
Study of Optimization Algorithms for
Underwater Acoustic Applications

Niklas Saxlund Skyberg

Master of Science in Electronics

Supervisor: Hefeng Dong, IET

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

PROBLEM DESCRIPTION

Di↵erent optimization algorithms have been applied to underwater acoustic appli-

cations, such as simulated annealing (SA), adaptive simplex simulated annealing

(ASSA), genetic algorithms (GA), particle swarm (AS) and di↵erential evolution

(DE). All of these algorithms search the global minimum in the search space.

However, the convergence speeds are di↵erent. In this project, metaheuristic opti-

mization algorithms will be studied and adapted to an application in underwater

acoustics: estimation of seismic velocities of upper oceanic crust from ocean bot-

tom reflection loss data. The acoustic parameters in the sediment layer and the

oceanic crust include compressional and shear wave velocities, their attenuations,

densities in the two layers respectively and the thickness of the sediment layer.

These will be the estimated parameters. The performances of the metaheuristic

optimization algorithms are assessed in terms of accuracy and computational cost

in solving this underwater acoustic problem.

i

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Department of Electronics and Telecommunications

Master of Science in Electronics

Study of Optimization Algorithms for Underwater Acoustic

Applications

by Niklas Saxlund Skyberg

This thesis introduces the algorithms harmony search (HS) and artificial bee colony

(ABC) to the field of geoacoustic inversion. HS mimics jazz musicians search of

an optimal harmony through improvisation, while ABC is inspired by bee’s search

for food sources with a high amount of nectar. These global optimizers have

been combined with downhill simplex (DS), a local optimizer, in order to create

hybrid optimization algorithms. These hybrids have further been compared with

a hybrid version of di↵erential evolution (DE) by testing them on a problem of

geoacoustic inversion. The goal was to see if these relatively recent algorithms

could outperform the well known evolutionary algorithm. The hybrid based on

HS is shown to have better performance than the DE-based hybrid, both in terms

of computational cost and accuracy.

Norges teknisk-naturvitenskapelige universitet

Sammendrag
Institutt for elektronikk og telekommunikasjon

Sivilingeniør i elektronikk

Studie av optimiseringsalgoritmer for applikasjoner i

undervannsakustikk

av Niklas Saxlund Skyberg

I denne masteroppgaven introduseres optimeringsalgoritmene harmony search (HS)

og artificial bee colony (ABC) til bruk i geoakustisk inversjon. HS imiterer jazz

musikeres søk etter en optimal harmoni gjennom improvisasjon, mens ABC er in-

spirert av biers søk etter matkilder med høyt innhold av nektar. Ved å kombinere

HS og ABC med den lokale optimeringsalgoritmen downhill simplex (DS), har

hybridutgaver av optimeringsalgoritmene blitt laget. Disse hybridene har s̊a blitt

sammenliknet med en tilsvarende hybridutgave av di↵erential evolution (DE), ved

å la dem løse et optimeringsproblem best̊aende av geoakustisk inversjon. DE har

ved tidligere anledninger vist seg å være svært e↵ektiv p̊a liknende problemer, og

er derfor en naturlig algoritme å sammenlikne med. Det vises videre at hybridut-

gaven av HS har bedre ytelse enn hybridutgaven av DE, b̊ade i form av lavere

beregningskostnad og større nøyaktighet.

Preface

This thesis has been written at the Norwegian University of Science and Technol-

ogy, the spring of 2013. The thesis counts for 30 academic points, and is the final

part of a Master Degree in Electronics. I would like to thank the project supervi-

sor, Hefeng Dong for essential help. I would also like to thank Marwan M. Fuad

for introducing me to metaheuristic optimization during the project assignment

last semester.

Niklas Saxlund Skyberg

NTNU, Trondheim

June, 2013

vii

ABBREVIATIONS

ABC Artificial Bee Colony

ASABC Adaptive Simplex Artificial Bee Colony

ASDE Adaptive Simplex Di↵erential Evolution

ASGA Adaptive Simplex Genetic Algorithm

ASHS Adaptive Simplex Harmony Search

ASSA Adaptive Simplex Simulated Annealing

DE Di↵erential Evolution

DS Downhilll Simplex

GA Genetic Algorithm

HS Harmony Search

SA Simulated Annealing

ix

SYMBOLS

Vp1 Sediment compressional wave velocity (m/s)

Vp2 Basalt compressional wave velocity (m/s)

Vs1 Sediment shear wave velocity (m/s)

Vs1 Basalt shear wave velocity (m/s)

↵p1 Sediment compressional wave attenuation (dB/�)

↵p2 Basalt compressional wave attenuation (dB/�)

↵s1 Sediment shear wave attenuation (dB/�)

↵s2 Basalt shear wave attenuation (dB/�)

⇢1 Density of sediment (kg/m3)

⇢2 Density of basalt (kg/m3)

H Sediment thickness (m)

D Number of variables/dimensions All algorithms

✏ Objective value / cost All algorithms

✏i Objective value / cost of solution number i All algorithms

✏best Best objective value / cost in population All algorithms

✏worst Worst objective value / cost in population All algorithms

f Objective function All algorithms

x Input-vector / solution All algorithms

xi Input-vector / solution number i All algorithms

xi,j j’th variable of input-vector / solution number i All algorithms

Npop Number of members in the population GA,DE & ABC

xi

Ngen Number of generations run before termination GA

Nkeep Number of population members kept each generation GA

Nmut Number of chromosomes mutated in each generation GA

Xrate Rate of the population that survives each generation GA

µ Mutation rate, GA

CR Crossover constant DE

Fweight Amplification of di↵erence-vector DE

di Di↵erence-vector number i DE

mi Mutant-vector number i DE

ri Random-vector number i DE

tri Trial-vector number i DE

limit Number of allowed searches without improvement ABC

maxCycle Maximum number of iterations ABC

MR Modification rate ABC

p Probability-vector given by individual solution fitness ABC

r Random-vector ABC

SF Perturbation magnitude ABC

✓ Random value in the range [�1, 1] ABC

FW Fret width HS

HM Harmony memory HS

HMS Harmony memory size HS

HMCR Harmony memory considering rate HS

MaxImp Maximum allowed improvisation HS

PAR Pitch adjusting rate HS

xnew New improvised harmony HS

cs Scaling constant DS

ei Unit-vector number DS

P0 Starting point DS

Pi Point number i DS

Pn Simplex point with lowest ✏ DS

P Centroid of simplex DS

P ⇤ Point found through reflection or contraction DS

P ⇤⇤ Point found through expansion DS

↵ Reflection coe�cient DS

� Contraction coe�cient DS

� Expansion coe�cient DS

Lincfact Increment factor of Nlocal for each hybrid iteration Hybrids

Nlocal Number of function calls performed by DS

first hybrid iteration Hybrids

Nglobal Number of function calls performed by global

optimizer each hybrid iteration Hybrids

CONTENTS

Problem Description i

Abstract iii

Sammendrag v

Preface vii

Abbreviations ix

Symbols xi

1 Introduction 1
1.1 Global Optimization . 1
1.2 Global Optimization for Underwater Acoustic Applications 2
1.3 Report Structure . 2

2 Global Optimization 5
2.1 Optimization . 5

2.1.1 Optimization Categories . 6
2.1.2 Notation . 7

2.2 Genetic Algorithm . 7
2.2.1 GA Control Parameters . 8
2.2.2 Genetic Algorithm-Step by Step 9

2.2.2.1 Selecting Control Parameters, Defining Variables
and Objective Function 11

2.2.2.2 Create an Initial Population 11
2.2.2.3 Natural Selection 11
2.2.2.4 Mating . 12
2.2.2.5 Mutation . 13
2.2.2.6 Convergence Check 13

2.3 Di↵erential Evolution . 14

xv

2.3.1 DE Control Parameters . 14
2.3.2 DE-Step by Step . 15
2.3.3 Selecting Control Parameters, Defining Variables and Ob-

jective Function . 17
2.3.4 Choose a Random Initial Population 17
2.3.5 Mutation, Crossover and Selection 18
2.3.6 Convergence Check . 19

2.4 Artificial Bee Colony . 19
2.4.1 ABC Control Parameters . 21
2.4.2 ABC-Step by Step . 22

2.4.2.1 Selecting Control Parameters, Defining Variables
and Objective Function 22

2.4.3 Choosing Initial Food Sources 24
2.4.4 Employed Bee Phase . 24
2.4.5 Create Probability Distribution According to Population

Ranking . 26
2.4.6 Onlooking Bee Phase . 27
2.4.7 Scout Bee Phase . 27
2.4.8 Convergence Check . 27

2.5 Harmony Search . 27
2.5.1 HS Control Parameters . 28
2.5.2 HS-Step by Step . 29

2.5.2.1 Selecting Control Parameters, Defining Variables
and Objective Function 31

2.5.3 Choose Initial Harmonies . 31
2.5.4 Improvise a New Harmony 32
2.5.5 Check for Convergence . 33

2.6 Downhill Simplex . 33

3 Estimation of Geoacoustic Parameters 37
3.1 Geoacoustic Parameters . 37
3.2 Formulating the Inversion as an Optimization Problem 38

4 Implementation 41
4.1 Implementing Global Optimization Algorithms 41
4.2 Creating Hybrid Algorithms . 41
4.3 Finding the Control Parameters of the Global Optimizers 45

4.3.1 GA . 46
4.3.2 DE . 48
4.3.3 ABC . 50
4.3.4 HS . 52

4.4 Finding the Control Parameters of the Hybrids 54

5 Results and Discussion 61
5.1 Variable Sensitivities . 61

5.2 Testing Algorithm Speed . 62
5.2.1 Rosenbrock Function . 63

5.2.1.1 Setup . 63
5.2.1.2 Results . 63

5.2.2 Estimation of Geoacoustic Parameters 64
5.2.2.1 Setup . 64
5.2.2.2 Results . 65

5.3 Testing Algorithm Accuracy . 65
5.3.0.3 Setup . 65
5.3.0.4 Results . 66

5.4 Discussion . 68
5.4.1 Improvement of Including Adaptive Simplex 68
5.4.2 ASHS versus ASDE . 68

6 Conclusion 75

Bibliography 77

CHAPTER 1

INTRODUCTION

1.1 Global Optimization

The search for an optimal state is one of the most fundamental principles in our

world [24]. Optimization is used both in trivial daily situations and in advanced

science and technology, business and economics. Global optimization makes it

possible to find an optimal, or close to optimal, solution in a solution space with

multiple local extrema.

Bio inspired algorithms are a type of algorithms which use processes inspired by

biological evolution or swarm behavior to solve optimization problems. These pro-

cesses are successful in optimizing natural phenomena [9]. Bio inspired algorithms

include popular algorithms such as genetic algorithm [10], simulated annealing

[16], di↵erential evolution [21], ant colony optimization [5] and particle swarm

optimization [20]. In this thesis some of these well-known algorithms will be com-

pared with more recent global optimizers. The comparison will be done by testing

the algorithms on a benchmark problem and on a problem of geoacoustic inversion.

1

Chapter 1. Introduction 2

1.2 Global Optimization for Underwater Acous-

tic Applications

Geoacoustic inversion is the process of estimating seabed geoacoustic properties

from measured acoustic data. This is a topic that has received a lot of atten-

tion in recent research. Due to the huge number of possible parameter combi-

nations, finding the parameters resulting in the recorded data is a di�cult task.

To solve this problem global optimization algorithms have been applied. Some

of the most successful hybrids used in geoacoustic inversion are combinations of

global bio inspired algorithms and Nealder Mead’s downhill simplex local opti-

mizer [11][17][6]. The use of local optimizers results in fast convergence, whereas

the use of global optimizers keeps the hybrid algorithm from getting stuck in a

local minimum. Examples of successful hybrids used in geoacoustic inversion are

adaptive simplex simulated annealing (ASSA)[6] and adaptive simplex genetic al-

gorithm (ASGA)[17]. Recently, adaptive simplex di↵erential evolution (ASDE)

[11] was implemented with even better results than ASGA and ASSA. ASDE is

to date the fastest and most accurate algorithm used in geoacoustic inversion.

In recent years, powerful metaheuristic optimizers like harmony search (HS)[7], and

artificial bee colony (ABC)[13], have been invented. In this thesis, HS and ABC,

as well as their hybrid versions, adaptive simplex harmony search (ASHS) and

adaptive simplex artificial bee colony (ASABC), will be adapted to the problem

of estimating geoacoustic parameters of upper oceanic crust from synthetic ocean

bottom reflective loss data. The first task of this thesis is to see whether the

implementation of DS will increase the performance of the global optimizers. Then,

their performance will be compared with ASDE which will be adopted and run

on the same problem. The main goal of this project is to study if hybrid versions

of these more recent algorithms can compare with the performance of ASDE. The

algorithms will be compared both in speed, i.e. computational cost, and accuracy.

1.3 Report Structure

The next chapter will give a thorough presentation of the multiple optimization

algorithms used in this thesis. Chapter 3 contains a brief explanation of geoa-

coustic parameter estimation, whereas Chapter 4 covers the implementation of

Chapter 1. Introduction 3

the algorithms and control parameter tuning. Chapter 5 includes test results and

discussions of the matters introduced in this chapter. The conclusion of the thesis

is placed in Chapter 6.

CHAPTER 2

GLOBAL OPTIMIZATION

2.1 Optimization

”Optimization is the process of adjusting the inputs to or characteristics of a

device, mathematical process, or experiment to find the minimum or maximum

output or result.” [9] The goal of optimization is to find an optimal solution within

the variable’s bounds, i.e. inside the solution space. [24] Optimization is used in

many fields such as economics, finance, acoustics, medicine and data analysis.

