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Abstract

Consider a linear model, y = Hx+ n, where y is an observed vector, H is a known
matrix, x is the unknown vector of interest, and n is noise. Such a linear model can
describe, or approximate, a multitude of systems.

In this thesis, it is assumed that x and n are distributed as independent Gaussian mixtures
(GM). Besides their ability to approximate other distributions, Gaussian mixtures can
account for asymmetry, heavy tails and/or multi modality. They can in principle model
any random variable, and therefore Gaussian mixtures provide great realism.

Assuming mixed Gaussian inputs, we study problems related to the minimum mean
square error (MMSE) when estimating x from the observation y. Characterizing or ma-
nipulating the MMSE is non-trivial, mainly for the following reason. In the special case
when both x and n are purely Gaussian inputs, then both the MMSE estimator and the
MMSE have analytical, closed form expressions. In the more general case, however,
when one or both of the inputs are multi-component Gaussian mixtures, then the MMSE
estimator remains analytical, but the MMSE does not. The implication is that the optimal
estimator can be implemented, but its performance cannot be exactly characterized.

One consequence, is that implementing MMSE reducing measures becomes a quite dif-
ficult task. For example, again in the purely Gaussian setting, an MMSE reducing linear
precoder can be derived as the solution of a convex program. When inputs are Gaussian
mixtures, however, this task is much more difficult. Then the problem not only turns
non-convex, but the objective function (the MMSE) takes the form of a non-analytical
integral.

Among the contributions of the thesis, two important ones can be summarized as fol-
lows: (i) We bound the MMSE, both from above and below, by analytical expressions.
We also show that these bounds approach each other with increasing signal to noise ratio
(SNR). Therefore, from moderate to high SNR, the MMSE can be bracketed rather accu-
rately. (ii) We describe a procedure for designing the matrixH, so as to minimize MMSE.
This design problem is motivated by two applications in signal processing. One concerns
the design of error-reducing precoders; the other deals with selection of pilot signals for
channel estimation.
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0.1 Project Background

The radio spectrum is a precious and limited resource, and the demand for wireless ser-
vices is steadily increasing. In spite of this, parts of the radio spectrum are inefficiently
used [1,2]. One reason is that many wireless communication systems have been assigned
fixed portions of the spectrum. This protects the system against interference, but may also
cause under-utilization because the actual usage is often sporadic across time and across
geographical areas [3, 4].

The main idea behind cognitive radio, first proposed by Mitola and Maguire [5], is a
transceiver which opportunistically exploits available radio resources. In a broad context,
cognitive radio refers to a transceiver which can sense its environment, and adjust its
operation accordingly. In [6], a cognitive radio is regarded as a transceiver which can
exploit available frequency bands; it should be able to sense a vacant band, use it for
transmission, and back off when it senses that the band is required by a licensed radio. If
such a technology could be implemented, it would greatly improve the way in which the
radio spectrum is utilized.

Clearly, it is challenging to develop a radio as described above [6, 7]. The sensing ca-
pabilities are particularly difficult to realize, especially for a stand-alone transceiver [8].
Therefore, it has been proposed to support the radio by a sensor network [6]. A sensor
network consisting of many distributed nodes, can potentially scan multiple frequency
bands, at multiple different locations simultaneously. The data collected by the sensors
can in turn be used to decide if parts of the spectrum are available for usage.

The work presented in the thesis was mainly undertaken as a part of the CROPS 2 project
[6]. The target application for this project was precisely to utilize sensor networks to
support the operation of cognitive radios.

0.2 What this thesis is about

Reflecting on the above, a multitude of interesting and diverse research directions can
be justified: [6] points out and describes many of these. This thesis focuses on some of
the inference problems that the target application in [6] would entail: Regardless of what
phenomenon the sensor network monitors, the data it collects shall invariably serve to
estimate some quantity or to support some decision.

Hence, a number of statistical signal processing problems can be envisioned. We investi-
gate some of these, for very general classes of signals, under a Bayesian framework. In
particular, we focus on the linear model,

y = Hx+ n,

where y is an observed vector, H is a known matrix, x is the unknown signal of interest,
and n is noise.
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Such a linear model can represent a multitude of systems, and it is therefore frequently
seen in the engineering literature. Here, we mention just a few examples.

In telecommunications, the linear model commonly represents the input/output relation of
a communication system [9]. In this case, the signal x carries the information that should
be conveyed from the transmitter to the receiver. H represents the channel, which in
general is time-varying. For sufficiently short periods, however, it can always be regarded
as constant. The disturbance, n, models background noise and/or interference.

In image processing [10], x represents a patch of an image to be estimated,H is typically
a non-invertible degradation operator, and the noise is represented by n. Since the model
often is underdetermined, good patch models (a priori knowledge) become particularly
important.

In speech enhancement [11], Hx typically models the clean speech signal. The columns
ofH represent basis vectors, whereas the coefficients in x determine how these combine.
The noise is, as usual, collected in n.

Although we have mentioned some applications where the linear model is useful, many,
if not most, problems in engineering are actually governed by non-linear equations. Yet,
linear models are widely used also in these cases. The simple explanation is that non-
linear systems are much more difficult to analyze. A more reasonable explanation is that
many non-linear systems behave almost linearly for the input range of interest. As an
example, think of high fidelity stereo amplifiers. Clearly, higher order terms do exist,
but the linear terms tend to dominate for most inputs. Finally, it is not uncommon to
approximate systems to first order, around some point of interest. Such approximations
are of course not exact, but the toolbox for linear models is much richer than for non-linear
ones.

Throughout the thesis, x and n are assumed to be statistically independent and Gaussian
mixture (GM) distributed. Besides their ability to accurately approximate other distribu-
tions, Gaussian mixtures can account for asymmetry, heavy tails, and/or multi modality.
They can in principle model any random signal, and therefore Gaussian mixtures provide
great realism [12], [13]. In a communication setting, for example, a GM distributed x can
model most signal constellations: the limiting form of a GM distribution is a mixture of
Dirac pulses (e.g. a discrete distribution). The latter can, of course, represent most signal
constellations that we may imagine. As for the noise, n, a GM distribution may model
any type of disturbance - in particular, it may model phenomena that are not accurately
described by a purely Gaussian distribution. For example, the multiple access interference
in a dense ad hoc network is known to be non-Gaussian [14].

Assuming mixed Gaussian inputs, the present thesis studies problems related to the min-
imum mean square error (MMSE) when estimating x from the observation y. In this
case, the MMSE estimator has a closed form analytical expression, but the MMSE does
not. The implication is that the optimal estimator can be implemented [10,15–26], but its
performance is harder to assess. The existing literature has, as far as we can see, neither
properly bounded the MMSE, nor has it proposed MMSE reducing measures, such as
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linear precoders. This thesis makes an attempt at contributing in these areas.

Above, we have drawn motivation mainly from communications and signal processing.
For many of the problems that we will consider in the thesis, however, the analysis is
essentially application independent. Thus, it should be relevant across a large variety of
domains.

0.3 Thesis outline

The thesis has two main parts: This introduction, and a collection of papers. The intro-
duction provides context and theoretical background. Its remaining part is outlined as
follows. Section 0.4 indicates some of the related literature. Section 0.5 defines what a
GM distribution is, and collects some properties of GM distributed random vectors. Sec-
tion 0.6 lays the foundation for most of the problems that this thesis considers. It does so
by recalling the MMSE estimator, and its associated MMSE, for the linear model under
GM inputs. Complementing the literature, which tends to present this rather briefly, a
detailed and full derivation is provided here. Section 0.7 discusses how the results of the
thesis can be used, and in which contexts they could be interpreted. Section 0.8 lists the
collected papers, together with a summary (extended abstract) of each paper. Section 0.8
also mentions the papers that the author has contributed to, but chosen not to include in
the thesis.

The second part, and main body of the thesis, is a collection of papers, each paper corre-
sponding to one chapter. To a large extent, the papers are self contained. Consequently,
when assembled together, the reader must cope with some overlap and repetition. The
advantage is that each chapter can be read independently from the rest.

The second part is outlined as follows. In Chapter 1, we study the problem of localizing a
transmitting radio heard by a fixed sensor network. We assume that the prior distribution
on the transmitter’s location is governed by a GM. In Chapter 2, we derive analytical
upper and lower bounds on the MMSE when estimating x from the observation y. These
bounds are general and independent of the underlying application. We show that the upper
and lower bounds approach each other with increasing signal-to-noise ratio. In Chapter
3 we consider a matrix design problem. Specifically, we describe a procedure to design
the matrix H, under a set of constraints, such that x can be estimated from y with as
small mean square error (MSE) as possible. This problem is relevant when designing
pilot signals for channel estimation, or when designing error reducing linear precoders.
In Chapter 4, we also design pilot signals for channel estimation, but we assume that both
the noise and the channel are Gaussian (which is a special case of Gaussian mixtures).
Unlike some of the existing literature, we propose a procedure which does not assume
that the covariance matrices of the channel and the noise factorize as Kronecker products.

A more elaborate summary of each problem considered is given in Section 0.8, but the
detailed descriptions are deferred to the introductory part of each of the subsequent chap-
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ters.

Apart from a slight change in format (from double column conference/journal format to
the single column format of the thesis) the contents of the papers have not been modified.
The papers have been incorporated as they were submitted/accepted. However, the author
has taken the liberty to remove the bibliography following each original paper, and rather
organized an overarching bibliography at the end of the thesis.

0.4 Related groups of literature

This section points to some of the related literature, but it does not offer an extensive
survey. As for literature more specific to each problem considered in the thesis, a number
of references are provided in each of the corresponding papers.

MMSE estimation, assuming linear models under mixed Gaussian inputs, is studied par-
ticularly within three groups of the literature. The first one focuses on state sequence es-
timation via noisy measurements, presuming statistics that fit the GM paradigm. Selected
works include [13,27–32]. These studies offer (approximate or exact) GM posterior state
distributions, the mean always serving as the state estimate. For natural reasons, because
the settings are generally non stationary, none of these works analyze the MMSE.

The second group of studies uses GM distributions to simplify processing of speech,
audio and images. Selected works include [10, 15–26]. In these, one or more variates
are modeled by finite GMs. This is often sufficiently accurate, and allows good practical
estimators. However, none of these make an attempt at characterizing or reducing the
MMSE.

The third group offers general lower bounds on the MMSE, for any kind of input dis-
tributions. Included there, are the Bayesian bounds of Cramer-Rao [33], Bobrovsky-
Zakai [34], Bhattacharyya [33], Weiss-Weinstein [35], and Reuven-Messer [36]. These
bounds hold for most types of joint probability densities f(x,y) of practical interest, but
they rarely acquire analytical forms. Yet, these bounds are often simpler to evaluate nu-
merically than the MMSE. That feature makes them both attractive and useful. Like the
MMSE, the above mentioned bounds all become non-analytical when Gaussian mixtures
serve as input to a linear model. In contrast to the usual case, however, they do not be-
come simpler to evaluate numerically than the MMSE. Therefore, under such settings, do
the above mentioned bounds have limited practical value.

0.5 Gaussian Mixture (GM) distributions

Gaussian mixture distributions appear in all of the papers collected. The literature often
uses the equivalent term Gaussian Mixture Model (GMM). Gaussian mixtures are inter-
esting for several reasons. Firstly, they can accommodate heavy tails, asymmetry, and/or
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multi modality. Secondly, by judicious choice of parameters, a GM can approximate any
distribution to desired accuracy [12], [13]. Thirdly, GM distributions are commonly as-
sumed in practice because they simplify many problems in signal processing - notably so
within speech, audio, and image processing.

Because Gaussian mixtures are central in the thesis, we proceed by formally defining a
Gaussian mixture distribution. In addition, some important properties of GM distributed
random vectors (to be used throughout the thesis) are collected, in a number of proposi-
tions. These show that many of the well known properties of Gaussian random vectors
transfer to the Gaussian mixture case. In fact, exploiting the distribution and characteris-
tic function of a Gaussian random vector [37], these propositions are straightforward to
derive. Yet, they are not easily found in the literature. While Propositions 1 and 2 appear
in similar form in [38], the author could not find the other propositions presented below
anywhere else.

For this reason, and also to allow for a straightforward derivation of the MMSE estimator
and the MMSE in Section 0.6, the below propositions are collected here for convenience.

In the following, x denotes a vector in the (finite-dimensional) real Euclidean sample
space X. We define all vectors as column vectors, and assume all sample spaces to be
continuous.

Definition 1. Mixture distribution.
Let K be a (finite or infinte) countable index set. For each k ∈ K, let pk be the probability
of drawing index k from K, and let Pk be a probability distribution (or measure) on X.
Then, the convex combination

P =
∑
k∈K

pkPk (1)

defines a probability distribution on X. We call (1) a mixture distribution on X. The
cardinality of K determines the number of components in the mixture.
In writing, we will often take the fact that k belongs to an index set as implicit, i.e., we
often simply write k, instead of k ∈ K.

Definition 2. Gaussian Mixture (GM) distribution.
When all the component measures {Pk} are Gaussian, we call (1) a Gaussian mixture
(GM) distribution. We indicate that a random variable x is GM distributed by writing

x ∼
∑
k

pkN (u(k)
x ,C(k)

xx ). (2)

The set
{
pk,u

(k)
x ,C

(k)
xx

}
k∈K

is collectively referred to as the parameters of a Gaussian
mixture.
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Notation (2) should be read in the distributional sense, where x results from an imagined
two stage experiment. First, source k is activated with probability pk ≥ 0,

∑
k pk = 1.

Second, that source generates a Gaussian signal with distribution law N (u
(k)
x ,C

(k)
xx ).

Note, however, that for any observed x, we do not know which underlying Gaussian
source has generated it. Also note that in the special case of |K| = 1, then a GM distri-
bution becomes purely Gaussian. In theory, and for much of the analysis in the included
papers, K could well be an infinite set. However, for implementation of the MMSE esti-
mator (presuming a linear model under GM inputs) finite GMs are necessary on both the
signal and the noise. Otherwise, the MMSE estimator will be given as an infinite sum,
which cannot be implemented in software. This will become clear in Section 0.6, when
we recall the expression for MMSE estimator.

Proposition 1. Mean of a mixture.
Suppose Pk has finite mean

u(k)
x =

∫
x∈X

xdPk (x) .

Then the mixture distribution of (1) has mean

ux =
∑
k

pku
(k)
x .

Proof.

ux =

∫
x∈X

x
∑
k

pkdPk (x)

=
∑
k

pk

∫
x∈X

xdPk (x)

=
∑
k

pku
(k)
x .

Proposition 2. Covariance of a mixture.
Suppose Pk has finite mean u

(k)
x , and covariance matrix

C(k)
xx :=

∫
x∈X

(x− u(k)
x )(x− u(k)

x )TdPk (x) .

Then, the covariance of the mixture distribution (1) is

Cxx =
∑
k

pk

(
C(k)

xx + u(k)
x u(k)

x

T
)
− uxux

T .
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Proof. We use the fact that Cxx = E(xxT )− E(x)E(x)T by definition. Thus

Cxx =

∫
x∈X

xxT
∑
k

pkdPk (x)− uxu
T
x

=
∑
k

pk

∫
x∈X

xxTdPk (x)− uxux
T

=
∑
k

pk

(
C(k)

xx + u(k)
x u(k)

x

T
)
− uxux

T .

Proposition 3. Characteristic function of a GM distributed random vector.
Let x ∼ ∑

k pkN (u
(k)
x ,C

(k)
xx ). Then the characteristic function of x is

φ(t) =
∑
k

pke
itTu

(k)
x − 1

2
tTC

(k)
xx t.

for any real vector t.

Proof. For any real vector t, the characteristic function for x ∼ N (ux,Cxx) is (see
e.g. [37])

φ(t) =

∫
eit

TxdP (x) = eit
Tux−

1
2
tTCxxt

where P = N (ux,Cxx). Now, if x ∼ ∑
k pkN (u

(k)
x ,C

(k)
xx ), then the characteristic func-

tion is

φ(t) = E
(
eit

Tx
)

=

∫
eit

Tx
∑
k

pkdPk (x)

=
∑
k

pk

∫
eit

TxdPk (x)

=
∑
k

pke
itTu

(k)
x − 1

2
tTC

(k)
xx t.

Proposition 4. Joint distribution of independent GM distributed random vectors.
Let x ∼ ∑

k pkN (u
(k)
x ,C

(k)
xx ) and y ∼ ∑

r qrN (u
(r)
y ,C

(r)
yy), where x and y are mutually

independent. Then y and x are jointly GM distributed as[
y

x

]
∼

∑
k,r

pkqrN
([

u
(r)
y

u
(k)
x

]
,

[
C

(r)
yy 0

0 C
(k)
xx

])
.
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Proof. By Proposition 3, the characteristic functions of y and x are

φy(s) =
∑
r

qre
isTu

(r)
y − 1

2
sTC

(r)
yy s

and

φx(t) =
∑
k

pke
itTu

(k)
x − 1

2
tTC

(k)
xx t

respectively. Because of the independence, the characteristic function of the joint random
vector [yTxT ]T is

φy,x

([
s

t

])
= φy(s)φx(t)

=
∑
k,r

pkqre
i
(
sTu

(r)
y +tTu

(k)
x

)
− 1

2

(
sTC

(r)
yy s+tTC

(k)
xx t

)

=
∑
k,r

pkqr exp

(
i
[
sT tT

] [ u
(r)
y

u
(k)
x

]
− 1

2

[
sT tT

] [ C
(r)
yy 0

0 C
(k)
xx

] [
s

t

])

for any real vector [sT tT ]T .

Proposition 5. Affine transform of a GM distributed random vector.
Let y = Dx+ a, where x ∼ ∑

k pkN (u
(k)
x ,C

(k)
xx ),D is a deterministic matrix, and a is a

deterministic vector. Then y is distributed as

y ∼
∑
k

pkN (Du(k)
x + a,DC(k)

xxD
T ).

Proof.

φy(t) = E
(
eit

T (Dx+a)
)
= eit

T aE
(
ei(D

T t)
T
x
)

= eit
T a

∑
k

pke
i(DT t)

T
u
(k)
x − 1

2(DT t)
T
C

(k)
xx (DT t)

=
∑
k

pke
itT

(
Du

(k)
x +a

)
− 1

2
tTDC

(k)
xxDT t

.

Proposition 6. Marginal distribution of a GM distribution.
Let x ∼ ∑

k pkN (u
(k)
x ,C

(k)
xx ). Partition x into two sub vectors such that

x =

[
x1

x2

]
, u(k)

x =

[
u
(k)
x1

u
(k)
x2

]
, C(k)

xx =

[
C

(k)
x1x1 C

(k)
x1x2

C
(k)
x2x1 C

(k)
x2x2

]
.

Then the marginal distribution for x1 is
∑

k pkN (u
(k)
x1 ,C

(k)
x1x1).
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Proof. Without loss of generality, assume that x1 contains the p first elements of x. Let

D =

[
Ip 0
0 0

]
,

where Ip denotes the p × p identity matrix. Then x1 = Dx, and by Proposition 5 the
statement is proven.

The covariance matrix of a Gaussian random vector can, in principle, be singular. Ob-
serve, however, that the associated characteristic function does not rely on the inverse of
the covariance matrix (Proposition 3). The implication is that all of the above propositions
also hold when one or more of the component covariance matrices are singular.

