NTNU - Trondheim
Norwegian University of

Science and Technology

Low Power Capacitive Touch Digital
Detection Filter

A Comparative Study of Synchronous and

Asynchronous Methodologies

Truls Magnus Aamodt Gulbrandsen

Master of Science in Electronics
Submission date: June 2012
Supervisor: Snorre Aunet, IET

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem Description

In this assignment, the student should make a capacitive touch digital detection filter
circuit. Two implementations of the circuit should be made, one using traditional syn-
chronous methods and one using asynchronous methods. The student should evaluate
and compare the methods used for implementing the circuit. Both implementations
must be functionally verified. In addition, the student should compare the two imple-
mentations with regards to power consumption, emission and implementation cost.

Assignment given: 16. January 2012
Internal Supervisor: Snorre Aunet, IET, NTNU
External Supervisor: Kristoffer E. Koch, Atmel Norway AS

II

Abstract

In this thesis, both synchronous and asynchronous methodologies is explored for imple-
menting a capacitive touch digital detection filter circuit. Asynchronous methodologies
promise characteristics such as lower power, higher area cost and lower emission than
synchronous methodologies. The aim of this thesis is to show if this can be exploited
for this application.

The synchronous implementation is written in Verilog, and follows a standard syn-
chronous design flow. The asynchronous implementation is written in Balsa, and
follows a Balsa Asynchronous Synthesis System design flow. Both implementations
have been synthesised to netlist. A simple clock tree was generated for the synchronous
implementation. Both netlists was simulated with wire load models.

Netlist simulation of the synchronous and the asynchronous implementation shows that
the power consumption is similar for the two implementations, because the fixed sam-
ple rate of the capacitance measurement operation dominates over the filter operations.
The overhead from the handshake logic results in double the area for the asynchronous
implementation. The asynchronous implementation has lower emission because of the
randomness of the power consumption from the handshake circuits when the circuit is
not sampling, while the synchronous implementation has large frequency components
with harmonics from both clock flanks, resulting in higher emissions. Thus, asyn-
chronous methodologies do not automatically lead to low power consumption, but can
lead to larger area cost and lower emission.

In addtion, new approaches for interfacing an asynchronous circuit, described in Balsa,
with an analog circuit, and implementing a variable speed sampler clock with a mini-
mum fixed sample period has been found, but not implemented.

II1

v

Sammendrag

I denne oppgaven har vi utforsket synkrone og asynkrone metoder for & implementere
en kapasativbergring-digital-deteksjonsfilter-krets. Asynkrone metoder lover karak-
teristikker som lavere effekt, stgrre areal og mindre elektromagnetisk emisjon enn
synkrone metoder. Malet med denne oppgaven er a vise om dette kan utnyttes for
denne kretsen.

Den synkrone implementasjonen er skrevet i Verilog, og folger en standard synkron de-
signflyt. Den asynkrone implementasjonen er skrevet i Balsa, og fglger en Balsa Asyn-
chronous Synthesis System designflyt. Begge implementasjoner har blitt syntetisert til
nettliste. Et simpelt klokketre har blitt generert for den synkrone implementasjonen.
Begge implementasjoner har blitt simulert med banelastmodeller.

Nettlistesimulering av den synkrone og den asynkrone implementasjonen viser at ef-
fektforbruket er liknende for de to implementasjonene, fordi den faste samplingsraten
til kapasitansmalingsoperasjonen dominerer over filter operasjonene. Overhead fra
handtrykklogikk resulterer i dobbelt sa mye areal for den asynkrone implementasjo-
nen. Den asynkrone implementasjonen straler mindre pa grunn av den randomiserte
karakteristikken fra handtrykklogikken nar kretsen ikke utfgrer samplingsoperasjoner,
mens den synkrone implementasjonen har store frekvenskomponenter med harmoniske
fra begge klokkeflanker, noe som resulterer i mer elektromagnetisk straling. Asynkrone
metoder leder derfor ikke automatisk til lavere effektforbruk, men kan lede til stgrre
arealkostnad og mindre elektromagnetisk straling.

I tillegg har vi funnet nye metoder for a interface en asynkron krets, beskrevet i Balsa,
med en analog krets, samt en metode for a implementere en samplingsklokke med
variabel fart og minimum periode, men ikke implementert dem.

VI

Preface

This thesis was written in the period January to June 2012. Most of the work was
carried out at Atmel Norway AS. This report builds on the work done in the speciali-
sation project fall 2011. This report was written in IATEX. This document was created
using pdfTeX. BibTeX is used for references.

VII

VIII

Acknowledgements

I want to thank the following for helping me or in other ways supporting my work
with this master thesis:

Are Aarseth, for help with design flow, libraries and scripts.

Atmel Norway AS, for providing workspace and the necessary tools.

Bjarne Drotningshaug, for help with and providing custom Atmel technology library
for Balsa synthesis.

Bjarte Loken Nystgyl, for general tips and great discussions about circuit design, and
for keeping spirits high.

Kristoffer E. Koch, my supervisor from Atmel Norway AS.

Snorre Aunet, my supervisor from NTNU.

My family, for their support.

Milla, the rabbit, for cheering me up.

Truls Magnus Aamodt Gulbrandsen, June 2012, Skatval

IX

Table of Contents

Problem Description 1
Abstract III
Sammendrag Vv
Preface VII
Acknowledgements IX
List of Figures XVII
List of Tables XIX
Acronyms XXI

1 Introduction
1.1 Specification.
11,1 Goals o o
1.1.2 Design Constraints
1.1.3 Structure and Functionality
1.1.4 Technology
1.1.5 Design Techniques
1.1.6 Fabrication Lo o
1.2 Outline of the Thesis

U O U i e W W =

2 Background 7
2.1 Capacitive Sensing 7
2.1.1 RC Circuit and Relaxation Oscillator 7

2.1.2 Classification of Signal, 9

2.1.3 Analog to Digital Conversion 9

2.2 Digital Filters 9

2.2.1 Median-3 Filter 9
2.2.2 Exponential Moving Average Filter 10
2.3 Asynchronous Circuit Design 10
2.3.1 Handshake Protocols 10

Bundled Data Protocols 10

Bundled Data Channel Types 10

4-Phase Bundled Data Protocol 11

2-Phase Bundled Data Protocol 12

2.3.2 Data Validity Schemes 12
2.3.3 Muller-C Element 12
Gate Level Implementation 13

2.4 Clock Domain Crossing 14
2.4.1 Setup, Hold time and Metastability of Flop 14
Setup time 14

Hold time 15
Metastability oo 15

2.4.2 Mean Time Between Failures 15

2.5 Balsa Asynchronous Synthesis System 16
2.5.1 BalsaDesign Flow 16
2.5.2 Data Typing Issues 16
Non-Delay-Insensitive Components 17
Implementation 19
3.1 TopModule 19
3.1.1 Architectureo 20
Channels e 20

Behaviour of Top Module 20

3.2 Control Module 23
3.3 Register Banko oo 23
3.3.1 Registers 23
Synchronous Implementation 24
Asynchronous Implementation 24

3.4 Sampler Top Module L 24
3.4.1 Synchronous Implementation of Sampler Top Module 24
Implementation Lo Lo 25
Synchronisation oL 26

3.4.2 Asynchronous Implementation of Sampler Top Module 26
Wrapper Module Lo oo 27

3.5 Sampler Module 27
3.5.1 Synchronous Implementation of Sampler Module 27
3.5.2 Synchronous Implementation of Sense/Drive Output Ports . . 28
3.5.3 Asynchronous Implementation of Sampler Module 28
Alternative 1 29

Alternative 2 30

Alternative 3 31

Alternative 4 32
Implementation L Lo o 33

3.5.4 Implementation of Sense/Drive Output Ports 33
Alternative 1 34

Alternative 2 Lo 34
Implementation oL 0oL 35

3.6 Median-3 Filter Top Module 35

3.7 Median-3 Filter Module

3.7.1 Registerso

Register Storage L

3.7.2 Median-3 Algorithm

Comparison

3.8 EMA Filter Top Module

3.9 EMA Filter Module

3.9.1 EMA Algorithm o

3.9.2 Addition.

3.9.3 Subtraction

3.9.4 Multiplication L Lo

Alternative 1 Lo

Alternative 2

Implementation L L

3.9.5 Synchronous Implementation of EMA Filter Module

Addition in Verilog oo

Subtraction in Verilog 0oL

3.9.6 Asynchronous Implementation of EMA Filter Module

AdderinBalsa

Subtractiono

Multiplication in Balsa

3.10 Threshold Comparator Top Module

3.11 Threshold Comparator Module
Functional Verification

4.1 Method

4.2 Pad/RC Circuit Model o

4.3 Testbench

4.4 Tests e

4.4.1 Top Module Tests

Configuration Test

Sample, Filter and Threshold Comparison Test

4.4.2 Submodule Testso

4.5 Simulation Flow 00 o0

4.6 Submodule Simulationo

4.6.1 Synchronous Implementation - Submodule RTL Simulation . .

4.6.2 Asynchronous Implementation - Submodule Breeze Simulation

4.7 Top Module Simulation

4.7.1 Synchronous Implementation - Top Module RTL Simulation . .
4.7.2 Synchronous Implementation - Top Module NTL Simulation

Sampling and Pad/RC Model Circuit

4.7.3 Asynchronous Implementation - Top Module NTL Simulation .

Synthesis

5.1 Synthesis of Synchronous Implementation
51.1 Flow oo
5.1.2 Synthesis
51.3 Quick P&Ro

5.2 Synthesis of Asynchronous Implementation 59

6 Time-Based Power Estimation 61
6.1 Script for Generating SDF for all corners 62
6.2 Script Sequence for Converting VPD to VCD 62
6.3 Script Sequence for Time Based Power Estimation 63

7 Results 65
7.1 Cell Area Cost 65
7.2 Power Consumption 65

7.2.1 Power Waveform 65
7.2.2 Power Distribution and Power Density 66
7.2.3 Average Total Power 67
7.2.4 Energy/sequence 67
7.2.5 Average Power In Active Mode 67
726 Peak Powero 68
7.3 Emission. L 74

8 Discussion 75

81 Results. s 75
8.1.1 Power Consumption 75
81.2 AreaCost L 75
8.1.3 Emission 76

8.2 Design Optimisation 76
82.1 DataPath. 76

Reducing the Number Range 76
Dividing the Number Range 76
Recurring Structures 77

8.3 Verification 77
8.3.1 Simulation Time 77
8.3.2 Timing Violations 7

9 Conclusion 79
9.1 Conclusions Drawn from This Thesis 79
9.2 Summary of the Contributions this Thesis Has Made 79
9.3 Prospect of Further Research 80