Still, optimization can include basic operations such as driving the shortest route

to work, or filling as much co↵ee as possible into a cup without spilling. All

optimization problems have inputs, an objective function and an output. The

input is a vector of length equal to the number of variables. Each element of

the input-vector represents a variable value. The input-vector is in other words

a solution found in the solution space. The objective function, also called fitness

function or cost function, is the function that measures the given set of inputs.

The output is the cost or fitness of the given inputs, and is often called objective

value. A basic flowchart of optimization is illustrated in Figure 2.1.

Depending on the problem, the goal of optimization is either to maximize or

minimize the output of an object function. To illustrate this, let’s have a look

on the co↵ee cup and route to work examples mentioned in the previous section.

When choosing a route to work we want to minimize the distance. Whereas in the

co↵ee cup example we want to maximize the amount of co↵ee filled in the cup.

5

Chapter 2. Global Optimization 6

Any maximization problem can however be solved as a minimization problem by

setting a minus sign before the output. The co↵ee cup example transforms from

maximizing to minimizing by shifting the problem to minimizing the volume in

the cup not filled with co↵ee.

Figure 2.1: Flowchart of an optimization process where input is varied to
achieve an optimal output.

2.1.1 Optimization Categories

There are many approaches to solving optimization problems. In analytical op-

timization calculus is used to solve the problems [9]. Metaheuristics are iterative

methods that uses its own solutions and a set of rules to decide further actions

[23]. Metaheuristic optimization can search very large solution spaces, but does

not guarantee to find the best solution. Metaheuristics are preferred over analyti-

cal optimization if the solution space is very big, and the improvement of a solution

is more important than finding the absolute best solution. Bio inspired algorithms

are a type of metaheuristics that uses processes inspired by biological evolution

or swarm behavior to solve optimization problems. These processes are successful

in optimizing natural phenomena. For most metaheuristics, the biggest challange

is to combine the right amounts of exploration and exploitation. Exploration is

a quality that is necessary in order to search the entire solution space without

getting stuck in a local optimum. Exploitation is the abiliy to use the previously

tested variable combinations in order to quickly converge towards an optimum.

Too much exploitation will lead to convergence towards a local optimum, while

Chapter 2. Global Optimization 7

too much exploration will lead to slow convergence, and thus a high computa-

tional cost. Balancing exploration and exploitation is the key to high performing

metaheuristics [26].

2.1.2 Notation

Throughout this thesis the input-vector will be denoted by x. In a collection

of input-vectors, xi represents input-vector number i and xi,j represents the j’th

variable of the i’th input-vector. The dimension of the problems are denoted by

D. D is thus the length of the input-vector. When used as a subscript, rand

denotes a randomly picked integer in the range [1, D]. This means that xrand is a

random solution chosen from the population. In all other uses, rand is a random

number in the range [0, 1] drawn with an uniform probability distribution. The

objective function is denoted by f and the objective value ✏. This gives ✏ = f(x).

Further will ✏i represent the objective value of xi. I.e. ✏i = f(xi). In most cases

the algorithms are terminated if ✏ reaches a tolerated objective value. This value

is denoted by ✏tol.

The following sections will contain some basic theory for the genetic algorithm

(GA), di↵erential evolution (DE), artificial bee colony (ABC), harmony search

(HS) and downhill simplex (DS).

2.2 Genetic Algorithm

The genetic algorithm (GA) is an optimization technique that is based on nature’s

own ability to evolve and move towards better solutions [24]. Imagine the popula-

tion of a species restricted to a finite number of members due to food constraints.

The individuals who possess the qualities best suited for survival, in other words

the most fit, will survive and mate with each other. The least fit members of

the population will eventually die. The o↵spring of the fit individuals will inherit

qualities from both of their parents. This results in new combinations of genes.

Some of these new combinations are even better than the gene combination of

their parents. As the new generation grows up, the most fit individuals survive

and mate with each other. Thus the population has a chance of getting more fit

members for each generation. Every once in a while a mutation happens. As a

Chapter 2. Global Optimization 8

result, some of the population members genes do not resemble the genes of their

parents. In some cases these mutations result in a less suitable combination of

genes. In other cases however, the mutation adds a new property which proves

to be beneficial to the individuals who possess it. If this is the case, the mutated

gene will be passed on to future generations.

GA tries to imitate the process described above. Each individual of the popula-

tion resembles a solution and is called a chromosome. A set of randomly picked

solutions (chromosomes) are rated by using the chromosomes as inputs to the ob-

jective function of the problem. The chromosomes consist of specific values for

each of the problems variables. These values are called genes. The least fit chro-

mosomes are deleted and the rest are paired for mating. As a result of the mating

a new set of chromosomes are produced. As in nature, these chromosomes inherit

qualities from both of their parents. After mating mutation is implemented by

switching some of the chromosomes genes with random values from the solution

space. This prevents the GA from converging towards a local minimum. In this

way the algorithm will hopefully converge towards the global optimum, instead of

a local.

2.2.1 GA Control Parameters

GA can be adjusted by a set of control parameters. Wisely chosen control param-

eters will increase the probability of converging towards a global optimum.

The population size, Npop, is the number of chromosomes in the population. A

large population size will help to search all parts of the solution space. The number

of times GA operations such as ranking, mating and mutating is proportional to

the population size. A large population size will thus reduce the convergence

speed.

The mutation rate, µ, is the rate of cells that will be mutated. If µ = 0.2, 20%

of the populations genes will be mutated. Mutations are implemented to avoid

converging against local maxima. By replacing random genes with values from

other parts of the solution space, global optimization can be obtained.

The selection rate, Xrate is the rate of the population that survives each generation.

This means that 1�Xrate chromosomes will be terminated each generation.

Chapter 2. Global Optimization 9

2.2.2 Genetic Algorithm-Step by Step

The flow of GA is illustrated in Figure 2.2. Each of these stages will be explained

through the following example.

Figure 2.2: Flowchart of GA.

Let’s say we want to find the maximum value of the function

f(x, y) = y sin(4x) + 1.1x sin(2y) 8x, y 2 [0, 10] (2.1)

Chapter 2. Global Optimization 10

This problem is illustrated in Figure 2.3.

Figure 2.3: 3-dimensional landscape. We want to find the highest point by
using GA.

As stated earlier, this is the same as finding the minimum of the function

f(x, y) = �(y sin(4x) + 1.1x sin(2y)) 8x, y 2 [0, 10] (2.2)

This particular problem only has two variables and can be solved by less complex

methods than the GA. Still, it is a good example for explaining the basics.

Chapter 2. Global Optimization 11

2.2.2.1 Selecting Control Parameters, Defining Variables and Objec-

tive Function

The first thing we need to do is to select control parameters, define the variables

and the objective function. The objective function is already given by equation

(2.2). In this example the variables are x and y. They are both bound by zero

below and ten above. By varying x and y inside of these bounds, equation (2.2)

will give us a z value which is the objective value, ✏ of the function. The goal of

this optimization is to find the lowest z value possible . At this point we also need

to set the control parameters. In this example we will use

Npop = 8

Xrate = 0.5

µ = 0.2

2.2.2.2 Create an Initial Population

Now it’s time to create the initial population. In our example the initial population

consists of 8 pairs of x and y values between zero and ten. These are chosen

randomly. Since both variables have the same bounds, this can be done with

rand(Npop, 2) = 10 ⇤ rand(8, 2). The initial population is showed in Table 2.1.

x y ✏
4.22 6.79 -2.30
9.16 7.58 -1.35
7.92 7.43 8.52
9.59 3.92 13.02
6.56 6.55 9.56
0.36 1.71 1.59
8.49 7.06 13.28
9.34 0.32 6.00

Table 2.1: Randomly chosen initial population with corresponding objective
value.

2.2.2.3 Natural Selection

In this part of GA, the population is ranked, and the most fit chromosomes are

selected to survive. Nkeep is the number of chromosomes that survives this stage.

Chapter 2. Global Optimization 12

x y ✏
4.22 6.79 -2.30
9.16 7.58 -1.35
0.36 1.71 1.59
9.34 0.32 6.00

Table 2.2: Population after natural selection.

Nkeep = Npop ⇤ Xrate. The least fit chromosomes are deleted. An easy way to do

this is to rank the population and keep the Nkeep most fit chromosomes. This is

the approach used throughout this thesis. The result of the natural selection is

showed in Table 2.2.

2.2.2.4 Mating

Now that our population only consists of the Nkeep most fit chromosomes, it’s time

to pair them up for mating. From each mating, two children will be produced.

Thus we need two pairs of parents. There are many ways to achieve this, but in

this example we will choose an easy approach. Until the needed number of pairs is

reached, the first chromosome will mate the second, the third will mate the fourth

and so on. In our example only two matings will be performed.

The mating itself can be done in numerous ways. In this thesis single-point

crossover will be used. The first child, xchild1 inherits the x value from x1 and

the y value from x2 . The second child, xchild2 will inherit the y value from x1 and

x value from x2. This is illustrated below.

x1 = [4.22, 6.79]

x2 = [9.16, 7.58]

xchild1 = [4.22, 7.58]

xchild2 = [9.16, 6.79]

This mating process is repeated for the third and fourth most fit chromosome,

i.e. x3 and x4 in Table 2.2. The children will take the places five to eight in the

population.

Chapter 2. Global Optimization 13

2.2.2.5 Mutation

The GA described so far works great for finding local maximum. It does however

not perform well in finding global maxima. If all the chromosomes in the initial

population are close to a local maximum, chromosomes ranked as most fit will be

the ones closest to this maximum. Thus the algorithm will converge against this

point.

To solve this problem, mutation is included. Mutation is the process of giving

randomly picked genes a randomly picked value within that specific variable’s

bounds. This helps GA test completely new combinations of genes. In our example

the mutation rate, µ, is set to 0.2. This means that 20% of the genes in the

population will be mutated. Often the most fit solution is spared from mutation.

In this way the best solution of the next generation can not be less fit than the

best chromosome in the current generation. This is referred to as elitism. In our

example the number of mutations, Nmut, is given by equation (2.3)

Nmut = ceil((Npop � 1) ⇤D ⇤ µ) = ceil(7 ⇤ 2 ⇤ 0.2) = 3 (2.3)

where D describes the number of variables. Thus we need to pick Nmut genes

randomly, and give them a random value within their bounds. This is illustrated

by equation (2.4)

xrand,rand = ub⇥ rand(ub� lb) (2.4)

where xrand,rand is a randomly picked variable in a randomly picked population

member. ub represents the upper bound and lb represents the lower bound of the

randomly picked variable.

In our example the number of mutations is three. Thus we need to perform

equation (2.4) three times.

2.2.2.6 Convergence Check

The steps from natural selection to mating are done until either the objective

value of the most fit chromosome is less than a threshold, or when the number

Chapter 2. Global Optimization 14

of generations reaches a predefined maximum. GA can also be terminated if the

progress made over a given number of generations is to small.

In our example the minimum ✏ = f(0.9039, 0.8668) = �18.5547 was found after

28 generations. The answer to this optimization problem is thus

x = 0.90039 , y = 0.8668 (2.5)

2.3 Di↵erential Evolution

Di↵erential evolution (DE) is another evolution based global optimizer. Like GA,

DE makes use of operations like selection, crossover, and mutation on a popula-

tion of solutions. New solutions are generated by adding the weighted di↵erence

between two solutions, randomly picked from the population, to a third solution

in the population [21]. This mutant-vector is thus mixed with a fourth vector,

the target-vector, through crossover. The resulting solution is called the trial-

vector. If the trial-vector yields a lower objective value than the target-vector, the

trial-vector takes the target-vector’ s place. For each generation every population

member serve as target-vector once. This means that Npop competitions takes

place each generation.

2.3.1 DE Control Parameters

The size of the population used in di↵erential evolution is like GA controlled by

the parameter Npop.

As mentioned above, the trial-vector is created as a mix of the mutant-vector

and another vector picked randomly from the population. This process is con-

trolled by the crossover constant, CR 2 [0, 1]. For each variable in the vector, the

crossover constant determines the probability of choosing the given variable from

the mutant-vector. This means that if CR is given a large value, the target-vector

will most likely consist of mostly values from the mutant-vector. The opposite is

true if CR is given a small value. The e↵ect of a high-valued CR is similar to the

e↵ect of a high-valued mutation rate in the genetic algorithm. Giving CR a large

Chapter 2. Global Optimization 15

value will help the algorithm to cover a larger area of the search space. This will

however be on the expense of convergence speed.

Fweight controls the amplification of the di↵erence between the two randomly picked

vectors chosen from the population. If Fweight = 0, the di↵erence between the two

randomly picked vectors will be neglected, and the trial-vector will simply consist

of the third randomly chosen vector. This will results in no new solutions in the

population as no perturbations would ever be made to the initial population. If

Fweight = 2 however, the perturbation made to the members of the population will

be greater. Thus, Fweight controls the algorithms mutation, but unlike CR it is

the magnitude of the mutations that is controlled, and not the frequency.

2.3.2 DE-Step by Step

The flow of di↵erential evolution is given in Figure 2.4. As in the GA-section,

these steps will be explained through the example where the goal is to find the

minimum of equation (2.2). The variables are still x and y and their bounds are

given by equation (2.2).

Chapter 2. Global Optimization 16

Figure 2.4: Flowchart of DE.

Chapter 2. Global Optimization 17

2.3.3 Selecting Control Parameters, Defining Variables and

Objective Function

This step is almost identical to the first step of GA. The only di↵erence is in

fact the control parameters. In this example we will use the following control

parameters:

Npop = 8

CR = 0.8

Fweight = 0.5

2.3.4 Choose a Random Initial Population

The creation of a random initial population, happens in exactly the same way as

for the genetic algorithm. Npop population members are given D variables, which

are randomly picked with an uniform distribution over the range of each variable.