0.6 Linear models with GM inputs: MMSE estimation

A recurring system model throughout this thesis is the following linear instance:

y = Hx+ n. (3)

Here y is a vector of observations, H is a known matrix, and x and n are mutually
independent random vectors with known Gaussian Mixture (GM) distributions:

x ∼
∑
k∈K

pkN
(
u(k)
x ,C(k)

xx

)
(4)

n ∼
∑
l∈L

qlN
(
u(l)
n ,C(l)

nn

)
. (5)

The input distributions are chosen for their flexibility and generality. As for the linear
model, it represents or approximates to first order, a multitude of systems - also beyond
the context of communications and signal processing. Throughout, we are interested in
problems related to the minimum mean square error (MMSE) when estimating x, based
on the observed output y.

By definition, the MMSE estimator is given by:

ux|y � E {x|y} =

∫
xf(x|y)dx. (6)

Here f(x|y) is the probability density function (PDF) of x given y. It is often termed the
posterior PDF. Clearly, the MMSE estimator (6) equals the posterior mean. Its associated
performance measure, is

MMSE � E
{‖x− ux|y‖22

}
=

∫∫
‖x− ux|y‖22f(x,y)dxdy

=

∫∫
‖x− ux|y‖22f(x|y)dxf(y)dy =

∫
Tr

(
Cx|y

)
f(y)dy. (7)
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Here, ‖·‖22 is the squared Euclidean norm, f(x,y) is the joint PDF of x and y, f(y) is the
marginal PDF for y, Tr(·) denotes the trace operator, andCx|y is the covariance matrix of
the posterior.

Although the MMSE estimator for x under these assumptions is known (see e.g. [15, 19,
39, 40]), it tends to be presented rather briefly. For this reason, and to make the thesis
more self-contained, we recall the full derivation of both the MMSE estimator (6), and
the MMSE (7) here. It will become clear that integral (7), in general, is non-analytical.
Hence, the MMSE of estimator (6) has no closed form analytical expression when the
inputs are GMs.

In what follows, the arguments are given in terms of the characteristic function of GM
distributed random vectors. As far as we know, this is not standard, but it gives a simple
and compact derivation. We assume that the matrix and all vectors in (3) are real. For the
complex case, the MMSE estimator and the MMSE can be derived in a straightforward
manner using e.g. [41, Section 15.8].

As standing assumption, x and n are independent and GM distributed as in (4) and (5),
and model (3) applies. Then, by Proposition 4, x and n are jointly GM distributed as[

x

n

]
∼

∑
k,l

pkqlN
([

u
(k)
x

u
(l)
n

]
,

[
C

(k)
xx 0

0 C
(l)
nn

])
.

By Proposition 5, a linear transform of a GM vector remains a GM vector. Hence, since
(3) amounts to [

y

x

]
=

[
H I

I 0

] [
x

n

]
,

the vector [yT xT ]T is GM distributed as well:[
y

x

]
∼ ∑

k,l pkqlN
([

Hu
(k)
x + u

(l)
n

u
(k)
x

]
,

[
HC

(k)
xxH

T +C
(l)
nn HC

(k)
xx

C
(k)
xxH

T C
(k)
xx

])
.

We write the corresponding joint probability density function as

f(y,x) =
∑
k,l

pkqlf
(k,l)(y,x), (8)

where f (k,l)(y,x) is a Gaussian density with mean[
Hu

(k)
x + u

(l)
n

u
(k)
x

]
=

[
u
(k,l)
y

u
(k)
x

]
,

and covariance [
HC

(k)
xxH

T +C
(l)
nn HC

(k)
xx

C
(k)
xxH

T C
(k)
xx

]
=

[
C

(k,l)
yy C

(k)
yx

C
(k)
xy C

(k)
xx

]
.
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Using Proposition 6, the marginal density for y is, as one might expect,

f(y) =
∑
k,l

pkqlf
(k,l)(y). (9)

Here f (k,l)(y) is a Gaussian density with mean u(k,l)
y and covariance C(k,l)

yy . The posterior
density follows from Bayes’ law as

f(x|y) = f(y,x)

f(y)
=

∑
k,l pkqlf

(k,l)(y,x)∑
r,s prqsf

(r,s)(y)

=

∑
k,l pkqlf

(k,l)(y)f (k,l)(x|y)∑
r,s prqsf

(r,s)(y)

=
∑
k,l

α(k,l)(y)f (k,l)(x|y), (10)

where

α(k,l)(y) =
pkqlf

(k,l)(y)∑
r,s prqsf

(r,s)(y)
. (11)

The weight, α(k,l)(y), can be seen as the joint probability of x and n originating from
components k and l respectively, given the observation y. Note that these weights are
non-linear in the observation y. Clearly, α(k,l)(y) ≥ 0 and

∑
k,l α

(k,l)(y) = 1.

In (10), f (k,l)(x|y) is a conditional density of a multivariate Gaussian density, f (k,l)(y,x).
Consequently, f (k,l)(x|y) is Gaussian (see e.g. Theorem 10.2 of [41]) with mean

u
(k,l)
x|y = u(k)

x +C(k)
xy

(
C(k,l)

yy

)−1 (
y − u(k,l)

y

)
(12)

= u(k)
x +C(k)

xxH
T
(
HC(k)

xxH
T +C(l)

nn

)−1 (
y −Hu(k)

x − u(l)
n

)
, (13)

and covariance

C
(k,l)
x|y = C(k)

xx −C(k)
xy

(
C(k,l)

yy

)−1
C(k)

yx (14)

= C(k)
xx −C(k)

xxH
T
(
HC(k)

xxH
T +C(l)

nn

)−1
HC(k)

xx , (15)

respectively. Clearly, by its expression, the posterior density f(x|y) of (10) is a GM. By
Proposition 1 & 2 that density has mean

ux|y =

∫
xf(x|y)dx =

∑
k,l

α(k,l)(y)u
(k,l)
x|y , (16)

and covariance

Cx|y =

∫ (
x− ux|y

) (
x− ux|y

)T
f(x|y)dx

=
∑
k,l

α(k,l)(y)
(
C

(k,l)
x|y + u

(k,l)
x|y u

(k,l)
x|y

T
)
− ux|yux|y

T . (17)
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The MMSE estimator corresponds to the posterior mean in (16). Its error covariance
matrix is given by (17). The trace of this matrix, averaged over all possible observations
y is the MMSE in (7). For the special case when |K| = |L| = 1 (purely Gaussian input
and purely Gaussian noise), the posterior density, f(x|y), is also Gaussian. Then the
mean (16) reduces to

ux|y = u
(1,1)
x|y (18)

and the covariance (17) takes the form

Cx|y = C
(1,1)
x|y . (19)

In this case, note from (18) and (13) that the MMSE estimator is linear in y, and from (19)
and (15) that the posterior covariance matrix does not depend on y. The latter property
makes it straightforward to characterize the MMSE when f(x|y) is Gaussian.
In the more general case, when f(x|y) is a multi-component GM, the MMSE estimator
(16) is non-linear in the observed data y because of the data dependent weights α(k,l)(y).
Furthermore, because the posterior covariance Cx|y in (17) depends on the observation
y, the MMSE becomes considerably more difficult to analyze. In fact, in this case, (7) is
a non-analytical integral. The implication is that, although the optimal estimator can be
implemented, its performance (MMSE) cannot be exactly characterized in closed form.

0.7 How to interpret the results of the thesis

The MMSE estimator in (16) requires central processing. That is, all elements of the
observation vector y must be known to compute the MMSE estimate. When the obser-
vation vector y is received by a sensor network, it could well be that each element of y
is observed by only one sensor. In that case, (16) can only be computed if each sensor
forwards its own observation to some central processing unit. Naturally, as the sensor
network grows, such signaling rapidly becomes impractical to handle. One alternative is
to divide the sensors into smaller groups, and let them share their observations to com-
pute local estimates. These local estimates may in turn be combined to compute a global
estimate. Such a distributed approach will, however, inevitably lead to less accurate es-
timation than the centralized counterpart. Moreover, distributed estimation raises several
non-trivial issues of its own. For one, which and how many sensors should form a group?
For another, how do local estimates best combine?

Although certainly interesting, the thesis avoids these and related questions by presuming
central processing throughout. Thus, in the context of a cognitive radio assisted by a
sensor network, our results may have practical or indicative value only for quite small
networks. For larger networks, our results serve as a benchmark: Because we consider
centralized and optimal estimation, other approaches (distributed estimation included)
cannot be better.

14



Even if such centralized computing may be unrealistic for controlling a cognitive radio,
it can more easily be justified for many of the problems within speech, audio and image
processing.

0.8 Collected papers and contributions

The main body of the thesis consists of the below listed papers. A summary gives an idea
about the problem at hand and the contributions of each paper.

Paper 1

Flåm J.T., Jaldén J., and Chatterjee S. “Gaussian Mixture Modeling for Source Lo-
calization”, IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 2011.

Summary: We wish to localize a transmitting radio based on the received signal strength
of a known signature signal at several sensors in known positions. Assuming a wideband
and log-normal shadowing model, the received power at sensor i , in dB, is commonly
modelled as

ri = −10γ log (‖z− qi‖) + si = mi(z) + si.

Here, ‖z− qi‖ is the Euclidean distance from the source in unknown position z to sensor i
in known position qi, γ is the path loss exponent, and si ∼ N (0, σ2

i ) is a Gaussian random
variable accounting for the shadowing between the source and sensor i. We assume then
both γ and σ2

i are known. With M sensors in the network, the above equation can be
written in vector form

r = m(z) + s,

wherem(z) is the vector withmi(z) as its i-th component, and s ∼ N (0,C) where C is
generally non-diagonal.

The problem is to estimate the source position z based on the observation r. In order
to solve it, we take a Bayesian approach which does not involve numerical integration.
Specifically, we approximate the probability density function ofm(z) by a Gaussian mix-
ture. The approximation allows a two stage estimation technique: Firstly, a closed form
MMSE estimator, m̂(z), for m(z) is derived. Secondly, an estimate of the source posi-
tion, z, is obtained by minimizing the Euclidean distance betweenm(z) and m̂(z) using
a gradient method. Numerical experiments indicate that this approach requires fewer
computations than an (accurate) MMSE estimator based on numerical integration. Yet, it
shows comparable accuracy. To the best of our knowledge, it has not been investigated in
the context of localization before.
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Paper 2

Flåm J.T., Chatterjee S., Kansanen K., and Ekman T. “On MMSE Estimation: A Linear
Model Under Gaussian Mixture Statistics”, IEEE Transactions on Signal Processing,
Volume: 60 , Issue: 7, 2012.

Summary: Assume the system model governed by equations (3),(4) and (5) of Sec-
tion 0.6. With known matrix H, the MMSE estimator for x has analytical form, but in
contrast to the familiar case of Gaussian inputs, the MMSE does not. Thus, while the
optimal estimator is implementable, its performance is harder to assess. Moreover, in this
setup, existing Bayesian lower bounds, such as those of Cramer-Rao, Bobrovsky-Zakai,
Bhattacharyya, Weiss-Weinstein and Reuven-Messer become no easier to estimate than
the MMSE itself. Our objective is therefore to bound the MMSE analytically, both from
above and below, and to relate these bounds to the signal-to-noise-ratio.

We find that the MMSE is lower bounded by the mean square error of a ’genie-aided’ esti-
mator. This imaginary, non-implementable estimator knows precisely which source in the
mixture is active, at any time, both for x and n. It is therefore much better informed than
the MMSE estimator. Yet, simulations indicate that the MMSE estimator is comparably
accurate for SNRs above a quite modest threshold (approximately 10 dB in our numerical
experiments). The upper bound is provided by the MSE of the linear MMSE (LMMSE)
estimator. In fact, we show that the LMMSE estimator becomes the MMSE estimator in
two extreme cases: when the SNR is either zero or infinite. However, simulations indicate
that the LMMSE estimator is nearly MSE optimal, not only at these extreme points, but
for a large range of SNRs. The upper and lower bounds have closed form expressions,
and are straightforward to calculate. Because they approach each other with increasing
SNR, the MMSE can be determined rather accurately when the SNR is moderate to high.

Paper 3

Flåm J.T., Zachariah D., Vehkaperä M. and Chatterjee S. “The Linear Model under
Mixed Gaussian Inputs: Designing the Transfer Matrix”, In review for IEEE Trans-
actions on Signal Processing.

Summary: Suppose the system model defined by equations (3),(4) and (5). The problem
is to design the transfer matrix H, under a set of constraints, so as to minimize the mean
square error (MSE) when estimating x from y. This problem has important applications,
but faces at least three hurdles. Firstly, even for a fixed H, the minimum MSE (MMSE)
has no analytical form. Secondly, the MMSE is generally not convex in H. Thirdly,
derivatives of the MMSE w.r.t. H are hard to obtain. This paper casts the problem as a
stochastic program and invokes gradient methods. The procedure combines, iteratively,
the idea of sampling and refinement.

The study is motivated by two applications in signal processing. One concerns the choice
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of error-reducing precoders; the other deals with selection of pilot matrices for channel
estimation. In either setting, our numerical results indicate improved estimation accu-
racy - markedly better than those obtained by optimal design based on standard linear
estimators.

Some implications of the non-convexities of the MMSE are noteworthy, yet, to our knowl-
edge, not well known. For example, there exist cases in which increasing the pilot power
leads to worse channel estimates. This paper explains why.

Paper 4

Flåm J.T., Björnson E. and Chatterjee S. “Pilot Design for MIMO channel estimation:
An Alternative to the Kronecker Structure Assumption”, Accepted for IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP) 2013.

Summary: Under the assumption of a linear communication model corrupted by Gaus-
sian noise, this work seeks to design a power constrained pilot signal, such that the channel
matrix can be estimated with minimum mean square error. The noise and the channel are
modeled as independent, multivariate Gaussians, with covariance matrices Cnn and Cxx

respectively. Without making limiting assumptions, the associated pilot design problem
is generally non-convex.

Unlike some of the literature, we propose an approach which avoids one of these assump-
tions; namely that of a Kronecker structure on the covariance matrices. The Kronecker
structure implies that the covariance matrices factorize as Kronecker products:

Cxx = XT
T ⊗XR and Cnn = NT

T ⊗NR.

Such Kronecker factorizations allow for tractable analysis. In general, however, arbitrary
covariance matrices do not factor like this. In fact, assuming a Kronecker structure im-
poses quite severe restrictions on the correlation. The present work offers an alternative
approach.

Briefly, the pilot signal is obtained in three main steps. Firstly, we solve a relaxed, but
convex, version of the original minimization problem. Secondly, its solution is projected
onto the set of feasible pilot signals. Thirdly, we use the projected solution as starting
point for an augmented Lagrangian method. Numerical experiments indicate that this
procedure may produce pilot signals that are far better than those obtained under the
Kronecker structure assumption.

First author papers not presented in this thesis

The following paper is, to a large extent, a conference version of Paper 3. It makes use of
finite difference approximations instead of exact stochastic gradients. Hence, the Kiefer-
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Wolfowitz algorithm comes to replace the more accurate Robbins-Monro procedure. The
focus is limited to design of linear precoders. Because paper 3 essentially covers the same
topic, but is more elaborate, the following paper has not been included.

Flåm J.T., Vehkaperä M., Zachariah D. and Tsakonas E. “Mean Square Error Reduction
by Precoding of Mixed Gaussian Input”, International Symposium on Information The-
ory and its Applications, 2012.
Abstract: Suppose a vector of observations y = Hx+ n stems from independent inputs
x and n, both of which are Gaussian Mixture (GM) distributed, and thatH is a fixed and
known matrix. This work focuses on the design of a precoding matrix, F, such that the
model modifies to z = HFx+n. The goal is to design F such that the mean square error
(MSE) when estimating x from z is smaller than when estimating x from y. We do this
under the restriction E[(Fx)TFx] ≤ PT , that is, the precoder cannot exceed an average
power constraint. Although the minimum mean square error (MMSE) estimator, for any
fixed F, has a closed form, the MMSE does not under these settings. This complicates the
design of F. We investigate the effect of two different precoders, when used in conjunc-
tion with the MMSE estimator. The first is the linear MMSE (LMMSE) precoder. This
precoder will be mismatched to the MMSE estimator, unless x and n are purely Gaussian
variates. We find that it may provide MMSE gains in some setting, but be harmful in
others. Because the LMMSE precoder is particularly simple to obtain, it should never-
theless be considered. The second precoder we investigate, is derived as the solution to a
stochastic optimization problem, where the objective is to minimize the MMSE. As such,
this precoder is matched to the MMSE estimator. It is derived using the Kiefer-Wolfowitz
algorithm, which moves iteratively from an initially chosen F0 to a local minimizer F∗.
Simulations indicate that the resulting precoder has promising performance.

The following two papers neither assume linear models, nor do they assume Gaussian
mixture statistics. Therefore, I have chosen not to include them.

Flåm J.T., Kraidy G.M., and Ryan D.J. “Using a Sensor Network to Localize a Source
under Spatially Correlated Shadowing”, IEEE 71st Vehicular Technology Conference,
2010.
Abstract: This paper considers the use of a sensor network to estimate the position of
a transmitting radio based on the received signal strength at the sensors. A generic path
loss model which includes the effects of spatially correlated shadowing is assumed. A
weighted likelihood (WL) estimator is proposed, which can be seen as a simplified min-
imum mean square error (MMSE) estimator. This estimator can be used for localizing a
source in a static scenario or it can provide the initial position estimate of a tracking al-
gorithm. The performance of the WL estimator is simulated, and robustness to erroneous
assumptions about path loss exponent, shadowing variance and correlation distance is
demonstrated.

Flåm J.T., Øien G., Kim A.N., and Kansanen K. “Sensor Requirements and Interference
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Management in Cognitive Radio”, Presented at European Cooperation in the Field of
Scientific and Technical Research (COST 2100), Braunschweig, Germany, 16-18 febru-
ary, 2009.
Abstract: In sensor network aided cognitive radio, the goal is to find and use licensed fre-
quencies without causing interference, with the aid of sensors deployed for that purpose.
A licensed transceiver/primary user (PU) is interfered when a cognitive radio/secondary
user (SU), located within a certain range, transmits on the same frequency. The actual
distance between these entities can be estimated after localization by the sensor network.
But, unless the localization is exact, the distance estimate is uncertain. Therefore, if the
same frequency is used, there is a non-zero probability that the SU will interfere with the
PU, even if power control is used in an attempt to avoid this. This interference probability
is the focus of this paper. Based on uncertain localization, the probability of an SU caus-
ing interference to a PU is computed. Knowledge of this probability can, for example, be
used for SU power control. We demonstrate that the interference probability not only de-
pends on the SU transmit power, but also on the relative difference in sensitivity between
the sensor and the PU.

Co-authored papers not presented in this thesis

Moussakhani B., Flåm J.T., Støa S., Balasingham I. and Ramstad, T. “On Localisation
Accuracy inside the Human Abdomen Region”, Journal on Wireless Sensor Systems,
The Institution of Engineering and Technology, Volume: 2 , Issue: 1, 2012.
Abstract: In this work, localisation of a source within an absorbing medium is consid-
ered. By an absorbing medium, the authors mean an environment where the signal power
decays exponentially with distance. The authors assume that the source is heard by nearby
sensors when transmitting and its position shall be estimated based on the received signal
strength (RSS) by these sensors. Under these assumptions, the focus is to determine the
Cramer-Rao lower bound (CRLB). Thus, the goal is to derive the theoretical performance
limit for an optimal estimator, and to study the feasibility of RSS-based localisation in an
absorbing environment and specifically in human abdominal region. The authors demon-
strate that the CRLB greatly depends on the shadowing conditions, and also on the relative
positions of the sensors and the source. Although the obtained results are quite general,
the motivating application is localisation of capsule endoscope in human abdominal re-
gion. The authors find that the RSS-based method can reach the needed accuracy for
localising a capsule endoscope.

