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Abstract 

 
The commonly used simulation method Field II, which is based on the spatial 
impulse response approach, has excellent accuracy in linear domain. However the 
computational time can be up to many days for one simulation. One of the 
solutions to this problem is a convolution-based methodology called COLE. It is 
much faster than Field II and has very good approximation. It generates the data 
by reducing multi-dimensional convolution model to multiple single-dimensional 
convolutions. 
       This thesis is about implementing COLE on the FieldSim 3 platform and 
using it for blood flow imaging. This platform is written in MATLAB with object-
oriented programming and it is now under development at department of 
circulation and medical imaging.  
       Both Field II and real scanner have been used to compare with COLE. The 
simulated phantom for both simulators was a straight tube with scatterers moving 
inside, whereas a string phantom was used to get the data from the scanner. The 
computational time of COLE with 2D Doppler mode scan in FieldSim 3 achieved 
85 times faster than Field II. The plotted PW Doppler spectra and the 2D power 
spectra showed that the velocity resolutions of both simulators were at the same 
level. COLE had higher noise floor than Field II and scanner in Doppler mode 
scan. COLE had relatively high sampling frequency requirement compared with 
Field II. If the sampling frequency was not high enough, COLE would produce 
side lobes in the PW Doppler spectra. 

  



 VI 

 
  



 VII 

Table of contents 
 
1 Introduction   ...................................................................................................... 1

2 Theory   .............................................................................................................. 3

2.1 Ultrasound imaging   ................................................................................ 3

2.1.1 Basic ultrasound theory   ............................................................... 3

2.2 Ultrasound fields and Field II   ................................................................ 6

2.2.1 Linear acoustic model   ................................................................. 6

2.2.2 Spatial impulse response   ............................................................. 8

2.2.3 Apodization application   ............................................................ 11

2.3 Convolution models and COLE   ........................................................... 12

2.4 Doppler mode imaging   ........................................................................ 15

2.4.1 Window function and filter   ....................................................... 17

2.4.2 In-phase Quadrature (IQ) demodulation   ................................... 17

2.4.3 Power spectrum estimation   ....................................................... 19

2.4.4 Spectral analysis of Doppler signals   ......................................... 21

2.4.5 2D power spectrum analysis   ...................................................... 22

3 Simulations and experiments   .......................................................................... 25

3.1 String phantom experiment   .................................................................. 25

3.2 Computer based simulation approach   .................................................. 26

3.2.1 MATLAB Object-oriented programming and the FieldSim 3 

platform   ................................................................................................. 27

3.2.2 Simulators and phantom settings   ............................................... 30

4 Results   ............................................................................................................ 33

4.1 Computational time of COLE and Field II   .......................................... 33

4.2 Doppler spectra from scanner recordings and simulations   .................. 36

4.3 2D power spectra generated from the scanner and the simulation   ...... 41

5 Discussion   ...................................................................................................... 51

5.1 Computational time   .............................................................................. 51

5.2 PW Doppler estimation performance  ................................................... 52

6 Conclusion   ...................................................................................................... 55

6.1 Future work   .......................................................................................... 56

Reference list   ......................................................................................................... 57



 VIII 

Appendix  A   .......................................................................................................... 59

Simulated straight tube phantom code   .......................................................... 59

Appendix B   ........................................................................................................... 65

Code for plotting spectrum   ............................................................................ 65

logabs function used for 2D spectrum   ........................................................... 67

 
 



 1 

1 

Ultrasound has been used in medical diagnosis for about half a century. It has now 
become one of the most important and popular methods to image the human body. 
Compared with the other imaging modalities (Computed tomography (CT) and 
Magnetic Resonance Imaging (MRI) etc.) in medical diagnosis, its advantages are 
that it provides real-time imaging and it is safe for the patients. The modern 
ultrasound machines are sophisticated signal processing machines. The prices of 
the medical ultrasound machines are usually much less expensive than the other 
imaging machines mentioned above, because the way that they used to image are 
mainly electronic.  

In the research and study of medical ultrasound, computer simulations are 
widely used. They are usually written in different languages by the researchers for 
different purposes. Some of them are powerful at some aspects, but weak at others. 
This is the reason why different simulation tools are developed. 

FieldSim 3 is a unified ultrasound simulation platform which is under 
development at Department of Circulation and Medical Imaging at NTNU. It is 
written in MATLAB with Object-Oriented Programming and contains default 
setups for scanner configurations and typical ultrasound probes which can be 
found in modern ultrasound systems. One of the advantages of FieldSim 3 is that 
different simulators can be used in it with the same setup. In this project, two 
different simulators COLE and Field II are implemented in this platform to 
generate the simulated data for simple flow examples (e.g. uniform velocity field). 
The simulated phantoms are modeled as point scatterers flowing in a straight tube. 
The simulations are also verified by in vitro experiments with ultrasound machine.  

Field II is a commonly used simulator which is based on the spatial impulse 
response method. It has typically been used as the ‘gold standard’ due to its 
perfect accuracy in linear domain [1]. However, the computation time is a 
problem when the number of scatterers becomes very large. COLE is one of the 
solutions to this problem. It is a new convolution based simulator, which is 
proposed by H. Gao et al. for simulating 2-D/3-D cardiac ultrasound images [2]. It 
is much faster than the spatial impulse response method and has good 
approximation to it. The detailed comparison is given in the following chapters. 

Introduction 
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The cardiovascular system is different from the other parts of the human body, 
since the heart and blood are moving all the time. The Doppler Effect is used to 
solve this problem. The most frequently used techniques are Continuous Wave 
(CW) Doppler, Pulsed Wave (PW) Doppler and Color Flow (CF) Doppler. They 
are all used to measure the blood flow by estimating the blood velocity. However, 
they are used for different purposes. The first two are usually used to get the 
velocity spectrum. It provides a detailed relationship between time and velocity. 
The last one gives better visualization of blood flow in heart or blood vessels. In 
practice, these methods are supplementary to each other.  

In this report, the detailed theory is explained in the coming chapter. In 
chapter 3, the methods that have been used in the project are presented. The 
simulation and vitro test results are shown in the results chapter. In discussion, the 
two different simulation methods and experiment with their results are analyzed 
and compared. Finally, the conclusion and the future work suggestion are given in 
the last chapter. 
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2 

2.1 Ultrasound imaging 

Theory 

As the ultrasound systems are getting more complicated and powerful, machines 
made by different companies are usually somehow different. However the basic 
techniques are still similar. Most ultrasound machines provide B-mode imaging, 
M-mode imaging and Doppler imaging.  

 
 

2.1.1 Basic ultrasound theory 

The ultrasound machines usually generate sound waves with frequency from 2 
MHz to 15 MHz, which have a speed around 1540m/s in the human body. Some 
modern machines use higher frequencies for different purposes. With higher 
frequencies the range resolution gets better, while the attenuation becomes larger. 
This is because the attenuation in human tissue is directly proportional to the 
transmit frequency. Due to this trade off, frequencies in the range of 2.5 – 5 MHz 
is suitable for adult cardiology and imaging of deep organs [3]. 

Usually the machine has different kinds of probes connected. They have 
different properties and are used to image different parts of the body. There are 
linear arrays, curvilinear arrays, phased arrays and annular arrays. For 3D imaging, 
the two dimensional matrix arrays are used. To image the heart the phased array is 
more suitable while the linear array is better to measure blood flow in the blood 
vessels near the surface. In project, the linear array was used. It is shown in Fig. 
2.1 [4]. The linear array acquires a rectangular image. The image is constructed by 
moving the beam over the imaging region. Each beam is generated by firing 
pulses from several elements and using electronic focusing as shown in Fig. 2.2 
[4]. 
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Fig. 2.1: Illustration of scan sequence in a linear array transducer. Each beam is 
generated be a number of active elements. 

 
 
 

 
 

Fig. 2.2: Illustration of electronic focusing in a linear array transducer. By adding 
delays to each pulse, the plane wave can be achieved at the focus. 
 
 

The probe is used for both transmitting and receiving ultrasound waves. In 
tissue imaging, the transducer sends short pulses through the tissue. At each 
interface of different tissues, part of the pulse keeps going forward and another 



 5 

part gets reflected, as shown in Fig. 2.3. By measuring the time that it takes for the 
pulse to propagate from transmit to receive, the tissue can be imaged. There are a 
lot of effects that will introduce some noise during imaging, for instance 
reverberation, aberration, grating lobes and side lobes. They should be avoided or 
reduced during the tissue imaging. The range resolution, which is the ability that 
one can resolve two close targets, is determined by the transmit pulse length in 
equation (2.1) 

 ∆r =
1
2

c ∙ 𝑇𝑇𝑝𝑝                                                   (2.1) 

 
where c is the wave velocity and 𝑇𝑇𝑝𝑝  is the pulse length.  
 
 

 
 

Fig. 2.3 [3]: Wave propagation at the interface of two different tissues. Part of the 
transmitted wave keeps transmitting through the boundary and part of it is 
reflected at the boundary. 
 