The population is then ranked by letting each population member be the input

to the objective function. Table 2.3 shows the initial population of our example

sorted by objective value.

x y ✏
4.98 6.99 -11.60
6.55 7.51 -11.14
7.09 9.60 -1.68
7.55 3.40 -0.95
1.63 2.55 1.09
6.80 2.24 5.29
1.19 5.06 5.89
2.76 5.85 8.15

Table 2.3: Randomly chosen initial population with corresponding objective
value. The population is ranked according to objective value.

Chapter 2. Global Optimization 18

2.3.5 Mutation, Crossover and Selection

Let’s further call the vector containing the solution placed in the first row of the

population x1, the second x2 and so on. For each population member, xi, a trial-

vector, tri, will be created. This is done by randomly selecting two population

members, xa and xb, where a, b 6= i. From these vectors a di↵erence vector is

created by subtracting one of the vectors from the other: di = xa � xb. This

di↵erence vector is thus multiplied with the control parameter Fweight and added

to a third randomly picked population member, xc where c 6= i, a, b. The results of

this process is the mutant-vector, mi. Mathematically we havemi = xi+Fweightdi.

The mutant-vector is thus mixed with the target-vector, xi, through crossover. In

the version of di↵erential evolution used in this thesis, crossover is done by the

following equation (2.6).

tri,k =

8
<

:
mi,k if ri,k CR

xi,k if ri,k > CR
k = 1, 2, ..., D (2.6)

where ri is a vector of length D containing random values between zero and one.

ri,k represents the k’th element of ri. Equation (2.6) tells us that the k’th value of

the trial-vector will contain the k’th value of the mutant-vector if the k’th value

of the random-vector is smaller than or equal to CR, and the k’th value of the

target-vector, xi, if the k’th value of the random-vector is greater than CR. After

mutation and crossover, DE calculates the objective value of the trial-vector, and

chooses between tri and xi by using greedy selection.

Let’s perform these steps on the first population member of our example, x1. After

randomly choosing values for a, b and c, we have the following set of vectors:

x1 = [4.98, 6.99]

xa = x4 = [7.55, 3.40]

xb = x7 = [1.19, 5.06]

xc = x2 = [6.55, 7.51]

We start with calculating the di↵erence-vector:

d1 = xa � xb = [7.55, 3.40]� [1.19, 5.06] = [6.36,�1.66] (2.7)

Chapter 2. Global Optimization 19

Further we achieve the mutation-vector:

m1 = x1 + Fweightd1 = [4.98, 6.99] + 0.5[6.36,�1.66] = [8.16, 6.16] (2.8)

The final step is the crossover, where x1 and m1 will be mixed. In order to do that

we need to generate the random-vector, by choosing one random value between

zero and one for each variable of the problem. We get ri = [0.43, 0.96]. Crossover

is then performed according to equation (2.6). Remember that we have already

chosen CR = 0.8. We see that r1,1 = 0.43 < CR. The first element of the trial-

vector thus get the value tr1,1 = 8.16. Since 0.96 > CR, the second element of

the trial-vector gets the value tr1,2 = 6.99. In order to choose between x1 and

the trial-vector, we need to calculate the objective value of the trial-vector. We

already know that ✏1 = f(x1) = �11.60. By letting tr1 be the input to equation

(2.2), we find that ✏tr1 = f(tr1) = �15.44. Since ✏tr1 < ✏1, the trial vector is

selected by greedy selection, and thus replaces the target vector in the population.

These steps of mutation, crossover and selection is repeated for all the members

of the population. The steps require one target-vector, two vectors to create the

di↵erence-vector and one a fourth vector that the di↵erence-vector will be added

to. Since all of these vectors have to be unique, di↵erential evolution requires a

minimum of four members in the population.

2.3.6 Convergence Check

When mutation, crossover and selection has been applied to the entire population,

one generation is complete. The algorithm will then check if any stop criteria is

met. If not, mutation, crossover and selection is applied to the new generation.

In our example the minimum ✏ = f(0.9039, 0.8668) = �18.5547 was found after

23 generations.

2.4 Artificial Bee Colony

Artificial Bee Colony is inspired by the way bee colonies search for the best food

sources in an area [13]. The value of a food source is dependent on multiple factors

Chapter 2. Global Optimization 20

such as proximity to the hive, the amount of nectar and the ease of extracting the

nectar. The bee colony solve this global optimization problem by dividing the bees

into three groups: employed bees, unemployed bees and scouts.

The employed bees are employed at a particular food source. When returning

to the hive the bees carry both the extracted nectar and information about the

position and quality of their food source. They will share this information with

other bees with a probability dependent on the value of the food source.

The unemployed bees, also called onlooker bees, are bees that don’t have a food

source to exploit. The unemployed bees uses information given by the employed

bees to choose a food source of high quality to exploit.

Scouts search randomly after food sources. When a food source is exhausted, the

employed bees at the food source becomes scouts.

The Artificial Bee Colony algorithm is inspired by this process. The position of a

food source represents a solution/input-vector and the quality of the food source

represents the objective value of the solution. A food source can only be explored

once, thus each food source is only exploited by one employed bee. This means

that the number of employed bees equals to the number of food sources i.e. the

number of solutions in the population.

The food sources currently being exploited by employed bees form a population of

food sources. We use xi to represent food source number i. For each iteration the

employed bees investigate the nectar amount of a food source close to the one they

currently exploit. For every variable of each food source, ABC chooses randomly if

the variable should be altered or not. Each variable that are chosen to be altered

use equation (2.9) to find a new variable value.

xi,j(new) = xi,j(old) + � ⇤ (xi,j(old) � xrand,j) (2.9)

In equation (2.9) xrand,j is variable number j of a randomly chosen food source in

the population. � is a randomly chosen value in the range [�1, 1]. This means that

the new variable value is a combination of variable values within the population

of food sources.

Chapter 2. Global Optimization 21

2.4.1 ABC Control Parameters

ABC can like many other metaheuristics be controlled by its population size, Npop.

The population size includes both employed and unemployed bees. Half the pop-

ulation consists of employed bees, and the other half consists of unemployed bees.

Increasing the population size will make the employed phase and the unemployed

phase longer. This means that more solutions are tested before information be-

tween the bees are shared.

If a solution has not been improved after a given number of mutations, the food

source is abandoned. This number of mutations is controlled by the parameter

limit. When the area around a good solution has been tested limit times, the area

is abandoned. If limit is exceeded, the employed bee exploiting the area becomes

a scout, searching randomly after a food source of higher quality. If limit is set

to low, there is a higher risk of missing a global optimum since each area in the

solution space possibly containing a global optimum is not searched thoroughly

enough. Too high limit will however be on the expense of the convergence speed.

Based on [13] limit will be given a value equal to the population size multiplied

with the dimension of the problem. limit = Npop ⇥D

maxCycle is a value describing the maximum allowed iterations. One iteration

includes the employed bee phase, unemployed bee phase and scout bee phase. If

maxCycle is given a high value, ABC will be more expensive in terms of computa-

tional power, but will have a higher probability of finding the global optimum. If

the optimization process is stuck in a local optimum, increasing maxCycle will not

enhance performance. Increasing maxCycle can however not a↵ect the problem

output negatively.

Based on recent research on ABC solving real-valued problems [14], two more

parameters have been included. They are called modification rate, MR, and per-

turbation magnitude, SF . For every variable in every food source a random value

in the range [0, 1] is generated. A variable is further modified if it’s corresponding

random value is smaller than MR. This means that giving MR a high value will

increase the probability of modifying each variable. The value given to the mod-

ification rate has to hold the condition 0 < MR < 1. Whereas the modification

rate controls the frequency of variable modification, SF controls the magnitude

of deviation. When the randomly generated value is lower than MR, the given

Chapter 2. Global Optimization 22

variable value is multiplied with a randomly generated value between �SF and

SF . The modified variable are given a new value from equation (2.10)

xi,j(new) = xi,j + (�SF + 2SF ⇥ rand)⇥ (xi,j � xrand,j) (2.10)

In the modified version of ABC used in this thesis, equation (2.9) is replaced by

equation (2.10). The magnitude of SF will a↵ect the magnitude of deviation from

the value of the current food sources given variable. As long as the number of

improvement trials of a current solution, i.e. the number of checked food sources

in the neighboring area of a successful food source, is below limit trials, ABC will

inspect a food source in the area close to the successful food source. SF decides

how large this neighboring area is. Since modification rate and perturbation mag-

nitude controls the deviation from successful solutions, they control the trade-o↵

between exploration and exploitation.

2.4.2 ABC-Step by Step

This section will provide a step by step walk-through of the ABC. The flow of the

algorithm is displayed in Figure 2.5.

2.4.2.1 Selecting Control Parameters, Defining Variables and Objec-

tive Function

The initial step of the ABC is to select control parameters and defining the vari-

ables and objective function. In this step-by-step walk-through the maximization

problem illustrated in Figure 2.3 will be solved. This means that our objective

function is given by equation (2.2). Then a set of control parameters are chosen.

In this example we will use

Npop= 16

limit = D ⇥ npop=2⇥ 16 = 32

maxCycle=500

MR=0.3

SF=0.5

Chapter 2. Global Optimization 23

Figure 2.5: Flowchart of ABC.

Chapter 2. Global Optimization 24

2.4.3 Choosing Initial Food Sources

A set of initial food sources are randomly picked from the solution space. Since

Npop = 16, we have 8 food sources. Each food source consists of an x and an y

value. The objective function is used to calculate the nectar amount of each food

source. The nectar amount is negatively related to the objective value of a food

source. The randomly chosen initial food sources and their objective values are

shown in Figure 2.4.

x y ✏
6.32 9.57 -3.55
0.98 4.85 3.64
2.78 8.00 8.82
5.47 1.42 -1.96
9.58 4.22 -11.19
9.65 9.16 -1.74
1.58 7.92 0.07
9.71 9.59 -12.22

Table 2.4: Randomly chosen initial food sources.

2.4.4 Employed Bee Phase

For each of the current food sources in the population, a near by food source is

investigated for nectar amount. We will denote this near by food source with an

asterisk. Then the near by food source of food source number i is denoted x⇤
i .

Lets start with the food source in the first row of Table 2.4. For each of the two

variables, a random value between 0 and 1 is generated. If a variable is to be

modified, this random value has to be smaller than MR, in our case, 0.3. Say the

two random values are: MRrand1 = 0.47

MRrand2 = 0.24

Since MRrand1, which corresponds to the x-value, is above MR, the x-value will

remain unchanged. MRrand2, corresponding to the y-value, is however below

MR. This means that the y-value of x1 should be modified by using equation

(2.10). Before this value can be calculated, we have to randomly choose one of the

food sources in the population. In this case x4 was selected, meaning that xrand,j

in equation (2.10) will be substituted by the y-value of the fourth food source in

the population. Thus equation (2.10) becomes

Chapter 2. Global Optimization 25

x⇤
1,2 = 9.57 + (�0.5 + 2 ⇤ 0.5 ⇤ rand) ⇤ (9.57� 1.42) (2.11)

Since the random value generated by the random generator rand can vary greatly,

the result of equation (2.11) can have a wide range of values. In our case, the

resulting variable-value became 5.78. The new food source is thus x⇤
1 = [6.32, 5.78].

Now it’s time to check if the modified food source has higher nectar amount than

its original. Before these food sources are compared, their fitness is calculated.

The fitness is negatively proportional with the objective value and is given by

equation (2.12). The process of calculating the fitness is always positive, and is

thus easier to handle in the next steps of the algorithm.

fitnessi =

8
<

:

1
1+f(xi)

if f(xi) 0

1 + abs(f(xi)) if f(xi) � 0
(2.12)

By replacing xi in equation (2.12) with x⇤
i we find the fitness of the near by food

source, fitness⇤i . After inserting xi and its near by food source, x⇤
i , into this

equation we get.

fitness1 = 0.23

fitness⇤1 = 0.17

Since fitness1 > fitness⇤1 the nearby solution was not an improvement. x1 is thus

kept, and x⇤
1 is discarded.

The above process is repeated for every food source in the population. The re-

sulting population after the first employed bee phase, including cost and fitness is

presented in Table 2.5 It can be observed that modifications has been made only

to the x-value of the third and fourth food source, and the y-value of the seventh

food source.

Chapter 2. Global Optimization 26

x y ✏ fitness
6.32 9.57 -3.55 4.55
0.98 4.85 3.64 0.22
3.42 8.00 -6.03 7.03
3.65 1.42 -2.46 3.46
9.58 4.22 -11.19 12.19
9.65 9.16 -1.74 2.74
1.58 7.49 -1.31 2.31
9.71 9.59 -12.22 13.22

Table 2.5: Population of food sources after first employed bee phase.

2.4.5 Create Probability Distribution According to Pop-

ulation Ranking

The employed bees give the onlooking bees information about the quality of the

food sources. Based on the quality of a food source, relative to the other food

sources in the population, there is a certain probability that an unemployed bee

will exploit the given food source. In ABC each food source is thus given a

probability value based on its population ranking. This probability is further

used in the unemployed bee phase. These probability values can be calculated in

numerous ways. In this thesis they are calculated by equation (2.13)

probi =
0.9 ⇤ fitnessi
max(fitness)

+ 0.1 (2.13)

The probability-vector is in our example generated by using equation (2.13) on

the fitness values in Table 2.5. Before we proceed to the unemployed bee phase,

a vector of length Npop containing random values between zero and one. The re-

sulting two vectors are shown below.

p = [0.41, 0.12, 0.58, 0.34, 0.93, 0.29, 0.26, 1]

r = [0.57, 0.94, 0.13, 0.42, 0.38, 0.84, 0.14, 0.68]

Chapter 2. Global Optimization 27

2.4.6 Onlooking Bee Phase

In nature, the unemployed bees choose what areas to search based on the informa-

tion given by the employed bees. In ABC this is done with the probability-vector,

p, and the random-vector, r, created in the previous section. An unemployed bee

will search the area close to food source number i if p
i

> r
i

. The unemployed

bee will then investigate a near by food source, x⇤
i , in just the same way as the

employed bees.