Bibliography 81

A Balsa Code 83
A.l Parameters e e 83
A2 Modules 84
A.3 Verification Tests 99

B Verilog Code 103
B.1 Parameters 103
B.2 Synchronous Modules 104
B.3 Verification Tests 115
B.4 Pad/RC Circuit Model L 123

C Python Code 125

D Tools 129
D.1 Common Tools e 129
D.2 Synchronous Flow Tools 130
D.3 Asynchronous Flow Tools 130

XV

XVI

List of Figures

2.1
2.2
2.3
2.5
2.6
2.8
2.9
2.7
2.10
2.11

3.2

3.4

3.12
3.14
3.16
3.18
3.19
3.20
3.24
3.29
3.34
3.35
3.38
3.39

4.1
4.2
4.3
4.4
4.6
4.7

5.1
5.2

RC circuit. 8
RC oscillator. 8
The Four Fundamental Channel Types [9],p117 11
4-Phase Bundled Data Protocol [9] 12
2-Phase Bundled Data Protocol [9] 12
Muller-C Element 12
Truth Table 12
Data Validity Schemes for 2-phase and 4-phase Bundled Data 13
Two Flip-Flop Synchronizer 15
Balsa Design Flow. o 17
Top Module Architecture 21
Start, Sample, Filter and Compare Sequence. 22
Reset Signal Synchronizer Module 26
Sampler Module Architecture 28
Simple Inverter Chain 30
Delayed Inverter Chain 30
Delay Element 30
Metastability 31
Handshake Components. 33
Median-3 Filter Module Architecture 36
EMA Filter Module Architecture 39
Breeze Component: Binary Function.. 41
Shift-Add Algorithm 44
Shift-Add Architecture 44
Pad/RC Circuit Model. 48
Testbench.o 48
Configuration Test Sequence 49
Typical Test Sequence 49
Sampler and Pad/RC Circuit Waveform. 55
Latch and BrzVariable Waveform. 56
Synchronous Synthesis Flow. 58
Physical Layout After Clock Tree Synthesis. 59

XVII

6.1

7.4
7.5
7.8
7.1
7.2
7.3
7.6
7.7
7.9

Time Based Power Estimation Flow.

Power Distribution. oL
Power Distribution.o o
Peak Power.
Synchronous Implementation - Power Consumption Waveform.

Asynchronous Implementation - Power Consumption Waveform. . . .
Total Power Comparison Waveform.
Power Density - Synchronous Implementation.
Power Density - Asynchronous Implementation.
DFT of Power - Synchronous Implementation.

7.10 DFT of Power - Asynchronous Implementation.

XVIII

List of Tables

1.1 Power Consumption
3.1 Register Bank Map Lo oo

7.1 Implementation Cost o

XIX

XX

Acronyms

APT Advanced Processor Technologies. 16
BD bundled data. 5, 16, 75, 77, 78, 80
CTS Clock Tree Synthesis. 58

DC Design Compiler. 58, 61
DFT Discrete Fourier Transform. 74, 76
DR dual-rail. 5, 78, 80

EMA exponential moving average. 4, 9, 10, 50, 77

FE First Encounter. 58
FSDB Fast Signal Database. 74
FSM Finite State Machine. 53

ITR infinite impulse response. 10
NTL netlist. 54, 80

P&R place & route. 57
PT PrimeTime. 61, 65, 74

QDI Quasi-Delay Insensitive. 16
RTL register transfer level. 19
SBPF Synopsys Binary Parasitics Format. 61

SDF Standard Delay Format. 61
SR single-rail. 16

XXI

XXII

Chapter 1

Introduction

[JP Morgan] expects 657m smartphones to be sold in 2012, up from 459m
this year. - The Financial Times [4]

A variety of current smartphones use a combination of touch based and mechanical
button interfaces. Mechanical buttons are used as a supplement to the touch based
interface for implementing system functionality, but most importantly as a way to
power up or wake up a device from standby mode.

The disadvantages of using a mechanical button are wear and tear from use, and
the physical space needed for implementation. The advantage of using a mechanical
button is that it does not consume any active power.

The advantages of a capacitive touch based interfaces is that it is robust, and that it
e.g. can be incorporated into the screen of a smartphone. However, capacitive sensing
is an active process, and therefore uses more power than the passive mechanical button.

If the mechanical buttons are going to be replaced by a purely capacitive touch based
interface, the wake-up capabilities of the mechanical button must be incorporated
into the capacitive touch based interface, without consuming too much active power.
This can be achieved by combining the capacitive touch based interface with a dedi-
cated low power capacitive touch detection filter circuit for implementing the wake-up
functionality.

No current mobile devices use capacitive touch sensing for wake-up capabilities. How-
ever, capacitive touch sensing [14] is nothing new, and this application is analogous
with capacitive sensing of a touch button.

For this thesis, two implementations of a captive touch digital detection filter circuit
has been made, one using synchronous methodologies and one using asynchronous
methodologies. The synchronous implementation is used as reference circuit which
the asynchronous implementation can be compared to.

Traditional synchronous methodologies are known/common to designers, and known
to give good results. Asynchronous methodologies are unknown/uncommon to most
designers, but promises several advantages over synchronous methodologies. This is
the motivation for exploring asynchronous methodologies. [9, p. 3-5] claims the ad-
vantages and the disadvantages of using asynchronous methodologies over traditional
synchronous methodologies. A summary of the claims is shown in figure 1.1.

Advantages

Low power consumption.

High operating speed.

Less emission of electro-magnetic noise.

Robustness towards variations in supply voltage, temperature and fabrication pro-

cess parameters.

+ Better composability and modularity.

+ No clock distribution and clock skew problems.

Disadvantages

- Handshake circuits lead to overhead in terms of area, speed and power consumption.
- Lack of CAD tools.

T

Figure 1.1

[9, p. 4] also notes that in order to achieve good results, the designer is required to
be familiar /have much experience with asynchronous methodologies to make a good
asynchronous implementation, and not end up with a circuit that performs worse
than its synchronous counter-part. There are differences among application areas and
asynchronous methodologies can only be exploited if the application at hand allows for
it. Thus, the performance of an asynchronous circuit depends both on design choices
and the application of the circuit.

For general purpose processors (e.g. the Amulet3i [11]) the performance (speed and
power) has been shown to be similar between synchronous and asynchronous imple-
mentations. For some signal processing applications (e.g. a hearing aid [15] and a
contactless smart card [9, p. 221-248]) an asynchronous implementation has shown
lower power consumption than a synchronous implementation.

Both implementations of the capacitive touch digital detection filter have been simu-
lated post-synthesis to get time based power estimation, emissions and area cell cost.
Figure 1.2 shows the results from comparing the performance of the synchronous and
the asynchronous.

e Double the area for the asynchronous implementation.
e Close in terms of dynamic power consumption.
e Less emission for the asynchronous implementation.

Figure 1.2

3 Chapter 1. Introduction

The overhead from the handshake logic results in twice the area for the asynchronous
circuit. The sampling operation dominates the power consumption, which results
in similar power consumption for the synchronous and asynchronous implementation.
The lower emissions of the asynchronous implementation is because of the randomness
of the power consumption from the handshake circuits when the circuit is not sampling.
The synchronous implementation shows large frequency components with harmonics
from both clock flanks, resulting in higher emissions.

Asynchronous circuit design is not something new [7]. However, an asynchronous
implementation of a capacitive touch digital detection filter circuit is something com-
pletely new. There are no known records of an asynchronous implementation of a
capacitive touch digital detection filter circuit in the public domain.

The reasons that anyone have not implemented a capacitive touch digital detection fil-
ter circuit using asynchronous methodologies before, may be that most designers in the
industry are unfamiliar with or lack the training in use of asynchronous methodologies,
and the lack of industry standard tools or design flow.

Therefore, it is important that research is done in the field of asynchronous circuit
design to make it easier for designers to explore both synchronous and asynchronous
solutions for a given application. The asynchronous implementation of a capacitive
touch digital detection filter shows a practical application area, where

1.1 Specification

The following sections describe the requirements for the capacitive touch digital de-
tection filter circuit.

1.1.1 Goals

The main goal for a capacitive touch digital detection filter circuit is low power and
low implementation cost. However, due to the challenge of learning asynchronous
methodologies and using immature tools for the asynchronous design flow, the main
goals for this thesis are to learn different implementation methods using asynchronous
methodologies and to complete the design flow for both implementations of the cir-
cuit. The circuit is fast enough to perform 16 sample, filter and threshold comparison
sequences per second for the worst case run time, thus achieving good responsiveness
for the touch application. In addition, both implementations is functionally verified
and compared in terms of power consumption, implementation cost and emission.

1.1. Specification 4

1.1.2 Design Constraints

The sampler clock runs on the same frequency, fs = 10MHz, for both implementations.
The clock for the synchronous implementation runs on the frequency f = 5MHz.
The number of switchings in the datapath for the synchronous implementation is not
dependent on the clock frequency, and therefore the clock frequency of the circuit
should not have much impact on the power consumption results.

The path of the design constraints file is src/synch/standalone/synt/constraints.tcl.

1.1.3 Structure and Functionality

Figure 1.3 shows a simplified flow for the four main modules in the capacitive touch
digital detection filter circuit. The sampler module performs capacitance measure-
ments. The median-3 filter module and the exponential moving average (EMA) filter
module performs noise filtering and smoothing of the capacitance measurements. The
threshold comparator module checks if the threshold for detecting a touch has been
crossed.

: Exponential
Median-3 ; Threshold
> Sampler >> Filter >> MOVIan.ItAVera> Comparator
ilter

Figure 1.3

The capacitive touch digital detection filter circuit supports three commands from an
external circuit, Start, Write and Read. The Start command starts a sample, filter and
threshold comparison sequence. The Write command writes data to a configuration
register. The Read command reads data from an internal register. The Write or
the Read command can be issued when the circuit is performing a sample, filter and
threshold comparison sequence.!

1.1.4 Technology

Both implementations uses the same proprietary 350nm technology library
(NDC85900L), which in today’s market is regarded as an old technology. This li-
brary is characterised as high voltage, high threshold and approximately 02 leakage,
and it is area optimised for 350nm production. It should be noted that it has high
emission®.

The low leakage of this technology is ideal for a capacitive touch digital detection filter
application, where the circuit is idle most of the time.

1This can result in a short halt of operation.

2Due to the very low leakage of this technology library, all leakage table entries are 0.

3[12] shows how a synchronous microcontroller implemented in this technology can be used as an
FM transmitter.

