 1 or a set 0
23 // and set the integer variables
24 if(tempA < 0.050)
25 a = 0;
26 else if(tempA > 0.200)
27 a=1;
28 else
29 a=a;
30

31 if(tempB < 0.050)
32 b = 0;
33 else if(tempB > 0.200)
34 b=1;
35 else
36 b=b;
37

38 if(tempC < 0.050)
39 ci = 0;
40 else if(tempC > 0.200)
41 ci =1;
42 else
43 ci=ci;
44

45 // logical varibles for the FullAdder
46 x = a ˆ b;
47 y = x & ci;
48 z = a & b;
49 sum = x ˆ ci;
50 co = y | z;

71

A appendix

51

52 // sets the outputs
53 if(sum == 1)
54 V(Sum) <+ 0.250;
55 if(sum == 0)
56 V(Sum) <+ 0;
57

58 if(co == 1)
59 V(Co) <+ 0.250;
60 if(co == 0)
61 V(Co) <+ 0;
62 end
63

64 endmodule

Listing 3: FullAdder

72

A.2 Layout

A.2 Layout

Figure 42: 4T inverter layout

73

A appendix

Figure 43: Minority3 layout

74

A.2 Layout

Figure 44: Xor layout

75

A appendix

Figure 45: HalfAdder layout

76

A.2 Layout

Figure 46: FullAdder layout

77

A appendix

Figure 47: 9BitAdder layout

78

A.3 Schematic

Figure 48: 16By9Bit Adder layout

A.3 Schematic
Each block in figure 49 are full adder Blocks.

79

A appendix

Figure 49: 8Bit Ripple-Carry Adder Schematic

Figure 50: 8Bit Kogge-Stone Adder Schematic

80

