
Numerical Methods for Electromagnetic
Field Propagation over an Undulating
Surface in the Frequency Region of 110
MHz

Kristin Åstebøl

Electronics Engineering

Supervisor: Torbjørn Ekman, IET
Co-supervisor: Thor Breien, Indra Navia AS

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

Instrument Landing System (ILS) is a VHF/UHF radio based approach

and landing system guiding aircraft under bad visibility conditions. ILS

is sensitive to multipath caused by airport buildings, taxiing aircrafts

and the surrounding terrain. Several computer based tools to predict

their influence on the ILS signals exist. These tools are based on the

electromagnetic principles Physical Optics and Geometrical Theory of

Diffraction. The tasks for the master thesis are:

• Find numerical methods that work for electromagnetic field simulation

over a humped runway, at the frequency of the ILS localizer, 110

MHz.

• Implement the investigated numerical methods.

• Evaluate the implemented methods.

• Evaluate the need for terrain modeling at the frequency of the ILS

localizer, 110 MHz.

The thesis problem is given by Indra Navia, a world-leading ILS manufacturer.

Acknowledgements

First and foremost I would like to thank my supervisor Torbjörn Ekman

at NTNU, for support, ideas, and advices during the work of this thesis.

Your enthusiasm and our discussions have been invaluable.

I would also like to thank Indra Navia for this very interesting thesis

problem, and for motivating, educational and inspiring visits to the

office in Oslo. I would especially like to thank Thor Breien for his good

advices and invaluable knowledge. In addition, I would like to thank

Alf Bakken and Morten Topland for giving me assisting material and

feedback.

I would also like to thank my family and friends for supporting me

during the work of this thesis. Finally, I would like to thank my fellow

students for cheerful days at the university, and for two fantastic years

at NTNU.

12.06.2013, Trondheim

Kristin Åstebøl

Abstract

When an aircraft is landing, the use of the Instrument Landing System

(ILS) is essential. It provides navigation signals for the landing aircraft.

The localizer transmits the signals for horizontal navigation, and is

situated at the opposite end of the runway of where the aircrafts are

landing. It means that the localizer-signals have to traverse the runway,

before the aircrafts receive the signals. The signals may behave

differently if the runway is humped. In some cases there might not

be line-of-sight between the two ends of the runway. The objective

of this thesis was to find numerical methods for computation of the

electromagnetic field in the frequency region of the localizer over a

humped runway, implement them, and test them. The investigated

numerical methods are the Integral Equation Model and the Parabolic

Equation Method. The principle of the Integral Equation Model is

to compute the field strength at a given point based on direct wave

from the transmitter and the induced surface current. The method

is not fully implemented due to missing links in the literature used.

The principle of Parabolic Equation Method is to solve the standard

parabolic equation, a differential equation derived from the scalar wave

equation. The Parabolic Equation Method is implemented with two

different algorithms; the Split-Step Algorithm (SSA) and the Finite-

Difference Method (FDM). Over a flat surface the SSA and FDM results

differ somehow. However, as soon as there are some irregularities, up-

or downwards inclined plane, wedge, or runway surface profiles, the

SSA and FDM give almost identical results. The simulations with SSA

and FDM also show that the runway surface profile can influence the

electromagnetic field considerably. Therefore, the runway surface profile

needs to be taken into account. How suitable the Integral Equation

Model is for this application remains subject to further work. However,

the Parabolic Equation Method is a numerical method that can be used

to simulate electromagnetic field propagation in the frequency region of

the localizer over a humped runway.

Sammendrag

N̊ar et fly skal lande bruker det navigasjonssignalene fra instrument-

landingsystemet (ILS) p̊a flyplassen. Localizeren sender navigasjons-

signalene for horisontal navigasjon for det landende flyet, og er plassert

p̊a motsatt side av rullebanen i forhold til der flyet lander. Det betyr

at localizer-signalene m̊a krysse rullebanen før flyet mottar dem. Hvis

rullebanen ikke er flat, vil signalene oppføre seg annerledes enn for en

flat rullebane. P̊a noen rullebaner er det ikke frisiktlinje fra den ene

til den andre enden. Målet med denne oppgaven er å finne numeriske

metoder som kan brukes for å beregne det elektromagnetiske feltet i

frekvensomr̊adet til localizeren over en ikke-flat rullebane, og

implementere og teste dem. De to metodene som ble undersøkt er

integralligningsmetoden og metoden med parabolsk ligning. Prinsippet

for integralligningsmetoden er å beregne feltstyrken i et gitt punkt

basert p̊a den direkte bølgen fra senderen og den induserte overflate-

strømmen. I litteraturen som ble brukt manglet det noen vesentlige

detaljer, og integralligningsmetoden kunne derfor ikke bli ferdig-

implementert. Prinsippet for metoden med parabolsk ligning er å løse

”the standard parabolic equation”, en ligning utledet fra den skalare

bølgeligningen. Metoden er implemtentert p̊a to forskjellige m̊ater, med

”Split-Step Algorithm” (SSA) og ”Finite-Difference Method” (FDM).

Over en plan flate gir SSA og FDM litt forskjellige resultater. For flater

med irregulariter derimot, som skr̊aplan, kile og ikke-flate rullebaner,

gir SSA og FDM s̊a og si like resultater. Simuleringene med SSA og

FDM viser at ikke-flate rullebaner kan p̊avirke det elektromagntiske

feltet vesentlig. Derfor bør rullebaneprofilen tas hensyn til ved elektro-

magnetiske beregninger. Hvor bra integralligningsmetoden fungerer

forblir en oppgave til videre arbeid. Metoden med parabolsk ligning er

derimot egnet for elektromagnetiske feltberegninger i frekvensomr̊adet

til localizeren.

Contents

Contents v

List of Figures ix

Nomenclature xvi

1 Introduction 1

2 Analytical Models and Source Modeling 5

2.1 Plane Earth Loss and Source Modeling 5

2.2 Numerical Source Modeling . 10

2.2.1 Isotropic Source . 10

2.2.2 Gaussian Source . 10

2.2.3 Choice of Source for Numerical Simulations 11

3 Numerical Methods 13

3.1 The Integral Equation Model . 13

3.1.1 Numerical Implementation 16

3.1.1.1 Assumptions . 16

3.1.1.2 Implementation Based on Hviid et al. [1995] 17

3.1.1.3 Implementation Based on Brennan and Cullen [1998] 18

3.1.2 Remaining Issues . 24

3.2 The Parabolic Equation Method . 24

3.2.1 Use of Fourier Transform for Solving the Scalar Wave Equation 30

3.2.2 Split-Step Algorithm - Flat Surface 30

3.2.3 Finite-Difference Method - Flat Surface 31

3.2.4 Mathematical Aspects and Simplifications 34

3.2.5 Absorption Layer . 35

3.2.6 Non-Flat Surface . 41

v

CONTENTS

3.3 Verification of the Simulation Results 42

3.3.1 Relative Field Strength . 42

3.3.2 Path Loss . 43

3.3.2.1 Flat Surface . 43

3.3.2.2 Non-Flat Surface . 43

4 Choice of Parameters 45

5 Results 49

5.1 Simulations over a Flat Surface . 51

5.1.1 Horizontal Comparison - Comparison along the Surface . . . 55

5.1.2 Vertical Comparison - Comparison in the Height Direction . 57

5.1.3 Flat Surface Summary . 60

5.2 Inclined Plane . 61

5.2.1 Downwards Inclined Plane . 62

5.2.2 Upwards Inclined Plane . 68

5.2.3 Inclined Surface Summary . 74

5.3 Simulations over a Wedge . 74

5.3.1 Wedge Summary . 82

5.4 Simulation over Runways . 83

5.4.1 The Braunschweig Airport Runway 83

5.4.2 The Luton Airport Runway 88

5.4.3 Runway Simulation Summary 93

5.5 Results Summary . 93

6 Discussion and Further Work 95

6.1 Field Strength Near the Surface for Inclined Plane 95

6.2 Modeled Surface Resolution . 96

6.3 SSA and FDM Differences - Flat and Non-Flat Surface 96

6.4 Localizer Signals and Wide-Angle Propagation 96

6.5 Runtime . 97

6.6 Commercial Software . 97

6.7 3D Loss in 2D . 97

6.8 3D - Parabolic Equation . 98

6.9 Integral Equation Model . 98

7 Conclusion 101

References 103

vi

CONTENTS

Appendix A Mathematical Tools 105

A.1 Fourier Transform . 105

A.2 Fourier Sine Transform . 105

A.3 Discrete Fourier Sine Transform . 106

A.4 Approximations of Differentials . 106

Appendix B Derivations 107

B.1 Derivation of the Standard Parabolic Equation 107

B.2 Derivation of the Numerical Standard Parabolic Equation 108

Appendix C Plots 111

C.1 Field Simulation Over a Wedge . 111

Appendix D Implementation and Simulation 113

D.1 Implementation Terminology . 113

D.2 Simulation Using the Implemented Functions 113

D.2.1 Create Initial Field . 114

D.2.2 Irregular Surface . 114

D.2.3 Field Propagation Algorithms 114

Appendix E Implemented Code 115

E.1 Scripts for the Obtained Results . 115

E.1.1 ParabolicEquation noGround.m 115

E.1.2 ParabolicEquation SSA FDM.m 119

E.1.3 ParabolicEquation SSA FDM deltaValueTest.m 122

E.1.4 SSA FDM indra r loss.m . 125

E.1.5 DownwardsInclinedPlane.m 134

E.1.6 UpwardsInclinedPlane2 . 142

E.1.7 WedgeComparison Hviid . 150

E.1.8 Braunschweig . 159

E.1.9 Luton2 . 166

E.2 Implemented Matlab Functions . 173

E.2.1 Field Simulation Algorithms 173

E.2.1.1 FDMnoGround . 173

E.2.1.2 splitStepAlgorithmAbsorptionLayer 176

E.2.1.3 FDMAbsorptionLayerNumEfficient2 178

E.2.1.4 SSA addRloss . 180

E.2.1.5 FDM addRloss . 181

E.2.1.6 SSAirregularTerrainAbsoptionLayer 183

vii

CONTENTS

E.2.1.7 FDMirregularTerrainAbsorptionLayer 186

E.2.2 Comparison Functions . 188

E.2.2.1 freeSpaceLoss beamParam 188

E.2.2.2 pathLossFlat beamParam 191

E.2.2.3 pathLossIndra alongX 193

E.2.2.4 pathLossFlat Indra 196

E.2.2.5 pathLossFlat Indra minComp 199

E.2.2.6 pathLossWedge Indra 203

E.2.2.7 pathLossWedge Hviid 207

E.2.3 Helping Functions . 211

E.2.3.1 interpolate . 211

E.2.3.2 normalizeSurface . 212

E.2.3.3 createZvectAbsorptionLayer2 212

E.2.3.4 createInitialField . 213

E.2.3.5 verticalVector . 214

E.2.3.6 getVerticalValues . 214

E.2.3.7 createAbsorptionLayer 217

E.2.3.8 discreteSineTrans 218

E.2.3.9 inverseDiscreteSineTrans 218

E.2.3.10 importFieldResultsFromFile 219

E.2.3.11 importParametersFromFile 219

E.2.3.12 save2pdf . 220

viii

List of Figures

1.1 Illustration of the principle for navigation using the signals from the

localizer, [Holm, 2002, p. 2-4]. 2

1.2 Illustration of the ILS with glide path signals and marker beam. The

dotted line is the desired path towards the runway, [Landing-Systems]. 2

2.1 Notation for analytical model for plane earth loss. 7

2.2 The solid line shows the plane earth loss: f = 900Hz, transmitter

height: 30m, receiver height: 1.5m. r[m]: the distance along the

surface between transmitter and receiver. [Saunders and Aragón-

Zavala, 2007, p. 100] . 9

2.3 Gaussian beam, half-power beamwidth: 40◦. 11

2.4 Polar plot of the Gaussian beam: half-power beamwidth at ±20◦.

This is at the edge of the domain of validity for the numerical

algorithm, it will be treated later. 12

3.1 Illustration of the principle of the Integral Equation Method. 17

3.2 Geometry of the scattering problem for the Integral Equation Method. 18

3.3 The surface is divided into D sections of width ∆s. Each of the

D sections are described by D uniformly spaced points within each

section. 20

3.4 The induced surface current at a given point ρm depends on the

direct field from the transmitter, and the near- and far-field from

previous scattering points. 21

3.5 Geometrical aid for equation (3.12). 23

3.6 The setup for the Parabolic Equation Method. h: Transmitter

antenna height. 25

3.7 The error due to approximation of square-root operator as a function

of the angle from the paraxial direction. 29

ix

LIST OF FIGURES

3.8 The geometry for the Finite-Difference Method. 32

3.9 Field propagated over a flat surface. 37

3.10 Path loss at the height of the transmitter antenna, 25 m, along a

flat surface. ”FDM” is the simulated path loss. ”Plane Earth Loss”

is the analytical path loss. 38

3.11 Field propagating in free-space with absorption layer at the top and

bottom. 39

3.12 Comparison between analytical free-space loss and simulated free-

space loss using absorption layer at the top and bottom, same field

as in figure 3.11. The comparison is taken at the height of the center

of the source. ”FDM” is the simulated field. In free-space, path loss

is the same as free-space loss. 40

3.13 Irregular terrain modeled using the staircase model. 41

3.14 Principle of the algorithm for calculation of field in ascending terrain.

The dots illustrate the field calculation points. 41

3.15 Principle of the algorithm for calculation of the electromagnetic field

in descending terrain. The dots illustrate the field calculation points,

the dots without fill represent the padded dots where the value is zero. 42

4.1 Field simulation over a flat surface using SSA. The effect of small

different ∆x and ∆z for the SSA algorithm. Note that the axes are

equal in both figures, and that the z-axis in figure 4.1b is the correct

one. 46

4.2 Path loss comparison at the antenna height, 15 m, along the surface. 47

4.3 Path loss comparison at the antenna height, 15 m, along the surface. 47

4.4 Path loss comparison at the antenna height, 15 m, along the surface. 48

5.1 Color bar for the field plots. 50

5.2 Field simulation using the SSA. 51

5.3 Field simulation using the FDM. 52

5.4 Field simulation using the SSA,
1

r
-loss added. 53

5.5 Field simulation using the FDM,
1

r
-loss added. 53

5.6 Illustration of horizontal and vertical comparison. 54

5.7 Horizontal comparison, relative field strengths at the height of 3 m,

along a flat surface. No additional loss. 56

5.8 Horizontal comparison, relative field strengths at the height of 3 m,

along a flat surface.
1

r
-loss added. 56

x

LIST OF FIGURES

5.9 Relative field strength at the distance of 1000 m along a flat surface.

Both SSA algorithms overlap each other, and both FDM algorithms

overlap each other. 57

5.10 Relative field strength at the distance of 1000 m along a flat surface,

the receiver height is varying. No
1

r
-loss added. Aligned at the

lowest height. 58

5.11 Relative field strength at the distance of 1000 m along a flat surface,

the receiver height is varying. No
1

r
-loss added. Aligned at the

maximum value. 59

5.12 Flat surface and downwards inclined plane, field comparison in the

vertical direction. The distance between transmitter and the line-

of-comparison along the surface is L. The transmitter is assumed to

be along the z-axis at the same height relative to the ground. 61

5.13 Field simulation using the SSA on a downwards inclined surface.

The black line at 1000 m along the inclined plane is the ”vertical”

direction to the plane at this point. 62

5.14 Field simulation using the FDM on a downwards inclined surface.

The black line at 1000 m along the inclined plane is the ”vertical”

direction to the plane at this point. 63

5.15 Vertical comparison of the relative field strength at the distance of

1000 m along a downwards inclined plane. 64

5.16 Vertical comparison of the relative field strength at the distance

of 1000 m along a downwards inclined plane. The relative field

strengths are aligned to the minimum value of the analytic field. . . 65

5.17 Relative field strength at the distance of 1000 m along a flat surface,

the receiver height is varying. The relative field strengths are aligned

to the maximum value of the analytic field. 66

5.18 Horizontal comparison between the field over the runway and over

a flat surface. Figure 5.18a is for surface reference. 67

5.19 Field simulation using the SSA on an upwards inclined surface.

The black line at 1000 m along the inclined plane is the ”vertical”

direction to the plane at this point. 68

5.20 Field simulation using the FDM on an upwards inclined surface.

The black line at 1000 m along the inclined plane is the ”vertical”

direction to the plane at this point. 69

5.21 Vertical comparison of the relative field strengths at the distance of

1000 m along an upwards inclined plane. 70

xi

LIST OF FIGURES

5.22 Vertical comparison of the relative field strengths at the distance of

1000 m along an upwards inclined plane. The relative field strengths

are aligned to the minimum value of the analytic field. 71

5.23 Vertical comparison of the relative field strengths at the distance of

1000 m along an upwards inclined plane. The relative field strengths

are aligned to the maximum value of the analytic field. 72

5.24 Horizontal comparison between the field over the upwards inclined

plane and over a flat surface. Figure 5.24a is for surface reference. . 73

5.25 The setup for the wedge. 74

5.26 Field simulation over the wedge given in figure 5.25 using the SSA.

Frequency: 100 MHz. 75

5.27 Field simulation over the wedge given in figure 5.25 using the FDM.

Frequency: 100 MHz. 76

5.28 Vertical comparison of path loss at the distance of 5000 m, for field

propagated over the wedge in figure 5.25. 78

5.29 Vertical comparison of path loss of the field propagated along a flat

surface and behind the wedge, at 5000 m. 80

5.30 Horizontal comparison between the field over the wedge and over a

flat surface. Figure 5.30a is for the wedge surface reference. 81

5.31 Surface profile of the runway at the Braunschweig airport. Please

note the scaling difference between the x- and z-axis. 83

5.32 Field over the Braunschweig airport, using SSA. 84

5.33 Field over the Braunschweig airport, using FDM. 84

5.34 Vertical comparison of the path losses of the SSA and FDM at the

end of the runway. Compared with flat surface as well. 85

5.35 Horizontal comparison between the field over the runway and over

a flat surface. Figure 5.35b is for runway surface reference. 87

5.36 The surface profile of the runway at the Luton airport. Please note

the scaling difference between the x- and z-axis. 88

5.37 Field over the Luton airport, using SSA. 89

5.38 Field over the Luton airport, using FDM. 89

5.39 Vertical comparison of the path losses of the SSA and FDM at the

end of the runway. Compared with flat surface as well. 90

5.40 Horizontal comparison between the field over the runway and over

a flat surface. Figure 5.35b is for runway surface reference. 92

6.1 Computational domain for simulation using the Parabolic Equation

method in 3D. 98

xii

LIST OF FIGURES

C.1 Field simulation over the wedge given in figure 5.25 using the SSA.

Frequency: 100 MHz. 111

C.2 Field simulation over the wedge given in figure 5.25 using the FDM.

Frequency: 100 MHz. 112

xiii

LIST OF FIGURES

xiv

Nomenclature

Roman Symbols

E Electric field

H Magnetic field

r′ Vector from origin to the source point

r Vector from origin to the observation point

Es(r) Scattered electric field

f Frequency, [Hz]

k Wavenumber, k = 2π
λ

n Refractive index

t Time [s]

x Direction of propagation

z Vertical direction

Greek Symbols

α The angle measured from the paraxial direction, [rad]

β Half-power beamwidth, [rad]

ε Permittivity of the medium

γ A constant

λ Wavelength, [m]

λmax The maximum eigenvalue of the matrix system in question

µ Permeability of the medium

xv

LIST OF FIGURES

ω Angular frequency, ω = 2πf

θ The angle, measured from the paraxial direction [rad]

θ0 The tilt of the beam [rad]

Superscripts

2D Two dimensions

3D Three dimensions

m meter

Other Symbols

Bold Symbols in bold are vectors

∆x Step-size in the x-direction, [m]

∆z Step-size in the z-direction, [m]

Acronyms

CST Computer Simulation Technology

FDM Finite-Difference Method

PE Parabolic Equation Method

PML Perfectly Matched Layer

SSA Split-Step Algorithm

UTD Uniform Theory of Diffraction

xvi

Chapter 1

Introduction

When an aircraft is landing, the use of the Instrument Landing System (ILS) is

essential. The purpose of the ILS is to guide the landing aircraft towards a safe

landing, especially under bad weather conditions. This is done by guiding the

aircraft towards and along a desired path to the runway. The guiding consists of

two signals; one giving the relative position with respect to the desired path in

the horizontal direction, and the other the relative position with respect to the

desired path in the vertical direction. The horizontal signals are transmitted by

the localizer, in the frequency region of 108 to 112 MHz, [Holm, 2002, Chapter 2.1],

110 MHz is used in this thesis. The vertical signals are transmitted by the glide

path, in the frequency region of 329-335 MHz, [Holm, 2002, Chapter 3.3]. In order

to navigate on the signals towards and along the desired path, 90 and 150 Hz

signals are amplitude modulated into the signals, for both the localizer and the

glide path. The 90 and 150 Hz components are transmitted each on its side of the

desired path, for both the horizontal and the vertical signals. When the landing

aircraft receives the same amount of the 90 and 150 Hz component for both the

horizontal and vertical signals, the aircraft is at the desired path. For illustration

of the principle in the case of the localizer, see figure 1.1.

In order to know the distance left to the runway, three ”base stations” called

marker beacons, are placed at known distances ahead of the runway. They transmit

signals up in the air, in order to ”notify” the aircrafts of the distance left to the

runway. For illustration of the ILS principle with glide path signals the marker

beacons, see figure 1.2. For more theory regarding ILS, see Åstebøl [2012].

1

1. Introduction

Figure 1.1: Illustration of the principle for navigation using the signals from the
localizer, [Holm, 2002, p. 2-4].

The localizer is situated at the opposite end of the runway of where the aircrafts

Figure 1.2: Illustration of the ILS with glide path signals and marker beam. The
dotted line is the desired path towards the runway, [Landing-Systems].

are landing. It means that the localizer-signals have to traverse the runway, before

the aircrafts receive the signals. The field strength over a runway depends on

the transmitter power, the antenna gain, the antenna height, and the runway

surface profile. This thesis regards the influence of a humped runway surface

on electromagnetic waves at the frequency of the ILS localizer, 110 MHz, and

numerical methods that can simulate this. It means that the numerical methods

should be able to handle slowly varying terrain. It also means that there will not

be any back scattering of the signals along the runway, because the terrain is slowly

varying.

For a flat runway, there exist very good methods and softwares for computing

the propagation of the electromagnetic field along the runway. This also includes

the multi-path effects that can occur at an airport. However, the case of a humped

2

1. Introduction

runway is not extensively investigated. In the telecom and radio business they

simulate fields over irregular terrain for estimating coverage at similar frequencies,

for GSM and FM. The distances over which they simulate fields are much larger

than for this case, and the methods used are therefore too approximative.

The tasks of the thesis are therefore to find numerical methods for simulation of

electromagnetic field propagation at the frequency of the localizer, that can handle

a humped runway. In order to find the performance of the numerical methods,

they need to be implemented, and then tested. This may give an indication of how

humped runways can affect signals at the frequency of the localizer, and whether

or not it is necessary to take the terrain profile into account.

This thesis firstly presents analytical models for field strength calculation over a

flat surface and source modeling. The analytical models are of interest because the

field strength over a flat surface will be a reference for the field propagating over

an undulating surface, humped runways. Source modeling is of interest because it

shows what the propagated beam in the simulations will look like. Secondly, the

principles of the two proposed numerical methods, the Integral Equation Model

and the Parabolic Equation Method, are explained. Thirdly, the parameters for

simulation of the methods are chosen. They have to be chosen correctly in order

to obtain good results. Fourthly, the performance of the implemented methods are

tested. This leads to a discussion and a conclusion.

In this thesis, the terms ”humped runway”, ”irregular terrain”, and ”undulating

terrain”, all refer to ”smoothly varying terrain, relative to the wavelength”.

3

1. Introduction

4

Chapter 2

Analytical Models and

Source Modeling

In order to predict the behavior of signals at the frequency of the ILS localizer over

a runway, the field propagation needs to be simulated. Depending on the shape of

the runway, either an analytical model or a numerical method can be used. For

surfaces with a simple shape like a flat surface, flat surface with a knife-edge, or a

surface that can be approximated to a canonical form, there exist analytical models

for calculation of the field propagation. Although most surfaces are not like that,

runways are often very close to being flat, and analytical models can therefore be

used to calculate the field over a flat surface. This thesis is about prediction of

electromagnetic field over non-flat runways, and the interest of an analytical model

for a flat surface is for comparison with numerical methods. If a numerical method

gives results consistent with the analytical model, it means that the numerical

method works for a flat surface. This does not mean that the numerical method

works for a non-flat surface, however, if it does not give good results for a flat

surface, it will most likely not for a non-flat surface either.

2.1 Plane Earth Loss and Source Modeling

The interest of an analytical model for a flat surface, is for being a reference for

the numerical methods over a flat surface. For a flat surface, the electromagnetic

field does only undergo free-space loss and reflection from the ground, called plane

5

2. Analytical Models and Source Modeling

earth loss. The reflection from the ground leads to interference, constructive or

destructive. For a stationary transmitter and receiver, placed on a flat surface, the

receiver will receive two ”waves” originating from the transmitter; the direct wave

and the wave reflected on the ground. The interference pattern that occurs depends

on the distance between and the height of the transmitter and the receiver. The

amplitude of the field at the receiver will be the sum of the direct and the reflected

wave, equation (2.1), [Saunders and Aragón-Zavala, 2007, p. 99].

Atotal = Adirect +Areflected (2.1)

For calculations of the plane earth loss1, the initial field has to be taken into

account. It may be directive and have different amplitude in different directions.

The direct and reflected wave will therefore not have same initial amplitude from

the transmitter. The amplitude of the reflected wave depends on the angle of the

ground-reflected wave from the transmitter, which again depends on the height of

the transmitter and receiver. For the setup see figure 2.1. For the plane earth loss

calculations, the ground is assumed to be a perfect conductor. Therefore, there

will not be any loss associated with the reflections on the ground.

The plane earth loss is calculated at each point along the direct line from the

transmitter (Tx) to the receiver (Rx), see figure 2.1. The challenge is to find the

amplitude of the ground-reflected wave, the amplitude of the initial field in the

direction of θReflect. For each point along this line, θReflect and αtx change because

the reflection point, xrefl on the ground changes, and therefore dtx and drx change

too. xrefl, dtx, and drx are then unknown quantities. The distance dtx needs to

be found in order to calculate θReflect. θReflect is of interest because the initial

amplitude of the reflected wave depends on its direction from the source. The

derivation of θReflect with transmitter coordinates (tx, tz) and receiver coordinates

(rx, rz) is given in equation (2.2). Note that in the calculations, the receiver, Rx,

represents the current point for the plane earth loss calculations, and the distance

1Plane earth loss: The loss associated with a wave traversing over a flat surface.

6

2. Analytical Models and Source Modeling

Figure 2.1: Notation for analytical model for plane earth loss.

7

2. Analytical Models and Source Modeling

d, will change accordingly.

From Snell’s law: αtx = αrx

⇒ tan

(
tz
dtx

)
= tan

(
rz
drx

)
⇒ tz

dtx
=

rz
drx

⇔ tz
rz

=
dtx
drx

= a, a ∈ R

d = dtx + drx ⇔ drx = d− dtx

⇒ a =
dtx

d− dtx

⇒ dtx =
ad

1 + a
=

tz
rz
d

1 + tz
rz

=
tzd

rz + tz

⇒ θReflect =
π

2
− tan−1

(
dtx
tz

)
,
dtx
tz

=
tzd

tz(rz + tz)
=

d

rz + tz

⇒ θReflect =
π

2
− tan−1

(
d

rz + tz

)

(2.2)

For the plane earth loss, the loss of the wave may be expressed in path loss. Due to

interference the plane earth loss has dips and peaks. Figure 2.2 shows an example

of what the plane earth loss may look like.

8

2. Analytical Models and Source Modeling

Figure 2.2: The solid line shows the plane earth loss: f = 900Hz, transmitter
height: 30m, receiver height: 1.5m. r[m]: the distance along the surface between
transmitter and receiver. [Saunders and Aragón-Zavala, 2007, p. 100]

9

2. Analytical Models and Source Modeling

2.2 Numerical Source Modeling

Two sources are proposed; an isotropic source, used in Saunders and Aragón-Zavala

[2007, Chapter 5], and a Gaussian source, proposed in Levy [2000, Chapter 5].

2.2.1 Isotropic Source

For an isotropic source the field strength will be the same for all directions. Assuming

plane waves, the only difference between the direct and the reflected wave will be

phase differences due to different traveling length. The amplitude at the receiver

assumes that the ground is a perfect conductor, and can therefore be written

according to equation (2.3), [Saunders and Aragón-Zavala, 2007, p. 99], where

htx and hrx are the heights of the transmitter and the receiver, respectively.

Atotal = Adirect +Areflected

= A

∣∣∣∣1 + exp

(
jk

2hrxhtx
d

)∣∣∣∣2
htx: Height of transmitter antenna

hrx: Height of receiver antenna

d: Distance between the antennas along the surface, according to figure 2.1

(2.3)

2.2.2 Gaussian Source

A Gaussian source is a source where the field distribution has a Gaussian shape

in the far-field, and is given by equation (2.4), [Levy, 2000, p. 40], where A is

a normalization constant, β is the half-power beamwidth, and θ the angle from

the paraxial direction1. This means that the shape of the beam can be entirely

determined by the β-parameter. The beam can be tilted by the angle θ0 by adding

an additional term, see equation (2.5), [Levy, 2000, p. 41]. u(0, z) in equation (2.5)

is the initial field along the vertical direction. The field strength at the receiver

can be found using the relations in equation (2.1) and (2.2).

An advantage of the Gaussian source is that in a polar plot the Gaussian-shaped

curve looks exactly like a real antenna beam, without any sidelobes, see figure 2.3

and 2.4. The beam of a real antenna can be modeled by using a combination

1Paraxial direction: the direction of propagation

10

2. Analytical Models and Source Modeling

of multiple Gaussian beams with different gain, beamwidth, and tilt. Not all

beamshapes can be modeled using a Gaussian beam, however it is quite flexible.

B(θ) = A exp

(
−2 log(2)

θ2

β2

)
A: Normalization constant

β: Half-power beamwidth [rad]

θ: The angle from the direction of propagation, from the paraxial direction

(2.4)

u(0, z) = A
kβ

2
√

2π log(2)
exp (−ikθ0z) exp

(
− β2

8 log(2)
k2(z − zs)2

)
z: The height direction

k =
2π

λ
: Wavenumer, λ is the wavelength

θ0: The tilt of the beam [rad]

zs: Antenna height

(2.5)

Figure 2.3: Gaussian beam, half-power beamwidth: 40◦.

2.2.3 Choice of Source for Numerical Simulations

As will be treated later, the numerical field simulation algorithms have some

constraints when it comes to the maximum beam width of the initial field. Therefore,

11

2. Analytical Models and Source Modeling

Figure 2.4: Polar plot of the Gaussian beam: half-power beamwidth at ±20◦. This
is at the edge of the domain of validity for the numerical algorithm, it will be
treated later.

a Gaussian source is chosen for the simulations.

12

Chapter 3

Numerical Methods

There were originally two numerical methods of interest for simulation of electro-

magnetic fields over irregular terrain, the Integral Equation Model and the Parabolic

Equation Method. The Integral Equation Model has a principle that is ”intuitive”

and easy to understand. However, a few missing links made it not implementable

towards the final result, see section 3.1.2. The Parabolic Equation Method on the

other hand, uses the scalar wave equation to calculate the electromagnetic field

over irregular terrain. This method is implemented with two different algorithms.

Since the surface of a runway can be assumed to be constant in the transverse

direction, the numerical methods in this thesis are implemented for simulation of

the electromagnetic field in 2D. There is a difference between performing simulations

in two and three dimensions. In 2D simulation one dimension is missing, and some

of the 2D formulas are therefore different from the 3D ones. The difference between

the waves in 3D and 2D is that in 3D the waves are spherical, and in 2D cylindrical.

Meaning that in 2D the free-space loss is proportional to
1

r
instead of

1

r2
in 3D.

This difference stems from that in the 2D scenario the waves are cylindrical as

opposed to the spherical waves in the 3D version.

3.1 The Integral Equation Model

The Integral Equation Model was developed in order to estimate the scattering of

electromagnetic waves traveling over irregular terrain, without approximating the

terrain to any canonical form.

13

3. Numerical Methods

The principle of the Integral Equation Model is to estimate the field strength of the

electromagnetic field based on direct propagation and electromagnetic radiation

from induced current on the surface, Es(r), using Maxwell’s equations. The

induced current at a given point is determined from the direct wave from the

transmitter and the current induced on the surface between the given point and

the antenna. There will not be any back scattering because the terrain has an

undulating profile. Therefore, the given point is the point farthest away from the

transmitter that is taken into account.

The Integral Equation Model can be used to predict the field strength for any

irregular terrain. However, there are different limitations for the different approaches

to solve the problem numerically. Originally, the methods were only stable at low

frequencies, at approximately 10 MHz, but the methods have been improved, and

today the methods work well up to 144 MHz, [Saunders and Aragón-Zavala, 2007,

p. 131]. For higher frequencies, the path loss prediction error increases. The

localizer operates in the frequency range of 108 MHz to 112 MHz, the Integral

Equation Model should therefore be able to give good results.

The terrain is characterized by a set of sampling points with appropriate separation

for describing the terrain sufficiently. In order to fulfill Nyquist’s criteria, the

maximum distance between two samples is
λ

2
, where λ is the wavelength . If a set

of sampling points does not fulfill Nyquist’s criteria, the set of points needs to be

extended. This can be done by interpolating. The way of interpolating depends

on the application and assumptions. In the case of a runway, the terrain between

two samples is assumed to be plane. The interpolation can therefore be performed

using a simple first order interpolation algorithm.

The scattered electric field, Es(r), the field emitted from the induced surface

currents, is found using the Maxwell’s equations. A common way to calculate

Es(r), is to use an intermediate step via the auxiliary vector A(r), given by

equation (3.1), [Gibson, 2007, p. 12]. Es(r) is given by equation (3.2), [Gibson,

2007, p. 12]. All symbols in the equations are consistent, they have the same

meaning in all equations. The explanations of the symbols will only be stated once,

and the repeated symbols can also be found in the nomenclature. All symbols in

14

3. Numerical Methods

bold are vectors.

A(r) = µ

∫∫
S

J(r′)G(r, r′)dr′

G(r, r′): Electromagentic Green’s function, equation (3.3)

J(r′): Induced surface current

r′: Vector from origin to the source point

r: Vector from origin to the observation point

µ: Permeability of the medium

(3.1)

Es(r) = −jωA− j

ωµε
∇(∇ ·A)

ω = 2πf : Angular frequency

ε: Permittivity of the medium

(3.2)

For 2-D the electromagnetic Green’s function is given by equation (3.3), [Gibson,

2007, p. 10].

G(r, r′) '

1− j 2

π
log

γkr

2
, r → 0

− j

4
H

(2)
0 (kr) = − j

4

√
2j

πkr
exp (−jkr) exp (jkr′ · r) , kr →∞

γ: A constant

k =
2π

λ
: Wavenumber

H
(2)
0 (·) : Hankels function of second kind

r = |r′ − r|: The distance between the source and the observation point

(3.3)

Equation (3.2) includes derivatives that depend on the distance r. For large

distances, where kr >> 1, the terms including the derivatives will be very small

compared to the first term, without any derivative, [Gibson, 2007, p. 18]. For most

of the points at the surface of the runway kr >> 1, therefore, the term including

the derivatives can be neglected. The relationship between the scattered electric

field and the induced surface current can therefore be calculated using equation

(3.4).

Es(r) = −jωA (3.4)

Numerically, the integrals are carried out as sums. The numerical implementation

by Brennan and Cullen [1998] in section 3.1.1.3, uses the relationship from equation

15

3. Numerical Methods

(3.4) directly.

3.1.1 Numerical Implementation

3.1.1.1 Assumptions

In order to be able to give good results, the following assumptions regarding the

terrain are taken, [Hviid et al., 1995]:

• 2-D surface, no variations in the transverse direction

• Smooth surface, relative to the wavelength

• The surface is a perfect magnetic conductor

• Vertical polarization

• Grazing incidence angle

• No back scattering

2-D surface means that only the vertical direction and the direction of propagation

are considered, there are no surface variations in the transverse direction. Smooth

surface means that the height variations relative to the wavelength are slow. In

reality, there are no perfect magnetic conductors. However, it is an appropriate

assumption for runways. In the case of vertical polarization, the reflection coefficients

for perfect magnetic conductors is −1. For a real ground and grazing incidence1,

the reflection coefficient approaches −1, Hviid et al. [1995]. In the case of a

localizer transmitting over a runway, the angles will be grazing. According to

Hviid et al. [1995] there is hardly any difference between the fields of horizontal and

vertical polarization for grazing incidence angle over a perfect magnetic conductor

in the microwave region. The localizer signals are horizontally polarized, and

they are right outside the microwave region. The microwave region extends from

approximately 300 MHz to 300 GHz, depending on the definition. The localizer

transmit signals from 108 MHz to 112 MHz. It is therefore a good chance that the

method is valid for localizer signals. It is however necessary to compare estimated

results with measurements or other verified methods. In the terms of reflection, the

surface may be modeled as a perfect conductor. However, the induced current at

the surface will not behave as if the surface was a perfect magnetic conductor. The

induced current at the surface will be attenuated with increasing distance. The

method also assumes that there will be no back scattering, meaning that no point

1Grazing incidence: Small incident angle

16

3. Numerical Methods

behind the observation point will contribute to the field strength at the observation

point. The same for the induced current at a given point on the surface; it only

depends on radiation from induced current at points between the given point and

the transmitter, plus the direct wave from the transmitter.

3.1.1.2 Implementation Based on Hviid et al. [1995]

Figure 3.1: Illustration of the principle of the Integral Equation Method.

As already mentioned, the field strength in a given point is determined from the

direct electric field and the field radiated from the induced current at the surface,

see illustration of the principle, figure 3.1. Equation (3.5) shows the expression

for the equivalent source current at a given point n, Ms
n. Equation (3.5) does not

include any weighting based on the distance between the two points. Equation (3.5)

shows that the induced current at a given point n, is the sum of the direct wave

and the induced currents at previous points, weighted by f(n,m), where point m

is a previous point. The magnitude of the induced current depends on the angle

between the incoming radiation and the surface normal. This applies both for the

direct propagation from the antenna and the radiation from induced current, and

is determined by f(n,m) in equation (3.5). The f(n,m) is a weighting function

based on direction between the two points m and n, and the surface normal in

17

3. Numerical Methods

point n. R1, R2, r1 and r2 in formula (3.5) are according to figure 3.2.

Ms
n = TMs

i,n +
T

4π

n−1∑
m=0

Ms
mf(n,m)∆xm,

f(n,m) = (~n · ~r2)
jk

R2

√
λ

R1R2

R1 +R2
e−j(kR2+π/4) ∆lm

∆xm

k =
2π

λ
: wavenumber

r2: vector from point m to n.

R1: Distance from antenna to point m for zm = 0.

R2: Distance from point m for zm = 0 to point n.

∆lm: Increment distance along the surface, [Saunders and Aragón-Zavala, 2007, p. 130]

∆xm: Increment distance along the x-axis

[Hviid et al., 1995]
(3.5)

Figure 3.2: Geometry of the scattering problem for the Integral Equation Method.

3.1.1.3 Implementation Based on Brennan and Cullen [1998]

This section describes a method to calculate the scattered electric field in 2D using

the method proposed in Brennan and Cullen [1998]. The method uses equation

(3.4) directly in order to calculate the induced surface currents. Inserting equation

18

3. Numerical Methods

(3.1) into (3.4) results in equation (3.6).

Es(r) = −jωµ
∫
S

G(r, r′)J(r′)dr

=

− j µ

4

∫
S

J(r′)

[
1− j 2

π
log

γkr

2

]
dr′, near-field

− j µ
4

∫
S

J(r′)

√
2j

πkr
e−jkrejkr

′·rdr′, far-field

(3.6)

Discretization of the far-field of equation (3.6) leads to equation (3.7).