5 Chapter 1. Introduction

[5] shows how a Balsa handshake component library can be made for this technology
library. This Balsa handshake component library supports synthesis of asynchronous
circuits using 1-wire bundled data (BD) 2-phase and 4-phase, and 2-wire dual-rail
(DR) protocol.

Table 1.1 shows the three corner cases from the technology library that is used to cover
variations in temperature and voltage.

Corner | Voltage [V] | Temperature [°C]
Max 2.7 105
Typ 3.0 25
Min 3.6 -40

Table 1.1: Power Consumption

1.1.5 Design Techniques

Both the synchronous and the asynchronous implementation will use 2’s complement
number representation, because it is the default option in Verilog and Balsa.

To achieve low power consumption, the synchronous implementation of the circuit
uses automatic clock gate insertion, while the asynchronous implementation relies on
asynchronous methodologies.

The asynchronous implementation uses a 4-phase BD protocol, because the DR pro-
tocol uses more wires and switchings, and the 2-phase BD [15, p. 273-274] tend to use
more area and be slower. Benchmarks in [5, p. 48] show that a 2-phase implementation
can consume less power, but also notes that this result can be biased by less optimised
handshake component implementations [5, p. 45].

1.1.6 Fabrication

Due to limited time and resources, the two implementations of the capacitive touch
digital detection filter circuit will not be fabricated, only simulated.

1.2 Outline of the Thesis

Chapter 2 presents the background knowledge needed for understanding this thesis.
Chapter 3 presents the architecture and methods for implementing the capacitive touch
digital detection filter circuit. Chapter 4 presents the functional verification of the
synchronous and asynchronous implementation of the circuit. Chapter 5 presents the
synthesis of the synchronous and asynchronous implementation of the circuit. Chap-
ter 7 presents the results from synthesis and power estimation. Chapter 8 discusses
implementation methods, observations, possible optimisations and results. Chapter 9
presents conclusions, contributions and possible further research.

1.2. Outline of the Thesis

Chapter 2

Background

In order to appreciate this thesis to the full extent, it is necessary with some back-
ground knowledge of concepts such as capacitive sensing, digital-to-analog converters,
digital filters, multi-clock domains, asynchronous circuit methodologies and power con-
sumption in CMOS circuits. The following sections give a brief introduction to these
concepts.

2.1 Capacitive Sensing

Capacitive sensing [14] is a technology based on capacitive coupling that is used in
many different types of sensors. Capacitive sensors can detect anything that is con-
ductive. E.g. a capacitive sensor can be used to detect and measure the touch or
proximity of a human hand. A capacitive sensor is very robust due to its lack of
mechanical components.

There are two types of capacitive sensing systems; mutual capacitance and self capac-
itance. Mutual capacitance sensing is when the object (finger, conductive stylus etc.)
alters the mutual coupling between row and column electrodes, which are scanned
sequentially. Self capacitance sensing is when the object loads the sensor or increases
the parasitic capacitance to ground.

2.1.1 RC Circuit and Relaxation Oscillator

Capacitance is typically measured indirectly, e.g. by using it to control the frequency
of an oscillator. The design of a capacitance meter can be based on a relaxation
oscillator. The capacitance to be sensed forms a portion of the oscillator’s RC circuit.

A relaxation oscillator works by storing and dissipating the energy in the capacitor
in an RC circuit repeatedly to setup the oscillations. The output of the IC is driven
to the supply voltage to charge the capacitor, and driven to ground to discharge the

7

2.1. Capacitive Sensing

capacitor.

Figure 2.1 from [19] shows how an RC circuit can be combined with a microcontroller

to create an relaxation oscillator circuit.

GFIO_DRIVE

Touchpad
GPIO_SENSE

pc i

Figure 2.1: RC circuit.

Figure 2.2 from [19] shows the oscillations generated from the microcontroller driven
relaxation oscillator circuit. The green line shows the drive voltage, while the yellow
line shows the voltage over the capacitance in the RC circuit.

Wied Oct 05 19:51:18 2011

" Agilent Technologies

Figure 2.2: RC oscillator.

9 Chapter 2. Background

2.1.2 Classification of Signal

The voltage drop over the capacitance in the RC circuit seen on sense;, is a one-
dimensional real valued continuous analog signal. When charging the capacitor, the
signal can be described by the function:

Ve(t) = Voo * (1 — ere) (2.1)

When discharging the capacitor, the signal can be described by the function:

Ve(t) = Voo * el'?ftic (2.2)

2.1.3 Analog to Digital Conversion

The voltage drop over the capacitance in the RC circuit can be sampled over one
charge and one discharge period. This doubles the precision of the sampling. The
noise component of the signal will make it difficult to set a threshold for detecting a
touch. Therefore a set of digital filters is needed to remove this noise component.

2.2 Digital Filters

A combination of a median-3 filter and an EMA filter has been selected for removing
the majority of the noise component, thus easing the task of setting a threshold for
detecting a touch. The filters are described in sections 2.2.1 and 2.2.2.

2.2.1 Median-3 Filter

A median filter is a non-linear digital filter. It is useful for suppressing impulse noise.
A median-3 filter is a median filter with window length N = 3. Experiments with filter
lengths in [19] shows that this is adequate. This is the minimum length of a median
filter, and has the lowest computational cost for a median filter. However, since a
median filter is non-linear, the algorithm has a generally high computational cost.
The median-3 algorithm takes the current sample and the two previous samples, sorts
the values and picks the median value. This can be achieved with a simple bubblesort
[18, p. 40] algorithm. If on average one of the three samples is a noise spike, most
noise will be filtered. If the filtered signal was very noisy, with an average of more
than one out of three noise spikes, the filter length could be increased to compensate.

2.8. Asynchronous Circuit Design 10

2.2.2 Exponential Moving Average Filter

An EMA filter is a hybrid infinite impulse response (IIR) [10, p. 196] filter. It is
useful for smoothing signals. It uses a weighted moving average function, where the
weighting factors of the filter decrease exponentially. The advantage of an EMA filter
is that it only needs to store the current and the previous value, and a constant «
factor.

Equation 2.3 shows the formula for calculating the EMA.

2
TN+ (2.3)
EMAZ = EMAi,1 + a* (MEDZ — EMAlfl)

2.3 Asynchronous Circuit Design

Sections 2.3.1, 2.3.2 and 2.3.3 give a short description of handshake protocols, data
validity schemes and the Muller-C element. For more information on the fundamentals
about asynchronous circuit design, the reader is referred to [9, p. 5-28].

2.3.1 Handshake Protocols

In an asynchronous circuit the clock signal is replaced with handshaking between
neighbouring registers. Asynchronous circuits are controlled by locally derived clock
pulses that can occur at any time. [9]

Bundled Data Protocols

The term bundled data refers to a situation where the data signals use normal Boolean
levels to encode information, and where separate request and acknowledge wires are
bundled with the data signals.

Bundled Data Channel Types

There are four fundamental channel types - non-put, push, pull and bi-put channel.
The non-put channel is a dataless channel used for synchronisation. The push channel
is a channel where the sender initiates the transfer of data from the sender to the
receiver. The pull channel is a channel where the receiver initiates the transfer. The
bi-put channel is a channel where the receiver communicates data with the acknowledge
signal. Figure 2.3 shows the four fundamental channel types.

11

Chapter 2. Background

Nonput channel Push channel {bundled dala)
Req Req
* | Ack ¢ Ack
—_— — ata
— n)

Eiput channhel {Bundled data)

Req — Pull channel (bundied data)
. —
Dala Ack
®
Ack - e
. Data ata
— n L

Figure 2.3: The Four Fundamental Channel Types [9],p117

4-Phase Bundled Data Protocol

In the 4-phase protocol illustrated in figure 2.5 the request and acknowledge wires
also use normal Boolean levels to encode information. The term 4-phase refers to the
number of communication actions, as shown in figure 2.4. The 4-phase protocol has

N

4.

The sender issues data and sets request high.

The receiver absorbs the data and sets acknowledge high.

The sender responds by taking request low (at which
point data is no longer guaranteed to be valid).

The receiver acknowledges this by taking acknowledge
low.

5/1. The sender may initiate the next communication cycle.

Figure 2.4

a disadvantage over the 2-phase protocol in the return-to-zero transitions that cost
unnecessary time and energy.

2.8. Asynchronous Circuit Design 12

Req L’ Req __ L
Ack } ~F ::: - | Ack ‘“| |

Data K X Data __ A ~X

Figure 2.5: 4-Phase Bundled Data Protocol Figure 2.6: 2-Phase Bundled Data Protocol
[9] [9]

2-Phase Bundled Data Protocol

In the 2-phase protocol illustrated in figure 2.6 the information on the request and
acknowledge wires is encoded as signal transitions on the wires. There is no difference
between a 0 — 1 and a I — 0 transition, they both represent a signal event. The
implementation of the 2-phase protocol is more complex than the 4-phase protocol,
so even though it seems faster because of using less transitions, there is no general
answer to which is better.

2.3.2 Data Validity Schemes

A data validity scheme [9, p. 116] defines the time interval in which data is valid.
Figure 2.7 from [9, p. 117] shows the different possible schemes for the bundled data
protocol.

2.3.3 Muller-C Element

The Muller C-element [9, p. 14-16] is a common asynchronous logic component. It
applies logical operations on the inputs and has hysteresis. The output of the C-
element reflects the inputs when the states of all inputs match. The output then
remains in this state until the inputs all transition to the other state. Table 2.9 shows
the truth table for a 2-input Muller-C element. @), _1 denotes a no change condition.

ATB] Q
A 00 0
— C 0 1] Qua
B 10| Qu
1 1 1

Figure 2.9: Truth Table
Figure 2.8: Muller-C Element

13 Chapter 2. Background

2-phase protocols: Req
Ack

Data (push channel) QU008

Data (pull channel)

4-phase protocol: Req
ush channel,

(P) ek
Data (early)
Data (broad) TXXHEX XEXRX
Data (late) XRCRRCRRONCDCOCOGC_ YO0
Data (extended early) XXX XN

4-phase protocol: Req

{pull channel) Ack
Data (early) LV, SRR,
Data (broad) NN,
Data (late) LA S ¢

Data (extended early) XEOOCOC00

Figure 2.7: Data Validity Schemes for 2-phase and 4-phase Bundled Data

Gate Level Implementation

Different gate-level implementations of the Muller-C element are possible. The tech-
nology library used for this project implements the Muller-C element with 4 NAND
gates. The gate-level implementation of the Muller-C element using 4 NAND gates is
shown in figure 2.8.