 

The F#, given in equation (2.2), is an important value for calculating the 
beam width, 

F# =
F
D

                                                         (2.2) 

 
where F is the focal depth, D is the aperture diameter, shown in Fig. 2.4 The beam 
width in focus is equal to  

DF = F# ∙ λ                                                    (2.3) 
where λis the wavelength.  

In the focal plane, the Fourier transform of the aperture can be used to 
estimate the lateral resolution. For example, the Fourier transform of a rectangular 
aperture gives a sinc function. 
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Fig. 2.4: The focused beam profile with aperture diameter D, focal depth F. The 
figure is taken from a presentation by Lasse Løvstakken and Hans Torp. 
 
 

2.2 Ultrasound fields and Field II 

In this section, the linear ultrasound field description is given by using the spatial 
impulse response method. It is also the method that Field II [5] [6] uses to 
generate the simulation data.  

Field II is a program that consists of a C program and a number of MATLAB 
m-functions that calls this program. All calculations are performed by the C 
program, and all data is kept by the C program. Three types of m-functions are 
found. They are used for initializing the program, defining and manipulating 
transducers and performing calculations [7]. The theory presented in this section 
is based on notes by J. A. Jensen [4]. 
 
 

2.2.1 Linear acoustic model 

In electrical engineering, a linear system can be characterized by its impulse 
response  

y(t) = � h(τ)
+∞

−∞
x(t − τ)dτ                                    (2.4) 

where h(t) is the impulse response of the system, and y(t) and x(t) are the output 
and input signals of the system respectively as shown in Fig. 2.5. 
 



 7 

 
 

Fig. 2.5: The impulse response of a linear system with a delta input function [4]. 
 
 
      Similarly it can be applied to a linear acoustic system as shown in Fig. 2.6. 
The transducer on the left can be seen as an infinite rigid baffle at position r2���⃗ . 
Assume that the homogeneous medium with density ρ0 is a linear system. The 
transducer generates the sound wave with a constant speed c. A hydrophone 
placed on the right at position r1���⃗  is used to measure the acoustic pressure from the 
transducer. If the transducer generates a delta function, the measured pressure at 
r1���⃗  is the acoustic impulse response of this specific system. The impulse response 
changes when the transducer or the hydrophone is moved spatially to the other 
place. Therefore, the impulse response is called spatial impulse response and it 
depends on the relative position of both transducer and hydrophone (r2���⃗ − r1���⃗ ). 
 
 

 
 
Fig. 2.6: A linear acoustic system. The system is defined by the impulse response 
and the generated electric pulse. The figure is taken from [4]. 
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Fig. 2.7: Illustration of Huygens’ principle for a fixed time instance. A spherical 
wave with a radius of |r ��⃗ |= ct is radiated from each point on the aperture. The 
figure is taken from [4]. 
 
 

As illustrated in Fig. 2.7, by applying Huygens’ principle in which every 
point on the radiating surface is the origin of an outgoing spherical wave, a 
perception of the sound field for a fixed time instance can be obtained. Each of the 
outgoing spherical waves is given by 

 

ps(r1���⃗ , t) = δ�t −
|r2���⃗ − r1���⃗ |

c
� = δ�t −

|r ��⃗ |
c
�                                (2.5) 

 
where r1���⃗  is the point in space, r2���⃗  is the point on the transducer surface and t is the 
propagation time. Then the spatial impulse response can be found by summing up 
all the spherical waves passing the observation point with distance |r ��⃗ |. 
 
 

2.2.2 Spatial impulse response 

Assume that a triangular shaped aperture is placed in an infinite rigid baffle, on 
which the velocity normal to the plane (not including the aperture) is zero. The 
pressure field generated by the aperture at |r1���⃗ | can be found by the Rayleigh 
integral [8] 
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p(r1���⃗ , t) =
ρ0
2π
�

∂vn(r2���⃗ , t − |r2���⃗ − r1���⃗ |
c )

∂t
|r2���⃗ − r1���⃗ | dS                        (2.6)

S
 

 
where vn  is the velocity normal to the transducer surface. In this integral, the 
medium is assumed to be linear, homogeneous and without propagation 
attenuation. 

In order to avoid reverberation in further derivation, the aperture is assumed 
to be flat. The integral in (2.6) can be written as 

 

p(r1���⃗ , t) =
ρ0
2π

∂ ∫
vn �r2���⃗ , t − |r2���⃗ − r1���⃗ |

c �
|r2���⃗ − r1���⃗ | dSS

∂t
                     (2.7) 

 
The relationship between the pressure p and velocity potential are shown as 

follows [3] 
v ��⃗ (r ��⃗ , t) = −∇ψ(r ��⃗ , t) 

     p(r ��⃗ , t) = ρ0
∂ψ(r ��⃗ , t)

∂t
                                             (2.8) 

 
By using this relationship, (2.7) can be written as 
 

ψ(r1���⃗ , t) = �
vn(r2���⃗ , t − |r2���⃗ − r1���⃗ |

c )
2π|r2���⃗ − r1���⃗ | dS                        (2.9)

S
 

 
Since the generated pulse can be written in a time convolution with a delta 
function as in Equation (2.4), the Equation (2.9) can be written as 
 

ψ(r1���⃗ , t) = � �
vn(r2���⃗ , τ)δ(t − τ − |r2���⃗ − r1���⃗ |

c )
2π|r2���⃗ − r1���⃗ | dτdS                        (2.10)

TS
 

 
Now assume that the velocity is the same over the aperture, i.e. independent 

of r2���⃗ , then (2.10) can be further derived to 
 

ψ(r1���⃗ , t) = vn(t) ∗ �
δ(t − |r2���⃗ − r1���⃗ |

c )
2π|r2���⃗ − r1���⃗ | dS                      (2.11)

S
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Let  

h(r1���⃗ , t) = �
δ(t − |r2���⃗ − r1���⃗ |

c )
2π|r2���⃗ − r1���⃗ | dS                                     (2.12)

S
 

Then  
ψ(r1���⃗ , t) = vn(t) ∗  h(r1���⃗ , t)                                                (2.13) 

 
∗ denotes the convolution and (2.12) is called spatial impulse response. 

The pressure field can now be written as  
 

p(r ��⃗ , t) = ρ0
∂vn(t)
∂t

∗ h(r1���⃗ , t)                                           (2.14) 

 
It equals the emitted pulse pressure for all kinds of surface vibration vn(t), which 
makes it possible to find all ultrasound fields of interest by using the derivation 
presented in this section. 
 
 

 
 

Fig. 2.8: Distances and angles in the aperture plane for evaluating the Rayleigh 
integral. d1 and d2 are the closest and farthest projected distances determined by 
the aperture. Θ1  and Θ2  are the corresponding angles for a given time. r is the 
radius of the projected circle. The figure is taken from [4]. 
 
 

The calculation of the impulse responses can be done by projecting the field 
point onto the plane which has an intersection with the aperture as, shown in Fig. 
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2.8, then find the intersection. 
The spatial impulse response in (2.12) can be written with polar coordinates 

as  

h(r1���⃗ , t) = � �
δ(t − R

c)
2πR

r dr dΘ                           (2.15)
d2

d1

Θ2

Θ1

 

 
where R is the distance from the field point to the aperture, which is |r ��⃗ | in the 
previous figure. 

Substitute t’ = R/c and RdR = rdr, the Equation (2.15) can be written as  
 

h(r1���⃗ , t) =
c

2π
� � δ(t − t′)dt′dΘ                            (2.16)

d2

d1

Θ2

Θ1

 

 
By giving a specific time instance, the contribution along the arc is a constant 
value and the integral gives 
 

h(r1���⃗ , t) =
c(Θ2 − Θ1)

2π
                                               (2.17) 

 
When no apodization is used, the spatial impulse response can be found by 

keeping track of the intersections as a function of time. The detailed calculation 
procedure and specific solution cases can be found in [4]. 
 
 

2.2.3 Apodization application 

Apodization technique refers to amplitude weighting of the velocity distribution 
over the transducer aperture. It is used to reduce side lobes in the emitted sound 
field meanwhile the main lobe becomes wider. Fig. 2.9 (a) and (b) shows the same 
rectangular aperture and its frequency response before and after using the 
Hamming window apozidation respectively. 
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(a)                                                                     (b) 
 

Fig. 2.9: Apodization technique applied on a rectangular aperture. (a) shows the 
rectangular aperture without using apodization, (b) shows the Hamming window 
apodization used on the same aperture. The figure is taken from a presentation by 
Lasse Løvstakken and Hans Torp. 
 