Es(xr, zr) = −jω
4

N∑
n=0

J(xn, zn)

√
2

πkdn
e−j(jkdr)ejkdrds

[xr, zr]: Receiving point coordinates

[xn, zn]: Current transmitter point coordinates

dn =
√

(xr − xn)2 + (zr − zn)2

dr = [xr, zr], dr =
√
x2
r + z2

r

ds = [xn, zn]

(3.7)

According to Brennan and Cullen [1998] this method can also be used to compute

the scattered field at successive points at the surface, assuming surface current

only. The relationships above also state that by knowing the scattered electric

field, it is possible to find the induced surface current. Equation (3.7) shows that

the scattered field at a given point is the sum of all ”scattering contributions” from

surface points with induced current. The far-field expression used for calculating

the induced surface current in the Brennan and Cullen [1998] article is very similar

to equation (3.7). In Brennan and Cullen [1998] the relationship between the

induced surface current at a given point, the induced surface current at the previous

surface points, and the incident electric field is stated in a matrix system, given

in equation (3.8). The Z-matrix in equation (3.8) is a transition matrix between

the induced surface current and the incident electric field, containing coefficients

similar to the coefficients in equation (3.7). Jn is a vector containing the induced

19

3. Numerical Methods

surface currents, and Vm a vector containing the incident electric fields.

...

...

Vm
...
...

=

...
. . .

−
. . . 0

− Zmn
. . .

− − −
. . .

... . . . − − −
. . .

·

...

...

Jn
...
...

(3.8)

3.1.1.3.1 Principle - Forward Scattering Only The surface is divided into

D sections of length ∆s. Each section is then described by D uniformly separated

points, ρ1, · · · , ρD, see figure 3.3.

The field received in point ρm is the sum of the direct field from the transmitter,

Figure 3.3: The surface is divided into D sections of width ∆s. Each of the D
sections are described by D uniformly spaced points within each section.

scattered field from far-field regions, and scattered field from near-field regions,

see figure 3.4. From [Balanis, 2005, p.34], the near- and far-field regions are given

by equation (3.9). The direct field from the transmitter does only have free-space

loss, but the field strength also depends on the gain and the directivity of the

transmitter. The near-field contribution is determined from the points within

the near-field distance from the current point, ρm. The determination of the far-

field contribution at ρm is done by phase- and amplitude shifting of the far-field

20

3. Numerical Methods

contribution at the center point of the group, ρM .

Near-field region: R < 2
D2

λ

Far-field region: R > 2
D2

λ

R: Distance from radiation source

D: Largest dimension of radiation source

(3.9)

For a group of D collocation points, a vector Vm contains the field strength

Figure 3.4: The induced surface current at a given point ρm depends on the direct
field from the transmitter, and the near- and far-field from previous scattering
points.

at a given point, ρm, in a given group, see equation (3.10), illustrated in figure

3.4.

21

3. Numerical Methods

Vm =

N∑
n=1

ZmnJn

=
∑
i∈FFj

F iMm

∑
n∈i

ZMnJn +
∑
i∈NFj

∑
n∈i

ZmnJn

J : Vector of basisfunction coefficients.

Z: matrix, Zmn: field contribution from point n to point m.

F iMm: Phase- and amplitude-shifting function for the far-field contribution.

FFj : Far-field of group j.

NFj : Near-field of group j.

(3.10)

For forward scattering the Z-matrix is a lower triangular matrix, because only

previous points are included in the calculations for the field at a given point. The

number of previous points will (obviously) increase by one per point when moving

along the x-axis, see equation (3.8). The surface is divided into groups in order

to simplify the calculations, the Zmn matrix is therefore composed according to

(3.11).

Z =

Z11 0 0 0

...
. . . 0 0

...
. . . 0

ZD1 · · · · · · ZDk

ZM FFj ZM FFj ZmxlNF Zmxk NF

ZM FFj ZM FFj ZMxlNF ZMxk NF

ZM FFj ZM FFj · · · · · ·
ZM FFj ZM FFj · · · · · ·

Zmn 0 0 0

ZMn 0

· · · · · · 0
· · · · · · · · · · · ·

0

Group j

Green: Far-field of group j

Red: Near-Field of Zm

(3.11)

The near-field coefficients are determined from an equation for the near-field.

22

3. Numerical Methods

However, hardly any points will be in the near-field region because of its extension.

In far-field, the element Zmn of Z is given by equation (3.12).

Zmn = ZMnAnMme
−jφnMm , for n in the far-field region.

AnMm =

√
R

R′
=

(
R′2

R2

)− 1
4

=

(
1 +

s2 − 2Rs cosα

R2

)− 1
4

φnMm = β (R′ −R) = βR

((
1 +

s2 − 2Rs cosα

R2

) 1
2

− 1

)
All values are according to figure 3.5

α: The angle between s and R in figure 3.5

β: A constant

(3.12)

The ratio 1 +
s2 − 2Rs cosα

R2
is the squared ratio between R’ and R, derived

Figure 3.5: Geometrical aid for equation (3.12).

from the cosine-rule, to find R’, R′2 = R2 + s2 − 2Rs cosα. This gives
R′2

R2
=

1+
s2 − 2Rs cosα

R2
, and refers to the difference in distance between ρn and ρm, and

ρn and ρM , according to figure 3.5.

If two groups are within the close angles, seen from the third group, the two groups

can be merged into one group for the far-field contribution calculations for the third

group. The angles are measured with respect to the selected center point in a given

23

3. Numerical Methods

group. The Z-matrix will the look like the illustration in equation (3.13).

Z =

Z11 0 0

... Group i 0

ZD1 · · · ZDk

...
. . . 0 0

· · · Group j 0

· · · · · · · · ·
Zmn 0 0

ZMn Group k 0

· · · · · · · · ·

ZM FFk ZM FFk Zmxk NF

ZM FFk ZM FFk ZMxk NF

ZM FFk ZM FFk · · ·

0

(3.13)

3.1.2 Remaining Issues

The principle of how to calculate the induced field along the surface is clear, and

fully possible to implement. Due to time constraint, two important issues are

remaining, and left for future work:

• Which parts of the field along surface contribute to the total field at the

receiver? All of the points in line-of-sight from the receiver? Or just the last

ones?

• What kind of ”source” will the surface be? Isotropic? Directive?

3.2 The Parabolic Equation Method

The Parabolic Equation Method is a numerical method that can be used to calculate

the electromagnetic field over a surface. It can handle both flat and irregular

surface. The method calculates the field for all heights of interest and at all points

of interest along the surface. The field at a given point along the surface can be

entirely determined from the previous point of consideration along the surface. The

setup and coordinate system used is according to figure 3.6.

The Parabolic Equation Method is derived from the scalar wave equation, which

again is derived from Maxwell’s equations given in equation (3.14). The derivation

24

3. Numerical Methods

Figure 3.6: The setup for the Parabolic Equation Method.
h: Transmitter antenna height.

of the scalar wave equation is given below, based on Lee [2013, p.389-390]. The

propagation of the waves is assumed to be in free-space, without any sources.

∇×H = jc + ε
∂E

∂t

∇×E = −µ∂H
∂t

∇ ·E =
ρ

ε

∇ ·H = 0

E = E(x, y, z; t): Electric field

H = H(x, y, z; t): Magnetic field

jc: Current density at the given point

ε: Absolute permittivity

µ: Absolute permeability

ρ: Charge density at the given point

Kouzaev [2011]

(3.14)

25

3. Numerical Methods

Assuming time harmonic fields, gives the relationship in equation (3.15).

E(x, y, z; t) = E0(x, y, z)e(jωt)

H(x, y, z; t) = H0(x, y, z)e(jωt)
(3.15)

Applying the relationship from equation (3.15) in (3.14), results in equation (3.16).

∇×E = −µ∂H
∂t

= −jωµH
(3.16)

Applying curl to equation (3.16), results in equation (3.17).

∇×∇×E = jωµ∇×H

= jωµ∇× (jωεE), there is no current source

= −ω2µεE

(3.17)

Using vector operator identity gives ∇×∇×E = ∇∇ ·E −∇2E. Since there is

no source at the given point, ρ = 0. Therefore, ∇ · E = 0 and ∇∇ · E = 0. In

addition, the Laplace operator, ∇2 =

(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
, is independent of time.

This leads to equation (3.18).

∇2E = −ω2µεE

⇔ e(jωt)∇2E0 = −ω2µεE0e
(jωt)

⇒ ∇2E0 = −ω2µεE0

⇒ ∂2E0

∂x2
+
∂2E0

∂y2
+
∂2E0

∂z2
+ ω2µεE0 = 0

Accounting for 2D propagation ⇒ ∂2E0

∂x2
+
∂2E0

∂z2
+ ω2µεE0 = 0

(3.18)

Exploring the properties of the term ω2µε in equation (3.18), leads to the scalar

wave equation in equation (3.19). For linear polarization, the electric field will only

have one component. It means that the electric field in equation (3.19), E0, is a

26

3. Numerical Methods

scalar.

For propagation in vacuum: εr = µr = 1

The speed-of-light in vacuum: c =
1

√
µ0ε0

[Lee, 2013, p. 390]

The speed-of-light in a given medium: v =
c

√
µrεr

[Lee, 2013, p. 389]

The index of refraction: n =
c

v
=
√
µrεr

⇒ ω2εµ =
ω2

c2
n2 =

(
2π

λ

)2

n2 = k2n2

⇒ ∂2E0

∂x2
+
∂2E0

∂z2
+ k2n2E0 = 0

(3.19)

The scalar wave equation in equation (3.19) is formally written in equation (3.20).

For horizontal polarization ψ(x, z) describes the electric field, ψ(x, z) = Ey(x, z),

and for vertical polarization ψ(x, z) describes the magnetic field, ψ(x, z) = Hy(x, z),

[Levy, 2000, p. 4]. Since the localizer transmits horizontally polarized signals,

ψ(x, z) will here represent the electric field. In order for the following theory to

be correct, it is assumed that the time-dependency of the electric field is ejwt.

However, the Parabolic Equation Method deals with how the field propagates in

space, not in time.

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2ψ = 0

x: Direction of propagation

z: Height with respect to the coordinate system

k: Wave number in vacuum,
2π

λ

n: Refractive index, function of x and z, slowly varying

(3.20)

The setup for the method is forward propagation along the x-axis, the z-axis

represents the height, and the y-axis represents the transverse direction. The wave

propagation problem is assumed to be a 2D problem, which means that there are

no variations in the transverse direction, along the y-axis, see figure 3.6. The

method also assumes that the field propagation is directive, paraxial propagation,

propagation at small angles from the preferred direction. Referring to figure 3.6,

this means that α is small.

In order to account for a wave that is slowly varying in the direction of propagation,

27

3. Numerical Methods

a reduced function, u(x, z) = ejkxψ(x, z) is introduced, [Levy, 2000, p. 5]. Filling

u(x, z) into the scalar wave equation, equation (3.20), gives the scalar wave equation

for u(x, z), equation (3.21). By factorizing the equation and accounting for forward

propagating waves only, the equation can be reduced to the standard parabolic

equation, equation (3.22), [Levy, 2000, p. 10]. For the derivation, see appendix B,

section B.1. The reason to account for forward propagating waves only, is that in

the case of the localizer on a runway there will only be forward propagating waves,

because there are hardly any backward reflections from the ground.

∂2u

∂x2
+ i2k

∂u

∂x
+
∂2u

∂z2
+ k2(n2 − 1) = 0 (3.21)

∂2u

∂z2
(x, z) + i2k

∂u

∂x
(x, z) + k2(n2(x, z)− 1) = 0 (3.22)

The derivation of equation (3.22) includes a Taylor series expansion. The order of

magnitude of the error is given by the first neglected term in the series expansion,

and is given by equation (3.23), (Levy [2000], p. 10). Equation (3.23) and figure

3.7 show that the error of the approximation increases when α increases. However,

as long as α is relatively small, the error will remain small. For α = 20◦, sin2 (α) '
0.12. From α = 20◦ and up, the error increases relatively fast.

1

k2

∣∣∣∣∂2u

∂z2

∣∣∣∣ = sin2(α)

α: angle according to figure 3.6

(3.23)

28

3. Numerical Methods

Figure 3.7: The error due to approximation of square-root operator as a function
of the angle from the paraxial direction.

29

3. Numerical Methods

3.2.1 Use of Fourier Transform for Solving the Scalar Wave

Equation

For plane waves propagating in vacuum, refractive index n = 1, the Fourier

transform can be used as a mean to solve the differential equation, the standard

parabolic equation, equation (3.22). The idea is to transform the problem into

the Fourier domain, solve the equation in the Fourier domain, and transform the

solution back to the original domain. The reason to change domain for solving the

differential equation is that the problem might appear simpler, and for this case it

does appear simpler, [Levy, 2000, p. 13]. The definitions of the Fourier transform

and the inverse Fourier transform, are given in appendix A, section A.1.

The Fourier transform is a linear operator, and the Fourier transform of the

standard parabolic equation for a wave propagating in vacuum can therefore be

written according to equation (3.24).

F

{
∂2u

∂z2
(x, z) + i2k

∂u

∂x
(x, z) = 0

}
⇔ −4π2p2U(x, p) + i2k

∂U

∂x
(x, p) = 0 (3.24)

Equation (3.24) is a homogeneous first order differential equation, and has a closed

form solution, see equation (3.25).

U(x, p) = e−
i2π2p2x

k U(0, p) (3.25)

u(x, z) can be found by taking an inverse Fourier transform of equation (3.25),

resulting in equation (3.26). Equation (3.26) shows that the field at any point

depends on the initial field, [Levy, 2000, p. 15].

u(x, z) = F−1

{
e−

i2π2p2x
k F {u(0, z)}

}
(3.26)

3.2.2 Split-Step Algorithm - Flat Surface

The Split-Step Algorithm (SSA) is based on the solution from the standard differential

equation, using the result from equation (3.26) almost directly, in order to calculate

the field. The appropriate Fourier transform to use in order to calculate the field,

is the Fourier Sine Transform, [Levy, 2000, p. 27]. The expression of the analytical

and discrete Fourier Sine Transform can be found in appendix A, section A.2 and

A.3, respectively.

30

3. Numerical Methods

The field strength at the current point depends on the previous point. The numerical

implementation of the split-step algorithm can be done by using the equations

below, equation (3.27) and (3.28), [Levy, 2000, p. 30].

u(x+ ∆x) = e
ik(n2−1)

2 S{P ′S{u(x)}} (3.27)

P ′ = exp

(
iπ2l2∆x

2kL2

)
(3.28)

In equation (3.27) the inverse Fourier sine transform is not used, because S−1 = 4S

when using the definition of the Fourier sine transform in appendix A, section A.2,

[Levy, 2000, p. 25]. The ”interaction” between the different heights are done in the

Fourier sine transform, where the Fourier transform is calculated with respect to

the z-values, the height.

The algorithm does not converge for a small ∆z , because the difference between

two neighboring points is so small so that numerically there will not be any, or

hardly be any, difference at all.

3.2.3 Finite-Difference Method - Flat Surface

The Finite-Difference Method (FDM) is based on the standard differential equation

directly, equation (3.22), using the numerical approximations to the differentials,

with finite difference approximations for the first and second derivatives, given

in appendix A, section A.4. By inserting the numerical approximations directly,

it turns out to be a linear equation with three unknowns, that can be extended

into a set of N unknowns with N equations. To simplify the notation u(xm, zj) =

ujm.
∂2u

∂z2
(x, z) + 2ik

∂u

∂x
(x, z) + k2(n2(x, z)− 1)u(x, z) = 0 (3.29)

In order for the solution to propagate, the midpoint between two points along the

x-axis, ξm, is considered, [Levy, 2000, p. 36], see figure 3.8. ξm is defined according

equation (3.30).

ξm =
xm−1 + xm

2
(3.30)

Numerically differentiating equation (3.29) in point ξjm, setting b = 4ik∆z2

∆x and

ajm = k2(njm
2−1)∆z2, and then rearranging the equation, leads to equation (3.31).

For derivation of the equation see appendix B, section B.2.

uj−1
m + ujm

(
−2 + b+ ajm

)
+ uj+1

m = −uj−1
m−1 + ujm−1

(
2 + b− ajm

)
− uj+1

m−1 (3.31)

31

3. Numerical Methods

Figure 3.8: The geometry for the Finite-Difference Method.

Equation (3.31) shows that the field at a given point m along the x-axis, can be

entirely determined from field at range m − 1 along the x-axis. Equation (3.31)

also shows that there are three heights involved, which means that this is one

equation with three unknowns. However, since this relationship is true for any

height, it leads to N equations with N unknowns, and can be ”summarized” in a

linear matrix system, equation (3.32), [Levy, 2000, p. 38], where αjm = −2+ b+amj
and βjm = 2 + b− ajm. Um−1 contains the u-values at range m− 1 along the x-axis

and all heights of interest along the z-axis. Um is the u-values at range m along

32

3. Numerical Methods

the x-axis, and is the unknown that is to be determined.

1

1 αm1 1

. . .

1 αmN−1 1

1

·

...

...

Um
...
...

=

1

−1 βm1 −1

. . .

−1 βmN−1 −1

−1

·

...

...

Um−1

...

...

,

Um =

um0

um1
...

umN−1

umN

, Um−1 =

um−1
0

um−1
1

...

um−1
N−1

um−1
N

(3.32)

The field at a given range m, depends on the field at range m − 1. The field at

range m − 1 depends on the field at range m − 2, and so on. Therefore, the field

at range m, can be entirely determined from the initial field, just by knowing the

initial field U0 and the matrices containing the βjm values. In practice, the β-values

are range independent along the x-axis, and the field at range m can therefore be

expressed as a function of the initial field, according to equation (3.33). This works

for a flat surface only, because the surface is constant between the initial field and

the point at range m.

...

...

Um
...
...

=

1

1 αm1 1

. . .

1 αmN−1 1

1

−1

·

1

−1 βm1 −1

. . .

−1 βmN−1 −1

−1

m

·

...

...

U0

...

...

(3.33)

The simulated results will not be valid unless equation (3.33) converges as m→∞.

The convergence depends on the step size in the x- and z-direction, ∆x and ∆z,

respectively. Numerical results show that equation (3.33) is neutrally stable1 for

any value of ∆x and ∆z in the relevant interval, ∆x and ∆z ∈ [0.5; 1.3]m. Values

outside this interval are not tested.

1Neutral stability: The absolute value of the largest eigenvalue of the matrix in question
equals one, |λmax| = 1, [Strang, 2006, p. 259].

33

3. Numerical Methods

3.2.4 Mathematical Aspects and Simplifications

The numerical efficiency of the algorithm can be increased by exploring and using

the properties of the matrices. The tri-diagonal matrix in equation (3.33) containing

the αs is denoted A, and the tri-diagonal matrix containing the βs is denoted B.

This results in equation (3.34), provided that A can be inverted.

Um =
(
A−1B

)m
U0

= CmU0

(3.34)

A matrix M can be inverted if all the eigenvalues, λm 6= 0, if A is non-singluar. If

the inverse does not exist, a pseudo-inverse can be used instead. The computation

of Cm can be very simplified by diagonalization of C. C is diagonalizable if all the

associated eigenvectors of C are linearly independent. If C can be diagnoalized, it

can be written on the following form, equation (3.35), where Λ is a diagonal matrix

containing the eigenvalues of C, and S the eigenvectors of C.

C = SΛS−1 (3.35)

Cm =
(
SΛS−1

)
· · ·
(
SΛS−1

)
= SΛmS−1

(3.36)

Equation (3.36) shows that the difference between calculating Cm and C is raising

Λ to the m’th power. Since Λ is a diagonal matrix, raising the Λ to the m’th power,

equals raising each element to the m’th power, equation (3.37)

λ1

λ2

. . .

λN−1

λN

m

=

λm1

λm2
. . .

λmN−1

λmN

(3.37)

The diagonalization reduces the number of operations, leading to less memory usage

and a more efficient algorithm. The reason is that, if C is a diagonalizable matrix

and Cm is to be calculated, only the diagonalized matrix needs to be raised to

the power m, see equation (3.36) and (3.37). The diagonalization procedure, does

also provide a method to check for stability of the algorithm, before calculating the

field. As already mentioned, the matrix system in the FDM is neutrally stable. It

means that nothing leaves the system, the energy is preserved.

34

3. Numerical Methods

Another advantage of the simplification above, is that the field points are a function

of the initial field only, and the field can be calculated using parallel programming,

meaning the field along the surface at different points can be calculated at the same

time, rather than being calculated successively, which is more time consuming.

Unfortunately this does only work for a flat surface, since for a humped surface the

terrain changes the behavior of the field. However, it is useful to calculate the field

along a flat surface in order to compare with an accurate analytic model.

3.2.5 Absorption Layer

Since the system is neutrally stable, nothing leaves the system. This means that

the waves will not leave the computational domain at the boundaries, they will be

reflected instead. At the ground, this is wanted. However, in the sky this is not

wanted, and an absorption layer need to be added to the algorithm in order to avoid

reflections from the sky. There are two ways to do this; extend the computational

domain in the simulations so that the reflections from the sky will not come back

within the range of interest, or add an absorption layer to avoid reflections from

the sky. The latter one is most interesting, because an absorption layer means a

smaller computational domain, therefore less computations and decreased run time.

An absorption layer that works well is the Perfectly Matched Layer (PML) proposed

in Bérenger [1993] and the implemented absorption layer is based on this. In the

PML the index of refraction is changed in the absorption region by adding an

imaginary part so that the wave is damped. Since abrupt change of refractive

index numerically creates reflections, [Bérenger, 1993, p.191], the refractive index

has to change slowly, starting from zero and increase gradually. The equation

used for the absorption layer is equation (3.38), where n is the refractive index

and σ0 is the maximum value of the refractive index in the absorption layer. In

Bérenger [1993] Maxwell’s equations are solved in time-domain, but in this thesis

Maxwell’s equations are solved in steady-state, therefore, some adjustments have

been done.

Im {n} = σ0

(
Point number from beginning of absorption layer

Total number of points in the absorption layer

)
(3.38)

The value of σ0 is chosen to σ0 = 0.0015. σ0 is limited by an upper and lower

boundary. The upper limit is set by the criteria that the waves should not be

damped too fast, because it leads to unwanted reflections. The lower limit is set

35

3. Numerical Methods

by the criteria that the waves have to be damped fast enough, in order to not be

reflected at the boundary of the computational domain, the sky. Reflections from

the sky can be seen either by plotting the entire field propagated over a surface,

or plotting one height only and compare the path loss with an analytical model.

σ0 was found experimentally, and might not be the optimal value, but it works well.

The height of the computational domain and the number of points in the absorption

layer can be varied according to the problem. Figure 3.9 shows two examples of

the same propagated field, one without and one with absorption layer, figure 3.9a

and 3.9b, respectively. The absorption layer clearly damps the wave and reduces

the reflections from the top. In figure 3.10 the simulated field is compared with

the analytical model for plane earth loss. In figure 3.10a the simulated field starts

to oscillate at about 1000 m from the antenna, because of reflections from the top.

In this figure, no absorption layer is used. However, in figure 3.10b, an absorption

layer is used, and the simulated field does not start to oscillate within the range

of 3000 m. This is because the absorption layer damps the waves at the top. In

figure 3.9a, 3.9b, 3.10a, and 3.10b the field is propagated over a flat surface. The

height of the transmitter antenna is 25 m. In figure 3.10a and 3.10b the field is

taken from the same height as the transmitter antenna, 25 m, along the surface.

In figure 3.10a and 3.10b there is a constant difference between the analytical

and numerical results. This difference is due to the beam calculation formulas.

Equation (2.4) is used for the analytical result and equation (2.5) for the numerical

result. They both give the same beam shape. The difference between the equations

is that equation (2.4) is a function of the propagation angle, making it suitable

for the analytical result. Equation (2.5) is a function of the coordinates, (x, z),

making it suitable for numerical applications. Since the difference between the two

equations is constant, it does not affect the results, because what is of interest is

the slope of the path loss. For accurate results in the terms of the value of the

path loss, an appropriate constant can be added. This is also the case for figure

3.12 and the results in chapter 4.

To verify that the absorption layer works, the antenna is ”placed” in the air, and

nothing will reflect the waves. The verification is performed using the

ParabolicEquation noGround.m script in appendix E.1.1. In free-space, the propagating

field will only undergo free-space loss. Figure 3.11 shows the simulated field, and

figure 3.12 shows the free-space loss along the direction of propagation at the height

of the center point of the source. The different height of the curves in figure 3.12

36

3. Numerical Methods

(a) No absorption layer at the top.

(b) Absorption layer at the top.

Figure 3.9: Field propagated over a flat surface.

37

3. Numerical Methods

(a) No absorption layer at the top.

(b) Absorption layer at the top.

Figure 3.10: Path loss at the height of the transmitter antenna, 25 m, along a flat
surface. ”FDM” is the simulated path loss. ”Plane Earth Loss” is the analytical
path loss.

38

3. Numerical Methods

are due to a constant difference and does not matter. What is important is that

the two curves have the same slope, meaning that the losses are equal. Figure 3.11

shows that the absorption layer is not perfect, because as the wave propagates, the

sphere-like shape of the wave-front has more and more oscillations as the wave-

front propagates. Nevertheless, figure 3.12 shows that these oscillations are of less

importance. The oscillations may diminish if the absorption layer is thicker, with

slower change of refractive index, and/or higher altitude before the absorption layer

starts. This will make the computational domain larger, and the runtime of the

simulations will increase.

Figure 3.11: Field propagating in free-space with absorption layer at the top and
bottom.

39

3. Numerical Methods

Figure 3.12: Comparison between analytical free-space loss and simulated free-
space loss using absorption layer at the top and bottom, same field as in figure
3.11. The comparison is taken at the height of the center of the source. ”FDM” is
the simulated field. In free-space, path loss is the same as free-space loss.

40

3. Numerical Methods

3.2.6 Non-Flat Surface

One way to model irregularities of a surface is to use the staircase model. In the

staircase model, the irregularities in the terrain are modeled as a staircase, meaning

that the terrain is flat between two sampling points, see figure 3.13. For ascending

Figure 3.13: Irregular terrain modeled using the staircase model.

terrain the field at range m is calculated from the field at range m − 1 like if the

surface was flat. Then the field at m is truncated to follow the terrain profile, by

suppressing the calculated field for points that are below the ground, see figure 3.14.

The sharp edges in the ”stairs” are disregarded, no corner diffraction is calculated.

For descending terrain, the principle is almost the opposite. The electric field

Figure 3.14: Principle of the algorithm for calculation of field in ascending terrain.
The dots illustrate the field calculation points.

at range m − 1 is used to calculate the electric field at range m, pretending that

the surface is flat. When this is done, the field closer to the surface at range m

is padded with zeros. This method works because for range m + 1, assuming the

terrain is still descending, the field from range m will propagate both upwards and

downwards, meaning that at range m + 1 the field will no longer be zero at at

41

3. Numerical Methods

least some of the heights that were padded to zero at range m, see figure 3.15 for

illustration of the principle.

Figure 3.15: Principle of the algorithm for calculation of the electromagnetic field
in descending terrain. The dots illustrate the field calculation points, the dots
without fill represent the padded dots where the value is zero.

3.3 Verification of the Simulation Results

In order to find out how good the simulation results are, there are different ways

of comparing their performance. In this thesis relative field strength and path loss

are used.

3.3.1 Relative Field Strength

When comparing the relative field strengths, the variations of the signals within

an interval are compared. The field strength values are not of interest. This type

of comparison is made when one of the results to compare with cannot be directly

compared with the other results. This is the case when the simulated results are

compared with an analytical result from Indra.

When there is no analytical result to compare with, relative field strength comparison

is used as field strength comparison.

42

3. Numerical Methods

3.3.2 Path Loss

Path loss describes the loss of a signal between the transmitter and receiver, and

is given by equation (3.39), [Saunders and Aragón-Zavala, 2007, p. 90]. Path loss

is often used as a figure of merit of a radio communication channel.

L =
PTI
PRI

PTI : Effective isotropic transmitter power

PRI : Effective isotropic receiver power

(3.39)

3.3.2.1 Flat Surface

For propagation over a flat surface, the path loss can be calculated analytically.

For an isotropic source placed on a perfect reflecting ground using calculations

in 3D, the path loss for plane earth is given by equation (3.40), [Saunders and

Aragón-Zavala, 2007, p. 99]. Pr is the received power, Pt is the transmitted power,

hb is the height of the transmitter, and hm is the height of the receiver. Note that

equation (3.40) is the inverse of the definition in equation (3.39).

Pr
Pt

=

(
λ

4πd

)2 ∣∣∣∣1 + exp

(
jk

2hmhb
d

)∣∣∣∣2
d: Distance between the transmitter and receiver along the surface

hb: Height of the transmitter

hm: Height of the receiver

(3.40)

For a non-isotropic transmitter, the relations found in section 2.2.2 can be used

to find Pr. Then, PTI and TRI can be calculated. In order to find the path loss,

equation (3.39) has to be used.

3.3.2.2 Non-Flat Surface

For a non-flat surface, the definition of path loss, equation (3.39), has to be used.

The Hviid et al. [1995] article presents some of their results in path loss. In one

test of their algorithm, a simple wedge is used. This makes it possible to compare

their results with the results from this thesis, see section 5.3.

43

3. Numerical Methods

44

Chapter 4

Choice of Parameters

The eligible variables are the step-size in the x- and z-direction, ∆x and ∆z,

respectively. The upper limit is set by the Nyquist’s criterion, ∆x <
λ

2
and ∆z <

λ

2
.

At the frequency of the localizer, 110 MHz, λ ' 2.73 m. The lower limit depends

on two factors: run time and stability. The run time increases dramatically for

small values of ∆x and ∆z. For the SSA, very small values of ∆x and ∆z causes

instability of the algorithm. For small values of ∆x and ∆z the distances will be

so small that, numerically, there will not be any difference between the current

and the previous calculated value. Therefore, the simulated field will propagate

”slowly”, see figure 4.1a, compared with normal propagation in figure 4.1b. A

choice of ∆x and ∆z that works well, is ∆x = ∆z = 1 m. Setting ∆x and ∆z

equal can visually be seen as logical, because when the field propagates, it will

propagate with the same amount in both the x- and z-direction. The values were

chosen by simulating the fields over a flat surface, and then compare the results

with the analytical result, ”plane earth loss”, see figure 4.2, 4.3, and 4.4. The

fields are compared at the height of the antenna, 15 m, at each point along the

surface. The ”correctness” of the algorithms is determined by where the dip of the

fields occur, compared with the analytical result. They are supposed to occur at

approximately the same distance. The analytical result is obtained using the result

from section 2.2.2. Its domain of validity goes from the start to the dip, the dip

included. After that this model does not have the correct loss. For explanation of

the constant difference between the the analytical and numerical results in figure

4.2, 4.3, and 4.4, see section 3.2.5.

As figure 4.2, 4.3, and 4.4 show, other values of ∆x and ∆z could as well give

45

4. Choice of Parameters

(a) ”Slow” propagation, ∆x = ∆z = 0.3 m. (b) Normal propagation, ∆x = ∆z = 1 m.

Figure 4.1: Field simulation over a flat surface using SSA. The effect of small
different ∆x and ∆z for the SSA algorithm. Note that the axes are equal in both
figures, and that the z-axis in figure 4.1b is the correct one.

the same results. They show that at least at a low height, the FDM algorithm is

not affected by various values of ∆x and ∆z. For simplicity, SSA and FDM use

the same parameters.

The test results were obtained using the ParabolicEquation SSA FDM.m and

ParabolicEquation SSA FDM deltaV alueTest.m scripts in appendix E.1.2 and

E.1.3, respectively. Antenna height is 15 m.

46

4. Choice of Parameters

Figure 4.2: Path loss comparison at the antenna height, 15 m, along the surface.

Figure 4.3: Path loss comparison at the antenna height, 15 m, along the surface.

47

4. Choice of Parameters

Figure 4.4: Path loss comparison at the antenna height, 15 m, along the surface.

48

Chapter 5

Results

The results are obtained by simulating the electromagnetic field over different

surfaces. The simulation algorithms that are used are the Parabolic Equation

methods, the Split-Step Algorithm (SSA) and the Finite-Difference Method (FDM).

Due to the number of missing links in the Integral Equation model, this method

was not fully implementable, and can therefore not be tested. The goal in this

section is to test the performance of the SSA and the FDM over various surface

profiles. The simulation surfaces used have the following characteristics:

1. Flat surface

2. Downwards inclined plane

3. Upwards inclined plane

4. Wedge

5. Airport runways: Braunschweig and Luton

The first three cases are of interest because in all these cases, the result can be

compared with an analytical result. The fourth case is a wedge used in Hviid et al.

[1995]. This is of interest because the simulation results can be compared with

the results in Hviid et al. [1995]. The last case, runways of real airports tests the

algorithms on real cases. Over the runways there are no results to compare with.

All simulations were run using the frequency of the localizer, 110 MHz, horizontally

polarized electric field, and antenna height of 3 m, unless something else is specified.

The height of the localizer antenna is usually between 2 to 5 m. Note that in some

49

5. Results

cases the plot of the simulated field is zoomed in so that it does not cover the

entire computational domain. The beamwidth is specified with the half-power

beamwidth, either relative to the paraxial direction using the ±-sign, or the total

half-power beamwidth, without the ±-sign. Unless anything else is specified, the

half-power beam width is 20◦, and the beam has no tilt. Half-power beamwidth

of 20◦ means that the maximum beamwidth, which is larger than the half-power

beamwidth, will be within 40◦. This means that the beam is inside the ”validity

area”. The parabolic equation method described and implemented in this thesis

handles preferably a source with a beamwidth of maximum 40◦, propagation at

±20◦ from the paraxial direction. This is due to the error that occurs when

approximating the square-root operator in order to obtain the standard parabolic

equation, equation (3.23). Referring to figure 3.6 for α, for α > 20◦ the error

will theoretically increase rapidly, see figure 3.7. It is therefore desirable to have a

beamwidth of maximum ±20◦.

For all plots of simulated fields, the color bar given in figure 5.1 applies.

For all plots of field comparison, the curve labeled ”E-field Indra” is the analytical

Figure 5.1: Color bar for the field plots.

result. The analytical results may also be referred to as ”the results from Indra”,

because Indra generated the analytical results. Note that in the path loss comparisons,

the y-axis of the plot is reversed. This is done for being able to compare the path

loss behind a wedge with the results in Hviid et al. [1995].

The code is implemented in Matlab. In order to optimize the speed of the algorithms,

they are, as far as possible, implemented on a vectorized form. The implemented

scripts and functions can be found in appendix E and in the zip-file1 attached to

the thesis.

1The zip-file also includes scripts and functions that are not in use.

50

5. Results

5.1 Simulations over a Flat Surface

The simulations were run using the SSA FDM indra r loss.m script in appendix

E.1.4. This script simulates the electric field over a flat surface of 3000 m. Figure

5.2 and 5.3 show the simulated field using the SSA and FDM algorithm. The half-

power beamwidth of the beam is 55◦, ±27.5◦, in order to have the same width of

the beam as the analytical results from Indra. This is outside the ”comfort zone”

of the algorithm. The gain of the transmitter antenna in the result from Indra is

9dBi. The gain of the Gaussian beam, depends on the beamwidth only, and cannot

be changed for a given beamwidth. Therefore, in comparisons with the results from

Indra, relative field strengths are used.

In order to test the stability of the FDM, the absolute value of the maximum

eigenvalue, |λmax|, is printed on screen when running the implemented function for

FDM on a flat surface, FDMAbsorptionLayerNumEfficient2, appendix E.2.1.3.

It shows that the FDM is neutrally stable, |λmax| = 1.

Simulations over a flat surface are of interest because it is most likely necessary

Figure 5.2: Field simulation using the SSA.

51

5. Results

Figure 5.3: Field simulation using the FDM.

that the results are good for a flat surface, in order to good for an irregular surface.

This is because the algorithms for flat and irregular surface are similar. However,

good results from the flat surface does not mean that the results will be good for

an irregular surface. The simulations are performed in 2D. The main difference

between 2D and 3D is that the waves are cylindrical and spherical, respectively.

This means that in free-space loss a factor of
1

r
differs between cylindrical and

spherical waves. The easiest approach to compare 2D simulation results with 3D

simulation results is therefore to add the factor of
1

r
to the 2D simulation results.

This will give an indication of the plane earth loss. However, in the case of plane

earth loss, the dips and peaks that will occur due to reflections in the ground,

leading to constructive and destructive interference, might not appear at the same

spot. This is due to phase differences. Figure 5.4 and figure 5.5 show the simulated

field with added
1

r
-loss. These figures show that the shape and appearance of the

field is conserved when adding the
1

r
-loss.

52

5. Results

Figure 5.4: Field simulation using the SSA,
1

r
-loss added.

Figure 5.5: Field simulation using the FDM,
1

r
-loss added.

53

5. Results

For comparison of the simulated fields, two comparisons are made; horizontal and

vertical comparison. In the horizontal comparison the fields are compared at a

constant height along the surface. In vertical comparison, the fields are compared

at a constant range along the surface, and the height is varying, see illustration

in figure 5.6. In addition, comparisons were also made to investigate whether it is

necessary to add
1

r
-loss or not.

Figure 5.6: Illustration of horizontal and vertical comparison.

54

5. Results

5.1.1 Horizontal Comparison - Comparison along the Surface

The horizontal comparisons were made at the antenna height, 3 m above the

surface. Two comparisons were made; one without and one with
1

r
-loss added,

figure 5.7 and 5.8, respectively. Figure 5.7 shows that the loss of the fields simulated

in 2D is less than the analytical result for 3D. However, figure 5.8 shows that adding
1

r
-loss is too much. This is because the transmitted wave is directive and not

isotropic. The wave will therefore not spread in a sphere, leading to less free-space

loss than a sphere, and therefore less path-loss. The
1

r
-loss-approximation is too

simple.

The
1

r
approximation does have one more simplification that adds inaccuracy to

the results; the total field at the receiver is the sum of the direct and the ground-

reflected wave. These two waves will have traveled different distances. When

adding the
1

r
-loss, this is not taken into account. Since

1

r
is not constant along the

surface, some inaccuracy is added.

Figure 5.7 shows that the field strength dip that occurs at the beginning of the

surface does not occur at the exact same distance for SSA and FDM, and not at

the same distance as the analytical result either. It would be desirable if they did,

but the field of interest is at larger distances, at the end of the runways. Except

for different slope, the SSA and FDM results have the same shape as the analytical

one.

55

5. Results

Figure 5.7: Horizontal comparison, relative field strengths at the height of 3 m,
along a flat surface. No additional loss.

Figure 5.8: Horizontal comparison, relative field strengths at the height of 3 m,

along a flat surface.
1

r
-loss added.

56

5. Results

5.1.2 Vertical Comparison - Comparison in the Height Direction

The vertical comparisons were made at the constant range of 1000 m along the

surface. Firstly, one comparison was made; comparing the results with and without

additional
1

r
-loss with the analytical result, figure 5.9. The figure shows that there

is hardly any visible difference between the results with and without additional
1

r
-loss. This is because when comparing in the vertical direction, there is not much

variation in the distance difference between the source and the different points

along the vertical. Therefore, the additional loss for spherical waves will be close

to constant in the vertical direction. Since the
1

r
-loss is close to constant because of

small differences, any additional inaccuracy will also be very small. It is therefore

no need to add
1

r
-loss for vertical comparisons. Figure 5.9 shows that the FDM

results overlap with the analytical result. The SSA results do not overlap the

analytical result, but they have similar shape.

Figure 5.9: Relative field strength at the distance of 1000 m along a flat surface.
Both SSA algorithms overlap each other, and both FDM algorithms overlap each
other.

Figure 5.11 and 5.10 show a zoomed version of figure 5.9, the maximum height is

50 m. In figure 5.10 the field strengths are aligned to have the same value at the

lowest point of consideration. This can be done because the plot shows relative

57

5. Results

field strengths. Figure 5.10 shows that at low heights, the FDM increases faster,

and the SSA slower than the analytical result. As shows both figure 5.10 and

5.11, all of the results have approximately the same slope from 15 m up to 50 m.