2.4.7 Scout Bee Phase

If a food source has been mutated over limit times without any progress, the food

source is exhausted. The bee employed at the food source then becomes a scout.

The scout investigates a random solution. This new solution is accepted even if

the corresponding fitness is lower than the exhausted food source. For this reason

the best food source and its corresponding objective value has to be memorized

before the scout bee phase can start.

2.4.8 Convergence Check

If any stop criteria is reached, the algorithm is terminated. If not a new iteration is

performed by going back to the employed bee phase. In our example the minimum

✏ = f(0.9039, 0.8668) = �18.5547 was found after 25 generations.

2.5 Harmony Search

In music, a harmony is defined as simultaneously played musical notes. Harmony

Search (HS) is based on improvising musicians search for good sounding harmonies

[7]. Let’s say three musicians are improvising. Each harmony then consists of three

notes. The improvising musicians try to find a good sounding harmony, and thus

maximizing the quality of the harmony. For each note each musician has two

main choices. He can play a random note or play a note that has been a part of

a previously successful harmony, which is recalled from his memory of harmonies.

If he chooses a note from a previously successful harmony he has the choice of

Chapter 2. Global Optimization 28

playing it like he did last time, or slightly adjust the note randomly. The resulting

harmonies is thus a combination of completely new notes, notes that has been

successful in the past and small alterations of notes that has been successful in

the past.

In HS the harmonies corresponds to solutions of the optimization problem. Each of

the notes correspond to a variable. The quality of the harmony is calculated by the

objective function. Successful harmonies are stored in harmony memory, HM. For

each iteration a new solution is created as a combination of successful harmonies

stored in HM and new variable values generated randomly. If the new harmony

has lower objective value than the worst harmony in HM, the new harmony taktes

the worst harmony’s place.

2.5.1 HS Control Parameters

Like most metaheuristics, HS has a number of control parameters that controls

the performance of the optimization.

Similar to the other three algorithms covered so far, HS has a control parameter for

setting the size of the population. In HS the population is referred to as harmony

memory. The size of the harmony memory is set by the control parameter harmony

memory size, HMS. In other words: the bestHMS harmonies found so far is placed

in the harmony memory. The HMS parameter is very similar to the population

size, Npop in GA, DE and ABC. Creating a harmony based on a previous harmony

can be thought of as exploring the solution space in the area close to a previous

successful harmony. Thus will a small HMS lead to exploration of only a few

areas at the time. On one hand this can lead to fast convergence. On the other

hand we might get stuck in a local minimum.

The number of improvisations, i.e. iterations, made before termination is con-

trolled by the parameter MaxImp. HS can be terminated before it has reached

MaxImp improvisations only if the accepted optimization error is reached. The

objective function is called only once during an iteration. This separates HS from

GA, DE and ABC where the number objective function calls during an iteration

is correlated with the population size.

For each note in a new harmony there is a given chance that it will be based on a

note from a previous harmony. This probability is set by the parameter harmony

Chapter 2. Global Optimization 29

memory considering rate, HMCR. If HMCR is set to 0.9 there is a 90% chance

that a new note will be based on a note from the harmony memory. A high value

for HMCR will result in good exploiting abilities, whereas a low value will result

in good exploring skils.

When new harmonies are created and a note randomly has been chosen to be

based on a note in the harmony memory, the new note can either be an exact

copy of the note in HM or it could be a slight alteration of it. This is decided

randomly, but is controlled by the parameter pitch adjusting rate, PAR. If PAR

is set to 0.2 there is a 20% chance that each note picked from HM will be altered.

This parameter resembles mutation in GA.

When a note is an alteration of a previous successful note, the amount of deviation

from the previous note is controlled by the parameter fret width, FW . The new

note is given a random value which maximum deviates by FW from the successful

note. The new note is given as xnew,i = xrand,i + rand⇥ FW , where i is the given

note’s index in the harmony.

2.5.2 HS-Step by Step

To understand the flow of HS this section will provide a step by step explanation

of the algorithm. A flowchart of HS is given in Figure 2.6. As the other algorithms

this will be done while finding the highest point in the 3-dimensional landscape

given by Figure 2.3 and equation (2.2).

Chapter 2. Global Optimization 30

Figure 2.6: Flowchart of HS.

Chapter 2. Global Optimization 31

2.5.2.1 Selecting Control Parameters, Defining Variables and Objec-

tive Function

As GA and ABC the first thing we need to do is to select control parameters,

define the variables and objective function. Both the objective function and vari-

ables will be the same as GA and ABC. The control parameters are however not

the same. In this example we will use

HMS = 8

MaxImp = 10000

HMCR = 0.8

PAR = 0.2

FW = (Ub� Lb)/100

2.5.3 Choose Initial Harmonies

The first thing that needs to be done is to fill the harmony memory with randomly

selected harmonies within the variable bounds. In this case each harmony consists

of a pair of x and y values. Since HMS = 8 there will be a total of 8 randomly

chosen harmonies. These harmonies are then evaluated by the objective function.

The initial harmony memory is shown in Table 2.6.

x y ✏
1.49 6.75 0.82
9.94 8.45 2.81
6.44 6.20 -2.47
2.91 7.37 3.19
0.54 8.83 -6.88
3.22 3.78 -4.59
7.41 9.14 13.32
2.28 1.55 -0.60

Table 2.6: Randomly chosen initial harmony memory.

In HS the solutions are not ranked from best to worst. In order to check if a

stop criteria is met, we need to know the objective value of the best solution. As

mentioned, a new improvised harmony will take the place of the worst harmony

in the harmony memory if its objective value is lower than the worst harmony.

Chapter 2. Global Optimization 32

Thus we also need to know the objective value of the worst solution. The index of

these harmonies are also necessary to know in order to know the variable values

that make the harmony. In our example the best and worst solutions are

✏best = �6.88

✏worst = 13.32

These objective values represent the fifth and the seventh harmony respectively,

i.e. x5 and x7.

2.5.4 Improvise a New Harmony

After the initialization it’s time to create some new harmonies. The harmonies

are created one by one. A new harmony is not placed in the harmony memory

unless its objective value is less then the objective value of the worst harmony.

Because of this, we denote the new harmony xnew. In our example each harmony

consists of two notes, i.e. an x and an y value. For each note we first have to

decide whether it should be based on a previous note or not. If a random value

between zero and one is smaller than HMCR the new note will be based on a

previous note. If not, a random note within variable bounds will be produced.

We create each note individually. We will start with the first note in the harmony

xnew,1, i.e. the x-value. In our example HMCR = 0.8. The produced random

value turned out to be larger than 0.8. This means that a random x-value will be

produced. In our case we got xnew,1 = lb+ (ub� lb)⇥ rand = 10⇥ rand = 4.35.

To create the y-value we use the same approach. This time the random value

turned out to be smaller than 0.8. This means that the y-value will be based on

a y-value from a harmony stored in the harmony memory. If a random value is

larger than PAR, xnew,2 will be a slight alteration of a randomly chosen y-value

in HM. If the random value is smaller than PAR, xnew,2 will be an exact copy of

a randomly chosen y-value in HM. In this example the random value was smaller

than PAR. Thus a y-value from HM will be chosen randomly. The y-value chosen

was the y-value of the fourth harmony, i.e. x4,2. The deviation from x4,2 is partly

decided from FW which is set to y-value upper bound minus y-value lower bound

all divided by a houndred. I.e. FW = (10�0)/100 = 0.1. xnew,2 will thus be given

a randomly chosen value between x4,2 � 0.1 and x4,2 + 0.1, i.e. a random value in

the range [7.25, 7.45] In our example we got xnew,2 = 7.35. The new harmony is

thus,

Chapter 2. Global Optimization 33

The two new notes form our new harmony, xnew = [4.35, 7.35]. Now it’s time

to find the quality of the new harmony, i.e. the objective value ✏new, of our new

solution. By using the objective function to evaluate the new harmony we get

✏new = f(xnew) = 6.37. Since ✏new < ✏worst, xnew will take the place of x7 in HM.

An updated version of HM is presented in Table 2.7.

x y ✏
1.49 6.75 0.82
9.94 8.45 2.81
6.44 6.20 -2.47
2.91 7.37 3.19
0.54 8.83 -6.88
3.22 3.78 -4.59
2.91 7.35 6.37
2.28 1.55 -0.60

Table 2.7: Harmony memory after one improvisation.

The next step is to update xbest and xworst to prepare for the next improvisation.

2.5.5 Check for Convergence

After each improvisation HS checks for convergence. If xbest is below the stopping

criteria or MaxImp is reached, the algorithm is terminated and xbest is returned.

New harmonies are improvised until a stopping criteria is met. In our example

the minimum ✏ = f(0.9039, 0.8668) = �18.5547 was found after 25 generations.

2.6 Downhill Simplex

The downhill simplex (DS) method was developed in the mid-1960s, and is a local

optimizer that doesn’t require the calculation of derivatives [10]. The optimization

makes use of a simplex, which is the most elementary geometrical figure that can

be created in dimension D. If D = 2, the simplex is a triangle, and if D = 3,

the simplex is a tetrahedron. In other words, the simplex has D + 1 vertices and

thus points in the solution space. The idea of DS is to move the simplex so it

surrounds the minimum, and then to contract the simplex around the minimum

Chapter 2. Global Optimization 34

until an acceptable error is reached. The user specifies a starting point, P0. D

points are then created by the formula

Pi = P0 + csei (2.14)

where cs is a scaling constant and ei are one of D+1 unit vectors. After the initial

simplex is created, the minimum is found through four operations: reflection,

expansion, contraction and shrinkage. These operations are illustrated in Figure

2.7, where the simplex is minimizing a problem with D = 2. After the initial

simplex is created, the objective value of each corner in the simplex is calculated.

Then a new point, P ⇤ is created by reflecting the point with the lowest objective

value, Pn, through the centroid of the simplex, P . This is shown mathematically

in equation (2.15)

P ⇤ = P + ↵(P � Pn) (2.15)

↵ is a reflection coe�cient that controls the length of the reflection. After the

reflection, the objective value of the new point is calculated. If the objective value

of P ⇤ is lower than the objective value of Pn, the move of the reflection was in the

right direction. An expansion is thus made in the same direction as the reflection,

and a new point P ⇤⇤ is created.

P ⇤⇤ = P + �(P ⇤ � P) (2.16)

In equation (2.16) � is an expansion coe�cient that controls the size of the expan-

sion. The objective value of the point generated by expansion is thus calculated. If

the objective value of P ⇤⇤ is smaller than the objective value of P ⇤ the vertices P ⇤⇤

is kept and P ⇤ is deleted. After the expansion the step, the centroid for the new

simplex is calculated and the algorithm jumps back to the reflection operation.

If f(P ⇤) > f(Pn) this indicates that the move done by the reflection was either in

the wrong direction or that the magnitude of the reflection was to big. P ⇤ is then

discarded and a contraction operation is performed.

P ⇤ = P + �(Pn � P) (2.17)

� is a contraction coe�cient that controls the amount of contraction.

Chapter 2. Global Optimization 35

If f(P ⇤) > f(Pn) the shrinkage operation is performed. The shrinkage operation

implies keeping Pn but generating new points for all the D other points. This is

done by the following formula:

Pi =
(Pi + Pn)

2
(2.18)

where Pi indicates point number i and Pn as before is the point in the simplex

with the lowest objective value.

For each iteration, a new simplex is generated. New iterations are performed until

a maximum number of function calls are made, or the di↵erence between the two

points with highest and lowest objective are smaller than a predefined limit.

Figure 2.7: Reflection (a), expansion (b), contraction (c) and shrinkage (d)
performed on a simplex solving a minimization problem with two variables.

Figure reprinted from http://neural.cs.nthu.edu.tw/ [18].

CHAPTER 3

ESTIMATION OF GEOACOUSTIC PARAMETERS

The optimization methods presented in the previous chapter will be tested on an

optimization problem taken from the field of geoacoustic inversion. This chapter

will give a brief presentation of the problem.

The goal of the optimization is to estimate the velocities of upper oceanic crust

based on synthetic bottom reflection loss as a function of grazing angle data. In

real life this data is recorded.

3.1 Geoacoustic Parameters

The parameters we want to estimate are located in the sediment (L1) and basalt

(L2) layers of the oceanic crust. There are a total of 11 geoacoustic parameters

that is to be estimated. This means thatD = 11. The compressional (P) and shear

(S) wave velocities in L1 and L2 are denoted by Vp1, Vs1, Vp2 and Vs2 respectively.

The compressional and shear wave attenuations in L1 and L2 are denoted by

↵p1, ↵s1, ↵p2 and ↵s2. In addition to this the densities of L1 and L2, which are

denoted by ⇢1 and ⇢2, are estimated. The final parameter is the sediment thickness

and is denoted by H. These parameters are illustrated in Figure 3.1. Research

has concluded that the compressional and shear wave velocities of the basalt in

addition to sediment thickness are highly sensitive parameters in the inversion [4].

This means that it is possible to estimate accurate estimations of these parameters

37

Chapter 3. Estimation of Geoacoustic Parameters 38

through inversion. Other parameters are less sensitive, and are thus more di�cult

to estimate.

