
Continuous Autofocus for Line Scanning
Hyperspectral Camera

Svein Tore Seljebotn

Master of Science in Electronics

Supervisor: Lise Lyngsnes Randeberg, IET
Co-supervisor: Martin Denstedt, IET

Department of Electronics and Telecommunications

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

The main aim of the project has been to develop and evaluate a method for continuous
autofocus for a push broom line scanning hyperspectral camera.

The thesis should include:

- An overview of different focusing techniques including an evaluation of suitability
for the camera system in question. A description of the camera principles, focus prin-
ciples and optics should also be included. The thesis should also include a justification
of the method that was chosen for implementation.

- A presentation of the experimental setup including the autofocus system and camera
hardware.

- Details for the implementation of the invented solution.

- Results showing the system performance. The system performance and focusing
quality should be evaluated and discussed based on the presented results.

Assignment given: 10. January 2012
Supervisor: Lise Lyngsnes Randeberg, IET

This report and all it’s content, except work included in the references, is licensed
under the Creative Commons Attribution-NonCommercial 3.0 Unported License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative

Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

I

Abstract

Good focus quality is essential in imaging applications. For a hyperspectral line
scanning camera, lack of continuous autofocus will quickly make the image become
out of focus, given curved or sloped objects. In spite of this, continuous autofocus
solutions for hyperspectral line scanning cameras seem largely absent.

In the presented work a continuous autofocus system for a HySpex VNIR-
1600 hyperspectral line scanning camera is detailed. Passive autofocusing
techniques were first tested, showing little potential due to failure of differentiating
between contrast changes and focus quality. Moving on, an active autofocus
solution was developed. Using a laser displacement sensor mounted ahead of
the camera’s field of view, the topography of the object is measured and focus
adjusted accordingly. The system is dependent on several calibrations. Calibration
procedures were invented to ease the calibration process, and the obtained
calibration accuracies are discussed. Several samples were tested for focus quality
using two different speed settings, and the quality and measured performance is
discussed. Furthermore, working conditions for the laser sensor is also investigated.

The resulting continuous autofocus system worked as intended, adjusting
for topography changes within the physical limits of the system. The obtained fo-
cus quality for slow topography changes is excellent. For large topography changes
over a small distance the system struggles to follow. Furthermore, adjustment
for changes of 5mm over a distance of one refocusing period (4.1-4.3mm) is not
recommended due to vibrations in the camera.

The refocusing period for the system is off from the set value. While not
impacting the functionality directly, it indicates an implementation error in
the system. Implementing a dynamic refocusing period might improve system
performance. Furthermore, "pause and adjust"-scanning is suggested as a possible
improvement with potential for objects with sudden topography changes. Last, a
more robust rig is advisable in order to prevent camera vibrations interfering with
the image quality.

II

Sammendrag

God fokuskvalitet er essensielt for kameraapplikasjoner. For et hyperspektralt
linjeskanningskamera vil mangel på kontinuerlig autofokus gjøre at bildet raskt
blir ufokusert, dersom objektet er kurvet eller skrått. Viktigheten til tross, kontin-
uerlige autofokusløsninger for hyperspektrale linjeskanningskamera er vanskelige
å finne.

I dette arbeidet blir et kontinuerlig autofokussystem for et HySpex VNIR-
1600 hyperspektralt linjeskanningskamera presentert. Passiv autofokus ble forsøkt,
men viste lite potensiale på grunn av liten evne til å skille mellom kontrast-
forandringer og fokuskvalitet. En aktiv autofokusløsning ble deretter utviklet.
Ved å bruke en laserbasert avstandsforskjellsmåler, montert foran synsfeltet til
kameraet, kunne topografien til objektet kartlegges og kompenseres for. Systemet
er avhengig av forskjellige kalibreringer. For å forenkle kalibreringsprosessen
ble kalibreringsprosedyrer utviklet, og nøyaktigheten til disse blir diskutert.
Fokuskvaliteten for forskjellige objekter, ved to forskjellige hastigheter, ble testet
og kvaliteten og den målte ytelsen til systemet blir diskutert. Omgivelsene
lasermåleren virker under er også evaluert.

Det utviklete systemet justerer for endringer topografi innenfor systemets
fysiske begrensinger, og virker dermed etter hensikten. Fokuskvaliteten for sak-
tevarierende topografiforandinger er utmerket. Systemet får problemer med å
følge forandringene, gitt større forandringer over korte avstander. I tillegg er det
ikke anbefalt å justere for høydeforskjeller på 5mm over en refokuseringsperiode
(4.1-4.3mm), fordi vibrasjoner oppstår i kameraet.

Den reelle refokuseringsperioden for systemet har et avvik i forhold til den
satte verdien. Dette indikerer en implementasjonsfeil i systemet, men det har
ikke direkte innvirkning på funksjonaliteten. Det kan være mulig å øke kvaliteten
til systemet ved å bruke dynamiske refokuseringsperioder. Videre er stopp og
justérskanning forelått som en mulig forbedring med potensiale for objekter med
raske høydeforandringer. Til slutt er det anbefalt å gjøre kamerariggen mer robust,
for å unngå vibrasjoner som forstyrrer bildekvaliteten.

III

Preface

This master thesis is a natural continuation of the previous initial focus project
work, adding continuous focusing capabilities to the VNIR-1600 hyperspectral
camera. It came as an initial surprise that no such feature existed for the camera,
seeing the importance of good focus in images. It has been especially encouraging
knowing that the fruit of the labor will be put to good use, the first image captures
of wounds on patients to be performed already one week after delivery of this
report, using the developed system.

I’d like to extend a warm thanks to my supervisor Lise Lyngsnes Rande-
berg for all the advice and guidance in both the master and project work. Further
thanks goes to co-supervisor Martin Denstedt for all advice, insight and the time
spent assisting me in the lab, you’ve been of great help. Additional thanks goes
to Lukaz Paluchowski for letting me use him as test subject, and for advice.
Furthermore, Norsk Elektro Optikk has also kindly provided me code samples and
brought me up to speed with the camera system.

Last I’d like to thank Hanna for all your support and encouragement, and
for assisting me in the lab as test subject.

Some parts of the introduction, theory and camera setup sections are reused from
the project work, either verbatim or adapted.

Title image: Demonstration of camera setup, showing initial adjustment of camera
position using laser positioners.

IV CONTENTS

Contents
1 Introduction 1

1.1 Background and motivation . 1
1.2 Key features of hyperspectral imaging 1
1.3 Summary of previous work . 2
1.4 The autofocus problem . 2

1.4.1 Methods overview . 3
1.5 Approach . 6
1.6 Report outline . 6

2 Theory 7
2.1 Hyperspectral imaging . 7
2.2 Focus and lenses . 8
2.3 Passive autofocus . 9

2.3.1 1D algorithm . 9
2.3.2 2D algorithms . 10
2.3.3 Noise . 13
2.3.4 Band selection . 13
2.3.5 Focus window . 14

2.4 Active autofocus . 15
2.4.1 Displacement measurement 15
2.4.2 Focus procedure . 16

3 Camera system setup 18
3.1 Description of camera setup . 18
3.2 Setup parameters and limitations . 22

4 Passive autofocus 24
4.1 Method and implementation . 24
4.2 Prototyping . 24

4.2.1 Test images results and discussion 24
4.2.2 Benchmarking . 26
4.2.3 Concluding remarks . 26

5 Active autofocus 31
5.1 Description of underlying problem 31
5.2 The proposed continuous autofocus system 32
5.3 Implementation . 32

5.3.1 Overview . 32
5.3.2 Pre-run . 36
5.3.3 Focus mechanism . 39

5.4 Calibration . 41
5.4.1 Horizontal stage calibration 41
5.4.2 Vertical stage calibration . 42
5.4.3 Laser-to-FOV distance calibration 44

CONTENTS V

5.5 Limitations . 45
5.6 Results and discussion . 45

5.6.1 Sensor accuracy . 45
5.6.2 Calibration accuracy . 49
5.6.3 Sensor influence on image . 51
5.6.4 Overview for the focus tests 53
5.6.5 Focus test: Arm with fake wound 54
5.6.6 Focus test: Lego blocks . 58
5.6.7 Focus test: Stone . 62

5.7 System evaluation . 66

6 Conclusion and further work 68

7 Appendix 72
7.1 Instructions . 72
7.2 Troubleshooting . 73
7.3 Profiling results . 74

7.3.1 Energy of gradient . 74
7.3.2 Energy of laplacian . 74
7.3.3 DWT . 74

7.4 Sample images . 76
7.5 Focus test logs . 78

7.5.1 Arm with fake wound . 78
7.5.2 Lego blocks . 79
7.5.3 Stone . 81

7.6 Passive autofocus prototyping code 82
7.6.1 f_gradient.m . 82
7.6.2 f_laplacian.m . 82
7.6.3 focus_sim_general.m . 83

7.7 Benchmarking code . 85
7.7.1 FocusBench.cpp . 85

7.8 System code . 88
7.8.1 XAutoFocus.cpp . 88
7.8.2 CalibrationDialog.cpp . 93
7.8.3 DisplacementSensor.cpp . 99
7.8.4 TranslationStage.cpp . 101

1 INTRODUCTION 1

1 Introduction

1.1 Background and motivation

Hyperspectral imaging is today used in several important areas, including military,
medical and industrial applications. Many of these put high demands on the
stability and quality of the image data, and this makes good focus throughout
the image a crucial component - a component the camera was lacking prior to
this work. For instance, in medical research soon to be conducted at Norwegian
University of Science and Technology, trials on patients with chronic wounds
are to be conducted. The body, with all it’s curves and slopes, alongside with
deformations in wounds, make it a challenging object for focusing. Without
continuous autofocus, imaging can quickly be limited to very small areas to ensure
that the entire area stays within focus. Moreover, it can sometimes be challenging
to identify the parts being in optimal focus and the parts of the image needing
a new scan. More importantly, however, is that the extra time required could
cause patients unnecessary stress. The presented work has taken place as part of
a biomedical optics group and the main target when working on the system has
therefore been scanning patients.

It requires some training, experience and an understanding of focus to be
able to adjust focus in an efficient manner. In addition, capturing several images
and combining them is time consuming. A working continuous autofocus solution
would alleviate these problems and can open up for new applications for the
camera.

1.2 Key features of hyperspectral imaging

Hyperspectral cameras captures image data in a large number of spectral
components (wavelengths), referred to as bands, separating them from DSLR
cameras or other conventional cameras. A hyperspectral camera can capture up
to several hundreds bands, also extending into the non-visible infrared, whereas
a conventional camera captures only three spectral components (wavelengths
corresponding to red, green and blue light). Different materials exhibit different
reflection intensities over the different bands. By making a profile of the reflection
spectra, one can recognize different materials in an image based on their profile.
In addition the infrared light will penetrate deeper into some materials as skin
and paint before being reflected, increasing the possibilities in the field of medical
diagnostics and painting conservation.

The camera used for this work is a HySpex VNIR-1600, developed and
manufactured by Norsk Elektro Optikk. It is a line scanning camera (see section
2.1), scanning the scene by capturing one line at a time. This implies different
working conditions for a continuous autofocus solution, compared to full-scene

2 1.3 Summary of previous work

cameras. A more thorough treatment of hyperspectral imaging and the camera is
given in section 2.1.

1.3 Summary of previous work

In the work leading up to this project, as a part of the required project course at
NTNU, an initial focusing solution was developed using passive autofocusing for the
VNIR-1600 camera. Several focusing algorithms were tested and a recommendation
given. The report can be found in [20]. The system was successful, and the
knowledge and experience gathered from that work is carried on to this work.

1.4 The autofocus problem

Focus is achieved by moving a lens’ focal plane to the same position as the object
one want to image. This can either be accomplished by moving the lens itself, if
the lens’ focal length is fixed, or by changing the focal length of the lens, if we can
alter the shape of the lens.

The need to focus is present in many things, from cameras to animals and
humans. Our eyes perform autofocus procedures every time we move them, a
process seldom given much thought. The eye can quickly respond to changes in
distance to the observed object by adjusting the curvature of the lens which is
located behind the cornea. This process involves a series of steps. First, starting
from an arbitrary position, the brain has to do a measure of the focus. If the
image is not in focus, e.g. it is blurred, it has to readjust the curvature of the
lens. Given a new focal length, the brain repeats the focus evaluation and either
consider the image in focus, or adjusts the curvature more and does it all over
again. At one point the image will be optimal, and moving it further will give a
result worse than the previous. This quick and fine-tuned process is very similar
to autofocusing procedures in cameras referred to as passive autofocusing. Bats
have the ability to use echolocation to navigate and hunt in the dark[1]. By
emitting ultrasonic waves and measuring the response from the environment, the
bats can measure the distance to the surrounding objects and prey. This method
of distance measurement can also be utilized in focusing, in a process referred to
as active autofocusing. There exists a wealth of methods, which can be grouped
together, as discussed shortly.

Extracting as much information from an image as possible is important in
hyperspectral imaging, and a defocused image (image out of focus) will not
contain as much information as the focused one. Therefore, it is important to
construct a method to find the optimal lens position throughout the scanning
process. Additionally, it is important to say something about the working con-
ditions for said methods, including scanning speed and noise and contrast tolerance.

1 INTRODUCTION 3

Generally, we can define the following desired qualities for a continuous aut-
ofocus solution for hyperspectral cameras:

• Low to no requirement for operator interaction and training.

• Rapid focus recognition.

• High reliability, regardless of object to be focused and lighting conditions.

• High accuracy.

• Low cost.

• If external components are required, these should have low weight and vol-
ume.

1.4.1 Methods overview

In order to limit the scope for the project, an evaluation of the different methods
must be done. All the methods presented here are well tested in literature. There
are two commonly used categories, in which we can group different focusing
techniques, often referred to as active autofocus and passive autofocus. Passive
autofocus can be further divided into phase detection autofocus and contrast
measurement autofocus.

Active autofocus systems rely on the use of an energy transmitting de-
vice to measure whether the object is in focus or not. It is active in the sense
that the device transmits some kind of energy to the environment, and relies on
sensing how the environment responds to this energy. Common examples includes
transmitting ultrasound, laser light or infrared light[11], measure the response and
from this calculate the distance to the object in order to determine correspondence
with the lens’ focal length (see section 2.2).
Active devices complicate the system by the required extra hardware and power.
Another drawback is that they in some cases cannot focus through glass, as the
surface may reflect the signal. Furthermore, in a hyperspectral system, infrared
and laser light can interfere with the image. A major advantage with many
active autofocus systems is that they can focus without much external light, some
without light at all. Passive systems will fail when the signal-to-noise ratio (SNR)
in the image is too low[20].

Passive autofocus systems rely solely on measuring information in-camera, from
light having passed through the attached lens. There are, as previously mentioned,
two common ways to do this:

Phase detection autofocus works by measuring the phase of the incoming
light using a beamsplitter, located between the lens and the camera’s detector (e.g.
a CCD), to split the light from it’s original path and onto a dedicated focusing
CCD sensor. Details in the image will be present on two different places on the

4 1.4 The autofocus problem

CCD (see figure 1). In many implementations, two separate autofocus CCDs are
used, one for each point in the figure. By calculating the distance between the
details, or rather, delay if scanning the CCD, one can calculate the lens position.
For this reason, phase detection focusing is fast and reliable. The measured
distance or delay give both knowledge where the lens is located, and in what
direction it should move. There are two drawbacks considering implementation
in the hyperspectral system. First, the need to place delicate components on
the camera, in our case on the outside of the housing, makes for a fragile and
expensive solution. The system needs careful calibration to work, and parameters
will change between lenses. Furthermore, the beamsplitter will prevent any use of
cross-polarization filtering (see section 3.1), due to the it’s way of operation.

CCD
Object

In focus

t2

A

Too far left

t1

Too far right

t3

Figure 1: A phase detection autofocus scheme. t indicates measure time between peaks,
when measuring over CCD. ’A’ is a lenslet array. Based on [11, fig. 9.25]

Contrast measurement autofocus, as the name implies, involves a measurement of
the contrast in the image. Using algorithms operating on the acquired image data,
one can measure the degree of contrast in the image, either in the spatial domain
or by a frequency analysis. Contrast measurement has several advantages. It
requires no extra hardware components, and hence, no added cost to the system.

1 INTRODUCTION 5

Moreover, it is easy to implement compared to the other methods. As mentioned,
it operates directly on data from the camera. This gives two desirable properties:
finding focus directly on the data is guaranteed to correspond to actual image
focus, and it makes it flexible regarding change of lens. For a given offset from
the focal length position, the signal will be similar regardless of what side of
the position the offset is located. This presents a drawback compared to phase
detection measurement, there is no way know which direction one should move
the lens from one measurement. See figure 2.

CCDObject

Too far left

In focus

Too far right

Figure 2: Contrast measurement autofocus. Note that contrast measurement focus pro-
vides no way to know which way too move the lens, since detected signal is similar for
both cases.

6 1.5 Approach

1.5 Approach

While autofocus in cameras is a well studied subject, providing means of doing
it in a continuous fashion is not well detailed. Research showed that today most
modern DSLR-cameras provide a continuous autofocus function, as do most video
cameras, but the underlying mechanisms are only detailed in application specific
patents, related to full-scene capturing which is hard to apply to a line-scanning
camera situation. One article, [6], mentioning a similar system as the one pre-
sented - but for a different camera - was found, but it is very scarce on information.

Having little to no research to base the system on, an approach for a con-
tinuous autofocus system had to be invented from scratch. Based on the successful
work using contrast measurement focusing for the initial autofocus function, a
passive solution was first developed and tested. This method was discarded due to
unsatisfying results: the contrast changes in object makes this method unreliable.
The analysis is presented in section 4.2.1.

Moving on from contrast measurement, both phase detection and active
autofocus require extra equipment for the camera in question. An active solution
was selected, as it is difficult to integrate a phase detection system in the camera
setup and an active system can work regardless of light conditions. Due to time
constraints, a ready-to-use distance measuring solution was required. Several
sensors were investigated for use in the active system, both ultrasound and laser
based. Ultrasound sensors were found to provide inferior accuracy and measuring
rate compared to laser based sensors. Hence, a laser based triangulation sensor
was selected.

Due to time constraints, only focus during continuous scanning is evaluated.
For objects with high displacement changes, it might be possible to stop the
scanning process while adjusting the focus. Potential drawbacks to this method is
disturbances in the image and light differences. Since the applications up to now
has utilized continuous scanning, and the target for the system has low topography
changes, that is the chosen procedure for the proposed system.

1.6 Report outline

The report starts with a general background in the necessary theory, given in
section 2. Next, a description of the camera setup is given in section 3, including
relevant parameters for the system. Prototype work using passive autofocus is
detailed in section 4. The implemented system, using an active autofocus solution,
along with results are described and discussed in section 5. Finally, conclusion and
suggestions for further work on the system are given in section 6.

2 THEORY 7

2 Theory

2.1 Hyperspectral imaging

λ

spatial

Detector
(CCD)

Lens opticsGrating

Collimating mirror

Slit

Focusing mirror
Entrance aperture

Incoming light

Figure 3: Principle for line imaging spectrometer. Based on [17].

As already touched upon in section 1.2, hyperspectral imaging consists of capturing
images using a large portion of the electromagnetic spectrum. The spectrum
usually varies from lower spectrum of visible light to infrared, giving information
about an object not visible by the naked eye. This spectrum is commonly
divided into segments as visible near-infrared (VNIR) in the range 0.4-0.97µm and
short-wavelength infrared (SWIR) in the range 0.9-2.5µm[27].

One refer to the capturing of additional bands over the conventional three
as multispectral and hyperspectral imaging. When a narrow portion of the
spectrum is investigated using several bands, it is often referred to as multispectral
imaging. Hyperspectral imaging, on the other hand, capture a significant part of
the spectrum, giving more information about the spectrum profile of the imaged
scene. There are different methods for realizing multispectral and hyperspectral
imaging: filter wheel camera, tunable filter camera, fourier transform imager and
linear variable filter imager, among others [7][22]. The technique used in the

8 2.2 Focus and lenses

HySpex VNIR-1600 camera is called line imaging spectrometer.

The concept of line imaging spectrometer is achieved by letting light shine on a
grating. This light, having already passed through a slit, represents one line in
the image. The grating diffract the different wavelengths onto different portions
of a CCD. See figure 3. Consequently, only one line with height equal to one pixel
is captured at a time. Hence, the camera has a very limited field of view (from
here abbreviated as FOV), meaning the area visible in the camera. To get the full
image of an object, one has to scan over the object. The previously mentioned
"push-broom scanning" refers to this scanning process. For one captured image
one obtains a matrix of data, with spatial coordinates on two axes and wavelengths
on the third. This collected data is referred to as a hypercube, since the data is
hyperspectral and varies in three dimensions.

2.2 Focus and lenses

Figure 4: Focal length, f, for a lens with focus point in F. Derivative of [4]

Any camera lens will have a defined focal length, defining the distance where
incoming collimated light is gathered by the lens into a point (see figure 4).
This implicates that an object located a distance equal to the focal length
apart from the lens, will be in focus for the camera. Furthermore, depth of
field defines a distance interval within objects are "imaged with acceptable
sharpness"[25]. "Acceptable sharpness" here imply that depth of field, while
dependant on many parameters, is a subjective concept. However, for the scope
of this thesis, the important part is that it gives focusing systems some margin to
what is acceptable result. The image, however, will be at it’s sharpest at exactly
one focal length. The depth of field varies between lenses and is also dependant
on the camera’s aperture. For a treatment of the mathematics behind focus see [13].