In figure 5.11 all relative fields strengths are shifted to have the same maximum

value.

Figure 5.10: Relative field strength at the distance of 1000 m along a flat surface,

the receiver height is varying. No
1

r
-loss added. Aligned at the lowest height.

58

5. Results

Figure 5.11: Relative field strength at the distance of 1000 m along a flat surface,

the receiver height is varying. No
1

r
-loss added. Aligned at the maximum value.

59

5. Results

5.1.3 Flat Surface Summary

When comparing in the vertical direction there is no difference between 2D and 3D.

For horizontal comparison, 2D and 3D results cannot be compared with each other

because of different loss.
1

r
-loss adds inaccuracy and is not the correct loss when the

transmitted field is directive. It is not tested whether it works for an isotropic source

or not, because the algorithm cannot handle wide-angle propagation. Therefore, for

vertical comparisons, 2D results can be compared with 3D results. For horizontal

comparison, 2D results should be compared with 2D results.

The results show that in vertical comparison the FDM has the same shape as the

analytical result. The SSA have similar shape as the analytical result. In horizontal

comparison, the field strength of SSA and FDM have decreases linearly in dB from

the distance of approximately 30 m and up. In this region the analytical result

also decreases linearly. This shows that the Parabolic Equation methods works for

a flat surface.

60

5. Results

5.2 Inclined Plane

An upwards and downward inclined plane can be used to test the algorithms and

still being able to compare the result with the analytical result for a flat surface.

This can be done by steering the transmitted field parallel to the inclined plane.

For vertical comparison, the vertical direction is the direction perpendicular to the

plane. Figure 5.12 illustrates the principle for a downwards inclined plane. The

principle is the same for an upwards inclined plane.

A runway will hardly never have larger height difference than 20 m. Therefore,

the height difference on the inclined plane will be 20 m. Any difference between

the simulated fields over a flat surface and the inclined plane would most likely

be due to quantization error. The resolution has to be the same as ∆x and ∆z

in both the x- and z-direction, and is therefore 1 m. This means that the planes

are implemented as stairs, where the height difference of each stair step is 1 m.

The half-power beam width used is 55◦, in order to be able to compare with the

analytical result from Indra.

The black line near the end of the simulated fields show the ”vertical” direction

for the inclined planes, perpendicular to the plane. The line shows where the field

values are taken from in the vertical comparison.

Figure 5.12: Flat surface and downwards inclined plane, field comparison in the
vertical direction. The distance between transmitter and the line-of-comparison
along the surface is L. The transmitter is assumed to be along the z-axis at the
same height relative to the ground.

61

5. Results

5.2.1 Downwards Inclined Plane

The simulations were run using theDownwardsInclinedP lane.m script in appendix

E.1.5. Figure 5.19 and 5.20 show the simulated field over a downwards inclined

plane, using the SSA and FDM, respectively.

Figure 5.13: Field simulation using the SSA on a downwards inclined surface. The
black line at 1000 m along the inclined plane is the ”vertical” direction to the plane
at this point.

62

5. Results

Figure 5.14: Field simulation using the FDM on a downwards inclined surface.
The black line at 1000 m along the inclined plane is the ”vertical” direction to the
plane at this point.

63

5. Results

Figure 5.15 shows a vertical comparison of relative field strengths between the

simulated fields on the inclined plane, the simulated fields on a flat surface, and

the analytical result. The results are shifted to have the same maximum value as

the analytical result. The shape of the results is preserved. The figure shows that

the SSA and FDM from the inclined plane have the same shape. Their shape is

something between the shape of the SSA and FDM for a flat surface.

Figure 5.15: Vertical comparison of the relative field strength at the distance of
1000 m along a downwards inclined plane.

64

5. Results

Figure 5.16 and 5.17 are zoomed versions of figure 5.15. In figure 5.16 the field

strengths are shifted to have the same minimum value as the analytical result,

and in figure 5.17 they are shifted to have the same maximum as the analytical

result. Figure 5.16 shows that the field strength of the fields simulated along the

inclined plane increases faster than the analytical result and the simulated results

over a flat surface, for lower heights. This may be because of the staircase model

for downwards propagation, with zero-padding for downwards step. Due to the

staircase model, not all points will be within line-of-sight from the transmitter.

Both figure 5.16 and 5.17 show that the inclined results differ from the flat results

up to somewhere between 5 and 10 m. 5.17 show that the field strengths have

approximately the same slope from somewhere between 10 and 15 m up to 50 m.

The SSA and FDM for the inclined plane follow each other closely in the entire

domain.

Figure 5.16: Vertical comparison of the relative field strength at the distance of
1000 m along a downwards inclined plane. The relative field strengths are aligned
to the minimum value of the analytic field.

65

5. Results

Figure 5.17: Relative field strength at the distance of 1000 m along a flat surface,
the receiver height is varying. The relative field strengths are aligned to the
maximum value of the analytic field.

66

5. Results

(a) Surface profile of the downwards inclined plane.

(b) Horizontal comparison at 15 m above the surface at each
point.

Figure 5.18: Horizontal comparison between the field over the runway and over a
flat surface. Figure 5.18a is for surface reference.

Figure 5.18b shows horizontal comparison at the height of 15 m above the surface,

along the inclined plane, between the results from the inclined plane and the results

from a flat surface. The results are not shifted, so the comparison is the same as

field strength comparison. For shorter distances, up to 200 m, the simulated results

differ quite a bit. From 200 m and up, all the results follow each other. In this

region the SSA and FDM from the inclined plane almost overlap each other, and

their values are somewhere between the values of the SSA and FDM for a flat

surface.

67

5. Results

5.2.2 Upwards Inclined Plane

The simulations were run using the UpwardsInclinedP lane2.m script in appendix

E.1.6. Figure 5.19 and 5.20 show the simulated field over an upwards inclined

plane, using the SSA and FDM. The black line near the end of the simulated field

show the ”vertical” direction for the inclined plane, perpendicular to the plane.

Figure 5.19: Field simulation using the SSA on an upwards inclined surface. The
black line at 1000 m along the inclined plane is the ”vertical” direction to the plane
at this point.

68

5. Results

Figure 5.20: Field simulation using the FDM on an upwards inclined surface. The
black line at 1000 m along the inclined plane is the ”vertical” direction to the plane
at this point.

69

5. Results

Figure 5.21 shows a vertical comparison between the simulated results over the

inclined plane and a flat surface, and the analytical result. The simulated results

are shifted to have the same maximum value as the analytical result. The shapes

are preserved. The figure shows that the results from the inclined plane have very

similar shape, and their shape is something between the shape of the SSA and

FDM results from a flat surface.

Figure 5.21: Vertical comparison of the relative field strengths at the distance of
1000 m along an upwards inclined plane.

70

5. Results

Figure 5.22 and 5.23 are a zoomed versions of figure 5.21. In figure 5.22 the

field strengths are shifted to have the same value as the analytical result at the

lowest point of consideration. The figure shows that the results from the inclined

plane increase faster than than the other results at lower heights. In figure 5.23

all relative fields strengths are shifted to have the same maximum value as the

analytical result, at the highest point of consideration. As shows figure 5.23, all

the results have approximately the same slope from somewhere between 10 and 15

m and up to 50 m, this is also the same as for flat surface. The SSA and FDM

results from the inclined plane follow each other closely in the entire domain. The

reason that the results from the inclined plane increases fastest at lower heights,

may be due to the algorithm for handling undulating surface.

Figure 5.22: Vertical comparison of the relative field strengths at the distance of
1000 m along an upwards inclined plane. The relative field strengths are aligned
to the minimum value of the analytic field.

71

5. Results

Figure 5.23: Vertical comparison of the relative field strengths at the distance of
1000 m along an upwards inclined plane. The relative field strengths are aligned
to the maximum value of the analytic field.

72

5. Results

(a) Surface profile of the upwards inclined plane.

(b) Horizontal comparison at 15 m above the surface at each
point.

Figure 5.24: Horizontal comparison between the field over the upwards inclined
plane and over a flat surface. Figure 5.24a is for surface reference.

Figure 5.24b shows horizontal comparison at the height of 15 m above the surface,

along the inclined plane, between the results from the inclined plane and the results

from a flat surface. The results are not shifted, so the comparison is the same as

field strength comparison. For shorter distances, up to 200 m, all the simulated

results differ quite a bit. From 200 m and up, all the results follow each other. In

this region the SSA and FDM from the inclined plane almost overlap each other,

and their values are somewhere between the values of the SSA and FDM for a flat

surface.

73

5. Results

5.2.3 Inclined Surface Summary

Both for vertical and horizontal comparison, the results for SSA and FDM over

an inclined plane lie in between the SSA and FDM for a flat surface. For vertical

comparison, the shape of the SSA and FDM for inclined surface is something

between the SSA and FDM for flat surface, except at lower heights, up to approximately

10 m, where the results from the inclined surface decrease faster. This difference

may be due to the algorithm for irregular surface. For horizontal comparison at

shorter distances, up to approximately 200 m, all results, both from flat and inclined

plane, differ. At larger distances, from 200 m and up, the results from the inclined

plane are something between the SSA and FDM for a flat surface. An aircraft

landing on a runway will receive the signals that have traversed the runway, within

the larger distances from the localizer. Therefore, algorithm performance on larger

distances most relevant for this thesis.

The results for inclined plane show that the SSA and FDM can handle both up-

and downwards surfaces. The SSA and FDM result for the up- and downwards

planes are more similar than the simulation results over a flat surface.

5.3 Simulations over a Wedge

The simulations were run using theWedgeComparison Hviid.m script in appendix

E.1.7. The wedge in question is taken from Hviid et al. [1995], and is given i figure

5.25. The frequency used is 100 MHz, for being able to compare with the results

in Hviid et al. [1995].

Figure 5.26 and 5.27 show a zoomed version of the simulated fields over the

Figure 5.25: The setup for the wedge.

74

5. Results

wedge, using the SSA and FDM, respectively. The computational domain had to

be very large in order to avoid spurious numerical effects. The total simulated

fields can be found in figure C.1 and C.2 in appendix C.

Figure 5.26: Field simulation over the wedge given in figure 5.25 using the SSA.
Frequency: 100 MHz.

75

5. Results

Figure 5.27: Field simulation over the wedge given in figure 5.25 using the FDM.
Frequency: 100 MHz.

76

5. Results

Figure 5.28 shows vertical comparison of the path losses at the distance of 5000 m.

Figure 5.28a shows the path losses from the simulated fields, and figure 5.28b shows

the path losses using the Uniform Theory of Diffraction (UTD) and the Integral

Equation Model from Hviid et al. [1995]. The simulations were run at 100 MHz,

so that is the frequency of comparison. Figure 5.28a shows that the path losses for

the SSA and FDM are approximately equal. Figure 5.29 shows that the path loss

results of the wedge and the flat surface will approach the same value, meaning

that these results are consistent. For lower heights, up to 20 m, there is a large

difference between the simulated path losses in figure 5.28a and 5.28b. However,

from approximately 20 m up to 200 m, the path losses in both figures are linear in

dB. In this interval, the SSA and FDM path losses have approximately the same

slope as Hviid et al. [1995]. The path loss decreases with approximately 30 dB in

this interval. The values of the path loss in figure 5.28a and 5.28b are different.

The ”transmitter antenna” in Hviid et al. [1995] is a dipole, however, which kind

of dipole is not specified. This means that the beam shape remains unknown. The

”transmitter antenna” gain is also unknown. As shows the equation for path loss,

equation (3.39), path loss is independent of the type of antennas used. In the region

of altitude from 20 to 200 m, the path loss value differences between the simulated

fields and Hviid et al. [1995] may be due to constant difference, leading a constant

difference.

77

5. Results

(a) Path loss of simulated fields; SSA and
FDM

(b) Results from Hviid et al. [1995]; UTD
(dashed line) and Integral Equation Model
(continuous line).

Figure 5.28: Vertical comparison of path loss at the distance of 5000 m, for field
propagated over the wedge in figure 5.25.

78

5. Results

Figure 5.29 compares the path loss behind the wedge, at the distance of 5000 m,

between the path loss over a flat surface. This figure shows that the path loss

behind the wedge is larger than along a flat surface, which is as expected because

there is no line-of-sight from the transmitter. The wedge will influence the waves

above its height, as long as the wedge is within the first Fresnel zone of the receiving

point. With a wedge height of 50 m and antenna height of 3 m, the lowest point

with line-of-sight from the transmitter, at the distance of 5000 m, is at 96 m, see

equation (5.1). This means that the wedge affects the signal high up in the air,

higher than 96 m. As already mentioned, figure 5.29 also shows that as the altitude

gets higher, the signals from the wedge and the flat surface approaches the same

path loss value. This is as expected because the influence of the wedge on the

signal will gradually decrease.

hLine-of-sight = 5000 m · tan

(
47 m

2500 m

)
+ 3 m

= 96 m

(5.1)

79

5. Results

Figure 5.29: Vertical comparison of path loss of the field propagated along a flat
surface and behind the wedge, at 5000 m.

80

5. Results

(a) Wedge profile

(b) Horizontal comparison at 15 m above the surface at each
point.

Figure 5.30: Horizontal comparison between the field over the wedge and over a
flat surface. Figure 5.30a is for the wedge surface reference.

Figure 5.30b shows horizontal comparison, at 15 m above the surface, following the

surface, between the the fields simulated over the wedge and a flat surface. The

results are not shifted, so the comparison is the same as field strength comparison.

The figure show that from approximately 300 to 2500 m, all the results follow each

other, with almost the same field strength value and slope. The SSA and FDM

from the wedge simulations almost overlap each other from the distance of 300

m, and their values are somewhere between the SSA and FDM values from the

flat surface. The figure shows a drastical decrease of field strength slope behind

the wedge for the SSA and FDM over the wedge. This is as expected because it

is within the shadow region of the transmitter, there is not line-of sight from the

transmitter. Figure 5.30a is for surface reference.

81

5. Results

5.3.1 Wedge Summary

The path loss comparisons behind the wedge, between the simulated results and

the results from [Hviid et al., 1995], show that both the SSA and FDM can handle a

wedge. The statement is supported by the the horizontal comparisons which show

that the field strength decreases faster behind the wedge than within line-of-sight

from the transmitter.

82

5. Results

5.4 Simulation over Runways

Fields are simulated over two runways, Braunschweig and Luton. The both have a

smooth irregular terrain characteristic. Vertical and horizontal comparisons are

made. The vertical comparisons takes place at the end of the runways. The

horizontal comparisons takes place at 15 m above the surface, follows the terrain.

The choice of 15 m above the surface, is made in order to follow the surface, and

at the same time avoid numerical effects due to ondulating terrain. The interest of

both comparisons is to see how the terrain affects the signals. Indra does not have

any measurements form the airports that are suitable for comparisons. Therefore,

the comparisons are of simulated fields only.

5.4.1 The Braunschweig Airport Runway

The simulations over the Braunschweig airport runway were run using the

Braunschweig.m script in appendix E.1.8. The surface profile of the Braunschweig

airport is given in figure 5.31. The calculated fields using the SSA and FDM

methods are given in figure 5.32 and 5.33. Both vertical and horizontal field

comparisons are made.

Figure 5.34 shows the vertical comparison of the path losses at the end of

Figure 5.31: Surface profile of the runway at the Braunschweig airport. Please note
the scaling difference between the x- and z-axis.

the runway, compared with the path loss over a flat surface. The figure shows

that at lower heights, the path loss of the field over the runway is larger than the

path loss for a flat surface. This is as expected because of diffraction effects over

the runway, and there no line-of-sight from the transmitter. However, at higher

altitudes the path losses over the runway and the flat surface approach the same

83

5. Results

Figure 5.32: Field over the Braunschweig airport, using SSA.

Figure 5.33: Field over the Braunschweig airport, using FDM.

84

5. Results

value. This is because the effect of the ondulating terrain will gradually decrease.

The path losses obtained using the SSA and FDM are very close to equal. They

are closer than for a flat surface.

Figure 5.34: Vertical comparison of the path losses of the SSA and FDM at the
end of the runway. Compared with flat surface as well.

85

5. Results

Figure 5.35c shows horizontal comparison with height of comparison of 15 m above

all surface points, see figure 5.35a. The results are not shifted, so the comparison is

the same as field strength comparison. Figure 5.35c shows that until approximately

500 m, the field strength of the runway and the flat surface have similar pattern.

This is within line-of-sight from the transmitter. From approximately 500 m, still

within line-of-sight, the field strength of over the runway starts to decrease faster

than the field strength on the flat surface. Near the end of the runway, the runway

profile goes down. Here, the field strength drops. The signals over the runway are

affected by runway profile even when the observation points are within line-of-sight,

most likely because the surface of the runway is within the first Fresnel zone of the

observation points. This means that diffraction effects from the surface affects the

signals.

The SSA and FDM over the runway follow each other closely, especially when

the field strength starts to decrease, at approximately 500 m. From 500 m, they

almost overlap. The SSA and FDM over the runway follow each other closer than

SSA and FDM over a flat surface.

86

5. Results

(a) Runway surface profile, line-of-comparison, and line-of-
sight line.

(b) Runway surface profile

(c) Horizontal comparison at 15 m above the surface at each
point.

Figure 5.35: Horizontal comparison between the field over the runway and over a
flat surface. Figure 5.35b is for runway surface reference.

87

5. Results

5.4.2 The Luton Airport Runway

The simulations over the Luton airport runway were run using the Luton2.m script

in appendix E.1.9. The runway at Luton airport has the profile given in figure 5.36.

The simulated fields using the SSA and FDM methods are given in figure 5.37 and

5.38.

Figure 5.36: The surface profile of the runway at the Luton airport. Please note
the scaling difference between the x- and z-axis.

The vertical field comparison between the SSA and FDM at the end of the runway

is given in figure 5.39. The figure shows that the simulations from SSA and FDM

are consistent, they almost overlap in the entire region. The end of the runway is

behind a hump, seen from the localizer. For the vertical comparison, the height

of which there will be line-of-sight from the localizer to the points of comparison,

is at approximately 70 m, see figure 5.40a. This can somehow be seen in figure

5.39 because the difference between the path loss of a flat surface and the runway

is relatively large. When the altitude gets higher, the effect of the runway surface

will gradually decrease, and the path loss will approach the path loss for a flat

surface. This is as expected since the hump will no longer affect the signals. The

signals continue to be affected by the runway surface, even when the observation

point is within line-of-sight, because some part of the surface is within the Fresnel

zones.

88

5. Results

Figure 5.37: Field over the Luton airport, using SSA.

Figure 5.38: Field over the Luton airport, using FDM.

89

5. Results

Figure 5.39: Vertical comparison of the path losses of the SSA and FDM at the
end of the runway. Compared with flat surface as well.

90

5. Results

Figure 5.40c shows horizontal comparison at the height of 15 m above the surface,

along the runway. The results are not shifted, so the comparison is the same as

field strength comparison. The figure shows that the hump shape of the runway

affects the signals, even when the observation point is within line-of-sight from the

transmitter, see figure 5.40a. The hump starts to affect the signals at a distance

of approximately 400 m, see figure 5.40c, which is within line-of-sight from the

transmitter. This is most likely because some part of the terrain is within the

first Fresnel zone. The field strength on the runway starts to differ from the field

strength on a flat surface at the distance of approximately 400 m. From this point

and on, the field strength starts to decrease gradually faster than for a flat surface.

When the surface profile drops near the end, the field strength drops too. Figure

5.40b is for surface reference.

The SSA and FDM for the runway follow each other closely over the entire runway.

Up to 300 m they have similar pattern. From 300 m and up, they almost overlap

each other.

91

5. Results

(a) Runway surface profile with observation point, and line-of-
sight line.

(b) Runway surface profile. Note that the x-axis is not linear.

(c) Horizontal comparison at 15 m above the surface at each
point. The SSA and FDM from the runway overlap each other
at larger distances.

Figure 5.40: Horizontal comparison between the field over the runway and over a
flat surface. Figure 5.35b is for runway surface reference.

92

5. Results

5.4.3 Runway Simulation Summary

The simulations over the runways show that the results using the SSA and FDM

follow each other closely over most part of the runways. When seen from the

”transmitter antenna”, for shorter distances the SSA and FDM differ slightly, and

for larger distances they almost overlap. In vertical comparison they almost overlap

each other in the entire domain. The results also show that the path loss is larger,

the field strength is lower, when propagating over ondulating terrain, which is like

expected. At higher altitudes, when the waves will no longer be affected by the

terrain, the results from the simulations over the runway will approach the same

value as the results from a flat surface, which is also like expected.

Based on the results from the previous sections, it is likely that the simulations

over the runways give a realistic indication of the field strength and path losses.

Except at very low heights.

5.5 Results Summary

For a flat surface, the FDM results are consistent with the analytical results. The

SSA has the same shape, but does not overlap the analytical results like the FDM.

For the inclined planes, the wedge, and the runways, the SSA and FDM overlap

at larger distances for horizontal comparison. In vertical comparison they have

the same shape in almost the entire domain. Close to the surface the results from

the inclined surface decrease faster than the analytical result and the results from

flat surface. The SSA and FDM from the inclined surface follows each other in the

entire domain. For the wedge, the path loss comparisons showed that in the interval

of altitude 20 to 200 m, the simulated results, SSA and FDM, have the same slope

as the results in Hviid et al. [1995]. Over the runways, for horizontal comparison,

the SSA and FDM follow each other closely from approximately 200 m. For vertical

comparison, they follow each other in the entire domain. The comparisons with flat

surface show that there can be significant differences between the field strength over

a flat surface and a humped runway. Provided that the results from the runways

can be trusted.

Based on the results, the SSA and FDM can handle undulating terrain, except

a very low heights, and it is likely that the results that give realistic indications of

the field strengths.

93

5. Results

A
1

r
-compensation for simulation of 3D propagation in 2D is too conservative.

It consistently underestimates the field strength, overestimates the loss.

94

Chapter 6

Discussion and Further

Work

Based on the results, the Parabolic Equation Method is suitable for field propagation

simulation of signals at 110 MHz, the frequency of the ILS localizer, for signals

propagating over a humped runway.

6.1 Field Strength Near the Surface for Inclined

Plane

The results show that for an inclined plane, the field decreases faster close to the

ground than for a flat surface. For downwards propagation it can be explained by

the zero-padding when the terrain goes down. When the terrain goes down one

step, the field values of the points within the height of this step will be zero. When

the field continue to propagate at this height, the zero-padded points will get their

values from the propagating field. Therefore, the field values close to the ground

will be less accurate, and the values smaller, since the zero-padded points influence

the propagation. For upwards propagation, the principle is the opposite, and why

the field decreases fast close to the ground remains subject to further investigation.

Due to time constraint, there was not time for that in this thesis.

95

6. Discussion and Further Work

6.2 Modeled Surface Resolution

When modeling a surface, its resolution will be the same as the step size in the x-

and z-direction, ∆x and ∆z, for the field propagation algorithms, SSA and FDM.

In this thesis, a step size of 1 m in both directions is used. This means that for

small height differences, the terrain modeling can be quite rough. Smaller step size

would therefore be preferable, however, this will drastically increase the run time

of the algorithm. In addition, according to chapter 4, only the FDM algorithm can

handle smaller step sizes. For small step sizes, the SSA does not converge. There

exist other methods for handling irregular terrain, like ”piecewise linear terrain”

and ”conformal mapping”, [Levy, 2000, p. 97,100]. They are not implemented and

remain subject to further work.

6.3 SSA and FDM Differences - Flat and Non-Flat

Surface

The results show that there is less difference between the SSA and FDM when

the surface is non-flat than for a flat surface. Both the SSA and the FDM solve

the standard parabolic equation. The SSA by solving the equation in the Fourier

domain, and the FDM by solving the equation directly, by discretization of the

equation. Since they both solve the same equation, their results should be quite

similar. This is the same for both flat and irregular surface. The reason for

this difference between flat and irregular surface, remains a subject to further

investigation. Due to time constraint, it is beyond the limits of this thesis.

6.4 Localizer Signals and Wide-Angle Propagation

The results show that the runway surface profile can affect electromagnetic waves

at the frequency of the localizer significantly. For simulation of how the localizer

signals will be affected, a wide-angle propagation algorithm has to be used. The

implemented algorithm is a narrow angle propagation algorithm, where the preferred

beamwidth is 40◦, ±20◦, or narrower. The implemented algorithm has been tested

for signals of half-power beamwidth of 55◦, ±27.5◦, with good results. It is

therefore possible that the results can be reasonable with a beamwidth of ±40◦.

However, wide-angle propagation algorithms would be preferable. The wide-angle

96

6. Discussion and Further Work

propagation algorithms are more complex extensions of the implemented narrow-

angle propagation algorithms. They were not implemented because it was necessary

to know that the implemented algorithms works well, before extending them. It is

beyond the scope of this thesis, and is subject for further work.

6.5 Runtime

When running the SSA and the FDM, the runtime of both algorithms is approximately

equal. It is hard to compare the number of computations for the algorithms,

because of matrix inversion in the FDM. The algorithms give similar results. For

a flat surface the FDM is closer to the analytical result than the SSA. However,

over undulating terrain they give the same result.

6.6 Commercial Software

There exists commercial software for electromagnetic simulations, like Computer

Simulation Technology (CST). The software was not used because it is very complex,

and due to time constraint, there was not enough time to learn how to use it. In

addition, it is not used in this industry, simulation of ILS and the propagation

of its radio waves. Indra does not use it, and Airbus recently developed their

own simulation software, ELISE. The ELISE software does only work for a flat

runway.

6.7 3D Loss in 2D

It should be possible to introduce ”artificial” loss in a 2D model, in order to

compensate for the additional loss in 3D. As already stated in the results, the

difference between the losses is not as large as
1

r
. At least not when the beam

is directive. One way to do this may be to transform the 3D source of interest

into an equivalent 2D source, using a path loss correction factor. This is proposed

for the Finite-Difference Time-Domain algorithm in Wu et al. [2008]. Due to time

constraint, there was not time to work on it within this thesis. It is left for future

work.

97

6. Discussion and Further Work

6.8 3D - Parabolic Equation

The parabolic equation method can be extended to 3D. When doing so the method

can adapt to irregular terrain in the transverse direction as well. The algorithm will

then become more complex, the number of computations will increase dramatically,

and so will the run time of the algorithm as well. At the same time, the simulations

will be a lot closer to the reality because the propagated wave will be a spherical

wave, and the terrain will have extension in the transverse direction. Correct

wave propagation in 3D will be a challenge, because the wave will spread in two

dimensions at the same time.

Similar for the sky in the case of 2D, the end of the computational domain in

the transverse direction will as well need an absorption layer on the sides, in order

to avoid numerical reflection.

If the terrain has the same assumption as in 2D, no variations in the transverse

direction, the number of computations can be reduced by introducing a plane of

symmetry at y = 0, according to figure 6.1. This works if the source is centered at

(x, y) = (0, 0), and the source is not tilted in the transverse direction.

−y
Transverse direction x

Paraxial direction

z
Height

Figure 6.1: Computational domain for simulation using the Parabolic Equation
method in 3D.

6.9 Integral Equation Model

The Integral Equation Model is implemented as far as possible in this project. Some

more research on this method can resolve the remaining issues. Since this method

98

6. Discussion and Further Work

also was ”invented” for irregular terrain, it could be very interesting to compare the

performance of this method with the Parabolic Equation Method. What remains on

the implementation of the Integral Equation Model is the calculation of the electric

field at the receiver, based on the calculated induced currents along the surface. In

order to do so, further research on the following points are necessary:

• Which points along the surface contribute to the total field at the receiver

point?

• What kind of source is the surface?

The implemented code is available via NTNU.

99

6. Discussion and Further Work

100

Chapter 7

Conclusion

The Parabolic Equation Method is suitable for simulation of electromagnetic field

propagation over a surface with undulating terrain, at the frequency of the ILS

localizer. The computational domain for the simulations consists of boundary

conditions for a perfect conductor at the ground, free-space propagation, and an

absorption layer for damping of the waves at the top of the computational domain.

The simulation results over a flat surface and up- and downwards inclined plane

are consistent with the analytical results. The algorithms can also handle a wedge.

It is therefore likely that the results over the humped runways are reasonable.

They show that a humped runway surface can affect electromagnetic signals at the

frequency of the ILS localizer considerably. In order to predict the propagation of

electromagnetic signals at the frequency of the ILS localizer over a humped runway

surface, the runway surface profile needs to be taken into account. This can be

done using the Parabolic Equation Method. The suitability and performance of

the Integral Equation Model remains unknown.

The Parabolic Equation Method is implemented in 2D, for narrow beam propagation.

It is a building block for wide extension possibilities like wide-angle propagation,

3D loss in 2D, and 3D implementation.

101

7. Conclusion

102

References

C.A. Balanis. Antenna Theory: Analysis and Design. John Wiley & Sons, 2005.

20

Jean-Pierre Bérenger. A perfectly matched layer for the absorption of

electromagnetic waves. Journal of Computational Physics, 114(2):185–200, 1993.

35

C. Brennan and P.J. Cullen. Application of the fast far-field approximation to the

computation of uhf pathloss over irregular terrain. Antennas and Propagation,

IEEE Transactions on, 46(6):881 –890, jun 1998. 15, 18, 19

W.C. Gibson. The Method of Moments in Electromagnetics. Taylor & Francis,

2007. 14, 15

R Holm. Grunnleggende ILS teori, revisjon 6. Avinor, 2002. ix, 1, 2

J.T. Hviid, J.B. Andersen, J. Toftgard, and J. Bojer. Terrain-based propagation

model for rural area-an integral equation approach. Antennas and Propagation,

IEEE Transactions on, 43(1):41 –46, jan 1995. 16, 18, 43, 49, 50, 74, 77, 78, 82,

93, 150

G. Kouzaev. Microwave techniques TTT4205 2. Lecture notes in TTT 4205, fall

2011, 2011. 25

Landing-Systems. Welcome to the educational ils program. "http://instrument.

landing-system.com/ils-tutorial-animation/. Visisted: 08.06.2013. ix, 2

Y.H. Lee. Introduction to Engineering Electromagnetics. Springer London, Limited,

2013. 25, 27

M.F. Levy. Parabolic Equation Methods for Electromagnetic Wave Propagation.

Electromagnetic Waves Series. Institution of Electrical Engineers, 2000. 10, 27,

28, 30, 31, 32, 96, 105, 106, 107, 108, 109

103

"http://instrument.landing-system.com/ils-tutorial-animation/
"http://instrument.landing-system.com/ils-tutorial-animation/

REFERENCES

S. Saunders and A. Aragón-Zavala. Antennas and Propagation for Wireless

Communication Systems: 2nd Edition. John Wiley & Sons, 2007. ix, 6, 9,

10, 14, 18, 43

K Åstebøl. Datamaskin-assistert analyse av omgivelsenes p̊avirkning p̊a

signalytelsen til flylandingssystemet ILS. 2012. 1

G. Strang. Linear algebra and its applications. Thomson Brooks/Cole Cengage

learning, 2006. 33

The MathWorks Inc. dst, idst. URL http://www.mathworks.se/help/pde/ug/

idst.html. Visited: March 7th 2013. 106

Yan Wu, Min Lin, and I. Wassell. Path loss estimation in 3d environments

using a modified 2d finite-difference time-domain technique. In Computation

in Electromagnetics, 2008. CEM 2008. 2008 IET 7th International Conference

on, pages 98–99, 2008. 97

104

http://www.mathworks.se/help/pde/ug/idst.html
http://www.mathworks.se/help/pde/ug/idst.html

Appendix A

Mathematical Tools

A.1 Fourier Transform

The definitions of the Fourier transform and the inverse Fourier transform, respectively,

are given in equation (A.1) and (A.2), [Levy, 2000, p. 13].

U(x, p) = F {u(x, z)} =

∞∫
−∞

u(x, z)e−i2πpzdz (A.1)

u(x, z) = F−1 {U(x, p)} =

∞∫
−∞

U(x, p)ei2πpzdp (A.2)

A.2 Fourier Sine Transform

The Fourier Sine Transform, equation (A.3), [Levy, 2000, p. 25]:

U(x, p) = S{u(x, z)} =

∫ +∞

0

u(x, z) sin(2πpz)dz (A.3)

105

Appendix A: Mathematical Tools

A.3 Discrete Fourier Sine Transform

Discrete Fourier Sine Transform, equation (A.4), [The MathWorks Inc.]:

U(x, p) = S{u(x, n)} =

N∑
n=1

u(x, n) sin

(
π
p · n
N + 1

)
, p = 1, · · · , N (A.4)

Inverse Discrete Fourier Sine Transform, equation (A.5), [The MathWorks Inc.]:

u(x, n) = S−1{U(x, p)} =
2

N + 1

N∑
n=1

U(x, p) sin

(
π
p · n
N + 1

)
, p = 1, · · · , N (A.5)

A.4 Approximations of Differentials

The first order derivative is given by equation (A.6), and the second order derivative

is given by equation (A.7), [Levy, 2000, p.36].

∂u

∂x
(ξm, zj) =

u(xm, zj)− u(xm−1, zj)

∆xm
(A.6)

∂2u

∂x2
(ξm, zj) =

u(ξm+1, z) + u(ξm−1, zj)− 2u(ξm, zj)

∆x2
(A.7)

106

Appendix B

Derivations

B.1 Derivation of the Standard Parabolic Equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2ψ = 0

x: direction of propagation

z: height

k: wave number in vacuum,
2π

λ

n: refractive index, function of x and z, slowly varying

(B.1)

Introducing u(x, z) = eikxψ(x, z), [Levy, 2000, p. 5], and filling u(x, z) into the

scalar wave equation, equation (B.1), gives the scalar wave equation for u(x, z),

equation (B.2).

(E):
∂2u

∂x2
+ i2k

∂u

∂x
+
∂2u

∂z2
+ k2(n2 − 1) = 0

(E)⇐⇒
{
∂

∂x
+ ik(1−Q)

}{
∂

∂x
+ ik(1 +Q)

}
u = 0

Q =

√
1

k2

∂2

∂z2
+ n2(x, z)

(B.2)

Q is a pseudo differential operator, meaning that the operator itself contains partial

derivatives and regular functions of the variables. The Q operator is valid for the

107

Appendix B: Derivations

set of functions u(x, z) satisfying equation (B.3), [Levy, 2000, p. 6].

Q(Q(u)) =
1

k2

∂2u

∂z2
+ n2u (B.3)

The motivation for simplifying the scalar wave equation for u, like in equation

(B.2), is to discover that u is a sum of forward and backward propagating waves,

see equation (B.4).
u = u+ + u−

∂u+

∂x
= −ik(1−Q)u+: Forward propagating wave

∂u+

∂x
= −ik(1 +Q)u−: Backward propagating wave

(B.4)

Forward propagating waves are the only waves of interest. In order to find u+, an

approximation of the differential equation for u+, the standard parabolic equation,

can be found by approximating the square-root in the Q operator with a first order

Taylor series expansion, leading to the standard parabolic equation, see equation

(B.5).

Taylor series expansion around x = 0:
√

1 + x ' 1 +
1

2
x

Q =

√
1

k2

∂2

∂z2
+ n2(x, z) =

√
1

k2

∂2

∂z2
+ n2(x, z)− 1 + 1

⇒ Q ' 1 +
1

2

(
1

k2

∂2

∂z2
+ n2 − 1

)
⇒
{
∂

∂x
+ ik(1−Q)

}
u = 0⇔ ∂u

∂x
+ ik

(
1− 1− 1

2

(
1

k2

∂2

∂z2
+ n2 − 1

))
u = 0

⇔ ∂2u

∂z2
+ i2k

∂u

∂x
+ k2(n2 − 1) = 0: The standard parabolic equation

(B.5)

B.2 Derivation of the Numerical Standard Parabolic

Equation

To simplify the notation, u(xm, zj) = ujm. When ”converting” the original SPE,

equation (B.6), to a numerically implementable form, the first differential term,
∂2u
∂z2 (ξm, zj), is given in equation (B.8), and the second differential term, ∂u∂x (ξm, zj)

is given in equation (B.9). In order for the solution to propagate, the midpoint

between the current point m and the previous point m − 1 along the x-axis is

108

Appendix B: Derivations

considered, ξjm, [Levy, 2000, p. 36]. ξjm is defined according to equation (B.7).

∂2u

∂z2
(x, z) + 2ik

∂u

∂x
(x, z) + k2(n2(x, z)− 1)u(x, z) = 0 (B.6)

ξm =
xm−1 + xm

2
(B.7)

∂2u

∂z2
(ξm, zj) =

uj+1
m−1 + uj+1

m + uj−1
m−1 + uj−1

m − 2ujm−1 − 2ujm
2∆z2

(B.8)

∂u

∂x
(ξm, zj) =

ujm − u
j
m−1

∆x
(B.9)

Inserting equation (B.8) and (B.9) into equation (B.6), results in equation (B.10).

uj+1
m−1 + uj+1

m + uj−1
m−1 + uj−1

m − 2ujm−1 − 2ujm
2∆z2

+ 2ik
u(xm, zj)− u(xm−1, zj)

∆x
+

k2

2
(n2(ξm, zj)− 1)(ujm−1 + ujm) = 0

(B.10)

By Setting b = 4ik∆z2

∆x and ajm = k2(njm
2− 1)∆z2, and inserting this into equation

(B.10), leads to equation (B.11).

uj+1
m−1 + uj+1

m + uj−1
m−1 + uj−1

m − 2ujm−1 − 2ujm + b
(
ujm − u

j
m−1

)
+

ajm

(
ujm−1 + ujm

)
= 0

(B.11)

Rearranging equation (B.9) such that all terms including point m are at the right-

hand side, and all terms including point m − 1 are at the left-hand side leads to

equation (B.12).

uj−1
m + ujm

(
−2 + b+ ajm

)
+ uj+1

m = −uj−1
m−1 + ujm−1

(
2 + b− ajm

)
− uj+1

m−1 (B.12)

If the current point is m, this means that the value of u at the range xm can be

determined by knowing the value of u at xm−1, for all z-values of interest. Equation

(B.12) is the case for a given height j. However, the relation is the same for any

height, and can be summarized into a matrix form, equation (B.13), [Levy, 2000,

p. 38], where Um−1 contains the field values for all heights at x-range m − 1, and

Um is to be determined. The tridiagonal matrices contain only one number in the

first and last line. This is due to the boundary conditions at the top and bottom

where the field is zero and remains unchanged. The initial field should be zero at

109

Appendix B: Derivations

the top and bottom.

1

1 α1
m 1

. . .

1 αN−1
m 1

1

·

...

...

Um
...
...

=

1

−1 β1
m −1

. . .

−1 βN−1
m −1

−1

·

...

...

Um−1

...

...

,

Um =

u0
m

u1
m

...

uN−1
m

uNm

, Um−1 =

u0
m−1

u1
m−1

...

uN−1
m−1

uNm−1

(B.13)

110

Appendix C

Plots

C.1 Field Simulation Over a Wedge

Figure C.1 and C.2 show the total simulated fields over the wedge given in figure

5.25, using the SSA and FDM, respectively.

Figure C.1: Field simulation over the wedge given in figure 5.25 using the SSA.
Frequency: 100 MHz.

111

Appendix C: Plots

Figure C.2: Field simulation over the wedge given in figure 5.25 using the FDM.
Frequency: 100 MHz.

112

Appendix D

Implementation and

Simulation

D.1 Implementation Terminology

The terminology used in the implementation is consistent in all functions and

scripts.

• Vector: 1-dimensional array: [n × 1]

• Grid: 2-dimensional array: [n × m]

• Coordinates in 2D (array): (z, x) - [lines (height), columns (distance)] in

an array In the implementation x and z have changed order due to the

visualization of what an array ”looks like” in Matlab. The first coordinate

represents the lines, height, and the second coordinate columns, distance.

D.2 Simulation Using the Implemented Functions

The functions are implemented in Matlab. In order to do simulations using the

implemented functions, the procedure below has to be followed.

113

Appendix D: Implementation and Simulation

D.2.1 Create Initial Field

Firstly, a height vector including height points for the absorption layer needs to be

created. The function createZvectAbsorptionLayer2 does that.

Secondly, the initial field can be created, using the function createInitialF ield.

D.2.2 Irregular Surface

For an irregular surface, a set of points describing the surface is necessary. The

interpolate function interpolates a set of surface points, in order to have appropriate

spacing between the surface points.