Moussakhani B., Ramstad T., Flåm, J.T. and Balasingham I. “On Localizing a Capsule
Endoscope usingMagnetic Sensors”, 2012 Annual International Conference of the IEEE
on Engineering in Medicine and Biology Society (EMBC).
Abstract: In this work, localizing a capsule endoscope within the gastrointestinal tract
is addressed. It is assumed that the capsule is equipped with a magnet, and that a mag-
netic sensor network measures the flux from this magnet. We assume no prior knowledge
on the source location, and that the measurements collected by the sensors are corrupted
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by thermal Gaussian noise only. Under these assumptions, we focus on determining the
Cramer-Rao Lower Bound (CRLB) for the location of the endoscope. Thus, we are not
studying specific estimators, but rather the theoretical performance of an optimal one. It
is demonstrated that the CRLB is a function of the distance and angle between the sensor
network and the magnet. By studying the CRLB with respect to different sensor array
constellations, we are able to indicate favorable constellations.

Moussakhani B., Flåm J.T., Ramstad T. and Balasingham I. “On the CRLB for Source
Localization in a Lossy Environment” 2011 IEEE 12th International Workshop on Sig-
nal Processing Advances in Wireless Communications (SPAWC).
Abstract: In this work, localization of a source within a lossy medium is considered. By
a lossy medium we mean an environment where the signal power decays exponentially
with distance. We assume no prior knowledge on the source location, but that the source
is heard by nearby sensors when transmitting. The source position shall be estimated
based on the power received by these sensors. Under these assumptions, our focus is to
determine the Cramer-Rao Lower Bound (CRLB). Thus, we are not studying specific es-
timators, but rather the (theoretical) performance of an optimal one. We demonstrate that
the CRLB greatly depends on the shadowing conditions, and also on the relative positions
of the sensors and the source. This spatial variability of the CRLB is used to discuss fa-
vorable positioning of the sensors.

Moussakhani B., Flåm J.T., Ramstad T. and Balasingham I. “On Additive Change De-
tection in a Kalman Filter Based Tracking Problem”, Submitted to Elsevier Journal on
Signal Processing, January, 2013.
Abstract: This work considers detecting an additive abrupt state change in a tracking pro-
cess. It is assumed that the tracking is done by a Kalman Filter and that the abrupt change
takes place after the steady-state behavior of the filter is reached. The effect of the addi-
tive change on the innovation process is expressed in closed form, and we show that the
optimal detection method depends on the available information, contained in the change
vector. We take a Bayesian perspective and show that prior knowledge on the nature of
the change can be used to significantly improve the detection performance. Specifically,
we show that the performance of such a detector coincides with that of a matched filter
when the variance (uncertainty) of the change tends to zero, and it coincides with that of
an energy detector when the variance tends to infinity.
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Paper 1

Gaussian Mixture Modeling for Source
Localization

John T. Flåm, Joakim Jaldén and Saikat Chatterjee1

1.1 Abstract

Exploiting prior knowledge, we use Bayesian estimation to localize a source heard by a
fixed sensor network. The method has two main aspects: Firstly, the probability density
function (PDF) of a function of the source location is approximated by a Gaussian mixture
model (GMM). This approximation can theoretically be made arbitrarily accurate, and
allows a closed form minimum mean square error (MMSE) estimator for that function.
Secondly, the source location is retrieved by minimizing the Euclidean distance between
the function and its MMSE estimate using a gradient method. Our method avoids the
issues of a numerical MMSE estimator but shows comparable accuracy.

1.2 Introduction

We wish to localize a transmitting radio based on the received signal strength (RSS)2 of a
known signature signal at several sensors in known positions. If the transmitted signal is
sufficiently wideband, a log-normal shadowing model can be assumed. Then, the received

1John T. Flåm is with the Department of Electronics and Telecommunications, NTNU-Norwegian Uni-
versity of Science and Technology, Trondheim, Norway. Email: flam@iet.ntnu.no. Joakim Jaldén and
Saikat Chatterjee are with the School of Electrical Engineering, KTH-Royal Institute of Technology, Swe-
den. Emails: joakim.jalden@ee.kth.se, sach@kth.se.

2There are other techniques for localization, such as time difference of arrival (TDOA), or triangulation
by directions of arrival (DOA), but these techniques generally require more complex receivers.
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power at sensor i is commonly modeled as

ri = c0 − 10γ log (‖z− qi‖ /d0) + si,

where all terms of the equation are in units of dB. Here, ri is the power received by
sensor i, c0 is the average received power at a reference distance d0 away from the source,
‖z− qi‖ is the euclidean distance from the source in unknown position z ∈ R

D to sensor
i in known position qi ∈ R

D (with D = 2 or 3), γ is the path loss exponent and si ∼
N (0, σ2

i ) is a Gaussian random variable (RV) representing the shadowing between the
source and sensor i. We assume that c0 = 0 dB and d0 = 1, without loss of generality,
and that both γ and σ2

i are known. The received power then simplifies to

ri = −10γ log (‖z− qi‖) + si = mi(z) + si. (1.1)

WithM sensors in the network, equation (1.1) can be written in vector form

r = m(z) + s, (1.2)

wherem(z) is the vector withmi(z) as its i-th component, s ∼ N (0,C) and C is gener-
ally non-diagonal [42].

If the sensors and the source do not move, then neither m(z) nor the realization of s
change, hence r is a constant vector3. Then, the problem is to estimate the source position
z ∈ R

D based on a single observation of r ∈ R
M , where typicallyM > D.

This problem is one on which there exists much related work. A good introduction to the
general localization problem and different localization techniques can be found in [43],
and the references therein. Particularly relevant are works on RSS-based localization
with a Bayesian approach. In [44], a uniform source position density is assumed, and the
resulting numerical MMSE estimator4 is investigated. The work in [45] assumes motion
on the source, and Bayesian tracking algorithms are investigated. Location estimation
based on so-called fingerprinting is investigated in [46] .

We take a non-numerical, Bayesian approach to solving the described problem. Specif-
ically, we approximate the PDF of m(z) with a Gaussian mixture model (GMM). This
approximation allows a two stage estimation technique: Firstly, a closed form MMSE es-
timator, m̂(z), form(z) can computed. Secondly, the source position, z, can be retrieved
by minimizing the Euclidean distance between m(z) and m̂(z) using a gradient search
method. This estimation technique generally requires fewer computations than a numeri-
cal MMSE estimator for z, but shows comparable accuracy. To the best of our knowledge,
it has not been investigated in the context of localization before. Notation: we use f(x)
to denote the PDF of x, and, for simplicity, we mostly writem instead ofm(z).

3Such a stationary scenario may be justified if the source is nomadic (e.g. moves to a location, switches
on for a relatively long active session, then switches off and moves again).

4’Numerical MMSE estimator’ is short for an MMSE estimator based on numerical integration.
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1.3 MMSE Estimation

This section first presents and justifies the GMM approximation of f(m). Then we
present a closed form MMSE estimator for m. Finally, we argue that the parameters
of the GMM approximation of f(m) should be derived from a GMM approximation of
f(z).

1.3.1 GMM approximation

For arbitrary prior distributions on m a closed form MMSE estimator can generally not
be found5. However, if the PDF ofm is approximated by aK component GMM such that

f(m) ≈
K∑
k=1

p(k)f(m;uk,Dk), (1.3)

where f(m;uk,Dk) is a Gaussian PDF with mean uk, covariance Dk and probability
p(k), a closed form MMSE estimator for m does exist. The approximation in equation
(1.3) is not only mathematically convenient, it is also justifiable: Firstly, any PDF may
be arbitrarily accurately approximated by a GMM, if the number of components in the
model is large, and the mean and covariance of each component are properly chosen
[47]. Secondly, in some scenarios, users tend to cluster around certain hot spots within
a geographical area [48]. In that case, the PDF of z is multi modal, and consequently
the PDF of m(z) will also be multi modal. Approximating it by a GMM is therefore
reasonable.

1.3.2 MMSE estimator

For the model described by equation (1.2), and if f(m) is approximated by a GMM ofK
components as in equation (1.3), then it can be shown, e.g. using [39], that the MMSE
estimator form(z) is

m̂ =

∑K
k=1 vk(r)xk(r)∑K

k=1 vk(r)
. (1.4)

Here

vk(r) =
p(k)e

1
2 [(uT

k
D−1

k
+rTC−1)(C−1+D−1

k
)−1(D−1

k
uk+C−1r)]

e
1
2
uT
k
D−1

k
uk |(C+Dk)|1/2

(1.5)

and

xk(r) = (C−1 +D−1
k )−1(D−1

k uk +C−1r).

5Recall thatm is a function of a random argument, hence it is random and has a prior.
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In the special case when f(m) is approximated by a single Gaussian PDF, m̂ turns into
the well known MMSE estimator resulting from the Bayesian linear model; see [41].
Assuming that all terms on the right hand side of equation (1.4) are known, one must
retrieve a plausible z from m̂, to get an estimate for the source position. We address that
issue in Section 1.4.

All matrix inversions in vk(r) and xk(r) can be computed off line. Only the terms that
involve the observation r must be computed on line. For vk(r), these include two inner
products and a quadratic form. For xk(r), it involves a matrix-vector product. Therefore,
the total number of multiplications and additions needed to compute m̂ is O(M2K).

1.3.3 Determining the parameters of the GMM

The parameters uk, Dk and p(k) in equation (1.3) are determined by means of train-
ing. For this purpose, we use the expectation maximization (EM) algorithm, the literature
on which is rich [41], [49], [50]. Briefly, the EM algorithm relies on a sequence of in-
dependent observations drawn from the distribution we wish to approximate, and some
initial estimate of the parameters. The observations are used to optimize the parameters
iteratively until they converge to a local maximum of the likelihood function. This may
generally require many iterations, and therefore f(m) is best suited for GMM approxi-
mation if it is stationary. In this paper we assume that the spatial distribution of the source
is stationary.

The number of components in the model, K, does not result from the algorithm. It must
be chosen in advance by the designer and represents a trade off: a GMM of K compo-
nents, describing anM dimensional RV, generally has O(M2K) parameters that must be
estimated. Thus, increasing K leads to larger variance in the estimated parameters when
the training sequence is finite. In our simple simulation scenarios, the training data form
distinct clusters, and we simply choose K equal to the number of clusters. The resulting
localization accuracy indicates that this works rather well, and that, in practice, the GMM
approximation may be satisfactory even when K is limited. Generally, when distinct
clusters are less apparent, there are several strategies on choosingK, see e.g. [51].

Assume now that a finite training sequence of z’s (realizations of source positions) is
available, and we have computed the corresponding sequence of m(z)’s. If we could
choose between approximating f(m) or f(z) by a GMM of K components, the former
involves estimating a much larger number of parameters, wheneverM > D. Therefore,
one should expect that the EM algorithm approximates f(z) more accurately than f(m),
at least on average. We shall exploit this, and approximate f(m) via a GMM approxima-
tion of f(z), as follows. Firstly, the PDF of z is approximated by a GMM

f(z) ≈
K∑
k=1

p(k)f(z; zk,Sk), (1.6)

where the means zk, covariances Sk and probabilities p(k) are parameters resulting from

26



the EM algorithm with random initial values. Note that the accuracy of this approximation
depends on K and the estimated parameters - it is independent of the number of sensors,
M . Now, given that z originates from component k of the GMM in (1.6), the first order
approximation ofm(z) is

m(z)|k ≈ m(zk) +∇m(zk)(z− zk), (1.7)

where ∇m(zk) denotes the Jacobian. Equation (1.7) is an affine transform of a Gaussian
random variable. The result is Gaussian, even when the transform expands from low to
high dimension [37], as in our case. Thus,m(z)|k is Gaussian with mean

uk = E {m(z)|k} ≈ m(zk), (1.8)

and covariance

Dk ≈∇m(zk)Sk∇m(zk)
T .

Dk is rank deficient, whenever M > D, because ∇m(zk) is M × D and Sk is D × D.
This is a problem if we are interested in a PDF form(z)|k. An engineering solution, is to
allow a small Gaussian noise term to the linear approximation, such that

m(z)|k ≈ m(zk) +∇m(zk)(z− zk) +w,

where w ∼ N (0, σ2
wI). In this case we get

Dk ≈ ∇m(zk)Sk∇m(zk)
T + σ2

wI, (1.9)

which is of full rank6. Thusm(z)|k is approximately Gaussian

f(m(z)|k) ≈ f(m;uk,Dk),

and the marginal PDF form(z) is approximately a GMM

f(m(z)) ≈
K∑
k=1

p(k)f(m;uk,Dk). (1.10)

as in equation (1.3). The benefit of starting with equation (1.6), and linearizing m(z),
is that we may now see equations (1.8) and (1.9) as reasonable initial parameters which
improve the approximation in equation (1.10) when using the EM algorithm. In turn, this
produces a better estimator, as we shall see in section 1.5.

6Our choice of σ2

w
does of course affect the estimator, and could be a topic of investigation. In this

paper, we simply choose a small value for σ2

w
which does not introduce numerical instability when Dk is

inverted.
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Figure 1.1: Non-convex Euclidean distance function sampled on a rectangular grid.

1.4 Retrieving the source position

Having computed m̂ (the estimate ofm(z)) we must retrieve a plausible source position
z. In this context, we assume that the function m(z) is one-to-one: conditions for this
can be found in [52], and they are not difficult to satisfy in practice. Due to the GMM
approximation and the shadowing, we cannot expect to find a zwhich satisfies m̂ = m(z),
even when m(z) is one-to-one. Instead, we must find a z which is satisfactory in some
sense. One solution is to use that z which minimizes the Euclidean distance between
m(z) and m̂. This distance is

d(z|m̂) =
√

(m̂−m(z))T (m̂−m(z)). (1.11)

Figure 1.1 shows an example realization of d(z|m̂); it is clearly non-convex. Here, the
source has a constant and known height (1.5 m), and its true xy-coordinates are close to
the origin. There are five sensors placed on a circle around the origin in the xy-plane.
The saddle points are local minima of d(z|m̂) where a gradient method theoretically may
stop, but this is very unlikely. An analogy explains this informally: If gravity works
on a ball placed randomly on the face of d(z|m̂), it is unlikely to come to rest at one
of the saddle points - in most cases the ball will settle at the lowest point. The same
happens for a randomly started gradient method. We have tested this also for random
sensor configurations, and it does not seem to change the argument. We will refer to the
joint procedure of first computing m̂ and then minimizing equation (1.11) using a gradient
method as a Euclidean estimator.
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Figure 1.2: Left: Truncated GMM as source position density. Right: Cylinder shaped
source position density.

1.5 Simulations

The performance of the Euclidean estimator is tested through Monte Carlo simulations.
Since we wish to compare its accuracy with a numerical MMSE estimator, we simplify
by assuming that the height of the source is constant and known (1.5 m). The sensors are
placed in the xy-plane, on a circle with radius 10m around the origin, and we introduce
spatially correlated shadowing using the empirical model presented in [42]:

Cij = E[sisj] = σ2e−dij/Xc , (1.12)

where dij is the distance between sensor i and sensor j, andXc is the correlation distance.
We set σ2 = 6 and Xc = 10m.

Arguably, it is most interesting to see how our estimator deals with non Gaussian source
distributions. To this end, we assume that the source transmits from a rectangular area,
and that its spatial distribution within this area is a truncated GMM, shown in the left
part of Figure 1.2. 3 This density has three hot spots, and since it has limited support
it is not a GMM. We approximate it by a GMM with three components based on 25000
independent training samples. As initial estimates, we assume uniform component prob-
abilities, three random sample positions as the means, and diagonal covariance matrices.
Based on the GMM approximation for f(z), we follow the steps in Section 1.3.3 (using
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Figure 1.3: Mean squared error between estimates and the true source position versus
number of receiving sensors. The source has a truncated GMM shown in left part of
Figure 1.2.

σ2
w = 0.01) to obtain a GMM approximation for f(m(z)). The mean square error (MSE)
of the resulting estimator, denoted by ’Euclidean’, is shown in Figure 1.3, for an increas-
ing number of sensors. In Figure 1.3, ’Direct’ denotes the MSE of an estimator obtained
by skipping the GMM approximation for f(z), and running the EM algorithm directly
to find a GMM approximation for f(m(z)). Its fluctuating MSE curve is due to the ran-
dom initializations of the EM algorithm: each time a sensor is added to the network, the
prior f(m) is approximated by a GMM with randomly chosen initial parameter sets. The
MSE fluctuations reflect fortunate and unfortunate approximations of the prior. The MSE
curve can be smoothed by averaging the performance over multiple ’Direct’ estimators
(all based on different initial parameters, and hence different prior approximations). ’Av-
erage’ denotes the MSE of 30 such estimators. The MSE of the ’Euclidean’ estimator,
on the other hand, does not fluctuate in the same way. Each time a new sensor is added
to the network, the initial parameters of the GMM approximation for f(m) are chosen,
not randomly, but according to equations (1.8) and (1.9). The MSE of the ’Euclidean’
estimator is clearly smaller than that of the ’Direct’ estimator, and quite close to the nu-
merical MMSE estimator. It underlines the importance of good initial parameters and that
the GMM approximation of f(m) should go via a GMM approximation of f(z).

For the second performance test, we repeat the above experiment with a more distinctly
non-Gaussian source distribution, shown in the right part of Figure 1.2. Again, we ap-
proximate this source distribution by a GMM of three components. The performance
of the estimators are shown in Figure 1.4. Note that the ’Euclidean’ and the numerical
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Figure 1.4: Mean squared error between estimates and the true source position versus
number of receiving sensors. The source has a cylindrical density shown in right part of
Figure 1.2.

MMSE estimator have almost identical MSEs, while the ’Direct’ estimator shows highly
varying degree of accuracy.

Disregarding any training, the complexity of these estimators is approximately the follow-
ing: For the ’Euclidean’ and ’Direct’ estimators, computing m̂ dominates the complexity:
O(M2K). For the numerical MMSE estimator, computed over U points: O(M2U). In
our case, we used a rectangular grid of 1m resolution (U = 21 · 21 = 441).

1.6 Conclusion

We have proposed a source localization technique consisting of two stages: MMSE esti-
mation of a function of the source location followed by Euclidean distance minimization.
The first stage requires training where the prior PDF is approximated by a GMM, but if
the prior is stationary this training only has to be done once. Furthermore, compared to
a numerical MMSE estimator, our approach need not worry about size, location and res-
olution of the grid of integration. In addition, it generally requires fewer computations.
This estimator has been tested for two non Gaussian source distributions. In both cases
the accuracy of the estimates is very close to that of a numerical MMSE estimator.
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Paper 2

On MMSE estimation: A Linear Model
under Gaussian Mixture Statistics

John T. Flåm, Saikat Chatterjee, Kimmo Kansanen, Torbjörn Ekman1

2.1 Abstract

In a Bayesian linear model, suppose observation y = Hx + n stems from independent
inputs x and n which are Gaussian mixture (GM) distributed. With known matrix H,
the minimum mean square error (MMSE) estimator for x, has analytical form. However,
its performance measure, the MMSE itself, has no such closed form. Because existing
Bayesian MMSE bounds prove to have limited practical value under these settings, we
instead seek analytical bounds for the MMSE, both upper and lower. This paper provides
such bounds, and relates them to the signal-to-noise-ratio (SNR).