2 THEORY 9

2.3 Passive autofocus

For a push-broom camera scanning over a scene there exists at least two different
methods for performing passive autofocusing.

By using the information obtained from one line only one can utilize algo-
rithms operating on one dimensional data to measure the focus[20]. The resulting
focus value will hence correspond to the latest position only. To combat noise in
the capture process, additional stability can be added by using simple moving
average of the previous focusing values. This, however, introduces a dependance
on the previous values into the resulting value. In practice this can result in a
delay in the system’s response to changes in the object.

Similarly, by storing the image data in memory one can perform calcula-
tions of the focus value in two dimensions, giving an added stability to the focus
measure. This will operate on data prior to the current position, also introducing
a dependance on previous values, in similar fashion to the averaging process. As
with the one dimensional focus, this can introduce a delay in the system response.

The procedures are detailed below.

2.3.1 1D algorithm

The energy of gradient, while not limited to 1D analysis, is the best suited
algorithm for performing 1D focus analysis on data from the camera, as detailed
in the project report[20].

The energy of an image is defined by

Ei =
∫ ∞
−∞

∫ ∞
−∞
|Gi(ω, ν)|2dωdν (1)

where G(ω, ν) is the Fourier transform of the image [3]. By Parseval’s theorem this
is equal to

Ei =
∫ ∞
−∞

∫ ∞
−∞
|gi(x, y)|2dxdx (2)

where gi(x, y) is the image data. Similarily the image energy for a 2D image
gradient can be written as

Ei,g =
∫ ∞
−∞

∫ ∞
−∞
|∇gi(x,)|2dxdx (3)

Limiting ourselves to one dimension, we can write an approximate discrete expres-
sion as

Mgrad =
∑

n

(xn+1 − xn)2 (4)

10 2.3 Passive autofocus

for n values.

Simple moving average can be used to average the resulting values. It is
defined as

xavg =
∑k

1 x

k
(5)

where k is the number of samples to average over.

Energy of gradient operates on contrast in the image. As the process is comparing
one pixel value with the next, a high difference (contrast) will give a high value.

2.3.2 2D algorithms

According to Subbarao et al.[26], energy of Laplacian is the recommended
algorithm for 2D focus recognition. Newer approaches exists, however, such as the
discrete wavelet transform[12][2]. This use of DWT show promising results and is
evaluated as well.

Energy of Laplacian

-1 -4 -1
-4 20 -4
-1 -4 -1

Table 1: Laplacian matrix. Kernel for convolution with image data for energy of laplacian.

Utilizing the Laplacian in image processing can be achieved by convolving the data
with the kernel given in table 1 [13] and squaring the result. In practice, given
image data d, this can be written as[3]

Mlap =
∑

x

∑
y

(dxx + dyy)2 (6)

where

dxx + dyy = −di(x− 1, y − 1)− 4di(x, y − 1)− di(x+ 1, y − 1)
−4di(x− 1, y) + 20di(x, y)− 4di(x+ 1, y)
−di(x− 1, y + 1)− 4di(x, y + 1)− di(x+ 1, y + 1)

Energy of laplacian also operates on contrast in the image. A high difference in
contrast between the center point and the surrounding values will yield a high
output value.

2 THEORY 11

Discrete wavelet transform

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

Daub wavelet Sine wave

Figure 5: Comparison of a Daub wavelet function and a sine wave

The discrete wavelet transform (DWT) has many similarities with the fast fourier
transform (FFT). They are both linear operations, generating a data set of
coefficients which, given a set of basis functions, can regenerate the original signal.
These basis functions consists of different sine and cosine functions in the FFT
case, and different wavelets in the DWT case. Figure 5 illustrates the difference
and complexity of the basis functions in the two cases. One of the most interesting
aspects of the DWT is that is preserves both frequency and spatial information,
in contrast to FFT, where only frequency can be restored. The reason for this is
that while wavelets are localized in space, sine functions are not. For the FFT,
one uses a given window width to truncate the different frequencies of the basis
functions. In the DWT case, the window width will vary. One can use short,
high-frequency wavelets to obtain the signal discontinuities (high-frequencies) and
long, low-frequency wavelets to obtain the lower frequency spectrum.

For a one dimensional discrete signal x, it’s DWT is defined by[28]

a1(n) =
N∑

k=−N

αkxe(n+ k) (7)

d1(n) =
M∑

k=−M

βkxo(n+ k) (8)

where xo and xe are the odd and even points respectively, and their length
is length(x)

2 . αk and βk are the wavelet coefficients, with N and M samples
respectively, mirrored around k=0. The coefficients depend on the wavelet used,
and the number of coefficients are often referred to as taps[14]. a1(n) is called
the approximation coefficients. It describes the low-pass information in the signal
and it’s length is half of x. Similarly, d1(n) is called the detail coefficients and

12 2.3 Passive autofocus

describes the higher frequency components of the signal. These coefficients are
often denoted by L (low-pass) and H (high-pass).

Image

L1

H1

LL1 LH1

HL1 HH1

LH1

HL1 HH1

LLL1

HLL1

LH1

HL1 HH1

LL2 LH2

HH2HL2

Figure 6: 2D DWT process for 2 levels. L indicates low frequency coefficients, H indicates
high frequency coefficients and the number indicate the level.

To perform 2D DWT, one first applies the 1D DWT to every row in the image.
From every row there is now two outputs, the L and the H coefficients. For each
row, one performs a column-wise 1D DWT on the L and H coefficients separately.
This results in 4 different data sets, LL1, LH1, HL1 and HH1, each having a
dimension of N/2 x N/2 (given an initial length NxN). Together they constitute a
level 1 2D DWT.

One may repeat the process again in order to obtain a higher level DWT.
Usually this is done using the LL1 coefficients as input, giving new detail coeffi-
cients HH2, and approximation coefficients LL2. See figure 6.
Kautsky et. al [12] suggests a focus measure function utilizing 2D DWT to
measure focus in an image. By using the high frequency data one can write a
focusing algorithm as

MDW T = ‖hw(f)‖2

‖f‖2 − ‖hw(f)‖2 (9)

where ‖ · ‖ denotes the euclidean norm, f is the image data and hw(f) is the
high frequency data resulting from the DWT transform. It operates on frequency
information and grows as focus gets better. Higher level DWTs can be used by

2 THEORY 13

using all the resulting high frequency data, as indicated above by HH1, HH2 etc.
A 4-tap, level 2 DWT is seen as a good compromise between speed and quality for
a focus system.

2.3.3 Noise

Spectral image sensors are almost exclusively based on photon detectors, which
include multiple sources for noise. The incoming photons excite electrons, picked
up by a detector, deciding the intensity of the incoming light. For the VNIR-1600
camera, the electron count can be modeled as[21]

Nel[i, j] = η[i, j] ·Nph[i, j] + id[i, j] · ti (10)

where parameters i and j indicate band number and pixel number respectively. η is
the quantum efficiency, here defined to incorporate all losses through the system,
including optical losses and losses due to grating efficiency, detector fill factor and
quantum efficiency of the detector itself. Nph is the number of photons arriving
at the entrance aperture, during a chosen integration time ti. Finally, id defines a
dark current contribution, given as the electron count per time unit in one element
of the detector. The dark current is the constant response of the detector, while
not exposed to light. It is multiplied by the same chosen integration time, ti, to
give number of electrons.

From this equation it is easily seen that there is a balance between Nph

and id · ti, both parts proportional to the integration time. For low light situations,
one has to increase the integration time in order to receive sufficient signal to
make out the details in the image. This increases the noise in the signal stemming
from the dark current in the detector elements. In addition one has to take into
account additional noise in the light entering the aperture, coming for instance
from the light sources and reflections from surroundings. See [16] for more on
noise in image sensors.

The focus detection algorithms outlined above are heavily influenced by noise.
Noise mask the details and adds false contrast to the image, potentially giving
false positives for acquired focus. The algorithms are, however, not dependant
on the source of the noise since they operate on the acquired data, merging all
sources of noise together.

2.3.4 Band selection

As mentioned, it is required to make a selection of bands to operate on. A process
using the luminance in a YCbCr color conversion is detailed in [2]. By using one
band in each of the red, green and blue regions, one can calculate the luminance
as follows:

Y = 0.299 ·R+ 0.587 ·G+ 0.114 ·B (11)

14 2.3 Passive autofocus

where R, G and B are the values in the red, green and blue bands respectively.

2.3.5 Focus window

In order to focus on a region of the full image scene, one has to cut the input into
what is referred to as a focus window. This region has to be small enough in order
to give focus on the relevant area only, while large enough to provide sufficient data
for the focus algorithm to operate on.

2 THEORY 15

2.4 Active autofocus

As briefly touched upon in the introduction, there are several ways to achieve
active autofocusing. However, the principle remains the same: if the focal length
is known, measure the distance to the object and adjust accordingly. A distance
measuring sensor can be used for this task. The sensor can either be placed directly
in the FOV, as in some traditional full-scene cameras, or a certain distance outside
of the FOV. By placing the measurement point in the FOV one can assure that
the measurement is directly related to the focal length of the lens. For a scanning
camera, however, it can be more suitable to place it a small distance ahead in
scanning direction. This way the system will have measurements some time ahead,
and can respond to changes in a more efficient manner. It also makes attaching an
external sensor to a system less complicated. There are, however, some challenges
connected to this way of placing the sensor, as will be discussed shortly.

2.4.1 Displacement measurement

Laser

Start range

Midrange

End range

Lenses and filters

CCD
Δx

Δz

ϴ

Figure 7: Principle for laser displacement sensors. Proportions are exaggerated.

A laser displacement sensor is used for measuring changes in the distance to the
object relative to the focal length of the lens. A simple working principle is shown

16 2.4 Active autofocus

in figure 7 [5][24]. A laser is shone on the object and reflected back to the sensor.
The distance to the object gives the location of the spot on the CCD where
the intensity will be highest, and from this position the sensor can calculate the
distance by

∆z = ∆x
tan θ (12)

given that the difference tan θ1 − tan θ2 for the two positions are negligible.

A more advanced and precise model for laser triangulation can be found in
[19]. To obtain optimal resolution the data can be averaged by the sensor using
simple moving average or by using the median [15].

2.4.2 Focus procedure

X-axis

Z
-a

x
is

Di

ΔCn
Dn

LF

Adjustment curve

C
a
m

e
ra

Distance
sensor

Figure 8: Displacement measurement autofocus concept, showing a camera at initial posi-
tion and after position adjustment. Using the sensor, the next position for the camera can
be calculated. LF is the distance between the camera FOV and the laser sensor measure-
ment position. Di is the initial distance measurement. ∆Cn is the displacement in camera
position from initial position, relative to z-axis. Dn is the new distance measurement.

2 THEORY 17

The basis for a distance sensor based system is depicted in figure 8. Using a
distance sensor, in this case a laser based sensor, one measures the distance from
the camera to the object. The sensor is mounted a certain distance ahead of the
camera FOV, giving information about the height profile of the object ahead of
time of arrival. Given that the camera is in focus at the beginning, adjusting for
the displacement in distance to the object will ensure that the camera continues
to be in focus. There are two caveats, however, due to the sensor positioning.
Since the sensor is positioned a distance ahead of the FOV, the measured distance
at initial position is not equal to the focal length (i.e focus distance), unless the
object is flat. To compensate, the sensor must be moved a distance LF backwards
before the initial focus distance measurement is taken. By moving the camera
backwards, one can also map the initial "blind area" given by LF. Furthermore,
due to the measurements being done ahead of arrival, all measurements have to
be tagged with their position, relative to x-axis, at measurement time. By doing
this, one can find the measurement to be used by subtracting their positions by LF .

With this in mind, to calculate the correct z-position for the camera, the
following formula can be used

Cnext = (Di −Dn) + ∆Cn (13)

Here Di is the initial distance measurement at FOV, ∆Cn is the displacement in
camera position from the initial position, relative to z-axis, and Dn is the new
distance measurement. By adjusting the camera at certain intervals, one achieves
an adjustment curve similar to the one in the figure.

A more in-depth explanation on how to achieve this is given in section 5.3.

18

3 Camera system setup

3.1 Description of camera setup

Polarizer

Hyperspectral
camera

Collimating lens

Light director

Horizontal
translation stage

Vertical
translation stage

Object

V
N

IR
-1

6
0

0

Light source

La
se

r

Laser displacement
sensor

Figure 9: Sketch of camera setup

The camera is mounted on a custom made rig, made for the purpose of imaging
patients lying on a bed. See figure 11. The setup consists of numerous components,
each playing an important role in the system as a whole. See table 2 for an
overview. The VNIR-1600 camera (figure 10) is, for the purposes of this work,
equipped with a lens having a focal length of 30cm. The depth of field for the
lens were found to be ∼2.5mm on either side of the focal plane[20]. Polarizers
mounted on the light emitters along with a polarizer mounted 90◦ on the camera
greatly reduce the level of specular light in the images. The camera is mounted
on a 10cm translation stage in vertical position. This stage is again mounted on
a 49cm horizontal translation stage, together giving the camera two degrees of
freedom. See figure 9. The horizontal stage serves the purpose of scanning the field
of interest, while the vertical provides means of focusing. Furthermore, the rig
contains a larger 100cm vertical translation stage for initial adjustment of height
- this stage is not controlled in real time. The weight placed on the 10cm verti-
cal translation stage is 8.85kg, while the weight on the 100cm vertical stage is 25kg.

The camera is controlled by a I/O and power box, connected to a framegrabber
in a computer. The translation stages are controlled by stepper motor controllers,

3 CAMERA SYSTEM SETUP 19

connected to the computer by USB. The laser displacement sensor is connected to
the computer by a RS422 to USB-converter.

Figure 10: The HySpex VNIR-1600 camera [18]

Two different programs are used to interact with the camera, HySpex GROUND
and HySpex AIR. Both are developed at Norsk Elektro Optikk. The most fea-
ture complete one, HySpex GROUND, is developed for laboratory use and other
ground based applications. HySpex AIR, on the other hand, is specialized for air-
borne applications, for instance military reconnaissance. The latter includes a built
server, serving the image stream live from the camera - a crucial component for
the autofocus application, to be presented later. It provides no means to control
translation stages, however, something GROUND does. Both programs are used
in the research and in the presented work, as follows:

• To quickly investigate a scene, for instance to check initial focus quality,
HySpex GROUND is used. The full scene image is saved to a .hyspex file,
together with a header file. The former contains the raw data, and the latter
describes the corresponding format of said .hyspex file, along with camera
settings and band information (wavelengths).

• For realtime analysis of data, HySpex AIR’s server is used to provide a conve-
nient way to interact with the camera. Data is served by TCP/IP protocol.
The application provides means for controlling integration time and capture
rate. Moreover one can enable software binning of the data, an averaging
process compiling several bands into one band. This reduces the bandwidth
required per line of data.

20 3.2 Setup parameters and limitations

Figure 11: Camera setup. Custom made rig for scanning patients lying on a bed.

3 CAMERA SYSTEM SETUP 21

Figure 12: Position of the laser displacement sensor on the rig.

22 3.2 Setup parameters and limitations

Component Part name Serial no.
Hyperspectral camera HySpex VNIR-1600 S0002
Framegrabber TeleDyne DALSA X64-CL iPro 1 637024
Vertical translation stage Standa 8MT175-100 -
Horizontal translation stage Iselautomation LF4 L490mm 261912
1 x laser displacement sensor Micro-Epsilon OptoNCDT1302 -
1 x light source Illumination Technologies Model 2900 -
2 x light emitters - -
2 x collimating lenses - -
2 x light polarizers VersaLight VLR-100-NIR -
2 x stepper motor controllers Standa 8SMC1-USBhf -

Table 2: Component overview for the camera setup

3.2 Setup parameters and limitations

The various components provide many necessary features, but in order to utilize
them properly a understanding of their parameters and limitations is required.

The OptoNCDT 1302 displacement laser sensor provides measurements in a
200mm range, starting at 60mm distance from the laser. The measuring rate and
accuracy is given in table 3. The cost of the sensor was 10000 NOK, all necessary
equipment included. The sensor is used with an averaging of 75 samples, giving 10
measurements per second. The spot size is 2.1-2.3mm within the measuring range,
depending on the distance from sensor [15].

If tilted, the laser sensor’s accuracy is reduced. The claimed accuracy deviation is
listed in table 4. Due to the way the light emitters are positioned on the camera
system, the laser has to be positioned so that a tilt at a slight angle relative to
surface is required in order to hit same area as camera FOV. See figure 12. This
has to be taken into consideration when evaluating the system performance.

The translation stages are controlled by sending parameters of speed (an
integer number) and desired position (in what is referred to as "steps", also an
integer). There is no given conversion between steps and metric distance, or
from speed to actual movement in mm/sec. Furthermore, querying the position
of the stage returns number of steps from initial position - a position set to a
program-defined number at initial execution of program. There is hence no way
in software of determining in what absolute physical position the stage is. While
the stages support varying speeds, a too high speed will cause vibrations in the
rig, causing undesired movements in the image. Also it is expected that a too high
speed can wear out the stages faster.

3 CAMERA SYSTEM SETUP 23

Component Speed Accuracy
Vertical translation stage Max: 10mm/sec Full step: 2.5µm.

1/8 step: 0.31µm.
Horizontal translation stage Max: 167mm/sec* Unknown.
Laser displacement sensor 750Hz No averaging: 100µm

Avg. 64 samples: 40µm

Table 3: Specifications from manufacturer for the crucial components in the autofocus
system [23][10][15]. *Spindle pitch of device unknown, least possible maximum speed
listed.

Angle X-axis Y-axis
±5◦ 0.24 mm 0.24 mm
±15◦ 0.4 mm 0.4 mm
±30◦ 1 mm 1 mm

Table 4: Typical measurement errors given the angle of the laser sensor relative to target.
Data from [15], calculated to mm for a 200mm sensor.

24

4 Passive autofocus

4.1 Method and implementation

For evaluating the use of contrast measurement algorithms, the algorithms were
implemented in Matlab and several test images captured with the camera. The
Matlab codes for the algorithms are included in sections 7.6.1 and 7.6.2 in appendix.
The DWT library used is found in [8]. A simple test procedure were developed to
test the images with all the algorithms. The code can be found in section 7.6.3 in
appendix, and the results are included below.

4.2 Prototyping

4.2.1 Test images results and discussion

In order to evaluate passive autofocusing, a flat, wooden box is imaged. The
wooden texture (figure 13) is homogeneous and has a low contrast, ideal for
prototyping measurements due to the stable SNR. The flat surface aids control
and consistency in the measurements. Moreover, the wood texture share some
resemblances to the texture of skin, the prioritized target for the system. The
images in figures are normalized in order to better display the actual data the
algorithms are working on. Furthermore, the resulting focus values are normalized
for comparison purposes.

Figure 13: A section displaying the texture of the wooden box.

In figure 14 the wooden box is tilted at a slight angle, while the vertical camera

4 PASSIVE AUTOFOCUS 25

position is constant, yielding a gradually defocused imaged. Height change is
linear, with the end being 6mm above the beginning. All algorithms indicate
the worsening of focus quality, however, while the 2D algorithms descend in a
near-linear fashion, the 1D algorithm falls quickly at the beginning. This is a
desirable quality, as it is easier to pinpoint exact focus location when the algorithm
show greater discriminability. The 2D laplacian is clearly least affected by line to
line noise, stemming from the camera. While the curves for the 2D algorithms are
generally smoother throughout the sample than the 1D counterpart, the better
noise tolerance is especially visible in the right part of the figure in the figure.
While not seen in the image due to the normalization, the directed light from the
light emitters falls outside the camera’s field of view, giving a dark image and
hence a lot of noise in the image. This noise contributes to a large contrast change
in the image, giving higher values for the focusing algorithms as explained in 2.3.3.
The 1D algorithm, operating only on one line at a time is at a great disadvantage
compared to the 2D algorithms. Averaging over the same number of lines as
the 2D sample size is not enough to compensate. In conclusion, this result show
that it is possible to detect focus using passive autofocus on a homogeneous sample.

Figure 15 show similar measurements, but this time the box is not tilted,
i.e. the whole scan is in focus. In principle, a constant value is desired, as
the whole sample has the same focus quality. The results demonstrates that
a homogeneous sample with only minor contrast differences can still make the
algorithms vary substantially. The lowest values for the 1D, 2D laplacian and
2D DWT algorithms are, respectively, around 30%, 45% and 70% of the highest
values. Once again, the 2D laplacian show the highest noise tolerance, yielding a
smoother curve than the other two. The 2D DWT also show good noise tolerance,
and it has an overall low responsivity to contrast changes. The 1D algorithm
demonstrates a lot of fluctuations that cannot be from contrast itself, but which
are stemming from the noise in the image. These results clearly demonstrate a
problem with using passive algorithms for focus detection. Although the focus
quality is constant, the algorithms fluctuate to a great extent. This will either
lead to false refocusing or a very high threshold for refocus. Comparing the values
to those in figure 14, one has to go all the way to around line 420 to get below the
lowest values. The displacement of the object in this area is around 4.6mm1. This
is outside the depth of field of ∼2.5mm.

The final result is shown in figure 16. Here a piece of colored paper is fas-
tened to the sample, generating a large contrast between the wood texture and
the patch of paper. As seen in the figure, the algorithms react enormously to
this contrast change, and it demonstrates why a passive system will not work on
samples which are not sufficiently homogeneous. There is no way for the system
to know whether the image is suddenly out of focus or whether there is a contrast
change in the image. Normal full-scene cameras do not experience this problem
as it uses the same position for comparison. Not having that possibility, using

1Basic calculation yield 6mm * 420 lines / 550 lines = 4.6mm

26 4.2 Prototyping

contrast measurement methods is found incredibly difficult.