If the surface has surface points below zero, the surface has to be shifted upwards so

that the lowest point is located at altitude zero. The function normalizeSurface

performs this operation.

D.2.3 Field Propagation Algorithms

The field propagation algorithms with associated implemented functions are listed

below:

• SSA flat surface: splitStepAlgorithmAbsorptionLayer

• FDM flat surface: FDMAbsorptionLayerNumEfficient2

• SSA irregular surface: SSAirregularTerrainAbsoptionLayer

• FDM irregular surface: FDMirregularTerrainAbsorptionLayer

114

Appendix E

Implemented Code

This appendix contains the implemented code; the scripts for obtaining the results,

the field propagation algorithms, and the helping functions. The zip-file attached

to the thesis contains all the scripts and functions below, plus some functions and

scripts that are not in use.

E.1 Scripts for the Obtained Results

E.1.1 ParabolicEquation noGround.m

Simulation of field in free-space using the FDM. Used in section 3.2.5.

1 % ParabolicEquation noGround.m: Script that simulate free−space only, for

2 % testing the absorption layer.

3 clear all

4

5 % Setting the parameters:

6 theta0 =0;

7 beta = pi/15;

8 A = 2;

9 frequency = 100*10ˆ6;

10 deltaX =1;

11 maxX = 5000;

12 maxHinterestHeight =20;

13 numLayersArray =10;

14 numPointsPerLayerArray =20;

115

Appendix E: Implemented Code

15 numElts = length(numPointsPerLayerArray);

16 numPointsInLayer =100;

17 deltaZarr = 1;

18

19 % Looping over the deltaZ values in question:

20 for b = 1: length(deltaZarr)

21 deltaZ = deltaZarr(b);

22

23 antHeight =10;

24

25 % Looping over the antenna heights in question:

26 for a =1:length(antHeight)

27 counter = 0;

28 simulationType = cell(numElts,1);

29 for heightIndex = 1: length(maxHinterestHeight)

30 for n = 1: length(numLayersArray)

31

32 for m = 1: length(numPointsPerLayerArray)

33 counter = counter +1;

34 numLayers = numLayersArray(n);

35 numPointsPerLayer = numPointsPerLayerArray(m);

36

37 zs = antHeight(a);

38

39 maxHinterest =260;

40

41 % Creating z−vector with absorption layer:

42 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

43 maxHinterest, deltaZ,numPointsInLayer);

44

45 % Creatin initial field:

46 initialFieldFDM =createInitialField(zs,theta0,beta,...

47 zVectFDM, A, frequency,'gaussian1');

48 numZpoints = length(zVectFDM);

49

50

51 % Creating the x vector:

52 xVect = verticalVector([0:deltaX:maxX]);

53

54

55 numIterations = ceil(maxX/xVect(numZpoints));

56 xVectTot = xVect;

57 L = length(zVectFDM);

58 sourceIndex = ceil(((L/deltaZ) +1)*(zs/L));

59

60 % Simulating the field:

61 tic

62 [uValuesFDMalne,maxEigVal,antennaSourceIndex] = ...

116

Appendix E: Implemented Code

63 FDMnoGround(initialFieldFDM, ...

64 zVectFDM,xVect,HindexFDM,frequency,...

65 numPointsInLayer,sourceIndex);

66 uValuesTot = uValuesFDMalne;

67

68 toc

69

70 deltaZstr = num2str(deltaZ);

71 yText = 'Height distance [m]';

72 %

73

74 eField = uValuesTot(antennaSourceIndex,:);

75 simulationType{counter,1} = ['FDM'];

76

77 if counter == 1

78 eFieldTot = eField;

79 else

80

81 eFieldTot = vertcat(eFieldTot,eField);

82 end

83

84 tx = zs;

85 rx = zs;

86

87 % Plotting the simulated field:

88 fig = figure('visible','off');

89 uValuesAux = uValuesTot;

90 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
91 contourf(10.*log10(abs(uValuesAux.ˆ2)),50)

92 hold on

93 contour(10.*log10(abs(uValuesAux.ˆ2)),50)

94

95 part1Title = ['FDM − absorption layer test'];

96 part12Titile = [' ','\Deltaz = ',' ',deltaZstr,...

97 'm, ','\Deltax = ',' ', ...

98 num2str(deltaX),'m,'];

99 part21Title = ['Distance from center point of ',...

100 'source to beginning of absorption layer: ',...

101 num2str(maxHinterest−zs),'m'];

102 part2Title=['Number of points in absorption layer:',...

103 ' ', num2str(numPointsInLayer)];

104

105 titleVal2 = {part1Title;part12Titile;part21Title;...
106 part2Title};
107 title(titleVal2)

108 xlabel('Distance [m]');

109 ylabel(yText);

110 grid on

117

Appendix E: Implemented Code

111 titleFig = [...

112 'FDM noGround/FDM AbsorptioLayerTest ant h ',...

113 ' ',num2str(antHeight(a)), ...

114 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

115 num2str(deltaX),' max h ',...

116 num2str(maxHinterestHeight(heightIndex)), ...

117 'num points layer', num2str(numPointsInLayer),...

118 '.png'];

119 saveas(fig,titleFig,'png');

120 end

121 end

122 end

123 part1Title = ['FDM − absorption layer test'];

124 part12Titile = [' ','\Deltaz = ',' ',deltaZstr,...

125 'm, ','\Deltax = ',' ', ...

126 num2str(deltaX),'m,'];

127 part21Title = ['Distance from center point of ',...

128 'source to beginning of absorption layer: ',...

129 num2str(maxHinterest−zs),'m'];
130 part2Title=['Number of points in absorption layer:',...

131 ' ', num2str(numPointsInLayer)];

132

133 plotTitle = {part1Title;part12Titile;part21Title;...
134 part2Title};
135

136 titleFig = ['FDM noGround/FDM AbsorptioLayerTest ant h ',' ',...

137 num2str(antHeight(a)), ...

138 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

139 num2str(deltaX),' max h ',...

140 num2str(maxHinterestHeight(heightIndex)), ...

141 'num points layer', num2str(numPointsInLayer),...

142 'newAbsLAyer4','.png'];

143 tx = 10000;

144 rx = 10000;

145

146 % Comparing the simulated free−space loss with analytical

147 % free−space loss:

148 freeSpaceLoss beamParam(A,tx,rx,xVect,eFieldTot,zs,...

149 beta,frequency,simulationType, plotTitle,titleFig);

150

151

152 end

153 end

118

Appendix E: Implemented Code

E.1.2 ParabolicEquation SSA FDM.m

Field simulation over a flat surface using the SSA and FDM, ∆x and ∆z vary.

Used in chapter 4.

1 % parabolicEquation SSA FDM.m: Script running simulations with varying

2 % delta x and delta x values over a flat

3 % surface using the SSA and FDM.

4

5 clear all

6

7 % Setting the parameters:

8 theta0 = 0;

9 beta =pi/18;

10 A = 1;

11 frequency = 110*10ˆ6;

12 maxX = 3000;

13 numPtsAbsoptionLayer = 150;

14

15 deltaZarr =[0.5 1 1.3];

16 antHeight = [15];

17 deltaXvect =[0.5 1 1.3];

18 for a =1:length(antHeight)

19

20

21 zs = antHeight(a);

22 maxHinterestHeight = 10;

23 numElts = 2;

24 simulationType = cell(numElts,1);

25

26 % Looping over the delta x values:

27 for n = 1:length(deltaXvect)

28 clear eFieldTot

29 counter = 0;

30 doubleCounter = 0;

31

32 maxHinterestHeight = 10;

33

34 for heightIndex = 1: length(maxHinterestHeight)

35

36 % Looping over the delta z values

37 for b = 1: length(deltaZarr)

38 deltaZ = deltaZarr(b);

39

40 counter = counter +1;

41 doubleCounter = doubleCounter +1;

119

Appendix E: Implemented Code

42 deltaX = deltaXvect(n);

43 xVect = verticalVector([0:deltaX:maxX]);

44 maxHinterest = 350 +zs;

45

46 % Creating initial field:

47 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

48 maxHinterest,deltaZ,numPtsAbsoptionLayer);

49 initialFieldFDM = createInitialField(zs,theta0,beta,...

50 zVectFDM,A, frequency,'gaussian1');

51 numZpoints = length(zVectFDM);

52

53 % Calculating field:

54 tic

55 uValuesSplitStep =splitStepAlgorithmAbsorptionLayer(...

56 initialFieldFDM,zVectFDM,xVect, ...

57 HindexFDM,frequency,numPtsAbsoptionLayer);

58 toc

59 tic

60 [uValuesFDMalne,maxEigVal]=...

61 FDMAbsorptionLayerNumEfficient2(initialFieldFDM, ...

62 zVectFDM,xVect,HindexFDM,frequency,...

63 numPtsAbsoptionLayer);

64 toc

65

66 deltaZstr = num2str(deltaZ*10);

67 yText = strcat('Height above surface [m]');

68

69 % Extract the simulated fields at the height of interest:

70 eFieldSSA=uValuesSplitStep(...

71 ceil(HindexFDM*(zs/maxHinterest)),:);

72 eFieldFDM=uValuesFDMalne(...

73 ceil(HindexFDM*(zs/maxHinterest)),:);

74

75 simulationType{doubleCounter,1} = ['SSA: \Deltax=',...
76 num2str(deltaX),'m, \Deltaz=',num2str(deltaZ),'m'];
77 doubleCounter = doubleCounter +1;

78 simulationType{doubleCounter,1} = ['FDM:\Deltax=',...
79 num2str(deltaX),'m, \Deltaz=',num2str(deltaZ),'m'];
80 tx = zs;

81 rx = zs;

82

83 if counter == 1

84 eFieldTot = eFieldSSA;

85 eFieldTot = vertcat(eFieldTot,eFieldFDM);

86 else

87 eFieldTot = vertcat(eFieldTot,eFieldSSA);

88 eFieldTot = vertcat(eFieldTot,eFieldFDM);

89 end

120

Appendix E: Implemented Code

90

91 % Plot the simulated fields:

92 fig2 = figure('visible','off');

93 uValuesAux = uValuesSplitStep;

94 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
95 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

96 hold on

97 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

98

99 xlabel('Distance [m]');

100 ylabel(yText);

101 grid on

102 titleFig = ['Results to thesis/SSA ', ...

103 'Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

104 num2str(deltaX*10),' distance source abslayer',...

105 num2str(maxHinterest−zs),'freq ',...

106 num2str(frequency/(10ˆ6)),' deltaDiff.png'];

107 saveas(fig2,titleFig,'png');

108

109

110 fig = figure('visible','off');

111 uValuesAux = uValuesFDMalne;

112 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
113 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

114 hold on

115 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

116 xlabel('Distance [m]');

117 ylabel(yText);

118 grid on

119 titleFig = ['Results to thesis/FDM ', ...

120 'Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

121 num2str(deltaX*10),'freq ',...

122 num2str(frequency/(10ˆ6)),' deltaDiff.png'];

123 saveas(fig,titleFig,'png');

124

125

126

127

128 end

129

130 tx =zs;

131 rx = zs;

132 part1Title = ['SSA and FDM − flat surface'];

133 titleFig = ['Results to thesis/SSA FDM ', ...

134 'Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

135 num2str(deltaX*10),'freq ',...

136 num2str(frequency/(10ˆ6)),' deltaDiff.png'];

137 % Comparison between simulated and analytical results:

121

Appendix E: Implemented Code

138 pathLossFlat beamParam(A,tx,rx,xVect,eFieldTot,zs,...

139 beta,frequency,simulationType, ' ',titleFig);

140

141 end

142 end

143 end

E.1.3 ParabolicEquation SSA FDM deltaValueTest.m

Script showing the effect of ”slow” propagation. Used in chapter 4.

1 % parabolicEquation SSA FDM deltaValueTes.m: Script simulating the ''slow''

2 % propagation, the value of

3 % delta x and delta z is small

4

5

6 % Setting the parameters:

7 theta0 = 0;

8 beta = pi/18;

9 A = 1;

10 frequency = 110*10ˆ6;

11 deltaX = 1;

12 maxX = 3000;

13 numPtsAbsoptionLayer = 150;

14 deltaZarr =[0.3];

15 antHeight = [15];

16 deltaXvect = [0.3];

17

18 for a =1:length(antHeight)

19 counter = 0;

20 doubleCounter = 0;

21

22 zs = antHeight(a);

23 maxHinterestHeight = 10;

24 numElts = 2;

25 simulationType = cell(numElts,1);

26

27 % Looping over the delta x values:

28 for n = 1:length(deltaXvect)

29

30 maxHinterestHeight = 10;

31

32 for heightIndex = 1: length(maxHinterestHeight)

33

34 % Looping over the delta z values:

122

Appendix E: Implemented Code

35 for b = 1: length(deltaZarr)

36 deltaZ = deltaZarr(b);

37

38 counter = counter +1;

39 doubleCounter = doubleCounter +1;

40 deltaX = deltaXvect(n);

41 xVect = verticalVector([0:deltaX:maxX]);

42 maxHinterest = 350 +zs;

43

44 % Creating initial field:

45 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

46 maxHinterest,deltaZ,numPtsAbsoptionLayer);

47 initialFieldFDM = createInitialField(zs,theta0,beta,...

48 zVectFDM,A, frequency,'gaussian1');

49 numZpoints = length(zVectFDM);

50

51 % Calculating field:

52 tic

53 uValuesSplitStep =splitStepAlgorithmAbsorptionLayer(...

54 initialFieldFDM,zVectFDM,xVect, ...

55 HindexFDM,frequency,numPtsAbsoptionLayer);

56 toc

57 tic

58 [uValuesFDMalne,maxEigVal]=...

59 FDMAbsorptionLayerNumEfficient2(initialFieldFDM, ...

60 zVectFDM,xVect,HindexFDM,frequency,...

61 numPtsAbsoptionLayer);

62 toc

63

64 deltaZstr = num2str(deltaZ);

65 yText = strcat('Height above surface [m]');

66

67 % Extracting field at the height of interest, the antenna

68 % height:

69 eFieldSSA=uValuesSplitStep(...

70 ceil(HindexFDM*(zs/maxHinterest)),:);

71 eFieldFDM=uValuesFDMalne(...

72 ceil(HindexFDM*(zs/maxHinterest)),:);

73

74 simulationType{doubleCounter,1} = ['SSA:'];

75 doubleCounter = doubleCounter +1;

76 simulationType{doubleCounter,1} = ['FDM:'];

77 tx = zs;

78 rx = zs;

79

80 if counter == 1

81 eFieldTot = eFieldSSA;

82 eFieldTot = vertcat(eFieldTot,eFieldFDM);

123

Appendix E: Implemented Code

83 else

84 eFieldTot = vertcat(eFieldTot,eFieldSSA);

85 eFieldTot = vertcat(eFieldTot,eFieldFDM);

86 end

87

88 % Plotting the fields:

89 fig2 = figure('visible','off');

90 uValuesAux = uValuesSplitStep;

91 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
92 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

93 hold on

94 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

95 xlabel('The surface');

96 ylabel(yText);

97 grid on

98 titleFig = ['DeltaValueTest results/SSA', ...

99 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

100 num2str(deltaX),'freq ',...

101 num2str(frequency/(10ˆ6)),' deltaTest.png'];

102 saveas(fig2,titleFig,'png');

103

104

105 fig = figure('visible','off');

106

107 uValuesAux = uValuesFDMalne;

108 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
109 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

110 hold on

111 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

112 xlabel('The surface');

113 ylabel(yText);

114 grid on

115 titleFig = ['DeltaValueTest results/FDM', ...

116 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

117 num2str(deltaX),'freq ',...

118 num2str(frequency/(10ˆ6)),' deltaTest deltaTest.png'];

119 saveas(fig,titleFig,'png');

120

121 end

122

123 tx =zs;

124 rx = zs;

125

126 plotTitle =' ';

127 titleFig = ['DeltaValueTest results/SSA FDM', ...

128 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

129 num2str(deltaX),'freq ',...

130 num2str(frequency/(10ˆ6)),' deltaTest.png'];

124

Appendix E: Implemented Code

131

132 % Comparing path loss of simulated field with the analytical

133 % path loss

134 pathLossFlat beamParam(A,tx,rx,xVect,eFieldTot,zs,...

135 beta,frequency,simulationType, plotTitle,titleFig);

136

137 end

138 end

139 end

E.1.4 SSA FDM indra r loss.m

Script for generation of the results for a flat surface, section 5.1.

1 % SSA FDM indra r loss.m: Script calcualting the electric field along a

2 % flat surface and compare the results with analytical results from Indra.

3 % In the computations, additional loss, (1/r) is added in order to ''make''

4 % a 3D model.

5

6 clear all

7

8 % Setting the parameters:

9 theta0 = 0;

10 beta =(55/(2*360))*(2*pi);

11 A =10;

12 frequency = 110*10ˆ6;

13

14 deltaX = 1;

15 maxX = 3000;

16 compareDistance = 1000;

17 numPtsAbsoptionLayer = 150;

18 deltaZ = 1;

19 antHeight = 3;

20 deltaXvect = [1];

21 counter = 0;

22 doubleCounter = 0;

23 maxHinterestHeight = 10;

24 numElts = 2;

25 simulationType = cell(numElts,1);

26

27 counter = counter +1;

28 doubleCounter = doubleCounter +1;

29

30 xVect = verticalVector([0:deltaX:maxX]);

31 maxHinterest = 350 +antHeight;

125

Appendix E: Implemented Code

32

33 % Creating initial field:

34 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

35 maxHinterest,deltaZ,numPtsAbsoptionLayer);

36 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

37 zVectFDM,A, frequency,'gaussian1');

38

39 % Finding the gain of the used beam [dBi]:

40 maxValueInitField = max(initialFieldFDM);

41 sumInitField = sum(initialFieldFDM);

42 findRes = find(abs(initialFieldFDM)>0);

43 numResPts = length(findRes);

44 isotropicSource = sumInitField/numResPts;

45 dbiGain = maxValueInitField/isotropicSource

46

47 numZpoints = length(zVectFDM);

48

49 % Calculating field with 1/r−loss added to the results:

50 tic

51 uValuesSplitStep =SSA addRloss(...

52 initialFieldFDM,zVectFDM,xVect, ...

53 HindexFDM,frequency,numPtsAbsoptionLayer,antHeight);

54 toc

55 tic

56 [uValuesFDMalne]=...

57 FDM addRloss(initialFieldFDM, ...

58 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer,antHeight);

59 toc

60

61 deltaZstr = num2str(deltaZ);

62 yText = strcat('Height above surface [m]');

63

64 % Extracting the simulated values at the height of the anntenna:

65 eFieldSSA=uValuesSplitStep(ceil(HindexFDM*(antHeight/maxHinterest)),:);

66 eFieldFDM=uValuesFDMalne(ceil(HindexFDM*(antHeight/maxHinterest)),:);

67

68 simulationType{1,1} = ['SSA'];

69 doubleCounter = doubleCounter +1;

70 simulationType{2,1} = ['FDM'];

71 tx = antHeight;

72 rx = antHeight;

73

74 eFieldTot = eFieldSSA;

75 eFieldTot = vertcat(eFieldTot,eFieldFDM);

76

77

78 %Plot SSA figuure:

79 fig2 = figure('visible','off');

126

Appendix E: Implemented Code

80 part1Title = ['Split−Step Algorithm − flat surface'];

81 titleVal2 = {part1Title};
82

83 uValuesAux = uValuesSplitStep;

84 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
85 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

86 hold on

87 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

88 %title(titleVal2)

89 xlabel('Distance [m]');

90 ylabel(yText);

91 grid on

92 titleFig = ['Indra r loss added/SSA flat rLoss.png'];

93 saveas(fig2,titleFig,'png');

94

95 %Plot FDM figure:

96 fig = figure('visible','off');

97 part1Title = ['Finite−Difference Method − flat surface'];

98 titleVal2 = {part1Title};
99

100 uValuesAux = uValuesFDMalne;

101 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
102 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

103 hold on

104 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

105 %title(titleVal2)

106 xlabel('Distance [m]');

107 ylabel(yText);

108 grid on

109 titleFig = ['Indra r loss added/FDM flat rLoss.png'];

110 saveas(fig,titleFig,'png');

111 %

112 % Comparing with results from Indra (along the surface):

113 tx =antHeight;

114 rx = antHeight;

115 rx xArr = xVect;

116 rx zArr = ones(length(xVect),1).*antHeight;

117 part1Title = ['SSA and FDM − flat surface − along the surface'];

118 plotTitle = ' ';

119 titleFig = ['Indra r loss added/SSA FDM flat along surface.png'];

120 filename = 'IndraWedge2 results/LPDA−u−kile−2 E.xls';

121

122 pathLossIndra alongX(rx xArr,rx zArr,eFieldTot,frequency,...

123 simulationType, plotTitle,titleFig,filename);

124

125 % Comparing with results from Indra with varying height at the end of the

126 % surface:

127 xIndex = find(xVect >= 1000,1);

127

Appendix E: Implemented Code

128 eFieldSSA1 = zeros(1,length(zVectFDM));

129 eFieldFDM1 = zeros(1,length(zVectFDM));

130 for i = 1:length(zVectFDM)

131 eFieldSSA1(1,i) = uValuesSplitStep(i,xIndex);

132 eFieldFDM1(1,i) = uValuesFDMalne(i,xIndex);

133 end

134

135 plotTitle1 = ' ';

136

137 eFieldTot1 = eFieldFDM1;

138 eFieldTot1 = eFieldSSA1;

139 eFieldTot1 = vertcat(eFieldTot1,eFieldFDM1);

140 rx xArr1 = ones(length(zVectFDM),1).*length(xVect);

141 rx zArr1 = zVectFDM;

142

143 titleFig1 = ['Indra r loss added/SSA FDM flat height varying rLoss.png'];

144 filename1 = 'IndraWedge results/LPDA−u−kile E.xls';

145

146 compareHeight = 240;

147 pathLossFlat Indra(rx xArr1,rx zArr1,eFieldTot1,...

148 frequency,simulationType, plotTitle1,titleFig1,filename1,compareHeight)

149

150 % Calculating the field strength without any additional 1/r−loss:
151 tic

152 uValuesSSA2 =splitStepAlgorithmAbsorptionLayer(...

153 initialFieldFDM,zVectFDM,xVect, ...

154 HindexFDM,frequency,numPtsAbsoptionLayer);

155 toc

156

157 tic

158 [uValuesFDM2,maxEigVal]=FDMAbsorptionLayerNumEfficient2(initialFieldFDM,...

159 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

160 toc

161

162 % Extracting the field strength at 1000 m in the vertical direction;

163 xIndex = find(xVect >= 1000,1);

164 eFieldSSA2 = zeros(1,length(zVectFDM));

165 eFieldFDM2 = zeros(1,length(zVectFDM));

166 for i = 1:length(zVectFDM)

167 eFieldSSA2(1,i) = uValuesSSA2(i,xIndex); %...

168 %length(xVect));

169 eFieldFDM2(1,i) = uValuesFDM2(i,xIndex); %...

170 %length(xVect));

171 end

172 eFieldTot2 = eFieldSSA2;

173 eFieldTot2 = vertcat(eFieldTot2,eFieldFDM2);

174

175 part1Title2 = ['SSA and FDM − flat surface − receiver height varying '...

128

Appendix E: Implemented Code

176 '− no (1/r)−loss added'];

177 plotTitle2 =' ';% {part1Title1};
178

179 rx xArr2 = ones(length(zVectFDM),1).*length(xVect);

180 rx zArr2 = zVectFDM;

181

182 titleFig2 =['Indra r loss added/SSA FDM flat height varying no rLoss.png'];

183 filename2 = 'IndraWedge results/LPDA−u−kile E.xls';

184 % Tests the plotting the results in the same plot:

185 compareHeight = 240;

186 eFieldTot3 = eFieldSSA1;

187 eFieldTot3 = vertcat(eFieldTot3,eFieldFDM1);

188 eFieldTot3 = vertcat(eFieldTot3,eFieldSSA2);

189 eFieldTot3 = vertcat(eFieldTot3,eFieldFDM2);

190

191 simulationType2 = cell(4,1);

192 simulationType2{1,1} = ['SSA − 1/r−loss added'];

193 simulationType2{2,1} = ['FDM − 1/r−loss added'];

194 simulationType2{3,1} = ['SSA − no 1/r−loss added'];

195 simulationType2{4,1} = ['FDM − no 1/r−loss added'];

196

197 % Vertical comparison of relative field strengths with different max

198 % heights:

199 pathLossFlat Indra(rx xArr2,rx zArr2,eFieldTot3,...

200 frequency,simulationType2, plotTitle2,titleFig2,filename2,...

201 compareHeight)

202

203

204 compareHeight = 50;

205 titleFig3 =['Indra r loss added/',...

206 'SSA FDM flat height varying no rLoss zoomed.png'];

207 pathLossFlat Indra(rx xArr2,rx zArr2,eFieldTot2,...

208 frequency,simulationType, plotTitle2,titleFig3,filename2,...

209 compareHeight)

210

211

212 titleFig3 =['Indra r loss added/',...

213 'SSA FDM flat height varying no rLoss zoomed2.png'];

214 pathLossFlat Indra minComp(rx xArr2,rx zArr2,eFieldTot2,...

215 frequency,simulationType, plotTitle2,titleFig3,filename2,...

216 compareHeight)

217

218 % Due to an error when first implementing the script, the fields without

219 % additional loss is calculated ones more:

220

221 % Setting the parameters:

222 theta0 = 0;

223 A = 10ˆ(0.9);

129

Appendix E: Implemented Code

224 frequency = 110*10ˆ6;

225 deltaX = 1;

226 numPtsAbsoptionLayer = 150;

227

228 deltaZarr =[1];

229 antHeight = 3;

230 deltaXvect = [1];

231

232 Xn = [0 maxX];

233 Zn = [0 0];

234

235

236 for a =1:length(antHeight)

237 counter = 0;

238 doubleCounter = 0;

239

240 zs = antHeight(a);

241 maxHinterestHeight = 10;

242 numElts = 2;

243 simulationType = cell(numElts,1);

244

245 % Looping over the delta x values:

246 for n = 1:length(deltaXvect)

247

248 maxHinterestHeight = 10;

249

250 for heightIndex = 1: length(maxHinterestHeight)

251

252 % Looping over the delta z values

253 for b = 1: length(deltaZarr)

254 deltaZ = deltaZarr(b);

255

256 counter = counter +1;

257 doubleCounter = doubleCounter +1;

258 deltaX = deltaXvect(n);

259

260 maxHinterest = 350 +zs;

261

262 % Interpolate the flat surface (algorithm for irregular

263 % terrain used):

264 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

265 'linear',deltaX);

266

267 % Create initial field:

268 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

269 maxHinterest,deltaZ,numPtsAbsoptionLayer);

270 initialFieldFDM = createInitialField(zs,theta0,beta,...

271 zVectFDM,A, frequency,'gaussian1');

130

Appendix E: Implemented Code

272 numZpoints = length(zVectFDM);

273

274 % Calculating the fields:

275 tic

276 uValuesSplitStep3 = SSAirregularTerrainAbsoptionLayer(...

277 initialFieldFDM,zVectFDM,...

278 xVect,zSurfaceVect,HindexFDM,frequency,...

279 numPtsAbsoptionLayer,zs);

280 toc

281 tic

282 uValuesFDM3 = FDMirregularTerrainAbsorptionLayer ...

283 (initialFieldFDM,zVectFDM,xVect,zSurfaceVect,...

284 HindexFDM,frequency,numPtsAbsoptionLayer);

285 toc

286

287 % Extracting the fields ath the given distance:

288 xIndex = find(xVect >= compareDistance,1);

289 eFieldSSA3 = zeros(1,length(zVectFDM));

290 eFieldFDM3 = zeros(1,length(zVectFDM));

291 for i = 1:length(zVectFDM)

292 eFieldSSA3(1,i) = uValuesSplitStep3(i,...

293 xIndex);

294 eFieldFDM3(1,i) = uValuesFDM3(i,...

295 xIndex);

296 end

297

298 deltaZstr = num2str(deltaZ);

299 yText = strcat('Height above surface [m]');

300

301 simulationType{doubleCounter,1} = ['SSA'];

302 doubleCounter = doubleCounter +1;

303 simulationType{doubleCounter,1} = ['FDM'];

304 tx = zs;

305 rx = zs;

306

307 if counter == 1

308 eFieldTot3 = eFieldSSA3;

309 eFieldTot3 = vertcat(eFieldTot3,eFieldFDM3);

310 else

311 eFieldTot3 = vertcat(eFieldTot3,eFieldSSA3);

312 eFieldTot3 = vertcat(eFieldTot3,eFieldFDM3);

313 end

314

315 % Plotting the fields:

316 fig2 = figure('visible','on');

317

318 part1Title = ['Split−Step Algorithm − wedge'];

319 part12Titile = [' ','\Deltaz = ',' ',deltaZstr,...

131

Appendix E: Implemented Code

320 'm, ','\Deltax = ',' ', ...

321 num2str(deltaX),'m, Source height: ', ...

322 num2str(antHeight(a)),'m'];

323 part21Title = ['Distance from center point of ',...

324 'source to beginning of absorption layer: ',...

325 num2str(maxHinterest−zs),'m'];

326 part2Title=['Number of points in absorption layer:',...

327 ' ', num2str(numPtsAbsoptionLayer)];

328

329 titleVal2 = {part1Title;part12Titile;part21Title;...
330 part2Title};
331

332 uValuesAux = uValuesSplitStep3;

333 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
334 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

335 hold on

336 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

337 %title(titleVal2)

338 xlabel('Distance [m]');

339 ylabel(yText);

340 grid on

341 titleFig =['Indra r loss added/SSA flat noRloss','.png'];

342 saveas(fig2,titleFig,'png');

343

344 fig = figure('visible','on');

345

346 part1Title = ['Finite−Difference Method − wedge'];

347 part12Titile = [' ','\Deltaz = ',' ',deltaZstr,...

348 'm, ','\Deltax = ',' ', ...

349 num2str(deltaX),'m, Source height: ', ...

350 num2str(antHeight(a)),'m'];

351 part21Title = ['Distance from center point of ',...

352 'source to beginning of absorption layer: ',...

353 num2str(maxHinterest−zs),'m'];

354 part2Title=['Number of points in absorption layer:',...

355 ' ', num2str(numPtsAbsoptionLayer)];

356

357 titleVal2 = {part1Title;part12Titile;part21Title;...
358 part2Title};
359

360 uValuesAux = uValuesFDM3;

361 uValuesAux(abs(uValuesAux)<10ˆ−4) = 10ˆ−4;
362 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

363 hold on

364 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

365 %title(titleVal2)

366 xlabel('Distance [m]');

367 ylabel(yText);

132

Appendix E: Implemented Code

368 grid on

369 titleFig =['Indra r loss added/FDM flat noRloss.png'];

370

371 saveas(fig,titleFig,'png');

372 titleFig2=['Indra r loss added/FDM ant h ',' ',...

373 num2str(antHeight(a)), ...

374 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

375 num2str(deltaX),' distance source abslayer',...

376 num2str(maxHinterest−zs),'wedge.pdf'];
377 %print (fig, '−dpdf', titleFig2);

378

379 end

380

381 tx =zs;

382 rx = zs;

383 part1Title = ['SSA and FDM − wedge '];

384 part12Titile = [' ','\Deltaz = ',' ',deltaZstr,...

385 'm, ','\Deltax = ',' ', ...

386 num2str(deltaX),'m, Source height: ', ...

387 num2str(antHeight(a)),'m'];

388 part21Title = ['Distance from center point of ',...

389 'source to beginning of absorption layer: ',...

390 num2str(maxHinterest−zs),'m'];

391 part2Title=['Number of points in absorption layer:',...

392 ' ', num2str(numPtsAbsoptionLayer)];

393

394 plotTitle = {part1Title;part12Titile;part21Title;...
395 part2Title};
396

397 titleFig =['Indra r loss added/SSA FDM ant h ',' ',...

398 num2str(antHeight(a)), ...

399 ' ','Deltaz',' ',deltaZstr,' ','Deltax ',' ', ...

400 num2str(deltaX),' distance source abslayer',...

401 num2str(maxHinterest−zs),'wedge2.png'];
402

403 filename = 'IndraWedge results/LPDA−u−kile E.xls';

404 rx xArr = ones(length(zVectFDM),1).*length(xVect);

405 rx zArr = zVectFDM;

406

407 % Vertical comparison:

408 pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,...

409 eFieldTot3,zs,...

410 beta,frequency,simulationType,' ',titleFig,filename);

411

412 % Comparing with results from Indra (along the surface):

413 tx =antHeight;

414 rx = antHeight;

415 rx xArr = xVect;

133

Appendix E: Implemented Code

416 rx zArr = ones(length(xVect),1).*antHeight;

417 part1Title = ['SSA and FDM − flat surface − along the surface− no additional loss'];

418 plotTitle = ' ';

419 titleFig = ['Indra r loss added/SSA FDM flat along surface noLossAdded.png'];

420 filename = 'IndraWedge2 results/LPDA−u−kile−2 E.xls';

421

422 eFieldSSA3=uValuesSplitStep3(ceil(HindexFDM*(antHeight/maxHinterest)),:);

423 eFieldFDM3=uValuesFDM3(ceil(HindexFDM*(antHeight/maxHinterest)),:);

424 eFieldTot3 = eFieldSSA3;

425 eFieldTot3 = vertcat(eFieldTot3,eFieldFDM3);

426

427 pathLossIndra alongX(rx xArr,rx zArr,eFieldTot3,frequency,...

428 simulationType, plotTitle,titleFig,filename);

429

430

431 end

432

433 end

434 end

E.1.5 DownwardsInclinedPlane.m

Script for generation of the results for the downwards inclined plane, section

5.2.1.

1 % DownwardsInclinedPlane.m: Perform simulations on a downward inclined

2 % plane, and then compares the results with a

3 % flat plane. The beam propagating along the

4 % inclined plane has the same relative directivty

5 % as the flat plane. The comparison between the

6 % fields are done in the height direction.

7

8 clear all

9 % Setting the parameters for the inclined plane:

10 beta =(55/(2*360))*(2*pi);

11 A = 10ˆ(0.9);

12 frequency = 110*10ˆ6;

13

14 xDiff = 1000;

15 zDiff = −20;
16

17 theta0 = abs(asin(zDiff/xDiff)); % The tilt of the beam

18

19 deltaX = 1;

20 deltaZ = 1;

134

Appendix E: Implemented Code

21 maxX = 3100;

22 minZ = −maxX*sin(theta0);
23 numPtsAbsoptionLayer = 150;

24 xDist = 3000;

25

26 deltaZarr =[1];

27 antHeight = 3;

28 deltaXvect = [1];

29

30 % The irregular terrain:

31 Xn = [0 maxX];

32 Zn = [0 minZ];

33

34 maxZcompare = 270;

35

36 % Interpolating the surface:

37 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

38 'linear',deltaX);

39 % Shifts the surface:

40 [zSurfaceNorm,truncationValue]=normalizeSurface(zSurfaceVect);

41

42 % Adjusting the antenna height:

43 antHeight = antHeight + zSurfaceNorm(1);

44 maxHinterest = 330 +antHeight;

45

46 simulationType = cell(4,1);

47

48 % Plot the surface:

49 surfacePlot = figure();

50 plot(xVect,zSurfaceNorm)

51 xlabel('Distance [m]');

52 ylabel('Surface height [m]');

53 titleFig = [...

54 'DownwardsInclinedPlane results/DownwardsInclinedPlane surface.png'];

55 saveas(surfacePlot,titleFig,'png');

56

57 % Creating initial field:

58 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

59 maxHinterest,deltaZ,numPtsAbsoptionLayer);

60 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

61 zVectFDM,A, frequency,'gaussian1');

62 numZpoints = length(zVectFDM);

63

64 % Calculating the field over the downwards inclined plane:

65 tic

66 uValuesSplitStep = SSAirregularTerrainAbsoptionLayer(...

67 initialFieldFDM,zVectFDM,...

68 xVect,zSurfaceNorm,HindexFDM,frequency,...

135

Appendix E: Implemented Code

69 numPtsAbsoptionLayer,antHeight);

70 toc

71 tic

72 uValuesFDM = FDMirregularTerrainAbsorptionLayer ...

73 (initialFieldFDM,zVectFDM,xVect,zSurfaceNorm,...

74 HindexFDM,frequency,numPtsAbsoptionLayer);

75 toc

76 deltaZstr = num2str(deltaZ);

77 yText = strcat('Height above the lowest point [m]');

78

79 %maxZ = 250;

80

81 % Extracting the vertical values:

82 eFieldSSA = verticalVector(getVerticalValues(...

83 xVect,zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

84 xVect,xDist,maxZcompare,uValuesSplitStep,'down'))';

85

86

87 eFieldFDM = verticalVector(getVerticalValues(...

88 xVect,zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

89 xVect,xDist,maxZcompare,uValuesFDM,'down'))';

90

91 simulationType{1,1} = ['SSA inclined'];

92

93 simulationType{2,1} = ['FDM inclined'];

94 tx = antHeight;

95 rx = antHeight;

96

97 eFieldTot = eFieldSSA;

98 eFieldTot = vertcat(eFieldTot,eFieldFDM);

99

100

101

102 minPlotLevel = 10ˆ(−4);
103 for i = 1:1

104 % Plot SSA figure:

105 plotScale =length(zVectFDM);

106 fig2 = figure('visible','off');

107 part1Title = ['Split−Step Algorithm − flat surface'];

108 titleVal2 = {part1Title};
109 tic

110 uValuesAux = uValuesSplitStep(1:plotScale,:);

111 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

112 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

113 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

114 disp('contourf is on')

115 contourf(xVect,zVectFDM(1:plotScale,1),...

116 10.*log10(abs(uValuesAux.ˆ2)),50)

136

Appendix E: Implemented Code

117 hold on

118 disp('contour is on')

119 contour(xVect,zVectFDM(1:plotScale,1),...

120 10.*log10(abs(uValuesAux.ˆ2)),50)

121 hold on

122 eFieldSSA = verticalVector(getVerticalValues(xVect,...

123 zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

124 xVect,xDist,maxZcompare,uValuesSplitStep,'down'))';

125

126 %title(titleVal2)

127 xlabel('Distance [m]');

128 ylabel(yText);

129 grid on

130

131 titleFig = ['DownwardsInclinedPlane results/SSA InclDown.png'];

132 disp('saving ...')

133 saveas(fig2,titleFig,'png');

134 toc

135

136 tic

137 % Plot FDM figure:

138 fig = figure('visible','off');

139 part1Title = ['Finite−Difference Method − flat surface'];

140 titleVal2 = {part1Title};
141

142 uValuesAux = uValuesFDM(1:plotScale,:);

143 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

144 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

145 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

146 contourf(xVect,zVectFDM(1:plotScale,1),...

147 10.*log10(abs(uValuesAux.ˆ2)),50)

148 hold on

149 contour(xVect,zVectFDM(1:plotScale,1),...

150 10.*log10(abs(uValuesAux.ˆ2)),50)

151 hold on

152 eFieldFDM = verticalVector(getVerticalValues(xVect,...

153 zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

154 xVect,xDist,maxZcompare,uValuesFDM,'down'))';

155 %title(titleVal2)

156 xlabel('Distance [m]');

157 ylabel(yText);

158 grid on

159 titleFig = ['DownwardsInclinedPlane results/FDM InclDown.png'];

160 saveas(fig,titleFig,'png');

161 toc

162

163 end % Plot figure, not in use

164

137

Appendix E: Implemented Code

165 % Comparing with results from Indra (along the surface),

166 % horizontal comparison:

167

168 tx =antHeight;

169 rx = antHeight;

170 rx xArr = xVect;

171 rx zArr = ones(length(xVect),1).*antHeight;

172

173 plotTitle = ' ';

174 titleFig = ['DownwardsInclinedPlane results/SSA FDM InclDown.png'];

175 filename = 'IndraSource/wedge1/LPDA−u−kile E.xls';

176

177

178 rx xArr = ones(length(zVectFDM),1).*length(xVect);

179 rx zArr = zVectFDM;

180

181 simulationType1 = cell(2,1);

182 simulationType1{1,1} = 'SSA inclined';

183 simulationType1{2,1} = 'FDM inclined';

184

185 pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,eFieldTot,...