 

The apodization function a(r, Θ ) over the aperture can be introduced to 
Equation (2.15) 

h(r1���⃗ , t) = � � a(r, Θ)
δ(t − R

c)
2πR

r dr dΘ                          (2.18)
d2

d1

Θ2

Θ1

 

 
Then the same substitution as previous subsection can be used, and Equation (2.18) 
can be derived to 

h(r1���⃗ , t) =
c

2π
� a1(t, Θ)dΘ                                           (2.19)

Θ2

Θ1

 

 

where a1(t′ , Θ) = a(�(ct′)2 − zp
2, Θ), t′  is the same as in Equation (2.16) and zp  

is the field point height above the x-y plane of the aperture shown in Fig. 2.8. 
 
 

2.3 Convolution models and COLE 

An easy and fast methodology, that has been used extensively, is the so-called 
convolution model [9]–[11]. It is based on the assumption of a space-invariant 
point spread function and typically results in a linear image [2]. In 1-D 
implementations the point spread function of the image is spatially convolved 
with a Dirac-train which represents the position and the reflectivity of discrete 
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scatterers along the image line [2]. 2-D or 3-D simulations can be done by 
extending the convolution to 2D or 3D respectively. Fig. 2.10 shows a 
conventional 2-D convolution model. 
 
 

 
 

Fig. 2.10: A 2-D convolution model applied in the rectangular scan sequence. The 
figure is taken from a presentation of Jan D’hooge. 
 
 

COLE is a fast convolution-based methodology, proposed by H. Gao et al [2], 
which uses multiple 1-D convolutions instead of a conventional 2-D or 3-D 
convolution. It produces simulated data sets by convolving the transmitted 
ultrasound pulse with the projected amplitudes of all the scatterers along one 
image line in the spatial domain [12]. For example, the 3-D RF signals have a 
pyramidal format I(r, θ,φ) in polar coordinates. Using the new convolution model 
each individual image line, the RF signal, is calculated as a 1-D convolution and 
has format I(r, θm ,φn), as  

 
I�r, θm ,φn� = H(r) ∗ T�r, θm ,φn�                                   (2.20) 

and 

T�r, θm ,φn� = �ωqaqδ(r − rq)
N

q=1

                                   (2.21) 
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where θm  and φn  indicate the lateral location and the elevation location 

respectively, H(r) is the axial point spread function, T�r, θm ,φn� is the scatterer 
distribution function, ωq  is the projection factor for the qth scatterer of total 
number N and aq  is the echogenicity of the qth scatterer. 

Assume that there are M axial samples along the image line. Each projection 
rq  should be attributed to the closest sample ri taken along the image line, where 
i=1, 2, …, M. Define the voxel Vi  as the spatial interval between 2 subsequent 
radial samples ri−1 and ri. If multiple projections fall within the same voxel, the 
summation of these amplitudes is attributed to the radial sample. Then the final 
sampled version T�ri, θm ,φn� of T�r, θm ,φn� is  

 

T�ri, θm ,φn� = �ωqaqδ(r − rq)|rq∈Vi

N

q=1

                                 (2.22) 

 
Equation (2.22) can be represented by convolution of the scatterer distribution 

function with a bloc-function R(∆r) before sampling 
 

T�ri, θm ,φn� = �T�r, θm ,φn� ∗ R(∆r)� ∗� δ(r − ri)
M

i=1

                   (2.23) 

 
where ∆r the spatial sampling distance alone the image line. 

When ∆r is sufficiently small, T�r, θm ,φn� in Equation (2.20) can be replaced 

by T�ri, θm ,φn�.  
The process described above can be repeated to each image line to get the RF 

signal of the image. 
In order to see how COLE weights the contribution of the scatterers with the 

distance from the image line, Fig. 2.11 uses a 2-D rectangular scan sequence to 
demonstrate. In this case the image line is in the middle. It shows that the closer 
the scatterer is to the image line, the bigger will the amplitude of the projection be 
on the line. 
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Fig. 2.11: A 2-D rectangular scan sequence with scatterers with different distance 
from the image line and project on the line with the Cole method. The figure is 
taken from a presentation of Jan D’hooge. 
 
 
     There are 3 ways to define the weighting of ωq : 
1. From the Gaussian point spread function of the beam profile, which is defined 

as: 

ωq = exp�−
1
2
�
rq

2�θq−θm�
2

σL
2 +

rq
2 �φq−φn�

2

σE
2 ��                       (2. 24 ) 

 
2. From a simulated beam profile look up table (LUT) by its axial distance, its 

lateral angle and its elevation angle. 
3. From a measured beam profile LUT by the same indices as the second one. 
 
 

2.4 Doppler mode imaging 

The Doppler mode is used to measure the blood flow in the body. It utilizes the 
property that the blood is moving. If the scatterers are moving, the frequency of 
the back scattered signal will be altered from the transmitted frequency. This 
change in frequency is a phenomenon called the Doppler Effect, and can be used 
to measure the velocity of the moving scatterers [13]. The Doppler shift 𝑓𝑓𝑑𝑑  can be 
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measured by 

𝑓𝑓𝑑𝑑 = −2𝑓𝑓0
𝑣𝑣 ∙ cos𝜑𝜑

𝑐𝑐
                                                (2.25) 

 
where 𝑓𝑓0 is the transmit pulse frequency,𝑣𝑣 is the blood velocity and 𝜑𝜑 is the angle 
between the blood velocity vector and the transmitted beam.  

In PW Doppler mode, the transducer transmits an ultrasound pulse. Therefore 
the range resolution can be achieved by measuring the pulse echo time. The 
drawback of PW Doppler is the maximum velocity limit caused by frequency 
aliasing. The Doppler signal is actually sampled once for every pulse transmission, 
and the sampling frequency is hence equal to the pulse repetition frequency (PRF) 
of the ultrasound machine [3]. The highest velocity that can be measured, which is 
the Nyquist limit, is  

𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑐𝑐 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃

4𝑓𝑓0
                                             (2.26) 

 
where c is the speed of the ultrasound wave, PRF is the pulse repetition frequency 
of the transmitted pulse and 𝑓𝑓0 is the transmitted pulse frequency.                

The ultrasound waves are received by the probe. The mechanical energy is 
converted to electric by piezoelectric material on the surface of the probe. After 
receive beamforming, the radio frequency (RF) signal is IQ demodulated. Doppler 
processing is one of the operations in the Mid- End processing shown in Fig. 2.12. 
 

 

 
 

Fig. 2.12[14]: Mid-End processing of ultrasound system. Both IQ demodulation 
and Doppler signal processing are done in this stage. 
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2.4.1 Window function and filter  

In the whole Mid-End processing stage, different window functions are applied. 
The window function is a mathematical function which is often used in signal 
processing to do spectral analysis, filter design, and beam forming. Two important 
parameters should be concerned when choosing a window, the width of the main 
lobe, the suppression of the side lobes. In Doppler estimation, windows with 
lower side lobes are usually used, like the Hamming window. 

Except for window functions, digital filters are also commonly used in this 
stage. The clutter filter is a typical example. The Doppler spectrum usually 
contains clutter signal, blood signal and thermal noise, as shown in Fig. 2.13 (a) 
on next page. The clutter shown in the figure is signal from surrounding tissue due 
to beam side lobes and reverberations. It usually has much higher power than the 
blood signal, around 40-80 dB. But it has lower velocity than blood, in other 
words it has smaller Doppler shifts. Then by introducing a High Pass (HP) filter 
which is the clutter filter in Fig. 2.13 (b) on next page, the clutter component can 
be easily removed. Most of the filters used in Doppler processing are digital FIR 
(Finite-duration Impulse Response) filters. The FIR filter has a certain number of 
zeros and none poles in the transfer function. They are always stable and it is 
possible for them to have linear phase. An FIR filter of length M with filter 
coefficients 𝑏𝑏𝑘𝑘 , input 𝑥𝑥(𝑛𝑛) and output 𝑁𝑁(𝑛𝑛) can be described by the difference 
equation as follows.  

 

𝑁𝑁(𝑛𝑛) = � 𝑏𝑏𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝑀𝑀−1

𝑘𝑘=0

                                              (2.27) 

 
 

2.4.2 In-phase Quadrature (IQ) demodulation 

 
In the ultrasound field, RF has a different meaning than in communication. Here it 
means the unprocessed data that come out from the beamformer. It is constructed 
by adding the signals from all the channels of the probe. IQ demodulation of the 
RF signal involves 3 steps. They are down mixing, LP filtering and decimation. 
The received RF signal from the transducer is a band pass signal. In Fig. 2.14 a 
transmit frequency of 2.5 MHz and a sampling frequency of 20 MHz is assumed. 
The negative part of the spectrum is a replica of the positive frequency. The parts 
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are symmetric about zero frequency. This is because the RF signal is real valued. 
The Nyquist frequency indicates the upper limit of the spectrum.  

 
 

(a)  

(b)  
 

Fig. 2.13: Doppler signal components and clutter filter. This figure is taken 
from Hans Torp and Lasse Løvstakken’s presentation. 