2.4. Clock Domain Crossing 14

2.4 Clock Domain Crossing

When a circuit has more than one clock signal, it is common to partition the circuit
into clock domains. Communication between clock domains requires extra design
consideration.

2.4.1 Setup, Hold time and Metastability of Flop

Setup time

Setup time is measured at the input of the flip-flop with respect to rising/falling edge
of the clock to the flop. The time signifies the minimum duration of data stability
before the arrival of rising/falling clock edge. With this requirement the flops will
reliably sample the data at the output.

15 Chapter 2. Background

Hold time

Hold time is measured at the output of the flip-flop with respect to rising/falling edge
of the clock to the flop. The time signifies the minimum duration of data stability
at the output after the rising/falling clock edge. With this requirement the output
flip-flop data is stable enough to drive the digital logic.

Metastability

Metastability is a condition on the output signal of a flip-flop due to setup or hold
time violations. A metastable signal does not represent a high 1 or a low 0 and results
in unstable output or a glitch to the digital circuit. Metastability is a condition on the
output signal of a flip-flop due setup or hold time violation on the digital input signal.
A metastable signal does not represent a high 7 or a low 0 and results in unstable
output or a glitch to the digital circuit.

Figure 2.10 from [17] shows how a two flip-flop synchronizer scheme can be used to
implement clock domain crossing for phase offset clocks.

R @@
=]

SENDER

@ ®

Figure 2.10: Two Flip-Flop Synchronizer

RECEIVER

2.4.2 Mean Time Between Failures

The mean time between failures (MTBF) is the time separation between the two clock
inputs of the two flops of the synchronizers.

T
e

MTBF = ———— 2.4

Tw * fa* fp (24)

T : The settling window.

7 : Settling time constant of the flip-flop.

Tw : Parameter related to its time window of susceptibility.

fa : The synchronizer’s clock frequency.

fp : The frequency of pushing data across the clock domain boundary.

Example using the constraints for the capacitive touch digital detection filter circuit:
TW = 50pS

2.5. Balsa Asynchronous Synthesis System 16

fa = 10MHz
fp = 5MHz
Rate of entering metastability = Ty * fa * fp = 2500 Hz

2.5 Balsa Asynchronous Synthesis System

Balsa is the name of both the framework for synthesising asynchronous hardware
systems and the language for describing such systems. Balsa has been developed over
a number of years at the Advanced Processor Technologies (APT) group of the School
Of Computer Science, The University of Manchester [1]. Balsa is built around the
Handshake Circuits methodology and can generate gate level netlists from high-level
descriptions in the Balsa language. Both APT (Quasi-Delay Insensitive (QDI)) and
single-rail (SR) (BD) circuits can be generated. The approach adopted by Balsa is that
of syntax-directed compilation into communicating handshaking components. The
advantage of this approach is that the compilation is transparent: there is a one-to-
one mapping between the language constructs in the specification and the intermediate
handshake circuits that are produced. It is relatively easy for an experienced user
to envisage the architecture of the circuit that results from the original description.
Incremental changes made at the language level result in predictable changes at the
circuit implementation level. This is important if optimisations and design-trade-offs
are to be made easily at the source level and contrasts with a Verilog description in
which small changes in the specification may make radical alterations to the resulting
circuit.

For more information about Balsa, the reader is referred to [8] and [9, p. 153-204]. The
development of Balsa Asynchronous Synthesis System can be followed on its project
page [2]. The version used for this thesis is Balsa version 4.0, which was released June
10 2010. This release can be obtained from [3].

2.5.1 Balsa Design Flow

Figure 2.11 from [8, p. 4] shows an overview of the Balsa design flow.

2.5.2 Data Typing Issues

Balsa is strongly typed: both left and right-hand side of assignments are expected
to have the same type. The only form of implicit type-casting is the promotion of
numeric literals and constants to a wider numeric type. In particular care must be
taken to ensure that the result of an arithmetic operation will always be compatible
with the declared result type.

17 Chapter 2. Background

Balsa description

‘breeze2ps’
‘breeze-cost’

Breeze description —j

(HC netlist) N

‘balsa-c’

synthesis
reuse

Balsa behavioural
simulation system
Simulation
‘balsa-netlist’ results
v Behavioural
Gate-level sim.
Gate—level netlist > Functional
Commercial Si
or FPGA P&R
v Layout sim.
Layout / bitstream » Timing
Key:
‘Balsa tool’ / Automated process
Object / File > Object / File

Figure 2.11: Balsa Design Flow.

Non-Delay-Insensitive Components

Non-delay-insensitive components are unsafe components whose behaviour can break
due to race conditions. They are generated by the Balsa compiler when sequenced
select/arbitrate statements on the same channel are used. The activation of their
input leads to the activation of all their outputs, but only one output acknowledgement
is expected in return. Other outputs will be Returned-To-Zero (if 4-phase protocol)
even without a proper acknowledgement. These components are: CallActive and
CallDemuzPush [8, p. 145].

2.5. Balsa Asynchronous Synthesis System

18

Chapter 3

Implementation

Two implementations of the capacitive touch digital detection filter circuit specified
in chapter 1.1 has been made, one using synchronous methodologies and one using
asynchronous methodologies. Both implementations use an architecture where the
circuit is partitioned into smaller modules. The smaller modules is arranged in a
hierarchical manner to form a larger, more complex, module. This is done to reduce
the complexity of the circuit, thus making it easier to implement and verify correct
behaviour.

The register transfer level (RTL) code for the synchronous implementation is written
in Verilog and the asynchronous implementation is written in Balsa. The code listings
for the Verilog code is found in appendix B. The code listings for the Balsa code is
found in appendix A.

The following sections describe both the synchronous and the asynchronous imple-
mentation of each module in the circuit.

3.1 Top Module

The top level module is on the top of the hi-

erarchy and contains all the modules needed

by the circuit. Figure 3.1 shows the modules ?u(?;;l,; Slu les
that are instantiated by the top module.
e Sampler
The asynchronous implementation does not |® Median-3 filter
include a bridge for interfacing with a syn- |® Exponential moving average filter
chronous circuit, since the the external cir- |® Threshold comparator
cuit that uses the interface of the capacitive |® Register bank

touch digital detection filter circuit has not
been specified. ! Figure 3.1

IThis is to not add unfavourable overhead to the asynchronous implementation.

19

3.1. Top Module 20

The organisation of the register bank is different for the synchronous and the asyn-
chronous implementation. 2

3.1.1 Architecture

The architecture for the top module puts distinct functionality into its own modules.
The advantage of this approach is that it is easy to envision and therefore easy to build.
The disadvantage is that the modules can not share common hardware structures.
Figure 3.2 shows the architecture of the top module.

Channels

Channels are used for communication between modules. A channel is connected be-
tween an active and a passive port. A filled circle denotes an active port, while an
open circle denotes passive port. An arrow represent a channels and the direction of
the arrow represent the direction of the data flow. An arrow from an active port to a
passive port denotes a push channel, while an arrow from an passive port to an active
port denotes a pull channel.

Behaviour of Top Module

The behaviour of signals in the top
module gives a good overview of how
the whole circuit works. Figure 3.4
shows an example waveform where the
circuit is started, and a sample, filter
and threshold compare sequence is per-
formed. Activity in submodules is omit-
ted for brevity, but is instead described
in figure 3.3. Figure 3.3

Waveform Description
1. Sampling.

2. Median-3 filtering.
3. EMA filtering.

4. Threshold comparison.

2The registers associated with the register bank in the synchronous implementation is distributed
among the modules which are using them. This could be organised into one single register bank
module, as done in the asynchronous implementation.

9IN4099TYIY apoIN doJ, :g'¢ 2InSig

ysiu4

Jojesedwod
ploysaiyl

Josuo)

193
VI3

1 9jdweg

anjeA qns ||sajdwes #

193
€-uelpsiy

1 uelpan

J19|dweg

IN0 dALIQ/3SuUdS ul asuas

Top_Ctritop_Start_Req

Top_Ctritop_Start_Ack

Ctritop_Samplertop_Req

Ctritop_Samplertop_Ack

Samplertop_Medtop_Req

Samplertop_Medtop_Ack

Samplertop_Medtop_Data

Medtop_Ematop_Req

Medtop_Ematop_Ack

Medtop_Ematop_Data

Ematop_Thcomptop_Req

Ematop_Thcomptop_Ack

Ematop_Thcomptop_Data

Thcomptop_Ctritop_Req

Thcomptop_Ctritop_Ack

Thcomptop_Ctritop_Data

Ctritop_Top_Req

Ctritop_Top_Ack

Ctritop_Top_Data

Figure 3.4: Start, Sample, Filter and Compare Sequence.

23 Chapter 3. Implementation

3.2 Control Module

The control module is responsible for controlling operations initiated
via the top module interface. The control module responds to the
commands listed in figure 3.5. The Start command initiates a sample,
filter and threshold comparison sequence. The Read command reads
data from a register. The Write command writes data to a register.

Commands
o Start

o Read
o Write

3.3 Register Bank Figure 3.5

Important calculation parameters and results are stored in a register bank. This
register bank is accessible via the top module interface using the Read and Write
commands. The parameter registers can be read and written to from the top module
interface. The result registers can only be read from the top module interface.

Table 3.1 shows the register bank map. The map shows which registers that can be
read/written and their address.

3.3.1 Registers

There are two types of registers - reglreqw2r and reglcfqw2r. The difference between
the two types is the means of addressing the register for the write port. The first is
addressed directly by a module, while the second is addressed via the configuration
write bus. They are functionally equivalent, but the name of the write port is different
to make wiring modules in the top module easier.

Register name Readable | Writable | Address
Number of samples v v 0x00
Constant value to subtract v v 0x01
Alpha value v v 0x02
Threshold value v v 0x03
Sample; v X 0x04
Sample; 1 v X 0x05
Sample; o v X 0x06
Median; v X 0x07
EMA; v X 0x08
EMAi_l v X 0x09

Table 3.1: Register Bank Map

3.4. Sampler Top Module 24

Synchronous Implementation

A read or a write operation on a register uses one clock cycle to complete. If a read
and a write operation on a register happens at the same time, the old register value
is read. The result of the write operation is observable after one clock cycle.

Asynchronous Implementation

If the write or read operation on a register is governed by the Balsa statement select
and there is a possibility for a read and a write operation to happen at the same time,
then there is a possibility for metastability. Thus, if the asynchronous implementation
is going to have the same functionality as the synchronous implementation, allowing
reading from and writing to registers when the circuit is active, the write and read
operations on a register need to be arbitrated. Two arbiters are needed per register to
achieve this functionality. Arbitration is achieved using the Balsa statement arbitrate.
The arbiter handshake component contains a mutual exclusion component which is
very expensive in terms of area cost and slow speed.