186 antHeight,beta,frequency,simulationType1, plotTitle,titleFig,filename)

187 %zDist = 250;

188

189

190 % Calculating the field over a flat surface

191 antHeight = antHeight − zSurfaceNorm(1);

192 theta0 = 0;

193 %maxHeight = 250;

194 xVect = verticalVector([0:deltaX:xDist]);

195 % Creating initial field:

196 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

197 maxHinterest,deltaZ,numPtsAbsoptionLayer);

198 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

199 zVectFDM,A, frequency,'gaussian1');

200 numZpoints = length(zVectFDM);

201

202 % Calculating field:

203 tic

204 uValuesSplitStep flat =splitStepAlgorithmAbsorptionLayer(...

205 initialFieldFDM,zVectFDM,xVect, ...

206 HindexFDM,frequency,numPtsAbsoptionLayer);

207 toc

208 tic

209 [uValuesFDMalne flat,maxEigVal]=...

210 FDMAbsorptionLayerNumEfficient2(initialFieldFDM, ...

211 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

212 toc

138

Appendix E: Implemented Code

213

214 % Extracting the results for vertical comparison:

215 eFieldSSA = zeros(1,maxZcompare+1); %maxHeight+1);

216 eFieldFDM = zeros(1,maxZcompare+1); %maxHeight+1);

217 for i = 1:maxZcompare+1 %maxHeight+1

218 eFieldSSA(1,i) = uValuesSplitStep flat(i,...

219 length(xVect));

220 eFieldFDM(1,i) = uValuesFDMalne flat(i,...

221 length(xVect));

222 end

223

224 simulationType{3,1} = ['SSA flat'];

225 simulationType{4,1} = ['FDM flat'];

226 eFieldTot = vertcat(eFieldTot,eFieldSSA);

227 eFieldTot = vertcat(eFieldTot,eFieldFDM);

228

229 % Comparing with results from Indra (along the surface),

230 % horizontal comparison:

231 tx =antHeight;

232 rx = antHeight;

233 rx xArr = ones(length(zVectFDM),1).*length(xVect);

234 rx zArr = zVectFDM;

235 part1Title = ' ';%['SSA and FDM − flat surface − along the surface'];

236 plotTitle = ' '; % {part1Title};
237

238 titleFig comp = [...

239 'DownwardsInclinedPlane results/SSA FDM compare DownIncl.png'];

240 filename = 'IndraWedge results/LPDA−u−kile E.xls';

241 numCases = 4;

242 startIndex = 4;

243 numElts = length(zVectFDM);

244

245 eFieldTot1 = zeros(numCases,length(eFieldTot(1,:))); %startIndex:numElts)));

246 for i = 1:numCases

247 eFieldTot1(i,:) = eFieldTot(i,:); %startIndex:numElts);

248 end

249

250

251 compareHeight = 50;

252 titleFig3 =['DownwardsInclinedPlane results/',...

253 'SSA FDM flat height varying DownIncl zoomed1.png'];

254 pathLossFlat Indra minComp(rx xArr,rx zArr,eFieldTot1,...

255 frequency,simulationType, plotTitle,titleFig3,filename,compareHeight)

256

257 titleFig4 =['DownwardsInclinedPlane results/',...

258 'SSA FDM flat height varying DownIncl zoomed2.png'];

259 pathLossFlat Indra(rx xArr,rx zArr,eFieldTot1,...

260 frequency,simulationType, plotTitle,titleFig4,filename,compareHeight)

139

Appendix E: Implemented Code

261

262 compareHeight = 240;

263

264 pathLossFlat Indra(rx xArr,rx zArr,eFieldTot1,...

265 frequency,simulationType, plotTitle,titleFig comp,filename,compareHeight)

266

267 % Plot SSA figure:

268 yText = strcat('Height above surface [m]');

269 fig2 = figure('visible','off');

270 part1Title = ['Split−Step Algorithm − flat surface'];

271 titleVal2 = {part1Title};
272

273 uValuesAux = uValuesSplitStep flat;

274 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
275 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

276 hold on

277 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

278 %title(titleVal2)

279 xlabel('Distance [m]');

280 ylabel(yText);

281 grid on

282 titleFig = ['DownwardsInclinedPlane results/SSA flat InclDown.png'];

283 saveas(fig2,titleFig,'png');

284

285 % Plot FDM figure:

286 fig = figure('visible','off');

287 part1Title = ['Finite−Difference Method − flat surface'];

288 titleVal2 = {part1Title};
289

290 uValuesAux = uValuesFDMalne flat;

291 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
292 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

293 hold on

294 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

295 %title(titleVal2)

296 xlabel('Distance [m]');

297 ylabel(yText);

298 grid on

299 titleFig = ['DownwardsInclinedPlane results/FDM flat InclDown.png'];

300 saveas(fig,titleFig,'png');

301

302

303 % Compare along the surface at constant height of 40 m above the lowest

304 % point:

305

306 %eFieldAlongTot

307 height = 40;

308 startIndex = 101; %100;

140

Appendix E: Implemented Code

309 eSSArunway = (uValuesSplitStep(height,startIndex:length(xVect)));

310 eFieldAlongTot = eSSArunway;

311 eFDMrunway = (uValuesFDM(height,startIndex:length(xVect)));

312 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMrunway);

313

314 eSSAflat = (uValuesSplitStep flat(height,startIndex:length(xVect)));

315 eFieldAlongTot = vertcat(eFieldAlongTot,eSSAflat);

316 eFDMflat = (uValuesFDMalne flat(height,startIndex:length(xVect)));

317 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMflat);

318

319 imulationType2 = cell(4,1);

320 simulationType2{1,1} = ['SSA − downwards'];

321 simulationType2{2,1} = ['FDM − downwards'];

322 simulationType2{3,1} = ['SSA − flat'];

323 simulationType2{4,1} = ['FDM − flat'];

324

325 rx xArr3 = xVect(startIndex:length(xVect));

326 rx zArr3 = ones(length(rx xArr3),1).*height;

327 titleFig3 = ['DownwardsInclinedPlane results/',...

328 'SSA FDM pathloss horizontal InclDown.png'];

329 antHeight2 = antHeight − zSurfaceNorm(1);

330

331 titleFig4 = ['DownwardsInclinedPlane results/',...

332 'SSA FDM pathloss horizontal2 InclDown.png'];

333

334 pathLossIndra alongX(rx xArr3,rx zArr3,eFieldAlongTot,...

335 frequency,simulationType2,' ',titleFig4,' ')

336

337

338 % Comparing fields along the surface at constant height above the surface

339 height2 = 15;

340 startIndex2 = 101;

341

342 fieldVect2 = [ceil(startIndex2/deltaX):length(xVect)/deltaX];

343 eSSArunway2 = zeros(length(fieldVect2),1);

344 eFDMrunway2 = zeros(length(fieldVect2),1);

345 for i = 1:length(fieldVect2)

346 eSSArunway2(i,1) = uValuesSplitStep(round(zSurfaceNorm(i)+height), ...

347 fieldVect2(i));

348 eFDMrunway2(i,1) = uValuesFDM(round(zSurfaceNorm(i)+height), ...

349 fieldVect2(i));

350 end

351

352 eFieldAlongTot2 = eSSArunway2';

353 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMrunway2');

354 eSSAflat2 = (uValuesSplitStep flat(height,startIndex2:length(xVect)));

355 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eSSAflat2);

356 eFDMflat2 = (uValuesFDMalne flat(height,startIndex2:length(xVect)));

141

Appendix E: Implemented Code

357 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMflat2);

358

359 titleFig5 = ['DownwardsInclinedPlane results/',...

360 'SSA FDM pathloss horizontal cst diff surface InclDown.png'];

361 rx xArr4 = xVect(startIndex2:length(xVect));

362 rx zArr4 = ones(length(rx xArr4),1).*height;

363

364

365 pathLossIndra alongX(rx xArr4,rx zArr4,eFieldAlongTot2,...

366 frequency,simulationType2,' ',titleFig5,' ')

367

368 % Plotting the surface profile with logaritmic axes:

369 fig = figure();

370 semilogx((xVect(startIndex2:length(xVect))),zSurfaceNorm...

371 (startIndex2:length(xVect))); %,'Parent',ax2);

372

373 legend('Surface profile','Location','SouthWest');

374 xlabel('Distance [m]');

375 ylabel('Height [m]');

376 plotwidth = 560;

377 plotheight = 200;

378 set(fig, 'Position', [500 100 plotwidth plotheight]);

379 grid on

380 titleFig6 = ['DownwardsInclinedPlane results/',...

381 'Runway profile small InclDown.png'];

382 saveas(fig,titleFig,'png');

383 titleFig6 = titleFig6(1:(length(titleFig6)−4));
384 titleFig6 = horzcat(titleFig6,'.pdf');

385 %print (fig, '−dpdf', titleFig);

386 save2pdf(titleFig6);

E.1.6 UpwardsInclinedPlane2

Script for generation of the results for the downwards inclined plane, section

5.2.2.

1 % UpwardsInclinedPlan2e.m: Perform simulations on an upwards inclined

2 % plane, and then compares the results with a

3 % flat plane. The beam propagating along the

4 % inclined plane has the same relative directivty

5 % as the flat plane. The comparison between the

6 % fields are done in the height direction.

7

8 clear all

9 % The inclined plane:

142

Appendix E: Implemented Code

10 beta =(55/(2*360))*(2*pi);

11 A = 10ˆ(0.9);

12 frequency = 110*10ˆ6;

13

14 xDiff = 1000;

15 zDiff = 20;

16

17 theta0 = abs(asin(zDiff/xDiff));

18

19 % The delta x and delta z value:

20 deltaX = 1;

21 deltaZ = 1;

22 maxX = 3000;

23 minZ = maxX*sin(theta0);

24 numPtsAbsoptionLayer = 150;

25 xDist = 3000;

26 deltaZarr =[1];

27 antHeight = 3;

28 deltaXvect = [1];

29

30 % The irregular terrain:

31 Xn = [0 maxX];

32 Zn = [0 minZ];

33 maxZcompare = 270;

34

35 % Interpolate the surface profile:

36 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

37 'linear',deltaX);

38

39 zSurfaceNorm = zSurfaceVect;

40 antHeight = antHeight + zSurfaceNorm(1);

41

42 maxHinterest = 330 +antHeight;

43

44 simulationType = cell(4,1);

45

46 % Plot the surface:

47 surfacePlot = figure();

48 plot(xVect,zSurfaceNorm)

49 xlabel('Distance [m]');

50 ylabel('Surface height [m]');

51 titleFig = ['UpwardsInclinedPlane results/UpwardsInclinedPlane surface.png'];

52 saveas(surfacePlot,titleFig,'png');

53

54

55 % Creating initial field:

56 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

57 maxHinterest,deltaZ,numPtsAbsoptionLayer);

143

Appendix E: Implemented Code

58 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

59 zVectFDM,A, frequency,'gaussian1');

60 numZpoints = length(zVectFDM);

61

62 % Calculating field:

63 tic

64 uValuesSplitStep = SSAirregularTerrainAbsoptionLayer(...

65 initialFieldFDM,zVectFDM,...

66 xVect,zSurfaceNorm,HindexFDM,frequency,...

67 numPtsAbsoptionLayer,antHeight);

68 toc

69 tic

70 uValuesFDM = FDMirregularTerrainAbsorptionLayer ...

71 (initialFieldFDM,zVectFDM,xVect,zSurfaceNorm,...

72 HindexFDM,frequency,numPtsAbsoptionLayer);

73 toc

74 deltaZstr = num2str(deltaZ);

75 yText = strcat('Height above the lowest point [m]');

76

77 %maxZ = 250;

78

79 % Extracting the vertical values:

80 eFieldSSA = verticalVector(getVerticalValues(xVect,...

81 zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

82 xVect,xDist,maxZcompare,uValuesSplitStep,'up'))';

83

84 eFieldFDM = verticalVector(getVerticalValues(xVect,...

85 zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

86 xVect,xDist,maxZcompare,uValuesFDM,'up'))';

87

88 simulationType{1,1} = ['SSA inclined'];

89

90 simulationType{2,1} = ['FDM inclined'];

91 tx = antHeight;

92 rx = antHeight;

93

94 eFieldTot = eFieldSSA;

95 eFieldTot = vertcat(eFieldTot,eFieldFDM);

96

97 minPlotLevel = 10ˆ(−4);
98 for i = 1:1

99 % Plot SSA figuure:

100 plotScale =length(zVectFDM); % ceil(2*length(zVectFDM)/3)

101 fig2 = figure('visible','off');

102 part1Title = ['Split−Step Algorithm − flat surface'];

103 titleVal2 = {part1Title};
104 tic

105 uValuesAux = uValuesSplitStep(1:plotScale,:);

144

Appendix E: Implemented Code

106 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

107 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

108 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

109 disp('contourf is on')

110 contourf(xVect,zVectFDM(1:plotScale,1),...

111 10.*log10(abs(uValuesAux.ˆ2)),50)

112 hold on

113 disp('contour is on')

114 contour(xVect,zVectFDM(1:plotScale,1),...

115 10.*log10(abs(uValuesAux.ˆ2)),50)

116 hold on

117 eFieldSSA = verticalVector(getVerticalValues(xVect,zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

118 xVect,xDist,maxZcompare,uValuesSplitStep,'up'))';

119

120 %title(titleVal2)

121 xlabel('Distance [m]');

122 ylabel(yText);

123 grid on

124

125 titleFig = ['UpwardsInclinedPlane results/SSA field InclUp.png'];

126 disp('saving ...')

127 saveas(fig2,titleFig,'png');

128 toc

129

130 tic

131 % Plot FDM figure:

132 fig = figure('visible','off');

133 part1Title = ['Finite−Difference Method − flat surface'];

134 titleVal2 = {part1Title};
135

136 uValuesAux = uValuesFDM(1:plotScale,:);

137 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

138 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

139 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

140 contourf(xVect,zVectFDM(1:plotScale,1),...

141 10.*log10(abs(uValuesAux.ˆ2)),50)

142 hold on

143 contour(xVect,zVectFDM(1:plotScale,1),...

144 10.*log10(abs(uValuesAux.ˆ2)),50)

145 hold on

146 eFieldFDM = verticalVector(getVerticalValues(xVect,zSurfaceNorm,xDiff,zDiff,deltaX,deltaZ,...

147 xVect,xDist,maxZcompare,uValuesFDM,'up'))';

148 %title(titleVal2)

149 xlabel('Distance [m]');

150 ylabel(yText);

151 grid on

152 titleFig = ['UpwardsInclinedPlane results/FDM field InclUp.png'];

153 saveas(fig,titleFig,'png');

145

Appendix E: Implemented Code

154 toc

155

156 end

157

158 % Comparing with results from Indra (along the surface),

159 % horizontal comparison:

160 tx =antHeight;

161 rx = antHeight;

162 rx xArr = xVect;

163 rx zArr = ones(length(xVect),1).*antHeight;

164

165 plotTitle = ' ';

166

167 titleFig = ['UpwardsInclinedPlane results/SSA FDM InclUp.png'];

168 filename = 'IndraSource/wedge1/LPDA−u−kile E.xls';

169

170 rx xArr = ones(length(zVectFDM),1).*length(xVect);

171 rx zArr = zVectFDM;

172

173 simulationType1 = cell(2,1);

174 simulationType1{1,1} = 'SSA inclined';

175 simulationType1{2,1} = 'FDM inclined';

176

177 pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,eFieldTot,...

178 antHeight,beta,frequency,simulationType1, plotTitle,titleFig,filename)

179 %zDist = 250;

180

181 % Calculating the field along the flat surface

182 antHeight = antHeight − zSurfaceNorm(1);

183 theta0 = 0;

184 %maxHeight = 250;

185 xVect = verticalVector([0:deltaX:xDist]);

186 % Creating initial field:

187 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

188 maxHinterest,deltaZ,numPtsAbsoptionLayer);

189 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

190 zVectFDM,A, frequency,'gaussian1');

191 numZpoints = length(zVectFDM);

192

193 % Calculating field:

194 tic

195 uValuesSplitStep flat =splitStepAlgorithmAbsorptionLayer(...

196 initialFieldFDM,zVectFDM,xVect, ...

197 HindexFDM,frequency,numPtsAbsoptionLayer);

198 toc

199 tic

200 [uValuesFDMalne flat,maxEigVal]=...

201 FDMAbsorptionLayerNumEfficient2(initialFieldFDM, ...

146

Appendix E: Implemented Code

202 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

203 toc

204

205 % Extracting field values for vertical comparison:

206 eFieldSSA = zeros(1,maxZcompare+1);

207 eFieldFDM = zeros(1,maxZcompare+1);

208 for i = 1:maxZcompare+1

209 eFieldSSA(1,i) = uValuesSplitStep flat(i,...

210 length(xVect));

211 eFieldFDM(1,i) = uValuesFDMalne flat(i,...

212 length(xVect));

213 end

214

215

216 simulationType{3,1} = ['SSA flat'];

217 simulationType{4,1} = ['FDM flat'];

218 eFieldTot = vertcat(eFieldTot,eFieldSSA);

219 eFieldTot = vertcat(eFieldTot,eFieldFDM);

220

221 % Comparing with results from Indra (along the surface),

222 % horizontal comparison:

223 tx =antHeight;

224 rx = antHeight;

225 rx xArr = ones(length(zVectFDM),1).*length(xVect);

226 rx zArr = zVectFDM;

227 part1Title = ' ';

228 plotTitle = ' ';

229

230 titleFig comp =['UpwardsInclinedPlane results/SSA FDM compare InclUp.png'];

231 filename = 'IndraWedge results/LPDA−u−kile E.xls';

232 numCases = 4;

233 startIndex = 4;

234 numElts = length(zVectFDM);

235

236 eFieldTot1 = zeros(numCases,length(eFieldTot(1,:)));

237 for i = 1:numCases

238 eFieldTot1(i,:) = eFieldTot(i,:);

239 end

240

241 compareHeight = 50;

242 titleFig3 =['UpwardsInclinedPlane results/',...

243 'SSA FDM flat height varying InclUp zoomed1.png'];

244 pathLossFlat Indra minComp(rx xArr,rx zArr,eFieldTot1,...

245 frequency,simulationType, plotTitle,titleFig3,filename,compareHeight)

246

247 titleFig4 =['UpwardsInclinedPlane results/',...

248 'SSA FDM flat height varying InclUp zoomed2.png'];

249 pathLossFlat Indra(rx xArr,rx zArr,eFieldTot1,...

147

Appendix E: Implemented Code

250 frequency,simulationType, plotTitle,titleFig4,filename,compareHeight)

251

252 compareHeight = 240;

253

254 pathLossFlat Indra(rx xArr,rx zArr,eFieldTot1,...

255 frequency,simulationType, plotTitle,titleFig comp,filename,compareHeight)

256

257 % Plot SSA figuure:

258 yText = strcat('Height above surface [m]');

259 fig2 = figure('visible','off');

260 part1Title = ['Split−Step Algorithm − flat surface'];

261 titleVal2 = {part1Title};
262

263 uValuesAux = uValuesSplitStep flat;

264 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
265 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

266 hold on

267 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

268 %title(titleVal2)

269 xlabel('Distance [m]');

270 ylabel(yText);

271 grid on

272 titleFig = ['UpwardsInclinedPlane results/SSA flat InclUp.png'];

273 saveas(fig2,titleFig,'png');

274

275 % Plot FDM figure:

276 fig = figure('visible','off');

277 part1Title = ['Finite−Difference Method − flat surface'];

278 titleVal2 = {part1Title};
279

280 uValuesAux = uValuesFDMalne flat;

281 uValuesAux(abs(uValuesAux)<10ˆ−11) = 10ˆ−11;
282 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

283 hold on

284 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

285 %title(titleVal2)

286 xlabel('Distance [m]');

287 ylabel(yText);

288 grid on

289 titleFig = ['UpwardsInclinedPlane results/FDM flat InclUp.png'];

290 saveas(fig,titleFig,'png');

291

292

293 % Compare along the surface at constant height of 40 m above the lowest

294 % point:

295

296 %eFieldAlongTot

297 height = 40;

148

Appendix E: Implemented Code

298 startIndex = 101; %100;

299 eSSArunway = (uValuesSplitStep(height,startIndex:length(xVect)));

300 eFieldAlongTot = eSSArunway;

301 eFDMrunway = (uValuesFDM(height,startIndex:length(xVect)));

302 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMrunway);

303

304 eSSAflat = (uValuesSplitStep flat(height,startIndex:length(xVect)));

305 eFieldAlongTot = vertcat(eFieldAlongTot,eSSAflat);

306 eFDMflat = (uValuesFDMalne flat(height,startIndex:length(xVect)));

307 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMflat);

308

309 imulationType2 = cell(4,1);

310 simulationType2{1,1} = ['SSA − upwards'];

311 simulationType2{2,1} = ['FDM − upwards'];

312 simulationType2{3,1} = ['SSA − flat'];

313 simulationType2{4,1} = ['FDM − flat'];

314

315 rx xArr3 = xVect(startIndex:length(xVect));

316 rx zArr3 = ones(length(rx xArr3),1).*height;

317 titleFig3 = ['UpwardsInclinedPlane results/',...

318 'SSA FDM pathloss horizontal InclUp.png'];

319 antHeight2 = antHeight − zSurfaceNorm(1);

320

321 titleFig4 = ['UpwardsInclinedPlane results/',...

322 'SSA FDM pathloss horizontal2 InclUp.png'];

323

324 pathLossIndra alongX(rx xArr3,rx zArr3,eFieldAlongTot,...

325 frequency,simulationType2,' ',titleFig4,' ')

326

327

328 % Comparing fields along the surface at constant height above the surface

329 height2 = 15;

330 startIndex2 = 101;

331

332 fieldVect2 = [ceil(startIndex2/deltaX):length(xVect)/deltaX];

333 eSSArunway2 = zeros(length(fieldVect2),1);

334 eFDMrunway2 = zeros(length(fieldVect2),1);

335 for i = 1:length(fieldVect2)

336 %a = zSurfaceNorm(i);

337 eSSArunway2(i,1) = uValuesSplitStep(round(zSurfaceNorm(i)+height), ...

338 fieldVect2(i));

339 eFDMrunway2(i,1) = uValuesFDM(round(zSurfaceNorm(i)+height), ...

340 fieldVect2(i));

341 end

342

343 eFieldAlongTot2 = eSSArunway2';

344 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMrunway2');

345 eSSAflat2 = (uValuesSplitStep flat(height,startIndex2:length(xVect)));

149

Appendix E: Implemented Code

346 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eSSAflat2);

347 eFDMflat2 = (uValuesFDMalne flat(height,startIndex2:length(xVect)));

348 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMflat2);

349

350 titleFig5 = ['UpwardsInclinedPlane results/',...

351 'SSA FDM pathloss horizontal cst diff surface InclUp.png'];

352 rx xArr4 = xVect(startIndex2:length(xVect));

353 rx zArr4 = ones(length(rx xArr4),1).*height;

354

355

356 pathLossIndra alongX(rx xArr4,rx zArr4,eFieldAlongTot2,...

357 frequency,simulationType2,' ',titleFig5,' ')

358 %get(gcf,'CurrentAxes')

359 ax1 = gca;

360

361 % Plotting the surface with logarithmic axes:

362 fig = figure();

363

364 semilogx((xVect(startIndex2:length(xVect))),zSurfaceNorm...

365 (startIndex2:length(xVect))); %,'Parent',ax2);

366 % linkaxes([ax1 ax2],'y');

367 % linkaxes([ax1 ax2],'x');

368 legend('Surface profile','Location','SouthEast');

369 xlabel('Distance [m]');

370 ylabel('Height [m]');

371 plotwidth = 560;

372 plotheight = 200;

373 set(fig, 'Position', [500 100 plotwidth plotheight]);

374 grid on

375 titleFig6 = ['UpwardsInclinedPlane results/',...

376 'Runway profile small InclUp.png'];

377 saveas(fig,titleFig,'png');

378 titleFig6 = titleFig6(1:(length(titleFig6)−4));
379 titleFig6 = horzcat(titleFig6,'.pdf');

380 %print (fig, '−dpdf', titleFig);

381 save2pdf(titleFig6);

E.1.7 WedgeComparison Hviid

Script for generation of the results for the wedge given by the Hviid et al. [1995]

article, section 5.3.

1 % WedgeComparison Hviid.m: Simulates the field over the wedge given in the

2 % Hviid article using the SSA and FDM, and

3 % compares with the results over a flat surface.

150

Appendix E: Implemented Code

4

5

6 clear all

7 % The inclined plane:

8 beta = pi/18;

9 A = 1;

10 frequency = 100*10ˆ6;

11 theta0 = 0;

12

13 % The delta x and delta z value:

14 deltaX = 1;

15 deltaZ = 1;

16

17 antHeight = 3;

18 maxX = 5000;

19 halfWay = maxX/2;

20 maxZ = 50;

21 numPtsAbsoptionLayer = 250;

22

23 % The irregular terrain:

24 Xn = [0 halfWay maxX];

25 Zn = [0 maxZ 0];

26 maxZcompare = 500;

27

28 % Interpolating the surface:

29 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

30 'linear',deltaX);

31

32 maxHinterest = 650+antHeight;

33

34 simulationType = cell(4,1);

35

36 %Plot the surface:

37 surfacePlot = figure();

38 plot(xVect,zSurfaceVect,'k')

39 xlabel('Distance [m]');

40 ylabel('Surface height [m]');

41 plotwidth = 560;

42 plotheight = 200;

43 set(surfacePlot, 'Position', [500 100 plotwidth plotheight]);

44 titleFig = ['WedgeComparison Hviid Results/WedgeHviid surface.png'];

45 saveas(surfacePlot,titleFig,'png');

46 titleFig = titleFig(1:(length(titleFig)−4));
47 titleFig = horzcat(titleFig,'.pdf');

48 save2pdf(titleFig);

49

50

51

151

Appendix E: Implemented Code

52 % Creating initial field:

53 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

54 maxHinterest,deltaZ,numPtsAbsoptionLayer);

55 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

56 zVectFDM,A, frequency,'gaussian1');

57 numZpoints = length(zVectFDM);

58

59 % Calculating field:

60 tic

61 uValuesSplitStep = SSAirregularTerrainAbsoptionLayer(...

62 initialFieldFDM,zVectFDM,...

63 xVect,zSurfaceVect,HindexFDM,frequency,...

64 numPtsAbsoptionLayer,antHeight);

65 toc

66 tic

67 uValuesFDM = FDMirregularTerrainAbsorptionLayer ...

68 (initialFieldFDM,zVectFDM,xVect,zSurfaceVect,...

69 HindexFDM,frequency,numPtsAbsoptionLayer);

70 toc

71 deltaZstr = num2str(deltaZ);

72 yText = strcat('Height above the lowest point [m]');

73

74

75 % Extracting the field at distance of interest:

76 xCoord = find(xVect >= maxX ,1);

77 eFieldSSA = zeros(1,((maxZcompare +1)/deltaZ));

78 eFieldFDM = zeros(1,((maxZcompare +1)/deltaZ));

79 for i = 1:(maxZcompare +1)

80 eFieldSSA(1,i) = uValuesSplitStep(i,xCoord);

81 eFieldFDM(1,i) = uValuesFDM(i,xCoord);

82 end

83 simulationType{1,1} = ['SSA wedge'];

84

85 simulationType{2,1} = ['FDM wedge'];

86 tx = antHeight;

87 rx = antHeight;

88

89 eFieldTot = eFieldSSA;

90 eFieldTot = vertcat(eFieldTot,eFieldFDM);

91

92

93

94

95 minPlotLevel = 10ˆ(−7);
96 for i = 1:1

97 % Plot SSA figuure:

98 fig2 = figure('visible','off');

99

152

Appendix E: Implemented Code

100 plotScale =length(zVectFDM);

101

102 part1Title = ['Split−Step Algorithm − flat surface'];

103 titleVal2 = {part1Title};
104 tic

105 uValuesAux = uValuesSplitStep(1:plotScale,:);

106 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

107 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

108 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

109 disp('contourf is on')

110 contourf(xVect,zVectFDM(1:plotScale,1),...

111 10.*log10(abs(uValuesAux.ˆ2)),50)

112 hold on

113 disp('contour is on')

114 contour(xVect,zVectFDM(1:plotScale,1),...

115 10.*log10(abs(uValuesAux.ˆ2)),50)

116 hold on

117

118 %title(titleVal2)

119 xlabel('Distance [m]');

120 ylabel(yText);

121 grid on

122

123 titleFig = ['WedgeComparison Hviid Results/SSA field freq ',...

124 num2str(frequency/(10ˆ6)),' HviidWedge.png'];

125 disp('saving ...')

126 saveas(fig2,titleFig,'png');

127 titleFig = titleFig(1:(length(titleFig)−4));
128 titleFig = horzcat(titleFig,'.pdf');

129 save2pdf(titleFig);

130 toc

131

132 tic

133 % Plot FDM figure:

134 fig = figure('visible','off');

135 part1Title = ['Finite−Difference Method − flat surface'];

136 titleVal2 = {part1Title};
137

138 uValuesAux = uValuesFDM(1:plotScale,:);

139 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

140 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

141 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

142 contourf(xVect,zVectFDM(1:plotScale,1),...

143 10.*log10(abs(uValuesAux.ˆ2)),50)

144 hold on

145 contour(xVect,zVectFDM(1:plotScale,1),...

146 10.*log10(abs(uValuesAux.ˆ2)),50)

147 %title(titleVal2)

153

Appendix E: Implemented Code

148 hold on

149 xlabel('Distance [m]');

150 ylabel(yText);

151 grid on

152 titleFig = ['WedgeComparison Hviid Results/FDM field freq ',...

153 num2str(frequency/(10ˆ6)),' HviidWedge.png'];

154 saveas(fig,titleFig,'png');

155 titleFig = titleFig(1:(length(titleFig)−4));
156 titleFig = horzcat(titleFig,'.pdf');

157 save2pdf(titleFig);

158 toc

159

160 end

161

162 % Zoomed plots:

163 for i = 1:1

164 % Plot SSA figuure:

165 fig2 = figure('visible','off');

166

167 plotScale =ceil(0.35*length(zVectFDM)); % ceil(2*length(zVectFDM)/3)

168

169 part1Title = ['Split−Step Algorithm − flat surface'];

170 titleVal2 = {part1Title};
171 tic

172 uValuesAux = uValuesSplitStep(1:plotScale,:);

173 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

174 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

175 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

176 disp('contourf is on')

177 contourf(xVect,zVectFDM(1:plotScale,1),...

178 10.*log10(abs(uValuesAux.ˆ2)),50)

179 hold on

180 disp('contour is on')

181 contour(xVect,zVectFDM(1:plotScale,1),...

182 10.*log10(abs(uValuesAux.ˆ2)),50)

183 hold on

184

185 %title(titleVal2)

186 xlabel('Distance [m]');

187 ylabel(yText);

188 grid on

189

190 titleFig = ['WedgeComparison Hviid Results/SSA field freq ',...

191 num2str(frequency/(10ˆ6)),' HviidWedge zoomed.png'];

192 disp('saving ...')

193 saveas(fig2,titleFig,'png');

194 titleFig = titleFig(1:(length(titleFig)−4));
195 titleFig = horzcat(titleFig,'.pdf');

154

Appendix E: Implemented Code

196 save2pdf(titleFig);

197 toc

198

199 tic

200 % Plot FDM figure:

201 fig = figure('visible','off');

202 part1Title = ['Finite−Difference Method − flat surface'];

203 titleVal2 = {part1Title};
204

205 uValuesAux = uValuesFDM(1:plotScale,:);

206 uValuesAux(abs(uValuesAux)<minPlotLevel) = minPlotLevel;

207 minVal = 10.*log10(min(min(abs(uValuesAux).ˆ2)));

208 maxVal = 10.*log10(max(max(abs(uValuesAux).ˆ2)));

209 contourf(xVect,zVectFDM(1:plotScale,1),...

210 10.*log10(abs(uValuesAux.ˆ2)),50)

211 hold on

212 contour(xVect,zVectFDM(1:plotScale,1),...

213 10.*log10(abs(uValuesAux.ˆ2)),50)

214 %title(titleVal2)

215 hold on

216 xlabel('Distance [m]');

217 ylabel(yText);

218 grid on

219 titleFig = ['WedgeComparison Hviid Results/FDM field freq ',...

220 num2str(frequency/(10ˆ6)),' HviidWedge zoomed.png'];

221 saveas(fig,titleFig,'png');

222 titleFig = titleFig(1:(length(titleFig)−4));
223 titleFig = horzcat(titleFig,'.pdf');

224 save2pdf(titleFig);

225 toc

226

227 end

228

229 % Comparing with results from Indra (along the surface):

230 tx =antHeight;

231 rx = antHeight;

232 rx xArr = xVect;

233 rx zArr = ones(length(xVect),1).*antHeight;

234 plotTitle = ' ';

235 titleFig = ['WedgeComparison Hviid Results/SSA FDM freq ',...

236 num2str(frequency/(10ˆ6)),' HviidWedge.png'];

237 filename = 'IndraWedge2 results/LPDA−u−kile−2 E.xls';

238

239 rx xArr = ones(length(zVectFDM),1).*length(xVect);

240 rx zArr = zVectFDM;

241

242 simulationType1 = cell(2,1);

243 simulationType1{1,1} = 'SSA';

155

Appendix E: Implemented Code

244 simulationType1{2,1} = 'FDM';

245 compareHeight Hviid = 250;

246 close all

247 initCompare = initialFieldFDM(1:maxZcompare +1);

248 eTest = zeros(4,length(initCompare));

249

250 for i = 1:4

251 eTest(1,:) = initCompare'./eFieldTot(1,:);

252 end

253

254 pathLossWedge Hviid(antHeight,rx xArr,rx zArr,eFieldTot,...

255 frequency,simulationType1, plotTitle,titleFig,' ',compareHeight Hviid)

256

257 % Calculating the field along the flat surface

258 theta0 = 0;

259 Xn flat = [0 maxX];

260 Zn flat = [0 0];

261

262 % Creating the field (flat surface);

263 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

264 maxHinterest,deltaZ,numPtsAbsoptionLayer);

265 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

266 zVectFDM,A, frequency,'gaussian1');

267 numZpoints = length(zVectFDM);

268

269 % Calculating the fields (flat surface):

270 tic

271 uValuesSplitStepFlat =splitStepAlgorithmAbsorptionLayer(...

272 initialFieldFDM,zVectFDM,xVect, ...

273 HindexFDM,frequency,numPtsAbsoptionLayer);

274 toc

275 tic

276 [uValuesFDMalneFlat,maxEigVal]=...

277 FDMAbsorptionLayerNumEfficient2(initialFieldFDM, ...

278 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

279 toc

280

281 clear eFieldSSA;

282 clear eFieldFDM;

283

284 % Extracting the field for vertical comparison:

285 eFieldSSA = zeros(1,length(eFieldTot(1,:)));

286 eFieldFDM = zeros(1,length(eFieldTot(1,:)));

287 for i = 1:length(eFieldSSA)

288 eFieldSSA(1,i) = uValuesSplitStepFlat(i,...

289 length(xVect));

290 eFieldFDM(1,i) = uValuesFDMalneFlat(i,...

291 length(xVect));

156

Appendix E: Implemented Code

292

293 end

294

295 simulationType{3,1} = ['SSA flat'];

296 simulationType{4,1} = ['FDM flat'];

297 eFieldTot = vertcat(eFieldTot,eFieldSSA);

298 eFieldTot = vertcat(eFieldTot,eFieldFDM);

299

300 % Comparing with results from Indra, vertical comparison:

301 tx =antHeight;

302 rx = antHeight;

303 rx xArr = ones(length(zVectFDM),1).*length(xVect);

304 rx zArr = zVectFDM;

305 part1Title = ' ';%['SSA and FDM − flat surface − along the surface'];

306 plotTitle = ' '; % {part1Title};
307

308 titleFig = [...

309 'WedgeComparison Hviid Results/SSA FDM compareFlat HviidWedge.png'];

310 filename = 'IndraWedge results/LPDA−u−kile E.xls';

311 numCases = 4;

312 startIndex = 4;

313 numElts = length(eFieldTot(1,:));

314 eFieldTot1 =eFieldTot;

315

316 compareHeight = 500; % maximum height of comparison

317 pathLossWedge Hviid(antHeight,rx xArr,rx zArr,eFieldTot1,...

318 frequency,simulationType, plotTitle,titleFig,' ',compareHeight)

319

320 compareHeight = 50; % new maximum height of comparison

321 titleFig3 =['WedgeComparison Hviid Results/',...

322 'SSA FDM flat height varying HviidWedge zoomed1.png'];

323 pathLossFlat Indra minComp(rx xArr,rx zArr,eFieldTot1,...

324 frequency,simulationType, plotTitle,titleFig3,filename,compareHeight)

325

326 titleFig4 =['WedgeComparison Hviid Results/',...

327 'SSA FDM flat height varying HviidWedge zoomed2.png'];

328 pathLossFlat Indra(rx xArr,rx zArr,eFieldTot1,...

329 frequency,simulationType, plotTitle,titleFig4,filename,compareHeight)

330

331 % Comparing along the surface, horizontal comparison:

332

333 simulationType2 = cell(4,1);

334 simulationType2{1,1} = ['SSA − wedge'];

335 simulationType2{2,1} = ['FDM − wedge'];

336 simulationType2{3,1} = ['SSA − flat'];

337 simulationType2{4,1} = ['FDM − flat'];

338 %eFieldAlongTot

339 height = 65;

157

Appendix E: Implemented Code

340

341 startIndex = 121;

342 eSSAwedge = (uValuesSplitStep(height,startIndex:length(xVect)));

343 eFieldAlongTot = eSSAwedge;

344 eFDMwedge = (uValuesFDM(height,startIndex:length(xVect)));

345 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMwedge);

346

347 eSSAflat = (uValuesSplitStepFlat(height,startIndex:length(xVect)));

348 eFieldAlongTot = vertcat(eFieldAlongTot,eSSAflat);

349 eFDMflat = (uValuesFDMalneFlat(height,startIndex:length(xVect)));

350 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMflat);

351

352 rx xArr3 = xVect(startIndex:length(xVect));

353 rx zArr3 = ones(length(rx xArr3),1).*height;

354 titleFig3 = ['WedgeComparison Hviid Results/',...

355 'SSA FDM pathloss horizontal HviidWedge.png'];

356

357 pathLossWedge Hviid(antHeight,rx zArr3,rx xArr3,eFieldAlongTot,...

358 frequency,simulationType2, ' ',titleFig3,' ',0)

359 titleFig4 = ['WedgeComparison Hviid Results/',...

360 'SSA FDM pathloss horizontal2 HviidWedge.png'];

361

362 pathLossIndra alongX(rx xArr3,rx zArr3,eFieldAlongTot,...

363 frequency,simulationType2,' ',titleFig4,' ')

364

365

366 % Comparing fields along the surface at constant height above the surface

367 height2 = 15;

368 startIndex2 = 121;

369 fieldVect2 = [ceil(startIndex2/deltaX):length(xVect)/deltaX];

370 eSSAwedge2 = zeros(length(fieldVect2),1);

371 eFDMwedge2 = zeros(length(fieldVect2),1);

372 for i = 1:length(fieldVect2)

373 eSSAwedge2(i,1) = uValuesSplitStep(round(zSurfaceVect(i)+height), ...

374 fieldVect2(i));

375 eFDMwedge2(i,1) = uValuesFDM(round(zSurfaceVect(i)+height), ...

376 fieldVect2(i));

377 end

378

379 eFieldAlongTot2 = eSSAwedge2';

380 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMwedge2');

381 eSSAflat2 = (uValuesSplitStepFlat(height,startIndex2:length(xVect)));

382 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eSSAflat2);

383 eFDMflat2 = (uValuesFDMalneFlat(height,startIndex2:length(xVect)));

384 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMflat2);

385

386 titleFig5 = ['WedgeComparison Hviid Results/',...