 
 

The first step (down mixing) is done by multiplying 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗  with the RF signal. 
It makes the signal complex and gives signal information of velocity direction. As 
a consequence, the spectrum is now no longer symmetric about zero and both 
parts of the spectrum move down so that the central frequency of the positive part 
moves to zero. See Fig. 2.14 (b). The second step (low pass filtering) is shown in 
Fig. 2.14 (c). By applying a LP filter, the negative frequency part and the noise 
outside the bandwidth of interest can be removed. However, half of the energy of 
the RF signal is also removed. Then a factor √2 should be multiplied with the 
signal after LP filtering. Since the signal is complex, its bandwidth is equal to the 
complex sampling frequency. This makes it possible to reduce the sampling 
frequency. As shown in Fig. 2.14 (d), the cutoff frequency is ±1.5  MHz. 
According to the Nyquist sampling theorem, the sampling frequency should be 
larger than twice of the largest frequency component, which is 1.5 MHz.  
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(a)  

(b)  

(c)  

(d)  
 
Fig. 2.14 [15]: Spectrum variation during IQ demodulation. The spectrum of RF 
signal is shown in (a), down-mixing of the RF signal is shown in (b), low pass 
filtered spectrum is shown in (c) and the IQ demodulated is given in (d). 
 

2.4.3 Power spectrum estimation 

The blood contains a large number of red blood cells. These cells moving with the 
blood can be considered as a large number of independent scatterers. The received 
RF signal, which is the sum of all the echoes from the scatterers, is a Gaussian 
bandpass process. Its complex envelop is complex Gaussian. Therefore, it is 
convenient to model the Doppler signal from moving blood as a complex 
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Gaussian random process, denoted as z(n), n∈ (−∞, +∞) . If the process is 
stationary, its autocorrelation function is 
 

R(m) =< z(n + m)∗z(n) >                                       (2.28) 
 

where m = 0, ±1, ±2, … and *means complex conjugate. 
The power spectrum of a stationary process z(n) (shown in Fig. 2.14 (c)) is 

defined as the Fourier transform of the autocorrelation function [3] 
 

G(ω) = �𝑃𝑃(𝑚𝑚)𝑒𝑒−𝑗𝑗𝑗𝑗𝑚𝑚
𝑚𝑚

1

                                           (2.29) 

where −π < 𝑗𝑗 < 𝜋𝜋. 
The autocorrelation function equals to coefficients in Fourier series of G(ω). 
 

R(m) =
1

2𝜋𝜋
� 𝐺𝐺(𝑗𝑗)𝑒𝑒𝑗𝑗𝑗𝑗𝑚𝑚 𝑑𝑑𝑗𝑗
𝜋𝜋

−𝜋𝜋
                                     (2.30) 

 
The power spectrum of the Doppler signal represents the distribution of velocities 
within the blood vessel. 

For a finite discrete signals z(k), k=1,2, … , N , the power spectrum G𝑁𝑁(ω) 
where −π < 𝑗𝑗 < 𝜋𝜋, can be expressed as  

 

G𝑁𝑁(ω) =
1
𝑁𝑁

|Z𝑁𝑁(ω)|2                                            (2.31) 

Z𝑁𝑁(ω) = �𝑧𝑧(𝑘𝑘)𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘
𝑁𝑁

1

                                         (2.32) 

The spectrum estimate G𝑁𝑁(ω)is called the periodogram. Introducing a window 
function 𝑤𝑤𝑁𝑁(𝑘𝑘) to the above equation (2.31) and (2.32), one can get  

 

Z𝑁𝑁(ω) = �𝑤𝑤𝑁𝑁(𝑘𝑘)𝑧𝑧(𝑘𝑘)𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘
𝑁𝑁

1

                                  (2.33) 

 
The expected value is  
 

< G𝑁𝑁(ω) >=
1

2𝜋𝜋
� 𝐺𝐺(𝑗𝑗 − 𝜑𝜑)|W𝑁𝑁(𝜑𝜑)|2𝑑𝑑𝜑𝜑
𝜋𝜋

−𝜋𝜋
                        (2.34) 

W𝑁𝑁(𝜑𝜑) = �𝑤𝑤𝑁𝑁(𝑘𝑘)𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘
𝑁𝑁

1

                                       (2.35) 
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As explained in the previous section, a smooth window is usually used in this case, 
for example, a Hamming window. 

 
 

 

2.4.4 Spectral analysis of Doppler signals 

In PW Doppler, the spectral analysis is done on a 2D signal model by using the 
Fast Fourier Transform (FFT). See Fig. 2.15. The fast time indicates the range 
direction, while the slow time indicates the beam direction. FFT-based Doppler 
analysis has been used extensively for assessing various circulatory systems, and 
it is the current industry standard for Doppler ultrasound devices used for medical 
diagnostic applications [16]. Applying FFT on fast time gives the spectrum of the 
transmit signal, whereas FFT on slow time gives the Doppler shift, which can be 
used to calculate the velocity. 
 
 

 
 
Fig. 2.15: 2D Doppler signal model. To the right is the sampled amplitude taken 
along the vertical line in left model. This figure is taken from Hans Torp and 
Lasse Løvstakken’s presentation. 
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2.4.5 2D power spectrum analysis 

The algorithm of conventional PW Doppler requires only one range sample. In 
order to verify the simulation algorithm, it is necessary to see the correlation in 
the range direction. The 2D power spectrum is a good method to get this 
information.  

The mathematical model described here is taken from a previous work by 
H.Torp et al. 1994 [17]. The received signal after IQ demodulation is described as 
a 2D Gaussian process x(t, k). According to the precious section, its complex pre-
envelop signal is  

x𝑝𝑝(t, k) = x(t, k) ∙ 𝑒𝑒𝑗𝑗𝑗𝑗0𝑗𝑗                                           (2.36) 
 
The signal is considered as a continuous function. Here, t is the pulse 

transmission time and k is the corresponding range depth c/2 ∗ t.  
The autocorrelation of the complex pre-envelop signal is 
 

𝑃𝑃𝑥𝑥𝑝𝑝 (𝜏𝜏,𝑚𝑚) =< x𝑝𝑝(t, k) ∗ x𝑝𝑝(t + τ, k + m) >                     (2.37) 

 
where < > denotes the expected value. 
The 2D power spectrum is the Fourier transform of the autocorrelation function  
 

G(𝑗𝑗1,𝑗𝑗2) = ��𝑃𝑃𝑥𝑥𝑝𝑝 (𝜏𝜏,𝑚𝑚)𝑒𝑒𝑗𝑗𝑗𝑗1𝑇𝑇𝑒𝑒𝑗𝑗𝑗𝑗2𝑚𝑚𝑇𝑇𝑑𝑑𝜏𝜏
𝑚𝑚

                    (2.38) 

 
where 𝑗𝑗1 and 𝑗𝑗2 are angular frequencies in the Fourier transform of fast time and 
slow time respectively. 

Fig. 2.16 shows the 2D power spectrum. According to the theory explained 
before, 𝑗𝑗2 gives the Doppler shift and 𝑗𝑗1is the frequency of transmitted pulse. 𝑗𝑗1 
and 𝑗𝑗2  can be seen as 𝑓𝑓0  and 𝑓𝑓𝑑𝑑   in equation (2.25) respectively. Thus the 
equation (2.25) can be written as  

𝑗𝑗2 = α𝑗𝑗1                                                   (2. 39) 
where α = −2 𝑣𝑣∙cos 𝜑𝜑

𝑐𝑐
.  
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Fig. 2.16 [18]: 2D spectrum of a blood flow. To the left is an ideal model of the 
spectrum, to the right is a measured spectrum of a human artery.  
 
 

The factor α indicates the slope of the line plotted through the spectrum in the 
figure. The bandwidth of 𝑗𝑗1 indicates the distribution of frequency components of 
the transmit pulse. It is inversely proportional to the pulse length and the sample 
volume size.  
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3 

To evaluate the convolution-based method, COLE simulator, both computer based 
simulations and string phantom experiments were used. 3 different constant 
velocities were used in both simulations and phantom experiments. Therefore, 
each velocity was simulated by both the Field II, and the COLE simulator and 
applied in the phantom experiment, where it was estimated by conventional PW 
Doppler. The computation times of the simulated data generated from both COLE 
and Field II were compared. 

The string phantom experiments will be described in section 3.1. The 
experiment setup and the functions of the phantom will be shown and together 
with a description of the ultrasound scanner. Section 3.2 will describe the 
simulation approach. The FieldSim 3 platform will be shown as well as the 
simulators and the simulated phantom settings.  
 