2.2 Introduction

In estimation theory, an important instance is the linear model

y = Hx+ n. (2.1)

In this paper, y is a vector of observations, H is a known matrix, x is a vector to be
estimated, and n is a vector of noise. We assume a Bayesian setting where the distribu-
tions on x and n are known a priori. Specifically, we posit x and n to be independent

1John T. Flåm, Kimmo Kansanen and Torbjörn Ekman are all with the Department of Electron-
ics and Telecommunications, NTNU-Norwegian University of Science and Technology, Trondheim,
Norway. Emails: flam.john@gmail.com, flam@iet.ntnu.no, kimmo.kansanen@iet.ntnu.no and torb-
jorn.ekman@iet.ntnu.no. Saikat Chatterjee is with the Communication Theory Lab, School of Electrical
Engineering, KTH-Royal Institute of Technology, Sweden. Email: saikatchatt@gmail.com, sach@kth.se.
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and Gaussian Mixture (GM) distributed. In order to estimate x, we use the the minimum
mean square error (MMSE) estimator

ux|y � E {x|y} , (2.2)

and inquire about its performance, measured by the MMSE:

E
{‖x− ux|y‖22

}
. (2.3)

With GM inputs to (2.1), ux|y becomes analytical, but in contrast to the familiar case
of Gaussian inputs, the MMSE does not. Thus, while the optimal estimator is imple-
mentable, and used in practice, its performance is harder to assess. Moreover, in this
setup, existing Bayesian bounds on the MMSE become no easier to estimate than the
MMSE itself. Our objective is therefore to bound the MMSE analytically, both from
above and below, and to relate these bounds to the signal-to-noise-ratio (SNR).

We find that the MMSE is lower bounded by the mean square error (MSE) of a ’genie-
aided’ estimator. This imaginary, non-implementable estimator knows precisely which
source in the mixture is active, at any time, both for x and n. It is therefore much better
informed than the MMSE estimator. Yet, simulations indicate that the MMSE estimator
is comparably accurate for SNRs above a quite modest threshold. The upper bound is
provided by the MSE of the linear MMSE (LMMSE) estimator. In fact, we show that the
LMMSE estimator becomes theMMSE estimator in two extreme cases: when the SNR is
either zero or infinite. However, simulations indicate that the LMMSE estimator is nearly
MSE optimal for a much larger range of SNR. The upper and lower bounds have closed
form expressions, and are straightforward to calculate. Because they approach each other
with increasing SNR, the MMSE can be determined rather accurately when the SNR is
moderate to high.

The paper is organized as follows. Section 2.3 defines and motivates the input model
and reviews parts of the related literature. Section 2.4 presents the main contribution:
the upper and lower bounds of the MMSE. Section 2.5 proves the MMSE bounds, and
analyzes them in the asymptotic cases of zero and infinite SNR. Section 2.6 simulates how
the MMSE evolves, between its bounds, as a function of SNR. Section 2.7 concludes.

2.3 Input model and related work

We assume x and n in (2.1) to be independent and GM distributed:

x ∼
∑
k∈K

pkN
(
u(k)
x ,C(k)

xx

)
, n ∼

∑
l∈L

qlN
(
u(l)
n ,C(l)

nn

)
. (2.4)

This notation should be read in the distributional sense. Thus, x results from a composite
experiment. First, source k ∈ K is activated with probability pk ≥ 0,

∑
k∈K pk = 1.

Second, that source generates a Gaussian signal with distribution law N (u
(k)
x ,C

(k)
xx ). The
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set
{
pk,u

(k)
x ,C

(k)
xx ; k ∈ K

}
defines the GM parameters of x. The noise n emerges in

entirely similar, but independent manner. K and L are finite index sets. Their cardinalities
determine the number of components in each mixture.

GM distributions can accommodate multi modality, asymmetry and heavy tails. In fact,
with a sufficient number of components, and a judicious choice of parameters, a GM can
approximate any distribution to desired accuracy [12], [13]. In practice, GM parameters
are rarely given a priori. Most often they must be estimated; typically a non-trivial task
[12, 53]. A common approach is to estimate GM parameters from training data. The
expectation maximization (EM) algorithm [41, 49, 50] is well suited, and much used, for
that purpose. Briefly, the algorithm relies on observations drawn from the distribution
we wish to parametrize, and some initial estimate of the parameters. The observations
are used to optimize the parameters, iteratively, until convergence to a local maximum
of the likelihood function. Because the resulting GM parameters, and hence the GM
distribution, depends on the initial estimates, the algorithm can alternatively be started
from multiple initial estimates. This produces an ensemble of GM distributions, which
can be averaged [54, 55]. For example, if there are |M| distributions in the ensemble,
each with probability ξm, then x could be distributed as

x ∼
∑
m,k

ξmpkN
(
u(m,k)
x ,C(m,k)

xx

)
, (2.5)

where u(m,k)
x and C(m,k)

xx are the k-th mean and k-th covariance, respectively, of GM dis-
tribution m. But apart from appropriate notational changes, (2.5) is a GM of the same
format as (2.4). This emphasizes that notation (2.4) may also include uncertainty in the
GM parameters. Our starting point is that (2.4) has resulted from such, or similar, model
fitting. Above, we have compactly written

∑
m,k for

∑
m∈M

∑
k∈K, a convention we will

continue to use.

Model (2.1), with (2.4) as input, closely matches the image restoration problem described
in e.g. [10]. There, x represents an image patch to be estimated and H is typically a
non-invertible degradation operator. Since the problem usually is underdetermined, good
patch models become important. Modeling x by a GM and the noise n as Gaussian
has proven to give good results. However, unlike [10] which proposes a maximum a
posteriori EM algorithm to estimate both the GM parameters and x, we assume that the
GM parameters already have been estimated, and concentrate on the signal x. Moreover,
we focus on MMSE estimation, the primary objective being to provide analytical bounds
for the non-analytical MMSE.

Mixture distributions are common, particularly within two groups of the engineering liter-
ature. The first one focuses on state sequence estimation via noisy measurements, presum-
ing statistics that fit the GM paradigm. Selected works include [13,27–32]. These studies
offer (approximate or exact) GM posterior state distributions, the mean always serving
as the state estimate. For natural reasons, because the settings are not stationary, none
of these works analyze the MMSE. The second group of studies uses GM distributions
to simplify processing of speech, audio and images. Selected works include [15–26]. In
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these, one or more variates are modeled by finite GMs. This is often sufficiently accurate,
and allows good practical estimators. However, none of these works investigate bounds
on the MMSE.

The emphasis on analytical bounds separates this work from those offering general lower
bounds on the MMSE. Included there, are the Bayesian bounds of Cramer-Rao [33],
Bobrovsky-Zakai [34], Bhattacharyya [33], Weiss-Weinstein [35], and Reuven-Messer
[36]. These bounds hold for most types of joint densities f(x,y) of practical interest
but they rarely acquire analytical form. Yet, for most f(x,y) they are much simpler to
evaluate numerically than the MMSE. That feature makes them both attractive and useful;
for interested readers, [56] proposes a general class of Bayesian lower bounds. Like the
MMSE, the above mentioned bounds all become non-analytical when (2.4) is input to
(2.1), but in contrast to the usual case, they do not become simpler to evaluate numerically
than the MMSE. For this reason, the mentioned bounds have limited practical value to the
current problem. Such bounds, of analytical sort, are useful because they can provide a
simple way to assess estimator performance. To our knowledge, the literature offers no
explicit analysis on that account. This motivates us to explore and present both upper and
lower bounds.

2.4 Main result: Bounds on the MMSE

Proposition 7. Let observation y originate from (2.1), whereH is a known matrix, and x
and n are independent GM variates defined by (2.4). Let ux|y in (2.2) denote the MMSE
estimator for x. Its performance, measured by ε2 = E

{‖x− ux|y‖22
}
, is bounded as

follows: ∑
k,l

pkqlTr
(
C(k)

xx −C(k)
xxH

T
(
HC(k)

xxH
T+C(l)

nn

)−1
HC(k)

xx

)
≤ ε2 ≤ Tr

(
Cxx −CxxH

T
(
HCxxH

T +Cnn

)−1
HCxx

)
.

Here Tr(·) denotes the trace operator, and

Cxx=
∑
k

pk

(
C(k)

xx+ u(k)
x u(k)

x

T
)
− uxu

T
x , ux=

∑
k

pku
(k)
x , (2.6)

are the covariance and mean of x, respectively. Similarly

Cnn=
∑
l

ql

(
C(l)

nn+ u(l)
n u(l)

n

T
)
− unu

T
n , un=

∑
l

qlu
(l)
n , (2.7)

are the covariance and mean of and n, respectively. Proof is given in the next section.
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2.5 Derivation of the MMSE bounds

Here, we first verify the non-analytical nature of the MMSE. Then we prove the bounds
in Proposition 7. The MMSE is, by definition,

ε2 � E
{‖x− ux|y‖22

}
=

∫∫ (
x− ux|y

)T (
x− ux|y

)
f(x,y)dxdy

=

∫∫ (
x− ux|y

)T (
x− ux|y

)
f(x|y)dxf(y)dy

=

∫
Tr

(
Cx|y

)
f(y)dy ≥ 0. (2.8)

Under (2.1) and (2.4), it can be shown that y in (2.8) is a GM with |K| · |L| components.
Its density has the form

f(y) =
∑
k,l

pkqlf
(k,l)(y), (2.9)

where f (k,l)(y) is a Gaussian density with mean and covariance

u(k,l)
y = Hu(k)

x + u(l)
n , C(k,l)

yy = HC(k)
xxH

T +C(l)
nn, (2.10)

respectively. Furthermore, it can be shown that the posterior covariance matrix in (2.8) is

Cx|y =
∑
k,l

α(k,l)(y)
(
C

(k,l)
x|y + u

(k,l)
x|y u

(k,l)
x|y

T
)
− ux|yu

T
x|y, (2.11)

where

α(k,l)(y) =
pkqlf

(k,l)(y)

f(y)
, (2.12)

C
(k,l)
x|y = C(k)

xx −C(k)
xxH

T
(
C(k,l)

yy

)−1
HC(k)

xx , (2.13)

u
(k,l)
x|y = u(k)

x +C(k)
xxH

T
(
C(k,l)

yy

)−1 (
y − u(k,l)

y

)
, (2.14)

ux|y =
∑
k,l

α(k,l)(y)u
(k,l)
x|y . (2.15)

Detailed derivations on (2.9)-(2.15) are not included here. The interested reader is instead
referred to e.g. [15,19,39,40]. In (2.8), rather than dealing directly with ε2, it is convenient
to study the matrix

M =

∫
Cx|yf(y)dy =∑

k,l

pkql

∫ (
C

(k,l)
x|y + u

(k,l)
x|y u

(k,l)
x|y

T−ux|yu
T
x|y

)
f (k,l)(y)dy. (2.16)
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Here, the last equality results by using (2.11) and (2.12). Observe that Tr(M) = ε2. Since
M is of crucial interest, we inspect integral (2.16) term-by-term. The first term is

M1 =
∑
k,l

pkql

∫
C

(k,l)
x|y f (k,l)(y)dy =

∑
k,l

pkqlC
(k,l)
x|y , (2.17)

where the last equality holds because C(k,l)
x|y is not a function of y, as can be seen from

(2.13) and (2.10). The second term of (2.16) is

M2 =
∑
k,l

pkql

∫
u
(k,l)
x|y u

(k,l)
x|y

T
f (k,l)(y)dy (2.18)

=
∑
k,l

pkql

(
u(k)
x u(k)

x

T
+C(k)

xx −C
(k,l)
x|y

)
. (2.19)

The last equality derives using (2.14) and (2.13). The third term of (2.16) is

M3 = −
∫

ux|yu
T
x|y

∑
k,l

pkqlf
(k,l)(y)dy (2.20)

= −
∑
k,l,r,s

pkqlprqs

∫ f (k,l)(y)f (r,s)(y)u
(k,l)
x|y u

(r,s)
x|y

T∑
v,w pvqwf (v,w)(y)

dy. (2.21)

The last equality results by using (2.15), (2.12) and (2.9). As far as we can see, (2.21)
cannot be solved due to the sum in the denominator of the integrand. The MMSE,

ε2 = Tr(M) = Tr(M1) + Tr(M2) + Tr(M3) ≥ 0, (2.22)

can therefore not be determined exactly. Instead we turn to bounds.

It can be verified that the existing Bayesian bounds [33–36] all depend on integral expres-
sions of the following form ∫∫

g(y,x)

f(y,x)
dx dy. (2.23)

With (2.4) as input to (2.1), it can be shown that f(y,x) is a GMwith |K|·|L| components.
The function g(y,x) depends on the bound in question, but (2.23) cannot be evaluated an-
alytically for any of the above bounds. The main reason, is that the integrand of (2.23),
like in (2.21), has a GM denominator which does not simplify by substitutions. In ad-
dition, for any of these bounds, (2.23) cannot be construed as an expectation. The latter
complicates Monte Carlo approaches, and numerical estimation of the mentioned bounds
is therefore not straightforward. In contrast, ux|y in (2.15) is analytical, and because GMs
are easy to sample from, the MMSE can be estimated by Monte Carlo methods. Clearly,
in practice, the MMSE should only be bounded by quantities that are considerably sim-
pler to obtain. Otherwise, one would rather estimate the MMSE directly. Therefore, we
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instead seek analytical bounds - both upper and lower. To that end, note from equations
(2.17), (2.18) and (2.20), that

Tr(M1) =
∑
k,l

pkqlTr
(
C

(k,l)
x|y

)
≥ 0, (2.24)

Tr(M2) =
∑
k,l

pkql

∫
u
(k,l)
x|y

T
u
(k,l)
x|y f (k,l)(y)dy ≥ 0, (2.25)

Tr(M3) = −
∑
k,l

pkql

∫
uT
x|yux|yf

(k,l)(y)dy ≤ 0. (2.26)

These inequalities follow because C
(k,l)
x|y is a covariance matrix, and u

(k,l)
x|y

T
u
(k,l)
x|y and

uT
x|yux|y are inner products. Observe also that Tr(M2) + Tr(M3) is always non-negative.
This can be seen by applying (2.25) and (2.26):

Tr(M2) + Tr(M3)

=

∫ ∑
k,l

pkqlf
(k,l)(y)

(
u
(k,l)
x|y

T
u
(k,l)
x|y − uT

x|yux|y

)
dy

=

∫ ∑
k,l

α(k,l)(y)
∥∥∥u(k,l)

x|y − ux|y

∥∥∥2

2
f(y)dy ≥ 0. (2.27)

The last equality is obtained from (2.12) and (2.15). Because Tr(M3) is non-analytical,
we shall inquire whether Tr(M1) and Tr(M2) may provide useful bounds.

2.5.1 Proving the lower bound for the MMSE

Inequalities (2.22) and (2.24)-(2.27), guarantee that

Tr(M1) ≤ε2. (2.28)

Now we ask whether Tr(M2) also could serve as a lower bound. If so, then Tr(M1) +
Tr(M3) ≥ 0 must be satisfied. If not, then Tr(M2) would be an upper bound for the
MMSE. It can be verified (numerically) that this inequality may hold for certain GM
parameters, but not for all. A larger obstacle, however, is that Tr(M1)+Tr(M3) is almost
as demanding to compute as the MMSE itself. Therefore, among Tr(M2) and Tr(M1),
the latter is the only practical lower bound.

An alternative argument provides intuition for the lower bound in (2.28). Imagine that side
information is available, such that for each observation y, a genie tells precisely which
Gaussian components k and l came into play. Then, for each y, we face a Gaussian signal
in Gaussian noise. Because of the genie, we no longer use the observation y to determine
the weights in (2.12). Instead, α(k,l)(y) = 1 for the correct index pair (k, l), whereas
α(k′,l′)(y) = 0 for all other index pairs. Consequently, the estimator (2.15) pinpoints the
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correct posterior component mean, ux|y = u
(k,l)
x|y , as the estimate for x. From (2.27), it

is then clear that Tr(M2) + Tr(M3) = 0, and the MSE of the genie-aided estimator is
therefore ε2genie = Tr(M1). One can interpret this estimator as a perfect decision device,
followed by a decision dependent Gaussian signal and Gaussian noise MMSE estimator.
It is not realizable in practice, but it provides a performance benchmark: Any practical
estimator, has MSE of at least Tr(M1). Therefore Tr(M1) is a lower bound, also for
the MMSE. Section 2.5.3, shows that this bound coincides with the MMSE at infinite
SNR, but simulations indicate that, in practice, the lower bound may be tight already
from moderate SNR levels. By appropriate substitutions, using (2.17), (2.13) and (2.10)
one obtains the lower bound of Proposition 7.

2.5.2 Proving the upper bound for the MMSE

From inequalities (2.22) and (2.24)-(2.26), it is straightforward to conclude that

ε2 ≤ Tr(M1) + Tr(M2). (2.29)

However, this upper bound is not really informative. In order to see this, apply (2.17) and
(2.19) to have

Tr(M1) + Tr(M2) =
∑
k

pk

(
Tr

(
C(k)

xx

)
+ u(k)

x

T
u(k)
x

)
≥

∑
k

pk

(
Tr

(
C(k)

xx

)
+ u(k)

x

T
u(k)
x

)
− uT

xux = Tr (Cxx) .

The last equality follows from (2.6). Tr (Cxx) = E
{‖x− ux‖22

}
is the MSE of the

highly suboptimal estimator x̂ = ux. This estimator, which completely disregards the
observation y, has an MSE which is even smaller than Tr(M1) + Tr(M2)!

Because Tr(M2), Tr(M1)+Tr(M2) and Tr (Cxx) all are inadequate as upper bounds, we
invoke the LMMSE estimator2. This estimator is given by (see e.g. Theorem 12.1 of [41])

x̂ = ux +CxxH
T
(
HCxxH

T+Cnn

)−1
(y −Hux − un) , (2.30)

where Cxx, ux, Cnn and un are given in (2.6) and (2.7). Its error, x − x̂, has zero mean
and covariance matrix

Cxx −CxxH
T
(
HCxxH

T +Cnn

)−1
HCxx. (2.31)

The (closed form) MSE of the LMMSE estimator is

ε2L = E
{‖x− x̂‖22

}
= Tr

(
Cxx −CxxH

T
(
HCxxH

T +Cnn

)−1
HCxx

)
= Tr (Cxx)−

∑
j

gT
j

(
HCxxH

T +Cnn

)−1
gj, (2.32)

2Among all estimators which are linear (affine) in the observations, the LMMSE estimator obtains the
smallest MSE.

40



where, in the last equality, gj is the j-th column of HCxx. Recall that Cxx and Cnn are
both positive definite and symmetric matrices. Thus, provided the LMMSE estimator in
(2.30) exists,

(
HCxxH

T +Cnn

)−1 has to be positive definite. This, and (2.32), shows
that ε2L ≤ Tr (Cxx). Because no practical estimator has MSE smaller than the MMSE, by
definition, we can safely conclude that

ε2 ≤ ε2L.

Note that ε2L in (2.32) corresponds to the upper bound of Proposition 7. Clearly, if another
estimator with a closed form MSE less than ε2L exists, it can tighten this upper bound. For
the present problem, we are not aware of any.