One can add to this the consequences of using averaging. Averaging over
20 lines, assuming a framerate of 100 frames per second, one has to wait 200ms to
be sure that the new measurement is correct. This is due to high contrast changes
being left in the buffer will influence the result to a large extent. This further
complicates a contrast measurement system.

4.2.2 Benchmarking

Algorithm ms/call % @ 100FPS % @ 33.3FPS
Energy of gradient (1D) 0.058 0.58% 0.19%
Energy of laplacian (2D) 0.9 9% 3%
DWT (2D) 15.2 100% 50.67%

Table 5: Benchmarking results for the algorithms. Table shows ms/call for a 20 line
sample, and how much of the alloted time is spent at 10ms per frame and 30ms per
frame.

The C++ implementation of the algorithms were benchmarked and the results
are given in table 5. Code can be found in section 7.7 and data from the profiling
is given in section 7.3, both in the appendix. Percentages of the time spent
compared to the frame rate is calculated as well. Naturally, the algorithms are
not required to do a calculation on every new frame, but it is desirable and gives
a good reference for speed comparison.

Energy of gradient is the fastest, only spending at most 0.58% of the al-
loted time at 100 frames per second, leaving 99.42% to other operations. Energy
of laplacian is also fast, leaving 91% of the time window to other operations. The
DWT algorithm, on the other hand, spends more time than what is given between
the frames. At lower speed, 30 frames per second, it spends 50.67% of the time
doing calculations. From experience with the system, this leaves too little time to
other operations like data cutting, displaying of image, focusing calculations and
so on. It is possible that a major speedup of the DWT calculations is possible,
by optimizing code for this task or by implementing CUDA/OpenCL algorithms.
That is, however, out of the scope for this project. In conclusion, both energy of
gradient and energy of laplacian is suitable from a time consumption perspective,
while the DWT algorithm looks too slow, but further investigation is needed in
order to conclude.

4.2.3 Concluding remarks

Based on the results from the conducted tests, a contrast measurement autofocus
system for continuous focusing cannot be recommended. It is not possible to

4 PASSIVE AUTOFOCUS 27

Passive focusing: wooden surface, tilted

Line

Fo
cu

s
va

lu
e

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1D algorithm
2D algorithm (Laplacian)
2D algorithm (DWT)

Figure 14: Focus measurements on a flat, wooden surface. The surface is tilted, while
camera position is constant, resulting in the image gradually becoming defocused. Only
a window in the middle of the image is used in the focus calculations, the rest is toned
down. Height change is linear, with the end being 6mm above the beginning.

28 4.2 Prototyping

Passive focusing: wooden surface, flat

Line

Fo
cu

s
va

lu
e

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1D algorithm
2D algorithm (Laplacian)
2D algorithm (DWT)

Figure 15: Focus measurements on a flat, wooden surface. The lens position relative to
sample is held constant, at the focal length. Only a window in the middle of the image is
used in the focus calculations, the rest is toned down.

4 PASSIVE AUTOFOCUS 29

Passive focusing: contrast change, flat

Line

Fo
cu

s
va

lu
e

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1D algorithm
2D algorithm (Laplacian)
2D algorithm (DWT)

Figure 16: Focus measurements on a flat, wooden surface with a piece of colored paper
generating contrast in the image. The lens position relative to sample is held constant,
at the focal length. Only a window in the middle of the image is used in the focus
calculations, the rest is toned down.

30 4.2 Prototyping

distinguish between contrast changes in the images and loss of focus quality, due
to contrast changes influencing the algorithms to a large extent. This is further
encumbered by the noise in the data, inflicting delays if any certain measurement
of actual focus quality is desired.

Limiting ourselves to homogeneous samples only, a continuous contrast mea-
surement focusing system might be possible, but one can question the quality
of the achieved focus one would obtain with such a system. Further tests would
need to be conducted. For an algorithm in such a system, the 2D laplacian is
recommended due to high noise tolerance, ease of implementation and excellent
speed.

5 ACTIVE AUTOFOCUS 31

5 Active autofocus

5.1 Description of underlying problem

Based on the conclusion from the passive autofocus tests, an active solution
was sought out. Several solutions were considered to perform the distance
measurement. Laser based systems were found as the optimal solution, due to
supreme accuracy, response time and localization.

The proposed active autofocus system rely upon the process explained in
section 2.4.2. The laser displacement sensor detailed in section 3.2 is used to
measure the distance to target. By placing the laser sensor in a small distance
ahead of the camera’s FOV (given the scanning direction), one can make a distance
profile in realtime while scanning. By following this profile, one can adjust the
camera to ensure that the object is in focus throughout the image.

While the solution is simple in principle, there are several challenges to
overcome in order to obtain optimal results:

- The laser spot being a certain distance in front of the FOV causes two prob-
lems. The first is the offset between the measuring spot and the FOV. The
measurements have to be delayed by this laser-to-FOV-distance, and any er-
rors in the measurement of this distance will map the values at the wrong
location in scanning direction, potentially resulting in worse focus quality.
Measuring this distance can be cumbersome due to the camera being a line
scanning camera, making the use of rulers more difficult as they cannot be
seen in camera. This can be solved by clever and accurate calibration. The
second problem is the "blind area" at start of capture. Prior to capture the
system has no knowledge about the height profile in the area between the
measuring spot and FOV. This can easily be solved by moving the camera
backwards by the laser-to-FOV-distance and then profiling the area while
moving the camera back to initial position.

- The translation stages provide only relative position given in a custom unit,
steps, as detailed in section 3.2. Due to the laser sensor measuring in mil-
limeters, an accurate mapping between steps and millimeters is required.
Furthermore, the speed is given in an arbitrary linear scale, requiring a map-
ping of the speed to physical distance. These issues can all be solved by
various automatic calibration methods, requiring no knowledge from the user
about the system.

- The current setup requires the laser to be tilted at a slight angle as described
in 3.2. This gives rise to two problems, one being reduced accuracy of the
sensor. The other problem is that the measured distance does not correspond
to the actual distance from camera to object. One possible solution would be
to measure the angle and from this measure the actual height, but this can

32 5.2 The proposed continuous autofocus system

better be solved by mapping the change in measured distance to the change
in translation stage position in a calibration process.

- The limited speed of the translation stage, also detailed in section 3.2, will
give a limit to what changes in object height can be compensated for within
the given time constraints of a continuous scanning system. These limitations
should be investigated in order to provide guidelines for avoiding out-of-focus
images.

5.2 The proposed continuous autofocus system

The presented autofocus system is based on the system developed during the
project work detailed in the introduction. This gives a complete focusing system,
with both initial focusing and continuous focus adjustment during image capturing.

The most important features are:

• Automatic initial autofocus, with opportunity for manual adjustment.

• Continuous autofocus during image capturing.

• Two speed settings, normal (2.1mm/sec) and high (6.2mm/sec) giving an op-
tion to prioritize speed over quality for object with low displacement changes.

• Image preview during capturing for quality inspection2.

• Plotting of sensor distance measurements and translation stage position for
quality assessment.

• Detailed calibration dialog to aid proper calibration of the system.

• Controls for manual control of translation stages.

• Displays information about image stream.

Operating instructions for the system, along with troubleshooting tips, can be
found in section 7.1 in appendix.

5.3 Implementation

5.3.1 Overview

The active autofocus system is developed in C++ as a standalone application,
using the Qt framework. The implementation runs on Windows only, due to
dependence on external, Windows-only libraries. The continuous focus function
is, in principle, independent on data from the camera, and can run on it’s own.

2Image preview works in normal speed mode only. This is due to the TCP/IP communication
between the programs not being able to keep up with the large data size in high speed capture.

5 ACTIVE AUTOFOCUS 33

Figure 17: Image of the user interface for the autofocus system.

However, if initial focusing is to be used or a preview of the captured image is
desired in the program, it can connect itself to HySpex AIR to retrieve image data.
The system can also control the image capture in HySpex AIR by remote control
commands over virtual serial ports. This means that the entire capture process
can be controlled from the program, considerably easing the process for the user.
Ideally the focus system would be integrated into the capture software, how-
ever, this was not possible for this work due to the unavailability of the source code.

An overview of the process is shown in figure 18. The process starts by the
user adjusting the camera in correct position and angle. Next, the user performs

34 5.3 Implementation

initial focusing by using the initial focusing function. It is crucial that the laser
spot is positioned in the same area as the selected focus window for the initial
focus. After acquiring correct focus position, the user may start a capture by
clicking the "Start capture"-button. From here the system performs what is
referred to as a pre-run, a process running prior to the actual capture procedure.
The pre-run procedure is detailed in section 5.3.2. At completion of the pre-run,
the continuous focus process takes over, continuously taking measurements and
adjusting the camera if required. The continuous focus process is detailed in
section 5.3.3.

5 ACTIVE AUTOFOCUS 35

User presses
"Start capture".

Pre-run

Calibration of laser displacement
relative to translation stage

distance.

Mapping of distance profile
in the initial laser-to-FOV area.

Measurement of speed for
the horisontal translation

stage.

Continuous focusing:
Measurement of

distance-to-object and adjustment of camera
height to compensate for any deviations

from the focal length.

User pressed
"Stop process".

No

Yes

User focuses camera by use of
initial focusing function.

Capturing done.

Figure 18: Capture procedure overview.

36 5.3 Implementation

5.3.2 Pre-run

The purpose of the pre-run is to collect information about parameters in the system
needed before performing an image capture. In short, the process consists of the
following steps:

1. A calibration of the steps per mm for the vertical translation stage is con-
ducted, using the laser to measure the distance to target. This process is
detailed in section 5.4.2.

2. Measure the reference focus distance by moving the laser to the camera’s
initial FOV.

3. The topography in the area between the laser spot and the camera FOV is
mapped and saved.

4. The speed for the horizontal translation stage is measured.

The full process is detailed in figure 19.

5 ACTIVE AUTOFOCUS 37

Z translation stage has travelled
>8000 steps

User starts capture process.

Save measured distance to object and
Z translation stage position.

Save initial X/Z translation stage positions.
Start downward motion on Z translation stage.

No

Yes

Move Z stage back to initial position.

Calculate average of
steps per distance from saved data

to obtain a calibrated value for steps/mm
for the Z stage.

168.666,1000334
168.467,1000678
168.218,1001027
167.969,1001374
167.67,1001736

167.371,1002077
...

Move X translation stage backwards
by laser-to-FOV distance.

38 5.3 Implementation

Save current distance to object
as reference focus distance.

Start moving X translation stage forward
with target at initial position.

Start counter for calculating time spent
in movement.

X stage is back at initial position.

Add new measurement.
(X position in μm, relative Z change in mm)

No

Calculate time spent in movement
and number of steps traveled

in order to find steps/mm at current velocity.

Save measurements for use in focusing mode.

Start continuous focusing.

End of pre-run.

-1365,-0.199219
-1159,-0.249023
-932,-0.249023
-720,-0.199219
-523,-0.199219
-303,-0.199219
-111,-0.199219

Yes

Figure 19: Pre-run procedure.

5 ACTIVE AUTOFOCUS 39

5.3.3 Focus mechanism

The focus process is shown in figure 20. A refocusing period is defined, and within
these refocusing periods measurements are constantly read out from the sensor and
added to a stack. Every time the translation stage has traveled this distance, an
adjustment of the camera is performed using the latest measurement on the stack.
The refocusing period is set to 3mm, a number considered balanced between ac-
curacy in scanning direction and giving enough time for performing adjustments.
Furthermore, an optional condition is to add a threshold for when to perform an
adjustment. Due to the noise from the translation stage, making constant ad-
justments at slightly varying speeds can be a nuisance. A threshold of 0.5mm is
therefore added to the code, being too low to affect the focus quality and consid-
erably lessening the adjustment rate on flat surfaces. This condition is enabled in
the implementation. Furthermore, another threshold is added when making ad-
justments when the translation stage is currently running. The stage will pause
slightly when issued a new command, therefore we do not want to interrupt it if is
running and the desired position is within 0.5mm of the previously issued one. The
speed for the measurements is calculated using the formula found by the calibration
procedure (cf. section 5.4.2).

Pseudo-code for the addMeasurement() function is given below:
function addMeasurement ()

// Get change in d i s t a n c e to object , r e l a t i v e to i n i t i a l recorded
d i s t a n c e from senso r .

current_distance = laserSensor−>getDistance ()
IF current_distance is valid

distance_change = current_distance − initial_distance
ELSE

exit function
ENDIF

// Get cur rent p o s i t i o n f o r the t r a n s l a t i o n s t a g e s
xstage_position = XTranslationStage−>getPosition ()
zstage_position = ZTranslationStage−>getPosition ()

// Get p o s i t i o n at l a s e r po int (in s t e p s) r e l a t i v e to i n i t i a l
p o s i t i o n , and convert to micron

xposition_in_um = ((xstage_position − xStageInitialPosition) /
XSTEPS_PER_MM + LASER_TO_FOV_DISTANCE_MM) ∗ 1000

// Ca lcu la te p o s i t i o n to which the Z−s tage should move in steps ,
g iven measured d i s t a n c e change

distance_change = current_distance − distance_at_focus
zfinal_position = zstage_position + distance_change ∗

CALIBRATED_Z_STEPS_PER_MM

// Add p o s i t i o n s to s tack
distanceValues . add (xposition_in_um , zfinal_position)

end function

40 5.3 Implementation

Current x-position >
(LastXRefocusPosition + RefocusLength)

Pre-run finished
X-translation stage running

Add new measurement

LastXRefocusPosition = current x-position - laser-to-FOV-distance
RefocusLength = 3mm

No

Get latest measurement with x-position <=
(LastXReFocusPosition + RefocusLength)

LastXRefocusPosition = current x-position

Calculate required velocity based on
number of steps required for adjustment

and alloted time within this RefocusLength.

Adjust z-translation stage to position
given from measurement, using the calculated velocity.

Z-translation stage is running and
new z-position within 0.5mm of the old one. Yes

No

User has stopped the process.
No

Yes

Finished.

Yes

From pre-run:
-1365,-0.199219
-1159,-0.249023
-932,-0.249023
-720,-0.199219
-523,-0.199219
-303,-0.199219
-111,-0.199219

-1365,-0.199219
-1159,-0.249023
-932,-0.249023
-720,-0.199219
-523,-0.199219
-303,-0.199219
-111,-0.199219
120, -0.23132
230, -0.23132

...

Figure 20: Continuous focus procedure.

5 ACTIVE AUTOFOCUS 41

5.4 Calibration

Figure 21: Image of the calibration dialog. The dialog guides the user through the
calibration routines and shows last calibration values.

There are several calibrations needed in order for the system to function properly.
While it is possible to do a one time measurement and hard code the values, it is
desirable to give the flexibility to change equipment, yet keep things simple for the
user. Consequently, various methods were invented to ease these measurements.
Some of the calibrations are entirely automatic, while others require minor prepa-
rations. An image of the calibration dialog from the program is shown in figure
21.

5.4.1 Horizontal stage calibration

There are two parameters needed for the horizontal translation stage, steps
per mm and steps per second. A new calibration is needed when changing the
translation stage to another model.

42 5.4 Calibration

Laser
sensor

Δx

Figure 22: Calibration procedure for measuring steps per mm for a horizontal translation
stage. The number of steps traveled is measured by system, ∆x is measured manually by
user. The laser path and profile is outlined in red.

Steps per mm is user calibrated. First one takes a flat, rectangular object and
measures it’s length, e.g. by use of a caliper. The length in mm is entered into
the calibration dialog and the object is placed in front of the laser spot, see figure
22. The user then clicks the "Calibrate" button and the program performs the
calibration. By using the laser to measure the start and end points of an object
by height displacement, one can find the desired value by dividing the traveled
steps by the object length measured by the user. See section 7.8.2 in appendix
for the code performing this procedure. It is important that the object is placed
parallel to the laser path. In other words, the laser has to travel the same length
as is manually measured.

Steps per second is measured during the pre-run period. As the stage
moves backwards as described in 5.3.2, a counter keeps track of the time spent in
movement. At reaching the destination, the number of steps traveled is divided
by the time spent. This procedure takes place at every image capture and is fully
automated.

5.4.2 Vertical stage calibration

For the vertical stage, there are two relevant parameters. In order to be able to
adjust the camera to correct position based on the measurements from the sensor,
the steps per mm is crucial. A calibration of this value is needed before every
image capture. Furthermore, to adjust with proper speed, a measurement of the
different velocities is required. This process should be run when changing the

5 ACTIVE AUTOFOCUS 43

Sensor
path

ε

Sensor
path

Laser

1 2

Figure 23: Challenges connected to calibration of steps per mm for the vertical translation
stage by use of a tilted laser displacement sensor.

translation stage to another model.

Steps per mm is calibrated by using the laser displacement sensor. The
calibration process, a part of the pre-run as previously detailed, consists of moving
the sensor downwards while continuously measuring the distance to the object.
By measuring the difference in steps for each difference in distance, one obtain the
number of steps per mm. This can be averaged over several measurements. Ideally,
if the sensor is positioned perpendicular to the surface, the measured values are
directly translatable to camera distance relative to object. However, given a tilt
of the sensor, knowing the camera height would depend on knowledge of the angle
of the sensor. See left example in figure 23. This angle is not trivial to measure,
especially not with a high accuracy. Hence, it is desirable to be independent of
the sensor tilt. This can be achieved by using the measured values directly in the
system, with no conversion. If the system is focused at the beginning, knowing
the exact direct camera-to-object distance is not important, but rather use the
initial measurement as the "focal length" to follow.

Keeping the laser tilted give rise to another potential issue. The right drawing
in figure 23 show a situation where the laser will measure at an undesirable
location. Due to the vertical movement, the measure spot in the horizontal plane
will move. If the object is not flat, a distance difference, indicated by ε in the
figure, will impact the measurement. As long as the sensor is tilted, this situation
is not avoidable. The larger the tilt, the stronger impact. Consequently, it is
highly recommended to keep the laser perpendicular to the object for optimal
performance.

The velocity calibration is performed by moving the stage at different

44 5.4 Calibration

velocities and measure the time spent at traveling a given distance. The system is
calibrated at speeds ranging from 100-1000, at steps of 100. The resulting data is
analyzed by linear regression, and a expression for the required velocity, y, needed
to travel x number of steps given 1 second is produced.

5.4.3 Laser-to-FOV distance calibration

Laser
sensor

Δx

C
a
m
e
ra

Figure 24: Calibration procedure for measuring laser-to-FOV distance. The object is
placed alongside the FOV, indicated in light blue, and the laser signals when the end of
the object is reached. The length, indicated by ∆x, is then calculated by the system.

A similar procedure to the one for the horizontal stage is used in order to mea-
sure the distance from the laser spot to the camera’s FOV. See figure 24. A flat,
rectangular object is placed parallel to the FOV by use of HySpex AIR or HySpex
GROUND, so that the edge is just visible in the image. By pressing the calibrate
button, the system starts moving the laser sensor towards the initial location of
the FOV. When it detects a displacement above a threshold of 1cm, the system
stops the motion. The number of steps traveled are recorded, and by multiplying
this value by the steps per mm, found in the previous calibration, one obtains the
distance in mm between the laser spot and the FOV. A new calibration is needed
if the laser sensor’s position is altered or another lens is used.

5 ACTIVE AUTOFOCUS 45

5.5 Limitations

There are several limitations to this system, some intrinsic to the system while
others are implementation specific.

The XY-resolution (i.e. object plane) for the laser sensor is not known. No
measurements have been conducted to establish this limit. The laser spot size is
2.1-2.3mm, and hence we can only state that the resolution has to be lower than
this number. In reality it is likely much smaller.

As mentioned before, high speed adjustment of the vertical translation stage causes
vibrations in the camera, giving artifacts in the image. This is a physical limi-
tation, giving a choice between no artifacts in the image or high speed adjustments.

The system only adjust focus along the scanning direction. Naturally any
sufficiently curved objects (>2.5mm) in the direction perpendicular to this will
gradually fall outside the depth of field of the lens, causing unfocused images.
This is lens specific and is important to consider when imaging objects curved
considerably within the FOV.

The sensor has a range from 60-260mm, meaning that it will only work
with lenses having a certain focal length. It is possible to move the sensor up
or down as required, but if using lenses with focal lengths smaller than 60mm +
lens-to-camera-edge-length (keeping in mind that the lens is not placed at the edge
of the camera), one has to start considering placement, accuracy and range of the
sensor. Luckily, similar sensors with smaller ranges and much higher precision are
available.

5.6 Results and discussion

For all the results, the laser is tilted 15o.

5.6.1 Sensor accuracy

The optoNCDT 1302 sensor performed well on all tested surfaces, with the
exception of a high contrast sample, shown in figure 25, and some areas of a stone
sample. Among the tested surfaces were cardboard, wood, printed paper, skin,
stone, colored plastic (LEGO) and ketchup.

The measurements for the high contrast sample are shown in figure 26. The plot
shows distance to object while moving in the direction of the green arrow in figure
25. The peak at around 2.2 - 3 seconds is the black bar indicated by the red arrow.
The ripples seen from 3 seconds and outwards is caused by the alternating line color.