3.4 Sampler Top Module

Both the synchronous and the asynchronous circuit use a

sampler_clock signal for timing the sampling of the analog
sense_in_d signal. The synchronous circuit uses a different
clock signal for the rest of the circuit to avoid running on
as high frequency as the sampler_clk signal. Therefore all
signals going to and from the synchronous sampler module

Submodules

e Sampler
e Sampler registers

must be synchronised to reduce probability of metasta- Figure 3.6

bility issues. The asynchronous implementation on the [e Synchronizer for
other hand uses a clever trick to make the sampler_clk clk_sampler_en.

signal work for it. Figure 3.6 shows the modules which |e Synchronizer for sam-
are instantiated by the sampler top module. Figure 3.7 pler_reset.

shows the additional modules for the synchronous imple- |e Synchronizer for start.

mentation. Figure 3.7 shows the additional modules for |e Synchronizer for finish.
the asynchronous implementation. Figure 3.9 shows the |o Synchronizer for
tasks performed by the sampler top module. sense_in_d.

3.4.1 Synchronous Implementation of Figure 3.7
Sampler Top Module e I/O Wrapper. '
When communicating across clock domains, such as in the Figure 3.8

sampler top module, it is crucial that the communication
happens in a safe way. Unsafe communication can result in metastable signals and
unpredicted behaviour.

25 Chapter 3. Implementation

Tasks

1. Wait for start signal from control top module.

2. Read numsamples register.

3. Read subvalue register.

4. Send start signal with data to sampler module.

5. Wait for finish signal with data from sampler module.

6. Send start signal with data to median-3 filter top module.

Figure 3.9

Implementation

Figures 3.10a and 3.11a show two alternatives for implementing a communication
protocol between the sampler top module and sampler module has been considered.
Alternative 1 uses a safe by design approach, while alternative 2 uses a strict 4-phase
protocol. Both require a finish signal synchronizer.

Alternative 1

1. Reset is held low.

2. Reset, start and sampler_clock_en
goes high.

3. Sampler makes a measurement. Advantages

4. When sampler is finished, finish is No start signal synchronizer.
held high until sampler is reset. Disadvantages

5. Samplertop resets sampler after fin- - Must know details of the implemen-
ish goes high. tation to use the interface.

Figure 3.10
Alternative 2
1. Samplertop holds start high.
2. Sampler makes a measurement.
3. Sampler outputs data. Advantages
4. Sampler holds finish high. Modularity of interface.
5. Samplertop captures data. Robust 4-phase protocol.
6. Samplertop holds start low. Disadvantages
7. Sampler holds finish low. - Additional start signal synchronizer.

Figure 3.11

Alternative 1 uses the reset signal for the sampler module to keep the sampler module
in idle mode until it is used. Alternative 2 uses a four-phase pull protocol. start =

3.4. Sampler Top Module 26

request signal. finish = acknowledge signal. The sampler is in idle mode until start
goes high.

Alternative 2 is chosen for implementation due to the modularity of the interface. The
4-phase protocol employed in the second alternative had been optimised because of
the following observations. The clock frequency of the sampler module is assumed to
be fsampier >= for. This assumption is required for the design to work correctly. The
sampler module uses a maximum of two clock cycles to set finish low. The sampler
top module uses two/three clock cycles to reach the state MEASURE where it tests
for finish low. Thus it is safe to remove the wait for finish/ack low-state in sampler
top module. Data is outputted and samplertop-mediantop_start is set high when
finish/ack is detected high.

Synchronisation

All control signals crossing clock domain borders need to be synchronised in order
to avoid metastability. The start, finish, reset, sampler_clk_en and sense;, signals
needs to be synchronised in order to avoid metastability. The synchronizers for the
start, finish, sampler_clk_en and sense;, signals use standard double flip-flops for syn-
chronisation. The synchronizer for the reset signal is a variant of the double flip-flop
synchronizer. Figure 3.12 shows the architecture for the synchronised-trail negative
reset signal synchronizer module.

Voo

rst_n_m

e AT i

cIk_sampIer)—¢

Figure 3.12: Reset Signal Synchronizer Module

() |——2m= rst_sampler_n_sync

Voo

=)

3.4.2 Asynchronous Implementation of Sampler Top Module

The Balsa language has no handshake components for driving/reading I/O ports di-
rectly. Thus a custom Verilog wrapper module is needed between the Balsa handshake
I/O ports and the sampler module interface.

27 Chapter 3. Implementation

Wrapper Module

The sampler module interface is forwarded through the sampler top module to the
external interface of the top module, and connected to the wrapper module in the
testbench. The wrapper module responds to handshakes on the sensedrive_out port
with the configuration for the sense_oe, sense_out, drive_oe, drive_out signals and
sets them accordingly. The wrapper module contains a synchronizer for both the
sensedrive_out_r request signal coming from the sampler module and the sense_in_d
data signal going to the sampler module to avoid metastability. The reset_sampler sig-
nal comes from the testbench and only at the start of the simulation in synchronisation
with the clk_sampler signal and is therefore not implemented with a synchronizer.

3.5 Sampler Module

The sampler module is the most impor-

tant module in the design. Figure 3.13
Tasks
shows the tasks performed by the sam- . .
. 1. Wait for start signal from sampler top
pler module. It performs capacitance module
measurements by counting the time it) .
X 2. Read (numsamples) register.
takes to charge and discharge the capac- .
. . L 3. (Read (subvalue) register).
itance in the RC circuit connected to the 4 . .
. . . . (Load value register with (—subvalue)).
sense;, input signal. This type of ca-
. L . 5. Start charge sequence.
pacitive sensing is called self capacitance .
. 91 6. Sample sense;, numsamples times.
sensing (sec. 2.1). 7. Start discharge sequence.
The sampler needs a time reference in |5 Sample SENSCin numsamples times.
order to sample the sense;, input signal 9. Send finish signal with data to sampler
with a fixed period. This requires a local top module.

synchronous clock and a counter for do-

ing a fixed number of samples. The num- Figure 3.13

ber of samples is configurable by writing

to the numsamples register. Figure 3.14 shows the architecture for the sampler mod-
ule.

3.5.1 Synchronous Implementation of Sampler Module

The synchronous implementation of the sampler module has its own clock signal,
clk_sampler. The clk_sampler signal is used as the time reference when sampling the
sense;, data signal. The sense;, data signal is synchronised with a double flip-flop
synchronizer, to reduce the possibility of metastability.

59
60
61
62
63
64
65

67

3.5. Sampler Module 28

sense_in numsamples

EQUAL COUNTER

ADD CTRL

value

Y

Figure 3.14: Sampler Module Architecture

Listing 3.1: src/asynch/module/balsa/sampler.balsa

select sense_in then -- Synchronize on clock signal
L
if (semnse_in = 0) then
add ()
end
dec ()
]
end -- select sense_in

3.5.2 Synchronous Implementation of Sense/Drive Output
Ports

Verilog allows for using registered signals. This synthesises into flip-flops which drives
output ports.

3.5.3 Asynchronous Implementation of Sampler Module

Four possible implementations for sampling the sense;, signal are investigated in the
following sections. All implementations assume a passive select statement enclosing
the sampling of sense;,, as shown below. Listing 3.1 shows a code excerpt from the
Balsa implementation of the sampler module.

29 Chapter 3. Implementation

The select statement is placed inside the enclosing select statement which holds the
data from the sampler top module valid until the end of the sequence inside the loop
statement. Sequential use of select channels result in the following compilation error:

sampler.balsa:82:13: making sequential use of arbitrate’d/select’ed channels is usually non-DI
(specify the "-c allow-sequential-selection" compilation option to override) ‘sense_in’

*x% 1 error, O warnings

The compilation option -c allow-sequential-selection is used to override this error mes-
sage and replace it with a warning.

Alternative 1

The first alternative is to connect an
odd number of inverters between the ac-

Advant
knowledge output and the request input N F;:tn ages
of the sense;, port of the sampler mod- .

. . . H Simple.
ule. This implementation of a clock sig- .
Disadvantages

nal is analogous to a ring oscillator. Fig-
ure 3.16 shows an implementation using
a single inverter.

- Cannot be described in Balsa.
- Need to edit Verilog netlist.
- Fixed sample rate dependent on fixed cir-

The implementation works in the fol- cuit speed.

lowing manner: The acknowledge signal

from the sampler module is initialised to Figure 3.15

0. This means that the request signal to

the sampler module is initialised to I. When the sampler module sequence comes to
the passive select statement, it receives a request signal immediately. When the sam-
pler module has finished the sample and decrement counter sequence, the acknowledge
signal is set to 1. This results in the request signal going to 0 and then the acknowledge
signal is set to 0, effectively completing the handshake. The request signal is again set
to 1, waiting for the sampler module to perform a new sample sequence.

The sampler module is a passive component, while the inverter circuit is active.

The sample frequency from this implementation is dependent on the odd number of
inverters in the inverter chain, in addition to the speed of the addition and subtraction
in the sampler module.

The sense;, data signal is synchronised using two positive edge triggered flip-flops.
The flip-flops are clocked by the request signal. Data becomes valid after request
goes high. Data is valid until acknowledge goes low, resulting in request 1 and a
positive edge on the flip-flops. This results in an extended broad signal validity scheme.
The 4-phase bundled data protocol implementation in the technology used for this
project uses a broad or reduced broad validity scheme, which is a subset and thus it is
compatible. However, there is one potential problem with clocking the flip-flops on the
positive edge when request goes high. The setup time of the flip-flop may be longer
than the propagation of the request signal into a latch, resulting in metastability.
Possible solutions are insertion of delay element or clocking of negative edge triggered

3.5. Sampler Module 30
flip-flops from the output of the Muller-C element [7].
—0—e——> Request
- Acknowledge
) —.
sense in» D Q p o—>Data
— >
Figure 3.16: Simple Inverter Chain
Alternative 2
The second alternative is an improve-
ment on alternative 1. It uses a Muller-C Ad
vantages
element and a delay element to regulate
. H Fast.

the speed of the handshake, i.e. the sam- .

. A H Simple.
ple period. If the sampler circuit uses .

. H Can set sample frequency by adjusting
shorter time than the delay from the de- the dela
lay element, then the minimum sample i v . N
o . H Allows for variable circuit speed.

period is set by this delay. If the sampler Disadvantages

circuit uses longer time than the delay
from the delay element, then the sam-
ple period matches the time the sampler
circuit uses. Figure 3.18 shows the archi-
tecture for the delayed inverter chain.

- Cannot be described in Balsa.
- Need to edit Verilog netlist.