Figure 3.1: Water column, sediment and basalt layers with their respective
parameters. Image is copied with the courtesy of [4].

3.2 Formulating the Inversion as an Optimiza-

tion Problem

The reflection coe�cients gathered through recording, can also be calculated by

physical formulas, where the geoacoustic parameters we want to estimate are the

input parameters. This means that for each grazing angle, ✓i 2 [0 � 90 �], the plane

wave reflection coe�cient is a function of the geoacoustic parameters.

R = f(Vp1, Vs1, Vp2, Vs2,↵p1,↵s1,↵p2,↵s2, ⇢1, ⇢2, H, ✓i) (3.1)

For more detailed information about the reflection coe�cient formula see [3] and

[4]. Estimation is done by choosing the geoacoustic parameter values that mini-

mize the euclidean distance between the rsynthesized and the calculated reflection

coe�cients as a function of grazing angle. The optimization error is thus a function

of the geoacoustic parameters,

✏ = f(Vp1, Vs1, Vp2, Vs2,↵p1,↵s1,↵p2,↵s2, ⇢1, ⇢2, H) (3.2)

and can be found by

Chapter 3. Estimation of Geoacoustic Parameters 39

✏ =
q

(Rd1 �Rf1)2 + (Rd2 �Rf2)2 ++ (RdN �RfN)2 (3.3)

N is the total number of grazing angles, Rdi represents the the recorded reflection

coe�cient from grazing angle number i and Rfi represents the reflection coe�cient

calculated from equation (3.1) for grazing angle number i. More compactly this

can be written as

✏(Vp1, Vs1, Vp2, Vs2,↵p1,↵s1,↵p2,↵s2, ⇢1, ⇢2, H) =

vuut
NX

i=1

(Rdi �Rfi)2 (3.4)

The optimal solution, ✏⇤ is found by minimizing Equation 3.4

✏⇤ = min
Vp1,Vs1,Vp2,Vs2,↵p1,↵s1,↵p2,↵s2,⇢1,⇢2,H

[✏] (3.5)

The minimizing process for a synthetic example is illustrated in Figure 3.2. The

blue lines shows the synthetic reflection coe�cients, as a function of grazing angle.

The red line shows the reflection coe�cients gained by optimization. Optimization

after 200, 500 and 1000 function calls using ASHS, is shown at the top, middle

and bottom plots respectively.

The synthetic data is generated by inserting predefined values for the 11 optimiza-

tion variables into equation (3.1) for all N values of ✓. These values as well as the

bound limits for all of the variables are given in Table 3.1. The bounds are set

with the help of the projects supervisor.

Chapter 3. Estimation of Geoacoustic Parameters 40

0 10 20 30 40 50 60 70 80 90
0

0.5

1

R
efl

ec
ti
o
n

co
e�

ci
en

t

Grazing angle (degrees)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

R
efl

ec
ti
o
n

co
e�

ci
en

t

Grazing angle (degrees)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

R
efl

ec
ti
o
n

co
e�

ci
en

t

Grazing angle (degrees)

Figure 3.2: Optimization process by minimizing euclidean distance. Blue
line represents synthetic reflection coe�cients and red line represents reflection
coe�cients generated through optimization after 200 (top), 500 (middle) and

1000 (top) function evaluations.

Variable True Value Bound Min Bound Max
Vp1 (m/s) 1700 1000 2200
Vp2 (m/s) 3200 2500 4000
Vs1 (m/s) 300 100 600
Vs2 (m/s) 1750 1200 2000
↵p1 (dB/�) 0.5 0 1
↵p2 (dB/�) 0.5 0 1
↵s1 (dB/�) 0.5 0 1
↵s2 (dB/�) 0.5 0 1
⇢1 (kg/m3) 1800 1200 2100
⇢2 (kg/m3) 2500 2000 3000
H (m) 40 5 60

Table 3.1: True value, minimum bound and maximum bounds for all the
parameters.

CHAPTER 4

IMPLEMENTATION

4.1 Implementing Global Optimization Algorithms

All algorithms used in this project are implemented in MATLAB. The algorithms

DE, HS and ABC are modifications of programs published by the respective algo-

rithms authors in [22], [8] and [15] respectively. This ensures that the algorithms

work as they are intended, and will thus make the comparison of the algorithms

as fair as possible. GA is a modified version of Program 3: Continuous Genetic

Algorithm from [9]. Based on the research on the use of ABC on real-parameter

optimization [14], the control parameters MR and SF were implemented into the

original ABC [15].

4.2 Creating Hybrid Algorithms

Global optimizers are great for searching the entire solution space. Their way of

perturbing existing solutions increases the chances of finding a global optimum

[9]. This is however often on the expense of fast convergence. Local optimizers

on the other hand, like the DS, are powerful local decent algorithms, with fast

convergence. The downside of the local optimizers is that they are easily entrapped

in local optima, and are extremely sensitive to the initial starting point [12]. When

combining a local and a global optimizer in a hybrid algorithm, the goal is to use

41

Chapter 4. Implementation 42

the strengths of both optimizers, while covering up for each other’s weaknesses.

The goal is to use the global optimizer’s ability to explore, and the local optimizers

ability to exploit. The final hybrid should both be able to search the entire solution

space, and have a fast convergence.

There are many ways of combining global with local optimizers. The hybrids can

roughly be divided into pipeline hybrids and hybrids where the local optimizer

work as an additional operator inside the global optimizer [1]. In a pipeline hy-

brid, the two optimizers have a sequential workflow. Global searches based on

the information stored in the entire population is performed before a given num-

ber of solutions is passed to the local optimizer for further improvement. These

improvements can then be sent back to the global optimizer. The additional-

operator-hybrid includes local search as if it was a part of the global optimizer.

Due to the results of [1], a pipeline hybrid is used in this project.

Even pipeline hybrids can be implemented in several ways. The variations include

the number of optimization iterations performed by each optimizer before the

other one takes over, the number of starting points sent to the local optimizer,

i.e. the number of parallel local optimizations, and the number of local optima

passed back to the global optimizer. Some, [11] [1], initiates local search whenever

the global search has found a new best solution. Others [25] claim that initiating

local search after multiple successive global search iterations in a row damages the

process of the global search and should be avoided. They initiate a local search

whenever the local search is unable to improve the best solution after a given

number of iterations. Others [17] initiate local optimization after every global

search iteration . This project presents a hybrid where the local search is initiated

when the global search has made Nglobal function calls. Nglobal is a parameter that

can be adjusted by the user to fit the problem at hand.

The flow of the hybrid algorithms presented in this thesis is shown in Figure 4.1.

The workflow allows the use of any global optimization method. Optimization

starts with standard initialization; control parameters are selected and the vari-

ables and objective function are defined. An initial population of Npop members

with D variables are then created by randomly picking points from the solution

space. The next step is the global search. This includes mutation, crossover and

selection for DE, improvising a new harmony and selection for HS and employed

bee phase, onlooking bee phase and scout bee phase for the ABC. The global

search is run until it has used Nglobal function evaluations. The best solution is

Chapter 4. Implementation 43

thus used as a starting point for DS. DS using Nlocal function evaluations is then

performed. Former projects [17] have had success with an increasing Nlocal for each

iteration. This has been implemented to this project’s hybrids by adding another

user-defined control parameter: Lincfact. Lincfact is a factor defining how much

Nlocal increases on each iteration. If Lincfact = 1.2, Nlocal will increase by 20%

every time the hybrid goes from global to local search. This allows for more thor-

ough local searches as the hybrid is getting closer to the global optimum. Lincfact

makes the hybrids adaptive as a function of time. Because of this, the hybrids

are given the prefix AS. The hybrids are thus named adaptive simplex di↵erential

evolution (ASDE), adaptive simplex artificial bee colony (ASABC) and adaptive

simplex harmony search (ASHS). Some hybrids used i previous research [11][6]

have included a perturbation step inside of the downhill simplex. The perturba-

tion size in these hybrids has decreased as a function of time in order to focus on

exploitation rather than exploration towards the end of the optimization process.

It should be noted that these hybrids have the AS prefix because of the adap-

tive perturbation size. The choice of excluding the perturbation step was made

in order to make it easier to compare the hybrid versions of the di↵erent global

optimizers. One hybrid iteration is defined as Nglobal function calls by the global

optimizer and Nlocal function calls by DS.

Figure 4.1 shows a stop criteria check after each DS. This stop-criteria-check is in

fact performed for every iteration of both the global and the local search. This

means that the hybrid algorithm will terminate immediately after the objective

value of it’s best solution is below the stop criteria, ✏tol. If the best solution found

by the DS is better than the worst solution in the population, it takes the place

of the worst population member in the population.

Nglobal could have been a value for number of generations or full algorithm iter-

ations rather than function calls. Function calls were chosen in order to have a

generic hybrid design that could be used in all three algorithms. Note that the

counting of Nglobal calls starts after the initialization. This means that the pop-

ulation chosen randomly during initialization is evaluated before the counting of

Nglobal starts.

The hybrid continues to switch between the local and global optimizers like this

until a stop criteria is met.

Chapter 4. Implementation 44

Figure 4.1: Flowchart of the hybrid optimizer algorithm.

Chapter 4. Implementation 45

4.3 Finding the Control Parameters of the Global

Optimizers

The control parameters of each algorithm have a great impact on overall perfor-

mance. A great algorithm with improper control parameter values can easily be

outperformed by a far less e↵ective algorithm with finely tuned control parameter

values. Finding acceptable control parameter values is not a linear problem. A

low Npop might for instance be good in some control parameter combinations, and

bad in others. Because of this, good control parameter settings should be found by

testing multiple combinations of control parameters values rather than variating

the value of one control parameter at the time. Performing control parameter tests

also result in information about the sensitivity of each control parameter.

A substantial amount of testing was done in order to find good control parameter

values for all of the algorithms. Acceptable control parameters values were found

by counting the number of objective function calls needed to reach a predefined

optimization error limit, ✏tol, under di↵erent control parameter value combinations.

The geoacoustic problem presented in Chapter 3 was used. Due to the random

elements in the global optimizers used in this project, two runs are never identical.

Thus each setting was tested five times to prevent a control parameter setting from

being based on a lucky run. The average of these five runs were used to choose the

most e↵ective settings. If a run had not met ✏tol before 50000 iterations, the run was

terminated and labeled as non-converging. The average number of function calls

was calculated from only the converging runs. Some control parameter settings

are very unstable in the way that they find an optimum very fast in some runs,

and don’t manage to find the optimum at all in other runs. Since the average

number of function calls is calculated from only the converging runs, the unstable

control parameter settings often have a low average number of function calls, but

a high rate of non-converging runs. Because of this, only combinations with no

non-converging runs were chosen in the final settings.

Since a large number of control parameter combinations have been tested, each

control parameter value has been tested in many combinations. This gives us a

chance to find the average number of function calls used in all the combinations

where the given control parameter value is included. By doing this for all values

of the given control parameter, we find the average number of function calls as

a function of the respective control parameter. This resembles a linear-problem

Chapter 4. Implementation 46

solution to finding the best control parameter values and will thus not necessarily

give the best control parameter values. It does however give us information about

how the control parameters in general a↵ects output. For instance, let’s say we

find the average number of function calls used in all the combinations tested for

GA where Npop = 10. Further we repeat this process for all combinations that

include Npop = 15. If this process is repeated for all the tested Npop values, the

results will give information about both the sensitivity of Npop, and an indication

of what control parameter values for Npop that generally leads to good solutions

independent on the values of the other control parameters. This information is

presented for all control parameters for all algorithms in the following sections. It

should be emphasized that since finding control parameters is a non-linear problem

a control parameter value might be a part of the best control parameter combi-

nation, even though the average of all combinations where that control parameter

value is included has worse performance than the average of all combinations of

another value of the same control parameter.

The range of the control parameter values that was tested has been decided by

looking at previous projects and by looking at suggestions from the respective

algorithm’s authors.

4.3.1 GA

The GA was tested with 9 di↵erent population sizes from 10 to 270 with an

increment factor of 1.5. The selection rate was varied between 0.5, 0.6, 0.7 and

0.8. The mutation rate was varied between 0.1, 0.15, 0.20, 0.30 and 0.4. Every

combination of these values were tested five times, resulting in a total of 900 runs.

The combination resulting in the lowest number of function calls averaged over

five runs with equal settings was

Npop = 10

Xrate = 0.5

µ = 0.2

This combination made an average of 1460 function calls in five runs.

Tables 4.1, 4.2 and 4.3 show how the number of function calls needed to reach ✏tol

varied as a function of population size, selection rate and mutation rate respec-

tively. It can be seen that a low population size is suited for this problem. This

Chapter 4. Implementation 47

can be seen by looking at both the average number of function calls used, and the

percentage of non-converging runs. The best results, both in terms of number of

function calls and non-converging runs, were found when the selection rate was

low. The same goes for mutation. It can be seen that the best performing combi-

nation has di↵erent Npop and µ values than the best values for Npop and µ when

averaged over all possible combinations. This shows that finding good control

parameter values is not a linear problem. Because of the random nature of the

metaheuristics, this could also be a coincidence. However it does make sense that

lower population sizes work well with higher mutation rates, as fewer population

members increases the probability of getting stuck in local minima. This problem

can in some cases be solved by a higher mutation rate, which helps to slow down

convergence and search a wider area of the solution space.

For the population size, the highest average number of function calls was 74.43%

higher than the lowest. Similarly the di↵erence was 31.77% for the selection rate

and 55.53% for the mutation rate. This shows us that the population size is the

most sensitive control parameter for GA solving this optimization problem.