46 5.6 Results and discussion

The reason for this result is due to the difference in reflected light from the
black and white areas. Since the contrast change areas are smaller than the laser
spot, only a portion of the laser spot is reflected strongly. As the sensor use the
diffuse part of the reflected light, this is of great importance for the measurement
calculation. Running the autofocus system on this sample caused inaccurate
results, as the system would compensate for the incorrect measured changes in
the distance. This is an important result which shows the limitations for scanning
printed text samples with high contrast. Other printed samples with images and
lower contrast text samples did not exhibit the same behavior.

For the stone sample, inaccurate measurements were seen when hitting a
deep valley at size comparable to the laser spot size. Here the effect is similar to
the contrast change, although the underlying mechanism differ. Only a portion of
the laser spot is reflected back at the sensor, due to slope of the valley walls and
this gives inaccurate measurements or in worst case no measurement at all.

Further tests showed that the sensor would fail to find the distance if sub-
jected to high intensity light. Failure to measure the distance is indicated on
the sensor by a red LED, and in software an error code is given instead of the
measured distance. This can happen if the light intensity from the light source is
high and the laser spot falls within the lit area. The reason for this is that the
sensor fails to distinguish the laser light from the specular light from the light
source. Due to the polarizers, a high light intensity is required for a sufficient SNR
in the images. The problem is especially pronounced if imaging objects with a high
reflectance, such as ketchup or other liquids. Care has to be taken when adjusting
the light sources and placing the laser sensor to avoid this from occurring.

5 ACTIVE AUTOFOCUS 47

Figure 25: High contrast sample, demonstrating sensor inaccuracies. The green arrow
indicates direction of motion, while the red arrow indicate the position for the peak seen
in figure 26.

48 5.6 Results and discussion

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
102.5

103

103.5

104

104.5

105

105.5

Time (sec)

D
is

ta
nc

e
(m

m
)

Measurement inaccuracies, high contrast sample

Distance measurement

Figure 26: Measurement output for the distance measurement of the sample in figure 25.
Sensor-to-object distance is constant.

5 ACTIVE AUTOFOCUS 49

5.6.2 Calibration accuracy

Type Automatic Manual Deviation
X stage distance [steps/mm] 631 645 2.22%
X stage normal speed [steps/sec] 1323 - -
X stage high speed [steps/sec] 3906 - -
Laser-to-FOV [mm] 13.65 13.5 -1.1%

Table 6: Manually and automatically measured values for the horizontal translation stage
and laser-to-FOV distance.

Object Steps per mm Deviation
Flat table 1555 Reference.
Arm 1729 11.2%
Stone 1667 7.2%

Table 7: Calibrated values for the vertical translation stage, based on measurements from
the laser displacement sensor. Laser is tilted 15◦.

Due to the system’s high reliance on calibrated values, a proper evaluation of the
calibration accuracy is important. The results are listed in table 6 and 7. Manual
measurements were conducted where possible.

First, the horizontal translation stage distance has a deviation between the
automatically calibrated and manually measured distances of 2.22%. The manu-
ally measured value were measured using a ruler and the laser spot. Aligning the
center of the laser spot to 0mm, the stage was moved 30000 steps by software. The
center of the laser spot ended at 46.5mm, yielding 645 steps/mm. This deviation
is small and one also has to consider errors in the manual measurement. The likely
cause for the difference is the laser spot size, being 2.1-2.3mm, giving room for
errors in the XY-plane when measuring the number of steps traveled. While the
calibrated value is used in various internal calculations, the system intrinsically
operates in steps, and any calculated number by this value is normally calculated
back by using the same value. The exceptions are calculation of the laser-to-FOV
distance for displaying in mm in the calibration dialog, displaying distance in mm
in plots and calculating the refocusing distance from mm to steps.

Of these values, only the laser-to-FOV distance is a crucial parameter for
the focus quality given by the system. The calibrated laser-to-FOV value has
a deviation of -1.1% compared to the manually measured value. The auto-
matically calibrated value use the steps per mm for the horizontal stage for
distance calculation, therefore the small deviation discussed previously for that
value will also impact on this number. In operation, the calibrated value is
calculated back to steps using the same calibrated steps per mm, in practice
removing any effect from this value. The manual measurement were performed

50 5.6 Results and discussion

by using a caliper, aligning one point into the FOV and the other at the
center of the laser spot. It is important to note that both these values are
dependent on the manual adjustment of the object into the camera’s FOV. A
deviation this small will not alone impact the focus quality, and the ease of use
of the calibration procedure outweighs the negative effects given such a small error.

For the steps per mm values for the vertical stage listed in table 7, the cal-
ibration was performed by the program following the process described in section
5.4.2. The table served as a reference reading, as the measurement location
problems discussed previously is avoided on this sample due to the flat surface.
For the arm and stone samples, the calibrated values vary from the reference by
11.2% and 7.2% respectively. These are big numbers, given that they translate
directly to errors in adjustment of the camera. The reason for the deviations
is naturally explained by the fact that the surfaces are curved, giving different
distance measurements to object for the same vertical displacement (cf. section
5.4.2). One can argue that this calibration should be a one time calibration, using
a flat target as reference. There is, however, one disadvantage to this approach:
If the sensor tilt angle is changed only slightly, a recalibration is needed. Given
that the sensor might be knocked out of position, finding a flat, suitable object
and doing a recalibration in the midst of the process of imaging patients is not
desirable. Furthermore, it doesn’t change the fact that the sensor should be
positioned perpendicular to target for accuracy reasons as well, in which putting
the calibration in the pre-run is the superior approach as a calibration is then
performed anew, given the current surface properties, before each scan.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−200

0

200

400

600

800

1000

1200
Vertical translation stage velocity calibration

Steps

V
el

oc
ity

Calibration data
Linear regression

Figure 27: Calibration data for velocity calibration for vertical translation stage, with
fitted, linear function. The data indicate number of steps traveled in one second.

5 ACTIVE AUTOFOCUS 51

Measurements for the vertical translation stage velocity calibration is shown in
figure 27. The measurements are for differing speed settings from 100-1000 at 100
intervals. A function for finding desired speed value given number of steps to adjust
for was calculated by the program using linear regression. The resulting calibrated
function was

speed = −22.8728 + 0.112553 ∗ steps
Although most values fit the linear curve, the values at velocities of 800 and 900
differ from the expected distance. The reason for this is unclear, especially since the
1000 value looks fine. Further investigations are needed in order to fully evaluate
the impact of these deviations. However, the calibrations in general were found
to cause too high velocities, in the sense that the camera reached it’s target some
time before starting next adjustment. The differences at velocities of 800 and 900
might have contributed to this, but as it happened on lower speed settings as well,
it is considered unlikely. This is not desired, as we seek a motion as slow and
fluent as possible. The effect might be related to the refocus period being longer
than expected, as discussed later in section 5.6.5. Since the calibrations in itself
worked fine, a manual adjustment using a multiplier of 0.75 was applied (chosen
by trial and error) to the calibrated value before use. See code in section 7.8 in
appendix. This made the camera hit target well in the alloted time. Still, based
on these results, inaccurate speeds settings by the system in the 700-1000 range
should be expected. The system keeps track of desired focus position regardless of
the velocity, but it can cause the system to reach focus position later than desired,
reducing the focus quality in an area.

5.6.3 Sensor influence on image

In order to ensure that the images are not influenced by the laser light, a simple
test was conducted. The camera was adjusted to focus position, directed at a
homogeneous, white object. The laser was positioned 13.5mm apart from the
FOV. Four sample images were captured, with the combination of switching the
laser and light on and off. The camera position was constant, hence the images
have one spatial and one time dimension. Visual inspection of the images showed
no influence. To reduce the noise, a MNF-transform were applied to the images,
and an analysis performed. The MNF-transform is a common tool in analyzing
hyperspectral images [9]. The laser was only visible in the second band in the
transform, and only with the light source switched off. See figure 28.

This result is as expected. Laser light has a high intensity, hence, with no
other light sources it is no surprise that the camera picks up some of the reflected
light, albeit weakly, a distance apart from the FOV. However, with the light source
turned on, the intensity of the reflected laser light is far too low to have an effect
on the image. Therefore we can state that the sensor, if positioned a distance
sufficiently far away from the FOV, can safely be used in the system from an
image influence perspective. Further tests would be required to establish a limit
for this distance.

52 5.6 Results and discussion

Laser off
Light off

Laser on
Light off

Laser on
Light on

Laser off
Light on

Figure 28: MNF analysis, showing MNF band number 2, of the laser light influence in an
image. Only the area around the laser spot is shown.

5 ACTIVE AUTOFOCUS 53

5.6.4 Overview for the focus tests

Several focus tests were conducted for the system. Before starting an analysis
of the tests, it is important to discuss the common parameters for the tests and
establish what can be read out from the results, and what can not.

First of all, any errors in the steps per mm for the vertical translation stage will
not be evident in the plotted data from the system (shown in figure 29, 31 and
33). The reason for this is that any position for the vertical translation stage is
converted to mm in order to be plotted alongside, and this conversion uses the
steps per mm parameter. In other words, even if the graphs follow each other in
an exact manner, the focus might still be bad quality if the calibration is wrong.
This will naturally include inaccurate measurements from the sensor itself. What
the graphs do tell us, however, is how the system is able to respond to the changes
in topography. Using any deviations in the graphs in comparison to the depth
of field for the lens should therefore serve more as a guidance for further manual
inspection of focus quality, rather than a numerical analysis.

Secondly, all the focus tests showed refocusing lengths of 4.1-4.3mm. This
is 36%-41% higher than the set refocusing length of 3mm. It is uncertain why this
happens, but mistakes in the programming is a possibility. Calibration should not
influence this reading, as mm in the plot is an internal value using the same steps
per mm conversion as the translation stage. If the calibration is off by an offset, so
should the hard coded 3mm value be by the same offset when translated to steps,
but still display as 3mm in the plot. This discrepancy is worth investigating in
further work on the system.

54 5.6 Results and discussion

5.6.5 Focus test: Arm with fake wound

The primary target for the system is imaging of skin with wounds, as mentioned
in the introduction. While the system could not be tested on an actual wound due
to limited supply and arrangement difficulties, a fake wound on an arm served as
a testing sample. The wound consisted of ketchup and mayonnaise, with crafted
valleys and craters to resemble the topography of an actual wound. The ketchup
and mayonnaise combination is liquid and share some of the color characteristics
for a wound. Furthermore, the arm was lifted about 2cm at the elbow in order to
make the test more difficult for the system. The arm was therefore considerably
sloped compared to the horizontal camera axis. In practice the camera path
would be adjusted parallel to the arm. Three runs were conducted, one with
normal scanning speed, one with high speed scanning enabled and one without the
focusing activated, the latter serving as a comparison. Excerpt from the full scans
are shown in figure 30. Data from the system are plotted in figure 29. Calcula-
tion of the angle of the slope from this data give 17◦, relative to the horizontal axis.

The substantial slope of the arm is seen in the plot for the non-focused
sample in figure 29. Looking at the normal speed run, the camera follows the
arm exactly, except for a minor case in one spot. At around the 90mm position
there is a small bump in the wound. The largest distance between the translation
stage and distance measurement around this position is ∼1.5mm, being within the
DOF, but it requires further inspection as explained in 5.6.4. The log file show
a 4.53mm adjustment at a velocity of 449 at 92mm, meeting it’s target position.
The reason for the failure to follow the height change exactly is the refocusing
length being too long in this case. A smarter analysis of the collected samples
could help in this regard. A dynamic refocusing period based on analysis of the
collected samples might work better and should be investigated. The deviation
at the same position increases for the high speed sample, being ∼2.2mm, still
within the DOF. The log show a desired adjustment of 5.35mm at 92mm, with
a velocity of 1572. This is over the allowed speed for the system, meaning that
the adjustment was made with an actual velocity of 1000. Consequently, the
system could not keep up with the displacement, but this is an imposed restriction.

Looking at the images, they look focused in the desired area (the wound)
throughout the entire scan. The focus quality falls quickly to the right of the
wound. This is natural, due to the high displacement change where the arm curves
downwards, putting this area outside the depth of field. The focus system only
adjust focus along the scanning direction, using the laser path for measurements.
There is no discernible difference between the two speed modes, even in the
problem area at around 90mm, being the bottom of the wound. This means that
the system can handle some deviation from the distance measurement, due to
the depth of field of the lens. Unfortunately, it is hard to give an exact actual
deviation for the lens from it’s focal length at this position, we can only state
the relative number of ∼2.2mm. Inspection of the problem area at the end of

5 ACTIVE AUTOFOCUS 55

the wound is difficult as the the contrast is low, but the normal speed scan looks
marginally better, although both can be considered to be in focus. The overall
comparison of the non-focused image to the focused ones clearly demonstrate the
potential of the system, showing that the system works as intended on this sample
at both normal and high speed setting.

56 5.6 Results and discussion

−20 0 20 40 60 80 100 120 140 160
−50

−40

−30

−20

−10

0

10
Arm, normal speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

−20 0 20 40 60 80 100 120 140 160
−50

−40

−30

−20

−10

0

10
Arm, high speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

−20 0 20 40 60 80 100 120 140 160
−50

−40

−30

−20

−10

0

10
Arm, no focusing

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

Figure 29: Distance measurement and translation stage position data plotted for the arm
sample. Data are for full scans.

5 ACTIVE AUTOFOCUS 57

Normal speed High speed No focusing

Figure 30: Excerpt from focus test on an arm with a fake wound, consisting of ketchup
and mayonnaise. Scan direction is downwards in image.

58 5.6 Results and discussion

5.6.6 Focus test: Lego blocks

To further test the potential of the system, lego blocks were used to build a two
step rectangular structure. Lego blocks have a base height of 9mm, with the
knobs adding an additional 1.8mm. The first step is hence 9mm and the second is
18mm above the ground. The camera was focused at the table a distance before
the structure, from where the capture was initiated. Excerpts from the full scans
are shown in figure 32. Data from the system are plotted in figure 31.

The measured total length of the lego blocks is 50mm in the plot, while ac-
tual measurement is 48mm. This is an deviation of 4%, showing that the
calibration is a little off. Yet, keeping in mind the 5cm traveled distance, this is
within what one can expect from the calibration accuracies discussed previously.
As the system is not dependent on previous values, it will not get less accurate
over time, hence this 4% deviation is not important quality-wise in itself.

Looking at the result, it is clear that the abrupt changes in height pose a
challenge for the system. The system reaches all the targets within the alloted
time (cf. plot and the log file in section 7.5.2). This puts weight behind the manual
adjustment of the velocity calibration. Furthermore, the translation stage follows
the distance measurements well on the flat areas on the plateaus. For the large
displacements, the translation stage starts movement a distance before, having
time to adjust to the proper height before reaching target, but also leaving the
image out of focus in these areas. It is important to notice that changing where
the adjustment starts can make the system reach focus position in time in one
area, but this will make other parts less focused. Looking at the plots, the system
seem to do a good compromise. The areas out of focus in figure 32, right before the
steps, are hard to see as they are not well lit due to the structure blocking some
of the light from one of the light emitters. An important visible effect, however,
is that the straight lines of the figure looks bent, as the camera moves up and
down. The structure geometry in the image is hence affected by the adjustments,
which is not desirable. This is unavoidable as long as the system does not stop
the scanning motion for the adjustments. The effect is less pronounced in the high
speed capture due to the smaller adjustment time, but considerable distortions
from vibrations in the camera can be seen in the image, stemming from the higher
speed movements. One can argue that the maximum speed is not optimized for
this rig, but the influence will depend on how far the camera is adjusting. There
might also be cases where quick adjustments is preferable compared to having an
image without distortions in the adjustment areas. If the object to be imaged is
still, however, it would in this case be better to reduce the refocus length, rather
than using high speed capturing. Large adjustments over short time will change
the physical pixel relation considerably, an important aspect to consider if doing
measurements involving distance or area calculations in object plane.

The focus quality in the focused areas looks good. Comparing these areas

5 ACTIVE AUTOFOCUS 59

to the non-focused image shows the large difference in quality.

As mentioned in the introduction, only continuous scanning is evaluated.
This lego sample is a good example of an object which could benefit from stopping
the capturing before adjusting. If primary target is samples with big gaps, it can
be worthwhile to inspect how "pause and adjust"-scanning impacts the images.

60 5.6 Results and discussion

−20 0 20 40 60 80 100
−10

0

10

20

30
Lego blocks, normal speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

−20 0 20 40 60 80 100
−10

0

10

20

30
Lego blocks, high speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

−20 0 20 40 60 80 100
−10

0

10

20

30
Lego blocks, no focusing

Position (mm)

D
is

pl
ac

em
en

t(
m

m
)

Distance measurement
Translation stage position

Figure 31: Distance measurement and translation stage position data plotted for the lego
sample. Data are for full scans.

5 ACTIVE AUTOFOCUS 61

Normal speed High speed No focusing

Figure 32: Excerpts from focus test on lego blocks with two height levels. Scan direction
is downwards in image.

62 5.6 Results and discussion

5.6.7 Focus test: Stone

Geology and stone analysis is an interesting application for hyperspectral imaging.
Stones are rarely flat, hence continuous focusing is an important component in
the performing an analysis. The stone used is shown in figure 36 in the appendix.
Initial focus was done on one end of the stone and the rest of the stone was
captured including the adjustment down to table-level. Excerpts from the full
scans are shown in figure 34. Data from the system are plotted in figure 33.

The resulting graphs in figure 33 are as expected. The system follows the
curves of the stone exactly, given that the changes are sufficiently small. At the
stone-to-table gap the system struggles, as also seen in the lego samples. An
interesting observation is the difference in the steepness of the gaps from the stone
to the table. For the normal and high speed tests the steepness is similar, but in
the no focusing case the fall is close to vertical. One possible explanation is the
difference in measurement position in object plane, due to the lack of adjustment
of the vertical translation stage. Another possible explanation is that the laser
measures the profile better as it is moving down, getting line of sight to new areas.

Inspection of the focus quality in the images is challenging due to the tex-
ture of the stone, but the "No focusing"-graph indicate that a difference should
be visible in both the first and second half of the stone, with the lens meeting
focus position right after the middle at the 30mm position. The largest difference
in the first half is 3.54mm at a position of 12.26mm, possibly outside the DOF
having considered the sources of errors and measurement considerations in 5.6.4.
After the 30mm position, the difference is gradually growing from 0 at 30mm to
11.55 at 47mm, the position where the system starts having problems following
the changes. Looking at the images, a clear difference is shown in the first half.
The area overall is sharper, and is it especially visible in the yellow parts. 3.54mm
in the system can therefore be considered outside the 2.5mm DOF range, not
surprising as the number is 41.6% higher, above any expected measurement
inaccuracy. A difference between the normal and high speed mode images is not
visible. After the middle area, the focus quality is slowly becoming alike in the
focused images and the non-focused one, before departing again as predicted by
the graph. Near the end the difference is more pronounced, with the non-focused
image clearly being out of focus. Both the focus adjusted images look good.
However, at the end of the stone the high speed image has better focus, in contrast
to the previous test. Looking at the graphs, it is hard to tell why this happens. If
anything, the normal speed image should have better focus in this area, as both
start the downward motion at around the same position and the normal speed has
better time for adjustment. One can argue that the calibration errors calculated
in 5.6.2 make the graphs show wrong position for the actual adjustment position
relative to the physical position. However, the two images are not consistent with
the graphs in this regard as the graphs are similar, but the images are not, hence

5 ACTIVE AUTOFOCUS 63

it is considered unlikely. Further investigations is needed in order to conclude on
this phenomena. Nevertheless, it is clear that gaps in the topography higher than
the DOF is a problem for the system, as is to be expected.

64 5.6 Results and discussion

−20 0 20 40 60 80 100 120
−40

−20

0

20
Stone, normal speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
) Distance measurement

Translation stage position

−20 0 20 40 60 80 100 120
−40

−20

0

20
Stone, high speed

Position (mm)

D
is

pl
ac

em
en

t(
m

m
) Distance measurement

Translation stage position

−20 0 20 40 60 80 100 120
−40

−20

0

20
Stone, no focusing

Position (mm)

D
is

pl
ac

em
en

t(
m

m
) Distance measurement

Translation stage position

Figure 33: Distance measurement and translation stage position data plotted for the stone
sample. Data are for full scans.

5 ACTIVE AUTOFOCUS 65

No focusingHigh speedNormal speed

Figure 34: Excerpts from focus test on a stone. Scan direction is downwards in image.

66 5.7 System evaluation

5.7 System evaluation

Based on the results, the system functions as intended, giving great focus quality
for slowly variating samples. In the light of the target area being skin and wound
imaging, the system will likely perform well in this regard. It is also proven that
the system can handle other situations, however, considerations must be made
when imaging objects with a high topography variation. If scanning moving
objects, like patients, high speed mode is recommended to lessen disturbances in
the images from the movements. Otherwise, normal speed is the best option.

Most limitations are physical and setup related, especially adjustment speed
and laser placement issues. The most pressing issues are the laser tilt and in the
way the system determines when to adjust. The laser should be placed perpendic-
ular to the object, to remove calibration errors. Furthermore, today’s system is
based on fixed length refocusing periods, while dynamic refocusing positions has
a potential to work better. This will, however, require more complicated code as
a part of evaluating the data for when to do optimal adjustments. This is hereby
left as a possible improvement vector for the system.