2.5.3 MMSE at zero and infinite SNR

Intuitively, one expects that the MMSE approaches its upper bound as

SNR = E
{‖x‖22}/E {‖n‖22}, (2.33)

tends to zero. Similarly, we expect the MMSE to approach its lower bound as the SNR
tends to infinity. We will demonstrate that this intuition is true for a simple but instructive
example. Throughout, we assume H to be square and full rank. In addition, we assume
the noise to be distributed as

n ∼
∑
l∈L

qlN (au(l)
n , a2C(l)

nn), (2.34)

where the scalar a can account for any SNR. Then (2.14) becomes

u
(k,l)
x|y =u(k)

x +C(k)
xxH

T
(
HC(k)

xxH
T+ a2C(l)

nn

)−1(
y−Hu(k)

x − au(l)
n

)
(2.35)

=u(k)
x +

((
C(k)

xx

)−1
+HT 1

a2
(
C(l)

nn

)−1
H

)−1

HT 1

a2
(
C(l)

nn

)−1 (
y−Hu(k)

x − au(l)
n

)
,

(2.36)

where (2.36) is merely an equivalent but useful form (see e.g. equation (10.32) of [41]).
Similarly, the LMMSE estimator in (2.30) becomes

x̂ = ux +CxxH
T
(
HCxxH

T+ a2Cnn

)−1
(y−Hux− aun) (2.37)

= ux +

(
C−1

xx +HT C
−1
nn

a2
H

)−1

HT C
−1
nn

a2
(y−Hux− aun) , (2.38)

where (2.38) is also an equivalent form. Given (2.34), then (2.13) becomes

C
(k,l)
x|y = C(k)

xx −C(k)
xxH

T
(
HC(k)

xxH
T+ a2C(l)

nn

)−1
HC(k)

xx . (2.39)
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Zero SNR

We drive the SNR to zero by a → ∞. Then (2.36) reduces to u(k,l)
x|y = u

(k)
x . Thus, the

MMSE estimate for x is

ux|y =

∑
k,l pkqlf

(k,l)(y)u
(k)
x∑

r,s prqsf
(r,s)(y)

=
∑
k

pku
(k)
x =ux. (2.40)

Here, the second equality holds because f (k,l)(y) is a function of the covariance matrix,
HC

(k)
xxH

T + a2C
(l)
nn, and when a → ∞, f (k,l)(y) approaches a uniform distribution with

infinite support. Hence, f (k,l)(y) approaches a constant which is independent of y, k
and l. Note from (2.40), that the MMSE estimator discards the data and only uses prior
information. This is expected at zero SNR.

Now we compare with the LMMSE estimator. When a → ∞, (2.38) reduces to x̂ = ux =∑
k pku

(k)
x . But this is equal to (2.40), which is the MMSE estimate. Thus, the LMMSE

estimator becomes the MMSE estimator, at zero SNR. As argued in Section 2.5.2 the
MMSE becomes Tr(Cxx) in this case.

Infinite SNR

We drive the SNR to infinity by a → 0. Then, because H is square and full rank, (2.35)
reads u(k,l)

x|y = H−1y. Using this in (2.15), we find that

ux|y = H−1y. (2.41)

From (2.27), it can then be seen that Tr(M2) + Tr(M3) = 0. Thus, at infinite SNR,
the MMSE in (2.22) becomes Tr(M1). Evaluating (2.39) when a → 0, and plugging
the result into (2.24), it is straight forward to verify that MMSE becomes zero at infinite
SNR. Note from (2.41), that the estimator discards all prior knowledge and completely
trusts the data. This is expected at infinitely high SNR.

To conclude this inquiry, we again compare with the LMMSE estimator. When a → 0,
(2.37) reduces to x̂ = H−1y. But this is the same as the MMSE estimator in (2.41). Thus,
the LMMSE estimator becomes theMMSE estimator, also at infinite SNR.

In summary, at both zero and infinite SNR, the MMSE becomes analytical and equals the
MSE of the LMMSE estimator. At infinite SNR, the MMSE also equals the MSE of the
genie-aided estimator. Therefore, the LMMSE upper bound and the genie lower bound
must coincide as the SNR tends to infinity.

2.6 Numerical Results

Here we simulate the MMSE, and calculate the bounds, all as functions of SNR. The
MMSE can be estimated as the sample mean of

∥∥x− ux|y

∥∥2

2
from a series of observa-
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Figure 2.1: The MMSE and its analytical upper and lower bounds.

tions. However, the computational burden grows rapidly with the number of mixture
components and the dimensions ofH. We have simulated several scenarios, all of which
show the same trend. Therefore we only consider a low-dimensional system here, and
impose inputs (2.4) such that |K| · |L| is moderate. Specifically, we assume

• H = I, with I being 2× 2 identity matrix.

• x is GM distributed (|K| = 2) with parameters

p1=p2=
1

2
, u(1)

x =

[
10
10

]
, u(2)

x =

[−10
−10

]
, C(1)

xx=C(2)
xx=I

• n is also GM distributed (|L| = 2), with parameters

q1=q2=
1

2
, u(1)

n =u(2)
n =

[
0
0

]
, C(1)

nn=
a

2
I, C(2)

nn=aI

• The scalar a is adjusted to produce different SNR values.
Figure 2.1 shows the genie lower bound, the estimated MMSE, and the upper bound, all
in dB, versus increasing SNR. The MMSE is estimated from 105 independent y’s for each
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SNR value. Figure 2.1 is in line our previous findings: At very low and very high SNR,
the MMSE coincides with the MSE of the LMMSE estimator. Also, the bounds approach
each other with increasing SNR. Interestingly, for the current setup, the MMSE estimator
performs as if helped by a genie for SNR>10 dB. Thus, in practice, the MMSE estimator
pinpoints the correct Gaussian component (k, l), and places nearly all weight in α(k,l)(y),
already from modest SNR.

From Figure 2.1 it is apparent that the MMSE estimator outperforms the LMMSE es-
timator, especially at intermediate SNR levels. For designers, it could therefore be of
interest to know the approximate computational cost of this MSE gain. It can be de-
termined as follows. Note from (2.14) that u(k,l)

x|y depends on the (say N × M ) matrix
C

(k)
xxH

TC
−(k,l)
yy . When all parameters are known, this matrix can be computed offline.

Defining |K| · |L| = S, it can be verified that the online cost for computing (2.15) is in
the order ofO(SNM)+O(SM2) multiplications and additions. The corresponding cost
for the LMMSE estimate in (2.30) is only O(NM). Roughly, the LMMSE estimator’s
complexity depends on the dimensions of the system. In contrast, the MMSE estimator’s
complexity depends on the dimensions multiplied by the number of mixture components,
S.

For the interested reader, and in order to facilitate reproducible research, the MATLAB
code can be downloaded from: http://sites.google.com/site/johntorjusflaam.

2.7 Conclusion

Much motivation for this paper derives from the applicability and generality of GMs.
Assuming GM inputs to a Bayesian linear model, we show that the MMSE does not come
in analytical form. Existing Bayesian lower bounds are, however, not attractive in this
setup. Instead the MMSE can be bounded analytically - from above and below. The
LMMSE estimator yields an upper bound, and a genie aided MMSE estimator offers a
lower one. The genie-aided estimator consists of a perfect decision device, followed by
a decision dependent Gaussian signal and Gaussian noise MMSE estimator. We have
shown that the upper and lower bounds approach each other with increasing SNR. We
have also studied the MMSE in the extreme cases of zero and infinite SNR. In both of
these cases, the MMSE becomes analytical and corresponds to the MSE of the LMMSE
estimator. A numerical example displays the behavior of these bounds as a function of
SNR. It indicates that, in practice, the MMSE estimator has performance comparable to
the genie-aided estimator already from quite modest SNR.
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Paper 3

The Linear Model under Mixed
Gaussian Inputs: Designing the
Transfer Matrix

John T. Flåm, Dave Zachariah, Mikko Vehkaperä and Saikat Chatterjee1

3.1 Abstract

Suppose a linear model y = Hx + n, where inputs x,n are independent Gaussian mix-
tures. The problem is to design the transfer matrix H so as to minimize the mean square
error (MSE) when estimating x from y. This problem has important applications, but
faces at least three hurdles. Firstly, even for a fixed H, the minimum MSE (MMSE) has
no analytical form. Secondly, the MMSE is generally not convex in H. Thirdly, deriva-
tives of the MMSEw.r.t. H are hard to obtain. This paper casts the problem as a stochastic
program and invokes gradient methods.

The study is motivated by two applications in signal processing. One concerns the choice
of error-reducing precoders; the other deals with selection of pilot matrices for channel
estimation. In either setting, our numerical results indicate improved estimation accu-
racy - markedly better than those obtained by optimal design based on standard linear
estimators.

Some implications of the non-convexities of the MMSE are noteworthy, yet, to our knowl-
edge, not well known. For example, there are cases in which more pilot power is detri-
mental for channel estimation. This paper explains why.

1John T. Flåm is with the Department of Electronics and Telecommunications, NTNU-Norwegian Uni-
versity of Science and Technology, Trondheim, Norway. Email: flam@iet.ntnu.no. Dave Zachariah, Mikko
Vehkaperä and Saikat Chatterjee are with the School of Electrical Engineering, KTH-Royal Institute of
Technology, Sweden. Emails: davez@kth.se, mikkov@kth.se, sach@kth.se.
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3.2 Problem statement

Consider the following linear system

y = Hx+ n. (3.1)

Here y is a vector of observations, and x and n are mutually independent random vectors
with known Gaussian Mixture (GM) distributions:

x ∼
∑
k∈K

pkN
(
u(k)
x ,C(k)

xx

)
(3.2)

n ∼
∑
l∈L

qlN
(
u(l)
n ,C(l)

nn

)
. (3.3)

In this work, we assume that H is a transfer matrix that we are at liberty to design, typi-
cally under some constraints. Specifically, our objective is to designH such that x can be
estimated from y with minimum mean square error (MMSE). The MMSE, for a fixed H,
is by definition [41]

MMSE � E
{‖x− ux|y‖22

}
=

∫∫
‖x− ux|y‖22f(x,y)dxdy. (3.4)

Here, ‖·‖2 denotes the 2-norm, f(x,y) is the joint probability density function (PDF) of
(x,y),

ux|y � E {x|y} =

∫
xf(x|y)dx (3.5)

is the MMSE estimator, and f(x|y) is the PDF of x given y. The MMSE in equation
(3.4) depends onH both through ux|y and f(x,y). Our objective is to solve the following
optimization problem

min
H∈H

MMSE, (3.6)

where H denotes a prescribed set of matrices thatH must belong to.

The next section introduces two applications where this matrix design problem appears.
Section 3.4 illustrates some of the basic properties of that problem, through a simple
example. Section 3.5 spells out problem (3.6) in full detail. Section 3.6 argues that a
sampling based approach, involving stochastic gradients, is a viable option towards a
solution. It also reviews how the Robbins-Monro method [57, 58] applies. Numerical
results are provided in Section 3.7. Section 3.8 concludes. A large part of the detailed
analysis, concerning stochastic gradients, is deferred to the appendix.

48



3.3 Background and Motivation

Problem (3.6) appears in various applications of interest. Sections 3.3.1 and 3.3.2 present
two of these, which are of particular interest to the signal processing community. Section
3.3.3 introduces and motivates the use of GM input distributions. Section 3.3.4 discusses
the general properties of problem (3.6), and list some of the contributions in this paper.

3.3.1 Linear precoder design

Consider a linear system model

y = BF︸︷︷︸
H

x+ n, (3.7)

whereB is a known matrix, and F is a precoder matrix to be designed such that the mean
square error (MSE) when estimating x from y becomes as small as possible. The vector
n is random noise. If x and n are independent and GM distributed, this is a matrix design
problem as described in Section 3.2, whereF is the design parameter. A typical constraint
is to require that Fx cannot exceed a certain average power, i.e. E ‖Fx‖22 ≤ γ. Then, in
terms of the minimization problem given by (3.6), the feasible set is defined by

H =
{
H = BF where E ‖Fx‖22 ≤ γ

}
.

A linear model with known transfer matrix H and GM distributed inputs is frequently
assumed within speech and image processing. In these applications, the signal of interest
often exhibits multi modal behavior. That feature can be reasonably explained by assum-
ing an underlying GM distribution. The noise is often modeled as Gaussian, which is a
special case of a GM. Conveniently, with (3.2) and (3.3) as inputs, the MMSE estimator
in (3.5) has a closed analytical form for any given H. Selected works exploiting this in-
clude [10, 19–22]. However, none of these works study MSE reducing precoders. These
have the potential to significantly improve the estimation accuracy, and should therefore
be of interest.

3.3.2 Pilot signal design

Consider a multiple-input-multiple-output (MIMO) communication model

z = As+ n, (3.8)

where A is a random channel matrix that we wish to estimate with as small MSE as
possible, and s is a pilot signal to be designed for that purpose. As before, n is random
noise. In order to estimate A with some confidence, we must transmit as least as many
pilot vectors as there are columns in A. In addition we must assume that the realization
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of A does not change before all pilots have been transmitted. This assumption typically
holds in flat, block-fading MIMO systems [59–61]. With multiple transmitted pilots,
model (3.8) can be written in matrix form as

Z = AS+N. (3.9)

IfA ism× n, then this model can be vectorized into (Thm. 2, Ch. 2, [62])

vec(Z)︸ ︷︷ ︸
y

=
(
ST ⊗ Im

)︸ ︷︷ ︸
H

vec(A)︸ ︷︷ ︸
x

+ vec(N)︸ ︷︷ ︸
n

. (3.10)

Here Im denotes the m × m identity matrix, the vec(·) operator stacks the columns of
a matrix into a column vector, and ⊗ denotes the Kronecker product. Assuming that
the channel (x) and noise (n) are independent and GM distributed, this is again a design
problem as described in Section 3.2, where the pilot matrix S is the design parameter. A
natural constraint, is to impose power limitations on the transmitted pilots, i.e. ‖S‖22 ≤ γ.
Again, in terms of the minimization problem given by (3.6), the feasible set is then defined
by

H =
{
H = ST ⊗ Im where ‖S‖22 ≤ γ

}
.

In (3.10), a GM distribution on the channel x can account for multiple fading situations.
This can be useful, for example if the source is assumed to transmit from multiple loca-
tions. Then, the commonly used Rice distribution is unlikely to accurately capture the
channel statistics associated with all transmit locations (especially so in urban areas). In
fact, in [63] it has been experimentally observed and reported that different transmit lo-
cations are indeed associated with different channel statistics. A GM distributed channel,
with multiple modes, has the potential to capture this. As for the noise, one may either
assume that n is pure background noise, or that n represents noise and interference. In
the former case a Gaussian distribution may be justifiable, whereas in the latter a GM
distribution may be more suitable [64, 65].

Note that the assumption that a channel realization can originate from several underlying
distributions is not novel. For instance, all studies assuming channels governed by a
Markov Model make this assumption, see e.g. [66, 67] and the references therein. A
GM is a special case of an Hidden Markov model, where subsequent observations are
independent, rather than governed by a Markov process. In spite of this, to the best of our
knowledge, pilot optimization for estimating channels governed by a GM distribution has
not been considered in the literature.

3.3.3 Gaussian Mixture distributions

While aimed at minimizing the MSE, most optimization studies on linear precoders [68,
69] or pilot signals [59–61, 70–72] utilize only the first and second moments of the input

50



distributions. Commonly, the underlying motivation is that a linear MMSE (LMMSE)
estimator is employed. The LMMSE estimator2 only relies on first and second order
statistics, which conveniently tends to simplify the associated matrix design problem. In
fact, the desired matrix can often be obtained as the solution of a convex optimization
problem. It is known, however, that the LMMSE estimator is optimal only for the special
case when the random signals x and n are both Gaussian. For all other cases, the LMMSE
estimator is suboptimal.

In practice, purely Gaussian inputs are rare. In general, the input distributions may be
asymmetric, heavy tailed and/or multi modal. A type of distribution that can accommo-
date all of these cases is the Gaussian Mixture (GM) distribution. In fact, a GM can in
theory represent any distribution with arbitrary accuracy [12], [13]. Therefore, in this
work, we assume that the inputs are GM distributed as in (3.2) and (3.3). Notation (3.2)
should be read in the distributional sense, where x results from an imagined composite
experiment. First, source k ∈ K is activated with probability pk ≥ 0,

∑
k∈K pk = 1.

Second, that source generates a Gaussian signal with distribution law N (u
(k)
x ,C

(k)
xx ). For

any realized x, however, the underlying index k is not observable. The noise n emerges in
an entirely similar, but independent manner. K and L are index sets. In theory, it suffices
that these sets are countable, but in practice they must be finite. Clearly when K and L
are singletons, one falls back to the familiar case of Gaussian inputs.

The mixture parameters, e.g. (pk,u
(k)
x ,C

(k)
xx )k∈K, are rarely given a priori. Most often they

must be estimated, which is generally a non-trivial task [12, 53]. A common approach is
to estimate the GM parameters from training data. The expectation maximization (EM)
algorithm is well suited, and much used, for that purpose [41, 49, 50]. Briefly, the algo-
rithm relies on observations drawn from the distribution we wish to parametrize, and some
initial estimate of the parameters. The observations are used to update the parameters, it-
eratively, until convergence to a local maximum of the likelihood function. Because the
resulting GM parameters depend on the initial estimates, the algorithm can alternatively
be started from multiple initial estimates. This produces multiple sets of GM parameters,
and each set can be assigned probabilities based on the training data. Our starting point is
that the distributions in (3.2) and (3.3) have resulted from such, or similar model fitting.

3.3.4 Problem properties and contributions

Regardless of the underlying application, solving optimization problem (3.6) is not straight-
forward. In particular, three hurdles stand out. Firstly, with (3.2) and (3.3) as inputs to
(3.1), the MMSE in (3.4) has no analytical closed form [73]. Thus, the effect of anymatrix
H, in terms of MMSE, cannot be evaluated exactly. Secondly, as we shall see in Section
3.4, the MMSE is generally not convex in H. Thirdly, as will be argued in the appendix,
the first and second order derivatives of the MMSE w.r.t H cannot be calculated exactly,

2Among all estimators which are linear (affine) in the observations, the LMMSE estimator obtains the
smallest MSE.
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and accurate approximations are hard to obtain. For these reasons, and in order to make
progress, we cast the problem as a stochastic program and invoke the Robbins-Monro
algorithm [57, 58]. Very briefly our approach goes as follows: We draw samples and use
these to compute stochastic gradients of the MMSE. These feed into an iterative gradient
method that involves projection. The contributions of the paper are several:

• As always, for greater accuracy, its preferable to use gradients instead of finite
difference approximations. For this reason the paper spells out a procedure for
exact realization of stochastic gradients, as given in Section 3.10.1 of the appendix.
Accordingly, the Robbins-Monro algorithm comes to replace the Kiefer-Wolfowitz
procedure.

• In the design phase, we exploit the known input statistics and update H based on
samples of the inputs (x,n), instead of output y. This yields a closed form stochas-
tic gradient, and we prove in the initial part of the appendix that it is unbiased.

• Numerical experiments indicate that our method has far better accuracy than meth-
ods which proceed via linear estimators. The main reason is that the optimal esti-
mator, used here, is non-linear.

• It turns out that the non-convexities of the MMSE may have practical implications
that deserve being better known. Specifically, in channel estimation, it can be harm-
ful to increase the power of the pilot signal. This paper offers an explanation.

Clearly, in many practical problems, the quantities in (3.1) are complex-valued. Through-
out this paper, however, they will all be assumed real. For the analysis, this assumption
introduces no loss of generality. This can be seen by considering the case when the quan-
tities are indeed complex. Then (3.1) can be written as

yr + jyi = (Hr + jHi) (xr + jxi) + nr + jni,

where subscripts r and i denote real and imaginary parts respectively, and j =
√−1. Note

that a complex GM distribution on x implies that xr and xi are jointly GM distributed.
That is, the real vector

[
xT
r xT

i

]T has a GM distribution. The same argument goes of
course for the real vector

[
nT
r nT

i

]T . Separating the real and imaginary parts of (3.11),
the system of equations can be written as[

yr

jyi

]
=

[
Hr −Hi

jHi jHr

] [
xr

xi

]
+

[
nr

jni

]
. (3.11)

Left-multiplying this equation by
[
I 0
0 −jI

]
produces

[
yr

yi

]
︸ ︷︷ ︸

ỹ

=

[
Hr −Hi

Hi Hr

]
︸ ︷︷ ︸

H̃

[
xr

xi

]
︸ ︷︷ ︸

x̃

+

[
nr

ni

]
︸ ︷︷ ︸

ñ

. (3.12)
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Clearly, there is a one-to-one correspondence between (3.11) and (3.12). The latter model
consists exclusively of real quantities, and has similar form as (3.1). The only difference
is that H̃ now has a specific structure. In terms of designing H̃, any candidate matrix
must therefore obey this structure. But this can be enforced through the set of matrices
that H̃ must belong to. Thus, we are essentially back to the same problem as (3.6) with
all quantities being real.