387 'SSA FDM pathloss horizontal cst diff surface HviidWedge.png'];

158

Appendix E: Implemented Code

388 rx xArr4 = xVect(startIndex2:length(xVect));

389 rx zArr4 = ones(length(rx xArr4),1).*height;

390

391

392 pathLossIndra alongX(rx xArr4,rx zArr4,eFieldAlongTot2,...

393 frequency,simulationType2,' ',titleFig5,' ')

394 %get(gcf,'CurrentAxes')

395 ax1 = gca;

396

397 % Plotting the wedge surface with logarithmic scale:

398 fig = figure();

399

400 semilogx((xVect(startIndex2:length(xVect))),zSurfaceVect...

401 (startIndex2:length(xVect)));

402

403 legend('Wedge surface','Location','NorthWest');

404 xlabel('Distance [m]');

405 ylabel('Height [m]');

406 plotwidth = 560;

407 plotheight = 200;

408 set(fig, 'Position', [500 100 plotwidth plotheight]);

409 grid on

410 titleFig6 = ['WedgeComparison Hviid Results/',...

411 'Runway profile small HviidWedge.png'];

412 saveas(fig,titleFig,'png');

413 titleFig6 = titleFig6(1:(length(titleFig6)−4));
414 titleFig6 = horzcat(titleFig6,'.pdf');

415 %print (fig, '−dpdf', titleFig);

416 save2pdf(titleFig6);

E.1.8 Braunschweig

Script for generation of the results over the Braunschweig runway, section 5.4.1.

1 % Braunschweig.m: Script simulating the electric field over the

2 % Braunschweig airport.

3 clear all

4 close all

5

6 % Setting the parameters:

7 theta0 = 0;

8 beta = pi/18;

9 A = 1;

10 frequency = 110*10ˆ6;

11

159

Appendix E: Implemented Code

12 deltaX = 1;

13 maxX = 3000;

14 numPtsAbsoptionLayer = 150;

15

16 deltaZ = 1;

17 antHeight = 3;

18 deltaXvect = [1];

19

20 counter = 0;

21 doubleCounter = 0;

22

23

24 maxHinterestHeight = 10;

25 numElts = 2;

26 simulationType = cell(numElts,1);

27

28 % Get the terrain profile:

29 xColumn = 2;

30 zColumn = 3;

31 fileName = '\IndraSource\braunschweig\Model profile.xls';

32

33 % Importing, interpolating and shifting the surface:

34 [Xn,Zn]=importParametersFromFile(fileName,xColumn,zColumn);

35 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

36 'curve',deltaX);

37 [zSurfaceNorm,truncationValue]=normalizeSurface(zSurfaceVect);

38

39

40 antHeight = antHeight + zSurfaceNorm(1);

41

42 %xVect = verticalVector([0:deltaX:maxX]);

43 maxHinterest = 350 +antHeight;

44

45 % Plot the surface:

46 surfacePlot = figure();

47 plot(xVect,zSurfaceNorm)

48 xlabel('Distance [m]');

49 ylabel('Surface height [m]');

50 plotwidth = 560;

51 plotheight = 200;

52 set(surfacePlot, 'Position', [500 100 plotwidth plotheight]);

53 legend('Runway surface profile','Location','SouthEast');

54 titleFig = ['Braunschweig results/Runway Braunschweig.png'];

55 saveas(surfacePlot,titleFig,'png');

56 titleFig = titleFig(1:(length(titleFig)−4));
57 titleFig = horzcat(titleFig,'.pdf');

58 %print (fig, '−dpdf', titleFig);

59 save2pdf(titleFig);

160

Appendix E: Implemented Code

60

61 % Creating initial field:

62 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

63 maxHinterest,deltaZ,numPtsAbsoptionLayer);

64 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

65 zVectFDM,A, frequency,'gaussian1');

66 numZpoints = length(zVectFDM);

67

68 % Calculating field:

69 tic

70 uValuesSplitStep = SSAirregularTerrainAbsoptionLayer(...

71 initialFieldFDM,zVectFDM,...

72 xVect,zSurfaceNorm,HindexFDM,frequency,...

73 numPtsAbsoptionLayer,antHeight);

74 toc

75 tic

76 uValuesFDM = FDMirregularTerrainAbsorptionLayer ...

77 (initialFieldFDM,zVectFDM,xVect,zSurfaceNorm,...

78 HindexFDM,frequency,numPtsAbsoptionLayer);

79 toc

80 deltaZstr = num2str(deltaZ);

81 yText = strcat('Height above the lowest point [m]');

82

83 SurfEndHeight = ceil(zSurfaceNorm(length(zSurfaceNorm)));

84 fieldVect = [ceil(SurfEndHeight/deltaZ):1:floor(length(zVectFDM)/deltaZ)];

85

86 % Extracting field values for vertical comparison:

87 eFieldSSA = zeros(1,length(fieldVect));

88 eFieldFDM = zeros(1,length(fieldVect));

89 for i = 1:length(fieldVect)

90 eFieldSSA(1,i) = uValuesSplitStep(fieldVect(i),...

91 length(xVect));

92 eFieldFDM(1,i) = uValuesFDM(fieldVect(i),...

93 length(xVect));

94 end

95

96 simulationType{1,1} = ['SSA'];

97

98 simulationType{2,1} = ['FDM'];

99 tx = antHeight;

100 rx = antHeight;

101

102 eFieldTot = eFieldSSA;

103 eFieldTot = vertcat(eFieldTot,eFieldFDM);

104

105

106 % Plot SSA figuure:

107 fig2 = figure('visible','off');

161

Appendix E: Implemented Code

108 part1Title = ['Split−Step Algorithm − flat surface'];

109 titleVal2 = {part1Title};
110

111 uValuesAux = uValuesSplitStep;

112 uValuesAux(abs(uValuesAux)<10ˆ−8) = 10ˆ−8;
113 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

114 hold on

115 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

116 %title(titleVal2)

117 xlabel('Distance [m]');

118 ylabel(yText);

119 grid on

120 titleFig = ['Braunschweig results/SSA flat along surface Braunschweig.png'];

121 saveas(fig2,titleFig,'png');

122

123 % Plot FDM figure:

124 fig = figure('visible','off');

125 part1Title = ['Finite−Difference Method − flat surface'];

126 titleVal2 = {part1Title};
127

128 uValuesAux = uValuesFDM;

129 uValuesAux(abs(uValuesAux)<10ˆ−8) = 10ˆ−8;
130 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

131 hold on

132 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

133 %title(titleVal2)

134 xlabel('Distance [m]');

135 ylabel(yText);

136 grid on

137 titleFig =['Braunschweig results/FDM flat along surface Braunschweig.png'];

138 saveas(fig,titleFig,'png');

139

140 % Comparing with results from Indra, vertical comparison:

141 tx =antHeight;

142 rx = antHeight;

143 rx xArr = ones(length(zVectFDM),1).*length(xVect);

144 rx zArr = fieldVect; % zVectFDM;

145 part1Title = ' ';%['SSA and FDM − flat surface − along the surface'];

146 plotTitle = {part1Title};
147 titleFig = [...

148 'Braunschweig results/SSA FDM flat along surface Braunschweig.png'];

149 filename = 'IndraWedge2 results/LPDA−u−kile−2 E.xls';

150

151 pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,eFieldTot,...

152 antHeight,beta,frequency,simulationType, plotTitle,titleFig,' ')

153

154 % Calculating field over flat surface:

155 tic

162

Appendix E: Implemented Code

156 uValuesSSA2 =splitStepAlgorithmAbsorptionLayer(...

157 initialFieldFDM,zVectFDM,xVect, ...

158 HindexFDM,frequency,numPtsAbsoptionLayer);

159 toc

160

161 tic

162 [uValuesFDM2,maxEigVal]=FDMAbsorptionLayerNumEfficient2(initialFieldFDM,...

163 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

164 toc

165

166 % Extracting field values for vertical comparison:

167 eFieldSSA2 = zeros(1,length(fieldVect));

168 eFieldFDM2 = zeros(1,length(fieldVect));

169 for i = 1:length(fieldVect)

170 eFieldSSA2(1,i) = uValuesSSA2(fieldVect(i),...

171 length(xVect));

172 eFieldFDM2(1,i) = uValuesFDM2(fieldVect(i),...

173 length(xVect));

174 end

175

176

177 eFieldTot = vertcat(eFieldTot,eFieldSSA2);

178 eFieldTot = vertcat(eFieldTot,eFieldFDM2);

179

180 rx xArr2 = ones(length(zVectFDM),1).*length(xVect);

181 rx zArr2 = fieldVect;

182

183 titleFig2 = ['Braunschweig results/',...

184 'SSA FDM pathloss vertical Braunschweig.png'];

185 filename2 = 'IndraWedge results/LPDA−u−kile E.xls';

186 simulationType2 = cell(4,1);

187 simulationType2{1,1} = ['SSA − runway'];

188 simulationType2{2,1} = ['FDM − runway'];

189 simulationType2{3,1} = ['SSA − flat'];

190 simulationType2{4,1} = ['FDM − flat'];

191 compareHeight = 200;

192

193 compareHeight Hviid = 350;

194

195 % Vertical comparison

196 antHeight2 = antHeight − zSurfaceNorm(1);

197 pathLossWedge Hviid(antHeight2,rx xArr2,rx zArr2,eFieldTot,...

198 frequency,simulationType2, ' ',titleFig2,' ',compareHeight Hviid)

199

200

201 % Compare along the surface at constant height of 40 m above the lowest

202 % point:

203

163

Appendix E: Implemented Code

204 %eFieldAlongTot

205 height = 40;

206 startIndex = 101; %100;

207 eSSArunway = (uValuesSplitStep(height,startIndex:length(xVect)));

208 eFieldAlongTot = eSSArunway;

209 eFDMrunway = (uValuesFDM(height,startIndex:length(xVect)));

210 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMrunway);

211

212 eSSAflat = (uValuesSSA2(height,startIndex:length(xVect)));

213 eFieldAlongTot = vertcat(eFieldAlongTot,eSSAflat);

214 eFDMflat = (uValuesFDM2(height,startIndex:length(xVect)));

215 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMflat);

216

217 rx xArr3 = xVect(startIndex:length(xVect));

218 rx zArr3 = ones(length(rx xArr3),1).*height;

219 titleFig3 = ['Braunschweig results/',...

220 'SSA FDM pathloss horizontal Braunschweig.png'];

221

222 pathLossWedge Hviid(antHeight2,rx zArr3,rx xArr3,eFieldAlongTot,...

223 frequency,simulationType2, ' ',titleFig3,' ',0)

224 titleFig4 = ['Braunschweig results/',...

225 'SSA FDM pathloss horizontal2 Braunschweig.png'];

226

227 pathLossIndra alongX(rx xArr3,rx zArr3,eFieldAlongTot,...

228 frequency,simulationType2,' ',titleFig4,' ')

229

230

231 % Comparing fields along the surface at constant height above the surface

232 height2 = 15;

233 startIndex2 = 101;

234 fieldVect2 = [ceil(startIndex2/deltaX):length(xVect)/deltaX];

235 eSSArunway2 = zeros(length(fieldVect2),1);

236 eFDMrunway2 = zeros(length(fieldVect2),1);

237 for i = 1:length(fieldVect2)

238 %a = zSurfaceNorm(i);

239 eSSArunway2(i,1) = uValuesSplitStep(round(zSurfaceNorm(i)+height), ...

240 fieldVect2(i));

241 eFDMrunway2(i,1) = uValuesFDM(round(zSurfaceNorm(i)+height), ...

242 fieldVect2(i));

243 end

244

245 close all

246

247 eFieldAlongTot2 = eSSArunway2';

248 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMrunway2');

249 eSSAflat2 = (uValuesSSA2(height,startIndex2:length(xVect)));

250 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eSSAflat2);

251 eFDMflat2 = (uValuesFDM2(height,startIndex2:length(xVect)));

164

Appendix E: Implemented Code

252 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMflat2);

253

254 eFieldAlongTot2Inv = eFieldAlongTot2;

255

256 for i =0:3

257 eFieldAlongTot2Inv(i+1,:) = eFieldAlongTot2(4−i,:);
258 end

259 simulationTypeInv = cell(4,1);

260 simulationTypeInv{4,1} = ['SSA − runway'];

261 simulationTypeInv{3,1} = ['FDM − runway'];

262 simulationTypeInv{2,1} = ['SSA − flat'];

263 simulationTypeInv{1,1} = ['FDM − flat'];

264

265 titleFig5 = ['Braunschweig results/',...

266 'SSA FDM pathloss horizontal cst diff surface Braunschweig.png'];

267 rx xArr4 = xVect(startIndex2:length(xVect));

268 rx zArr4 = ones(length(rx xArr4),1).*height;

269

270 % Horizontal comparison:

271 pathLossIndra alongX(rx xArr4,rx zArr4,eFieldAlongTot2Inv,...

272 frequency,simulationTypeInv,' ',titleFig5,' ')

273

274 ax1 = gca;

275

276 % Plotting the surface profile with logaritmic scale:

277 fig = figure();

278

279 semilogx((xVect(startIndex2:length(xVect))),zSurfaceNorm...

280 (startIndex2:length(xVect))); %,'Parent',ax2);

281

282 legend('Runway surface profile','Location','South');

283 xlabel('Distance [m]');

284 ylabel('Height [m]');

285 plotwidth = 560;

286 plotheight = 200;

287 set(fig, 'Position', [500 100 plotwidth plotheight]);

288 grid on

289 titleFig6 = ['Braunschweig results/',...

290 'Runway profile small Braunschweig.png'];

291 saveas(fig,titleFig,'png');

292 titleFig6 = titleFig6(1:(length(titleFig6)−4));
293 titleFig6 = horzcat(titleFig6,'.pdf');

294 %print (fig, '−dpdf', titleFig);

295 save2pdf(titleFig6);

296

297

298 % Ploting the line for field observation:

299 fig = figure();

165

Appendix E: Implemented Code

300 obsLine = zSurfaceNorm +(15/deltaX);

301 plot(xVect,obsLine,'−−k');
302 hold on

303 plot(xVect,zSurfaceNorm,'k');

304 hold on

305 X slope = [0 1500];

306 Z slope = [4 29];

307 plot(X slope,Z slope);

308 legendName = cell(3,1);

309 legendName{1,1} = 'Observation points';

310 legendName{2,1} = 'Runway surface profile';

311 legendName{3,1} = 'Line−of−sight line';

312 legend(legendName,'Location','SouthEast');

313 %legend('Runway surface profile','Location','SouthWest');

314 xlabel('Distance [m]');

315 ylabel('Height [m]');

316 plotwidth = 560;

317 plotheight = 300;

318 set(fig, 'Position', [500 100 plotwidth plotheight]);

319 grid on

320 titleFig6 = ['Braunschweig results/',...

321 'Runway profile lineOfSight Braunschweig.png'];

322 saveas(fig,titleFig,'png');

323 titleFig6 = titleFig6(1:(length(titleFig6)−4));
324 titleFig6 = horzcat(titleFig6,'.pdf');

325 %print (fig, '−dpdf', titleFig);

326 save2pdf(titleFig6);

E.1.9 Luton2

Script for generation of the results over the Luton runway, section 5.4.2.

1 % Luton2.m: Script simulating and comparing the electric field over the

2 % Luton airport.

3 clear all

4

5 % Setting the parameters:

6 theta0 = 0;

7 beta = pi/18;

8 A = 1;

9 frequency = 110*10ˆ6;

10

11 deltaX = 1;

12 maxX = 3000;

13 numPtsAbsoptionLayer = 150;

166

Appendix E: Implemented Code

14

15 deltaZ = 1;

16 antHeight = 3;

17 deltaXvect = [1];

18

19 counter = 0;

20 doubleCounter = 0;

21 maxHinterestHeight = 10;

22 numElts = 2;

23 simulationType = cell(numElts,1);

24

25 % Get the terrain profile:

26 xColumn = 1;

27 zColumn = 3;

28 fileName ='\IndraSource\luton\Runway−profile LOC26.xls'; %

29 %'IndraSource/luton/Runway−profile LOC26.xls';

30

31 % Importing, interpolating, and shifting the surface height:

32 [Xn,Zn]=importParametersFromFile(fileName,xColumn,zColumn);

33

34 [xVect,zSurfaceVect] = interpolate(Xn,Zn,frequency,...

35 'curve',deltaX);

36 [zSurfaceNorm,truncationValue]=normalizeSurface(zSurfaceVect);

37

38 antHeight = antHeight + zSurfaceNorm(1);

39

40 maxHinterest = 350 +antHeight;

41

42 % Plot the surface:

43 surfacePlot = figure();

44 plot(xVect,zSurfaceNorm)

45 xlabel('Distance [m]');

46 ylabel('Surface height [m]');

47 plotwidth = 560;

48 plotheight = 200;

49 set(surfacePlot, 'Position', [500 100 plotwidth plotheight]);

50 legend('Runway surface profile','Location','SouthWest');

51 titleFig = ['Luton results/Runway Luton.png'];

52 saveas(surfacePlot,titleFig,'png');

53 titleFig = titleFig(1:(length(titleFig)−4));
54 titleFig = horzcat(titleFig,'.pdf');

55 %print (fig, '−dpdf', titleFig);

56 save2pdf(titleFig);

57

58 % Creating initial field:

59 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

60 maxHinterest,deltaZ,numPtsAbsoptionLayer);

61 initialFieldFDM = createInitialField(antHeight,theta0,beta,...

167

Appendix E: Implemented Code

62 zVectFDM,A, frequency,'gaussian1');

63 numZpoints = length(zVectFDM);

64

65 % Calculating field:

66 tic

67 uValuesSplitStep = SSAirregularTerrainAbsoptionLayer(...

68 initialFieldFDM,zVectFDM,...

69 xVect,zSurfaceNorm,HindexFDM,frequency,...

70 numPtsAbsoptionLayer,antHeight);

71 toc

72 tic

73 uValuesFDM = FDMirregularTerrainAbsorptionLayer ...

74 (initialFieldFDM,zVectFDM,xVect,zSurfaceNorm,...

75 HindexFDM,frequency,numPtsAbsoptionLayer);

76 toc

77 deltaZstr = num2str(deltaZ);

78 yText = strcat('Height above the lowest point [m]');

79

80 SurfEndHeight = ceil(zSurfaceNorm(length(zSurfaceNorm)));

81 fieldVect =[...

82 ceil(SurfEndHeight/deltaZ):1:floor(length(zVectFDM)/deltaZ)−1]+1;
83

84 % Extracting the field values for vertical comparison:

85 eFieldSSA = zeros(1,length(fieldVect));

86 eFieldFDM = zeros(1,length(fieldVect));

87 for i = 1:length(fieldVect)

88 eFieldSSA(1,i) = uValuesSplitStep(fieldVect(i),...

89 length(xVect));

90 eFieldFDM(1,i) = uValuesFDM(fieldVect(i),...

91 length(xVect));

92 end

93

94 simulationType{1,1} = ['SSA'];

95 simulationType{2,1} = ['FDM'];

96 tx = antHeight;

97 rx = antHeight;

98

99 eFieldTot = eFieldSSA;

100 eFieldTot = vertcat(eFieldTot,eFieldFDM);

101

102

103 % Plot SSA field:

104 fig2 = figure('visible','off');

105 part1Title = ['Split−Step Algorithm − flat surface'];

106 titleVal2 = {part1Title};
107

108 uValuesAux = uValuesSplitStep;

109 uValuesAux(abs(uValuesAux)<10ˆ−8) = 10ˆ−8;

168

Appendix E: Implemented Code

110 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

111 hold on

112 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

113 %title(titleVal2)

114 xlabel('Distance [m]');

115 ylabel(yText);

116 grid on

117 titleFig = ['Luton results/SSA flat along surface Luton.png'];

118 saveas(fig2,titleFig,'png');

119

120 % Plot FDM field:

121 fig = figure('visible','off');

122 part1Title = ['Finite−Difference Method − flat surface'];

123 titleVal2 = {part1Title};
124

125 uValuesAux = uValuesFDM;

126 uValuesAux(abs(uValuesAux)<10ˆ−8) = 10ˆ−8;
127 contourf(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

128 hold on

129 contour(xVect,zVectFDM,10.*log10(abs(uValuesAux.ˆ2)),50)

130 %title(titleVal2)

131 xlabel('Distance [m]');

132 ylabel(yText);

133 grid on

134 titleFig = ['Luton results/FDM flat along surface Luton.png'];

135 saveas(fig,titleFig,'png');

136

137 % Comparing with results from Indra, vertical comparison:

138 tx =antHeight;

139 rx = antHeight;

140 rx xArr = ones(length(zVectFDM),1).*length(xVect);

141 rx zArr = fieldVect; % zVectFDM;

142 part1Title = ' ';%['SSA and FDM − flat surface − along the surface'];

143 plotTitle = {part1Title};
144 titleFig = ['Luton results/SSA FDM flat along surface Luton.png'];

145 filename = 'IndraWedge2 results/LPDA−u−kile−2 E.xls';

146

147 pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,eFieldTot,...

148 antHeight,beta,frequency,simulationType, plotTitle,titleFig,' ')

149

150 % Comparing with results from a flat surface

151 antHeight2 = antHeight − zSurfaceNorm(1);

152 [zVectFDM,HindexFDM] =createZvectAbsorptionLayer2(...

153 maxHinterest,deltaZ,numPtsAbsoptionLayer);

154 initialFieldFDM flat = createInitialField(antHeight2,theta0,beta,...

155 zVectFDM,A, frequency,'gaussian1');

156

157 % Calculating field over flat surface:

169

Appendix E: Implemented Code

158 tic

159 uValuesSSA2 =splitStepAlgorithmAbsorptionLayer(...

160 initialFieldFDM flat,zVectFDM,xVect, ...

161 HindexFDM,frequency,numPtsAbsoptionLayer);

162 toc

163

164 tic

165 [uValuesFDM2,maxEigVal]=FDMAbsorptionLayerNumEfficient2(...

166 initialFieldFDM flat,...

167 zVectFDM,xVect,HindexFDM,frequency,numPtsAbsoptionLayer);

168 toc

169

170 % Extracting field values for vertical comparison:

171 eFieldSSA2 = zeros(1,length(fieldVect));

172 eFieldFDM2 = zeros(1,length(fieldVect));

173 for i = 1:length(fieldVect)

174 eFieldSSA2(1,i) = uValuesSSA2(fieldVect(i),...

175 length(xVect));

176 eFieldFDM2(1,i) = uValuesFDM2(fieldVect(i),...

177 length(xVect));

178 end

179

180

181 eFieldTot = vertcat(eFieldTot,eFieldSSA2);

182 eFieldTot = vertcat(eFieldTot,eFieldFDM2);

183

184 rx xArr2 = ones(length(zVectFDM),1).*length(xVect);

185 rx zArr2 = fieldVect;

186

187 titleFig2 = ['Luton results/',...

188 'SSA FDM pathloss vertical Luton.png'];

189 filename2 = 'IndraWedge results/LPDA−u−kile E.xls';

190 simulationType2 = cell(4,1);

191 simulationType2{1,1} = ['SSA − runway'];

192 simulationType2{2,1} = ['FDM − runway'];

193 simulationType2{3,1} = ['SSA − flat'];

194 simulationType2{4,1} = ['FDM − flat'];

195 compareHeight = 200;

196

197 compareHeight Hviid = 350;

198

199 antHeight2 = antHeight − zSurfaceNorm(1);

200 % Vertical comparison:

201 pathLossWedge Hviid(antHeight2,rx xArr2,rx zArr2,eFieldTot,...

202 frequency,simulationType2, ' ',titleFig2,' ',compareHeight Hviid)

203

204

205 % Compare along the surface at constant heigth of 40 m above the lowest

170

Appendix E: Implemented Code

206 % point:

207

208 height = 40;

209 startIndex = 101;

210 eSSArunway = (uValuesSplitStep(height,startIndex:length(xVect)));

211 eFieldAlongTot = eSSArunway;

212 eFDMrunway = (uValuesFDM(height,startIndex:length(xVect)));

213 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMrunway);

214

215 eSSAflat = (uValuesSSA2(height,startIndex:length(xVect)));

216 eFieldAlongTot = vertcat(eFieldAlongTot,eSSAflat);

217 eFDMflat = (uValuesFDM2(height,startIndex:length(xVect)));

218 eFieldAlongTot = vertcat(eFieldAlongTot,eFDMflat);

219

220 rx xArr3 = xVect(startIndex:length(xVect));

221 rx zArr3 = ones(length(rx xArr3),1).*height;

222 titleFig3 = ['Luton results/',...

223 'SSA FDM pathloss horizontal Luton.png'];

224

225 pathLossWedge Hviid(antHeight2,rx zArr3,rx xArr3,eFieldAlongTot,...

226 frequency,simulationType2, ' ',titleFig3,' ',0)

227 titleFig4 = ['Luton results/',...

228 'SSA FDM pathloss horizontal2 Luton.png'];

229

230 pathLossIndra alongX(rx xArr3,rx zArr3,eFieldAlongTot,...

231 frequency,simulationType2,' ',titleFig4,' ')

232

233

234 % Comparing fields along the surface at constant height above the surface

235 height2 = 10;

236 startIndex2 = 101;

237 fieldVect2 = [ceil(startIndex2/deltaX):length(xVect)/deltaX];

238 eSSArunway2 = zeros(length(fieldVect2),1);

239 eFDMrunway2 = zeros(length(fieldVect2),1);

240 for i = 1:length(fieldVect2)

241 %a = zSurfaceNorm(i);

242 eSSArunway2(i,1) = uValuesSplitStep(round(zSurfaceNorm(i)+height), ...

243 fieldVect2(i));

244 eFDMrunway2(i,1) = uValuesFDM(round(zSurfaceNorm(i)+height), ...

245 fieldVect2(i));

246 end

247

248 eFieldAlongTot2 = eSSArunway2';

249 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMrunway2');

250 eSSAflat2 = (uValuesSSA2(height,startIndex2:length(xVect)));

251 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eSSAflat2);

252 eFDMflat2 = (uValuesFDM2(height,startIndex2:length(xVect)));

253 eFieldAlongTot2 = vertcat(eFieldAlongTot2,eFDMflat2);

171

Appendix E: Implemented Code

254

255 eFieldAlongTot2Inv = eFieldAlongTot2;

256

257 for i =0:3

258 eFieldAlongTot2Inv(i+1,:) = eFieldAlongTot2(4−i,:);
259 end

260

261 titleFig5 = ['Luton results/',...

262 'SSA FDM pathloss horizontal cst diff surface Luton.png'];

263 rx xArr4 = xVect(startIndex2:length(xVect));

264 rx zArr4 = ones(length(rx xArr4),1).*height;

265

266 simulationTypeInv = cell(4,1);

267 simulationTypeInv{4,1} = ['SSA − runway'];

268 simulationTypeInv{3,1} = ['FDM − runway'];

269 simulationTypeInv{2,1} = ['SSA − flat'];

270 simulationTypeInv{1,1} = ['FDM − flat'];

271

272 pathLossIndra alongX(rx xArr4,rx zArr4,eFieldAlongTot2Inv,...

273 frequency,simulationTypeInv,' ',titleFig5,' ')

274

275 ax1 = gca;

276

277 % Plotting the surface with logarithmic scale:

278 fig = figure();

279

280 semilogx((xVect(startIndex2:length(xVect))),zSurfaceNorm...

281 (startIndex2:length(xVect)));

282

283 legend('Runway surface profile','Location','SouthWest');

284 xlabel('Distance [m]');

285 ylabel('Height [m]');

286 plotwidth = 560;

287 plotheight = 200;

288 set(fig, 'Position', [500 100 plotwidth plotheight]);

289 grid on

290 titleFig6 = ['Luton results/',...

291 'Runway profile small Luton.png'];

292 saveas(fig,titleFig,'png');

293 titleFig6 = titleFig6(1:(length(titleFig6)−4));
294 titleFig6 = horzcat(titleFig6,'.pdf');

295 %print (fig, '−dpdf', titleFig);

296 save2pdf(titleFig6);

297

298 % Plotting the line for field observation:

299 fig = figure();

300 obsLine = zSurfaceNorm +(15/deltaX);

301 plot(xVect,obsLine,'−−k');

172

Appendix E: Implemented Code

302 hold on

303 plot(xVect,zSurfaceNorm,'k');

304 hold on

305 X slope = [0 1500];

306 Z slope = [13.525 32.007];

307 plot(X slope,Z slope);

308 legendName = cell(3,1);

309 legendName{1,1} = 'Observation points';

310 legendName{2,1} = 'Runway surface profile';

311 legendName{3,1} = 'Line−of−sight line';

312 legend(legendName,'Location','SouthWest');

313 xlabel('Distance [m]');

314 ylabel('Height [m]');

315 plotwidth = 560;

316 plotheight = 300;

317 set(fig, 'Position', [500 100 plotwidth plotheight]);

318 grid on

319 titleFig6 = ['Luton results/',...

320 'Runway profile lineOfSight Luton.png'];

321 saveas(fig,titleFig,'png');

322 titleFig6 = titleFig6(1:(length(titleFig6)−4));
323 titleFig6 = horzcat(titleFig6,'.pdf');

324 %print (fig, '−dpdf', titleFig);

325 save2pdf(titleFig6);

E.2 Implemented Matlab Functions

E.2.1 Field Simulation Algorithms

E.2.1.1 FDMnoGround

Calculates field in free-space, using the FDM.

1

2 % FDMnoGrond.m : Calculating the electric field in free−space
3 % using the finite−difference method.

4 %

5 % Assumption: Propagation in vacuum, no variations in the refractive index,

6 % n(x,z) = 1 up to the max height of consideration, for all x

7 % and z.

8

9 % zFieldInit: Vector containing the initial electric field along the z−axis
10 % zVect: Vector containing the z−coordinates of interest

173

Appendix E: Implemented Code

11 % xVect: Vector containing the x−coordinates of interest

12 % maxHeigthInterestZIndex: the z−index that contains the highest index of

13 % interest, above this index there will be

14 % absorption in order to avoid reflection from the

15 % sky.

16 % frequency: The frequency of operation

17 % antennaIndex: The index of the center source point of the field in the

18 % initital field.

19 %

20 % return: uValues: The u−values (electric field) for the entire

21 % computational domain.

22 % maxEigVal: The maximum eigenvalue of the ''system'' matrix that

23 % is raisd to the n'th power.

24 % antennaSourceIndex: The height index of the center point of the

25 % source for the output field.

26

27 function [uValues,maxEigVal,antennaSourceIndex] = FDMnoGround(zFieldInit, ...

28 zVect,xVect,maxHeigthInterestZIndex,frequency,numPointsInAbsLayer,...

29 antennaIndex)

30 c = 3*10ˆ8;

31 lambda = c/frequency;

32 k = 2*pi/lambda;

33 numZpoints = length(zVect);

34 numXpoints = length(xVect);

35 Hindex = maxHeigthInterestZIndex;

36 xVect= verticalVector(xVect);

37 zVect = verticalVector(zVect);

38

39 deltaZ = zVect(2,1)−zVect(1,1);
40 deltaZvect = zeros(numZpoints,1);

41 deltaZvect(1:numZpoints−1,1)= zVect(2:numZpoints,1)−zVect(1:numZpoints−1);
42 deltaZvect(numZpoints,1) = deltaZvect(numZpoints−1,1);
43

44 deltaX = xVect(2,1)−xVect(1,1);
45 deltaXvect = zeros(numXpoints,1);

46 deltaXvect(1:numXpoints−1,1)= xVect(2:numXpoints,1)−xVect(1:numXpoints−1);
47 deltaXvect(numXpoints,1) = deltaXvect(numXpoints−1,1);
48

49 % Flipping the Gaussian beam around the source center:

50 noGroundVect = zFieldInit(antennaIndex:numZpoints,1);

51 auxVect = flipud(noGroundVect(2:length(noGroundVect),1));

52 antennaSourceIndex = length(auxVect) +1;

53

54

55

56 % Creating absorption layer:

57 indexRefraction = createAbsorptionLayer(zFieldInit,...

58 Hindex,numPointsInAbsLayer);

174

Appendix E: Implemented Code

59 indexRefraction = verticalVector(indexRefraction);

60

61 auxRefraction = indexRefraction(antennaIndex:numZpoints,1);

62 auxRefraction2 = flipud(auxRefraction(2:length(auxRefraction),1));

63 indexRefraction = vertcat(auxRefraction2,auxRefraction);

64

65 zFieldInit = vertcat(auxVect,noGroundVect);

66 numZpoints = length(indexRefraction);

67

68

69

70 % Finding the ''grid'' of a− and b−values:
71

72 % Vector a− and b−grid:
73

74 aGrid = zeros(numZpoints,1);

75 bGrid = 1j.*4.*k.*(deltaZ.ˆ2)./deltaX;

76 aGrid(:,1) = k.ˆ2.*(indexRefraction.ˆ2 −1).*(deltaZ.ˆ2);
77

78

79 % Calculate the u−values for successive x−values:
80 uGrid = zeros(numZpoints,numXpoints);

81 uGrid(:,1)= zFieldInit;

82 onesVect = ones(numZpoints−1,1);
83

84 % Creates VmMat:

85 diagVmat = 2 + bGrid(1,1)− aGrid(:,1);

86 diagVmat(1,1) = 1;

87 diagVmat(numZpoints,1) = 1;

88 VmMat = (diag(diagVmat)+ (−1.*diag(onesVect,−1))+(−1.*diag(onesVect,1)));
89 VmMat(1,2) = 0;

90 VmMat(numZpoints,numZpoints−1) = 0;

91

92 % Creates Amat:

93 diagAmat = −2 + bGrid(1,1)+ aGrid(:,1);

94 diagAmat(1,1) = 1;

95 diagAmat(numZpoints,1) = 1;

96 AmMat = (diag(diagAmat)+diag(onesVect,−1) + diag(onesVect,1));

97 AmMat(1,2) = 0;

98 AmMat(numZpoints,numZpoints−1) = 0;

99

100 % Create transition matrix:

101 transitionMat = (VmMat/AmMat);

102

103 % Diagonalization of the transition matrix:

104 %disp('Eigenvalues start');

105 %tic

106 [eigVect,eigValues] = eig(transitionMat);

175

Appendix E: Implemented Code

107 %toc

108

109 maxEigVal=max(max(abs(eigValues)))

110

111 % Inversing eigVect using pseudo inverse:

112 eigVectInv = sparse(pinv(eigVect));

113 eigVect = sparse(eigVect);

114 eigValues = sparse(eigValues);

115

116 initEigInv = sparse(eigVectInv*zFieldInit);

117

118

119 auxEigValues = eigValues;

120 parfor x = 2:numXpoints

121 auxEigValues = eigValues.ˆx;

122 uGrid(:,x) = eigVect*auxEigValues*initEigInv;

123

124 end

125

126 uValues = uGrid;

127 end

E.2.1.2 splitStepAlgorithmAbsorptionLayer

Field simulation over a flat surface using the SSA.

1 % splitStepAlgorithmAbsorptionLayer.m: Calculates the electric field over a

2 % flat surface using the split−step
3 % algorithm. The algorithm inclueds an

4 % absorption layer at the top.

5 %

6 % Remarks: length(xVect) >= length(zVect)

7

8 % zFieldInit: Vector containing the initial electric field along the z−axis
9 % zVect: Vector containing the z−coordinates of interest

10 % xVect: Vector containing the x−coordinates of interest

11 % maxHeigthInterestZIndex: the z−index that contains the highest index of

12 % interest, above this index there will be

13 % absorption in order to avoid reflection from the

14 % sky.

15 % frequency: The frequency of operation

16 % numPtsAbsoptionLayer: The number of height points in the absorption

17 % layer.

18

19 function uValues = splitStepAlgorithmAbsorptionLayer(zFieldInit,zVect, ...

176

Appendix E: Implemented Code

20 xVect,maxHeigthInterestZIndex,frequency,numPtsAbsoptionLayer)

21

22 c = 3*10ˆ8;

23 lambda = c/frequency;

24 k = 2*pi/lambda;

25 numZpoints = length(zVect);

26 numXpoints = length(xVect);

27 Hindex = maxHeigthInterestZIndex;

28 xVect = verticalVector(xVect);

29 zVect = verticalVector(zVect);

30

31

32 deltaZvect = zeros(numZpoints,1);

33 deltaZvect(1:numZpoints−1,1)= zVect(2:numZpoints,1)−zVect(1:numZpoints−1);
34 deltaZvect(numZpoints,1) = deltaZvect(numZpoints−1,1);
35

36 deltaXvect = zeros(numXpoints,1);

37 deltaXvect(1:numXpoints−1,1)= xVect(2:numXpoints,1)−xVect(1:numXpoints−1);
38 deltaXvect(numXpoints,1) = deltaXvect(numXpoints−1,1);
39

40 uGrid = zeros(numZpoints,numXpoints);

41 uGrid(:,1)= zFieldInit;

42 indicesZminusOne = verticalVector(linspace(1,(numZpoints−1),...
43 (numZpoints−1)));
44 Pprime = exp(−1j.*(pi.ˆ2).*(indicesZminusOne.ˆ2)...
45 .*deltaXvect(1:1,1)./(2.*k.*(numZpoints.ˆ2)));

46

47

48 Pprime = verticalVector(Pprime);

49

50 % Creating the absorption layer:

51 indexRefraction = createAbsorptionLayer(zFieldInit,...

52 Hindex,numPtsAbsoptionLayer);

53

54 % Calculating the field:

55 for x = 2:numXpoints

56

57 uGrid(1:(numZpoints−1),x) = inverseDiscreteSineTrans(...

58 Pprime.*discreteSineTrans(uGrid(1:(numZpoints−1),x−1)));
59 uGrid(1:numZpoints,x) = exp(1j.*k.*(indexRefraction.ˆ2 −1) ...

60 .*deltaXvect(1,1)./2).*uGrid(1:numZpoints,x);

61 end

62 uValues = uGrid;

63

64 end

177

Appendix E: Implemented Code

E.2.1.3 FDMAbsorptionLayerNumEfficient2

Field simulation over a flat surface using the FDM.

1

2 % FDMAbsorptionLayerNumEfficient2.m : Calculating the electric field over a

3 % flat surface using the

4 % finite−difference method.

5

6 % zFieldInit: Vector containing the initial electric field along the z−axis
7 % zVect: Vector containing the z−coordinates of interest

8 % xVect: Vector containing the x−coordinates of interest

9 % maxHeigthInterestZIndex: the z−index that contains the highest index of

10 % interest, above this index there will be

11 % absorption in order to avoid reflection from the

12 % sky.

13 % frequency: The frequency of operation

14 % numPointsInAbsLayer: The thickness of the absorption layer in the number

15 % of points.

16

17 % return: uValues: The simulated field.

18 % maxEigVal: The maximum eigenvalue of the transistion matrix,

19 % gives the stability of the system.

20

21 function [uValues,maxEigVal] = FDMAbsorptionLayerNumEfficient2(zFieldInit, ...

22 zVect,xVect,maxHeigthInterestZIndex,frequency,numPointsInAbsLayer)

23 c = 3*10ˆ8;

24 lambda = c/frequency;

25 k = 2*pi/lambda;

26 numZpoints = length(zVect);

27 numXpoints = length(xVect);

28 Hindex = maxHeigthInterestZIndex;

29 xVect= verticalVector(xVect);

30 zVect = verticalVector(zVect);

31

32 deltaZ = zVect(2,1)−zVect(1,1);
33 deltaZvect = zeros(numZpoints,1);

34 deltaZvect(1:numZpoints−1,1)= zVect(2:numZpoints,1)−zVect(1:numZpoints−1);
35 deltaZvect(numZpoints,1) = deltaZvect(numZpoints−1,1);
36

37 deltaX = xVect(2,1)−xVect(1,1);
38 deltaXvect = zeros(numXpoints,1);

39 deltaXvect(1:numXpoints−1,1)= xVect(2:numXpoints,1)−xVect(1:numXpoints−1);
40 deltaXvect(numXpoints,1) = deltaXvect(numXpoints−1,1);
41

42 % Creating absorption layer:

178

Appendix E: Implemented Code

43 indexRefraction = createAbsorptionLayer(zFieldInit,...