Establishing a limit for when vibrations are disturbing the image quality is
difficult, as seemingly both adjustment length and speed both affect the amount of
vibrations. Looking at the log files, we can try say something quantitatively about
the phenomena. For the lego sample, the normal speed image has visible artifacts
in three places, corresponding to the 7.1mm, 33.4mm and the 66.7mm positions,
adjusting with velocities of 639, 941 and 1883 (actual 1000) respectively. The 639
adjustment show much smaller disturbances. They all adjust for displacements
higher than 7mm. The lower adjustment velocities show no problems. Looking
at the high speed arm test, no disturbances can be seen, although it is adjusting
at maximum speed over 5.4mm. In conclusion, adjustments over 5.4mm-7.1mm
with a velocity over 600 can give disturbances in the image. Erring to the side of
caution, compensating for gaps over 5mm in one adjustment, is not recommended
if no disturbances is desired. Making the camera setup more robust or reducing
the weight of the equipment will likely help in this regard.

To sum up we revisit the desired focus system qualities from the introduc-
tion:

• Low to no requirement for operator interaction and training. This require-
ment is fulfilled. No knowledge about focusing or cameras is required in
order to use the continuous focusing function. Calibration of the system is
also straightforward, with the bonus being that all calibration procedures
requiring user interaction is one time only given no changes to the system.

• Rapid focus recognition. Due to the laser measuring ahead of the camera
FOV, the focus recognition is instant and adjustment speed is only dependent
on the system components. The implemented solution utilize the adjustment

5 ACTIVE AUTOFOCUS 67

capabilities of the system fully.

• High reliability, regardless of object to be focused and lighting conditions. This
is an ideal, for any system there will be objects giving complications. The
presented system works well under most conditions, and steps can be taken
to improve the reliability on difficult samples. The system works without any
light at all, but can experience problems at extremely high light intensities.

• High accuracy. The focus quality after adjustment is shown to be excellent,
given proper calibration.

• Low cost. The system is dependent on a laser displacement sensor which
costs money. Seen in context of the system as a whole, the cost is low.

• If external components are required, these should have low weight and volume.
The laser sensor is small and weights little, using no considerable space and
adding no considerable weight to the system. Furthermore, it is likely possible
to incorporate the sensor into the camera itself, giving an optimal placement.

68

6 Conclusion and further work

Passive focus mechanism show little potential for continuous focusing systems,
due the difficulties for the algorithms to separate contrast changes in the ob-
ject from actual focus quality. Noise is also a limiting factor. For homogeneous
objects, a passive focusing system might be possible, using energy of laplacian algo-
rithm on two dimensional data, but the performance one can obtain is questionable.

Using an active autofocus method works well. The optoNCDT 1300 sensor
has the required accuracy and measurement rate for providing measurements in
such a system. Placing the sensor ahead of the camera field of view, and making
a profile of the topography changes worked as intended, providing excellent focus
recognition. The limits for adjusting the focus is largely limited by physical
properties in the constructed rig. There is a limit to how fast the translation
stage can move, and a high adjustment speed will cause vibrations in the camera,
causing artifacts in the images. If no disturbances in the image is desired,
compensating for gaps over 5mm within one refocusing period is not recommended
on the current camera setup.

The invented calibration methods performed as intended, easing the calibra-
tion process while providing sufficient accuracy. It is strongly recommended to
place the sensor perpendicular to the object (i.e. not tilted), in order to improve
the accuracy and reliability. The sensor can fail to measure on some high contrast
samples and if high light intensity hits the measurement area.

High speed mode is recommended when imaging moving targets with rela-
tively flat surfaces, like arms, hands or legs. The higher speed reduces chance of
patient movement affecting the image, while focus adjustment is adequate. Normal
speed is recommended for still objects, due to the longer adjustment window.

The desired properties set out for the system is considered fulfilled. The
system has low requirements for operator training and interaction, good reliability
under most conditions, high accuracy and low cost. Focus recognition is instant,
adjustments only being limited by translation stage properties. External compo-
nents add no considerable weight or space to the system, and has potential to be
included in the camera itself.

There are many improvement vectors for the system. Using dynamic refo-
cusing periods can better predict when to start adjustment of the stage for optimal
focusing. Furthermore, "pause and adjust"-scanning might be possible without
image interference, and can improve the focus quality on demanding samples. The
refocus period is shown to be off from the desired value, meaning there is a flaw
somewhere in the system. This should be investigated in order to ensure the code
and all it’s underlying mechanisms are correct. Finally, the camera rig should be
made more robust in order to handle adjustments with a higher speed.

6 CONCLUSION AND FURTHER WORK 69

70 REFERENCES

References

[1] Scientific American. How do bats echolocate and how are they adapted to
this activity? http://www.scientificamerican.com/article.cfm?id=how-do-
bats-echolocate-an. Accessed 25 May
2012.

[2] C.Y. Chen, R.C. Hwang, and Y.J. Chen. A passive auto-focus camera
control system. Applied Soft Computing, 10(1):296–303, 2010.

[3] M.S.T. Choi and A. Nikzad. Focusing techniques. Machine vision
applications, architectures, and systems integration: 17-18 November 1992,
Boston, Massachusetts, 1823:163, 1992.

[4] Wikimedia Commons. Focal length.
http://upload.wikimedia.org/wikipedia/commons/8/8b/Focal-length.svg.
Accessed 25 May 2012.

[5] R.G. Dorsch et al. Laser triangulation: Fundamental uncertainty of
measurement. Applied Optics, 33(7):1306–1314, 1994.

[6] R. Fontana et al. Autofocus laser system for multi-NIR scanning imaging of
painting surfaces. Proc. SPIE, 8084:808405–1–808405–9, 2011.

[7] N. Gat. Imaging spectroscopy using tunable filters: a review. In Proc. SPIE,
volume 4056, pages 50–64, 2000.

[8] R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital Image Processing
Using Matlab. Dorling Kindersley, 2004.

[9] A.A. Green et al. A transformation for ordering multispectral data in terms
of image quality with implications for noise removal. Geoscience and Remote
Sensing, IEEE Transactions on, 26(1):65 –74, January 1988.

[10] isel Germany AG. Technical data, LES 4 with spindle drive.

[11] R.E. Jacobson. The manual of photography: photographic and digital
imaging. Media manuals. Focal Press, 2000.

[12] J. Kautsky, J. Flusser, B. Zitová, and S. Simberová. A new wavelet-based
measure of image focus. Pattern Recognition Letters, 23(14):1785–1794, 2002.

[13] E. Krotkov. Focusing. International Journal of Computer Vision,
1(3):223–237, 1988.

[14] R. Lang and A. Spray. VLSI word size and precision analysis of the discrete
wavelet transform.

[15] Micro-Epsilon. Instruction manual optoNCDT 1302.

[16] D.B. Murphy. Fundamentals of light microscopy and electronic imaging.
Wiley-Liss, 2001.

REFERENCES 71

[17] Norsk Elektro Optikk. Hyspex prinsipp.
http://www.hyspex.no/images/about_hypspec_img/HySpex%20prinsipp.jpg.
Accessed 25 May 2012.

[18] Norsk Elektro Optikk. HySpex VNIR-1600 camera.
http://www.hyspex.no/images/index/vnir1600.png. Accessed 25 May 2012.

[19] R. Poprawe. Tailored Light 2: Laser Application Technology. Springer, 2011.

[20] S.T. Seljebotn. Autofocus in hyperspectral imaging, project report, 2011.

[21] T. Skauli. Sensor-informed representation of hyperspectral images. In Proc.
SPIE, pages 733418–733418–8, 2009.

[22] T. Skauli, FFI. Hyperspectral sensor technology.
http://hyperinet.multimediacampus.it/images/Skauli.pdf. Accessed 25 May
2012.

[23] Standa. Standa 8MT175 specifications sheet.

[24] D. Stöbener et al. Distance measurements with laser triangulation in hot
environments. In Proc. XVII IMEKO World Congress, pages 1898–1901,
Dubrovnik, Croatia, 2003.

[25] L.D. Stroebel, R.D. Zakia, and I. Current. Basic photographic materials and
processes. Focal Press, 2000.

[26] M. Subbarao and J.K. Tyan. Selecting the optimal focus measure for
autofocusing and depth-from-focus. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 20(8):864–870, 1998.

[27] K. Tatsumi et al. Onboard spectral calibration for the
Hyperspectral/Multispectral sensors. In Proc. ‘Hyperspectral 2010
Workshop’, Frascati (Italy) March, page 17–19, 2010.

[28] J.S. Walker, T.Q. Nguyen, and Y.J. Chen. A low-power, low-memory system
for wavelet-based image compression. Optical Engineering, Research
Signposts, 5:111–125, 2003.

[29] wavelet1d. C++ implementation of discrete wavelet transform.
http://code.google.com/p/wavelet1d/. Accessed 14 March 2012.

72

7 Appendix

7.1 Instructions

1. Adjust camera scan path as parallel to the object plane as possible.

2. If not present, add a virtual serial port loop from the port configured in
HySpex AIR (default COM15) to COM16 used by the system.

3. Start HySpex AIR and AutoFocus.exe.

4. In AutoFocus, enter a session name. This equals the folder on the harddrive
in which the captured images will be placed.

5. Click "Connect".

6. Wait a while for a background to be captured. This is indicated by the
top colored bar in HySpex AIR turning green. HySpex AIR can now be
minimized if desired, or leave it open for image preview purposes.

7. If the camera is not focused, run the initial focus procedure. Place the vertical
stage sufficiently high (a bit over where focus should be) and press "Start
initial focusing". When focus peak is found, click "Stop procedure". If the
peak is not the highest point in the graph, click on what you consider the
focus peak.

8. If high speed capture is desired, mark the relevant checkbox. The high speed
capture is three times faster than normal speed, but the focus quality might
suffer depending on the extent of topography changes in the object. Image
preview is not shown during high speed capture due to system limitations.

9. Click "Start capture". When capturing is done, press "Stop procedure". Mark
down the number of the captured file in HySpex AIR for categorization.

10. The system is ready for another capture, no reconnect is necessary. However,
if a session name change is desired, click "End session" in HySpex AIR and
go back to step 3. Otherwise, simply press "Start capture" again.

11. When done, close AutoFocus (it’s preferable to wait until translation stages
have returned to initial position). Click "End session" in HySpex AIR, fol-
lowed by "End program".

7 APPENDIX 73

7.2 Troubleshooting

Problem Possible solutions
Captured image has lines in it,
at places with a high topography
change.

This is caused by vibrations in the
camera. The high speed of the ad-
justment will cause the camera to vi-
brate, if a large height change is ad-
justed for over a short period of time.
Try running in normal speed mode,
or lower the maximum speed.

Laser LED is red and/or focus is not
adjusted at times during capture.

This happens mostly in two differ-
ent cases: 1. The laser spot is in-
side the area lit by the light source,
and the light intensiy is high. The
laser sensor cannot see the the laser
spot, drowning in the external light.
2. If the laser is tilted, a displace-
ment can block the line of sight for
the sensor regarding the laser spot.
Try to reposition the object, or do
not tilt the laser.

Camera is adjusted wrong. This can happen if the laser sen-
sor is having problems measuring
the distance. Cracks and small val-
leys are especially challenging. Fur-
thermore, high contrast samples like
printed text can in some instances
give wrong measurements. Try run-
ning the diagnostic and measure-
ment tool for the laser sensor to in-
vestigate, or try repositioning the
sample. Make sure the sensor is
clean (read manual before cleaning!).

Camera suddenly stops adjusting,
although it is clear it should adjust
further.

Make sure that the vertical transla-
tion stage is not at it’s maximum or
minimum position. There is unfor-
tunately no warning in the program
when this happens. Adjust the stage
to a height with more leeway, and try
capturing again.

74 7.3 Profiling results

7.3 Profiling results

All the profiling is done with the "GNU gprof" profiler. Relevant excerpts from the
output data is given below.

7.3.1 Energy of gradient

Profiling results for the energy of gradient algorithm. "gradient_focus" is the
parent function for the focus calculation. "self" corresponds to seconds spent
in function, while "children" corresponds to seconds spent in all child function.
Function and type parameters are omitted. Each function call consume 140 ms /
2416 calls = 0.058 ms/call.

1 index % time self children called name
2
3 [1] 63.4 0.02 0.24 focus_prep [1]
4 0.14 0.00 2416/2416 gradient_focus [4]
5 0.10 0.00 2967846/2967846 std:: vector :: operator= [6]
6 0.00 0.00 1/1 std:: vector :: _M_insert_aux [17]
7 ---
8 0.14 0.00 2416/2416 focus_prep [1]
9 [4] 34.1 0.14 0.00 2416 gradient_focus [4]

7.3.2 Energy of laplacian

Profiling results for the energy of laplacian algorithm. "laplacian_focus" is the
parent function for the focus calculation. "self" corresponds to seconds spent
in function, while "children" corresponds to seconds spent in all child function.
Function and type parameters are omitted. Each function call consume 2180 ms /
2416 calls = 0.9 ms/call.

1 index % time self children called name
2 <spontaneous >
3 [1] 93.5 0.03 2.29 focus_prep [1]
4 2.18 0.00 2416/2416 laplacian_focus [2]
5 0.11 0.00 2967846/2967846 std:: vector :: operator= [6]
6 0.00 0.00 1/1 std:: vector :: _M_insert_aux [17]
7 ---
8 2.18 0.00 2416/2416 focus_prep [1]
9 [2] 87.9 2.18 0.00 2416 laplacian_focus [2]

7.3.3 DWT

Profiling results for the DWT algorithm. "dwt_focus" is the parent function
for the focus calculation. "self" corresponds to seconds spent in function, while

7 APPENDIX 75

"children" corresponds to seconds spent in all child function. Function and type
parameters are omitted. Each function call consume 36700 ms / 2416 calls = 15.2
ms/call.

1 index % time self children called name
2 <spontaneous >
3 [1] 99.6 0.03 37.36 focus_prep [1]
4 0.58 36.70 2416/2416 dwt_focus [2]
5 0.08 0.00 2967846/3052406 std:: vector :: operator= [18]
6 0.00 0.00 1/1 std:: vector :: _M_insert_aux [35]
7 ---
8 0.58 36.70 2416/2416 focus_prep [1]
9 [2] 99.3 0.58 36.70 2416 dwt_focus [2]

10 0.31 36.39 2416/2416 dwt_2d [3]
11 ---
12 0.31 36.39 2416/2416 dwt_focus [2]
13 [3] 97.8 0.31 36.39 2416 dwt_2d [3]
14 3.15 33.21 4832/4832 dwt2 [4]
15 0.01 0.00 21744/31408 std:: vector :: vector [21]
16 0.01 0.00 4832/4832 void std:: vector [22]
17 0.00 0.00 77312/191931872 std:: vector :: _M_insert_aux [7]
18 0.00 0.00 7248/7248 std:: vector :: operator= [23]
19 0.00 0.00 4832/11751424 filtcoef [10]
20 0.00 0.00 14496/14496 std:: vector :: insert [29]
21 0.00 0.00 2416/2416 per_ext2d [30]
22 ---
23 3.15 33.21 4832/4832 dwt_2d [3]
24 [4] 96.9 3.15 33.21 4832 dwt2 [4]
25 1.22 30.89 5870880/5870880 dwt1_m [5]
26 1.09 0.00 33703200/191931872 std:: vector :: _M_insert_aux [7]
27 0.01 0.00 9664/31408 std:: vector :: vector [21]
28 0.00 0.00 4832/11751424 filtcoef [10]
29 ---
30 1.22 30.89 5870880/5870880 dwt2 [4]
31 [5] 85.5 1.22 30.89 5870880 dwt1_m [5]
32 20.34 2.56 11741760/11741760 convfftm [6]
33 1.73 1.80 11741760/11741760 downsamp [8]
34 0.36 1.61 5870880/5870880 per_ext [9]
35 0.71 1.09 11741760/11751424 filtcoef [10]
36 0.49 0.00 35225280/35225280 std:: vector ::erase [13]
37 0.20 0.00 11741760/11741760 std:: vector ::erase [14]
38 ---
39 20.34 2.56 11741760/11741760 dwt1_m [5]
40 [6] 61.0 20.34 2.56 11741760 convfftm [6]
41 2.56 0.00 79003200/191931872 std:: vector :: _M_insert_aux [7]
42 ---
43 0.00 0.00 77312/191931872 dwt_2d [3]
44 0.76 0.00 23483520/191931872 std:: vector :: insert [11]
45 1.09 0.00 33703200/191931872 dwt2 [4]
46 1.80 0.00 55664640/191931872 downsamp [8]
47 2.56 0.00 79003200/191931872 convfftm [6]
48 [7] 16.6 6.22 0.00 191931872 std:: vector :: _M_insert_aux

76 7.4 Sample images

7.4 Sample images

Figure 35: Image of the lego sample used in testing.

7 APPENDIX 77

Figure 36: Image of the stone sample used in testing.

78 7.5 Focus test logs

7.5 Focus test logs

The inital measurements are from the steps per mm calibration for the vertical
stage, in the pre-run. Next is the calculated steps per mm value. Last are the
desired adjustments found by the system.

7.5.1 Arm with fake wound

Normal speed:
1 Displacement: 174.095 , pos: 1015291
2 Displacement: 173.846 , pos: 1015644
3 Displacement: 173.597 , pos: 1016006
4 Displacement: 173.348 , pos: 1016340
5 Displacement: 173.148 , pos: 1016696
6 Displacement: 172.8 , pos: 1017046
7 Displacement: 172.65 , pos: 1017395
8 Displacement: 172.451 , pos: 1017745
9 Displacement: 172.252 , pos: 1018265

10 Displacement: 172.003 , pos: 1018601
11 Displacement: 171.854 , pos: 1018951
12 Displacement: 171.654 , pos: 1019301
13 Displacement: 171.455 , pos: 1019686
14 Displacement: 171.206 , pos: 1020138
15 Displacement: 170.957 , pos: 1020472
16 Displacement: 170.808 , pos: 1020822
17 Displacement: 170.559 , pos: 1021191
18 Displacement: 170.31 , pos: 1021543
19 Displacement: 170.11 , pos: 1021912
20 Displacement: 169.911 , pos: 1022230
21 Displacement: 169.712 , pos: 1022586
22 Displacement: 169.463 , pos: 1022984
23 Z Steps per mm: 1729
24 X_pos: 0.187005 , Adjusting -1.39445 mm, velocity: 129
25 X_pos: 4.33439 , Adjusting -1.19838 mm, velocity: 110
26 X_pos: 8.49287 , Adjusting -1.32909 mm, velocity: 123
27 X_pos: 12.6561 , Adjusting -1.49855 mm, velocity: 140
28 X_pos: 16.813 , Adjusting -0.956622 mm , velocity: 85
29 X_pos: 20.9683 , Adjusting -1.11163 mm, velocity: 101
30 X_pos: 25.1474 , Adjusting -1.7085 mm, velocity: 162
31 X_pos: 29.3391 , Adjusting -1.02024 mm, velocity: 91
32 X_pos: 33.5071 , Adjusting -1.51128 mm , velocity: 141
33 X_pos: 37.6719 , Adjusting -1.08039 mm, velocity: 98
34 X_pos: 50.1601 , Adjusting -2.65298 mm, velocity: 258
35 X_pos: 54.309 , Adjusting -1.93002 mm, velocity: 184
36 X_pos: 58.4976 , Adjusting -1.1498 mm, velocity: 105
37 X_pos: 62.6529 , Adjusting -1.28803 mm, velocity: 119
38 X_pos: 66.8098 , Adjusting -1.00752 mm, velocity: 90
39 X_pos: 71.0285 , Adjusting -1.48178 mm , velocity: 138
40 X_pos: 79.336 , Adjusting 0.62753 mm, velocity: 51
41 X_pos: 87.6498 , Adjusting -2.56969 mm, velocity: 249
42 X_pos: 91.8193 , Adjusting -4.53383 mm, velocity: 449
43 X_pos: 95.9572 , Adjusting -1.19318 mm, velocity: 109
44 X_pos: 100.097 , Adjusting -1.04858 mm , velocity: 94
45 X_pos: 108.282 , Adjusting -0.943898 mm, velocity: 84
46 X_pos: 112.36 , Adjusting -0.839213 mm, velocity: 73
47 X_pos: 116.507 , Adjusting -1.12493 mm, velocity: 102
48 X_pos: 120.669 , Adjusting -1.2406 mm , velocity: 114
49 X_pos: 124.823 , Adjusting -1.14575 mm , velocity: 104
50 X_pos: 128.978 , Adjusting -1.18566 mm, velocity: 108

High speed:

7 APPENDIX 79

1 Displacement: 174.294 , pos: 1015284
2 Displacement: 173.995 , pos: 1015647
3 Displacement: 173.746 , pos: 1015990
4 Displacement: 173.497 , pos: 1016349
5 Displacement: 173.298 , pos: 1016702
6 Displacement: 173.049 , pos: 1017052
7 Displacement: 172.85 , pos: 1017389
8 Displacement: 172.601 , pos: 1017755
9 Displacement: 172.252 , pos: 1018313