Model (3.1) with GM inputs (3.2) and (3.3) is quite generic, and we have indicated two
signal processing applications where the matrix design problem appears. The solution to
that problem is, however, essentially application independent. It should therefore be of
interest also to readers with different applications in mind. To the best of our knowledge,
it has not been pursued in the literature.

3.4 An illustrative example

Here we study a special instance of the matrix design problem where the MMSE for all
H ∈ H can be plotted. In general this is of course not possible, but the following simple
example reveals some fundamental properties of the problem. Assume that we wish to
design a precoder, as in (3.7), where B = I2 and F is restricted to be an orthogonal
matrix. Thus, the norm of precoded signal is equal to that of the non-precoded signal.
Orthogonal (unitary) precoders are reported e.g. in [74, 75]. From an implementation
viewpoint, orthogonal precoding implies that the signal of interest needs no amplification
- it is only rotated. BecauseB = I2, equation (3.7) simplifies to y = Fx+n. Further, let
x and n be independent and identically GM distributed as

1

2
N (αex, I2) +

1

2
N (−αex, I2) ,

where α is a scalar and ex is the unit vector along the x-axis. Assume initially thatF = I2,
which corresponds to no rotation. In this case, Figure 3.1(a) illustrates the densities of Fx
(full circles) and n (dashed circles), when seen from above. They are identical and sit on
top of each other. Now, with a precoder that rotates x by π/2, the densities of Fx and n

(a) (b)

Figure 3.1: (a): Densities without any rotation. (b): The effect of rotating x by π/2.

will look like in Figure 3.1(b). The latter configuration is preferable from an estimation
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Figure 3.2: MMSE versus rotation angle.

viewpoint. This is clear from Figure 3.2, where the MMSE is displayed as a function
of all rotation angles between 0 and 2π (with α = 2). As can be seen, a significant
gain can be obtained by rotating π/2 (or by 3π/2). This gain is not due to a particularly
favorable signal-to-noise-ratio SNR = E ‖Fx‖22 /E ‖n‖22; because F is orthogonal, the
SNR remains equal for all rotation angles. The MMSE gain is instead due to a rotation
producing a signal which tends to be orthogonal to the noise, as Figure 3.1(b) indicates.

The above example is a special case of the matrix design problem, where H in (3.1) is
restricted to be orthogonal. It is clear that H plays a decisive role in how accurately x

can be estimated. An almost equally important observation, however, is that the MMSE
is not convex in H. Hence, in general, we cannot expect that first order optimality (zero
gradient) implies a global minimum. When studying the channel estimation problem
in Section 3.7.2, we will see an implication of this non-convexity, which is perhaps not
well known: In certain cases the MMSE of the channel estimator does not decrease with
increasing pilot power. On the contrary, the MMSE may in fact increase.

In the next section we rewrite the original minimization problem into an equivalent but
more compact maximization problem. Then, in Section, 3.6 we present a stochastic opti-
mization approach which provides a solution.
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3.5 An equivalent maximization problem

The applications in Section 3.3.1 and 3.3.2 represent special cases of the matrix design
problem; in each case, H depends on another matrix of interest. In general, however, H
can stand on its own and need not be a function of some other argument. Our objective
is to propose a solution to the general matrix design problem, not only special cases of
it. From here onwards, we therefore assume that H is the matrix of interest and make
no assumptions about functional dependencies. We will present a framework for solving
this general matrix design problem. Special cases of it can be handled by the exact same
framework simply by using appropriate substitutions for H. The substitutions for the
applications in Section 3.3.1 and 3.3.2, are provided in Section 3.10.1 of the appendix.

In this section we propose a more convenient formulation of the general matrix design
problem than given in (3.6). To that end we first rewrite expression (3.4). Using the
results of [73], it follows that for model (3.1), under independent GM inputs (3.2) and
(3.3), and a fixedH, the MMSE can be written as

E
{‖x− E {x|y} ‖22

}
=∑

k

pk

(
tr
(
C(k)

xx

)
+

∥∥u(k)
x

∥∥2

2

)
−

∫ ∥∥ux|y

∥∥2

2
f(y)dy. (3.13)

In (3.13), tr(·) denotes the trace operator and f(y) is a (GM) probability density function

f(y) =
∑
k,l

pkqlf
(k,l)(y), (3.14)

where

f (k,l)(y) =
e
− 1

2

(
y−u

(k,l)
y

)T
C
−(k,l)
yy

(
y−u

(k,l)
y

)

(2π)
M
2

∣∣∣C(k,l)
yy

∣∣∣ 1
2

, (3.15)

u(k,l)
y = Hu(k)

x + u(l)
n , (3.16)

C(k,l)
yy = HC(k)

xxH
T +C(l)

nn. (3.17)

In (3.15), (·)T denotes transposition, |·| denotes the determinant, C−(k,l)
yy is short for

(C
(k,l)
yy )−1 and M is the length of y. The MMSE estimator ux|y in (3.13) can be writ-

ten as

ux|y =

∑
k,l pkqlf

(k,l)(y)u
(k,l)
x|y

f(y)
, (3.18)

where

u
(k,l)
x|y = u(k)

x +C(k)
xxH

TC−(k,l)
yy

(
y − u(k,l)

y

)
. (3.19)
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In what follows, it is convenient to define

G(H,y) �
∥∥ux|y

∥∥2

2
. (3.20)

This notation emphasizes that the squared norm of the MMSE estimate depends on both
H and the observation y. In (3.13), only the integral depends on H. Exploiting this, and
using (3.20), the minimizer of the MMSE is thatH which maximizes∫

G(H,y)f(y)dy = E [G(H,y)] =: g(H), (3.21)

subject to

H ∈ H. (3.22)

The integral in (3.21) cannot be evaluated analytically, even for a fixed and knownH [73].
Moreover, as the example in Section 3.4 illustrated, the MMSE is generally not convex in
H, which implies that g(H) is generally not concave. Hence, any optimization method
that merely aims at first order optimality, does in general not produce a global maximizer
for g(H). Finally, as argued in Section 3.10.2 of the appendix, neither first or second
order derivatives of g(H) w.r.t. H can be computed exactly, and accurate approximations
of these are hard to obtain.

3.6 The Robbins-Monro solution

The above observations suggest that a sampling based approach is the only viable option.
The problem of maximizing a non-analytical expectation E [G(H,y)], over a parameter
H, falls under the umbrella of stochastic optimization. In particular, for our problem,
the Robbins-Monro algorithm [57, 58], can be used to move iteratively from a judicially
chosen initial matrix H0 to a local maximizer H∗. The philosophy is to update the cur-
rent matrix H using the gradient of the MMSE. Since that gradient cannot be calculated
exactly, however, one instead relies on a stochastic approximation. Translated to our prob-
lem, the idea is briefly as follows. Although (3.21) cannot be computed analytically, it
can be estimated from a set of generated sample vectors

{yt = Hxt + nt}Nt=1 , (3.23)

as

g(H) ≈ 1

N

N∑
t=1

G(H,yt) =
1

N

N∑
t=1

∥∥ux|yt

∥∥2

2
. (3.24)

In (3.23), xt and nt are independent realizations of the signal and noise, as generated by
(3.2) and (3.3) respectively. The derivative of (3.24) w.r.t. H represents an approximation
of ∂g(H)

∂H
, which can be used to update the current H. Each update is then projected

onto the feasible set H. This is the core idea of the much celebrated Robbins-Monro
algorithm [57]. In our context, the algorithm can be outlined as follows.
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• Let the current matrix beHr.

• Draw at random (x,n) and compute y = Hrx+ n.

• Calculate the update direction (stochastic gradient) as

Lr =
∂G(Hr,y)

∂Hr

, (3.25)

and

Wr = Hr + εrLr, (3.26)

where {εr}∞r=1 is an infinite sequence of step sizes satisfying εr > 0, εr → 0 and∑∞
r=1 εr = ∞.

• Update the matrix as

Hr+1 = πH (Wr) , (3.27)

where πH(·) represents the projection onto the set of permissible matrices H.
• Repeat all steps until convergence.

3.6.1 Remarks on the Robbins-Monro algorithm

The above algorithm is presented in terms of H. When deriving a linear precoder, or a
pilot matrix, we are more interested in the matrix F in (3.7), or S in (3.10). By invoking
Lemma 1 in Section 3.10.1 of the appendix, and the substitutions explained there, the
above algorithm can be used in both cases. These substitutions guarantee that the under-
lying structure onH is taken into account, and they are straightforward to implement.

Recall that the input statistics (3.2), (3.3) are assumed known. Therefore, in a design
phase, it is reasonable to assume that the inputs (x,n) can be sampled to compute y,
as indicated in the second step of the algorithm. The alternative would be to sample
y directly, leaving the underlying x and n unknown. The first approach is preferred
because it guarantees that (3.25) becomes an unbiased estimate of ∂g(H)

∂H
, whereas the

alternative does not. This important point is fully explained in the initial part of the
appendix. In general, the Robbins-Monro procedure does not require observing the input
realizations (x,n). The algorithm converges also when only outputs y are available. For
this reason we write (3.25) in terms of y, but for our implementation we will assume that
the underlying inputs (x,n) are fully known.

Because the stochastic gradient ∂G(H,y)
∂H

in (3.25) is central in the algorithm, its closed
form expression is derived using Lemma 1 in Section 3.10.1 of the appendix. Clearly,
∂G(H,y)

∂H
is random because it relies on a random realization of y. It can be seen as an

estimator of ∂g(H)
∂H

based on a single random observation vector y. Depending on the
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input, the stochastic gradient may point in various directions; also in directions opposite
to ∂g(H)

∂H
. In order to increase the probability of a beneficial update, one can alternatively

compute the stochastic gradient as an average based on multiple y’s, as suggested in
(3.24). Then (3.25) would modify to

Lr =
1

N

N∑
t=1

∂G(Hr,yt)

∂Hr

.

In our implementation of the algorithm, however, we do not do this. In fact, it was recog-
nized by Robbins and Monro, that choosingN large is generally inefficient. The reason is
thatHr is only intermediate in the calculations, and as argued in the appendix, regardless
of the value of N , the stochastic gradient can be chosen such that it coincides with ∂g(H)

∂H

in expectation.

The Robbins-Monro procedure does not rely on the existence of ∂G(H,y)
∂H

at all points. If
this derivative is discontinuous, one can instead use any of its sub-gradients; all of which
are defined. Consequently, if the local maximum towards which the algorithm converges
has a discontinuous derivative, then the algorithm will oscillate around this point. Due
to the decaying step sizes, however, the oscillations will eventually become infinitesimal,
and for all practical purposes, the system comes to rest.

For unconstrained problems, when there are no restrictions onH, the projection πH(·) in
(3.27) can be left out. The solution for an unconstrained problem is an H with infinite
norm, magnifying the signal of interest beyond boundaries, and marginalizing the effect
of the noise. In practice, this translates to transmit amplifiers that consume infinite power
and that cannot be realized. Unconstrained problems are therefore hardly of any practical
interest. In the more realistic constrained case, the matrixWr in (3.26) may not reside in
the feasible set H. In such cases, we seek its projection in H. A common projection is to
choose thatH ∈ H which minimizes ‖H−Wr‖2. In words, one selects that matrix in H
which has minimum Euclidean distance toWr as the update. IfWr is already in H, the
solution to the projection is clearlyH = Wr.

Convergence towards a local optimum is guaranteed [57, 58] only as r → ∞. There-
fore, in theory, the algorithm must run forever in order to converge. The engineering
solution, which tends to work well in practice, is to terminate the algorithm whenever
‖Hr+1 −Hr‖2 < γ, where γ is a chosen threshold, or simply after a predefined number
of iterations. Still, the running time may be non-negligible: If H is an m × n matrix,
and we define |K| · |L| = s, then it can be verified that the computational complexity per
iteration of the Robbins-Monro algorithm is in the order ofO(sm3)+O(snm2)multipli-
cations and additions. Therefore the Robins-Monro procedure is best suited for problems
with limited dimensions, and when the transfer matrix can be computed once and for all.
The latter would imply stationary input signals.

In general, for other problems than considered here, it may happen that the functional
form of G(H,y) is unknown, even when its output can be observed for any H and y. In
this case, ∂G(H,y)

∂H
cannot be computed. Instead one may replace it by a finite difference

58



approximation [76]. In some cases, this may also be preferable even when the derivative
can be computed; especially so if computing ∂G(H,y)

∂H
requires much more effort. When

finite difference approximation are used, the procedure is known as the Kiefer-Wolfowitz
algorithm [58, 76]. If the derivative can be computed, however, the Kiefer-Wolfowitz
algorithm is associated with more uncertainty (larger variance) than the Robbins-Monro
procedure. For the interested reader, the present paper extends [77], which considers
Kiefer-Wolfowitz precoding.

3.7 Numerical results

In this section we will study two specific examples. One is on linear precoding, the other
is on pilot design for channel estimation. In conformance with much of the literature, we
will use the normalized MSE (NMSE) as performance measure3. This is defined as

NMSE =
E

{‖x− ux|y‖22
}

E {‖x‖22}
.

3.7.1 Precoder design

Here we study the performance of a Robbins-Monro precoder. As in the simple example
of Section 3.4, we restrict the precoder to be orthogonal. Imposing the precoder to be
an orthogonal matrix makes the projection in the Robbins-Monro algorithm particularly
simple, as we shall see. For the current example we choose the following parameters.

• B = I2.

• x is GM distributed with parameters

pk = 1/4, for k = 1...4

u(1)
x =

[ −10
10

]
, u(2)

x =

[
10
−10

]
,

u(3)
x =

[
10
10

]
, u(4)

x =

[ −10
−10

]
,

C(1)
xx = C(2)

xx = C(3)
xx = C(4)

xx =
1

10
I2.

• The noise is Gaussian and distributed as

n ∼ N
([

0
0

]
, a

[
1 0
0 0.1

])
. (3.28)

3Assuming x to be a zero mean signal, the NMSE is never larger than 1 (zero dB). The reason is that the
MMSE estimator, ux|y, will coincide with the prior mean of x only when the SNR tends to zero. Hence,
the prior mean is a worst case estimate of x, and the NMSE describes the relative gain over the worst case
estimate.
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where a is a scalar that can account for any chosen SNR=tr (Cxx) /tr (Cnn), and
Cxx and Cnn are the covariance matrices of x and n respectively.

• We use F0 = I2 as the initial guess in the Robbins-Monro algorithm.

• As stopping criterion we use: ‖Fr+1 − Fr‖2 < 10−4.

The Robbins-Monro algorithm described in Section 3.6 is employed using Lemma 1 in
Section 3.10.1 of the appendix, and the substitution described there. For the projection
in (3.27), we choose the nearest orthogonal matrix. This projection is the solution to the
following optimization problem.

Fr+1 = argmin
F∈O

‖F−Wr‖22

whereO is the set of orthogonal matrices. The solution is particularly simple, and exploits
the singular value decomposition:

Wr = UDVT ⇒ Fr+1 = UVT .

In Figure 3.3, the two lower curves display the NMSE with and without precoding, as-
sociated with the MMSE estimator, for increasing SNR levels. As can be seen, Robbins-
Monro precoding provides a significant NMSE gain, especially at SNR levels between
0 and 10dB. The upper curve shows the NMSE of the LMMSE estimator when its cor-
responding optimal precoder, implemented as in [69], is used. In order to make a ’fair’
comparison with the MMSE estimator, we require for the LMMSE estimator that its pre-
coder satisfies E ‖Fx‖22 = E ‖x‖22. Observe that this implies that the LMMSE precoder
is not restricted to be an orthogonal matrix. Still, we see that the LMMSE estimator is
highly suboptimal at intermediate SNR levels. In fact, it is even worse than doing MMSE
estimation without any precoding. The reason is that the LMMSE estimator is linear in
the data, and that it only makes use of first and second order statistics. Even though
the LMMSE estimator is helped by a precoder, that precoder is inherently matched to a
highly suboptimal estimator. The optimal MMSE estimator (3.18), on the other hand, is
non-linear in the data and makes use of the full knowledge of the underlying distributions.

From [73], we know that the LMMSE estimator becomes theMMSE estimator as SNR→
0 and as SNR → ∞. The short explanation is that, at SNR = 0, both estimators do not
trust the observed data. Instead they rely on the prior knowledge and always select the
mean of x as their estimate. At SNR = ∞, the situation is reverse: Both estimators will
fully trust the observed data, and disregard the prior knowledge. Thus, in the case of a
non-singular transfer matrix, both estimators will simply use its inverse to recover x. In
terms of precoders, the implication is that the optimal LMMSE precoder will be optimal
also for the MMSE estimator in these two extreme cases. For intermediate SNR levels,
however, Figure 3.3 reminds us that the LMMSE estimator may be quite far from optimal.
It is nevertheless widely used, because it is straightforward to implement.

The above example indicates that our method generates a reasonable precoder, for a par-
ticular setup. Admittedly, there exists other examples for which the gain is much less
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Figure 3.3: The NMSE with and without precoding.

significant. However, in all simulations we have carried out, the clear tendency is that a
Robbins-Monro precoder/ MMSE receiver outperforms the LMMSE precoder/LMMSE
receiver, at intermediate SNR levels.

3.7.2 Pilot design for channel estimation

Also for the channel estimation problem, the Robbins-Monro pilot matrix/ MMSE re-
ceiver outperforms the LMMSE pilot matrix/LMMSE receiver at intermediate SNR lev-
els. In the next example we choose parameters in order to highlight this, and one addi-
tional property. That property is a direct consequence of the non-convex nature of the
MMSE. We believe it to be of interest, but not well known. The starting point is the
channel estimation problem in (3.9), where we assume that all matrices are 2 × 2. In the
corresponding vectorized model

vec(Z)︸ ︷︷ ︸
y

=
(
ST ⊗ I2

)︸ ︷︷ ︸
H

vec(A)︸ ︷︷ ︸
x

+ vec(N)︸ ︷︷ ︸
n

, (3.29)

we assume the following parameters.

• The vectorized channel, x, is distributed as N (0, I4).
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Figure 3.4: The NMSE as a function of pilot power.

• The vectorized noise, n, is GM distributed with parameters

ql = 1/2, for l = 1, 2,

u(1)
n = −u(2)

n = 5
[
1 1 1 1

]T
,

C(1)
nn = C(2)

nn =
1

2
I4 (3.30)

• As constraint we impose that ‖S‖22 = α, where α is a positive scalar that can
account for any chosen pilot power, and therefore also any SNR=‖S‖22 /tr (Cnn).

• Stopping criterion: ‖Sr+1 − Sr‖2 < 10−4.

Again, the Robbins-Monro algorithm described in Section 3.6 is employed using Lemma
1 in Section 3.10.1 of the appendix, and the substitution described there. As starting
point, we set S equal to a scaled identity matrix satisfying the power constraint. During
the iterations we rely on the following simple projection: If the candidate pilot matrix has
power ‖S‖22 = γ, then S →

√
α
γ
S. Thus, if the pilot matrix does not use the entire power

budget, the magnitude of all its elements are increased. Similarly, if pilot matrix has too
large power, the magnitude of its elements are decreased.