Figure 3.17

p——> Request

Acknowledge

Sense in

D Q

L]

Data

Figure 3.18: Delayed Inverter Chain

Delay Element One challenge with this
implementation is how to design the de-
lay element. One option is to use a
fixed even number of inverter connected
in series. An other option is to use two
inverter buffers with an RC circuit be-
tween, as shown in figure 3.19. The re-
sistor and capacitor is variable, so the
delay can be changed. Figure 3.19 shows

T

Figure 3.19: Delay Element

a possible implementation of the delay element.

31

Chapter 3. Implementation

Cin() Cinl Cout
X X X
0 X b
0 X 0
0 1 0

(a) Output of C-Element Settling to 0

CinO Oinl Cout

O OO OO
— O O X X
SO R R K

(b) Output of C-Element Settling to I

Figure 3.20: Metastability

Initialisation An other challenge with this implementation is how to initialise both
inputs of the Muller-C element to zero. Only the acknowledge signal from the sam-
pler module can be assumed to have the reset value 0. The output signal from the
C-element when the circuit is reset is unknown, i.e. metastable. It is theoretically pos-
sible for this signal to be metastable forever, but the probability of staying metastable
decreases exponentially over time. Thus, the output signal from the C-element will
settle to the value 0 or 1 after some time. Figure 3.20a and 3.20b shows the two most
likely sequences. Both sequences end up in the same input and output states for the
Muller-C element. The flip-flops can use the global reset signal initialise to initialise
their outputs to 0. This together makes this implementation safe.

Alternative 3

Alternative 3 uses a clock signal to time
the request signal for the sense;, channel
going to the sampler module. This hand-
shake operation uses a 4-phase protocol.
The acknowledge signal from the sam-
pler circuit is not connected to anything.
The correctness of this implementation
depends on that the time it takes for the
sampler circuit to sample the sense;,, sig-
nal and decrement the sample counter
is shorter than the time it takes for the

Advantages

H Easy to match the sampler clock speed
in both implementations.

H No netlist editing to change clock speed.

Disadvantages

- Possibility of metastability because of
trailing edge of sampler clock signal.

Figure 3.21

clock signal to reach a negative clock flank (request = 0).

Figure 3.22 shows the architecture for alternative 3.

Challenge: Trailing edge of clk_sampler signal.

Challenge: Start clock.

12
13
14
15
16
17

19
20

3.5. Sampler Module

32

&

> Request

—=< Acknowledge

o0 qo—Data

Sense in> D Q

b

Figure 3.22

Listing 3.2: src/asynch/module/balsa/sense/sense.balsa

loop
L
sense_in_d_m := 1 -- Constant
sense_in_d := sense_in_d_m -- Double latched buffer
push <- sense_in_d -- Push channel
]
end -- loop

Alternative 4

Alternative 4 wuses a combination of
handshake components generated from
Balsa code and editing the Verilog
netlist. It works by routing the sense;,
data signal through a modified BrzCon-
stant module called sensemodule into a
double latch /buffer before it is outputted
through a push channel. Double latching
the data gives similar ® probability of re-
solving metastability as the double flip-
flop synchronizer equivalent for the syn-
chronous implementation. Figure 3.24
shows the generated handshake compo-
nents from the Balsa code.

Advantages

H Safe.

H Can generate most of the Verilog netlist
for the wrapper module using Balsa.

H Simple.

Disadvantages

- Slow.

- Need to edit Verilog netlist.

- Fixed sample rate depends on fixed cir-
cuit speed.

Figure 3.23

The sampling rate of this implementation is dependent on the speed of the speed of
sensemodule. The sampling frequency is fixed only if the speed of the sampler module
is the same for all samples. Listing 3.2 shows the Balsa code for the sensemodule.

The BrzConstant handshake module in the Verilog netlist is replaced with a custom
sensemodule module and an extra input and wire for the sense_in channel. The sample
frequency is set by the speed of the circuit.

3This depends on the physical parameters for the latch.

33 Chapter 3. Implementation

activate

sense

B 2

8
4] y 0
sense_in_d_m][0..0] sense_in_d[0..0]

Figure 3.24: Handshake Components.

push

Implementation

While alternative 1, 2 or 4 would most likely be chosen for a physical implementation,
alternative 3 is chosen. This is because changes in the Balsa code lead to synthesis
of a completely new netlist, discarding all changes to the netlist. It is easier to test
the circuit if the additional Verilog code wrapper module can be instantiated in the
testbench and connected to an unedited Balsa netlist. It is also easier to match the
sampling frequency of the synchronous circuit, allowing for a more fair comparison.

3.5.4 Implementation of Sense/Drive Output Ports

Before sampling, the output ports sense,e, senseqyys, drive,e and driveg,; need to be
configured. Balsa does not support driving I/O buffers.

35

35
36
37
38

40
41
42
43
44

3.5. Sampler Module 34

Alternative 1

Alternative 1 is to write the configuration to a vari-
able in the Balsa code, as shown in listing 3.3. Then
the synthesised netlist is edited, so that the output
of the latches, storing the configuration for the out-
put ports, is connected to the RC circuit model and
driving the correct inputs.

Advantages

Elegant.

Disadvantages

- Need to edit Verilog netlist.

Figure 3.25
Listing 3.3: src/asynch/module/balsa/sensedrive/sampler.balsa

sensedrive_out := 0b1010

Alternative 2

Alternative 2 is to use a push channel out-
put for sending the configuration for the
output ports, as shown in listing 3.4. The
configuration must be received by an exter-
nal module which in turn drives the out-
put ports. The external module called
top_wrapper is written in Verilog and is
instantiated in the testbench. The wrap- Figure 3.26
per module path is src/asynch/module/ver-

ilog/top_wrapper.v.

Advantages
Do not have to edit the Balsa netlist.
Disadvantages

- Need external Verilog module.

Listing 3.4: src/asynch/module/balsa/sampler.balsa

sensedrive_out <- {
-- sense_oe high
1,
-- sense_out low
0,
-- drive_oe high
1,
-- drive_out 1low
0

35 Chapter 3. Implementation

Implementation

Alternative 2 was chosen, because it separates the netlist generated from the Balsa
code and the wrapper module in the testbench. Thus avoiding having to rewrite the
changes to the netlist every time the Balsa code is changed and re-synthesised.

Alternative 1 would be chosen for a physical implementation, but since the circuit is
only simulated pre-layout this is good enough.

3.6 Median-3 Filter Top Module

The median-3 filter top module contains the first in a

series of two filters. In addition it contains a system for
storing and retrieving the three last capacitance mea-
surements received from the sampler top module. Fig-
ure 3.27 shows the modules which are instantiated by
the median-3 filter top module. Figure 3.28 shows the
tasks performed by the median-3 filter top module. Figure 3.27

Submodules
e Median-3 filter
e Median-3 filter registers

Tasks

Wait for start signal with data from sampler top module.
Write data to register containing the oldest data.

Read data from 3 registers.

Send start signal with data to median filter module.

Wait for finish signal with data from median filter module.
Send start signal with data to EMA filter top module.

RN i

Figure 3.28

3.7 Median-3 Filter Module

The median-3 filter module performs the first step of noise filtering. Here shot noise
is filtered by taking the median of the three last capacitance measurements. Figure
3.29 shows the implementation of the median-3 filter.

3.7. Median-8 Filter Module 36

sample_i| | sample_{i-1}||sample_{i-2}

MUX

CMP

results

[

Figure 3.29: Median-3 Filter Module Architecture

3.7.1 Registers

The median-3 filter module needs to store the three previous data values received from
the sampler module. L.e. it needs at least three N-bit registers.

Register Storage

For each new computation the median-3 filter module receives one data value on the
input. This new data value must replace the oldest sample value. Two possible
implementations are a shift register or a cyclic register. If a shift register is used, all
register values are shifted one place in parallel. If a cyclic register is used, only the
oldest data value is overwritten. In order to keep track of which register contains the
oldest data value, a 2-bit counter is used. When storing a new data value, the counter
is checked to see which register the new data value should overwrite.

Since a shift register moves all register values, and a cyclic register only moves one
register value, a cyclic register should lead to fewer signal transitions when storing a
new data value. This does not take into the account the fact that a cyclic register
requires more control logic.

3.7.2 Median-3 Algorithm

The median algorithm can be implemented using a bubble-sort algorithm. The bubble-
sort algorithm is used to sort values into a list, and then the median value can be picked
from the middle of the list. A median filter with window length N=3 needs to do a
total of 3 comparisons to sort the 3 data values and find the median. To minimise
the number of comparator structures, one comparator is used and the result of each
comparison is stored in a 1-bit register for a total of 3 1-bit result registers.

37 Chapter 3. Implementation

Comparison

Both Verilog and Balsa supports the > operator. The comparison (A > B) is equiv-
alent to (A — B > 0). Both implementations result in a full-adder structure which
performs a subtraction and checks the result if it is larger than zero.

3.8 EMA Filter Top Module

The EMA filter top module contains the second filter in a
series of two filter, in addition to a a system for storing and
retrieving data needed for the EMA filter module. Figure
3.30 shows the modules which are instantiated by the EMA
filter top module. Figure 3.31 shows the tasks performed by
the EMA filter top module.

Submodules
e EMA filter
e EMA filter registers

Figure 3.30

The EMA filter needs to store the two N-bit previous data
values received from the median-3 filter. A precomputed
value, «, is stored in a N-bit configuration register. lL.e. it
needs three N-bit registers.

Tasks

1. Wait for start signal with data from median-3 filter top module.
2. Write data to register.

3. Read data from registers.

4. Send start signal with data to EMA filter module.

5. Wait for finish signal with data from EMA filter module.

6. Write data to register.

7. Send start signal with data to threshold comparator top module.

Figure 3.31

3.9 EMA Filter Module

The EMA filter module performs the EMA algorithm. Figure

3.32 shows the modules which are instantiated by the EMA filter Submodules
module. Figure 3.33 shows the tasks performed by the EMA filter e Multiplier
module.

Figure 3.32

3.9. EMA Filter Module 38

3.9.1 EMA Algorithm

Equation 3.1 shows the EMA algorithm. The algorithm consists of one subtraction,
one multiplication and one addition. The intermediate result of the three operations
is stored in a (N+1) signed register.

Given that M ED; is always a positive value implies that EM A; is always a positive
value. Since EM A;_1 can be larger than M ED; and the result of the subtraction
negative, the intermediate result of the subtraction, multiplication and addition must
be a signed value. However, the result of the last addition is always positive and can
safely be cast into an unsigned value. Thus signed numbers are only present in the
EMA filter module, and only positive numbers are stored in registers available to reads
from the configuration interface.