10 Displacement: 172.003 , pos: 1018624
11 Displacement: 171.754 , pos: 1018974
12 Displacement: 171.604 , pos: 1019317
13 Displacement: 171.256 , pos: 1019834
14 Displacement: 171.156 , pos: 1020174
15 Displacement: 170.957 , pos: 1020533
16 Displacement: 170.758 , pos: 1020880
17 Displacement: 170.559 , pos: 1021229
18 Displacement: 170.359 , pos: 1021579
19 Displacement: 170.16 , pos: 1021938
20 Displacement: 170.011 , pos: 1022291
21 Displacement: 169.812 , pos: 1022628
22 Displacement: 169.612 , pos: 1022978
23 Z Steps per mm: 1729
24 X_pos: 0.507132 , Adjusting -1.09543 mm, velocity: 294
25 X_pos: 4.8336 , Adjusting -1.14806 mm, velocity: 309
26 X_pos: 9.1775 , Adjusting -1.69983 mm, velocity: 475
27 X_pos: 13.5325 , Adjusting -1.36032 mm , velocity: 373
28 X_pos: 17.8938 , Adjusting -0.947947 mm , velocity: 249
29 X_pos: 22.2884 , Adjusting -1.57895 mm , velocity: 439
30 X_pos: 26.6212 , Adjusting -1.01966 mm, velocity: 271
31 X_pos: 30.9699 , Adjusting -1.18161 mm, velocity: 320
32 X_pos: 35.3423 , Adjusting -1.50087 mm , velocity: 416
33 X_pos: 39.6799 , Adjusting -0.721226 mm, velocity: 182
34 X_pos: 48.3962 , Adjusting -0.817235 mm, velocity: 210
35 X_pos: 52.7971 , Adjusting -2.07808 mm , velocity: 589
36 X_pos: 57.1189 , Adjusting -2.40023 mm , velocity: 686
37 X_pos: 61.4786 , Adjusting -1.27299 mm , velocity: 347
38 X_pos: 65.8399 , Adjusting -1.44072 mm, velocity: 398
39 X_pos: 70.1949 , Adjusting -1.39734 mm, velocity: 384
40 X_pos: 83.2995 , Adjusting 0.99653 mm , velocity: 264
41 X_pos: 87.626 , Adjusting -1.4598 mm, velocity: 403
42 X_pos: 91.9635 , Adjusting -5.35107 mm, velocity: 1572
43 X_pos: 96.336 , Adjusting -3.76692 mm, velocity: 1096
44 X_pos: 100.686 , Adjusting -0.995373 mm, velocity: 264
45 X_pos: 105.041 , Adjusting -1.11336 mm , velocity: 300
46 X_pos: 113.762 , Adjusting -0.978022 mm, velocity: 258
47 X_pos: 118.117 , Adjusting -1.20648 mm , velocity: 327
48 X_pos: 122.525 , Adjusting -1.63678 mm, velocity: 456
49 X_pos: 126.811 , Adjusting -0.954309 mm , velocity: 252
50 X_pos: 131.184 , Adjusting -1.27935 mm , velocity: 349
51 X_pos: 135.561 , Adjusting -0.754772 mm, velocity: 192
52 X_pos: 139.911 , Adjusting -0.974552 mm , velocity: 258
53 X_pos: 144.266 , Adjusting -1.08502 mm, velocity: 291
54 X_pos: 148.637 , Adjusting -0.761134 mm, velocity: 194
55 X_pos: 153.016 , Adjusting -0.917293 mm , velocity: 240

7.5.2 Lego blocks

Normal speed:
1 Displacement: 168.666 , pos: 1000334
2 Displacement: 168.467 , pos: 1000678
3 Displacement: 168.218 , pos: 1001027

80 7.5 Focus test logs

4 Displacement: 167.969 , pos: 1001374
5 Displacement: 167.67 , pos: 1001736
6 Displacement: 167.371 , pos: 1002077
7 Displacement: 167.222 , pos: 1002423
8 Displacement: 166.973 , pos: 1002773
9 Displacement: 166.674 , pos: 1003309

10 Displacement: 166.425 , pos: 1003642
11 Displacement: 166.226 , pos: 1003995
12 Displacement: 165.977 , pos: 1004335
13 Displacement: 165.678 , pos: 1004756
14 Displacement: 165.429 , pos: 1005182
15 Displacement: 165.229 , pos: 1005548
16 Displacement: 164.98 , pos: 1005885
17 Displacement: 164.781 , pos: 1006251
18 Displacement: 164.582 , pos: 1006604
19 Displacement: 164.333 , pos: 1006960
20 Displacement: 164.134 , pos: 1007306
21 Displacement: 163.885 , pos: 1007640
22 Z Steps per mm: 1555
23 X_pos: 16.8003 , Adjusting 7.12219 mm, velocity: 639
24 X_pos: 20.9651 , Adjusting 4.3299 mm, velocity: 384
25 X_pos: 25.1268 , Adjusting -1.74662 mm, velocity: 147
26 X_pos: 29.2821 , Adjusting -1.3717 mm , velocity: 113
27 X_pos: 33.4406 , Adjusting 10.4193 mm, velocity: 941
28 X_pos: 37.5864 , Adjusting 1.72026 mm, velocity: 145
29 X_pos: 41.7448 , Adjusting -1.55691 mm, velocity: 130
30 X_pos: 66.6735 , Adjusting -20.7183 mm, velocity: 1883

High speed:

1 Displacement: 168.616 , pos: 1000338
2 Displacement: 168.417 , pos: 1000690
3 Displacement: 168.168 , pos: 1001040
4 Displacement: 167.969 , pos: 1001377
5 Displacement: 167.67 , pos: 1001727
6 Displacement: 167.421 , pos: 1002086
7 Displacement: 167.172 , pos: 1002432
8 Displacement: 166.923 , pos: 1002795
9 Displacement: 166.674 , pos: 1003212

10 Displacement: 166.425 , pos: 1003603
11 Displacement: 166.226 , pos: 1003940
12 Displacement: 165.977 , pos: 1004296
13 Displacement: 165.777 , pos: 1004643
14 Displacement: 165.429 , pos: 1005140
15 Displacement: 165.229 , pos: 1005474
16 Displacement: 165.03 , pos: 1005833
17 Displacement: 164.831 , pos: 1006183
18 Displacement: 164.582 , pos: 1006565
19 Displacement: 164.333 , pos: 1006898
20 Displacement: 164.084 , pos: 1007270
21 Displacement: 163.885 , pos: 1007591
22 Displacement: 163.686 , pos: 1007925
23 Z Steps per mm: 1539
24 X_pos: 17.9271 , Adjusting 9.31384 mm, velocity: 2454
25 X_pos: 22.3106 , Adjusting 7.13645 mm, velocity: 1872
26 X_pos: 26.6545 , Adjusting 2.18389 mm, velocity: 549
27 X_pos: 35.3645 , Adjusting 11.3853 mm , velocity: 3008
28 X_pos: 39.7132 , Adjusting 6.51072 mm, velocity: 1705
29 X_pos: 44.0967 , Adjusting 3.15335 mm, velocity: 808
30 X_pos: 48.4406 , Adjusting -1.33268 mm, velocity: 321
31 X_pos: 65.8891 , Adjusting -10.4587 mm, velocity: 2760
32 X_pos: 70.2567 , Adjusting -16.9071 mm, velocity: 4484
33 X_pos: 92.0254 , Adjusting -0.512021 mm, velocity: 102

7 APPENDIX 81

7.5.3 Stone

Normal speed:
1 Displacement: 162.689 , pos: 1000324
2 Displacement: 162.44 , pos: 1000664
3 Displacement: 162.191 , pos: 1001017
4 Displacement: 161.942 , pos: 1001367
5 Displacement: 161.644 , pos: 1001733
6 Displacement: 161.395 , pos: 1002067
7 Displacement: 161.096 , pos: 1002423
8 Displacement: 160.797 , pos: 1002776
9 Displacement: 160.448 , pos: 1003350

10 Displacement: 160.249 , pos: 1003655
11 Displacement: 159.95 , pos: 1004008
12 Displacement: 159.701 , pos: 1004361
13 Displacement: 159.402 , pos: 1004755
14 Displacement: 159.104 , pos: 1005201
15 Displacement: 158.954 , pos: 1005548
16 Displacement: 158.805 , pos: 1005901
17 Displacement: 158.705 , pos: 1006234
18 Displacement: 158.506 , pos: 1006613
19 Displacement: 158.307 , pos: 1006940
20 Displacement: 158.107 , pos: 1007293
21 Displacement: 157.908 , pos: 1007672
22 Displacement: 157.659 , pos: 1007999
23 Z Steps per mm: 1632
24 X_pos: 0.179081 , Adjusting 1.19547 mm, velocity: 102
25 X_pos: 4.36292 , Adjusting 1.59498 mm, velocity: 141
26 X_pos: 8.43582 , Adjusting 0.863971 mm, velocity: 71
27 X_pos: 16.7718 , Adjusting -0.879289 mm , velocity: 72
28 X_pos: 20.9319 , Adjusting -0.634804 mm , velocity: 48
29 X_pos: 25.13 , Adjusting -2.42892 mm, velocity: 221
30 X_pos: 29.3027 , Adjusting -2.62623 mm, velocity: 240
31 X_pos: 33.4691 , Adjusting -1.85662 mm , velocity: 166
32 X_pos: 37.6307 , Adjusting -1.84988 mm, velocity: 165
33 X_pos: 41.8494 , Adjusting -2.46569 mm , velocity: 225
34 X_pos: 45.9937 , Adjusting -5.67279 mm , velocity: 532
35 X_pos: 50.1331 , Adjusting -16.1305 mm , velocity: 1536
36 X_pos: 62.3217 , Adjusting 0.787377 mm , velocity: 63
37 X_pos: 66.3344 , Adjusting 0.910539 mm , velocity: 75

High speed:
1 Displacement: 162.689 , pos: 1000331
2 Displacement: 162.44 , pos: 1000677
3 Displacement: 162.191 , pos: 1001030
4 Displacement: 161.992 , pos: 1001370
5 Displacement: 161.693 , pos: 1001723
6 Displacement: 161.395 , pos: 1002070
7 Displacement: 161.096 , pos: 1002416
8 Displacement: 160.697 , pos: 1002933
9 Displacement: 160.498 , pos: 1003260

10 Displacement: 160.299 , pos: 1003606
11 Displacement: 160 , pos: 1003969
12 Displacement: 159.452 , pos: 1004617
13 Displacement: 159.402 , pos: 1004861
14 Displacement: 159.153 , pos: 1005211
15 Displacement: 158.954 , pos: 1005564
16 Displacement: 158.805 , pos: 1005923
17 Displacement: 158.655 , pos: 1006279
18 Displacement: 158.506 , pos: 1006638
19 Displacement: 158.307 , pos: 1006985
20 Displacement: 158.107 , pos: 1007344
21 Displacement: 157.858 , pos: 1007688
22 Z Steps per mm: 1632

82 7.6 Passive autofocus prototyping code

23 X_pos: 0.438986 , Adjusting 1.14583 mm, velocity: 290
24 X_pos: 4.77655 , Adjusting 1.53983 mm, velocity: 402
25 X_pos: 9.11569 , Adjusting 0.749387 mm , velocity: 177
26 X_pos: 17.8193 , Adjusting -0.773284 mm, velocity: 184
27 X_pos: 22.2377 , Adjusting -1.18934 mm , velocity: 302
28 X_pos: 26.5468 , Adjusting -1.90196 mm, velocity: 504
29 X_pos: 30.8906 , Adjusting -2.73284 mm, velocity: 740
30 X_pos: 35.2678 , Adjusting -2.53248 mm , velocity: 683
31 X_pos: 39.6181 , Adjusting -1.46446 mm , velocity: 380
32 X_pos: 43.9493 , Adjusting -4.60784 mm, velocity: 1271
33 X_pos: 48.3328 , Adjusting -19.7059 mm, velocity: 5550
34 X_pos: 78.8368 , Adjusting 0.624387 mm, velocity: 142

7.6 Passive autofocus prototyping code

7.6.1 f_gradient.m

1 function [g_x] = gradient_energy(input , scale)
2
3 input = double(input);
4 g_x = zeros(size(input));
5
6 for n=1: numel(input)-1,
7 if n <= numel(input)
8 g_x(n) = input(n) - input(n+1);
9

10 end
11 end
12
13 g_x = sum(g_x)^2;

7.6.2 f_laplacian.m

1 function [focus_value] = f_laplacian(input)
2
3 [rows cols] = size(input);
4 focus_sum = 0;
5 kernel = [-1 -4 -1; -4 20 -4; -1 -4 -1;];
6 for x=2:rows -2,
7 for y=2:cols -2,
8 focus_sum_temp = kernel (1,1)*input(x-1, y-1) ...
9 + kernel (1,2)*input(x-1, y)...

10 + kernel (1,3)*input(x-1,y+1) ...
11 + kernel (2,1)*input(x, y-1) ...
12 + kernel (2,2)*input(x,y)...
13 + kernel (2,3)*input(x, y+1) ...
14 + kernel (3,1)*input(x+1, y-1)...
15 + kernel (3,2)*input(x+1, y)...
16 + kernel (3,3)*input(x+1, y+1);
17 focus_sum = focus_sum + focus_sum_temp ^2;
18 end
19 end
20 focus_value = focus_sum;
21 end

7 APPENDIX 83

7.6.3 focus_sim_general.m

The same code is used for all the images by changing filename and other relevant
data.

1 clear all
2
3 base_path = ’/media/LinDisk/Master /3101/ ’;
4 project_path = ’HySpex/’;
5
6 filename = ’HySpex_505_VNIR_1600_SN0002_corr ’;
7 %filename = ’HySpex_508_VNIR_1600_SN0002_corr.hyspex ’;
8
9 % Set lines manually

10 lines = 1029;
11
12 % Get header and read out no. of lines in image
13 fid=fopen([base_path , project_path , filename , ’.hdr’], ’r+’);
14 while 1
15 tline = fgetl(fid);
16 if ~ischar(tline), break , end
17 m = regexpi(tline , ’lines␣=␣(.*)’, ’tokens ’, ’once’);
18 if numel(m) > 0,
19 lines = str2num(char(m));
20 end
21 end
22 fclose(fid);
23 %
24
25 samples = 1600;
26 bands_num = 160;
27
28 %image_rows = [135 550]; %For tilted sample
29 image_rows = [30 900];
30 image_columns = [1 samples];
31 image_bands = [55 41 12];
32 header_offset = 4104192; %Important! Can vary from file to file , is dependent on

no. of bands.
33 datatype = ’uint16 ’;
34 format = ’bil’;
35
36
37
38 X=multibandread ([base_path , project_path , filename , ’.hyspex ’],[lines ,samples ,

bands_num],datatype ,header_offset ,format ,’ieee -le’, {’Row’,’Range’,
image_rows}, {’Column ’,’Range ’,image_columns },{’Band’,’Direct ’, image_bands
});

39
40 % YCbCr conversion
41 Y = 0.299 * X(:,:,1) + 0.587 * X(:,:,2) + 0.114 * X(:,:,3);
42 clear X
43
44 [rows cols dim] = size(Y);
45
46 % Normalize sample to prevent light intensity from interfering
47 for row =1:rows ,
48 Y(row , :) = Y(row , :) / mean(mean(Y(row , :)));
49 end
50 % Number for averaging (or image sample size for 2D)
51 num_rows = 20;
52 focus_values = zeros(rows -num_rows , 3);
53
54 % 1D algorithm
55 for row =1:rows ,
56 if row > num_rows ,
57 outline = 750:950;
58 sample = Y(row -num_rows:row , outline);

84 7.6 Passive autofocus prototyping code

59 [x1 y1] = size(sample);
60 focus_sum = 0;
61 for y=1:y1 ,
62 focus_sum = focus_sum + gradient_energy(sample(:,y));
63 end
64 focus_values(row -num_rows , 1) = focus_sum;
65 end
66 end
67
68 % 2D algorithm Laplacian
69 for row =1:rows ,
70 if row > num_rows ,
71 outline = 750:950;
72 sample = Y(row -num_rows:row , outline);
73 focus_sum = f_laplacian(sample);
74 focus_values(row -num_rows , 2) = focus_sum;
75
76 end
77 end
78
79 % 2D algorithm DWT
80 for row =1:rows ,
81 if row > num_rows ,
82 outline = 750:950;
83 sample = Y(row -num_rows:row , outline);
84 [C S] = wavefast(sample , 2, ’db4’);
85 % C is coefficients (approx , vertical detail , horizontal detail ,
86 % etc..). Indices is given by S.
87 % We don ’t want approx coeffecients , so we skip first S(1,1)*S(1,2)
88 % numbers
89 % Apply Euclidean norm (sqrt(xn^2 + xn -1^2 + ... + x1^2)
90 detail_norm = sqrt(sum(arrayfun(@(x) x^2, C(S(1,1)*S(1,2):end))));
91 image_norm = sqrt(sum(arrayfun(@(x) x^2, sample (:))));
92 focus_sum = detail_norm / (image_norm - detail_norm);
93 focus_values(row -num_rows , 3) = focus_sum;
94 % Display progress (takes a while ...)
95 disp((row -num_rows)/(rows -num_rows)*100)
96
97 end
98 end
99

100 % Normalize
101 focus_values (:,1) = focus_values (:,1) / max(max(focus_values (:,1)));
102 focus_values (:,2) = focus_values (:,2) / max(max(focus_values (:,2)));
103 focus_values (:,3) = focus_values (:,3) / max(max(focus_values (:,3)));
104
105
106 % Set the range of the axes
107 % The background image will be stretched to this.
108
109 min_x = 0;
110 max_x = numel(focus_values (:,1));
111 min_y = 0;
112 max_y = max(focus_values);
113
114 % Get size of image
115 [image_x image_y] = size(Y);
116 % Create RGB image
117 targetImage = zeros(image_x , image_y , 3);
118 targetImage_base = Y/max(max(Y));
119 % Tone down unused area
120 for row =1: image_y ,
121 if ismember(row , outline),
122 else
123 targetImage_base (:, row) = 0.25 .* targetImage_base (:, row);
124 end
125 end
126 % Fill RGB -image (grayscale)

7 APPENDIX 85

127 targetImage (:,:,1) = targetImage_base;
128 targetImage (:,:,2) = targetImage_base;
129 targetImage (:,:,3) = targetImage_base;
130
131 % Rotate and flip
132 targetImage = flipdim(targetImage , 1);
133 targetImage = imrotate(targetImage , -90);
134 % Scale to figure
135 h_image = imagesc ([min_x max_x], [min_y max_y], targetImage);
136 hold on;
137 focus_values
138 plot(num_rows +1: numel(focus_values (:,1))+num_rows ,focus_values (:,1),’r-’,’

linewidth ’, 1);
139 plot(num_rows +1: numel(focus_values (:,2))+num_rows ,focus_values (:,2),’b-’,’

linewidth ’, 1);
140 plot(num_rows +1: numel(focus_values (:,3))+num_rows ,focus_values (:,3),’g-’,’

linewidth ’, 1);
141 hold off;
142
143 legends = cell (3,1);
144 legends (1) = {[’1D␣algorithm ’]};
145 legends (2) = {[’2D␣algorithm␣(Laplacian)’]};
146 legends (3) = {[’2D␣algorithm␣(DWT)’]};
147
148 title(’Passive␣focusing:␣contrast␣change ,␣flat’, ’FontWeight ’,’Bold’,’FontSize ’

,16)
149 xlabel(’Line’, ’FontSize ’ ,14);
150 ylabel(’Focus␣value ’,’FontSize ’ ,14);
151 h_legends = legend(legends);
152 set(h_legends ,’FontSize ’ ,14);
153 % grid on;
154 % colormap(gray);
155 %imageTransparency = 0.9;
156 %alpha(h_image , imageTransparency);
157 % set the y-axis back to normal.
158 set(gca ,’ydir’,’normal ’);
159 set(gca , ’LooseInset ’, [0,0,0,0]);
160
161
162 % Set aspect ratio to match image
163 %pbaspect ([1 (image_rows (2)-image_rows (1))/(image_columns (2)-image_columns (1))

1])

7.7 Benchmarking code

The DWT code is utilizing the wavelet1d library, see [29].