 

Simulations and experiments 

3.1 String phantom experiment 

In order to verify the performance of COLE in the FieldSim 3 platform, a string 
phantom experiment was applied. The experimental setup is shown in Fig 3.1. A 
Vivid E9 GE Vingmed Ultrasound scanner and a GE linear array probe, 9L, were 
used in the experiment. The probe fixed straight downwards to the water. The 
azimuth direction of the probe was placed along the string. The string was placed 
in the water with a fixed angle to the beam direction. It moved with the wheels 
according to the motion of the electric motor. The string velocity had ±  1% 
accuracy of the stated velocity [19]. In this project three different constant 
velocities were recorded. The constant velocities were 0.15 m/s, 0.25 m/s and 0.50 
m/s The ultrasound scan parameters are shown in Table 3.1 
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Table 3.1: The ultrasound scan parameters of the string phantom experiment 
 

Transducer frequency 5MHz 
IQ Sampling frequency  3.125MHz 
Number of pulse period 6.5 
PRF 5000 
Start depth 15mm 
End depth 30mm 
Packet size 64 
Number of beams 102 
Ultrasound velocity 1540 

 
  
 
 

 
 

Fig. 3.1: The string phantom experiment setup. The probe is the GE linear array 
probe, 9L.  
 
 

3.2 Computer based simulation approach 

Simulation is a good way to test some new ideas or methods before achieving 
them on a real scanner. It is also wise to test some methods that are well 
developed theoretically, but difficult to be implemented on hardware. In this 
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project, all simulations were implemented using MATLAB in the FieldSim 3 
platform. 
 
 

3.2.1 MATLAB Object-oriented programming and the FieldSim 
3 platform 

MATLAB (MATrix LABoratory) is a general-purpose scripting language 
particularly well suited for mathematical programming [20]. The data in 
MATLAB is normally stored in matrices. There are many toolboxes that handle 
different functions in different areas in MATLAB.  

Object-oriented programming is one the most popular programming 
approaches. It makes it easier to develop and maintain a very large application. 
The software package FieldSim 3 was used in the project to generate the 
simulation data. It is written in MATLAB with object-oriented programming. 
Therefore it is easily configurable. The following block diagram shows the 
architecture of FieldSim 3. It is mainly constructed by 6 blocks: front-end, scan 
definition, scan geometry, the biological setup, the simulator and the post-
processing and display. 

 
 

Fig. 3.2: Block diagram of the FieldSim 3 architecture. The diagram is based on 
Ole Bakstad’s project report [21]. 
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Code list I: Color flow simulation example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
       In code list I, a color flow simulation example is shown with a straight tube 
phantom and the COLE simulator. Each block in Fig. 3.2 is set in this simulation 
code example. The code starts with creating an object in the ‘Simulation’ class. 
Then it sets different parameters in the object.  

In the front-end, a certain probe needs to be chosen for the simulation. In line 
5 of the code example the probe was defined. Each available probe contains many 
default settings. They are stored in a XML file. The frond-end contains different 
typical probes. Users can choose them according to different simulations. In this 

1) sim           = FieldSim.Simulation(); 
2) sim.name      = 'CF-9L'; 
3) % Select the basic scan configuration 
4) sim.selectMode('ColorFlow'); 
5) sim.probe = '9L'; 
6) sim.simulator = 'Cole'; 
7) % Phantom Setting 
8) sim.phantom = 'PhantomTube'; 
9) sim.phantom.string_length = 0.1; 
10) sim.phantom.string_radius = 0.001; 
11) sim.phantom.string_resScat = 10; 
12) sim.phantom.string_vMax = 0.1; 
13) sim.phantom.tilt=[0 0 pi/4]; 
14) % Configure the Tx/Rx layout 
15) sim.scan.txPulser.f0 = 5e6; 
16) sim.scan.txPulser.noPeriodsExcitation = 6.5; 
17) sim.scan.txGenericBeam.focus   = 20e-3; 
18) sim.scan.txGenericBeam.fNumber = 1.5; 
19) sim.scan.rxGenericBeam.focus   = 'dynamic'; 
20) sim.scan.rxGenericBeam.fNumber = 1.1; 
21) sim.scan.scanShape.shape_az       = 'rectangle'; 
22) sim.scan.scanShape.openingSize(1) = 3e-3; 
23) sim.scan.scanShape.range_min      = 15e-3; 
24) sim.scan.scanShape.range_max      = 30e-3; 
25) sim.scan.PRFmax = sim.propagation.c / (2 * sim.scan.scanShape.range_max); 
26) sim.scan.PRF    = 5000; 
27) sim.scan.noPacket  = 64; 
28) sim.scan.interleaveMode = 'auto'; 
29) figure(2) 
30) plot(sim.scan); 
31) % Simulation and post processing 
32) sim.doScan(); 
33) sim.postProcessing.clear(); 
34) sim.postProcessing.addFilter('iqDemodulation', struct('f0', sim.probe.f0)); 
35) [iq_data metadata] = 

sim.postProcessing.apply(sim.data.rf_data, sim.data.meta); 
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project, a linear array probe (GE 9L) was always applied in the simulations, since 
the linear probe is suitable for blood vessel imaging. Line 15 and 16 sets the 
transmit pulse. The impulse response of the 9L probe with the transmit pulse is 
shown in both time and frequency domain in Fig. 3.3. It shows that the frequency 
impulse response of the probe is a bandpass signal. Therefore, in order to get a 
suitable pulse, most of the power of the transmit pulse has to be inside the 
frequency impulse response of the probe. 

 

 
 

Fig 3.3: Impulse response of the linear probe 9L and the simulated transmit pulse 
frequency response. The upper figure shows the time domain response and the 
lower figure shows the frequency domain impulse response with the transmit 
pulse response. 
 
 
       In the scan definition, the users can choose different scan modes based on 
their simulation requirements. So far, it has B-mode, beam profile mode and color 
flow mode. The color flow mode was applied in the project. With a certain scan 
mode, detailed parameters can be set to fit the specific scan requirement as shown 
in the code. The scan geometry contains 3 types of scan shapes. They are 
rectangular, sector and curvilinear. The rectangular scan shape was used in this 
project. Fig. 3.4 shows a rectangular scan shape generated by the example code. 
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The transmit beams focused at 20 mm and the imaging range is from 15 mm to 30 
mm in depth. Single line acquisition is applied.  
 

 
 

Fig. 3.4: Rectangular scan shape constructed by the transmit beams and receive 
beams. The transmit beams focused at 20 mm in depth. 
 
 
       In the post-processing and display block, different filters can be applied to the 
simulation data. Here the filter called “iqDemodulation” was applied to get the IQ 
data for further Doppler processing. The simulated data can be displayed by the 
predefined plot function in the FieldSim 3. The simulator and biological blocks 
will be described in the following section with a simulation code example. 
 
 

3.2.2 Simulators and phantom settings 

 
FieldSim 3 makes it very convenient to use different simulators. As shown in the 
code list I, the simulators can be changed by just changing the simulator name in 
the created “sim” object. By doing this the user can achieve the same simulation 
settings with different simulators. So far COLE, Field II, Abersim and Propose are 
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available in the FieldSim 3 platform. In this project, only COLE and Field II were 
used.  
       Since COLE does not have the ability to generate beam profiles, Field II was 
used to generate the beam profile for COLE as its LUT. The 2D transmit, receive 
and two-way beam profiles generated by code list I are shown in Fig. 3.5. The 
LUT is constructed by generating a grid on the beamprofile with certain lateral 
width and axial distance. The scatterers that are located outside the LUT will not 
be considered. The scatterers are weighted at each depth according to its distance 
to the imaging line and summed up to attribute to the corresponding radial sample. 
Finally, by taking the convolution with the generated pulse, the signal along one 
image line is done. The 2D image can be generated by repeating this procedure. 

 
Fig. 3.5: The transmit, receive and two-way beam profiles generated from Field II. 
 
 

The linear probe 9L was used in the simulation because it is suitable for 
vascular Doppler imaging and the phantom was simulated as a straight tube full of 
moving scatterers. Fig. 3.6 is the 3D plot of the simulated point scatterers 
distributed in the tube. It has 1 mm radius and 10 cm length. These point 
scatterers behave like blood cells in the vessel. The scatterer density can be set by 
the parameter called “string_resScat”. It indicates how many scatterers in one 
sampling volume, which equals to the spatial sampling frequency multiplies by 
the beam widths in both elevation and azimuth directions. The phantom 
parameters can be found in code list I. Note that for different blood velocities the 
length of the tube should be enough to make sure that the scatterers always appear 
in the measurement area. Equation (3.1) gives the minimum length of the tube. 
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𝐿𝐿 = 𝐿𝐿1 + 𝐿𝐿2 =
𝑝𝑝𝑝𝑝𝑐𝑐𝑘𝑘𝑒𝑒𝑗𝑗𝑝𝑝𝑝𝑝𝑧𝑧𝑒𝑒

𝑃𝑃𝑃𝑃𝑃𝑃
× 𝑣𝑣 + 𝐿𝐿2                                  (3.1) 

 

where 𝐿𝐿1  is the length that the scatterers will move, 𝐿𝐿2  is the length of 
measurement area. 

 

 
 
 

 
 
Fig. 3.6: Simulated straight tube phantom with point scatterers distributed in the 
tube as blood cells. The radius is 1 mm and the length is 10 cm. 
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4 

In this chapter, the results achieved in the project will be presented. The 
parameters used to investigate the computational time are listed, the plotted 
Doppler spectra and the 2D power spectra of both simulation data and recorded 
IQ data from the ultrasound scanner will be presented in section 4.2 and 4.3 
respectively, so that the performance of the COLE simulator in the FieldSim 3 
platform can be evaluated and compared with the other methods. The 2D power 
spectra were also plotted from the simulation data with the same settings but with 
different pulse length, so that the correlation in range direction can be shown. 
 