Figure 3.4 shows the estimation accuracy for increasing SNR (increasing values of α).
It can bee seen that our method outperforms the commonly used LMMSE channel esti-
mator/LMMSE pilot matrix, at intermediate SNRs. The latter scheme is implemented as
in [60], and is much worse than transmitting a scaled identity pilot matrix and using the
MMSE estimator. Again, the explanation is that LMMSE estimator only makes use of

62



lower order statistics, whereas the MMSE estimator incorporates the full knowledge of
the problem. In this setup, not even an LMMSE pilot matrix can compensate for that.
As the SNR tends to infinity, however, it is known that the LMMSE estimator becomes
optimal [73]. The performance gap between our approach and the LMMSE estimator at
high SNR therefore indicates that a scaled identity pilot matrix is poor starting point for
the Robbins-Monro algorithm in this setup. One way to alleviate this problem, could of
course be to run the algorithm from multiple starting points.

The most striking observation in Figure 3.4, however, is perhaps that the channel estimates
may become worse by increasing the pilot power! This is not an artifact of the Robbins-
Monro algorithm; the same tendency is seen when a scaled identity (satisfying the same
power constraint) is used as the pilot matrix.

3.7.3 Increased pilot power �= improved channel estimates
We believe that the above phenomenon is not well known, and that it deserves to be
explained. In order to visualize what happens, we will consider an example of smaller
dimensions, but with similar properties as in the previous subsection. Specifically, we
will assume that the unknown channel matrixA is 2× 1, and that the pilot signal is just a
scalar, s = a. Then, using (3.10) it follows that H = aI2. Thus, in this setup, we do not
optimize anything, we only study the NMSE as function of increasing values for a. We
assume the following parameters:

• H = aI2, where a is a scalar that we can vary.

• The signal (channel) x is distributed as N (0, I2).

• The noise n is GM distributed with parameters
ql = 1/2, for l = 1, 2,

u(1)
n = −u(2)

n = 5
[
1 1

]T
,

C(1)
nn = C(2)

nn =
1

2
I2 (3.31)

In Figure 3.5, the NMSE is plotted as a function of increasing values for the scalar a. We
observe the same tendency as in Figure 3.4: For increasing values of a (corresponding to
increasing pilot power in Figure 3.4), the NMSE may increase. In Figure 3.5, we also plot
the NMSE that would be obtained by a genie aided estimator [73]. Briefly, the genie aided
estimator knows from which underlying Gaussian source the noise n originates for each
observation y. Accordingly it can always produce the MMSE estimate corresponding to
a purely Gaussian model. The genie aided estimator can of course not be implemented in
practice, but because it is much better informed than the MMSE estimator, it provides a
lower bound on the NMSE. Yet, from Figure 3.5 we see that for a < 3.45 dB, the MMSE
estimator is able to pin-point the correct noise component. A plausible explanation
is the following. For small a, almost all realizations of Hx = aI2x are close to the
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origin. Thus, observations y tend to appear in two distinct clusters; one cluster centered
at each noise component. As a consequence, the active noise component can essentially
always be identified. As a grows, Hx = aI2x take values in an increasingly larger
area, and the cluster borders approach each other. The value a = 3.45 dB is the largest
value for a where the clusters can still be ’perfectly’ separated. This value corresponds
to the local minimum in Figure 3.5. Because we are considering 2-dimensional random
vectors, we can actually visualize these clusters. The upper part of Figure 3.6 shows how
400 independent y’s form two nearby, but separable, clusters generated at a = 3.45 dB.
When a grows beyond this level, the receiver faces a larger identification problem: it is
harder to tell which noise component was active. The lower part of Figure 3.6 shows 400
independent y’s generated at a = 7.6 dB. This value corresponds to the local maximum
in Figure 3.5. Here the clusters largely overlap. As a continues to grow, however, the
average magnitude of a noise contribution becomes so small compared to the average
magnitude of aIx, that near perfect recovery of x eventually becomes possible.

Translated to the channel estimation problem in Figure 3.4, the interpretation is that there
is a continuous range where increasing the pilot power is harmful. From Figure 3.4, one
observes that, unless one can spend an additional 15 dB (approximately) on pilot power,
one will not improve from the local minimum solution.

3.8 Conclusion

We have provided a framework for solving the matrix design problem of the linear model
under Gaussian mixture statistics. The study is motivated by two applications in signal
processing. One concerns the choice of error-reducing precoders; the other deals with
selection of pilot matrices for channel estimation. In either setting we use the Robbins-
Monro procedure to arrive at a solution. Our numerical results indicate improved estima-
tion accuracy at intermediate SNR levels; markedly better than those obtained by optimal
design based on the LMMSE estimator.

Although the Robbins-Monro algorithm in theory only converges asymptotically, in prac-
tice we see that a hard stopping criterion may work well. The algorithm is still computa-
tionally demanding, and therefore best suited under stationary settings and for problems
with limited dimensions.

We have explored an interesting implication of the non-convexity of the MMSE; namely a
case where spending more pilot power gives worse channel estimates. This phenomenon
is not linked to the stochastic optimization procedure. It can be observed without opti-
mizingH at all, and we have offered a plausible explanation.
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3.10 Appendix

This appendix explains how to derive a closed form expression for the gradient direction
∂G(H,y)

∂H
in (3.25), whereG (H,y) is defined through (3.18)-(3.20). To that end, it is worth

observing that when optimizingH it is beneficial if the designer can draw samples directly
from the inputs x and n, and not only the output y. In order to see why, assume in what
follows that the order of derivation and integration can be interchanged such that

∂g(H)

∂H
=

∂

∂H

(∫
G(H,y)f(y)dy

)
=

∫
∂

∂H
[G (H,y) f(y)dy] . (3.32)

Such a change of order is justified for our problem, and it can be verified by invoking
Lebesgue’s Dominated Convergence Theorem. Now, if we can only observe outputs y,
we have

E

(
∂G (H,y)

∂H

)
=

∫
∂G (H,y)

∂H
f(y)dy �= ∂g(H)

∂H
.

Hence, in this case, the update direction ∂G(H,y)
∂H

is not an unbiased estimator of the desired
gradient ∂g(H)

∂H
.

In contrast, assume that we can draw inputs (x,n), and define∥∥ux|Hx+n

∥∥2

2
= Ğ (Hx+ n) ,

then

E

(
∂Ğ (Hx+ n)

∂H

)
=

∫∫
∂Ğ (Hx+ n)

∂H
f(x)dxf(n)dn

=

∫∫
∂

∂H

[
Ğ (Hx+ n) f(x)dxf(n)dn

]
=

∂g(H)

∂H
.

Here, the second equality holds because f(x)dxf(n)dn is independent of H. Hence,
∂Ğ(Hx+n)

∂H
is an unbiased estimator of ∂g(H)

∂H
, which is of course desirable. Because it is

beneficial to sample x and n, rather than just y, we will assume here that the designer can
do this. In practice, this implies that the optimization ofH is done off line, as preparation
for the subsequent estimation.
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In what follows, we will derive a closed form expression for ∂Ğ(Hx+n)
∂H

, and use this as the
update direction in (3.25). Although we assume knowledge of (x,n) for each observed
y, we will write y instead of Hx + n, and ∂G(H,y)

∂H
instead of ∂Ğ(Hx+n)

∂H
, simply to save

space.

Using (3.18), ∂G(H,y)
∂H

can be written as

∑
k,l,r,s

pkqlprqs
∂

∂H

⎛⎜⎝f (k,l)(y)f (r,s)(y)u
(k,l)
x|y

T
u
(r,s)
x|y(∑

k,l pkqlf
(k,l)(y)

)2

⎞⎟⎠ . (3.33)

In order to compute (3.33), we make use of the following theorem [62].
Theorem 1. For a scalar function, φ(H), of a matrix argument, the differential has the
form

d(φ) = tr
(
QTd(H)

)
= vec(Q)T vec(dH),

where Q =
∂φ

∂H
.

In our case, we take φ(H) to be the expression in the large parenthesis of (3.33). We will
identify its differential, and exploit Theorem 1 in order to obtain the derivative. For that
purpose, it is convenient to define

fk,l,r,s = f (k,l)(y)f (r,s)(y), (3.34)

zk,l,r,s = u
(k,l)
x|y

T
u
(r,s)
x|y , (3.35)

t =
∑
k,l

pkqlf
(k,l)(y). (3.36)

Using these, the derivative in (3.33), can then be compactly written as ∂
∂H

(
fk,l,r,szk,l,r,s

t2

)
.

Using the chain rule, the differential of this fraction is

d(φ) = d

(
fk,l,r,szk,l,r,s

t2

)
= −2fk,l,r,szk,l,r,sd(t)

t3

+
d(fk,l,r,s)zk,l,r,s + d(zk,l,r,s)fk,l,r,s

t2
. (3.37)

Thus, we must identify the differentials d(fk,l,r,s), d(zk,l,r,s) and d(t), which we do in
next. Notation: we will in the remainder of this appendix use 〈·〉 to compactly denote the
trace operator.

Computing d(fk,l,r,s)

d(fk,l,r,s) = d
(
f (k,l)(y)f (r,s)(y)

)
= d

(
f (k,l)(y)

)
f (r,s)(y) + f (k,l)(y)d

(
f (r,s)(y)

)
. (3.38)
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The differential d
(
f (k,l)(y)

)
, is a differential of a Gaussian probability density function.

In our case it depends on the indexes (k, l), but in order to enhance readability, we will
disregard these indexes in what follows. Thus, for now, we will use equations (3.14)-
(3.19) with all indexes removed, and reincorporate the indexes when needed. In addi-
tion, we will for now disregard the constant factor (2π)−M

2 in (3.15). Hence, instead of
considering the differential d

(
f (k,l)(y)

)
, we therefore consider d

(
|Cyy|−

1
2 g(y)

)
, where

g(y) = e−
1
2
(y−uy)

TC−1
yy (y−uy). This can be written as

d
(
|Cyy|−

1
2 g(y)

)
= d

(
|Cyy|−

1
2

)
g(y) + |Cyy|−

1
2 d (g(y))

= −g(y)

2
|Cyy|−

3
2 d (|Cyy|)

− g(y)

2
|Cyy|−

1
2 d

(
(y − uy)

T
C−1

yy (y − uy)
)

(3.39)

In the second equality we have used the chain rule, and exploited that g(y) is an exponen-
tial function. The first differential in (3.39), provided Cyy is full rank, is (Theorem 1, ch.
8, of [62])

d (|Cyy|) = |Cyy|
〈
C−1

yyd (Cyy)
〉

(3.40)
= |Cyy|

〈
C−1

yyd
(
HCxxH

T +Cnn

)〉
= |Cyy|

〈
C−1

yy

(
d(H)CxxH

T +HCxxd
(
HT

))〉
(3.41)

= |Cyy|
〈
CxxH

TC−1
yyd(H) + d(H)CxxH

TC−1
yy

〉
(3.42)

= |Cyy|
〈
CxxH

TC−1
yyd(H) +CxxH

TC−1
yyd(H)

〉
(3.43)

= 2 |Cyy|
〈
CxxH

TC−1
yyd(H)

〉
= 2 |Cyy|

〈(
C−1

yyHCxx

)T
d(H)

〉
. (3.44)

In (3.42), we have rotated the first trace (done a cyclic permutation of the matrix product),
and transposed the second trace. Because Cxx and C−1

yy are symmetric, they are not
affected by transposition. Moreover, d(HT ) = (d(H))T . The trace operator is invariant
to such rotations and transposition, and therefore these operations are justified. In (3.43)
we have rotated the second term. Such rotations and transpositions will be frequently
employed throughout. Introducing w = y − uy, the second differential of (3.39) can be
written

d
(
wTC−1

yyw
)
= d

(〈
wTC−1

yyw
〉)

=
〈
wTd

(
C−1

yy

)
w
〉
+ 2

〈
wTC−1

yyd (w)
〉
. (3.45)
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The first term of (3.45) is〈
wTd

(
C−1

yy

)
w
〉

(3.46)
= − 〈

wTC−1
yyd (Cyy)C

−1
yyw

〉
(3.47)

= − 〈
wTC−1

yy

(
d(H)CxxH

T +HCxxd
(
HT

))
C−1

yyw
〉

= − 〈
C−1

yywwTC−1
yy

(
d(H)CxxH

T +HCxxd
(
HT

))〉
. (3.48)

Equation (3.47) results from Theorem 3, ch. 8, of [62]. Observe that C−1
yywwTC−1

yy in
(3.48) is a symmetric matrix, playing the same role as C−1

yy in (3.41). Therefore, we can
utilize (3.44) and conclude that〈

wTd
(
C−1

yy

)
w
〉
= −2

〈(
C−1

yywwTC−1
yyHCxx

)T
d(H)

〉
. (3.49)

Recall thatw = H(x−ux)+n−un. The second term of (3.45) can therefore be written
as

2
〈
wTC−1

yyd (w)
〉

= 2
〈
wTC−1

yyd (H) (x− ux)
〉

= 2
〈
(x− ux)w

TC−1
yyd (H)

〉
= 2

〈(
C−1

yyw (x− ux)
T
)T

d (H)

〉
. (3.50)

Using (3.44),(3.49) and (3.50), and inserting into (3.39), we find that

d
(
|Cyy|−

1
2 g(y)

)
= −g(y) |Cyy|−

1
2

〈(
C−1

yyHCxx

)T
d(H)

〉
+ g(y) |Cyy|−

1
2

〈(
C−1

yywwTC−1
yyHCxx

)T
d(H)

〉
− g(y) |Cyy|−

1
2

〈(
C−1

yyw (x− ux)
T
)T

d (H)

〉
. (3.51)

If we define

R(k,l) = C−(k,l)
yy w(k,l)

(
x− u(k)

x

)T
+C−(k,l)

yy

(
I−w(k,l)w(k,l)TC−(k,l)

yy

)
HC(k)

xx ,

wherew(k,l) = y−u
(k,l)
y , and reincorporate the constant factor (2π)−M

2 , we now find that

d
(
f (k,l)(y)

)
= −f (k,l)(y)

〈(
R(k,l)

)T
d (H)

〉
. (3.52)

Accordingly, (3.38) becomes

d
(
fk,l,r,s

)
= −

〈
fk,l,r,s

(
R(k,l) +R(r,s)

)T
d(H)

〉
. (3.53)
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Computing d(zk,l,r,s)

d(zk,l,r,s) =d
(
u
(k,l)
x|y

T
u
(r,s)
x|y

)
=

〈
d
(
u
(k,l)
x|y

T
u
(r,s)
x|y

)〉
=

〈
u
(r,s)
x|y

T
d
(
u
(k,l)
x|y

)
+ u

(k,l)
x|y

T
d
(
u
(r,s)
x|y

)〉
. (3.54)

Apart from a rearrangement of the indexes, equation (3.54) contains two similar terms.
Hence it suffices to compute one of them. Recalling that u(k,l)

x|y is defined by (3.19), we
focus on the differential〈

u
(r,s)
x|y

T
d
(
u
(k,l)
x|y

)〉
=

〈
u
(r,s)
x|y

T
d
(
u(k)
x +C(k)

xxH
TC−(k,l)

yy w(k,l)
)〉

=
〈
u
(r,s)
x|y

T
C(k)

xxd
(
HT

)
C−(k,l)

yy w(k,l)
〉

(3.55)

+
〈
u
(r,s)
x|y

T
C(k)

xxH
Td

(
C−(k,l)

yy

)
w(k,l)

〉
(3.56)

+
〈
u
(r,s)
x|y

T
C(k)

xxH
TC−(k,l)

yy d
(
w(k,l)

)〉
. (3.57)

We will resolve this term by term. The first term, (3.55), reads〈
u
(r,s)
x|y

T
C(k)

xxd
(
HT

)
C−(k,l)

yy w(k,l)
〉

=

〈(
C−(k,l)

yy w(k,l)u
(r,s)
x|y

T
C(k)

xx

)T

d (H)

〉
. (3.58)

The second term, (3.56), can be written as〈
u
(r,s)
x|y

T
C(k)

xxH
Td

(
C−(k,l)

yy

)
w(k,l)

〉
= −

〈
u
(r,s)
x|y

T
C(k)

xxH
TC−(k,l)

yy d
(
C(k,l)

yy

)
C−(k,l)

yy w(k,l)
〉

= −
〈
C−(k,l)

yy w(k,l)u
(r,s)
x|y

T
C(k)

xxH
TC−(k,l)

yy︸ ︷︷ ︸
C(k,l,r,s)

d
(
C(k,l)

yy

)〉

= − 〈
C(k,l,r,s)

(
d (H)C(k)

xxH
T +HC(k)

xxd
(
HT

))〉
= −

〈
C(k)

xxH
T
(
C(k,l,r,s) +C(k,l,r,s)T

)
d(H)

〉
= −

〈((
C(k,l,r,s) +C(k,l,r,s)T

)
HC(k)

xx

)T

d(H)

〉
. (3.59)
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The third term, (3.57), reads〈
u
(r,s)
x|y

T
C(k)

xxH
TC−(k,l)

yy d
(
w(k,l)

)〉
=

〈
u
(r,s)
x|y

T
C(k)

xxH
TC−(k,l)

yy d (H)
(
x− u(k)

x

)〉
=

〈(
C−(k,l)

yy HC(k)
xxu

(r,s)
x|y

(
x− u(k)

x

)T)T

d (H)

〉
. (3.60)

Using (3.58),(3.59) and (3.60) we now define

D(k,l,r,s) = C−(k,l)
yy w(k,l)u

(r,s)
x|y

T
C(k)

xx

−
(
C(k,l,r,s) +C(k,l,r,s)T

)
HC(k)

xx

+C−(k,l)
yy HC(k)

xxu
(r,s)
x|y

(
x− u(k)

x

)T
.

Due to its two similar terms, the differential in (3.54) can then be written

d(zk,l,r,s) =
〈(

D(k,l,r,s) +D(r,s,k,l)
)T

d(H)
〉
. (3.61)

Computing d(t)

d(t) = d

(∑
k,l

pkqlf
(k,l)(y)

)
=

∑
k,l

pkqld
(
f (k,l)(y)

)
= −

∑
k,l

pkqlf
(k,l)(y)

〈(
R(k,l)

)T
d(H)

〉
. (3.62)

The last equation results immediately by employing (3.52).

3.10.1 Computing the derivative

In order to obtain the derivative, we first formulate the following lemma:
Lemma 1. Utilizing (3.53), (3.61) and (3.62), expression (3.37), which is the differential
of the objective function in the matrix design problem, can be written as

d(φ) = d

(
fk,l,r,szk,l,r,s

t2

)

= −
〈
fk,l,r,s

(
R(k,l) +R(r,s)

)T
d(H)

〉
zk,l,r,s

t2

+

〈(
D(k,l,r,s) +D(r,s,k,l)

)T
d(H)

〉
fk,l,r,s

t2

+
2fk,l,r,szk,l,r,s

∑
k,l pkqlf

(k,l)(y)
〈(

R(k,l)
)T

d(H)
〉

t3
. (3.63)
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Now it is a matter of applying Theorem 1 on (3.63) in order to identify the derivative.
This is generally straightforward. In case of a precoder design problem, one makes the
following substitutions: H = BF and d(H) = Bd(F) throughout. In case of the pilot
design problem (3.10),H = ST ⊗ Im. In addition, assuming that S is n× r, we have

vec(dH) = vec
(
d(ST )⊗ Im

)
= (In ⊗Kmr ⊗ Im) (Irn ⊗ vec(Im)) d(vec(ST )).

In the latter equalityKmr is the Magnus and Neudecker commutation matrix [62].