Npop Avg. number of function calls (104) Non-converging runs
10 1.7623 40%
15 1.7100 38%
23 1.4538 58%
35 2.0017 65%
54 1.9676 53%
80 2.2574 69%
120 2.2067 71%
180 2.2616 68%
270 2.5358 68%

Table 4.1: GA, Average optimization error as a function of population size,
Npop.

Chapter 4. Implementation 48

Xrate Avg. number of function calls (104) Non-converging runs
0.5 1.6450 47%
0.6 1.8976 54%
0.7 2.1676 60%
0.8 2.1123 73%

Table 4.2: GA, Average optimization error as a function of the selection rate,
Xrate.

µ Avg. number of function calls (104) Non-converging runs
0.1 1.5184 35%
0.15 1.6824 51%
0.20 2.2181 44%
0.30 2.3616 75%
0.40 2.2608 88%

Table 4.3: GA, Average optimization error as a function of mutation rate, µ.

4.3.2 DE

DE was tested with 9 di↵erent values of Npop from 30 to 770 with an increment

of 1.5. Previous literature suggests setting Npop = D⇥ 10 [21] and Npop = D⇥ 20

[11]. This shows that the population size often is set higher in DE than in GA

and ABC. This is the reason for testing di↵erent values for Npop for the DE than

for GA, HS and ABC. DE was further tested with four values of CR from 0.7 to

1, and six values of Fweight from 0.5 to 1. In total 1080 runs were made.

The following combination of control-parameters proved to be most e�cient.

Npop = 30

CR = 1

Fweight = 0.5

Tables 4.4, 4.5 and 4.6 shows how the number of function calls varied as a function

of Npop, CR and Fweight respectively. It can be seen that performance is highest

for low Npop, high CR and low Fweight.

Npop is the most sensitive of the three with a di↵erence of 604% between the lowest

and highest value. This might be a consequence of the fact that Npop has been

Chapter 4. Implementation 49

tested for a very wide range of values. CR seems to be the least sensitive control

parameter.

Unlike the other three algorithms, the values in the best control parameter com-

bination is the same as the best values for each control parameter when averaged

over all combinations. This implies that finding the control parameter values for

DE could be solved as a linear problem.

Npop Avg. number of function calls (104) Non-converging runs
30 0.6374 1%
45 0.9896 0%
68 1.4995 0%
102 1.9990 4%
152 2.7427 17%
228 3.1050 28%
342 3.3302 49%
514 4.0266 71%
770 3.8507 85%

Table 4.4: DE, Average number of function calls as a function of population
size, Npop.

CR Avg. number of function calls (104) Non-converging runs
0.7 0.8403 33%
0.8 0.7726 30%
0.9 0.5371 27%
1 0.3997 21%

Table 4.5: DE, Average number of function calls as a function of the crossover
constant, CR.

Fweight Avg. number of function calls(104) Non-converging runs
0.5 1.7075 6%
0.6 1.8882 15%
0.7 2.2433 22%
0.8 2.4333 33%
0.9 2.4709 42%
1 2.7028 53%

Table 4.6: DE, Average number of function calls as a function of Fweight.

Chapter 4. Implementation 50

4.3.3 ABC

The ABC was tested with the same 9 di↵erent population sizes as GA. Since the

number of employed bees equals to half the population size, the tested population

sizes are rounded up to the next even number. The modification rate was varied

between 0.1 and 0.4 with an increment of 0.05. SFchange was varied between 0.85,

0.95, 0.995 and 0.9995. Every combination of these values were tested five times,

resulting in a total of 1260 runs.

The combination resulting in the lowest number of function calls averaged over

five runs with equal settings was

Npop = 16

MR = 0.1

SFchange = 0.995

This combination made an average of 4715 function calls in five runs.

Table 4.7, 4.8 and 4.9 shows how the number of function calls varied as a function of

population size, modification rate and SFchange respectively. As in GA, runs with

a low population size performed best. The performance of the ABC was much

better for MR = 0.1 than all the other values. Based on the results, SFchange

should be given a value close to 1.

It can be seen that when averaged over all combinations, Npop = 10 had the lowest

average number of function calls. This is however on the expense of a high rate of

non-averaging runs. When using a very small population size, it becomes di�cult

to explore the entire solution space. This makes the quality of the initial food

sources very important. If the initial food sources are are close to an optimum,

the bees might find the solution very fast. If the initial food sources are far from

an optimum however, they might have to search for a long time before they find

it. This might explain why Npop = 10 was so unstable in the control parameter

tests. The high non-converging rate might also be the reason for Npop = 10 not

being in the best combination, as no combinations with Npop = 10 had five good

converging runs.

The population size was even more sensitive than for the GA. The highest number

of function calls was 76.18% higher than the lowest. It was however not as sensitive

as the modification rate, which had a di↵erence of 87.92. SFchange had a di↵erence

Chapter 4. Implementation 51

between the lowest and the highest of 52.02%. This makes it the least sensitive of

the control parameters tested, even though it is quite sensitive.

Npop Avg. number of function calls (104) Non-converging runs
10 1.6462 41%
16 2.0331 32%
24 1.6882 37%
36 2.0730 39%
54 2.2310 42%
80 2.1696 35%
120 2.9002 42%
180 2.8810 45%
270 2.8489 60%

Table 4.7: ABC, Average optimization error as a function of population size,
Npop.

MR Avg. number of function calls (104) Non-converging runs
0.1 1.6496 21%
0.15 2.1101 18%
0.2 2.0861 16%
0.25 2.1956 33%
0.3 2.5798 50%
0.35 2.6676 69%
0.4 3.0999 85%

Table 4.8: ABC, Average optimization error as a function of modification
rate, MR.

SFchange Avg. number of function calls (104) Non-converging runs
0.85 2.8178 67%
0.95 2.5631 47%
0.995 1.8530 32%
0.9995 1.9719 20%

Table 4.9: ABC, Average optimization error as a function of SFchange.

Chapter 4. Implementation 52

4.3.4 HS

To find acceptable values for the control parameters of the harmony search, the

algorithm was tested with eight values for HMS, three values for HMCR, five val-

ues for PAR and four values for FW . This resulted in a total of 480 combinations,

each run five times.

The combination resulting in the lowest number of function calls averaged over

five runs with equal settings was

HMS = 28

HMCR = 0.9

PAR = 0.4

FW = ub�lb
100

This combination made an average of 1731 function calls in five runs.

Tables 4.10, 4.11, 4.12 and 4.13 show how the number of function calls varied as

a function of HMS, HMCR, PAR and FW respectively. It can be seen that

medium valued HMS and high valued HMCR gave the best results. The best

value for the FW was definitely ub�lb
100 .

It can be noticed that PAR by far is the least sensitive of HS’s control parameters.

This shows that finding an optimal value for PAR might not be as important for

the performance as for the other control parameters. FW however turned out to

be highly sensitive, where the highest average number of function calls was 111%

higher than the lowest. The tests thus tells us that an optimal value for this

control parameter is vital for the performance of the HS.

The values of PAR and HMS found in the best control parameter combination,

is not the same as best value averaged over all combinations as seen in Tables

4.12 and 4.10. The di↵erence for PAR can be explained with the fact that is not

very sensitive, but another theory is also a probability. Since PAR decides how

often a value found in the harmony memory should be perturbed, it decides the

frequency of perturbation. The harmony memory closely resembles the population

size of GA, DE, and ABC. In the same way as discussed in previous sections, will

a small harmony memory size make it hard to search the whole solution space.

Chapter 4. Implementation 53

This can be compensated for by increasing rate of perturbation, which can be done

by increasing PAR. This might explain why a lower HMS value and a higher

PAR value than in Tables 4.12 and 4.10 were found in the best combination. The

benefit of a smaller harmony memory can be faster convergence.

HMS Avg. number of function calls (104) Non-converging runs
8 2.7369 19%
12 2.1555 10%
18 2.1855 16%
28 1.7372 10%
42 1.6594 8%
64 1.7589 7%
96 1.8243 7%
144 2.1511 7%

Table 4.10: HS, Average number of function calls as a function of harmony
memory size, HMS.

HMCR Avg. number of function calls (104) Non-converging runs
0.7 2.4808 14%
0.8 1.9420 10%
0.9 1.6555 9%

Table 4.11: HS, Average number of function calls as a function of harmony
memory considering rate, HMCR.

PAR Avg. number of function calls(104) Non-converging runs
0.1 1.8228 10%
0.2 2.0071 11%
0.3 1.9791 11%
0.4 1.9303 9%
0.5 2.3857 14%

Table 4.12: HS, Average number of function calls as a function of pitch ad-
justing rate, PAR.

Chapter 4. Implementation 54

FW Avg. number of function calls (104) Non-converging runs
ub�lb
10 2.4362 13%

ub�lb
100 1.2540 3%

ub�lb
1000 1.7631 9%
ub�lb
10000 2.6511 17%

Table 4.13: HS, Average number of function calls as a function of fret width,
FW .

4.4 Finding the Control Parameters of the Hy-

brids

In addition to the control parameters of the global optimizers, the hybrids have

three control parameters: Nglobal, Nlocal and Lincfact. These parameters control the

amount of exploration and exploitation of the searches. A total of 300 di↵erent

combinations have been tested five times each. Ideally, all of the hybrid control

parameters, including the control parameters of the global optimizers, should be

included in these tests. This would result in 300 times more combinations to test

than for the global optimizers alone. Because of this, the global optimizer part of

the hybrids use the same control parameters as found in the previous section.

The combination resulting in the lowest number of function calls averaged over

five runs with equal settings are presented in Table 4.14.

ASDE ASABC ASHS
Nglobal 76 171 171
Nlocal 380 169 254
Lincfac 0.2 0.2 0.2

Table 4.14: Best control parameter combinations for ASDE, ASABC and
ASHS.

Since the hybrid control parameters are the same for all three algorithms, their

average performance as a function of each control parameter can be plotted to-

gether. Figure 4.2 shows the average number of function calls as a function of

Nglobal for all three algorithms. The results show that all three algorithms have

the highest performance for mid-to-high values of Nglobal.

Chapter 4. Implementation 55

10 15 23 34 51 76 114 171 257 385
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N global

A
v
g
.
n
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

ASABC
ASHS
ASDE

Figure 4.2: Avg. number of function runs as a function of Nglobal.

Figure 4.3 shows the average number of function calls as a function ofNlocal. Values

between 50 and 380 with an increment factor of 1.5. The plot clearly shows that

Nlocal = 50 doesn’t give the DS enough function calls to fully descend the valley

close to the starting point given by the global optimizer. It can be seen that a

high-valued Nlocal gives the best results for all three algorithms.

50 75 113 169 254 380
0

1000

2000

3000

4000

5000

N local

A
v
g
.
n
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s ASABC

ASHS
ASDE

Figure 4.3: Avg. number of function calls as a function of Nlocal.

Chapter 4. Implementation 56

Figure 4.4 shows the average number of function calls as a function of Lincfact

for all three algorithms. It can be seen that this control parameter is of very low

sensitivity. The deviation in average number of function calls between the di↵erent

Lincfact values is so small that little or no information can be extracted from the

plot.

0.05 0.10 0.15 0.20 0.25
0

500

1000

1500

2000

2500

3000

3500

L incfact

A
v
g
n
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

ASABC
ASHS
ASDE

Figure 4.4: Avg. number of function calls as a function of Lincfact

The results in the figures are also presented in Tables 4.18, 4.19, 4.20, 4.21, 4.22,

4.23, 4.15, 4.19 and 4.17.

Chapter 4. Implementation 57

Nglobal Avg. number of function calls (104)
10 0.2181
15 0.1916
23 0.2140
34 0.1445
51 0.1559
76 0.1344
114 0.1375
171 0.1030
257 0.1227
385 0.1279

Table 4.15: ASDE, Average number of function calls as a function of Nglobal.

Nlocal Avg. number of function calls (104)
50 0.2269
75 0.1682
113 0.1516
169 0.1328
254 0.1203
380 0.1298

Table 4.16: ASDE, Average number of function calls as a function of Nlocal.

Lincfact Avg. number of function calls (104)
0.05 0.1470
0.10 0.1562
0.15 0.1679
0.20 0.1539
0.25 0.1497

Table 4.17: ASDE, Average number of function calls as a function of Lincfact.

Chapter 4. Implementation 58

Nglobal Avg. number of function calls (104)
10 0.4840
15 0.3771
23 0.3515
34 0.3039
51 0.2448
76 0.2148
114 0.1955
171 0.1865
257 0.2085
385 0.1787

Table 4.18: ASABC, Average number of function calls as a function of Nglobal.

Nlocal Avg. number of function calls (104)
50 0.4440
75 0.2849
113 0.2415
169 0.2250
254 0.2325
380 0.2191

Table 4.19: ASABC, Average number of function calls as a function of Nlocal.

Lincfact Avg. number of function calls (104)
0.05 0.2820
0.10 0.2898
0.15 0.2511
0.20 0.2859
0.25 0.2637

Table 4.20: ASABC, Average number of function calls as a function of Lincfact.

Chapter 4. Implementation 59

Nglobal Avg. number of function calls (104)
10 0.1715
15 0.0720
23 0.1199
34 0.1592
51 0.0816
76 0.0840
114 0.1108
171 0.0889
257 0.1046
385 0.1174

Table 4.21: ASHS, Average number of function calls as a function of Nglobal.

Nlocal Avg. number of function calls (104)
50 0.3998
75 0.1962
113 0.1105
169 0.1850
254 0.0507
380 0.0866

Table 4.22: ASHS, Average number of function calls as a function of Nlocal.