 
 

Results 

4.1 Computational time of COLE and Field II 

In order to compare the computational time of both COLE and Field II in the 
FieldSim 3 platform, different parameters were used in the simulation so that we 
can see the influence of the parameters on the efficiency of the simulator COLE. 
These parameters were packet size and scatterer resolution. The parameters in 
Table 4.1 were the fixed parameters. All simulations were recorded 5 times but 
only their mean computational time values are presented. The recording was done 
on a PC with an Intel Xeon CPU E 31270 with 4 cores 3.4GHz and 8GB RAM. 
The FieldSim 3 was run on MATLAB 2011b on Windows 7. 
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Table 4.1: Simulation parameters for investigating the computational time 
 

Transducer frequency 5MHz 
Sampling frequency 200MHz 
Ultrasound velocity 1540m/s 
PRF 4000 
Start depth 15mm 
End depth 30mm 
Tube length 0.1m 
Tube radius  2.5mm 
Scatterer velocity 0.1m/s 
Size of scan range 20mm 

 
 
 

With a fixed number of scatterers, the computational time increased with 
increasing the packet size. In the following case the scatterer resolution was set to 
1, i.e. 1246 scatterers in the simulated straight tube phantom. The mean CPU 
times for both simulators are presented in Table 4.2. The ratio of computational 
time of Field II to computational time of COLE is shown in Fig. 4.1.  

 
 
 

Table 4.2: The mean CPU time for both simulators 
 

Packet size 1 2 3 5 10 20 

COLE (s) 9.17 18.9 28.1 48 101 199 

Field II (s) 699 1420 2090 3531 6781 13101 
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Fig. 4.1: Relationship between computational time ratio of Field II to COLE and 
scatterer resolution. 
 
 

With a fixed packet size, the computational time increased with increasing the 
number of scatterers in the simulated straight tube phantom. In the following case 
the packet size was set to 1. The mean CPU time for both simulators is presented 
in Table 4.3 with different scatterer resolutions. The ratio of computational time 
of Field II to computational time of COLE is shown in Fig. 4.2.  

 
 

Table 4.3: The mean CPU time for both simulators 
 

Scat. Res. 0.1 0.5  0.7 1 3 5 7 10 

COLE (s) 2.16 5.23 6.81 9.17 24.1 41.4 56.4 82.1 

Field II (s) 72.4 361 481 699 2030 3460 4707 6883 
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Fig. 4.2: Computational time ratio of Field II to COLE with varying scatterer 
resolution. 
 
 

4.2 Doppler spectra from scanner recordings and 
simulations 

In this section, the PW Doppler spectra are shown. The first 3 figures are shown 

to compare the performance of velocity estimation in COLE, Field II and the 

scanner. The simulations were done using the same settings as shown in Table 4.4. 

The velocities were 0.15 m/s, 0.25 m/s, 0.50 m/s. Each spectrum was done by 

taking the FFT with a 64 point Hamming window to one packet and then 

averaging over 10 estimations to reduce the variance. The velocity axis in each 

figure is already angle corrected, so that the true velocities are presented. Fig. 4.6 

shows the performance of the velocity estimation in the COLE and Field II 

simulators with different sampling frequencies.  

 
 

0 1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

Scatterer resolution

ra
tio

Computation time ratio of Field II to COLE



 37 

Table 4.4: Simulation parameters 
 

Transducer frequency 5MHz 
Sampling frequency 200MHz 
Ultrasound velocity 1540m/s 
No. of period 6.5 
Start depth 15mm 
End depth 30mm 
Tube length 0.1m 
Doppler angle 58 degree 
PRF 5000 
Packet size 64 

 
 
 

 
 

Fig. 4.3: PW Doppler spectra generated from COLE (blue curve), Field II (red 
curve) and from the scanner IQ data (green curve) respectively. The true velocity 
value is 0.15 m/s. 
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Fig. 4.4: PW Doppler spectra generated from COLE (blue curve), Field II (red 
curve) and the scanner IQ data (green curve) respectively. The true velocity value 
is 0.25 m/s. 

 
Fig. 4.5: PW Doppler spectra generated from COLE (blue curve), Field II (red 
curve) and the scanner IQ data (green curve) respectively. The true velocity value 
is 0.50 m/s. 
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Fig. 4.6: PW Doppler spectra generated from COLE and Field II with different 
sampling frequencies. The blue curve has sampling frequency of 50 MHz. The red 
curve has sampling frequency of 100 MHz. The green curve has sampling 
frequency of 200 MHz.  The true velocity values are 0.25m/s. 
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4.3 2D power spectra generated from the scanner 
and the simulation 

The 2D power spectra are plotted using different data with different velocities and 
are shown in Fig. 4.7-4.15. They are the corresponding 2D power spectra of the 
Doppler spectra shown in Fig. 4.3-4.5. The same settings as shown in Table 4.4 
were used. The slope of the red line plotted on each 2D power spectrum indicates 
the factor in equation (2.39). Both horizontal bandwidth and vertical bandwidth 
for each spectrum are listed in Table 4.5. The vertical axis in each figure shows 
the Doppler shift, whereas the horizontal axis gives the transmit pulse frequency. 
The sampling frequency for the IQ data is 3.125 MHz.  
 
 
 

Table 4.5: Bandwidths of the 2D power spectra. 
 

         Fig. 

Band- 
width 

4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 

Velocity 
(m/s) 

0.50  0.25 0.15 

Horizontal  
(MHz) 

1.52 1.50 1.51 1.51 1.50 1.53 1.48 1.50 1.52 

Vertical  
(KHz) 

3.25 3.57 3.36 2.01 2.14 2.00 1.29 1.31 1.78 
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Fig. 4.7: 2D power spectrum generated from the simulated data of COLE. The 
velocity of the simulated phantom is 0.50 m/s.  

 
Fig. 4.8: 2D power spectrum generated from the simulated data of Field II. The 
velocity of the simulated phantom is 0.50 m/s.  
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Fig. 4.9: 2D power spectrum generated from the IQ data from the scanner. The 
velocity of the string phantom is 0.50 m/s.  
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Fig. 4.10: 2D power spectrum generated from the simulated data of COLE. The 
velocity of the simulated phantom is 0.25 m/s.  
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Fig. 4.11: 2D power spectrum generated from the simulated data of Field II. The 
velocity of the simulated phantom is 0.25 m/s.  
 

 
Fig. 4.12: 2D power spectrum generated from the IQ data from the scanner. The 
velocity of the string phantom is 0.25 m/s.  
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Fig. 4.13: 2D power spectrum generated from the simulated data of COLE. The 
velocity of the simulated phantom is 0.15 m/s.  
 

 
Fig. 4.14: 2D power spectrum generated from the simulated data of Field II. The 
velocity of the simulated phantom is 0.15 m/s.  
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Fig. 4.15: 2D power spectrum generated from the IQ data from the scanner. The 
velocity of the string phantom is 0.15 m/s.  
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Fig. 4.16 4.17 and 4.18 are 2D power spectra generated from data simulated 

by COLE with the same velocity, 0.25 m/s, and different numbers of pulse periods. 
In this case the horizontal bandwidths change and the correlation in range 
direction can be seen clearly. With a pulse of 3 periods, the horizontal bandwidth 
is 2.97 MHz as shown in Fig. 4.16. With a pulse of 6 periods, the horizontal 
bandwidth is 1.51 MHz as shown in Fig 4.17. With a pulse of 9 periods, the 
horizontal bandwidth is 1.01 MHz as shown in Fig 4.18.  

 
 

 
 

Fig. 4.16: 2D power spectrum generated from the simulated data of COLE with 3 
pulse periods. The velocity of the simulated phantom is 0.25 m/s.  
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Fig. 4.17: 2D power spectrum generated from the simulated data of COLE with 6 
pulse periods. The velocity of the simulated phantom is 0.25 m/s.  
 

 
Fig. 4.18: 2D power spectrum generated from the simulated data of COLE with 9 
pulse periods. The velocity of the simulated phantom is 0.25 m/s.  
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5 

In this chapter, all of the results presented in the previous chapter will be 
discussed and analyzed. Both advantages and disadvantages of COLE, compared 
with Field II and the scanner, will be shown by taking a closer look at the 
computational time and the spectra.  
       In section 5.1, the computational time of both simulators as a function of 
packet size and number of scatterers will be compared. In section 5.2, the 
estimation performance of the 3 methods will be discussed by comparing the 
bandwidth of their spectra in both the fast-time direction and the slow-time 
direction. 
 