7.7.1 FocusBench.cpp

1 # include <iostream >
2 # include <string >
3 # include <vector >
4 # include "Image.h"
5 # include "focus_alg.h"
6 # include "wavelet2s.h"
7
8
9 using namespace std;

10 using namespace ENVI;
11 using namespace FOCUS;
12

86 7.7 Benchmarking code

13 // Function to be benchmarked
14 double dwt_focus(vector <vector <double > > &sample_data){
15
16 vector <double > dwt_output;
17 vector <double > flag;
18 vector <int > length;
19 int levels = 2; // Decomposition levels
20 string wavelet_type = "db4";
21 dwt_2d(sample_data , levels , wavelet_type , dwt_output , flag , length);
22
23 int approx_end = length.at(0) * length.at(1); // Start of details

coefficients (in other words , end of approx coeffs)
24
25 // Euclidian norm of sample.
26 double norm_sum = 0;
27 for (int x = 0; x < sample_data.size(); x++){
28 vector <double > yline = sample_data.at(x);
29 for (int y = 0; y < yline.size(); y++){
30 norm_sum += yline.at(y)*yline.at(y);
31 }
32 }
33 double sample_norm = sqrt(norm_sum);
34
35 // Euclidian norm of detail coeffs.
36 norm_sum = 0;
37 for (int i = approx_end; i < dwt_output.size(); i++){
38 norm_sum += dwt_output.at(i)*dwt_output.at(i);
39 }
40 double dwt_norm = sqrt(norm_sum);
41
42 double focus_sum = dwt_norm / (sample_norm - dwt_norm);
43 return focus_sum;
44
45 };
46
47 // Function to be benchmarked
48 double laplacian_focus(vector <vector <double > > &sample_data){
49
50 double focus_sum = 0;
51 // Index starts at 1 and ends at size() -1 to exclude sides/corners , as they’

re included by the algorithm
52 for (int x = 1; x < sample_data.size() -1; x++){
53 vector <double > yline = sample_data.at(x);
54 for (int y = 1; y < yline.size() -1; y++){
55 focus_sum +=
56 // left row
57 - 1 * sample_data.at(x-1).at(y-1) - 4 * sample_data.at(x-1).at(y) -

1 * sample_data.at(x-1).at(y+1)
58 // middle row
59 - 4 * yline.at(y-1) + 20 * yline.at(y) - 4 * yline.at(y+1)
60 // right row
61 - 1 * sample_data.at(x+1).at(y-1) - 4 * sample_data.at(x+1).at(y) -

1 * sample_data.at(x+1).at(y+1);
62
63 }
64 }
65
66
67 return focus_sum*focus_sum;
68
69 };
70
71 // Function to be benchmarked
72 double gradient_focus(vector <vector <double > > &sample_data){
73
74 double focus_sum = 0;
75 // Index starts at 1 and ends at size() -1 to exclude sides/corners , as they’

re included by the algorithm

7 APPENDIX 87

76 for (int x = 0; x < sample_data.size() -1; x++){
77 vector <double > yline = sample_data.at(x);
78 for (int y = 1; y < yline.size() -1; y++){
79 focus_sum += sample_data.at(x).at(y-1) - sample_data.at(x).at(y);
80 }
81 }
82
83
84 return focus_sum*focus_sum;
85
86 };
87
88
89
90
91 double focus_prep(ImageHeader imHeader , Image <it_BIL , uint16_t > imImage){
92 vector <vector <double > > sample_data(imHeader.lines , vector <double >(imHeader.

samples));
93 // Create image sample (20 x1600) (shoddy implementation , but this is only

for algorithm testing ..)
94 int counter = 0;
95 int limit = 20;
96 for (int i = 0; i*imImage.line_size+imImage.band_size < imImage.size(); i++)

{
97 vector <double > line_data(imImage.data.begin()+i*imImage.line_size +1*

imImage.band_size , imImage.data.begin()+i*imImage.line_size +2*
imImage.band_size);

98 sample_data.push_back(line_data);
99 if (sample_data.size() >= limit){

100 while (sample_data.size() > limit){
101 sample_data.erase(sample_data.begin()); // Remove front sample to

keep only 20 lines in sample
102 }
103 }
104 else {
105 continue; // Sample too small , continue
106 }
107 //cout << "Counter: " << counter << " sample size: " << sample_data.size

() << endl;
108 counter ++;
109 //cout << laplacian_focus(sample_data) << endl;
110 // laplacian_focus(sample_data); // Don’t print to avoid stdout delay
111 // dwt_focus(sample_data); // Don’t print to avoid stdout delay
112 gradient_focus(sample_data);
113 }
114
115
116 }
117
118
119
120 int main ()
121 {
122 char headerFile [] = "/home/sveint/Dropbox/Prosjekt/Samples/

cody_kidney_surface_VNIR_1600_SN0004_10000_us_2x_2011 -08-15
T134755_corr_rgb_sample.hdr";

123 char imageFile [] = "/home/sveint/Dropbox/Prosjekt/Samples/
cody_kidney_surface_VNIR_1600_SN0004_10000_us_2x_2011 -08-15
T134755_corr_rgb_sample.hyspex";

124 ImageHeader imHeader;
125 Image <it_BIL , uint16_t > imImage = Image <it_BIL , uint16_t >();
126 cout << "Focus␣test\n";
127 cout << "Reading␣header\n";
128 bool readSuccess = imHeader.read(headerFile);
129 if (readSuccess){
130 cout << "Header␣file␣successfully␣loaded !\n";
131 cout << imHeader << endl;
132

88 7.8 System code

133 }
134 else {
135 cout << "ERROR:␣Couldn ’t␣read␣header␣file.\ nPlease␣check␣filename ,␣path␣

and␣permissions\n";
136 }
137 cout << "Loading␣image␣data\n";
138 bool readSuccess2 = false;
139 readSuccess2 = read_image(imImage , imHeader , imageFile);
140 if (readSuccess2){
141 cout << "Image␣data␣successfully␣loaded !\n";
142 cout << "Size:␣" << imImage.size() << "\n";
143 }
144 else {
145 cout << "ERROR:␣Couldn ’t␣read␣image␣data.\ nPlease␣check␣filename ,␣path␣

and␣integrity\n";
146 }
147
148 focus_prep(imHeader , imImage);
149
150 return 0;
151 }

7.8 System code

7.8.1 XAutoFocus.cpp

1 /*
2 Continuous autofocus solution by Svein Tore Seljebotn (sveint@gmail.com)
3 This work is licensed under a Creative Commons Attribution -NonCommercial 3.0

Unported License.
4 See http :// creativecommons.org/licenses/by -nc /3.0/ for more information.
5 Last revision May 2012
6 */
7
8 # include "XAutoFocus.h"
9

10 using namespace FOCUS;
11
12
13 // If you wonder about positive/negative signs in the code ,
14 // keep in mind that positive isn’t necessarily in the direction in which the

stage is moving.
15
16 int XAutoFocus :: FOCUS_REFOCUS_DIST = 3; // travelled mm before refocus
17 int XAutoFocus :: FOCUS_XSTEPS_PER_MM= 630; // steps per mm for the translation

stage (is overwritten by calibrated value)
18 int XAutoFocus :: FOCUS_ZSTEPS_PER_MM= 100; // steps per mm for the translation

stage (is overwritten by calibrated value)
19 int XAutoFocus :: FOCUS_MEASUREMENT_DISPLACEMENT= 20; // mm between laser spot and

camera FOV (is overwritten by calibrated value)
20 int XAutoFocus :: FOCUS_FRAMERATE = 100; // ms between per frame (is overwritten

by settings value)
21
22
23
24 XAutoFocus :: XAutoFocus (){
25 mScanSpeed = 150; // for 30 ms per frame
26 mPreRunPhase = 0;
27 mXPosition = -1;
28 mZPosition = -1;
29 mPreRunCounter = 0;
30 mDeactivateFocus = false;
31

7 APPENDIX 89

32 };
33
34 // Load calibrated settings into object
35 void XAutoFocus ::init(){
36 Settings ::load();
37 FOCUS_XSTEPS_PER_MM = Settings :: XCalStepsPerMm;
38 FOCUS_MEASUREMENT_DISPLACEMENT = Settings :: LaserCalMm;
39 };
40
41 void XAutoFocus :: setTranslationStage(TranslationStage* ts){
42 mTranslationStage = ts;
43 mXInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
44 mZInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
45 mXLastRefocusPos = mXInitialPos;
46
47 }
48
49 void XAutoFocus :: setDisplacementSensor(DisplacementSensor* ds){
50 mDisplacementSensor = ds;
51 }
52
53 void XAutoFocus :: setDeactivateFocus(bool state){
54 mDeactivateFocus = state;
55 }
56
57 void XAutoFocus ::reset(){
58 mPreRunPhase = 0;
59 mDisplacementValues.clear();
60 }
61
62 void XAutoFocus :: setScanSpeed(bool high){
63 if (high){
64 mScanSpeed = 450;
65 }
66 else {
67 mScanSpeed = 150;
68 }
69
70 }
71
72
73 // For plotting
74 pair <double , double > XAutoFocus :: getLatestDisplacement (){
75 if (! mDisplacementValues.empty ()){
76 return pair <double , double >(- double(mDisplacementValues.back().xpos_in_um)

/1000, -(mDisplacementValues.back().measured_displacement -
mInitialDisp)-double(mTranslationStage ->getPosition(mTranslationStage ->
getVerticalDeviceId ()) - mZInitialPos) / FOCUS_ZSTEPS_PER_MM);

77 }
78 else {
79 return pair <double , double >(0.0, 0.0);
80 }
81 }
82
83 pair <double , double > XAutoFocus :: getLatestZTranslationPosition (){
84 return pair <double , double >(
85 -double(mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ()) - mXInitialPos)/FOCUS_XSTEPS_PER_MM ,
86 -double(mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ()) - mZInitialPos) / FOCUS_ZSTEPS_PER_MM
87);
88
89 }
90
91 bool XAutoFocus :: isInPreRun (){
92 return mPreRunPhase < 6;

90 7.8 System code

93
94 }
95
96 bool XAutoFocus :: isPlotDataReady (){
97 return mPreRunPhase >= 4;
98
99 }

100
101 // Main loop function. This function first perform a "prerun", basically

calibrating the laser and mapping the first blind area with length
FOCUS_MEASUREMENT_DISPLACEMENT

102 // then running the main update () function at completion.
103 void XAutoFocus ::run(){
104 mTranslationStage ->setSpeed(mScanSpeed);
105 switch(mPreRunPhase){
106
107 // Starting calibration of the laser. Start movement a certain distance
108 case 0:
109 mXInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
110 mZInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
111 mTranslationStage ->setSpeed (400);
112 mTranslationStage ->goToPosition(mTranslationStage ->getVerticalDeviceId (),

mZInitialPos + 8000);
113 mPreRunPhase = 1;
114 break;
115 // Add measurement to DisplacementSensor
116 case 1:
117 if (mTranslationStage ->isRunning(mTranslationStage ->getVerticalDeviceId ())

){
118 mDisplacementSensor ->addCalibratedPosition(mTranslationStage ->

getPosition(mTranslationStage ->getVerticalDeviceId ()));
119 }
120 else {
121 mTranslationStage ->setSpeed (400);
122 mTranslationStage ->goToPosition(mTranslationStage ->getVerticalDeviceId ()

, mZInitialPos);
123 mPreRunPhase = 2;
124 }
125 break;
126
127 // Wait until reaching initial position
128 case 2:
129 if (! mTranslationStage ->isRunning(mTranslationStage ->getVerticalDeviceId ()

)){
130 mPreRunPhase = 3;
131 FOCUS_ZSTEPS_PER_MM = mDisplacementSensor ->getCalibratedStepsPerMm ();
132 cout << "Z␣Steps␣per␣mm:␣" << mDisplacementSensor ->

getCalibratedStepsPerMm () << endl;
133 }
134 break;
135
136 // Moving X stage backwards in order to get displacement measurement at FOV
137 case 3:
138 mTranslationStage ->goToPosition(mTranslationStage ->getHorizontalDeviceId ()

, mXInitialPos + FOCUS_MEASUREMENT_DISPLACEMENT * FOCUS_XSTEPS_PER_MM
);

139 mPreRunPhase = 4;
140 break;
141
142 // Moving X stage forwards again and begin measurement
143 case 4:
144 if (! mTranslationStage ->isRunning(mTranslationStage ->getHorizontalDeviceId

())){
145 mInitialDisp = mDisplacementSensor ->getDisplacement (); // Set distance

to object at camera FOV

7 APPENDIX 91

146 mPreRunPos1 = mXLastRefocusPos = mTranslationStage ->getPosition(
mTranslationStage ->getHorizontalDeviceId ());

147 mTranslationStage ->goToPosition(mTranslationStage ->getHorizontalDeviceId
(), mXInitialPos);

148 mPreRunPhase = 5;
149 }
150 break;
151
152 // Do measurements (in the first FOCUS_MEASUREMENT_DISPLACEMENT area)
153 case 5:
154 if (! mTranslationStage ->isRunning(mTranslationStage ->getHorizontalDeviceId

())){
155 mPreRunPhase = 6;
156 // Calculate translation stage speed
157 mPreRunPos2 = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
158 int steps_travelled = abs(mPreRunPos2 - mPreRunPos1);
159 int time_spent_ms = mPreRunCounter * FOCUS_FRAMERATE;
160 mXStepsPerSec = double(steps_travelled * 1000) / time_spent_ms;
161 cout << "Steps␣per␣sec:␣" << mXStepsPerSec << endl;
162 cout << "X␣Steps␣per␣mm:␣" << FOCUS_XSTEPS_PER_MM << endl;
163 // Start horizontal movement
164 mTranslationStage ->setSpeed(mScanSpeed);
165 mTranslationStage ->startBackward(mTranslationStage ->

getHorizontalDeviceId ());
166 mPreRunCounter = 0; // reset counter
167
168 }
169 else {
170 mPreRunCounter ++;
171 addDisplacementValue ();
172
173 }
174 break;
175
176 // Begin normal operation
177 case 6:
178 update ();
179 break;
180
181 }
182 }
183
184 void XAutoFocus :: update (){
185 // Get x position
186 int xcurrent_position = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
187 int zcurrent_position = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());;
188
189 // Check x-position for whether we should refocus
190 try {
191 if (abs(((xcurrent_position - mXLastRefocusPos) / FOCUS_XSTEPS_PER_MM)) >

abs(FOCUS_REFOCUS_DIST)){
192 mXLastRefocusPos = xcurrent_position;
193 int zfinal_position = zcurrent_position;
194 if (! mDisplacementValues.empty ()){
195 int target_xpos = double(xcurrent_position -mXInitialPos)/

FOCUS_XSTEPS_PER_MM - FOCUS_REFOCUS_DIST;
196 bool loop = true;
197 while (loop){
198 if (! mDisplacementValues.empty () && mDisplacementValues.front().

xpos_in_um >= target_xpos *1000){
199 zfinal_position = mDisplacementValues.front().zfinal_position;
200 mDisplacementValues.pop_front (); // Delete from stack
201 }
202 else {
203 loop = false;

92 7.8 System code

204 }
205 }
206
207
208 // Number of steps to adjust (z-stage)
209 int number_of_steps = abs(zcurrent_position - zfinal_position);
210
211 // We demand a certain threshold in order to avoid constant , yet

unecessary movement
212 // The sound can be annoying if one constantly have to adjust with

different pitch.
213 // Our depth of field is much higher than ~0.5 mm , hence no adjustment

is necessary.
214 if (abs(double(number_of_steps)/mDisplacementSensor ->

getCalibratedStepsPerMm ()) > 0.5){
215
216 //cout << "Adjusting: steps: " << number_of_steps << ", mm: " <<

displacement_change << endl;
217 //cout << "number of steps: " << zcurrent_position << " - " <<

target_zpos << endl;
218 // Time to adjust: Refocus period / steps per sec for x stage
219 double time_for_adjustment = abs(double(FOCUS_REFOCUS_DIST *

FOCUS_XSTEPS_PER_MM) / mXStepsPerSec); // seconds
220
221 // Target velocity: Using the linear regression from calibration. It

gives the required velocity if we had one second
222 // to adjust. We don’t, so divide by the available time to get the

actual velocity.
223 // setSpeed () has number -checking , so don’t worry about limits
224 int target_velocity = double ((Settings :: ZCalA_Coeff + Settings ::

ZCalB_Coeff * abs(number_of_steps))) / time_for_adjustment;
225
226 // The calibration is a bit off , so 3/4 of the value is better.
227 mTranslationStage ->setSpeed(int(double(target_velocity *0.75)));
228
229 // We don’t want to interrupt if stage is performing a huge adjustment

.
230 // Optimal code taking into consideration directions etc would be

quite complex ,
231 // testing easy solution which should work in most cases ...
232 bool adjust = true;
233
234 // If new position is within 0.5mm of the last AND the stage is

running , don’t resend command (as it will pause the stage).
235 if (mTranslationStage ->isRunning(mTranslationStage ->

getVerticalDeviceId ()) && abs(double(mZLastSentPosition -
zfinal_position))/mDisplacementSensor ->getCalibratedStepsPerMm ()
< 0.5){

236 adjust = false;
237 }
238
239
240 mZLastSentPosition = zfinal_position;
241
242 if (! mDeactivateFocus && adjust){
243 cout << "X_pos:␣" << -double(xcurrent_position -mXInitialPos)/

FOCUS_XSTEPS_PER_MM << ",␣Adjusting␣" << double(
zcurrent_position - zfinal_position) / mDisplacementSensor ->
getCalibratedStepsPerMm () << "␣mm,␣velocity:␣" << int(double(
target_velocity *0.75)) << endl;

244 mTranslationStage ->goToPosition(mTranslationStage ->
getVerticalDeviceId (), zfinal_position);

245 }
246 }
247 }
248 }
249 }
250 catch (const char * msg){

7 APPENDIX 93

251 cout << "Error!␣" << msg << endl;
252 }
253
254 addDisplacementValue ();
255
256
257 }
258
259
260
261 void XAutoFocus :: addDisplacementValue (){
262 try {
263 // Add measured value to stack along with projected position
264 // We want position to be relative to starting position , not current

position
265 double displacement = mDisplacementSensor ->getDisplacement ();
266 if (displacement < 1){ // 0 is not valid value -> out of range or error
267 return;
268 }
269
270 int xposition = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
271 int zposition = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
272 // Position for this measurement in X-direction in micron (relative to

inital position !)
273 int xpos_in_um = (double(xposition - mXInitialPos)/ FOCUS_XSTEPS_PER_MM -

FOCUS_MEASUREMENT_DISPLACEMENT) * 1000;
274 // Calculate change in vertical stage
275 // How much should we adjust relative to initial position?
276 double displacement_in_mm = displacement - mInitialDisp;
277
278 //cout << "CALIBRATED STEPS: " << mDisplacementSensor ->

getCalibratedStepsPerMm () << endl;
279 //cout << "DISPLACEMENT: " << displacement << endl;
280 //cout << "DISPLACEMENT CHANGE :" << displacement_in_mm << endl;
281 XFocusPoint point;
282 point.xpos_in_um = xpos_in_um;
283 point.measured_displacement = displacement;
284 point.zcamera_position = mCurrentCameraPosition;
285 // Calculate what final position this corresponds to
286 point.zfinal_position = zposition + displacement_in_mm*mDisplacementSensor ->

getCalibratedStepsPerMm ();
287 point.zdisplacement_in_mm = displacement_in_mm;
288 //cout << "point: " << point.measured_displacement << endl;
289 mDisplacementValues.push_back(point);
290 }
291 catch (const char* msg){
292 cout << "Error␣in␣adding␣displacement:␣" << msg << endl;
293 }
294
295 }

7.8.2 CalibrationDialog.cpp

1 /*
2 Continuous autofocus solution by Svein Tore Seljebotn (sveint@gmail.com)
3 This work is licensed under a Creative Commons Attribution -NonCommercial 3.0
4 Unported License.
5 See http :// creativecommons.org/licenses/by-nc/3.0/ for more information.
6 Last revision May 2012
7 */
8
9

94 7.8 System code

10
11 # include "CalibrationDialog.h"
12
13 CalibrationDialog :: CalibrationDialog (){
14
15 mXCalPhase = 0;
16 mZCalPhase = 0;
17 mZCalSpeed = 100;
18 mZCalCounter = 0;
19 setupUi(this);
20 readSettings ();
21
22
23 };
24
25
26 void CalibrationDialog :: setDisplacementSensor(DisplacementSensor* ds){
27 mDisplacementSensor = ds;
28 }
29
30 void CalibrationDialog :: setTranslationStage(TranslationStage* ts){
31 mTranslationStage = ts;
32 mXCalInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
33 mZCalInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
34
35 }
36
37 void CalibrationDialog :: startXCalibration (){
38 // If user presses button again , stop procedure
39 if (mXCalPhase > 0){
40 mXCalPhase = 5;
41 }
42 else {
43 mXCalPhase = 0;
44 }
45 mXCalTimer = new QTimer ();
46 connect(mXCalTimer ,SIGNAL(timeout ()),SLOT(performXCalibration ()));
47 mXCalTimer ->start (30); // 30 ms should be accurate enough
48 };
49
50 void CalibrationDialog :: performXCalibration (){
51 // Procedure:
52 // 1. Measure displacement. We assume we’re on one of the edges. Start X stage
53 // 2. Keep measuring until we notice a drop over the threshold.
54 // 3. Wait for displacement to stabilize ..When stabilized , we’re over the edge

, so save the position (steps) as pos1
55 // 4. Keep going until we notice a rise/fall over the threshold. If so, save

the position as pos2.
56 // 5. Calculate steps per mm and save the data.
57 double disp_threshold = 10; //in mm
58 double new_displacement = 0;
59 double mm_input = 0;
60 int number_of_steps = 0;
61 int steps_per_mm = 0;
62 int temp_position = 0;
63 QSettings* settings;
64 QDateTime dateTime = QDateTime :: currentDateTime ();
65 QString dateTimeString = dateTime.toString ();
66 switch(mXCalPhase){
67 case 0:
68 cout << "Starting␣calibration" << endl;
69 mXCalInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
70 mXCalLastDisplacement = mDisplacementSensor ->getDisplacement ();
71 mTranslationStage ->setSpeed (700);

7 APPENDIX 95

72 mTranslationStage ->startBackward(mTranslationStage ->getHorizontalDeviceId
());

73 mXCalPhase ++;
74 XCalibrateButton ->setText("Stop");
75 break;
76 case 1:
77 new_displacement = mDisplacementSensor ->getDisplacement ();
78 if (abs(mXCalLastDisplacement - new_displacement) > disp_threshold){
79 // Set position here , as that will be the edge of the object
80 mXCalPos1 = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
81 mXCalPhase ++;
82 }
83 break;
84 case 2:
85 new_displacement = mDisplacementSensor ->getDisplacement ();
86 temp_position = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
87 // Due to focus spot of laser not being too well defined , wait for some

steps
88 if (abs(temp_position - mXCalPos1) < 2000){
89 mXCalLastDisplacement = new_displacement;
90 cout << "mXCalLastDisplacement␣set␣to:␣" << mXCalLastDisplacement <<

endl;
91 }
92 else {
93 mXCalPhase ++;
94 }
95 break;
96 case 3:
97 // Wait until we fall/rise again
98 new_displacement = mDisplacementSensor ->getDisplacement ();
99 cout << "Disp␣diff2:␣" << abs(mXCalLastDisplacement - new_displacement) <<

endl;
100 if (abs(mXCalLastDisplacement - new_displacement) > disp_threshold){
101 mXCalPos2 = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
102 mXCalPhase ++;
103 }
104 break;
105 case 4:
106
107 mXCalPhase ++;
108 settings = new QSettings ();
109 mm_input = atof(XCalibrateGapLength ->text().toLocal8Bit ().constData ());
110 number_of_steps = abs(mXCalPos2 -mXCalPos1);
111 steps_per_mm = number_of_steps / mm_input;
112 cout << "Calibration:␣X␣stage ,␣steps␣per␣mm:␣" << steps_per_mm << endl;
113 Settings :: refresh ();
114 Settings :: XCalDate = dateTimeString;
115 Settings :: XCalStepsPerMm = steps_per_mm;
116 Settings ::save();
117 break;
118
119 case 5:
120 mTranslationStage ->goToPosition(mTranslationStage ->getHorizontalDeviceId ()