Lincfact Avg. number of function calls (104)
0.05 0.1126
0.10 0.1251
0.15 0.1185
0.20 0.1012
0.25 0.0975

Table 4.23: ASHS, Average number of function calls as a function of Lincfact.

CHAPTER 5

RESULTS AND DISCUSSION

Algorithms GA, DE, ASDE, ABC, ASABC, HS and ASHS have been tested on

both a standard benchmark problem and a problem of geoacoustic inversion. Only

the evolutionary algorithm with the best results were implemented as a hybrid

algorithm, meaning that no hybrid version of GA has been implemented. Tests

were performed in MATLAB on a laptop computer. This chapter presents the

results of these tests as well as a discussions regarding the matters presented in

Chapter 1. Both results on algorithm speeds and accuracy will be presented. First

of all however, the variable sensitivities will be attended.

5.1 Variable Sensitivities

The variable sensitivities gives an idea of which variables that have the biggest

impeact on ✏. It should not be confused with the sensitivity of the control pa-

rameters. To get an impression of how sensitive the di↵erent variables are, the

optimization error, ✏, was plotted as a function of each of the variables during op-

timization. During these sensitivity tests, ASHS with ✏tol = 0.05 was used. This is

presented in Figure 5.1. The blue dots represent values found by HS, and the red

dots show the values found by DS. It can be seen that some variables can have a

wide range of values even at low ✏ values. This indicates that these variables are

less sensitive, and are thus more di�cult to estimate. Based on this plot the most

61

Chapter 5. Results and Discussion 62

sensitive variables are Vs1, Vs2 and H. The rest of the variables seem to be less

sensitive. This should be kept in mind especially during accuracy testing.

1000 2200

Vp1 (m/s)

✏
(l
o
g
)

2500 4000

Vp2 (m/s)
✏
(l
o
g
)

100 600

Vs1 (m/s)

✏
(l
o
g
)

1200 2000

Vs 2 (m/s)

✏
(l
o
g
)

0 1

↵p1 (dB/�)

✏
(l
o
g
)

0 1

↵p2 (dB/�)

✏
(l
o
g
)

0 1

↵s1 (dB/�)

✏
(l
o
g
)

0 1

↵s2 (dB/�)

✏
(l
o
g
)

1200 2100

⇢1 (kg/m3)

✏
(l
o
g
)

2000 3000

⇢2 (kg/m3)

✏
(l
o
g
)

5 60

H (m)

✏
(l
o
g
)

Figure 5.1: ✏ plotted as a function of each of the variables during a run of
ASHS width ✏tol = 0.05. Blue dots are function calls made by HS and the red
dots are function calls made by DS. The plots gives an impression of each of the

variables sensitivity.

5.2 Testing Algorithm Speed

The most time-consuming part of most metaheuristic algorithms is calls to the

objective function. The algorithms and objective functions used in this project

are no exceptions. Because of this, the algorithms are tested by counting the

number of function calls needed to reach a given tolerance limit, ✏tol. Measuring

Chapter 5. Results and Discussion 63

the number of function calls used is a way of measuring the computational cost.

The results from the geoacoustic inversion problem will be presented after the

results from the Rosenbrock problem.

5.2.1 Rosenbrock Function

5.2.1.1 Setup

The benchmark problem chosen for testing was the Rosenbrock function [19] given

in equation (5.1).

f(x1, x2) = (1� x1)
2 + 100(x2 � x2

1)
2 x1, x2 2 [�2.048, 2.048] (5.1)

The Rosenbrock function has its global optimum at x1 = x2 = 0. During the

tests each algorithm was run ten times. The test measured the average number of

function calls the algorithms needed to reach ✏tol = 0.025. Runs where ✏tol was not

reached before 7000 function calls were terminated and labeled as non-converging.

The converging runs were used to calculate the average number of function calls

needed to reach ✏tol. The control parameters found in Chapter 3 were used in these

tests.

5.2.1.2 Results

Table 5.1 shows the results from the tests performed on the Rosenbrock function.

These results make it very clear that the implementation of DS greatly increases

the global optimizers performance. All three hybrids (ASDE, ASABC and ASHS)

perform much better than their respective global optimizers. This is evident both

when it comes to the average number of function calls needed to reach ✏tol, and in

the percentage of non-converging runs.

Of the algorithms without adaptive simplex, DE has the fewest average function

calls, and was thus the fastest. HS was slower, but much more stable, having

no non-converging runs. Of the algorithms with adaptive simplex, the number of

function calls needed was very similar. The results show that ASABC was the

fastest, and ASHS was the slowest.

Chapter 5. Results and Discussion 64

Without AS With AS
Avg. Non-converging Avg. Non-converging

GA 26242 20% NA NA
DE 2425 20% 123 0%
ABC 43863 40% 117 0%
HS 6466 0% 130 0%

Table 5.1: Results from runs performed on the Rosenbrock function.

5.2.2 Estimation of Geoacoustic Parameters

5.2.2.1 Setup

The problem of geoacoustic inversion is presented in Chapter 3. The objective

function is given in equation (3.4) and the variable bounds and correct values are

given in Table 3.1.

The speed of each algorithm was tested by finding the average number of function

calls needed to reach ✏tol = 0.15. The value for ✏tol was found with the help of

the project’s supervisor, and results in an adequate estimation of the geoacous-

tic parameters. Each algorithm was run 200 times to eliminate the algorithm’s

deviation in performance caused by the use of random functions. Each run was

terminated and labeled as non-converging if ✏tol had not been reached before 50000

function calls. The average was calculated from the converging runs. An identical

approach was later used to test the three hybrid algorithms with ✏tol = 0.05.

Originally the three hybrid algorithms were run with the control parameters found

in Chapter 4. This resulted in poor performance for ASDE and ASABC with an

average number of function calls of 1340 and 1587 respectively. Their perfor-

mance was not even close to the performance of ASHS. Because of this, ASDE

and ASABC were given the same adaptive simplex control parameters as ASHS

(Nglobal = 171 and Nlocal = 254). This resulted in higher performance, and the

settings were thus kept for the rest of the tests. Of the results presented in this the-

sis, only the tests performed on the Rosenbrock function had the adaptive simplex

control parameters as found in Chapter 4.

Chapter 5. Results and Discussion 65

5.2.2.2 Results

The results from the tests performed with ✏tol = 0.15 are presented in Table 5.2.

It can be seen that the average number of function calls greatly decreases with the

use of adaptive simplex in addition to the global optimizers. HS has the fewest

average amount of function calls both with and without adaptive simplex. ASHS

and ASABC are the only algorithms without any non-converging runs.

Without AS With AS
Avg. Non-converging Avg. Non-converging

GA 8329 13.5% NA NA
DE 2816 1.5% 946 1.5%
ABC 5694 1.5% 1526 0%
HS 2316 1% 784 0%

Table 5.2: Average results and rate of non-converging runs recorded over 200
runs for each algorithm. ✏tol = 0.15.

Table 5.3 shows the results from tests performed with ✏tol = 0.05. These test

where only performed on the hybrid algorithms. The results show that ASHS has

the fastest convergence. ASABC has the slowest convergence of the three, but it

is the only one without non-converging runs.

Avg. Non-converging
ASDE 1645 1%
ASABC 2758 0%
ASHS 1576 1%

Table 5.3: Average results and rate of non-converging runs recorded over 200
runs for each algorithm. ✏tol = 0.05.

5.3 Testing Algorithm Accuracy

5.3.0.3 Setup

In order to test the algorithms accuracy, the three hybrids were tested with no

stop criteria, i.e. ✏tol = 0, and a predefined number of function calls was set to

5000. The goal of the tests was to see which algorithm could produce the most

accurate solution. Each algorithm was run 200 times.

Chapter 5. Results and Discussion 66

5.3.0.4 Results

The average and minimum ✏ as well as the solution of the run with the lowest ✏

is given in Table 5.4. From these results it is apparent that ASHS is the most

accurate of the three hybrids solving this inversion problem. ASHS both has the

lowest average ✏ and by far the lowest minimum ✏. The variable with the largest

deviation from true value, has a deviation of 0.36%, which is far lower than for the

two others. By looking at the best solution found by ASDE and ASABC, it can be

seen that Vs2,Vp2 and h are the most sensitive parameters. This is consistent with

previous work presented in [4]. The tests suggests that ↵p1 is the least sensitive

variable.

Chapter 5. Results and Discussion 67

A
S
H
S

A
S
D
E

A
S
A
B
C

A
ve
ra
ge

va
lu
e

2.
4
⇥

10
�
2

3.
2
⇥

10
�
2

3.
9
⇥

10
�
2

M
in
im

u
m

va
lu
e

5.
2
⇥

10
�
5

3.
1
⇥

10
�
3

4.
7
⇥

10
�
3

B
es
t
so
lu
ti
on

V
p
1
=
17
00
.1
1
[0
.0
06
32
%
]

V
p
2
=

32
00
.0
1
[0
.0
00
42
%
]

V
s1

=
29
9.
98

[0
.0
06
23
%
]

V
s2

=
17
49
.9
9
[0
.0
00
57
%
]

↵
p
1
=

0.
50

[0
.0
29
53
%
]

↵
p
2
=

0.
5
[0
.0
22
34
%
]

↵
s1
=
0.
5
[0
.0
21
39
%
]

↵
s2
=
0.
50
0
[0
.0
04
91
%
]

⇢
1
=
18
00
.0
3
[0
.0
01
84
%
]

⇢
2
=
24
99
.7
9
[0
.3
61
54
%
]

d
=
39
.9
9[
0.
00
38
3%

]

V
p
1
=
17
01
.5
9
[0
.0
93
43
%
]

V
p
2
=

32
01
.1
7
[0
.0
36
57
%
]

V
s1

=
29
7.
47
[0
.8
43
22
%
]

V
s2

=
17
50
.1
0
[0
.0
05
70
%
]

↵
p
1
=

0.
62
[2
4.
39
53
0%

]
↵
p
2
=

0.
49
[1
.4
53
41
%
]

↵
s1
=
0.
42

[1
4.
98
86
8%

]
↵
s2
=
0.
51

[0
.4
01
82
%
]

⇢
1
=
18
25
.7
4
[1
.4
30
25
%
]

⇢
2
=
25
08
.9
8
[0
.3
59
32
%
]

d
=
39
.7
8[
0.
55
37
6%

]

V
p
1
=
1.
71
4.
57

[0
.8
57
04
%
]

V
p
2
=

32
00
.1
0
[0
.0
03
23
%
]

V
s1

=
30
1.
06

[0
.3
53
36
%
]

V
s2

=
17
50
.1
7[
0.
00
96
2%

]
↵
p
1
=

0.
61
[2
1.
26
59
8%

]
↵
p
2
=
0.
49
[1
.4
42
51
%
]

↵
s1
=
0.
51

[1
.3
35
95
%
]

↵
s2
=
0.
49

[2
.1
85
65
%
]

⇢
1
=
17
93
.4
9
[0
.3
6%

]
⇢
2
=
25
17
.4
3[
0.
69
75
6%

]
d
=
40
.2
5[
0.
61
91
2%

]

T
a
b
l
e
5
.
4
:
A
vg

.
an

d
m
in
.
va
lu
e
fo
r
20
0
ru
n
s
w
it
h
✏ t
o
l
=

0.
T
h
e
va
ri
ab

le
va
lu
es

of
ea
ch

al
go

ri
th
m
’s

b
es
t
so
lu
ti
on

is
fo
u
n
d
in

th
e
la
st

ro
w
.

Chapter 5. Results and Discussion 68

5.4 Discussion

5.4.1 Improvement of Including Adaptive Simplex

A part of this project was to find out if the performance of HS and ABC would

be improved if they were combined with a local optimizer. The tests clearly state

that adding adaptive simplex to the global optimizers increases performance both

in terms of speed and accuracy. Figure 5.2 shows the results from the tests on

ASHS (blue) and ASDE (red) with ✏tol = 0.15. For each of the 200 runs, the

number of function calls have been plotted. Based on this figure it is di�cult to

extract much information other than the fact that ASDE has a higher frequency

of bad performing runs than ASHS. In order to analyse the test results further,

the data in Figure 5.2 have been sorted in ascending order in terms of the number

of function calls. This is plotted in Figure 5.3. Based on this figure it can be

seen that the number of function calls needed to reach ✏tol is divided into ”steps”.

Let further init represent the number of function calls made during algorithm

initialization. Given the control parameters found in Chapter 4, this equals to 16

(Npop) for ASABC, 28 (HMS) for ASHS and 30 (Npop) for ASDE. Since the tests

where performed with Nglobal = 171 and Nlocal = 254, the function calls made

in the intervals Z[171 + init, 425 + init], Z[596 + init, 850 + init] and so on, are

function calls made by the DS part of the algorithms. Since almost all runs are

terminated in these intervals it can be concluded that the tolerated solutions were

found during or shortly after DS in almost all of the runs. Based on the results and

this plot it can be concluded that the hybrid optimizers used in this thesis have

higher performance than the global optimizersalone, when solving the geoacoustic

inversion problem.

5.4.2 ASHS versus ASDE

The second and most important task of this project was to see if combinations of

DS with relatively recent global optimizers could outperform ASDE. The results

clearly shows that ASHS has higher performance than ASDE both in terms of

speed and accuracy when solving the geoacoustic inversion problem. The same

can not be said about ASABC, which had the worst performance of the three

hybrids. This part of the discussion will because of this cover the comparison of

Chapter 5. Results and Discussion 69

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Individual Runs

N
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Individual Runs
N
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

ASDEASHS

Figure 5.2: The number of function calls needed to reach ✏tol = 0.15 for 200
runs of ASDE (red) and ASHS (blue).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

200 sorted individual runs

N
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

ASDE

ASHS

Avg. ASDE

Avg. ASHS

Figure 5.3: The number of function calls needed to reach ✏tol = 0.15 for 200
runs of ASDE (red) and ASHS (blue). The values have been sorted in terms of

number of function calls to increase readability.