 

Discussion 

5.1 Computational time 

The most important advantage of COLE is that its computational time is short. In 
the previous work published by H. Gao et al. [2], the computational time achieved 
was 1200 times faster than Field II in 3D B-mode imaging. We have looked at the 
2D Doppler mode scan in the FieldSim 3 platform.  

With a fixed number of scatterers, the computational time of both simulators 
increased when the packet size increased. However the computational time ratio 
of Field II to COLE did not change too much, because by increasing the packet 
size only the repetitions of the transmit pulse increased and the averaging 
simulation time for each transmit should be same theoretically. Therefore, the 
same theory can be applied to the number of beams and frames. The COLE 
simulator was about 70 times faster than the Field II simulator in the FieldSim 3 
platform.  

With a fixed packet size, the computational time of both simulators increased 
when the number of scatterers increased. The computational time ratio of Field II 
to COLE changed a lot when the number of scatterers increased, until the scatterer 
density reaching a certain value. The ratio plotted in Fig.4.2 is similar with an 
exponential function. When the scatterer resolution was smaller than 1, the ratio 
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changed a lot. When the scatterer resolution was larger than 3 the ratio became 
almost a constant. The reason is that there are a lot of functions were used in the 
simulation and when the number of scatterers was small; the computational time 
of those functions took relatively high proportion of the total time. Howener, 
when the number of scatterers was large enough, the computational time of those 
functions can be neglected. The COLE simulator achieved a computation time 
that was about 85 times faster than Field II.  
  
 

5.2 PW Doppler estimation performance 

In order to evaluate the performance of the COLE simulator in the FieldSim 3 
platform, both Doppler spectra and 2D power spectra were generated. The Field II 
simulator and the string phantom experiment were used for comparison. Since 
Field II has perfect accuracy, theoretically, its performance should be equivalent 
to the scanner. Constant velocities of 0.15 m/s, 0.25 m/s and 0.50 m/s were used 
in both the simulations and in the in vitro phantom. The spectra plotted from the 
string phantom experiment have relatively low accuracy, due to the mechanical 
error of the string motion and the measurement system error. 
       In the plotted Doppler spectra, i.e. Fig. 4.3-4.5, the same settings are applied 
except the velocity. Generally, the simulated data from the Field II simulator gave 
better performance than the other 2 methods. Compared with Field II, COLE had 
higher noise floor. The biases of these three methods are almost zero. The spectra 
plotted from scanner IQ data always have a side lobe around the negative velocity. 
That is because the string was moving in a round trip and they were not that far 
away from each other, see Fig. 3.1. The probe can detect a weak signal from the 
water moving along with the string on the other side of the phantom. 

Fig. 4.3 shows that both simulators have a narrower bandwidth than the 
scanner. Theoretically it should have similar bandwidth as Field II. Here it caused 
by some unknown reasons. It can be caused by a mechanical effect. Since the 
string moves in the water, it “forces” the water to flow with it. As a consequence, 
there might be some bubbles in the water around the string contributes to the 
velocity band. The peak velocities of all three methods are approximately 40dB 
stronger than the noise floor. In this case with low velocity, the noise floor of the 
spectrum from COLE is almost at the same level as Field II. 

In Fig. 4.4, both simulators have slightly worse velocity resolution than the 
scanner. The noise floor of COLE is higher than in the previous situation. The 
negative velocity component of the scanner spectrum becomes stronger, due to 
that the power of the water around the string is increased. 



 53 

In Fig. 4.5, all three spectra have worse velocity resolution and aliasing 
appears due to the velocity band exceeds the Nyquist limit. The spectrum from the 
scanner has better velocity resolution than the simulators. The noise floor of 
COLE becomes higher. 

Fig. 4.6 is plotted to show how the sampling frequencies affect spectra 
generated from COLE and Field II simulated data. In the spectra generated by the 
data from COLE, as the sampling frequency increases the side lobes of the spectra 
are suppressed. At 200 MHz the side lobes almost disappear. Meanwhile, the 
variance around the peak of the spectra becomes lower. In the spectra generated 
by the data from Field II, the side lobes do not appear in all the tested sampling 
frequencies. 

In the plotted 2D power spectra, i.e. Fig. 4.7-4.15, the same settings are 
applied except the velocity. Generally, as shown in Table 4.5, the horizontal 
bandwidths are approximately the same, because the transmit pulse lengths are the 
same. The measured bandwidths of the 2D power spectra have relatively low 
accuracy, because they were measured manually and the gain used in each method 
was different. The side lobes of the transmitted frequency appear in each figure. 
The vertical axis gives the Doppler shift. The bandwidths along the vertical axis 
correspond to the bandwidths in the Doppler spectra. The locations of the main 
lobe of the spectra in vertical direction indicate the Doppler shifts, which can be 
used to calculate to the velocities. The red line plotted on each figure along the 
spectrum was generated using equation (2.39). The slope of the line is the factor α 
in that equation and, theoretically, it should fit the spectrum. The slope of the line 
from the scanner spectra equals to the negative slope of the line from the 
simulation. It means that the velocity directions are different. The string phantom 
has the same velocity direction as the beam, whereas the simulated scatterers in 
the tube have opposite direction of the beam. This can be defined by the negative 
sign in equation (2.25).  

In the 2D power spectra generated from scanner IQ data, every spectrum 
contains a zero Doppler shift component. It appears because of the clutter signal. 
In the 2D power spectra generated from the simulators, both simulators have 
batter velocity resolution than the scanner, when the true velocity equals to 0.15 
m/s. When the velocities equal to 0.25 m/s and 0.5 m/s, the velocity resolutions 
from all three methods are at the same level. This can be verified by comparing 
the Doppler spectra presented in section 4.2. The vertical bandwidths of the 2D 
spectra should theoretically equal to the velocity spectra bandwidths. However a 
little difference can be found because the bandwidths of the 2D spectra can be 
affected by the gain of the images. 

 In Fig. 4.16-4.18, the bandwidth of the transmit frequency increases when the 
number of transmit pulse periods is reduced. From the measured data in the 
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previous chapter, it can easily be seen that the bandwidths are inversely 
proportional to the pulse lengths. This means that the simulated data from COLE 
has correct correlation in range direction. 
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6 

This thesis work can be divided into two parts. One is to implement the COLE 
simulator on the FieldSim 3 platform, the other is to test the simulator with PW 
Doppler scan mode and compare the computational time and the performance 
with the Field II simulator and data from a real scanner. 
       As a convolution-based methodology, COLE produces ultrasound data sets 
by convolving the transmitted pulse with the projected amplitudes of all the 
scatterers along one image line in the spatial domain [2]. Since the COLE 
simulator does not have the ability to generate a beamprofile, Field II was used to 
generate the beamprofile as its LUT. In this way, the conventional 2D/3D 
convolution problem reduces to multiple 1D convolution (one for each line) [22]. 
COLE has successfully become one of the simulators available in the FieldSim 3 
platform.  
       The most important three parameters to evaluate the simulator COLE are the 
computational time, the velocity resolution and the noise floor level. The first one 
is the advantage of COLE and the last two mostly decid the performance of COLE 
in Doppler scan mode.  
       The computational time of COLE in the FieldSim 3 platform has been 
measured in 2D Doppler scan mode. With a fixed number of scatterers, the ratio 
of Field II to COLE did not change too much for different packet sizes. With 
enough number of scatterers, which means to set the scatterer resolution larger 
than 3 in the straight tube phantom, the computational time that COLE could 
achieve about 85 times faster than the Field II simulator.  

Conclusion 

       The performance of COLE was compared with both Field II and an 
ultrasound scanner using PW Doppler spectra and 2D power spectra. From the 
PW Doppler spectra, it was seen that in general COLE had worse performance 
than Field II. Especially when the velocity increased, the noise floor of COLE 
became higher than the other two methods. The velocity resolution at the true 
velocity of COLE was almost the same as Field II. The bias of COLE was in the 
same level as Field II and the scanner, which was almost zero. COLE had 
relatively high sampling frequency requirement compared with Field II. In order 
to avoid the side lobes of the spectra, the sampling frequency should be high 
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enough. From the 2D power spectra, the plotted skewed lines fitted the spectra 
well. The Doppler shift bandwidths had correct value based on the PW velocity 
spectra; the transmit frequency bandwidths were inversely proportional to the 
transmit pulse length, which meant the correlation in range direction was correct 
as well.  
       In words, COLE can provide the velocity resolution at the same level as Field 
II. Even though it had higher noise floor, 40dB is enough to avoid the noise 
contribution. The computational time is much faster than Field II. Considering 
these, COLE is a good simulator choice in the FieldSim 3 platform for the 2D 
Doppler mode scan.  
 