Figure 3.34 shows the architecture of the EMA filter algorithm.

3.9.2 Addition

An addition can be performed with a carry-propagation adder. A carry-propagation
adder is a chain of full adders where the carry,,: of full adder i is connected to carry;,
of full adder i+1.

3.9.3 Subtraction

The result the subtraction can be negative. Both operands in the subtraction are N-
bit vectors. An adder can support subtraction if both operands are represented using
2’s complement. Then both operands must be sign extended to (N+1)-bit vectors.
The result of the subtraction (addition) is a (N41)-bit signed vector. The subtraction
is performed by first inverting the B operand and adding 1, and then adding the A
operand as shown in equation 3.9.3.

A-B=A+(-B)=A+B+1 (3.2)

Tasks
e Wait for start signal with data from EMA filter top module.
e Calculate EM A;.

e Send finish signal with data to EMA filter top module.

Figure 3.33

39

Chapter 3. Implementation

sample_i ema_{i-1} alpha
Y
SUB
MULT
ADD
ema_i

y

Figure 3.34: EMA Filter Module Architecture

3.9.4 Multiplication

A multiplier is needed to perform the multiplication in the EMA algorithm. The
multiplicand operator in the multiplication can be a negative number. T'wo alternative
methods for handling multiplication of two numbers represented using 2’s-complement

have been considered.

Alternative 1

The first alternative is to first check if the multiplier is negative. If so, take the 2’s
complement of both operands before multiplying. The multiplier will then be positive
so the algorithm will work. Because both operands are negated, the result will still

have the correct sign.

3.9. EMA Filter Module 40

Alternative 2

The second alternative is to subtract the partial product resulting from the MSB
(pseudo sign bit) in the multiplier instead of adding it like the other partial products.
This method requires the multiplicand’s sign bit to be extended by one position, being
preserved during the shift right actions.

Implementation

Alternative 1 is chosen for implementation, because since the « multiplier operand
in the multiplication is always positive and the multiplicand is represented in 2’s
complement the multiplication will work without more consideration.

In addition, « is a decimal number always smaller than 1, and is represented using
fixed point number representation. The result of the multiplication is a (2*N + 1)-bit
signed vector. The extra precision in the result is not needed and therefore only the
(N+1) most significant bits are sliced from the result, effectively truncating the result.

3.9.5 Synchronous Implementation of EMA Filter Module

Addition in Verilog

The 4 operator in Verilog supports both signed and unsigned addition. It generates
a full-adder chain (carry-propagation adder).

Subtraction in Verilog

The - operator in Verilog supports both signed and unsigned subtraction. However,
this would generate a permanent structure with inverters for signal B and a full-adder
chain with carry in set to 1. Since the EMA filter also needs to support addition, the
following code makes it possible to use the full-adder chain for addition as well. 2’s
complement number representation is used for supporting negative numbers.

Excerpt from ’ema.v:

1|C=4A+ ("B + 1°bl);

3.9.6 Asynchronous Implementation of EMA Filter Module

Adder in Balsa

The + operator in balsa generates a carry-propagation adder handshake component.
Figure 3.35 shows the binary function breeze component which is used to implement
binary functions.

41 Chapter 3. Implementation

BinaryFunc
epasSrd o (parameter outputWidth : cardinal;
A i parameter inputAWidth : cardinal;
g O parameter inputBWidth : cardinal;

' parameter op : BinaryOperator;
parameter outputlsSigned : boolean;
parameter inputAlsSigned : boolean;
parameter inputBIsSigned : boolean;
passive output out : outputWidth bits;
active input inpA : inputAWidth bits;
active input inpB : inputBWidth bits)

type BinaryOperator is enumeration (op symbol between brackets)
Add (+), Subtract (-), ReverseSubtract (\\-), Equals (==), NotEquals (!=), LessThan (<),
GreaterThan (>), LessOrEquals (<=), GreaterOrEquals (>=), And (&), Or (1)

end

#[out !° inpA ?* inpB ?* op(outputWidth, outputlsSigned, inputAlsSigned,
inputBlsSigned, op, inpA, inpB) |

Figure 3.35: Breeze Component: Binary Function.

Subtraction

It is possible to share hardware by using the shared Balsa procedure.

A carry-propagation adder has a carry in to the LSB full adder which can be set
to 1b’1. This can be exploited when performing subtraction using 2’s complement
number representation.

Attempt 1 The first attempt at a shared carry propagation adder for addition
and subtraction results in two adders. Omne adder for adding the carry bit to one
operand, and one adder for adding the immediate result to the second operand. This
is because balsa is strongly typed and therefore both + operators results in a handshake
component.

Listing 3.5 shows an excerpt from the first version of ema.balsa.

Breeze-cost shows that the relative cost is high due to instantiating two binary function
adders, one for each 4 operator.

Excerpt from breeze-cost output:

(929.5 (component "$BrzBinaryFunc" (9 10 1 "Add" "false" "false" "false")
(48 47 44) (at 23 29 "ema.balsa" 0)))
(1147.5 (component "$BrzBinaryFunc" (10 9 9 "Add" "false" "false" "false")
(47 46 45) (at 23 24 "ema.balsa" 0)))

N =

N OOtk W

10
11
12
13
14
15
16
17
18
19

=W N

S Gt

10
11
12
13
14

16
17
18

3.9. EMA Filter Module 42

Listing 3.5: Excerpt from the first version of ema.balsa

type TN1 is (NUM_BITS+1) bits
variable r0O : TN1
variable r1 : TN1
variable carry_in : bit
variable res_tmp : TN1

shared add is

begin
res_tmp := (rO + r1l + carry_in as TN1)
end -- shared add
r0 := (ematop_emal[0] as TN1)
rl := (not(ematop_ema[1] as TN1) as TN1)
carry_in := 1
add ()

Attempt 2 In the second attempt, signed registers are used for both operands and
the result. By loading the 7! register with a negative value, the subtraction is per-
formed using only one adder structure as seen in the breeze-cost excerpt below.

Listing 3.6 shows an excerpt from the second and final version of ema.balsa. The
complete listing is found in appendix 3.20.

Listing 3.6: Excerpt from the second version of ema.balsa

type TN is (NUM_BITS) bits

type TN1 is (NUM_BITS+1) bits

type TNS is (NUM_BITS+1) signed bits
variable r0O : TNS
variable r1 : TNS
variable res_tmp : TNS

shared add is

begin
res_tmp := (r0 + rl as TNS)
end -- shared add
r0 := (ematop_emal[0] as TNS)
5
rl := (-(ematop_ema[1] as TN1) as TNS)
add ()

The result from Breeze-cost shows that the relative cost is almost halved in comparison
to the first attempt.

Excerpt from breeze-cost:

(1147.5 (component "$BrzBinaryFunc" (10 9 9 "Add" "true" "true" "true")

43 Chapter 3. Implementation

(44 43 42) (at 22 24 "ema.balsa" 0)))

Gotcha : Casting and Negative Zero Compare the following two lines:

ri
ril

(-(ematop_ema[1]) as TNS)
(-(ematop_ema[1] as TN1) as TNS)

Keep in mind that ematop_emall]

is of type TN (one bit shorter) 0000 Imvert
than TN1 and TNS). Will the value 1111
loaded into r1 be same for both lines 0001 Add ’1’ and cast to (4+1) signed bits

+

for all values of ematop_ema[l]? No. = 10000

Figure 3.36 shows an example of)

code line 1 used for loading the value Figure 3.36

0b0000 loaded into register 1. This 0000 Cast into (4+1) bits

example shows that line 1 results | (1)(1’(1)(1’2 Invert

in an error when erﬂaﬁollﬁrna{l] = + 00001 Add ’1’ and cast to (4+1) signed bits
0. The value stored in register rl is = 00000

called negative zero. This is not an

allowed value in 2’s complement en- Figure 3.37

coding. The reason for the error is

because the length of the intermediate register is not increased before the value -(0)
is loaded into it, and then it is cast into a sign extended vector. Figure 3.37 shows an
example of code line 2 where the length of the intermediate register is increased before
the value -(0) is loaded into it. Line 2 is correct because the vector width is increased
before putting the value -(0) into it and casting it into a signed vector.

Multiplication in Balsa

The Balsa operator takes numeric types and is only applicable to constants. Therefore,
multiplication in Balsa requires the design of a multiplication module.

A shift-add algorithm has been chosen for the implementation of the multiplier in
Balsa. This algorithm supports multiplication of two N-bit operands represented using
2’s complement. Figures 3.38 and 3.39 from [6] shows the shift-add algorithm and
circuit.

3.9. EMA Filter Module

44

B« XQ+«Y
A« 0 Nen

Y

NOY&S

A A+B

!

Shift B left

'

Shift Q right

Y

N+ N-1

Figure 3.38: Shift-Add Algorithm

-
B (Multiplicand) | Shiftleft
2n bits
2
\/ Add
ALU Control
2n hits Wiks
7 Y .
A (Product) Q (Multiplier) |_ Shiftright
| 20 bis —

Figure 3.39: Shift-Add Architecture

45 Chapter 3. Implementation

3.10 Threshold Comparator Top Module

The threshold comparator top module contains
a threshold comparator and a system for storing
and retrieving the last value received from the
EMA filter top module, in addition to retriev-
ing the threshold value stored in a configuration
register. Figure 3.40 shows the modules which
are instantiated by the threshold comparator top Figure 3.40
module. Figure 3.41 shows the tasks performed

by the threshold comparator top module.

Submodules
e Threshold comparator
e Threshold comparator registers

Tasks

Start signal with data from ematop.

Write data to register (EM A;).

Read data from 2 registers (EM A;, THRESHOLD).

Send start signal with data to threshold comparator module.

Wait for finish signal with data from threshold comparator module.
Send start signal with data to control module.

A

Figure 3.41

3.11 Threshold Comparator Module

Figure 3.42 shows the tasks performed by the threshold comparator module.

Tasks
1. Wait for start signal with data from threshold comparator top module.
2. Perform comparison (EMA; > THRESHOLD).

3. Send finish signal with result to threshold comparator top module.

Figure 3.42

The threshold comparator compares the current filtered capacitance measurement
value to the threshold register value. If it is larger than the threshold value, the
result is 1, else the result is 0. Figure 3.43a shows the pseudocode for the threshold
comparison. Figure 3.43b shows the architecture of the threshold comparator.