ASDE and ASHS. Returning to Figure 5.3, we can analyse what made the average

speed of ASDE lower than of ASHS.

Firstly, it can be seen that the ASHS manages to meet the stop criteria during the

Chapter 5. Results and Discussion 70

first use of DS far more often than ASDE. The same thing is true for the second

use of DS. To illustrate the nature of the hybrids, a minimization problem of one

variable will be used. The objective function and stop criteria of the problem is

shown in Figure 5.4.

Figure 5.4: Illustration of a minimization problem with D = 1. The black
line is the objective function, and the blue line is the stop criteria, ✏tol.

The global minimum is found at (12). We can see that both (5) and (7) are below

✏tol even though they don’t represent the global minimum. (2) is an example of

a local minimum that is not lower than ✏tol, and thus not an acceptable solution.

Let’s imagine that the best solution after the global part of one of the hybrids is (1).

(1) is thus used as starting point in DS. Since DS is a local optimizer, no matter

how many function calls it has in disposal, it will never manage to find a solution

below ✏tol. If the starting point is (9) or (10) however, it will only be a question

of time before DS crosses ✏tol. If the number of function calls needed to cross ✏tol

with (9) as a starting point exceeds Nlocal, the hybrid will not reach ✏tol during

the first use of DS. If (10) on the other hand is close enough to ✏tol to be reached

by DS, this would greatly decrease the number of function calls needed to reach

the stop criterion. Since ASDE and ASHS uses the exact same DS, the deviation

in performance must come from the quality of DS’s starting point. Based on

Figure 5.4 we can separate the quality of a starting point into two main categories:

quality in terms of exploration and quality in terms of exploitation. Starting points

corresponding to (1) and (3) have poor quality in terms of exploration since DS

Chapter 5. Results and Discussion 71

won’t be able to cross ✏tol no matter how large the value of Nlocal is. IStarting

points corresponding to 4 6 and 11 however are high quality points in terms of

exploration. If we compare the starting points corresponding to (9) and (10),

the quality in terms of exploitation is higher in (10) than in (9). Even though

the geoacoustic inversion problem presented in this thesis have D = 11, the same

ideas as in this simple example apply. This gives two theories to why ✏tol is reached

during first and second use of DS more often in ASHS than in ASDE:

(A) : The starting points given by ASDE is of lower quality than the starting

points of ASHS in terms of exploitation. This means that the starting points

given by DE more often than the starting points of HS are further away from ✏tol.

This gives the DS of ASHS a head start which makes ASHS cross ✏tol during the

first use of DS more often than ASDE.

(B) : The starting points given by ASDE is of lower quality than the starting

points of ASHS in terms of exploration. This means that the starting points given

by DE more often than the starting points of HS are in a valley where the local

minimum is larger than ✏tol.

If (A) was true, increasing Nlocal would lead to improved results for ASDE. To

investigate this ASDE was run another 200 times, this time with Nlocal = 380.

The average number of function calls needed was then reduced to 827. Since the

increment of Nlocal led to better results, it is reasonable to think that some runs

in the previous test with Nlocal = 254, did not meet the stop criteria during the

first use of DS because it didn’t have enough disposable function calls to complete

the descent. Figure 5.5 shows a comparison of ASDE with Nlocal = 254 and

Nlocal = 380.

The figure clearly shows that increasing Nlocal leads to more runs reaching the

stop criteria during the first use of DS. This implies that the average starting

point given from HS has higher quality than the average starting point given from

ASDE in terms of exploitation. ASHS was also tested with Nlocal = 380 to see if

increased Nlocal had any e↵ect on performance. The average number of function

calls over 200 runs was reduced to 640, which makes it clear that Nlocal should

have been higher for both of the hybrids. This does however not change the fact

that ✏tol was reached during the first use of DS by ASHS more often than ASDE.

Chapter 5. Results and Discussion 72

0

500

1000

1500

2000

2500

3000

3500

4000

4500

200 sorted individual runs

A
v
g
.
n
u
m
b
er

o
f
fu
n
ct
io
n
ca

ll
s

N local=254

N local=380
Avg. N local=254

AVg. N local=380

Figure 5.5: The number of function calls needed to reach ✏tol = 0.15 for
200 runs of ASDE with Nlocal=254 (red) and ASDE with Nlocal = 380 (blue).
The values have been sorted in terms of number of function calls to increase

readability.

From this we can conclude that at least some part of ASHS’s superior performance

is in terms of exploitation and that (A) thus is true.

Figure 5.3 also shows that the worst runs of ASDE are worse then the worst

runs of ASHS. This obviously lowers the average performance of ASDE relative

to ASHS. The fact that ✏tol is not reached after multiple uses of DS can have two

reasons. First lets imagine that (9) in Figure 5.4 is the result of DS after Nlocal

function calls. DS was then stopped when it was descending towards the global

minimum. The global optimizer would then use this solution, along with the other

solutions stored in its memory (population for DE and harmony memory for HS),

to further search the solution space. If the global optimizer then finds (3) or (1)

after Nglobal iterations, this would lead the search away from a valley containing

objective values lower than ✏tol. This problem would be solved by increasing Nlocal.

From Figure 5.5 it can be seen that increasing Nlocal hardly had any e↵ect on the

frequency of bad runs. Therefore we can conclude that being sent away to a valley

that don’t include objective values lower than ✏tol is not a problem. Secondly, the

bad performing runs might indicate that the hybrids in some runs are stuck in

local optima. In Figure 5.4 this could mean that ASDE has found (2). In order to

get out of the local minimum, the hybrids would have to find a point of lower ✏,

Chapter 5. Results and Discussion 73

e.g. (11). This will demand skills in terms of exploration. Since increasing Nlocal

didn’t decrease the frequency of bad performing runs, it is reasonable to believe

that HS is superior to DS in terms of exploration. This would mean that also (B)

is true.

The performance of metaheuristics are problem dependent; one algorithm might

be good at some problems, while another is good at other problems. Because of

this it is di�cult to point out specific parts of the algorithms that makes one better

than the other. Even though the performance of ASHS was consistantly higher

than of ASDE when solving the geoacoustic problem, ASDE might outperform

ASHS in other problems. This was in fact the case for the Rosenbrock problem of

two variables.

CHAPTER 6

CONCLUSION

Hybrid versions of both harmony search (HS) and artificial bee colony (ABC) have

been adopted to the problem of estimating geoacoustic parameters. The results

show that the performance of the hybrids is much better than the performance of

their respective global optimizers.

The tests further show that ASHS is superior to ASDE and ASABC both in terms

of convergence speed and accuracy, when solving the geoacoustic problem. ASABC

had the worst performance of the three hybrids. The tests indicates that both the

exploiting and exploring abilities of ASHS’s global optimizer, HS, are superior to

the exploring and exploiting abilities of ASDE’s global optimizer, DE. It should

however be emphesized that the results from this thesis only show that ASHS does

a better than ASDE at solving this spesific problem. When solving a benchmark

problem the performance of ASDE was in fact better than the performanc of

ASHS. This can be explained with the fact that the complexity of the benchmark

problem was very low compared to the complexity of the geoacoustic problem.

Substantial tests on control parameter settings have been made in order to find

optimal control parameter combinations. These tests have shown that most of the

control parameters are highly sensitive. In most cases the settings found through

these setting-tests gave good results later in the real algorithm testing. Some

settings did however prove to be non-optimal. Future work should thus include

further control parameter testing where more than five runs for each setting is

used to calculate the average performance.

75

Chapter 6 Conclusion 76

Control parameter tests suggests that an adaptive Nlocal had little e↵ect on per-

formance. This is probably due to the fact that most optimization runs reached

✏tol during their first and second use of DS. The adaptive Nlocal might thus have a

bigger impact on problems where more hybrid iterations are made.

Since the tests performed in this thesis were performed with the use of synthetic

reflection loss data, the next step for comparing ASHS with ASDE should include

tests on real reflection loss data. Future work can also include a perturbation step

inside of DS, to see if this further increases the performance of DS.

Future work should include the use of the bat algorithm (BA) [26], which is similar

to HS, but more complex.

BIBLIOGRAPHY

[1] BarbosaH. J. C. LavorC. C. and RauppF. M. P., 2005, A GA-Simplex

Hybrid Algorithm for Global Minimization of Molecular Potential Energy

Functions, Annals of Operations Research, September 2005, Volume 138,

Issue 1, pp 189-202, ISBN: 0-19-513159-2

[2] BonabeauM., DorigoM. and TheraulazG., 1999, Swarm Intelligence: From

Natural to Artificial Systems, Oxford University Press, ISBN: 0-19-513159-

2

[3] BrekhovskikhL. M, 1980, Waves in Layered Media, 2nd ed., Academic New

York

[4] Dong H., Ross Chapman N., Hannay David E., Rosso and Stan E., 2010,

Estimation of Seismic Velocities of Upper Ocenic Crust from Ocean Bottom

Reflection Loss Data, J. Acoust. Soc. Am. Volume 127, Issue 4, pp. 2182-

2192

[5] Dorigo M. and Maria G., 1997, Ant Colony System: A Cooperative Learn-

ing Approach to the Traveling Salesman Problem, IEEE Trans. Evol. Com-

put., 1:5366,

77

Bibliography 78

[6] Dosso S. E., Wilmut M. J., Lapinski A. S., 2001, An Adaptive-Hybrid

Algorithm for Geoacoustic Inversion, IEEE Journal of Oceanic Engineering,

Vol. 26, No. 3, July 2001

[7] GeemZ.W, 2009, Music-inspired Harmony Search Algorithm, Springer,

ISBN: 978-3-642-00185-7

[8] GeemZ.W, Harmony Search Source Code, Downloaded: 08.02.2013,

https://sites.google.com/a/hydroteq.com/www/HS Code Matlab.zip?attredirects=0

[9] Haupt R. L. and Haupt S. E., 2004, Practical Genetic Algorithms, Second

Edition, John Whiley & Sons Inc, ISBN 0-471-45565-2

[10] Holland J. H., 1992, Adaptation in Natural and Artificial Systems, Brad-

ford Books, ISBN: 0-262-58111-6

[11] JiangY.ChapmanN. R. and Gerstoft P., 2010, Estimation of Geoacous-

tic Properties of Marine Sediment Using a Hybrid Di↵erential Evolution

Inversion Method, IEEE Journal of Oceanic Engineering, Vol. 35, No. 1,

January 2010

[12] Kang F. Li J. Xu Q., 2009, Structural Inverse Analysis by Hybrid Sim-

plex Artificial Bee Colony Algorithms, Computers & Structures Volume 87

Issues 1314 July 2009 Pages 861870

[13] Karaboga D., 2005, An Idea Based on Honey Bee Swarm for Numerical

Optimization, Erciyes University Engineering Faculty Computer Engineer-

ing Department, TECHNICAL REPORT-TR06 OCTOBER

[14] Karaboga D. and Akay B, 2012, A Modified Artificial Bee Colony Algo-

rithm for Real-Parameter Optimization, Information Sciences Volume 192

Bibliography 79

1 June 2012 Pages 120142

[15] KarabogaD, Artificial Bee Colony Algorithm Source Code, Downloaded:

06.02.2013, http://mf.erciyes.edu.tr/abc/form.aspx

[16] Kirkpatrick S. Gelatt C.D. and Vecchi M. P., 1983, Optimization by Sim-

ulated Annealing, Science 220:671680

[17] MusilM. Wilmut M.J. and Chapman N. R., 1999, A Hybrid Simplex Ge-

netic Algorithm for Estimating Geoacoustic Parameters Using Matched-

Field Inversion, IEEE Journal of Oceanic Engineering, Vol. 24, No. 3, July

1999

[18] National Taiwan University Department of Computer Sci-

ence Multimedia Information Retrieval LAB, 08.05.2013,

http://neural.cs.nthu.edu.tw/jang/courses/cs4601/simplex.htm

[19] Nocedal J. and Wright S., 2006, Numerical Optimization, Second Edition,

Springer, ISBN-13:978-0387-30303-1

[20] Parsopoulos K. E. and Vrahatis M. N., 2002, Recent approaches to global

optimization problems through particle swarm optimization, Natural Com-

puting, 1: 235306

[21] Storn T. and Price M. N., 1997, Di↵erential Evolution - A simple and

E�cient Heuristic for Global Optimization over Continous Spaces, Journal

of Global Optimization 11: 341-359

[22] Storn T. Price M. N. Neimaier A. and Van Zandt J.,

Di↵erential Evolution Source Code, Downloaded: 04.04.2013,

http://mf.erciyes.edu.tr/abc/form.aspx

Bibliography 80

[23] Talbi E-G., 2009, Metaheuristics From Design to Implementation, John

Wiley & Sons Inc., ISBN 978-0-470-27858-1

[24] Weise T., 2009, Global Optimization AlgorithmsTheory and Application,

Second Edition, http://www.it-weise.de/

[25] WuL. Wang Y. Yuan X. and Zhou S., 2010, A Hybrid Simplex Di↵erential

Evolution Algorithm, 2010 Chinese Control and Decision Conference

[26] Yang X.-S, 2010, A New Metaheuristic Bat-Inspired Algorithm, Studies in

Computational Intelligence Springer Berlin 284 Springer 65-74 (2010)

[26] Yang X.-S, 2009, Harmony Search as a Metaheuristic Algorithm, Studies

in Computational Intelligence, Springer Berlin, vol. 191, pp. 1-14 (2009)

Prepared in LATEX2"