44 Hindex,numPointsInAbsLayer);

45

46 % Finding the ''grid'' of a− and b−values:
47 % Vector a− and b−grid:
48

49 aGrid = zeros(numZpoints,1);

50 bGrid = 1j.*4.*k.*(deltaZ.ˆ2)./deltaX;

51 aGrid(:,1) = k.ˆ2.*(indexRefraction.ˆ2 −1).*(deltaZ.ˆ2);
52

53

54 % Creating grid for the uValues with the initial field:

55 uGrid = zeros(numZpoints,numXpoints);

56 uGrid(:,1)= zFieldInit;

57 onesVect = ones(numZpoints−1,1);
58

59 % Create Vmat:

60 diagVmat = 2 + bGrid(1,1)− aGrid(:,1);

61 diagVmat(1,1) = 1;

62 diagVmat(numZpoints,1) = 1;

63 VmMat = (diag(diagVmat)+ (−1.*diag(onesVect,−1))+(−1.*diag(onesVect,1)));
64 VmMat(1,2) = 0;

65 VmMat(numZpoints,numZpoints−1) = 0;

66

67 % Create Amat:

68 diagAmat = −2 + bGrid(1,1)+ aGrid(:,1);

69 diagAmat(1,1) = 1;

70 diagAmat(numZpoints,1) = 1;

71 AmMat = (diag(diagAmat)+diag(onesVect,−1) + diag(onesVect,1));

72 AmMat(1,2) = 0;

73 AmMat(numZpoints,numZpoints−1) = 0;

74

75 % Creating transition marix:

76 transitionMat = (VmMat/AmMat);

77

78 % Diagonalization of the transition matrix:

79 [eigVect,eigValues] = eig(transitionMat);

80 maxEigVal=max(max(abs(eigValues)))

81

82 % Taking the pseudo−inverse of eigVect:

83 eigVectInv = sparse(pinv(eigVect));

84 eigVect = sparse(eigVect);

85 eigValues = sparse(eigValues);

86

87 initEigInv = sparse(eigVectInv*zFieldInit);

88

89 auxEigValues = eigValues;

90 % Calculating the field:

179

Appendix E: Implemented Code

91 parfor x = 2:numXpoints

92 auxEigValues = eigValues.ˆx;

93 uGrid(:,x) = eigVect*auxEigValues*initEigInv;

94 end

95

96 uValues = uGrid;

97 end

E.2.1.4 SSA addRloss

Field simulation over a flat surface using the SSA. Adds
1

r
-loss to the results.

1 % SSA addRloss.m: Calculates the electric field (u−values) along a flat

2 % surface using the split−step algorithm. Additional loss

3 % is added, (1/r), to try to create a 3D model out of the

4 % 2D model.

5 % Remarks: length(xVect) >= length(zVect)

6

7 % zFieldInit: Vector containing the initial electric field along the z−axis
8 % zVect: Vector containing the z−coordinates of interest

9 % xVect: Vector containing the x−coordinates of interest

10 % maxHeigthInterestZIndex: the z−index that contains the highest index of

11 % interest, above this index there will be

12 % absorption in order to avoid reflection from the

13 % sky.

14 % frequency: The frequency of operation

15 % numPtsAbsoptionLayer: The number of height points in the absorption

16 % layer.

17 % antHeight: Antenna height [m]

18

19 % return: uValues: calcultaed u−values with 1/r−loss added.

20

21

22 function uValues = SSA addRloss(zFieldInit,zVect, ...

23 xVect,maxHeigthInterestZIndex,frequency,numPtsAbsoptionLayer,...

24 antHeight)

25

26 c = 3*10ˆ8;

27 lambda = c/frequency;

28 k = 2*pi/lambda;

29 numZpoints = length(zVect);

30 numXpoints = length(xVect);

31 Hindex = maxHeigthInterestZIndex;

32

33 xVect= verticalVector(xVect);

180

Appendix E: Implemented Code

34 zVect = verticalVector(zVect);

35 deltaX = xVect(2,1)−xVect(1,1);
36

37 % Creating the a grid for the u−values
38 uGrid = zeros(numZpoints,numXpoints);

39 uGrid(:,1)= zFieldInit;

40 indicesZminusOne = verticalVector(linspace(1,(numZpoints−1),(numZpoints−1)));
41 Pprime = exp(−1j.*(pi.ˆ2).*(indicesZminusOne.ˆ2)...
42 .*deltaX./(2.*k.*(numZpoints.ˆ2)));

43 Pprime = verticalVector(Pprime);

44

45 % Creating absorption layer:

46 indexRefraction = createAbsorptionLayer(zFieldInit,...

47 Hindex,numPtsAbsoptionLayer);

48

49 % Calculating the field:

50 for x = 2:numXpoints

51 uGrid(1:(numZpoints−1),x) = inverseDiscreteSineTrans(...

52 Pprime.*discreteSineTrans(uGrid(1:(numZpoints−1),x−1)));
53 uGrid(1:numZpoints,x) = exp(1j.*k.*(indexRefraction.ˆ2 −1) ...

54 .*deltaX./2).*uGrid(1:numZpoints,x);

55

56 end

57

58 parfor x = 2:numXpoints

59 distVect = sqrt(x.ˆ2 + (zVect−antHeight).ˆ2);
60 % Adding additional loss (1/r):

61 uGrid(:,x) = uGrid(:,x).*(1./distVect);

62 end

63 uValues = uGrid;

64

65 end

E.2.1.5 FDM addRloss

Field simulation over a flat surface using the FDM. Adds
1

r
-loss to the results.

1

2 % FDM addRloss.m : Calculates the electric field along a surface using the

3 % finite−difference method. Adds additional loss: (1/r),

4 % to compensate for the 2D model (''making'' it 3D). Works

5 % for a flat surface.

6 % zFieldInit: Vector containing the initial electric field along the z−axis
7 % zVect: Vector containing the z−coordinates of interest

8 % xVect: Vector containing the x−coordinates of interest

181

Appendix E: Implemented Code

9 % maxHeigthInterestZIndex: the z−index that contains the highest index of

10 % interest, above this index there will be

11 % absorption in order to avoid reflection from the

12 % sky.

13 % frequency: The frequency of operation [Hz]

14 % maxHeigthInterestZIndex: the z−index that contains the highest index of

15 % interest, above this index there will be

16 % absorption in order to avoid reflection from the

17 % sky.

18 % antHeight: Antenna height [m]

19 % return: uValues: Calculated u−values (with 1/r−loss added)

20

21 function [uValues] = FDM addRloss(zFieldInit, ...

22 zVect,xVect,maxHeigthInterestZIndex,frequency,numPointsInAbsLayer,...

23 antHeight)

24 c = 3*10ˆ8;

25 lambda = c/frequency;

26 k = 2*pi/lambda;

27 numZpoints = length(zVect);

28 numXpoints = length(xVect);

29 Hindex = maxHeigthInterestZIndex;

30 xVect= verticalVector(xVect);

31 zVect = verticalVector(zVect);

32

33 deltaZ = zVect(2,1)−zVect(1,1);
34 deltaX = xVect(2,1)−xVect(1,1);
35

36 % Creating the absortion layer:

37 indexRefraction = createAbsorptionLayer(zFieldInit,...

38 Hindex,numPointsInAbsLayer);

39

40 % Vector a− and b−grid:
41 aGrid = zeros(numZpoints,1);

42 bGrid = 1j.*4.*k.*(deltaZ.ˆ2)./deltaX;

43 aGrid(:,1) = k.ˆ2.*(indexRefraction.ˆ2 −1).*(deltaZ.ˆ2);
44

45

46 % Preparations for calculation the u−values for successive x−values:
47 uGrid = zeros(numZpoints,numXpoints);

48 uGrid(:,1)= zFieldInit;

49 onesVect = ones(numZpoints−1,1);
50 diagVmat = 2 + bGrid(1,1)− aGrid(:,1);

51 diagVmat(1,1) = 1;

52 diagVmat(numZpoints,1) = 1;

53 VmMat = (diag(diagVmat)+ (−1.*diag(onesVect,−1))+(−1.*diag(onesVect,1)));
54 VmMat(1,2) = 0;

55 VmMat(numZpoints,numZpoints−1) = 0;

56 diagAmat = −2 + bGrid(1,1)+ aGrid(:,1);

182

Appendix E: Implemented Code

57 diagAmat(1,1) = 1;

58 diagAmat(numZpoints,1) = 1;

59 AmMat = (diag(diagAmat)+diag(onesVect,−1) + diag(onesVect,1));

60 AmMat(1,2) = 0;

61 AmMat(numZpoints,numZpoints−1) = 0;

62

63 %disp('Create transition matrix')

64 transitionMat = (VmMat/AmMat);

65

66 % Diagonalization of the transition matrix:

67 [eigVect,eigValues] = eig(transitionMat);

68 eigVectInv = sparse(pinv(eigVect));

69 eigVect = sparse(eigVect);

70 eigValues = sparse(eigValues);

71 initEigInv = sparse(eigVectInv*zFieldInit);

72

73

74 auxEigValues = eigValues;

75 % Calculating the field:

76 parfor x = 2:numXpoints

77 distVect = sqrt(x.ˆ2 + (zVect−antHeight).ˆ2);
78 auxEigValues = eigValues.ˆx;

79 uGrid(:,x) = eigVect*auxEigValues*initEigInv;

80

81

82 end

83 parfor x = 2:numXpoints

84 distVect = sqrt(x.ˆ2 + (zVect−antHeight).ˆ2);
85 % Adding additional loss (1/r):

86 uGrid(:,x) = uGrid(:,x).*(1./distVect);

87 end

88

89 uValues = uGrid;

90

91 end

E.2.1.6 SSAirregularTerrainAbsoptionLayer

Field simulation over irregular terrain using the SSA.

1 % SSAirregularTerrainAbsoptionLayer.m: Uses the split−step−algoritm to

2 % calculate the wave propagation over

3 % irregular terrain with an

4 % absorption layer.

5 % zFieldInit: Vector containing the initial electric field along the z−axis

183

Appendix E: Implemented Code

6 % zVect: Vector containing the z−coordinates of interest

7 % xVect: Vector containing the x−coordinates of interest

8 % zSurfaceVect: Vector containing the z−coordinates of the surface

9 % maxHeigthInterestZIndex: the z−index that contains the highest index of

10 % interest, above this index there will be

11 % absorption in order to avoid reflection from the

12 % sky.

13 % frequency: The frequency of operation

14 % numPointsLayer: The number of points in the absorption layer

15 % zs: Transmitter antenna height

16

17 % return: uValues: The calculated u−values.
18

19 function [uValues] = SSAirregularTerrainAbsoptionLayer(zFieldInit,zVect,...

20 xVect,zSurfaceVect,maxHeigthInterestZIndex,frequency,numPointsLayer,zs)

21

22 c = 3*10ˆ8;

23 lambda = c/frequency;

24 k = 2*pi/lambda;

25 zVectInit = zVect;

26 numZpoints = length(zVect);

27 numZpointsInit = numZpoints;

28 numXpoints = length(xVect);

29 zVect = verticalVector(zVect);

30 xVect = verticalVector(xVect);

31 zSurfaceVect = verticalVector(zSurfaceVect);

32 Hindex = maxHeigthInterestZIndex;

33

34

35 deltaZ = zVect(2,1) − zVect(1,1);

36 deltaX = xVect(2,1) − xVect(1,1);

37

38 % Finding the maximum height of the surface:

39 [maxZ, indexMaxZ] = max(zSurfaceVect);

40

41 % The number of points to add:

42 addVect =verticalVector([zVect(numZpoints,1)+deltaZ:deltaZ:...

43 (zVect(numZpoints,1)+ maxZ+deltaZ)]);

44 zVect = vertcat(zVect,addVect);

45 numZpoints = length(zVect);

46 % Mapping the surface−vector to correspond with the heights in zVect

47 % The values of the new surface vector contains the indices corresponding

48 % to the height in the zVect

49 zSurfaceIndices = zeros(numXpoints,1);

50 for x = 1:numXpoints

51 zSurfaceIndices(x,1) = find(zVect >=zSurfaceVect(x,1),1,'first');

52 end

53

184

Appendix E: Implemented Code

54 % Creating absorption layer:

55 indexRefraction = createAbsorptionLayer(zFieldInit,...

56 Hindex,numPointsLayer);

57

58 uGrid = zeros(numZpoints,numXpoints);

59 uGrid(1:numZpointsInit,1)= zFieldInit;

60 indicesZminusOne = verticalVector(linspace(1,(numZpointsInit−1), ...

61 (numZpointsInit−1)));
62 Pprime = exp(−1j.*(pi.ˆ2).*(indicesZminusOne.ˆ2)...
63 .*deltaX./(2.*k.*(numZpointsInit.ˆ2)));

64 Pprime = verticalVector(Pprime);

65

66 % % Creating the vGrid:

67 % vGrid = zeros(numZpointsInit,numXpoints);

68 %

69 % % Creating the vector containing the slopes of the terrain

70 % alphaVect = (zSurfaceVect(2:numXpoints,1)− ...

71 % zSurfaceVect(1:(numXpoints−1),1))./deltaX;
72 % alphaVect = vertcat(0,alphaVect);

73 %

74 % zeta = zeros(numZpoints,1);

75 %

76 % vGrid(:,1) = uGrid(zSurfaceIndices(1):...

77 % (zSurfaceIndices(1)+numZpointsInit−1),1);
78

79

80 % The staircase model:

81 zVect = zVectInit;

82 numZpoints = length(zVect);

83 uGrid = zeros(numZpoints,numXpoints);

84 uGrid(:,1)= zFieldInit;

85 indexRefraction = createAbsorptionLayer(zFieldInit,...

86 Hindex,numPointsLayer);

87 indicesZminusOne = verticalVector(...

88 linspace(1,(numZpoints−1),(numZpoints−1)));
89 Pprime = exp(−1j.*(pi.ˆ2).*(indicesZminusOne.ˆ2)...
90 .*deltaX./(2.*k.*(numZpoints.ˆ2)));

91 Pprime = verticalVector(Pprime);

92

93 % Calculating the field:

94 for x = 2:numXpoints

95 numZpoints = length(zVect);

96 uGrid(1:(numZpoints−1),x) = inverseDiscreteSineTrans(...

97 Pprime.*discreteSineTrans(uGrid(1:(numZpoints−1),x−1)));
98 uGrid(1:numZpoints,x) = exp(1j.*k.*(indexRefraction.ˆ2 −1) ...

99 .*deltaX./2).*uGrid(1:numZpoints,x);

100

101 % Adjusting to the surface:

185

Appendix E: Implemented Code

102 if zSurfaceIndices(x,1) > 1

103 uGrid(1:(zSurfaceIndices(x,1)−1),x) = 0;

104 end

105

106 end

107 uValues = uGrid;

108 end

E.2.1.7 FDMirregularTerrainAbsorptionLayer

Field simulation over irregular terrain using the FDM.

1 % FDMirregularTerrainAbsorptionLayer.m : Calculates the electric field

2 % using the finite difference method for a given

3 % terrain profile. The function

4 % has an absorbing layer at the top, preventing

5 % the simulations to have reflections from the

6 % sky.

7

8 % zFieldInit: Vector containing the initial electric field along the z−axis
9 % zVect: Vector containing the z−coordinates of interest

10 % xVect: Vector containing the x−coordinates of interest

11 % zSurfaceVect: Vector containing the z−coordinates of the surface

12 % maxHeigthInterestZIndex: the z−index that contains the highest index of

13 % interest, above this index there will be

14 % absorption in order to avoid reflection from the

15 % sky.

16 % frequency: The frequency of operation

17 % numPointsInAborptionLayer: Number of points in the absorption layer.

18

19 % return: uValues: The calculated u−values.
20

21 function [uValues] = FDMirregularTerrainAbsorptionLayer(zFieldInit, ...

22 zVect,xVect,zSurfaceVect,maxHeigthInterestZIndex,frequency, ...

23 numPointsInAborptionLayer)

24

25 c = 3*10ˆ8;

26 lambda = c/frequency;

27 k = 2*pi/lambda;

28 numZpoints = length(zVect);

29 numXpoints = length(xVect);

30 zSurfaceVect = verticalVector(zSurfaceVect);

31 xVect = verticalVector(xVect);

32 zVect= verticalVector(zVect);

33 Hindex = maxHeigthInterestZIndex;

186

Appendix E: Implemented Code

34

35 % Mapping the surface−vector to correspond with the heights in zVect

36 % The values of the new surface vector contains the indices corresponding

37 % to the height in the zVect

38 zSurfaceIndices = zeros(numXpoints,1);

39 for x = 1:numXpoints

40 zSurfaceIndices(x,1) = find(zVect >=zSurfaceVect(x,1),1,'first');

41 end

42

43 % Hanning window for absorption layer:

44 % indiceValues = (verticalVector([0:1:numZpoints−Hindex]))./(numZpoints−Hindex);
45 % absorptionLayer = (1 +cos(pi.*indiceValues))./2;

46 % indexRefraction = ones(numZpoints,1);

47 %

48 % indiceValues = verticalVector([1:1:(numZpoints−Hindex+1)]);
49 % indiceValues = (indiceValues./(numPointsPerLayer*numLayers));

50 indexRefraction = createAbsorptionLayer(zFieldInit,...

51 Hindex,numPointsInAborptionLayer);

52 %indexRefraction(Hindex:numZpoints,1) = indexRefraction(Hindex:numZpoints,1) ...

53 % + 1j.*absorptionLayer;

54

55 % Finding the ''grid'' of a− and b−values:
56 deltaZ = zVect(2,1)−zVect(1,1);
57 deltaX = xVect(2,1)−xVect(1,1);
58 bGrid = 1j.*ones(numZpoints,1).*4.*k.*(deltaZ.ˆ2)./deltaX;

59 aGrid = ones(numZpoints,1).*k.ˆ2.*(indexRefraction.ˆ2 −1).*deltaZ.ˆ2;
60

61

62 % Calculate the u−values for successive x−values:
63 uGrid = zeros(numZpoints,numXpoints);

64 uGrid(:,1)= zFieldInit;

65 onesVect = ones(numZpoints−1,1);
66 VmMat = zeros(numZpoints,numZpoints);

67 VmRes = zeros(numZpoints,1);

68 AmMat = zeros(numZpoints,numZpoints);

69

70 diagVmat = 2 + bGrid(:,1)− aGrid(:,1);

71 diagVmat(1,1) = 1;

72 diagVmat(numZpoints,1) = 1;

73 VmMat = diag(diagVmat)+ (−1.*diag(onesVect,−1))+(−1.*diag(onesVect,1));
74 VmMat(1,2) = 0;

75 VmMat(numZpoints,numZpoints−1) = 0;

76

77 diagAmat = −2 + bGrid(:,1)+ aGrid(:,1);

78 diagAmat(1,1) = 1;

79 diagAmat(numZpoints,1) = 1;

80 AmMat = diag(diagAmat)+diag(onesVect,−1) + diag(onesVect,1);

81 AmMat(1,2)= 0;

187

Appendix E: Implemented Code

82 AmMat(numZpoints,numZpoints−1) = 0;

83

84 for x = 2:numXpoints

85 % Filling in the Um and Vm matrices for field propagation estimation:

86

87 VmRes = VmMat*uGrid(:,x−1);
88

89

90

91 %AmMat*uGrid(:,x) = VmRes

92 uGrid(:,x) = linsolve(AmMat,VmRes);

93

94 if zSurfaceIndices(x,1) > 1

95 uGrid(1:(zSurfaceIndices(x,1)−1),x) = 0;

96 %uGrid(1:(zSurfaceIndices(x,1)),x) = 0;

97 end

98 %x

99

100 end

101

102 uValues = uGrid;

103 %uValues(abs(uValues)<10ˆ−3) = 10ˆ−3;
104 %uValues(abs(uValues)>10ˆ−1) = 10ˆ−1;
105 end

E.2.2 Comparison Functions

E.2.2.1 freeSpaceLoss beamParam

Compares the simulated free-space loss with the analytical free-space loss, using

the correct beam shape.

1 % freeSpaceLoss.m: Calculates the free−space loss. Adjusts the beam pattern

2 % according to the parameters (works only for rx = tx).

3 % tx: Transimtter antenna height

4 % rx: Receiver antenna height

5 % distance: The distance between the antennas, ignoring height difference

6 % eField: Calculated electric field along the surface at a given height,

7 % zs, may contain multiple heights of consideration

8 % zs: The height eField is taken from

9 % beta: Beam−width [rad]

10 % frequency: The frequency of operation

11 % simulationType: Cell−array containing strings with the name of the

12 % simulation types used.

188

Appendix E: Implemented Code

13 % plotTitle: The title of the plot; Vector of strings.

14 % saveFig: String of path and filename for saving the plot result. To not

15 % save the result, saveFig should be an empty string (''). File

16 % extension: .png

17

18

19 function freeSpaceLoss beamParam(A,tx,rx,xVect,eField,zs,...

20 beta,frequency,simulationType, plotTitle,saveFig)

21 c = 3*10ˆ8;

22 lambda = c/frequency;

23 k = 2*pi/lambda;

24 numXpoints = length(xVect);

25 xVect = verticalVector(xVect);

26 numXpoints = length(xVect);

27 tx x = xVect(1,1);

28 rx x = xVect(numXpoints,1);

29 tx z = tx;

30 rx z = rx;

31 % Finding the dimensions of the incoming e−field array:

32 [lines,columns] = size(eField);

33 if(lines>columns)

34 eField = eField';

35 numCases = columns;

36 else

37 numCases = lines;

38 end

39 cmap = hsv(numCases+1);

40

41 plotNames = cell(1+length(simulationType),1);

42 plotNames{1,1} = 'Free−space Loss − analytical model';

43 for i = 1: length(simulationType);

44 plotNames{i+1,1} = simulationType{i};
45 end

46 % Calculating the received fields:

47 a = tx z/rx z;

48

49 xVectAux = xVect(2:numXpoints,1);

50 thetaDir = atan((rx z−tx z)./(abs(tx x−xVectAux)));
51 Adirect = A.*exp(−2.*log10(2).*((thetaDir/beta).ˆ2));
52 Atotal = Adirect;

53 Pl = (lambda./(4.*pi.*(abs(tx x−xVectAux)))).*((Atotal./Adirect).ˆ2);
54

55 % Save the figure?

56 saveFigVal = isempty(saveFig);

57

58 switch saveFigVal

59 case 1

60 % Not save figure

189

Appendix E: Implemented Code

61 figure()

62 case 0

63 % Save figure

64 fig = figure('visible','on');

65 end

66

67

68 % Calculating the plane earth loss (path loss for plane earth):

69

70 Pl dB = 20.*log10(verticalVector(Pl(9:numXpoints−1,1)));
71 semilogx(xVect(9:numXpoints−1,1),Pl dB,'Color',cmap(1,:));

72 xlabel('Distance [m]');

73 ylabel('Path Loss [−dB]');
74

75 for i = 1: numCases

76 hold on

77

78 % The simulated field:

79 pl1 = verticalVector(20.*log10(abs(eField(i,:))));

80 pl2 = − 10.*log10(xVect);

81

82 pathLoss = pl1 + pl2;

83 semilogx(xVect(10:numXpoints,1),pathLoss(10:numXpoints,1),...

84 'Color',cmap(i+1,:));

85

86 end

87 legend(plotNames);

88 title(plotTitle);

89 grid on

90

91 switch saveFigVal

92 case 0

93 % Save figure

94 titleFig = verticalVector(saveFig)';

95 regexprep(titleFig,' ',' ');

96 regexprep(titleFig,'\',' ');

97 regexprep(titleFig,':',' ');

98 regexprep(titleFig,'=',' ');

99

100 if (isempty(strfind(titleFig,'.png')) == 1)

101 % File extension needs to be added.

102 titleFig = horzcat(titleFig,'.png');

103 end

104

105 saveas(fig,titleFig,'png');

106 end

107

108 end

190

Appendix E: Implemented Code

E.2.2.2 pathLossFlat beamParam

Compares the path loss over a flat surface from the simulated fields with the

analytical path loss.

1 % pathLossFlat.m: Calculates the path loss along a flat surface, used for

2 % comparing with plane earth loss model, assuming zero

3 % reflection loss. Adjusts the beam pattern according to

4 % the parameters (works only for rx = tx).

5 % tx: Transimtter antenna height

6 % rx: Receiver antenna height

7 % eField: Calculated electric field along the surface at a given height,

8 % zs, may contain multiple heights of consideration

9 % zs: The height eField is taken from

10 % beta: Beam−width [rad]

11 % frequency: The frequency of operation

12 % simulationType: Cell−array containing strings with the name of the

13 % simulation types used.

14 % plotTitle: The title of the plot; Vector of strings.

15 % saveFig: String of path and filename for saving the plot result. To not

16 % save the result, saveFig should be an empty string (''). File

17 % extension: .png

18

19

20 function pathLossFlat beamParam(A,tx,rx,xVect,eField,zs,...

21 beta,frequency,simulationType, plotTitle,saveFig)

22 c = 3*10ˆ8;

23 lambda = c/frequency;

24 k = 2*pi/lambda;

25 numXpoints = length(xVect);

26 xVect = verticalVector(xVect);

27 numXpoints = length(xVect);

28 tx x = xVect(1,1);

29 rx x = xVect(numXpoints,1);

30 tx z = tx;

31 rx z = rx;

32 % Finding the dimensions of the incoming e−field array:

33 [lines,columns] = size(eField);

34 if(lines>columns)

35 eField = eField';

36 numCases = columns;

37 else

38 numCases = lines;

39 end

40 cmap = hsv(numCases+1);

41

191

Appendix E: Implemented Code

42 plotNames = cell(1+length(simulationType),1);

43 plotNames{1,1} = 'Plane Earth Loss';

44 for i = 1: length(simulationType);

45 plotNames{i+1,1} = simulationType{i};
46 end

47 % Calculating the received fields:

48 a = tx z/rx z;

49

50 xVectAux = xVect(2:numXpoints,1);

51 thetaDir = atan((rx z−tx z)./(abs(tx x−xVectAux)));
52 Adirect = A.*exp(−2.*log10(2).*((thetaDir/beta).ˆ2));
53

54 % The reflected field:

55

56 % Find theta:

57 d tx = a.*abs(tx x−xVectAux)./(1+a);
58 thetaRefl = (pi/2) − atan(d tx./tx z);

59 Areflect = A.*exp(−2.*log10(2).*((thetaRefl./beta).ˆ2));
60

61 Atotal = Adirect + Areflect.*exp(1j.*k.*rx z.*tx z./(abs(tx x−xVectAux)));
62

63 Pl = (lambda./(4.*pi.*(abs(tx x−xVectAux)))).*(abs(Atotal./Adirect));
64

65 % Save the figure?

66 saveFigVal = isempty(saveFig);

67

68 switch saveFigVal

69 case 1

70 % Not save figure

71 figure()

72 case 0

73 % Save figure

74 fig = figure('visible','on');

75 end

76

77

78 % Calculating the plane earth loss (path loss for plane earth):

79 Pl dB = 20.*log10(verticalVector(Pl(9:numXpoints−1,1)));
80 semilogx(xVect(9:numXpoints−1,1),Pl dB,'Color',cmap(1,:));

81 xlabel('Distance [m]');

82 ylabel('Path Loss [−dB]');
83 for i = 1: 2:(numCases−1)
84 % Calculating plane earth loss from the simulated results:

85 hold on

86

87 pl1 = verticalVector(20.*log10(abs(eField(i,:))));

88 pl2 = − 10.*log10(xVect);

89

192

Appendix E: Implemented Code

90 pathLoss = pl1 + pl2;

91 semilogx(xVect(10:numXpoints,1),pathLoss(10:numXpoints,1),...

92 'Color',cmap(i+1,:));

93

94 pl1 = verticalVector(20.*log10(abs(eField(i+1,:))));

95 pl2 = − 10.*log10(xVect);

96

97 pathLoss = pl1 + pl2;

98 semilogx(xVect(10:numXpoints,1),pathLoss(10:numXpoints,1),'−−',...
99 'Color',cmap(i+1,:));

100

101 end

102

103 legend(plotNames,'Location','SouthWest');

104 title(plotTitle);

105 grid on

106

107 switch saveFigVal

108 case 0

109 % Save figure

110 titleFig = verticalVector(saveFig)';

111 regexprep(titleFig,' ',' ');

112 regexprep(titleFig,'\',' ');

113 regexprep(titleFig,':',' ');

114 regexprep(titleFig,'=',' ');

115

116 if (isempty(strfind(titleFig,'.png')) == 1)

117 % File extension needs to be added.

118 titleFig = horzcat(titleFig,'.png');

119 end

120

121 saveas(fig,titleFig,'png');

122 %print (fig, '−dpdf', titleFig);

123 titleFig = titleFig(1:(length(titleFig)−4));
124 titleFig = horzcat(titleFig,'.pdf');

125 save2pdf(titleFig);

126 end

127

128 end

E.2.2.3 pathLossIndra alongX

Horizontal comparison between the relative field strengths from the simulated

results and the results from a given file.

193

Appendix E: Implemented Code

1 % pathLossIndra alongX.m: Compare the relative field strengths from the

2 % simulated results with the results from a

3 % given file. Horizontal comparison.

4

5 % rx xArr: Receiver antenna (obseravation points) coordinates along the

6 % x−axis.
7 % rx zArr: Receiver antenna (observation points) coordinates along the

8 % z−axis.
9 % eField: Calculated electric field at the coordinates to rx xArr and

10 % rx zArr.

11 % frequency: The frequency of operation

12 % simulationType: Cell−array containing strings with the name of the

13 % simulation types used.

14 % plotTitle: Title of the plot.

15 % saveFig: file name of the plot, leave blank (' ') if the plot should not

16 % be saved.

17 % compareFile: File name and relative path if necessary of the file to

18 % compare results with. Leave blank (' ') if there is no file

19 % to compare with.

20

21

22 function pathLossIndra alongX(rx xArr,rx zArr,eField,...

23 frequency,simulationType, plotTitle,saveFig,compareFile)

24 c = 3*10ˆ8;

25 lambda = c/frequency;

26 k = 2*pi/lambda;

27 columnNumber = 2;

28 if compareFile ˜= ' '

29

30 [eFieldValues,zVectIndra]=importFieldResultsFromFile(...

31 compareFile,columnNumber);

32 end

33

34 rx zArr = verticalVector(rx zArr);

35 numRxPoints = length(rx zArr);

36

37 thisFontSize = 10;

38

39

40 % Finding the dimensions of the incoming e−field array:

41 [lines,columns] = size(eField);

42 if(lines>columns)

43 eField = eField';

44 numCases = columns;

45 else

46 numCases = lines;

47 end

48 cmap = hsv(numCases+1);

194

Appendix E: Implemented Code

49

50 if compareFile ˜= ' '

51 plotNames = cell(1+length(simulationType),1);

52 plotNames{1,1} = 'E−field Indra';

53 for i = 1: length(simulationType);

54 plotNames{i+1,1} = simulationType{i};
55 end

56 else % No file to compare with

57 plotNames =simulationType;

58 end

59

60 % Save the figure?

61 saveFigVal = isempty(saveFig);

62

63 switch saveFigVal

64 case 1

65 % Not save figure

66 %figure()

67 case 0

68 % Save figure

69 fig = figure('visible','on');

70 end

71 lineWidth = 1;

72 if compareFile ˜= ' '

73 Pl =eFieldValues; % In dB already

74 Pl dB =Pl;

75 semilogx(zVectIndra,Pl dB,'Color',cmap(1,:),'LineWidth',lineWidth);

76 minCompareValue = min(Pl dB);

77 end

78 ax1 = gca;

79 set(ax1,'XColor','k','YColor','k')

80 %legend(plotNames{1,1})
81 set(ax1, 'Box', 'off')

82 set(ax1, 'Color', 'none')

83 for i = 1:numCases

84 if compareFile ˜= ' '

85 hold on

86 elseif i > 1

87 hold on

88 end

89 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

90 pl2 = 0; % − 10.*log10(xVect);

91 minValueField = min(pl1);

92

93 pathLoss = pl1 + pl2;

94

95

96 semilogx(rx xArr,pathLoss,'Color',cmap(5−i+1,:),'LineWidth',lineWidth);

195

Appendix E: Implemented Code

97

98

99 end

100 grid on

101 set(gca,'FontSize',thisFontSize)

102 legend(plotNames,'Location','NorthEast')

103 ylabel('Relative field strength [dB]');

104 xlabel('Distance [m]');

105

106 switch saveFigVal

107 case 0

108 % Save figure

109 titleFig = verticalVector(saveFig)';

110 regexprep(titleFig,' ',' ');

111 regexprep(titleFig,'\',' ');

112 regexprep(titleFig,':',' ');

113 regexprep(titleFig,'=',' ');

114

115 if (isempty(strfind(titleFig,'.png')) == 1)

116 % File extension needs to be added.

117 titleFig = horzcat(titleFig,'.png');

118 end

119

120 saveas(fig,titleFig,'png');

121 titleFig = titleFig(1:(length(titleFig)−4));
122 titleFig = horzcat(titleFig,'.pdf');

123 save2pdf(titleFig);

124 end

125

126 end

E.2.2.4 pathLossFlat Indra

Vertical comparison between the relative field strengths from the simulated results

and the results from a given file.

1 % pathLossFlat Indra.m: Vertical comparison between the relative field

2 % strengths of the simulated fields and the results

3 % from a given file.

4

5 % rx xArr: Receiver antenna (obseravation points) coordinates along the

6 % x−axis.
7 % rx zArr: Receiver antenna (observation points) coordinates along the

8 % z−axis.
9 % eField: Calculated electric field at the coordinates to rx xArr and

196

Appendix E: Implemented Code

10 % rx zArr.

11 % frequency: The frequency of operation

12 % simulationType: Cell−array containing strings with the name of the

13 % simulation types used.

14 % plotTitle: Title of the plot.

15 % saveFig: file name of the plot, leave blank (' ') if the plot should not

16 % be saved.

17 % compareFile: File name and relative path if necessary of the file to

18 % compare results with.

19

20

21 function pathLossFlat Indra(rx xArr,rx zArr,eField,...

22 frequency,simulationType, plotTitle,saveFig,compareFile,compareHeight)

23 c = 3*10ˆ8;

24 lambda = c/frequency;

25 k = 2*pi/lambda;

26 columnNumber = 3;

27 [eFieldValues,zVectIndra]=importFieldResultsFromFile(compareFile,...

28 columnNumber);

29 eFieldValues = verticalVector(eFieldValues);

30 zVectIndra = verticalVector(zVectIndra);

31

32 indexMaxIndra = find(zVectIndra >= compareHeight,1);

33 zVectIndra = zVectIndra(1:indexMaxIndra,1);

34 eFieldValues = eFieldValues(1:indexMaxIndra,1);

35

36 rx xArr = verticalVector(rx xArr);

37 rx zArr = verticalVector(rx zArr);

38

39 indexMaxZ = find(rx zArr >= compareHeight,1); %240 ,1);

40 rx xArr = rx xArr(1:indexMaxZ,1);

41 rx zArr = rx zArr(1:indexMaxZ,1);

42 eField = eField(:,1:indexMaxZ,1);

43

44 rx zArr = verticalVector(rx zArr);

45 numRxPoints = length(rx zArr);

46 thisFontSize = 10;

47

48

49

50 % Finding the dimensions of the incoming e−field array:

51 [lines,columns] = size(eField);

52 if(lines>columns)

53 eField = eField';

54 numCases = columns;

55 else

56 numCases = lines;

57 end

197

Appendix E: Implemented Code

58 cmap = hsv(numCases+1);

59

60 plotNames = cell(1+length(simulationType),1);

61 plotNames{1,1} = 'E−field Indra';

62 for i = 1: length(simulationType);

63 plotNames{i+1,1} = simulationType{i};
64 end

65

66 % Save the figure?

67 saveFigVal = isempty(saveFig);

68

69 switch saveFigVal

70 case 1

71 % Not save figure

72 figure()

73 case 0

74 % Save figure

75 fig = figure('visible','on');

76 end

77

78 % Plotting the E−field calculated at indra:

79 lineWidth = 1;

80 Pl =eFieldValues; % In dB already

81 Pl dB =Pl;

82 hl1 = line(zVectIndra(7:length(zVectIndra),1),...

83 Pl dB(7:length(zVectIndra),1),'Color',cmap(1,:),'LineWidth',lineWidth);

84 ax1 = gca;

85 set(ax1,'XColor','k','YColor','k')

86 %legend(plotNames{1,1})
87 set(ax1, 'Box', 'off')

88 set(ax1, 'Color', 'none')

89 maxImportedEfield = max(eFieldValues);

90 set(gca,'FontSize',thisFontSize)

91 xlabel('Height [m]');

92 ylabel('Relative field strength [dB]');

93

94 ax2 = axes('Position',get(ax1,'Position'),...

95 'XAxisLocation','top',...

96 'YAxisLocation','right',...

97 'Color','none',...

98 'XColor','k','YColor','k');

99

100 for i = 1: numCases

101 hold on

102

103 % The simulated fields:

104 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

105 maxThisField = max(pl1);

198

Appendix E: Implemented Code

106 maxDiff = maxImportedEfield − maxThisField;

107 pl2 = 0;

108 pathLoss = pl1 + pl2;

109

110 pathLoss = pathLoss + maxDiff;

111

112 hl2 = line(rx zArr(4:length(rx zArr),1),pathLoss(4:length(rx zArr)),...

113 'Color',cmap(5−i+1,:),'Parent',ax2,'LineWidth',lineWidth);
114 end

115

116 set(ax2, 'Box', 'off')

117 set(gca,'FontSize',thisFontSize)

118 legend(ax1,plotNames{1,1},'Location','South')
119 legend(ax2,plotNames{2:numCases+1,1},'Location','SouthEast')
120 title(plotTitle);

121

122 grid on

123 linkaxes([ax2 ax1],'y');

124

125 switch saveFigVal

126 case 0

127 % Save figure

128 titleFig = verticalVector(saveFig)';

129 regexprep(titleFig,' ',' ');

130 regexprep(titleFig,'\',' ');

131 regexprep(titleFig,':',' ');

132 regexprep(titleFig,'=',' ');

133

134 if (isempty(strfind(titleFig,'.png')) == 1)

135 % File extension needs to be added.

136 titleFig = horzcat(titleFig,'.png');

137 end

138

139 saveas(fig,titleFig,'png');

140 titleFig = titleFig(1:(length(titleFig)−4));
141 titleFig = horzcat(titleFig,'.pdf');

142 %print (fig, '−dpdf', titleFig);

143 save2pdf(titleFig);

144 end

145

146 end

E.2.2.5 pathLossFlat Indra minComp

Vertical comparison up to a given maximum height, between the relative field

strengths from the simulated results and the results from a given file. The fields

199

Appendix E: Implemented Code

are shifted to have the same minimum value.

1 % pathLossFlat Indra minComp.m: Vertical comparison between the relative

2 % field strengths of the simulated fields and

3 % the results from a given file. The

4 % maximum height of comparison is specified in

5 % compareHeight variable. The functions shifts

6 % the fields to have the same minimum value.

7

8 % rx xArr: Receiver antenna (obseravation points) coordinates along the

9 % x−axis.
10 % rx zArr: Receiver antenna (observation points) coordinates along the

11 % z−axis.
12 % distance: The distance between the antennas, ignoring height difference

13 % eField: Calculated electric field at the coordinates to rx xArr and

14 % rx zArr.

15 % frequency: The frequency of operation

16 % simulationType: Cell−array containing strings with the name of the

17 % simulation types used.

18 % plotTitle: Title of the plot.

19 % saveFig: file name of the plot, leave blank (' ') if the plot should not

20 % be saved.

21 % compareFile: File name and relative path if necessary of the file to

22 % compare results with.

23 % compareHeight: The maximum height of comparison.

24

25 function pathLossFlat Indra minComp(rx xArr,rx zArr,eField,...

26 frequency,simulationType, plotTitle,saveFig,compareFile,compareHeight)

27 c = 3*10ˆ8;

28 lambda = c/frequency;

29 k = 2*pi/lambda;

30 columnNumber = 3;

31 [eFieldValues,zVectIndra]=importFieldResultsFromFile(compareFile,...