If H in (3.63) is not a function of some other argument, identifying the derivative from
(3.63) becomes particularly simple. Compactly defining pkqlprqsf

k,l,r,s = hk,l,r,s, and
observing that

∑
k,l,r,s h

k,l,r,s = t2, we find from equations (3.33), (3.63), and Theorem 1
that the stochastic gradient is given by

∂Ğ (Hx+ n)

∂H
=

−
∑

k,l,r,s h
k,l,r,s

(
R(k,l) +R(r,s)

)
zk,l,r,s∑

k,l,r,s h
k,l,r,s

+

∑
k,l,r,s h

k,l,r,s
(
D(k,l,r,s) +D(r,s,k,l)

)∑
k,l,r,s h

k,l,r,s

+
2
∑

k,l,r,s h
k,l,r,szk,l,r,s

∑
k,l pkqlf

(k,l)(y)R(k,l)∑
i,j piqjf

(i,j)(y)
∑

k,l,r,s h
k,l,r,s

. (3.64)

3.10.2 First and second order derivatives of the objective function

When trying to compute ∫∫
∂Ğ (Hx+ n)

∂H
f(x)f(n)dxdn, (3.65)

the mixture densities in the denominators of (3.64) will not simplify by substitutions.
An entirely similar argument provides the reason for why (3.21) cannot be computed
analytically in the first place [73]. Hence, (3.65) cannot be computed analytically, and a
closed form derivative of (3.21) w.r.tH does not exist. A similar argument will hold also
for the second order derivative.
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Paper 4

Pilot Design for MIMO channel
estimation: An Alternative to the
Kronecker Structure Assumption

John Flåm, Emil Björnson and Saikat Chatterjee1

4.1 Abstract

This work seeks to design a pilot signal under a power constraint, such that the channel
can be estimated with minimum mean square error. The procedure we propose does not
assume Kronecker structure on the underlying covariance matrices, and the pilot signal
is obtained in three main steps. Firstly, we solve a relaxed convex version of the original
minimization problem. Secondly, its solution is projected onto the feasible set. Thirdly
we use the projected solution as starting point for an augmented Lagrangian method.
Numerical experiments indicate that this procedure may produce pilot signals that are far
better than those obtained under the Kronecker structure assumption.

4.2 Problem statement

Consider the following multiple-input-multiple-output (MIMO) communication model

z = Hs+w. (4.1)
1John T. Flåm is with the Department of Electronics and Telecommunications, NTNU-Norwegian Uni-

versity of Science and Technology, Trondheim, Norway. Email: flam@iet.ntnu.no. Emil Björnson was
with the School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden. He is
currently with the Alcatel-Lucent Chair on Flexible Radio, SUPELEC, Gif-sur-Yvette, France.
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Here z is the observed output, w is random noise, H is a random channel matrix that
we wish to estimate, and s is a pilot vector to be designed for that purpose. In order
to estimate H with some confidence, we should typically send at least as many pilot
vectors at there are columns inH, although this is not strictly necessary when the columns
are strongly correlated [61]. In order to utilize the channel estimate for subsequent data
transmission, we also assume that the time needed to transmit the pilot signal is only
a fraction of the coherence time. This assumption typically holds in flat, block-fading
MIMO systems [59–61]. With p transmitted pilots, model (4.1) can be written in matrix
form as

Z = HS+W. (4.2)

We assume that H ∈ C
m×n and that the pilot matrix S ∈ C

n×p. Vectorizing equation
(4.2) gives [78, Lemma 2.11]

vec(Z)︸ ︷︷ ︸
y

=
(
ST ⊗ Im

)︸ ︷︷ ︸
G

vec(H)︸ ︷︷ ︸
x

+ vec(W)︸ ︷︷ ︸
n

, (4.3)

where Im denotes the m × m identity matrix, the vec(·) operator stacks the columns
of a matrix into a column vector, ⊗ denotes the Kronecker product, and (·)T denotes
transposition. In this work, we assume a Bayesian setting where a priori knowledge is
available. Specifically, we assume that the vectorized channel x and vectorized noise n
are independent and circular symmetric complex Gaussian distributed as

x ∼ CN (ux,Cxx) (4.4)
n ∼ CN (un,Cnn) . (4.5)

The estimator for x with minimum mean square error (MMSE), is the mean of the poste-
rior distribution, which is given by [61]

ux +
(
C−1

xx +GHC−1
nnG

)−1
GHC−1

nn (y −Gux − un) .

Here, (·)H denotes the complex conjugate transpose. The MMSE associated with this
estimator is given by the trace of the posterior covariance matrix,

Tr
((

C−1
xx +GHC−1

nnG
)−1

)
, (4.6)

where Tr (·) denotes the trace operator. When designing S in (4.3), our objective is to
estimate x from the observation y with as small MSE as possible. As constraint, we
will impose a total power limitation on the transmitted pilots. Utilizing (4.6), and G =
ST ⊗ Im, this optimization problem can be formulated as

min
S

Tr
((

C−1
xx +

(
ST ⊗ Im

)H
C−1

nn

(
ST ⊗ Im

))−1
)

(4.7)

s.t. ‖S‖22 � Tr
(
SHS

) ≤ σ. (4.8)

The objective function in (4.7) is MMSE, for a given S. The constraint in (4.8) represents
an upper bound on the squared Frobenius norm of S.
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4.3 Background and Motivation

The literature on pilot design for MIMO channel estimation is rich, because (4.7)-(4.8) is a
non convex problem and therefore difficult to optimize without making limiting assump-
tions. This work offers an alternative approach to those works that assume Kronecker
structure on Cxx and Cnn. The Kronecker structure assumption is the assumption that
the covariance matrices in (4.4) and (4.5) factorize as Kronecker products [61]:

Cxx = XT
T ⊗XR and Cnn = NT

T ⊗NR. (4.9)

Here,XR is the spatial covariance matrix at the receiver, andXT is at the transmitter. Sim-
ilarly,NT is the temporal noise covariance matrix, andNR is the spatial noise covariance
matrix.

Such Kronecker factorizations allow for tractable analysis. Moreover, exploiting the We-
ichselberger channel model [79], it has been demonstrated in [61] that this assumption
may provide good pilots even when the Kronecker structure does not hold. In general,
however, assuming Kronecker structure imposes quite severe restrictions on the spatial
correlation of the MIMO channel [80]. The main reason is that arbitrary covariance ma-
trices do generally not factorize like this. Therefore, the present work avoids this assump-
tion, and offers an alternative approach.

For smooth optimization problems, as described by (4.7), (4.8), we can arrive at a so-
lution that is at least first order optimal (zero gradient), from an arbitrary initial starting
point [81]. The challenge is that our problem is generally not convex in S, and the num-
ber of local minima may be large. Therefore, we propose a procedure that most often
provides a better starting point than a random one. From this starting point, we proceed
iteratively towards a local minimum. Briefly the idea goes as follows. First, we solve a
relaxed convex version of the original optimization problem. Next, we project that so-
lution onto the nearest candidate in the feasible set. Finally we move iteratively from
the projected solution towards a local minimizer by employing an augmented Lagrangian
method. These three steps are described in the next three sections, respectively.

Before proceeding, we mention that our approach does not always produce the best pi-
lot matrix. In some scenarios, the pilot matrix resulting from the Kronecker structure
assumption, e.g. [61], may prove better. This should not be considered a problem; we
merely provide the designer with an alternative pilot matrix. Equipped with alternatives,
the designer can compute the MMSE associated with each alternative, and simply choose
the best one. This is valuable, especially when the channel and noise processes are sta-
tionary.

4.4 A relaxed convex problem

It is not difficult to generate examples showing that the problem defined by (4.7)-(4.8) is
generally not convex in S. Fig. 4.1 illustrates one case, when S ∈ R

2×2, ‖S‖22 ≤ 4 and
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Figure 4.1: Example of MMSE when S ∈ R
2×2, ‖S‖22 ≤ 4 and S is restricted to be a

diagonal matrix.

S is restricted to be diagonal. The implication is that we must generally contend with a
local minimizer. Such a minimizer tends to depend critically on the starting point. This
section therefore derives a starting point which in many cases is better than an arbitrary
one.

Note from (4.3) that a power constraint on the pilots ‖S‖22 ≤ σ, transfers into a corre-
sponding power constraint ‖G‖22 ≤ γ = mσ. If we now consider the latter constraint
only, and disregard the fact that any feasibleG ∈ C

pm×nm must factorize as ST ⊗ Im, we
may formulate the following relaxed optimization problem

min
S

Tr
((

C−1
xx +GHC−1

nnG
)−1

)
(4.10)

s.t. Tr
(
GHG

) ≤ γ. (4.11)

This problem has a convex structure, which will become clear shortly. Its solution, which
can be efficiently obtained, must then be projected on to the set of feasible G:s, defined
by

G :=
{
G = ST ⊗ Im, where ‖S‖22 ≤ σ

}
. (4.12)

Finally the result of the projection is treated as a starting point, and updated iteratively to-
wards a local minimum. Note that this approach, in contrast to [61], allows for completely
arbitrary covariance matrices.

76



The remainder of this section presents the solution for the problem (4.10)-(4.11), where
G can have arbitrary structure. BecauseG is pm× nm, it follows that Cxx is nm× nm
and that Cnn is pm × pm. We introduce the following singular value decompositions
(SVD)

Cxx = UxΣxU
H
x , C−1

nn = UnΣ
−1
n UH

n , (4.13)

with

Σx(1, 1) ≥ Σx(2, 2) ≥ · · · ≥ Σx(nm, nm) > 0, (4.14)
Σ−1

n (1, 1) ≥ Σ−1
n (2, 2) ≥ · · · ≥ Σ−1

n (pm, pm) > 0 , (4.15)

Throughout,B(i, j) will denote the element on the i-th row and j-th column of matrixB.
In order to rewrite the optimization problem (4.10)-(4.11) in a more convenient form, we
now assume that

G = UnFU
H
x . (4.16)

Observe that this introduces no restrictions onG: If F can be any pm× nm matrix, then
so can G, because both Un and Ux are unitary. Exploiting (4.16), (4.13) and (4.7), it is
straightforward to verify that the optimization simplifies to

min
F
Tr

((
Σ−1

x + FHΣ−1
n F

)−1
)

(4.17)

s.t. Tr
(
FHF

) ≤ γ. (4.18)

Applying [61, Lemma 1], it can be shown that the optimal F is diagonal2. If we define
the compact notation FH(i, i)F(i, i) = f 2

i , Σ−1
x (i, i) = σ−1

x (i) and Σ−1
n (i, i) = σ−1

n (i) the
optimization problem can therefore be written as

min
F

nm∑
i=1

1

σ−1
x (i) + f 2

i σ
−1
n (i)

(4.19)

s.t.
nm∑
i=1

f 2
i ≤ γ. (4.20)

This is clearly a convex problem in f 2
i , for which we know the KKT conditions define the

optimal solution. The solution can be derived as

f 2
i =

(
0,

√
σn(i)

α
− σn(i)

σx(i)

)+

, (4.21)

where (0, q)+ denotes the maximum of 0 and q, and α > 0 is a Lagrange multiplier chosen
such that

γ =
nm∑
i=1

(
0,

√
σn(i)

α
− σn(i)

σx(i)

)+

. (4.22)

2In fact, it can also be shown that the optimalF is such thatFH
Σ

−1

n
F has decreasingly ordered diagonal

elements. We do not have to rely on that property at this point, because it follows naturally.
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Observe that both the objective function and the constraint depend on F only via the
squared elements f 2

i = FH(i, i)F(i, i). This implies that the optimal solution for F is not
unique: any F satisfying (4.21) and (4.22) is optimal, and we may for instance choose F
to be purely real. Inserting such an F into (4.16), produces an optimalG matrix.

Note finally that the solution (4.21) satisfies the constraint (4.20) with equality. The ex-
planation for this is straightforward: The objective function Tr (W−1), as in (4.17), is
strictly convex in the eigenvalues of any positive definite matrixW. Hence, for a matrix
F that does not fulfill (4.18) with equality, we can always reduce (4.17) by updating F
to ηF, where η > 1 without violating the constraint. The implication is that we need
not consider the interior of the constraint region, only its boundary. An entirely similar
argument goes of course for the original problem (4.7), and therefore we can conclude
that a solution should satisfy (4.8) with equality.

4.5 Projecting onto the feasible set

We cannot expect that an optimal matrix G, as given in the previous section, factorizes
as required by (4.12). Moreover, we are actually interested in the underlying S. Since we
know that a solution will spend all the available power, a natural approach is to select the
S which solves

min
S

∥∥G− (
ST ⊗ Im

)∥∥2

2
(4.23)

s.t. Tr
(
SHS

)
= σ. (4.24)

From the definition of the Kronecker product we have

ST ⊗ Im =

⎡⎢⎣ S(1, 1)Im · · · S(n, 1)Im
... . . . ...

S(1, p)Im · · · S(n, p)Im

⎤⎥⎦ .

If we partitionG into a similar block structure, such that

G =

⎡⎢⎣ G1,1 · · · Gn,1
... . . . ...

G1,p · · · Gn,p

⎤⎥⎦ ,

where each blockGi,j ism×m, it can be verified that∥∥G− (
ST ⊗ Im

)∥∥2

2
=

n∑
i=1

p∑
j=1

‖Gi,j − S(i, j)Im‖22 . (4.25)

As for the constraint, it can be written

Tr
(
SHS

)
=

n∑
i=1

p∑
j=1

S(i, j)S∗(i, j) = σ, (4.26)
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where (·)∗ denotes complex conjugation. Utilizing (4.25)-(4.26), the projection is there-
fore the solution to

min
S

n∑
i=1

p∑
j=1

‖Gi,j − S(i, j)Im‖22

s.t.
n∑

i=1

p∑
j=1

S(i, j)S∗(i, j) = σ.

This is a convex problem with convex constraints. The solution can be derived as

S(i, j) =
Tr (Gi,j)

m+ β
, (4.27)

where β is a Lagrange multiplier chosen such that
n∑

i=1

p∑
j=1

Tr (Gi,j)
∗ Tr (Gi,j)

(m+ β)2
= σ. (4.28)

Observe that if β = 0 satisfies (4.28), we see from (4.27) that S(i, j) becomes the mean
of the diagonal elements of blockGi,j .

4.6 Updating to a local minimum

The result of the projection of (4.27)-(4.28) produces a feasible pilot matrix, but that
pilot matrix is in general not even a first order optimal solution to the original problem
(4.7)-(4.8). Therefore it should be treated as a starting point for subsequent optimization.
To that end, we will move from this starting point towards a local optimum using an
augmented Lagrangian method. The latter is also known as themethod of multipliers. The
core idea is to replace a constrained problem by a sequence of unconstrained problems.
A good introduction to this method, along with algorithms for its implementation, can be
found in [81]. Therefore we do not present the full details of the method here, but rather
focus on some key ingredients.

Let the objective function in (4.7) be denoted by g(S). Because we know that a solu-
tion will spend all the available power, we substitute the inequality contraint (4.8) by the
equality constraint c(S) = σ − Tr (SHS

)
= 0. The augmented Lagrangian function is

then given by

L (S, λ, μ) = g(S)− λc(S) +
1

2μ
c2(S), (4.29)

where λ is a Lagrange multiplier and μ is a penalty parameter. The derivative of this
function with respect to S is

∇sL (S, λ, μ) = ∇sg(S)−
(
λ− c(S)

μ

)
∇sc(S). (4.30)
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Because ∇sg(S) and ∇sc(S) are key elements in the augmented Lagrangian method, we
derive them next.

4.6.1 The gradient of the objective and the constraint

The objective function can be expressed as Tr (W−1), where

W = C−1
xx +

(
ST ⊗ Im

)H
C−1

nn

(
ST ⊗ Im

)
. (4.31)

In order to find the derivative of the objective function w.r.t. S, it is convenient to take
the approach suggested in [78]. That is, to first identify the differential, and then use this
to obtain the derivative. Without displaying the preceding steps here, the gradient of the
objective function w.r.t. S, expressed as a 1× np row vector is:

−vecT (S∗ ⊗ Im)
(
C−1

nn ⊗W−1W−1
)
(Ip ⊗R) , (4.32)

where

R = (Km,n ⊗ Im) (In ⊗ vec (Im)) , (4.33)

and Km,n is the commutation matrix [78, Definition 2.9]. In order to obtain ∇sg(S), we
split the row vector (4.32) into p equally long sub vectors and take these as the columns
of∇sg(S). The derivative of the constraint w.r.t. S is simply

∇cs(S) = S∗. (4.34)

For space reasons, we do not present the full algorithmic framework of the augmented
Lagrangian method here. Instead we refer the reader to [81, Framework 17.3]. With the
gradients given in (4.32) and (4.34), the algorithm is straightforward to implement.

4.7 Numerical results

This section compares experimentally the performance of our method with that of [61,
Heuristic 1], for a particular class of noise and channel covariance matrices, which we
describe shortly. The augmented Lagrangian method is implemented as described in [81,
Framework 17.3], using the following parameters:

μk = τk =
1

k
.

As initial values, we select λ0 = μ0 = τ0 = 1. We assume a case where all matrices in
(4.2) are 2× 2. Consequently,Cxx andCnn are 4× 4. We study the average MMSE over
500 different scenarios, each in which Cxx and Cnn are generated randomly. For each
scenario, the covariance matrices are generated as follows. Let A be a realization of a
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S Srand Skron

Winner rate 0.5080 0.3160 0.1760
Average normalized MMSE 0.0657 0.0674 0.0748

Table 4.1: Performance for a specific class of covariance matrices.

4 × 4 matrix with i.i.d. elements N (0, 1). Compute Cxx = abs(AT )abs(A), where the
abs(·) operator turns the sign of the negative elements. Cnn is generated independently in
the same manner. Observe that these matrices are symmetric, and positive definite with
probability one. We assume that σ = 4 in (4.8).

Table 4.1 summarizes the results. S, Skron and Srand denote the pilot matrices that result
from our method, from [61, Heuristic 1], and from an augmented Lagrangian method with
random starting point, respectively. The ’winner rate’ represents the share of scenarios
where a method outperforms the two other methods. The normalized MMSE is defined
as

Tr
((

C−1
xx +

(
ST ⊗ Im

)H
C−1

nn

(
ST ⊗ Im

))−1
)

Tr (Cxx)
.

This is just the standard MMSE normalized with the power of the channel that we wish
to estimate.

Table 4.1 indicates that, for covariance matrices generated as described, the proposed
method is better than that of [61, Heuristic 1] on average. In fact, for this setup, an aug-
mented Lagrangian method with random starting point is also better than [61, Heuristic
1] on average. These observations underline that pilot matrices based on the Kronecker
structure assumption should be used with some care, and that other alternatives could be
worth exploring. Observe also that our method is better than using a random starting
point on average. The above example focuses on the average performance over a class
of scenarios. For a single scenario, and especially if the settings are stationary, one can
evaluate several alternative pilot matrices and select the best one. We have observed, in
such cases, that the difference between the different methods may be substantial.

An attractive feature of the Kronecker structure assumption, is that it allows for a closed
form solution. It may not always turn out to be the best solution, but it can be derived
with very limited complexity. In contrast, the augmented Lagrangian method is based on
an iterative algorithm. The speed of convergence depends on the initial values and on
how one updates the parameters, but it will invariably require much more computations.
Under stationary or slowly varying statistics, that effort may still pay off.
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4.8 Conclusion

We have described a procedure which obtains a pilot matrix for MIMO channel estimation
when the structure on the underlying covariance matrices is arbitrary. In particular, we
do not rely on Kronecker structure. The procedure is based on a convex relaxation of the
original problem. Its solution is projected onto the feasible set, and used as starting point
for an augmented Lagrangian method. Numerical experiments indicate that this procedure
may produce pilot signals that are better than those obtained under the Kronecker structure
assumption.
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