 

6.1 Future work 

The future work can be divided into two directions. One is continuously working 
with developing the FieldSim 3 platform. The other one is to test the performance 
of COLE continuously. 
       So far COLE can only use Field II to generate the beamprofile. It will be 
good if other simulators become available to generate beamprofiles for COLE. 
Then the user will have more choices. It is also possible to optimize some 
functions used in COLE, so that the computational time can be further reduced. 
       COLE has just been tested with 2D Doppler scan mode with velocities below 
the Nyquist limit. It will be interesting to have simulated data generated from 
COLE with velocities higher than the Nyquist limit and compare the performance 
with Field II. And also it can be used to simulate 3D/4D Doppler simulation. In 
3D/4D Doppler simulation, the computational time becomes much higher than in 
2D. Then the advantage of COLE will become significant. 
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Simulated straight tube phantom code 

Appendix  A 

classdef PhantomTube < FieldSim.Medium.Phantom 

         

    properties 

         

        % define the tube for the string 

        string_length = 0.05; 

        string_radius = 0.0025; 

         

        % quantity of scatterers 

        string_resScat = 10; 

         

        % velocity for Poseuille flow 

        string_vMax      = 0.5; 

        string_vExponent = 2; 

        PoiseuilleFlow=1; %0 for uniform flow 

 

    end % properties 

  

    properties (Hidden) 

         

        scat_velocities = []; % the velocities for all initial   

  scatterers 

    end % properties (Hidden) 
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    methods 

         

        function obj = PhantomTube (sim) 

            obj = obj@FieldSim.Medium.Phantom(sim); 

            sim.phantom.reset(); 

            obj.origo = [0 0 20e-3]; 

            obj.tilt  = [0 0 pi/9];    

        end % PhantomTube 

         

        function copy(obj, phantom) 

            if ~isa(phantom, 'FieldSim.Medium.Phantom') 

                error('The objects to copy must be of the same   

 class'); 

            end 

            copy@FieldSim.Medium.Phantom(obj, phantom); 

            if isa(phantom, 'FieldSim.Medium.PhantomTube') 

                obj.string_length    = phantom.string_length; 

                obj.string_radius    = phantom.string_radius; 

                obj.string_resScat   = phantom.string_resScat; 

                obj.string_vMax      = phantom.string_vMax; 

                obj.string_vExponent = phantom.string_vExponent; 

                obj.scat_velocities  = phantom.scat_velocities; 

            end 

        end % copy 

             

        function [positions, amplitudes] =     

  generateInitalScatterers(obj) 

            

            obj.displacement = @obj.displacementCallback; 

            

            total_volume = obj.string_length * 2*obj.string_radius        

* 2*obj.string_radius; 
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            % Ultrasound-related variables 

            Deltax = obj.sim.scan.txGenericBeam.fNumber(1) *   

 obj.sim.scan.txPulser.getLambda(obj.sim);   

            Deltay = Deltax; 

            Deltaz = obj.sim.propagation.c / 2 *    

 obj.sim.scan.txPulser.noPeriodsExcitation /  

 obj.sim.scan.txPulser.f0; 

            number_scat = ceil( obj.string_resScat * (total_volume)       

/ (Deltax*Deltay*Deltaz) ); 

  

            % New creation of random scatterers 

            % Creation of random scatterers in a bounding box  surrounding 

the tube 

            x = -obj.string_length/2 + obj.string_length *           

rand(number_scat,1);    

            y = -obj.string_radius + 2*obj.string_radius *        

rand(number_scat,1); 

            z = -obj.string_radius +          

2*obj.string_radius*rand(number_scat,1);  

  

            % Find which scatterers are within the blood vessel 

            r = (y.^2+z.^2).^(0.5); 

            limInd=find(r > obj.string_radius); 

            x(limInd)=[]; 

            y(limInd)=[]; 

            z(limInd)=[]; 

            r(limInd)=[]; 

             

            if obj.PoiseuilleFlow 

                velocity = obj.string_vMax * (1-  

 (r/obj.string_radius).^obj.string_vExponent);%  Poiseuille 

formula 

            else    

                velocity = obj.string_vMax; 
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            end 

               

            % Store the velocities along the x-axis for each of  the initial 

scatterers positions: 

            obj.scat_velocities = velocity; 

                         

            % Fill the initial scatterers position:             

            positions  = [x, y, z]; 

            amplitudes = randn(size(x,1),1); 

             

        end % generateInitalScatterers 

         

        function [positions amplitudes] = displacementCallback(obj,  time, 

init_positions, init_amplitudes) 

             

            % Move the tube scatterers along the x axis with the  flow velocity 

            translation_flow = obj.scat_velocities * time; 

            obj.positions      = init_positions; 

            obj.positions(:,1) = obj.positions(:,1) +  translation_flow; 

             

            % amplitudes do not change 

            obj.amplitudes = init_amplitudes; 

             

            % Translate and rotate the tube in the desired  positions: 

            translation = obj.origo; 

            rotations   = obj.tilt; 

            if max(abs(translation)) > 0 || max(abs(rotations))>0 

                obj.rotate(rotations); 

                obj.translate(translation); 

            end 

            positions  = obj.positions; 

            amplitudes = obj.amplitudes; 

             

        end % displacementCallback 
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        function plot(obj, time, scanShape, txEvent) 

            args = {}; 

            if nargin > 1 

                args{1} = time; 

            end 

            if nargin > 2 

                args{2} = scanShape; 

            end 

            if nargin > 3 

                args{3} = txEvent; 

            end 

            obj.generate(args{:}); 

            figure(gcf), clf 

            colordef(gcf, 'black') 

            scatter3(obj.positions(:,1)*1e3, ... 

                     obj.positions(:,2)*1e3, ... 

                     obj.positions(:,3)*1e3, ... 

                     50, ... 

                     20*log10(abs(obj.amplitudes)), ... 

                     'filled' ); 

            axis equal; axis ij; 

            title('Point scatterers'); 

            xlabel('Azimuth [mm]'); 

            ylabel('Elevation [mm]') 

            zlabel('Range [mm]') 

            colormap(hot); 

        end % plot 

         

    end 

     

end 
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Code for plotting spectrum  

Appendix B 

clear all; 

load('test6.mat'); 

addpath('C:\Users\zhou\Documents\MATLAB\functions') %get the logabs 

function used to plot the 2D spectrum 

iq=iq_data;    

[Nr,Nb,Nfr,Np]=size(iq); 

  

figure(23); imagesc(squeeze(abs(iq(:,:,1,1)))); 

[x,y]=ginput(1); %get a point in the space 

bb = round(x);%30; %Beam 

fr=1; %frame 

r =round(y); %round(Nr/5); %range 

iq1=squeeze(iq(:,:,fr,:)); 

c=sim.propagation.material.c0; 

  

%% velocity spectrum analysis 

for i=bb:10+bb % velocity spectrum analysis 

data1=iq1(r,i,:); 

data1=squeeze(data1); 

Nfft=128; 

Nw=64;        

w=hamming(Nw); 

        q=data1; 
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        q = q.*w; 

        q=abs(fftshift(fft(q,Nfft))).^2;  

        a(:,i)=q; 

end 

Pc=sum(a,2)./10;       

  

f1 = ([-0.5*Nfft:0.5*Nfft-           1]/Nfft )*(sim.scan.PRF)*c/(2*sim.probe.f0); 

f2= ([-0.5*Nfft:0.5*Nfft-1]/Nfft )*(sim.scan.PRF) 

t = linspace(0,size(Pc,2)/sim.scan.PRF,size(Pc,2)); 

  

%% plot velocity spectrum 

figure(144); 

Pc= Pc(:,round(size(Pc,2)/2)); 

Pc1=squeeze(10*log10(Pc/max(Pc))); 

plot(f1./sin(sim.phantom.tilt(3)),Pc1,'r');ylabel('Normalized power 

[dB]');xlabel('Velocity [m/s]'); 

  

%plot the 2D spectrum 

figure(111); 

gain=-215; 

dyn=30; 

freq = linspace(-3.125e6/2+5e6, 3.125e6/2+5e6,Nfft); 

iq1=squeeze(iq(:,bb,fr,:)); 

image(freq,f2/sin(sim.phantom.tilt(3)),dyn*logabs(fftshift(abs(fft2(hamming(size(

iq1.',1))*hamming(size(iq1.',2)).'.*iq1.'))),gain,dyn)); 

colormap(gray(dyn)); 

colorbar; 

hold on; 

plot(freq,(2*0.25/1540*cos(32/180*pi)*freq), 'r','LineWidth',3); %0.25 is the 

phantom velocity 

title('2D power spectrum');xlabel('Transmit pulse frequency [Hz]');ylabel('Doppler 

shift [Hz]'); 

[xx,yy]=ginput(2); %measure the bandwidths 
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logabs function used for 2D spectrum 

function y=logabs(x,gain,dyn); 

%LOGABS   Logaritmisk kompresjon av absoluttverdi 

  

    y=abs(x); %Ta absoluttverdi  

y=y+1e-30; 

y=20*log10(y); %Gjer amplitude om til dB 

    y=y+gain; %Legg til gain (i dB) 

    y=y/dyn;  %Skaler dynamisk område 

    y=max(0,y); %Sett negative verdiar lik 0 

    y=min(1,y); %sett verdiar >1  lik 1 
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