, mXCalInitialPos);
121 mXCalTimer ->stop();
122 delete mXCalTimer;
123 mXCalPhase = -1;
124 readSettings ();
125 XCalibrateButton ->setText("Calibrate");
126 break;
127 };
128
129 }
130
131 void CalibrationDialog :: startZCalibration (){

96 7.8 System code

132 // If user presses button again , stop procedure
133 if (mZCalPhase > 0){
134 mZCalPhase = 3;
135 }
136 else {
137 mZCalPhase = 0;
138 }
139 mZCalCounter = 0;
140 mZCalSpeed = 100;
141 ZCalibrateProgBar ->setValue (0);
142 mZCalTimer = new QTimer ();
143 connect(mZCalTimer ,SIGNAL(timeout ()),SLOT(performZCalibration ()));
144 mZCalTimer ->start (50);
145 };
146
147 void CalibrationDialog :: performZCalibration (){
148
149 QSettings* settings;
150 QDateTime dateTime = QDateTime :: currentDateTime ();
151 QString dateTimeString = dateTime.toString ();
152 pair <double , double > result;
153 switch(mZCalPhase){
154 case 0:
155 cout << "Starting␣calibration" << endl;
156 mZCalInitialPos = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
157 mZCalPhase ++;
158 ZCalibrateButton ->setText("Stop");
159 break;
160 case 1:
161 if (mZCalCounter < 1){
162 ZCalibrateProgBar ->setValue(mZCalSpeed * 100 / 1000);
163 mZCalPos1 = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
164 mTranslationStage ->setSpeed(mZCalSpeed);
165 if ((mZCalSpeed / 100) % 2 == 1){
166 mTranslationStage ->startForward(mTranslationStage ->getVerticalDeviceId

());
167 }
168 else {
169 mTranslationStage ->startBackward(mTranslationStage ->

getVerticalDeviceId ());
170 }
171 mZCalCounter = 1;
172
173 }
174 else if (mZCalCounter < 39){ // 2 sec - 50ms
175 //pass
176 mZCalCounter ++;
177 }
178 else if (mZCalCounter >= 39){ // last time , save pos
179 mTranslationStage ->stop(mTranslationStage ->getVerticalDeviceId ());
180 mZCalPos2 = mTranslationStage ->getPosition(mTranslationStage ->

getVerticalDeviceId ());
181 mZCalCounter = 0; // reset
182 mZCalVelocities.push_back(mZCalSpeed);
183 mZCalResults.push_back(double ((abs(mZCalPos2 - mZCalPos1))) / 2); //We

want velocity required for # steps in 1 sec , not 2. Hence half the
number of steps

184 cout << "Speed:␣" << mZCalSpeed << "␣result:␣" << mZCalResults.back() <<
endl;

185 if (mZCalSpeed > 999){
186 // Speed test done
187 mZCalPhase ++;
188 ZCalibrateProgBar ->setValue (100);
189 }
190 else {
191 mZCalSpeed += 100;

7 APPENDIX 97

192
193 }
194 }
195 break;
196
197 case 2:
198
199 mZCalPhase ++;
200 result = getLinearRegressionValue(mZCalResults , mZCalVelocities); // We

want v = a + b*steps
201 cout << "Final␣result ..␣a:␣" << result.first << "␣b:␣" << result.second <<

endl;
202
203 Settings :: refresh ();
204 Settings :: ZCalDate = dateTimeString;
205 Settings :: ZCalA_Coeff = result.first;
206 Settings :: ZCalB_Coeff = result.second;
207 Settings ::save();
208
209 break;
210
211 case 3:
212
213 mTranslationStage ->setSpeed (700);
214 mTranslationStage ->goToPosition(mTranslationStage ->getVerticalDeviceId (),

mZCalInitialPos);
215 mZCalTimer ->stop();
216 delete mZCalTimer;
217 mZCalPhase = -1;
218 readSettings ();
219 ZCalibrateButton ->setText("Calibrate");
220 break;
221 };
222
223 }
224
225 void CalibrationDialog :: startLaserCalibration (){
226 // If user presses button again , stop procedure
227 if (mLaserCalPhase > 0){
228 mLaserCalPhase = 3;
229 }
230 else {
231 mLaserCalPhase = 0;
232 }
233 mLaserCalTimer = new QTimer ();
234 connect(mLaserCalTimer ,SIGNAL(timeout ()),SLOT(performLaserCalibration ()));
235 mLaserCalTimer ->start (50);
236 };
237
238 void CalibrationDialog :: performLaserCalibration (){
239
240 // Procedure:
241 // 1. Measure displacement. Save position. Start X stage
242 // 2. Keep measuring until we notice a drop over the threshold. If drop , save

position and stop.
243 double disp_threshold = 10; //in mm
244 double new_displacement = 0;
245 double mm_input = 0;
246 int number_of_steps = 0;
247 QDateTime dateTime = QDateTime :: currentDateTime ();
248 QString dateTimeString = dateTime.toString ();
249 switch(mLaserCalPhase){
250 case 0:
251 cout << "Starting␣calibration" << endl;
252 mLaserCalInitialPos = mLaserCalPos1 = mTranslationStage ->getPosition(

mTranslationStage ->getHorizontalDeviceId ());
253 mLaserCalLastDisplacement = mDisplacementSensor ->getDisplacement ();
254 mTranslationStage ->setSpeed (200);

98 7.8 System code

255 mTranslationStage ->startForward(mTranslationStage ->getHorizontalDeviceId ()
);

256 mLaserCalPhase ++;
257 LaserCalibrateButton ->setText("Stop");
258 break;
259 case 1:
260 new_displacement = mDisplacementSensor ->getDisplacement ();
261 if (abs(mLaserCalLastDisplacement - new_displacement) > disp_threshold){
262 mLaserCalPos2 = mTranslationStage ->getPosition(mTranslationStage ->

getHorizontalDeviceId ());
263 mLaserCalPhase ++;
264 }
265 break;
266 case 2:
267
268 mLaserCalPhase ++;
269 number_of_steps = abs(mLaserCalPos2 -mLaserCalPos1);
270 Settings :: refresh ();
271 Settings :: LaserCalDate = dateTimeString;
272 cout << "Steps:␣" << number_of_steps << "␣XCalStepsPerMm:␣" << Settings ::

XCalStepsPerMm << endl;
273 Settings :: LaserCalMm = double(number_of_steps) / Settings :: XCalStepsPerMm;
274 Settings ::save();
275 break;
276
277 case 3:
278 mTranslationStage ->goToPosition(mTranslationStage ->getHorizontalDeviceId ()

, mLaserCalInitialPos);
279 mLaserCalTimer ->stop();
280 delete mLaserCalTimer;
281 mLaserCalPhase = -1;
282 readSettings ();
283 LaserCalibrateButton ->setText("Calibrate");
284 break;
285 };
286
287 };
288
289
290
291
292 void CalibrationDialog :: readSettings (){
293 Settings :: refresh ();
294 lastXCalibrationValue ->setText(QString :: number(Settings :: XCalStepsPerMm));
295 lastXCalibrationDate ->setText(Settings :: XCalDate);
296 lastZCalibrationValue ->setText(QString("velocity␣=␣%1␣+␣%2␣*␣steps").arg(

Settings :: ZCalA_Coeff , 0, ’f’, 4).arg(Settings :: ZCalB_Coeff , 0, ’f’, 4))
;

297 lastZCalibrationDate ->setText(Settings :: ZCalDate);
298 lastLaserCalibrationDate ->setText(Settings :: LaserCalDate);
299 lastLaserCalibrationValue ->setText(QString :: number(Settings :: LaserCalMm));
300
301 }
302
303 // http ://en.wikipedia.org/wiki/Simple_linear_regression
304 // Returns the values (pair(a,b)) in the expression y = a+bx .
305 pair <double , double > CalibrationDialog :: getLinearRegressionValue(vector <double >

x, vector <double > y){
306 if (x.empty() || y.empty ()){
307 return pair <double ,double >(0 ,0);
308 }
309
310 double sum_x = 0.0;
311 double sum_xy = 0.0;
312 double sum_y = 0.0;
313 double sum_xx = 0.0;
314 double sum_yy = 0.0;
315 for (int i = 0; i < y.size(); i++) {

7 APPENDIX 99

316 sum_x += x.at(i);
317 sum_y += y.at(i);
318 sum_xx += x.at(i) * x.at(i);
319 sum_xy += x.at(i) * y.at(i);
320 sum_yy += y.at(i) * y.at(i);
321 }
322
323 double a = 0.0;
324 double b = 0.0;
325
326 b = (x.size()*sum_xy - sum_x * sum_y) / (x.size()* sum_xx - sum_x * sum_x);
327 a = (sum_y/x.size()- b * (sum_x / x.size()));
328
329 return pair <double , double >(a,b);
330
331 }

7.8.3 DisplacementSensor.cpp

1 # include "DisplacementSensor.h"
2 # include <tchar.h>
3
4 static const int SENSOR_RANGE = 200;
5 static const int SENSOR_SMR = 60;
6
7 void DisplacementSensor ::Error(string err , int sensor){
8
9 }

10
11 DisplacementSensor :: DisplacementSensor (){
12
13 initSensor ();
14 mCalibratedStepsPerMmValue = -1;
15
16
17 }
18
19 DisplacementSensor ::~ DisplacementSensor (){
20 ERR_CODE err;
21 err= CloseSensor (sensorInstance);
22 if (err!= ERR_NOERROR){
23 cout << "CloseSensor␣error!" << endl;
24 }
25 err= ReleaseSensorInstance (sensorInstance);
26 if (err!= ERR_NOERROR){
27 cout << "ReleaseSensor␣error!" << endl;
28 }
29 }
30
31 void DisplacementSensor :: initSensor (){
32
33 // Creating the instance
34 sensorInstance= CreateSensorInstance(SENSOR_ILD1302);
35
36 ERR_CODE err;
37 err= SetParameterString (sensorInstance , _T("IP_Interface"), _T("RS232")); //

also valid for RS422 to USB Converter (with RS232 driver emulation)
38 if (err!= ERR_NOERROR)
39 Error (_T("SetParameterString␣(IP_Interface ,␣RS232)"), sensorInstance);
40
41 err= SetParameterString (sensorInstance , _T("IP_Port"), _T("COM4"));
42 if (err!= ERR_NOERROR)
43 Error (_T("SetParameterString␣(IP_Port ,␣COM4)"), sensorInstance);
44

100 7.8 System code

45 err= OpenSensor (sensorInstance);
46 if (err!= ERR_NOERROR)
47 Error (_T("OpenSensor␣(RS232 ,␣COM11)"), sensorInstance);
48
49 err= SetParameterString (sensorInstance , _T("S_Command"), _T("Get_Settings"));
50 if (err!= ERR_NOERROR)
51 Error (_T("SetParameterString␣(S_Command ,␣Get_Settings)"), sensorInstance);
52
53 err= SensorCommand (sensorInstance);
54 if (err!= ERR_NOERROR)
55 Error (_T("SensorCommand␣(Get_Settings)"), sensorInstance);
56
57 int iErr= 0;
58 err= GetParameterInt (sensorInstance , _T("SA_ErrorNumber"), &iErr);
59 if (err!= ERR_NOERROR && err!= ERR_NOT_FOUND)
60 Error (_T("GetParameterInt␣(SA_ErrorNumber)"), sensorInstance);
61 if (iErr !=0)
62 {
63 char cErr [1024] , buf [1024];
64 DWORD len= sizeof (cErr);
65 err= GetParameterString (sensorInstance , _T("SA_ErrorText"), cErr , &len);
66 #if _MSC_VER >= 1500
67 _stprintf_s (buf , _countof (buf), _T("Sensor␣returned␣error␣code␣after␣

command␣Get_Settings\n%d:␣%s"), iErr , cErr);
68 #else
69 _stprintf (buf , _T("Sensor␣returned␣error␣code␣after␣command␣Get_Settings\

n%d:␣%s"), iErr , cErr);
70 #endif // _MSC_VER >= 1500
71 }
72
73 double range;
74 err= GetParameterDouble (sensorInstance , _T("SA_Range"), &range);
75 if (err!= ERR_NOERROR)
76 Error (_T("GetParameterDouble␣(SA_Range)"), sensorInstance);
77
78 err= SetParameterInt (sensorInstance , _T("SA_AvType"), 0); // Simple moving

average
79 if (err!= ERR_NOERROR)
80 Error (_T("SetParameterInt␣(SA_AvType)"), sensorInstance);
81
82 err= SetParameterInt (sensorInstance , _T("SA_MovingCount"), 75); // No of

samples ... gives 10 real measurements per sec
83 if (err!= ERR_NOERROR)
84 Error (_T("SetParameterInt␣(SA_MovingCount)"), sensorInstance);
85
86
87 _tprintf (_T("Sensor␣range:␣%.0f␣mm\n"), range);
88
89 }
90
91 double DisplacementSensor :: getDisplacement (){
92 ERR_CODE err;
93
94 int avail = 0;
95 err= DataAvail (sensorInstance , &avail);
96 // avail contains now the number of available values.
97
98
99

100 int rawData = 0;
101 double scaledData = 0;
102 err= Poll (sensorInstance , &rawData , &scaledData , 1/*only one value*/);
103 double data_in_mm = 0;
104 if (rawData >=40 && rawData <= 4055){
105 data_in_mm = ((double) rawData * (1.02/4096) -0.01) * (double)SENSOR_RANGE +

(double)SENSOR_SMR;
106 }
107 // rawData contains the latest raw value received from sensor.

7 APPENDIX 101

108 // scaledData contains the latest scaled value.
109 return data_in_mm;
110 }
111
112 void DisplacementSensor :: addCalibratedPosition(int stage_position){
113 double disp = getDisplacement ();
114 // if out of range (->0mm), don’t save value ...
115 if (disp < 1){
116 return;
117 }
118 if (! mCalibratedValues.empty()){
119 if (disp < mCalibratedValues.at(mCalibratedValues.size() -1).first){
120 mCalibratedValues.push_back(pair <double , int >(disp , stage_position));
121 }
122 }
123 else {
124 mCalibratedValues.push_back(pair <double , int >(disp , stage_position));
125 }
126 cout << "Displacement:␣" << disp << "␣,␣pos:␣" << stage_position << endl;
127 mCalibratedStepsPerMmValue = -1; // Invalidate cache
128 }
129
130
131 int DisplacementSensor :: getCalibratedStepsPerMm (){
132 // Return if cached
133 if (mCalibratedStepsPerMmValue > 0){
134 return mCalibratedStepsPerMmValue;
135 }
136 int size = mCalibratedValues.size();
137 if (size == 0){
138 return -1;
139 }
140 else {
141 double avg_diff_sum = 0;
142 for (int i = 0; i < mCalibratedValues.size() -1; i++){
143 double mm_diff = abs(mCalibratedValues.at(i).first - mCalibratedValues.at(

i+1).first);
144 int steps_diff = abs(mCalibratedValues.at(i).second - mCalibratedValues.at

(i+1).second);
145 avg_diff_sum += steps_diff / mm_diff;
146 }
147 mCalibratedStepsPerMmValue = avg_diff_sum /(size -1);
148 return abs(mCalibratedStepsPerMmValue);
149 }
150
151
152 }

7.8.4 TranslationStage.cpp

1 # include "TranslationStage.h"
2
3 TranslationStage :: TranslationStage (){
4 t_isInit = false;
5 t_currentPos = 0;
6 t_currentSpeed = 1200;
7 t_speedDivisor = 8;
8 t_changeCounter = 300;
9

10
11 }
12
13 /* Initializes/refreshes translation stage. Always call before first use */
14

102 7.8 System code

15 void TranslationStage ::init(){
16
17 if(USMC_Init(t_DVS))
18 {
19 std::cout << "Translation␣error!";
20 return;
21
22 }
23
24 mDeviceIdX = 0;
25 mDeviceIdZ = 1;
26 for(int i = 0;i<t_DVS.NOD;i++){
27 int serial = atoi(t_DVS.Serial[i]);
28 if (serial == 4027){ // Serial no for vertical stage
29 mDeviceIdZ = i;
30 std::cout << "Vertical␣stage␣ID:␣" << mDeviceIdZ << endl;
31 }
32 if (serial == 1750){ // Serial no for horizontal stage
33 mDeviceIdX = i;
34 std::cout << "Horizontal␣stage␣ID:␣" << mDeviceIdX << endl;
35 }
36
37 if (USMC_GetMode(i,t_mode)){
38 cout << ("Translation␣error:␣mode!") << endl;
39 return;
40 }
41
42 // ///////////
43 // Important to set these (limit switches) correct , otherwise the stages don

’t run!
44 if (serial == 1750){ // Don’t know why , but this is different for the stages

(due to one being from Isel I guess)
45 t_mode.Tr1T = TRUE;
46 t_mode.Tr2T = TRUE;
47 }
48 else {
49 t_mode.Tr1T = FALSE;
50 t_mode.Tr2T = FALSE;
51 }
52
53 t_mode.Tr1En = TRUE;
54 t_mode.Tr2En = TRUE;
55 t_mode.SyncINOp = FALSE;
56 t_mode.SyncInvert = 0;
57
58 t_mode.TrSwap = FALSE;
59
60
61 t_mode.ResetD = FALSE;
62
63
64
65 if(USMC_SetMode(i, t_mode))
66 {
67 cout << "Translation␣error:␣mode!␣Device:␣" << i << endl;
68 }
69
70 if(USMC_SetCurrentPosition(i, 1000000)) // We don’t want to deal with

negative values ..
71 {
72 std::cout << "Translation␣error:␣setposition!" << endl;
73 return;
74 }
75 }
76
77
78
79 t_isInit = true;

7 APPENDIX 103

80 }
81
82 void TranslationStage :: goToPosition(int deviceId , int pos){
83 if (! t_isInit){
84 this ->init();
85 }
86 if (! t_isInit){
87 return;
88 }
89 if(USMC_GetStartParameters(deviceId , t_StPrms)){
90 std::cout << "Start␣params␣failed!";
91 return;
92 }
93 t_StPrms.SlStart = true;
94 t_StPrms.WSyncIN = FALSE;
95 t_StPrms.LoftEn = FALSE;
96 t_StPrms.SDivisor = t_speedDivisor;
97 t_currentSpeed = t_speed;
98 if(USMC_Start(deviceId , pos , t_currentSpeed , t_StPrms))
99 std::cout << "Start␣failed!";

100
101 }
102
103 /* Starting forward motion (downward) */
104
105 void TranslationStage :: startForward(int deviceId){
106 if (! t_isInit){
107 this ->init();
108 }
109 if (! t_isInit){
110 return;
111 }
112 USMC_GetState(deviceId ,t_State);
113 t_currentPos = t_State.CurPos;
114
115 goToPosition(deviceId , t_currentPos +400000);
116
117 }
118
119 /* Starting backwards motion (upwards) */
120
121 void TranslationStage :: startBackward(int deviceId){
122 if (! t_isInit){
123 this ->init();
124 }
125 if (! t_isInit){
126 return;
127 }
128 USMC_GetState(deviceId ,t_State);
129 t_currentPos = t_State.CurPos;
130 goToPosition(deviceId , t_currentPos -400000);
131
132 }
133
134 /* Stops motion */
135
136 void TranslationStage ::stop(int deviceId){
137 if(USMC_Stop(deviceId))
138 std::cout << "Couldn ’t␣stop.␣Time␣to␣pull␣the␣plug?";
139 }
140
141 /* Check whether stage is currently running */
142 bool TranslationStage :: isRunning(int deviceId){
143 USMC_GetState(deviceId ,t_State);
144 return t_State.RUN;
145 }
146
147 /* Set the speed */

104 7.8 System code

148 void TranslationStage :: setSpeed(float speed){
149 if (speed < 50){
150 speed = 50;
151 }
152 if (speed > 1000){ // Anything over 1000 makes z-stage occasionally slip and

lose track of position.
153 speed = 1000;
154 }
155 t_speedDivisor = 1;
156 if (speed <= 600){
157 speed = 8* speed;
158 t_speedDivisor = 8;
159 }
160 t_speed = speed;
161
162 }
163
164 /* Returns current position of translation stage */
165
166 int TranslationStage :: getPosition(int deviceId){
167 if (! t_isInit){
168 this ->init();
169 }
170 if (! t_isInit){
171 return 0;
172 }
173 if (USMC_GetState(deviceId ,t_State)){
174 return 0;
175 }
176 else {
177 return t_State.CurPos;
178 }
179
180
181 };
182
183 int TranslationStage :: getVerticalDeviceId (){
184 return mDeviceIdZ;
185 }
186
187 int TranslationStage :: getHorizontalDeviceId (){
188 return mDeviceIdX;
189 }

	Title Page
	masteroppgave.pdf