32 columnNumber);

33 eFieldValues = verticalVector(eFieldValues);

34 zVectIndra = verticalVector(zVectIndra);

35

36 indexMaxIndra = find(zVectIndra >= compareHeight,1);

37 zVectIndra = zVectIndra(1:indexMaxIndra,1);

38 eFieldValues = eFieldValues(1:indexMaxIndra,1);

39

40 rx xArr = verticalVector(rx xArr);

41 rx zArr = verticalVector(rx zArr);

42

43 indexMaxZ = find(rx zArr >= compareHeight,1);

44 rx xArr = rx xArr(1:indexMaxZ,1);

45 rx zArr = rx zArr(1:indexMaxZ,1);

200

Appendix E: Implemented Code

46 eField = eField(:,1:indexMaxZ,1);

47

48 rx zArr = verticalVector(rx zArr);

49 numRxPoints = length(rx zArr);

50

51 thisFontSize = 10;

52

53

54 % Finding the dimensions of the incoming e−field array:

55 [lines,columns] = size(eField);

56 if(lines>columns)

57 eField = eField';

58 numCases = columns;

59 else

60 numCases = lines;

61 end

62 cmap = hsv(numCases+1);

63

64 plotNames = cell(1+length(simulationType),1);

65 plotNames{1,1} = 'E−field Indra';

66 for i = 1: length(simulationType);

67 plotNames{i+1,1} = simulationType{i};
68 end

69

70 % Save the figure?

71 saveFigVal = isempty(saveFig);

72

73 switch saveFigVal

74 case 1

75 % Not save figure

76 figure()

77 case 0

78 % Save figure

79 fig = figure('visible','on');

80

81 end

82

83 % Plotting the E−field calculated at indra:

84 lineWidth = 1;

85 startIndex importField =14; %7; %13;

86 Pl =eFieldValues; % In dB already

87 Pl dB =Pl;

88 hl1 = line(zVectIndra(startIndex importField:length(zVectIndra),1),...

89 Pl dB(startIndex importField:length(zVectIndra),1),'Color',...

90 cmap(1,:),'LineWidth',lineWidth);

91 ax1 = gca;

92 set(ax1,'XColor','k','YColor','k')

93 %legend(plotNames{1,1})

201

Appendix E: Implemented Code

94 set(ax1, 'Box', 'off')

95 set(ax1, 'Color', 'none')

96 maxImportedEfield =min(Pl dB(startIndex importField:length(zVectIndra),1));

97 set(gca,'FontSize',thisFontSize)

98 xlabel('Height [m]');

99 ylabel('Relative field strength [dB]');

100

101

102 ax2 = axes('Position',get(ax1,'Position'),...

103 'XAxisLocation','top',...

104 'YAxisLocation','right',...

105 'Color','none',...

106 'XColor','k','YColor','k');

107 startIndex = 4;

108 for i = 1: numCases

109 hold on

110

111 % The simulated fields:

112 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

113 maxThisField = min(pl1(startIndex:length(rx zArr)));

114 maxDiff = maxImportedEfield − maxThisField;

115 pl2 = 0;

116 pathLoss = pl1 + pl2;

117 pathLoss = pathLoss + maxDiff;

118

119 hl2 = line(rx zArr(startIndex:length(rx zArr),1),...

120 pathLoss(startIndex:length(rx zArr)),...

121 'Color',cmap(5−i+1,:),'Parent',ax2,'LineWidth',lineWidth);
122 end

123 set(ax2, 'Box', 'off')

124 set(gca,'FontSize',thisFontSize)

125 legend(ax1,plotNames{1,1},'Location','South')
126 legend(ax2,plotNames{2:numCases+1,1},'Location','SouthEast')
127 title(plotTitle);

128

129 grid on

130 linkaxes([ax2 ax1],'y');

131 linkaxes([ax2 ax1],'x');

132 switch saveFigVal

133 case 0

134 % Save figure

135 titleFig = verticalVector(saveFig)';

136 regexprep(titleFig,' ',' ');

137 regexprep(titleFig,'\',' ');

138 regexprep(titleFig,':',' ');

139 regexprep(titleFig,'=',' ');

140

141 if (isempty(strfind(titleFig,'.png')) == 1)

202

Appendix E: Implemented Code

142 % File extension needs to be added.

143 titleFig = horzcat(titleFig,'.png');

144 end

145

146 saveas(fig,titleFig,'png');

147 titleFig = titleFig(1:(length(titleFig)−4));
148 titleFig = horzcat(titleFig,'.pdf');

149 %print (fig, '−dpdf', titleFig);

150 save2pdf(titleFig);%,handle,dpi)

151 end

152

153 end

E.2.2.6 pathLossWedge Indra

Vertical comparison between the relative field strengths from the simulated results

and the results from a given file. Shifts the fields to be aligned at maximum height

of comparison.

1 % pathLossWedge Indra.m: Vertical comparison between the relative field

2 % strengths of the simulated fields and the results

3 % from a given file. Shiftes the fields to be

4 % alligned with the maximim value of the results

5 % imported from the file.

6 % Xn: Vector of x−values
7 % Zn: Vector of corresponding z−values
8 % deltaX: spacing between the sampling points along the x−axis, if set to 0

9 % the spacing is according to Nyquist's theorem.

10 % tx: Transimtter antenna height

11 % rx xArr: Receiver antenna (obseravation points) coordinates along the

12 % x−axis.
13 % rx zArr: Receiver antenna (observation points) coordinates along the

14 % z−axis.
15 % distance: The distance between the antennas, ignoring height difference

16 % eField: Calculated electric field at the coordinates to rx xArr and

17 % rx zArr.

18 % zs: The height eField is taken from

19 % frequency: The frequency of operation

20 % simulationType: Cell−array containing strings with the name of the

21 % simulation types used.

22 % plotTitle: Title of the plot.

23 % saveFig: file name of the plot, leave blank (' ') if the plot should not

24 % be saved.

25 % compareFile: File name and relative path if necessary of the file to

26 % compare results with. Leave empty (' ') if there are no

203

Appendix E: Implemented Code

27 % results to compare with.

28

29

30 function pathLossWedge Indra(Xn,Zn,deltaX,A,tx,rx xArr,rx zArr,eField,...

31 zs,beta,frequency,simulationType, plotTitle,saveFig,compareFile)

32 c = 3*10ˆ8;

33 lambda = c/frequency;

34 k = 2*pi/lambda;

35 columnNumber = 3;

36 thisFontSize = 10;

37

38 tx x = Xn(1,1);

39 tx z = tx;

40

41 indexMaxZ = find(rx zArr >= 250 ,1);

42 rx xArr = rx xArr(1:indexMaxZ);

43 rx zArr = rx zArr(1:indexMaxZ);

44 eField = eField(:,1:indexMaxZ);

45

46

47 rx zArr = verticalVector(rx zArr);

48 numRxPoints = length(rx zArr);

49

50

51 % Finding the dimensions of the incoming e−field array:

52 [lines,columns] = size(eField);

53 if(lines>columns)

54 eField = eField';

55 numCases = columns;

56 else

57 numCases = lines;

58 end

59 cmap = hsv(numCases+1);

60

61 % Save the figure?

62 saveFigVal = isempty(saveFig);

63

64 switch saveFigVal

65 case 1

66 % Not save figure

67 figure()

68 case 0

69 % Save figure

70 fig = figure('visible','on');

71 end

72

73 switch compareFile

74

204

Appendix E: Implemented Code

75 case ' '

76 % Do not try to import anyting

77 plotNames = cell(length(simulationType),1);

78 for i = 1: length(simulationType);

79 plotNames{i,1} = simulationType{i};
80 end

81

82 xlabel('Height [m]');

83 ylabel('Relative field strength [dB]');

84 for i = 1: numCases

85 hold on

86 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

87 pl2 = 0;

88 pathLoss = pl1 + pl2;

89 hl2 = line(rx zArr(:,1),pathLoss,'Color',cmap(i+1,:));

90 end

91 legend(plotNames,'Location','SouthEast')

92 title(plotTitle);

93 grid on

94

95

96 otherwise

97 [eFieldValues,zVectIndra]=importFieldResultsFromFile(...

98 compareFile,columnNumber);

99

100 plotNames = cell(1+length(simulationType),1);

101 plotNames{1,1} = 'E−field Indra';

102 for i = 1: length(simulationType);

103 plotNames{i+1,1} = simulationType{i};
104 end

105

106 % Plotting the E−field calculated at indra:

107 lineWidth = 1;

108 Pl =eFieldValues; % In dB already

109 Pl dB =Pl(4:length(Pl));

110 maxValueCompareField = max(Pl dB);

111 hl1 = line(zVectIndra(4:length(Pl)),Pl dB,'Color',cmap(1,:), ...

112 'LineWidth',lineWidth);

113 ax1 = gca;

114 set(ax1,'XColor','k','YColor','k')

115 set(ax1, 'Box', 'off')

116 set(ax1, 'Color', 'none')

117 set(gca,'FontSize',thisFontSize)

118 xlabel('Height [m]');

119 ylabel('Relative field strength [dB]');

120 ax2 = axes('Position',get(ax1,'Position'),...

121 'XAxisLocation','top',...

122 'YAxisLocation','right',...

205

Appendix E: Implemented Code

123 'Color','none',...

124 'XColor','k','YColor','k');

125

126 for i = 1: numCases

127 hold on

128 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

129 maxValueEfield = max(pl1);

130 maxValDiff = maxValueCompareField − maxValueEfield;

131 pl2 = 0;

132 pathLoss = pl1 + pl2;

133 pathLoss = pathLoss + maxValDiff;

134 hl2 = line(rx zArr(:,1),pathLoss,'Color',cmap(i+1,:),...

135 'Parent',ax2,'LineWidth',lineWidth);

136 end

137 set(ax2, 'Box', 'off')

138 set(gca,'FontSize',thisFontSize)

139 legend(ax1,plotNames{1,1},'Location','East'); %'South')

140 legend(ax2,plotNames{2:numCases+1,1},'Location','SouthEast')
141 title(plotTitle);

142 grid on

143 linkaxes([ax2 ax1],'y');

144

145 end

146

147 switch saveFigVal

148 case 0

149 % Save figure

150 titleFig = verticalVector(saveFig)';

151 regexprep(titleFig,' ',' ');

152 regexprep(titleFig,'\',' ');

153 regexprep(titleFig,':',' ');

154 regexprep(titleFig,'=',' ');

155

156 if (isempty(strfind(titleFig,'.png')) == 1)

157 % File extension needs to be added.

158 titleFig = horzcat(titleFig,'.png');

159 end

160

161 saveas(fig,titleFig,'png');

162 titleFig = titleFig(1:(length(titleFig)−4));
163 titleFig = horzcat(titleFig,'.pdf');

164 %print (fig, '−dpdf', titleFig);

165 save2pdf(titleFig);

166 end

167

168 end

206

Appendix E: Implemented Code

E.2.2.7 pathLossWedge Hviid

Plots the path loss of the given e-fields for vertical comparison if there are no results

from file to compare with. If there are result from file to compare with, the relative

field strengths are plotted.

1 % pathLossWedge Hviid.m: If there are no results from files to compare

2 % with, the path losses of the incoming fields are

3 % calculated and plotted for vertical comparison.

4 % If there are results from other files to compare

5 % with, the relative field strenghts are plotted for

6 % vertical comparison.

7

8 % antHeight: The height of the transmitter antenna.

9 % rx xArr: Receiver antenna (obseravation points) coordinates along the

10 % x−axis.
11 % rx zArr: Receiver antenna (observation points) coordinates along the

12 % z−axis.
13 % eField: Calculated electric field at the coordinates to rx xArr and

14 % rx zArr.

15 % frequency: The frequency of operation

16 % simulationType: Cell−array containing strings with the name of the

17 % simulation types used.

18 % plotTitle: Title of the plot.

19 % saveFig: file name of the plot, leave blank (' ') if the plot should not

20 % be saved.

21 % compareFile: File name and relative path if necessary of the file to

22 % compare results with. Leave empty (' ') if there are no

23 % results to compare with.

24 % compareHeight: The maximum height of interest for comparison in the

25 % vertical direction.

26

27

28 function pathLossWedge Hviid(antHeight, rx xArr,rx zArr,eField,...

29 frequency,simulationType, plotTitle,saveFig,compareFile,compareHeight)

30 c = 3*10ˆ8;

31 lambda = c/frequency;

32 k = 2*pi/lambda;

33 columnNumber = 3;

34 thisFontSize = 10;

35 rx xArr = verticalVector(rx xArr);

36

37 if (compareHeight > 0)

38 indexMaxZ = find(rx zArr >= compareHeight ,1);

39 rx xArr = rx xArr(1:indexMaxZ);

40 rx zArr = rx zArr(1:indexMaxZ);

207

Appendix E: Implemented Code

41 eField = eField(:,1:indexMaxZ);

42 end

43

44 rx zArr = verticalVector(rx zArr);

45 numRxPoints = length(rx zArr);

46

47

48 % Finding the dimensions of the incoming e−field array:

49 [lines,columns] = size(eField);

50 if(lines>columns)

51 eField = eField';

52 numCases = columns;

53 else

54 numCases = lines;

55 end

56 cmap = hsv(numCases+1);

57

58 % Save the figure?

59 saveFigVal = isempty(saveFig);

60

61 switch saveFigVal

62 case 1

63 % Not save figure

64 figure()

65 case 0

66 % Save figure

67 fig = figure('visible','on');

68 end

69

70 switch compareFile

71

72

73 case ' '

74 % Do not try to import anyting

75 plotNames = cell(length(simulationType),1);

76 for i = 1: length(simulationType);

77 plotNames{i,1} = simulationType{i};
78 end

79 %figure (1)

80 hFig = fig; % figure(1);

81 set(gcf,'PaperPositionMode','auto')

82 xwidth =450; % 360;

83 ywidth = 480;

84 set(hFig, 'Position',[800 200 xwidth ywidth])

85 xTick arr = [0:20:compareHeight];

86 set(gca,'XTick',xTick arr);

87 set(gca,'YDir','reverse');

88

208

Appendix E: Implemented Code

89 startIndex = 3;

90 numPointsZ = length(rx zArr);

91 rx zArr = rx zArr(startIndex:numPointsZ,1);

92 rx xArr = rx xArr(startIndex:numPointsZ,1);

93 xlabel('Receiver height [m]');

94 ylabel('Path loss [dB]');

95 distVect = (((antHeight−rx zArr).ˆ2) + (rx xArr.ˆ2)).ˆ0.5;

96 eField=eField(:,startIndex:numPointsZ);

97 for i = 1: numCases

98 hold on

99 % The simulated fields:

100 pl1 = −smooth(verticalVector(20.*log10(abs(eField(i,:)))));
101 pl2 = +10.*log10(distVect)+ 20*log10(4*pi)−30*log(lambda);
102 pathLoss = (pl1 + pl2);

103 % Moving the pathloss up or down:

104 hl2 = line(rx zArr(:,1),pathLoss,'Color',cmap(i,:));

105 end

106 legend(plotNames,'Location','SouthEast')

107 title(plotTitle);

108 grid on

109

110

111 otherwise

112 [eFieldValues,zVectIndra]=importFieldResultsFromFile(...

113 compareFile,columnNumber);

114

115 plotNames = cell(1+length(simulationType),1);

116 plotNames{1,1} = 'E−field Indra';

117 for i = 1: length(simulationType);

118 plotNames{i+1,1} = simulationType{i};
119 end

120

121 % Plotting the E−field calculated at indra:

122 lineWidth = 1;

123 Pl =eFieldValues; % In dB already

124 Pl dB =Pl(4:length(Pl));

125 maxValueCompareField = max(Pl dB);

126 hl1 = line(zVectIndra(4:length(Pl)),Pl dB,'Color',cmap(1,:), ...

127 'LineWidth',lineWidth);

128 ax1 = gca;

129 set(ax1,'XColor','k','YColor','k')

130 set(ax1, 'Box', 'off')

131 set(ax1, 'Color', 'none')

132 set(gca,'FontSize',thisFontSize)

133 xlabel('Height [m]');

134 ylabel('Relative field strength [dB]');

135 ax2 = axes('Position',get(ax1,'Position'),...

136 'XAxisLocation','top',...

209

Appendix E: Implemented Code

137 'YAxisLocation','right',...

138 'Color','none',...

139 'XColor','k','YColor','k');

140

141 for i = 1: numCases

142 hold on

143 % The simulated fields:

144 pl1 = smooth(verticalVector(20.*log10(abs(eField(i,:)))));

145 maxValueEfield = max(pl1);

146 maxValDiff = maxValueCompareField − maxValueEfield;

147 pl2 = 0;

148 pathLoss = pl1 + pl2;

149 pathLoss = pathLoss + maxValDiff;

150 hl2 = line(rx zArr(:,1),pathLoss,'Color',cmap(i+1,:),...

151 'Parent',ax2,'LineWidth',lineWidth);

152 end

153 set(ax2, 'Box', 'off')

154 set(gca,'FontSize',thisFontSize)

155 legend(ax1,plotNames{1,1},'Location','East'); %'South')

156 legend(ax2,plotNames{2:numCases+1,1},'Location','SouthEast')
157 title(plotTitle);

158 grid on

159 linkaxes([ax2 ax1],'y');

160

161 end

162

163 switch saveFigVal

164 case 0

165 % Save figure

166 titleFig = verticalVector(saveFig)';

167 regexprep(titleFig,' ',' ');

168 regexprep(titleFig,'\',' ');

169 regexprep(titleFig,':',' ');

170 regexprep(titleFig,'=',' ');

171

172 if (isempty(strfind(titleFig,'.png')) == 1)

173 % File extension needs to be added.

174 titleFig = horzcat(titleFig,'.png');

175 end

176

177 saveas(fig,titleFig,'png');

178 titleFig = titleFig(1:(length(titleFig)−4));
179 titleFig = horzcat(titleFig,'.pdf');

180 %print (fig, '−dpdf', titleFig);

181 save2pdf(titleFig);

182 end

183

184 end

210

Appendix E: Implemented Code

E.2.3 Helping Functions

E.2.3.1 interpolate

Interpolates the given surface coordinates so that they get the correct spacing.

1 % interpolate : Interpolates the given points according to the frequency so

2 % that the sampling distance between the points in the x−direction is less

3 % than wavelength/2.

4

5 % Xn: Vector of x−values
6 % Zn: Vector of corresponding z−values
7 % frequency: The frequency of operation [Hz]

8 % mode: 'linear' or 'curve' interpolation

9 % deltaX: spacing between the sampling points along the x−axis, if set to 0

10 % the spacing is according to Nyquist's theorem.

11

12 % Returns: X− and Z−vectors containg the interpolated values.

13

14 % (tested)

15

16 function[Xni,Zni] = interpolate(Xn,Zn, frequency,mode, deltaX)

17 c = 3*10ˆ8; % Speed of light

18 lambda = c/frequency; % Wavelength

19

20 switch deltaX

21 case 0

22 maxSampleDist = lambda/2;

23 sampleDist = maxSampleDist − 0.1*maxSampleDist;

24 otherwise

25 sampleDist = deltaX;

26 end

27

28 % Creating array containing x−values with appropriate sampling distance:

29 Xni = [Xn(1):deltaX:Xn(length(Xn))];

30

31 % Interpolating the given values:

32 switch mode

33 case 'linear'

34 Zni = interp1(Xn,Zn,Xni);

35 case 'curve'

36 Zni = spline(Xn,Zn,Xni);

37 end

38 end

211

Appendix E: Implemented Code

E.2.3.2 normalizeSurface

Shifts the altitudes of a surface so that the lowest point is situated at altitude

zero.

1 % normalizeSurface.m: Shifts the surface heights so that lowest point is

2 % situated at height 0.

3 % zSurfaceVect: The initital heights of the surface

4 % return:

5 % zSurfaceNorm: The normalized heights of the surface.

6 % truncationValue: The height level the surface is shifted with

7

8

9 function [zSurfaceNorm,truncationValue]=normalizeSurface(zSurfaceVect)

10

11 minVal = min(zSurfaceVect);

12

13 truncationValue = −minVal;
14 zSurfaceNorm = truncationValue + zSurfaceVect;

15 end

E.2.3.3 createZvectAbsorptionLayer2

Creates the z-vector with additional height for absorption layer

1 % createZvectAbsorptionLayer2.m: Calculates the z−vector based on the

2 % maximum heigth of interest. Includes

3 % additional height for absorption layer.

4 % Usage: To be used in combination with the split−step algorithm and

5 % finite−difference method where an absorption is included.

6

7 % maxHeigthInterest: The maximum heigth of interest

8 % deltaZ: The spacing between the elements in the z−vector
9 % numPointsInAbsorptionLayer: The number of points in the absorption layer

10

11 % return:

12 % zVect: Vector containing the z−values
13 % Hindex: The index of the value closest to the maximum height of

14 % interest in the zVect.

15

16

17 function [zVect, Hindex]=createZvectAbsorptionLayer2(maxHeigthInterest, ...

18 deltaZ,numPointsInAbsorptionLayer)

19 L = ceil((maxHeigthInterest/deltaZ))+ (numPointsInAbsorptionLayer);

212

Appendix E: Implemented Code

20 zVect = verticalVector([0:deltaZ:L]);

21

22 % Finding the closest index to the height of interest:

23 Hindex = ceil(((L/deltaZ) +1)*(maxHeigthInterest/L));

24 end

E.2.3.4 createInitialField

Creates the initial field.

1 % initialField.m: Creates the initial field, using the specified beam

2 % shape.

3 % zs: source height in meters

4 % theta0: elevation angle in radians

5 % beta: Half−power beamwidth (Gaussian beam)

6 % zVect: Vector containing the heights for field estimation in z−direction
7 % A: parameter for calculating free−space loss

8 % frequency: the frequency of operation

9 % source: 'gaussian1', 'gaussian2' or 'circular'

10 % return: initialField: The initial field for range x=0

11

12

13 function initialField = createInitialField(zs,theta0,beta,zVect,A,...

14 frequency, source)

15 c = 3*10ˆ8;

16 lambda = c/frequency;

17 k = 2*pi/lambda;

18

19

20 numZpoints = length(zVect);

21 initialField = zeros(numZpoints,1);

22

23 switch source

24 case 'gaussian1'

25 initialField = A.*(k.*beta./(2.*sqrt(2.*log10(2)))) ...

26 .*exp(−1j.*k.*theta0.*zVect)...
27 .*exp(−((beta.ˆ2)./(8.*log10(2))).*(k.ˆ2).*((zVect−zs).ˆ2));
28

29 case 'gaussian2'

30 theta1 = beta;

31 theta2 = theta0;

32 initialField = sqrt(k).*tan(theta1).*exp(−((k.ˆ2)./2).*((zVect−zs).ˆ2).* ...

33 (tan(theta1).ˆ2)).*exp(1j.*k.*(zVect−zs).*sin(theta2));
34 case 'circular'

35 auxTheta = asin(abs((zVect−zs))./A);

213

Appendix E: Implemented Code

36 % for x = 1:length(auxTheta)

37 % if (auxTheta(x) > pi/2)

38 % auxTheta(x) = 0;

39 % end

40 % end

41 auxTheta(abs(auxTheta) > (pi/4)) =pi/2;

42 %auxTheta(auxTheta < (−pi/2)) =0; %pi;

43 initialField = A*cos(auxTheta);

44

45 end

46 initialField(1) = 0;

47 end

E.2.3.5 verticalVector

Makes a vector vertical if it was not initially.

1 % verticalVector.m

2 % Checks wether a vector is horizontal or vertical.

3 % If the vector is horizontal, it is transposed into being vertical.

4 % The returned vector is vertical

5

6 % Vin: Input vector (horizontal or vertical)

7 % Vout: Output vector, vertical

8

9 function [Vout] = verticalVector(Vin)

10

11 if(length(Vin(1,:)) > length(Vin(:,1)))

12 % Vin is a horizontal vector

13 Vout = Vin';

14 else

15 Vout = Vin;

16 end

17 end

E.2.3.6 getVerticalValues

Extracts the vertical values from the results on an inclined plane.

1 % getVerticalValues.m: Calculates the values in the "vertical" direction,

2 % the direction perpendicular to the downward inclined

3 % plane.

214

Appendix E: Implemented Code

4

5 % xDiff: The distance difference in the x−direction
6 % zDiff: The height difference in the z−direction
7 % deltaX: The step size along the x−axis
8 % deltaZ: The step size along the z−axix
9 % xVect: The vector containing the x−values

10 % xDistCompare: The distance along the x−axis (if the surface was flat) where

11 % the field comparison "takes place".

12 % maxZ: The maximum height for field comparison.

13 % uValues: Calculated grid of u−values.
14 % directionIncl: The direction of inclination: 'up' or 'down'

15

16 % return: zValues: The field values in the ''vertical'' direction

17

18

19

20 function zValues = getVerticalValues(Xn,Zn,xDiff,zDiff,deltaX,deltaZ,...

21 xVect,xDistCompare,maxZ,uValues, directionIncl)

22

23 zValues = verticalVector([0:deltaZ:maxZ]); % counts from 0 to maxZ

24 xStartIndex = find(xVect >= xDistCompare ,1);

25

26 switch directionIncl

27

28 case 'down'

29 thetaAux = atan(zDiff/xDiff);

30 xDist2 = xDistCompare*cos(thetaAux);

31 xStartIndex = find(xVect >= xDist2 ,1);

32

33 theta = atan(xDiff/abs(zDiff));

34 phi = (2*pi) − pi− theta;

35 % The height difference at the xDistCompare along the plane to the flat

36 % surface:

37 %zDiffAdd = round(abs(zDiff) − abs((xDistCompare*sin(thetaAux))));

38 zDiffAdd = round(abs(Zn(1)) − abs((xDistCompare*sin(thetaAux))));

39

40 case 'up'

41 theta = atan(zDiff/xDiff);

42 phi = pi − (pi/2)− theta;

43 xDist2 = xDistCompare*cos(theta);

44 xStartIndex = find(xVect >= xDist2 ,1);

45

46 % The height at which is the plane is situated at, at xDistCompare:

47 % (the coordinate)

48 zDiffAdd = round(xDistCompare*sin(theta)/deltaZ);

49 zDiffAdd noRounded = xDistCompare*sin(theta)/deltaZ;

50 %Finding the endpoint of the vector

51 vectorLength = maxZ;

215

Appendix E: Implemented Code

52 totLength = vectorLength + zDiffAdd noRounded;

53 xDiffLength = totLength.*cos(phi);

54 xDiffCoord = round(xStartIndex − (xDiffLength./deltaX));

55 zHeight = totLength.*sin(phi);

56 normVect = [(zHeight−zDiffAdd noRounded) −xDiffLength];
57 % NB: Convention for this thesis: [z x]

58

59

60 end

61

62 xCoordVect = zeros(length(zValues),1);

63 zCoordVect = zeros(length(zValues),1);

64 for i = 1:length(zValues)

65 xCoord = xStartIndex − round(zValues(i).*deltaX.*cos(phi));

66 zCoord = zDiffAdd + round(zValues(i).*deltaZ.*sin(phi));

67 if(zCoord == 0)

68 zCoord = 1;

69 end

70

71 zValues(i,1) = uValues(zCoord,xCoord);

72

73

74 xCoordVect(i,1) = xCoord;

75 zCoordVect(i,1) = zCoord;

76 end

77

78 % % Verifying that the length of normVect is vectorLength:

79 % norm(normVect)

80 % % Verifying the dot product between the normal and the plane (should be 90

81 % % deg):

82 % surfaceVect = [(Zn(length(Zn))−Zn(1)) −(Xn(length(Xn))−Xn(1))];

83 % dotRes = dot(normVect,surfaceVect)/(norm(normVect)*norm(surfaceVect))

84 %

85 % figure()

86 % plot(Xn,Zn);

87 % hold on

88 % plot([xStartIndex xDiffCoord],[zDiffAdd zHeight]);

89

90 % % Finding the length of the segment between the plane and flat surface, if

91 % % the normal vector was extended.

92 % xPosNorm = xDistCompare/cos(theta);

93

94

95

96 %figure()

97 plot(Xn,Zn,'k')

98 hold on

99 plot(xCoordVect,zCoordVect,'k')

216

Appendix E: Implemented Code

100 grid on

101

102 % Calculating the dot product:

103 surfaceVect = [−(Xn(length(Xn))−Xn(1)) (Zn(length(Zn))−Zn(1))];
104 ninetyDegVect = [−(xCoordVect(length(xCoordVect))−xCoordVect(1)) ...

105 (zCoordVect(length(zCoordVect))−zCoordVect(1))];
106

107 % The result of the dot product should be zero (or very close to)

108 dotResult = dot(surfaceVect,ninetyDegVect)/(norm(surfaceVect).*norm(ninetyDegVect))

109

110

111

112

113 end

E.2.3.7 createAbsorptionLayer

Creates absorption layer.

1 % createAbsorptionLayer.m: Creates an absorption layer for the given

2 % parameters.

3 % intitialField: The initial field.

4 % maxHeigthInterestZIndex: The index of the maximum height of interest.

5 % numPointsInLayer: Number of points in the absorption layer

6

7 % return: indexOfRefraction: Vector containing the index of refraction in

8 % the entire z−direction
9

10 function [indexOfRefraction] = createAbsorptionLayer(intitialField,...

11 maxHeigthInterestZIndex,numPointsInLayer)

12 numZpoints = length(intitialField);

13 Hindex = maxHeigthInterestZIndex;

14

15 indiceValues = verticalVector([1:1:(numZpoints−Hindex+1)]);
16 indiceValues = (indiceValues./(numPointsInLayer));

17 gamma0 = 0.15*0.098;

18 absorptionLayer = gamma0.*(indiceValues);

19

20 indexOfRefraction = ones(numZpoints,1);

21 indexOfRefraction(Hindex:numZpoints,1) = ...

22 indexOfRefraction(Hindex:numZpoints,1) + 1j.*absorptionLayer;

23

24 end

217

Appendix E: Implemented Code

E.2.3.8 discreteSineTrans

Performs the discrete sine transform.

1 % discreteSineTrans.m: Performs a discrete sine transform of given set of

2 % values, xIn

3 % xIn: Vector containing the input values

4

5 % return: dst: Vector containing the calculated values.

6

7 function dst = discreteSineTrans(xIn)

8 numPoints = length(xIn);

9 dst = zeros(numPoints,1);

10 indices = verticalVector(linspace(1,numPoints,numPoints));

11

12 for k = 1:numPoints

13 dst(k) = sum(xIn.*sin(pi.*k.*indices./(numPoints+1)));

14 end

15 end

E.2.3.9 inverseDiscreteSineTrans

Performs the inverse discrete sine transform.

1 % inverseDiscreteSineTrans.m: Performs the inverse sine transformation on a

2 % given set of values, yIn

3 % yIn: Vector containing the input values

4

5 % return: idst: Vector containg the calculated values

6

7 function idst = inverseDiscreteSineTrans(yIn)

8 numPoints = length(yIn);

9 idst = zeros(numPoints,1);

10 indices = verticalVector(linspace(1,numPoints,numPoints));

11

12 for k = 1:numPoints

13 idst(k) =(2./(numPoints+1)).*sum(yIn.*sin(pi.*k.*indices./(numPoints+1)));

14 end

15 end

218

Appendix E: Implemented Code

E.2.3.10 importFieldResultsFromFile

Imports results from file.

1 % importFieldResultsFromFile.m:Imports field results from a specified file,

2 % with the e−field values in column 4, the

3 % z−values in a column to be specified. The

4 % function is adjusted to the format of the

5 % results from Indra.

6

7 % fileName: String containing the file name

8 % column: Column number containing desired range column.

9

10 function [eFieldValues,zVect]=importFieldResultsFromFile(fileName,column)

11

12 fileValues = xlsread(fileName);

13

14 eFieldValues = fileValues(:,4);

15 zVect = fileValues(:,column);

16

17 end

E.2.3.11 importParametersFromFile

Imports surface coordinates from file.

1 % importParametersFromFile.m: Imports the surface profile

2 % coordinates from file.

3

4 % fileName: String containing the file name

5 % xColumnNb: The column number containing the x−coordinates.
6 % zColumnNB: The column number containing the z−coordinates.
7

8 % return: Xn: Vector containing the x−coordinates of the surface

9 % Zn: Vector containing the z−coordinates of the surface

10

11

12 function [Xn,Zn]=importParametersFromFile(fileName,xColumnNb,zColumnNB)

13 fileValues = xlsread(fileName);

14 Xn = fileValues(:,xColumnNb);

15 Zn = fileValues(:,zColumnNB);

16 end

219

Appendix E: Implemented Code

E.2.3.12 save2pdf

Saves figure to .pdf. Not implemented by the author of the thesis. Courtesy of

Gabe Hoffmann for the implementation.

1 %SAVE2PDF Saves a figure as a properly cropped pdf

2 %

3 % save2pdf(pdfFileName,handle,dpi)

4 %

5 % − pdfFileName: Destination to write the pdf to.

6 % − handle: (optional) Handle of the figure to write to a pdf. If

7 % omitted, the current figure is used. Note that handles

8 % are typically the figure number.

9 % − dpi: (optional) Integer value of dots per inch (DPI). Sets

10 % resolution of output pdf. Note that 150 dpi is the Matlab

11 % default and this function's default, but 600 dpi is typical for

12 % production−quality.
13 %

14 % Saves figure as a pdf with margins cropped to match the figure size.

15

16 % (c) Gabe Hoffmann, gabe.hoffmann@gmail.com

17 % Written 8/30/2007

18 % Revised 9/22/2007

19 % Revised 1/14/2007

20

21 function save2pdf(pdfFileName,handle,dpi)

22

23 % Verify correct number of arguments

24 error(nargchk(0,3,nargin));

25

26 % If no handle is provided, use the current figure as default

27 if nargin<1

28 [fileName,pathName] = uiputfile('*.pdf','Save to PDF file:');

29 if fileName == 0; return; end

30 pdfFileName = [pathName,fileName];

31 end

32 if nargin<2

33 handle = gcf;

34 end

35 if nargin<3

36 dpi = 150;

37 end

38

39 % Backup previous settings

40 prePaperType = get(handle,'PaperType');

41 prePaperUnits = get(handle,'PaperUnits');

220

Appendix E: Implemented Code

42 preUnits = get(handle,'Units');

43 prePaperPosition = get(handle,'PaperPosition');

44 prePaperSize = get(handle,'PaperSize');

45

46 % Make changing paper type possible

47 set(handle,'PaperType','<custom>');

48

49 % Set units to all be the same

50 set(handle,'PaperUnits','inches');

51 set(handle,'Units','inches');

52

53 % Set the page size and position to match the figure's dimensions

54 paperPosition = get(handle,'PaperPosition');

55 position = get(handle,'Position');

56 set(handle,'PaperPosition',[0,0,position(3:4)]);

57 set(handle,'PaperSize',position(3:4));

58

59 % Save the pdf (this is the same method used by "saveas")

60 print(handle,'−dpdf',pdfFileName,sprintf('−r%d',dpi))
61

62 % Restore the previous settings

63 set(handle,'PaperType',prePaperType);

64 set(handle,'PaperUnits',prePaperUnits);

65 set(handle,'Units',preUnits);

66 set(handle,'PaperPosition',prePaperPosition);

67 set(handle,'PaperSize',prePaperSize);

221

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	2 Analytical Models and Source Modeling
	2.1 Plane Earth Loss and Source Modeling
	2.2 Numerical Source Modeling
	2.2.1 Isotropic Source
	2.2.2 Gaussian Source
	2.2.3 Choice of Source for Numerical Simulations

	3 Numerical Methods
	3.1 The Integral Equation Model
	3.1.1 Numerical Implementation
	3.1.1.1 Assumptions
	3.1.1.2 Implementation Based on Hviid et al. [1995]
	3.1.1.3 Implementation Based on Brennan and Cullen [1998]

	3.1.2 Remaining Issues

	3.2 The Parabolic Equation Method
	3.2.1 Use of Fourier Transform for Solving the Scalar Wave Equation
	3.2.2 Split-Step Algorithm - Flat Surface
	3.2.3 Finite-Difference Method - Flat Surface
	3.2.4 Mathematical Aspects and Simplifications
	3.2.5 Absorption Layer
	3.2.6 Non-Flat Surface

	3.3 Verification of the Simulation Results
	3.3.1 Relative Field Strength
	3.3.2 Path Loss
	3.3.2.1 Flat Surface
	3.3.2.2 Non-Flat Surface

	4 Choice of Parameters
	5 Results
	5.1 Simulations over a Flat Surface
	5.1.1 Horizontal Comparison - Comparison along the Surface
	5.1.2 Vertical Comparison - Comparison in the Height Direction
	5.1.3 Flat Surface Summary

	5.2 Inclined Plane
	5.2.1 Downwards Inclined Plane
	5.2.2 Upwards Inclined Plane
	5.2.3 Inclined Surface Summary

	5.3 Simulations over a Wedge
	5.3.1 Wedge Summary

	5.4 Simulation over Runways
	5.4.1 The Braunschweig Airport Runway
	5.4.2 The Luton Airport Runway
	5.4.3 Runway Simulation Summary

	5.5 Results Summary

	6 Discussion and Further Work
	6.1 Field Strength Near the Surface for Inclined Plane
	6.2 Modeled Surface Resolution
	6.3 SSA and FDM Differences - Flat and Non-Flat Surface
	6.4 Localizer Signals and Wide-Angle Propagation
	6.5 Runtime
	6.6 Commercial Software
	6.7 3D Loss in 2D
	6.8 3D - Parabolic Equation
	6.9 Integral Equation Model

	7 Conclusion
	References
	Appendix A Mathematical Tools
	A.1 Fourier Transform
	A.2 Fourier Sine Transform
	A.3 Discrete Fourier Sine Transform
	A.4 Approximations of Differentials

	Appendix B Derivations
	B.1 Derivation of the Standard Parabolic Equation
	B.2 Derivation of the Numerical Standard Parabolic Equation

	Appendix C Plots
	C.1 Field Simulation Over a Wedge

	Appendix D Implementation and Simulation
	D.1 Implementation Terminology
	D.2 Simulation Using the Implemented Functions
	D.2.1 Create Initial Field
	D.2.2 Irregular Surface
	D.2.3 Field Propagation Algorithms

	Appendix E Implemented Code
	E.1 Scripts for the Obtained Results
	E.1.1 ParabolicEquation_noGround.m
	E.1.2 ParabolicEquation_SSA_FDM.m
	E.1.3 ParabolicEquation_SSA_FDM_deltaValueTest.m
	E.1.4 SSA_FDM_indra_r_loss.m
	E.1.5 DownwardsInclinedPlane.m
	E.1.6 UpwardsInclinedPlane2
	E.1.7 WedgeComparison_Hviid
	E.1.8 Braunschweig
	E.1.9 Luton2

	E.2 Implemented Matlab Functions
	E.2.1 Field Simulation Algorithms
	E.2.1.1 FDMnoGround
	E.2.1.2 splitStepAlgorithmAbsorptionLayer
	E.2.1.3 FDMAbsorptionLayerNumEfficient2
	E.2.1.4 SSA_addRloss
	E.2.1.5 FDM_addRloss
	E.2.1.6 SSAirregularTerrainAbsoptionLayer
	E.2.1.7 FDMirregularTerrainAbsorptionLayer

	E.2.2 Comparison Functions
	E.2.2.1 freeSpaceLoss_beamParam
	E.2.2.2 pathLossFlat_beamParam
	E.2.2.3 pathLossIndra_alongX
	E.2.2.4 pathLossFlat_Indra
	E.2.2.5 pathLossFlat_Indra_minComp
	E.2.2.6 pathLossWedge_Indra
	E.2.2.7 pathLossWedge_Hviid

	E.2.3 Helping Functions
	E.2.3.1 interpolate
	E.2.3.2 normalizeSurface
	E.2.3.3 createZvectAbsorptionLayer2
	E.2.3.4 createInitialField
	E.2.3.5 verticalVector
	E.2.3.6 getVerticalValues
	E.2.3.7 createAbsorptionLayer
	E.2.3.8 discreteSineTrans
	E.2.3.9 inverseDiscreteSineTrans
	E.2.3.10 importFieldResultsFromFile
	E.2.3.11 importParametersFromFile
	E.2.3.12 save2pdf