The threshold comparator is equivalent to the comparator used in the median-3 filter,
described in section 3.7.2.

ema_i threshold

if (value > threshold) then

o<-1
else
0 <= 0 CMP
end
(a) Threshold Comparator Code l

(b) Threshold Comparator Module
Architecture

Chapter 4

Functional Verification

The synchronous and the asynchronous implementation of the capacitive digital touch
detection filter have been functionally verified.

4.1 Method

A series of tests have been designed to verify the correct functionality of the syn-
chronous and asynchronous implementation of the capacitive touch digital detection
filter circuit. Both the synchronous and the asynchronous implementation are built
up of a hierarchy of modules.

To test the correct behaviour of a circuit, it can be useful to test the circuit on more
than one level of the hierarchy. Some modules may be more complex than others, and
therefore it may be easier to test these on their own before they are tested as a part
of a larger module.

4.2 Pad/RC Circuit Model

A SystemVerilog model has been developed for modelling the behaviour of a pad
connected to an RC network. The pad includes a Schmitt-trigger [16] with a buffer.
The path of the model is src/synch/module/verilog/single_extres-model.sv

Figure 4.1 shows the Pad/RC circuit model.

47

4.3. Testbench 48

Figure 4.1: Pad/RC Circuit Model.

4.3 Testbench

The testbench is the platform which all tests are run on. It instantiates everything
needed to perform a test, such as the circuit under test, the RC circuit model, clock
generators and logging. The testbench can be setup to run individual tests, and the
circuit under test can be the top level module of the circuit or a submodule. Figure
4.2 shows a block schematic of the testbench.

Figure 4.2: Testbench.

4.4 Tests

The tests are divided into two groups; top module tests and submodule tests. The top
module tests are designed to simulate typical use of the circuit, while the submodule
tests are designed to test for algorithmic errors in modules that do computations. *

1 These tests do not cover all possible input combinations.

49 Chapter 4. Functional Verification

4.4.1 Top Module Tests

Two types of top module tests are performed on both implementations; a configuration
test and a typical use test.

Configuration Test

This test is designed to test writing and reading from configuration registers. Figure
4.3 shows the configuration test sequence.

1. Typical values are written to all configuration registers.
2. All configuration registers are read and the output from the top
module is compared to the values which were written.

Figure 4.3: Configuration Test Sequence

Sample, Filter and Threshold Comparison Test

This test is designed to test a typical scenario for the circuit. A typical scenario is
to initiate 16 sample, filter and threshold comparison sequences periodically over the
course of 1 second. A timer is used to initiate a new sequence with a frequency of 16
Hz. Figure 4.4 shows the typical test sequence. 2

1. Typical values are written to all configuration registers.
2. 16 x Sample, filter and threshold comparison sequence.

Figure 4.4: Typical Test Sequence

While this test sequence gives typical behaviour, it does not say anything about the
correctness of the circuit. This can be done by monitoring communication between
modules in the circuit. The results from the sampler, median-3 filter, EMA filter and
threshold comparison are the most important. Since these four modules are connected
in a chain, it is possible to verify correct behaviour by monitoring change on control
signals and associated data signals between them.

This monitoring can be done using probes. A probe in this case is just an alias of an
internal signal in the circuit. Two probes are used for each channel that is monitored;
one for the control signal and one for the data signal(s). The value of the data signal(s)
are printed on negative edge of the control signal for the synchronous implementation,
and on the positive edge of REQ (pull channel).

Listing 4.1 shows an example excerpt from where the channel between the sampler
top module and the median top module is monitored.

2This test is also used for time based power estimation.

151
152
153
154
155
156
157
158
159
160

4.4. Tests 50

Listing 4.1: ../src/synch/standalone/sim/tests/top/top-tb.sv

initial begin
wait (enabled);
forever begin
@(negedge ‘ME_START);
$display ("medtopematop data %d", ‘ME_DATA);
end
end
// Probe ematop_thcomptop data signal
‘define ET_START tb.U_DUT.THCOMPTOP.ematop_thcomptop_start
‘define ET_DATA tb.U_DUT.THCOMPTOP.ematop_thcomptop_data

4.4.2 Submodule Tests

The median-3 filter, EMA filter and threshold comparator perform computations. The
results of these computations can be compared to values which are known to be correct,
thus verifying the correctness of the computation.

Input vector stimuli for a module with matching correct output vectors is generated
with a Python script. One Python script has been written for each of the three
modules.

The paths for the Python scripts are:

src/python/med/med. py
src/python/ema/ema.py
src/python/thcomp/thcomp.py

Each Python script generates N = 100 input/output vector pairs.
The paths for the input/output vector pairs:

src/python/med/_input.dat
src/python/med/_output.dat
src/python/ema/_input.dat
src/python/ema/_output.dat
src/python/thcomp/_input.dat
src/python/thcomp/_output.dat

For each test, the corresponding _input.dat and _output.dat files are read. The test
uses the input vector file as input stimuli to the module under test and the output
vector file for comparison with the output vector from the module under test. If the
output vector from the module under test matches the output vector read from the
file, a match counter is incremented. If the value does not match, an error counter is
incremented. If an error is encountered, the time, output value and expected value is
written to a file, _-monitor.dat. The number of matched output values and errors is
also written to this file.

51 Chapter 4. Functional Verification

4.5 Simulation Flow

Figure 4.5a and 4.5b describes the simulation flow.

1. Describe modules in Verilog.

2. VCS takes a set of Verilog files as input and pro-
duces a simulator.

3. The simulator is executed.

4. The simulator generates textual trace informa-
tion (using display statements in the Verilog
code) or the simulator can be instructed to write
transition information about each signal in the
design to a file.

5. Open the generated VPD file in the DVE wave-
form viewer.

Figure 4.5: Simulation Flow

4.6 Submodule Simulation

Verilog
source

=

Verilog
libraries

-

Cycle
accurate

sim 0

Execute
simulator

LN

VPD
trace

Text
output

(b)

4.6.1 Synchronous Implementation - Submodule RTL Simula-

tion

The submodule RTL simulation of the synchronous implementation follows the flow

described in section 4.4.2.
The testbenches are run with the commands:

make TEST=med_tb
make TEST=ema_tb
make TEST=thcomp_tb

The results from the tests are logged to:

4.7. Top Module Simulation 52

src/synch/standalone/sim/tests/med/_monitor.dat
src/synch/standalone/sim/tests/ema/_monitor.dat
src/synch/standalone/sim/tests/thcomp/_monitor.dat

The result from the tests are:

median3_tb test started.
Matches : 100
Errors : 0
median3_tb test finished.

ema_tb test started.

Matches : 100
Errors : 0
ema_tb test finished.

thcomp_tb test started.
Matches : 100
Errors : 0
thcomp_tb test finished.

4.6.2 Asynchronous Implementation - Submodule Breeze Sim-
ulation

[8, p. 77-98] shows how test harnesses can be built using Balsa. The test harnesses for
submodule tests can be found in appendix A.3. They are run from Balsa-manager.
Each test ran without errors.

4.7 Top Module Simulation

4.7.1 Synchronous Implementation - Top Module RTL Simu-
lation

The testbench is run with the command:

make TEST=top_tb

The result from the test is logged to:
src/synch/standalone/sim/tests/top/_monitor.dat
The result from the test is:

top_tb test started.
top_tb test finished.

53 Chapter 4. Functional Verification

4.7.2 Synchronous Implementation - Top Module NTL Simu-
lation

The top module NTL simulation of the synchronous implementation is run for each
corner case using the following three commands:

src/synch/standalone/sim/tb/

make TEST=top_tb ntl CORNER=max
make TEST=top_tb ntl CORNER=typ
make TEST=top_tb ntl CORNER=min

The result from the test was logged to:
src/synch/standalone/sim/tests/top/_monitor.dat
The result from the test is:

top_tb test started.
top_tb test finished.

Sampling and Pad/RC Model Circuit

Figure 4.6 on page 55 shows signals from the sampler module and the pad/RC model
module from the typical sequence test simulation of the top module. The clksqmpicr
signal shows the sampler clock signal. numsamples shows the number of samples that is
performed during the charge/discharge states. state, shows the sequence of the Finite
State Machine (FSM). counter, shows that the counter counts from 255 to 0 in each of
the charge/discharge states. vc shows the voltage over the capacitance in the pad/RC
model module charging and discharging. value, shows that the charge/discharge time
is increased until the hysteresis threshold of the transistors in the Schmitt-trigger is
reached. sense;, shows the threshold passing by toggling its value. sensee , senseqys
,drive,e and drivey,; shows that the sampler module drives the inputs of the pad/RC
model module correctly. This behaviour is similar to the RC oscillator shown in section
2.1.1.

4.7.3 Asynchronous Implementation - Top Module NTL Sim-
ulation

The top module NTL simulation of the asynchronous implementation is run for each
corner case using the following three commands:

src/asynch/standalone/sim/tb/

make TEST=top_tb ntl CORNER=max
make TEST=top_tb ntl CORNER=typ
make TEST=top_tb ntl CORNER=min

When simulating the netlist of the asynchronous implementation for the maz corner
case ... reports no warnings, but when simulating the netlist of the asynchronous

4.7. Top Module Simulation 54

implementation for the typ and min corner cases reports timing violations. The
number of timing violations increases from the typ to the min corner case.

Excerpt from src/asynch/standalone/sim/tb/logs/top-tb.ntl.min.log:

8243: Timing violation in tb.U_DUT.I23.I3.I3.I0
$width(posedge G:53866 ns, : 53867 ns, limit: 3 ns);

8243: Timing violation in tb.U_DUT.I23.I3.I4.I0
$width(posedge G:53866 ns, : 53867 ns, limit: 3 mns);

For the min corner case, timing violations are reported for all latches in the circuit.
Figure 4.7 on page 56 shows an example waveform of signals connected to a latch and
the BrzVariable component which surrounds the latch. Highlighted in the figure is
the width of the pulse on the G input of the latch. The pulse width is 0.76ns. Even
though that the pulse width is too short, the netlist (NTL) simulation works, since the
simulation tool does not put an X or undefined value on the output, but only reports
a warning.

WLIOJOARAA 1TNOII) DY /ped pue Iojduweg :9°f oIndig

20 aAlp-a--
O BALIP—g -
a0 8sUas —a--
o asUas -

uesuas g -

A -

|9pow 2H/ped -

[0 anEA o -+

[0:2] seunoo g -

[oelaels o -+

0 [0]sadwE SN -a-+

S —

Bdwes yo-a

hw_n_Em.m =

SWER

53865,97 53866,73

Mame
5. LATGH

-2Q
-- WARIABLE

- D-ytite_Or

- Ewtite_Oa

+-B—wirite_0d[1:0]
- C-read_ Or

- 2 read_Da

+- B read_0d[1:0]

Figure 4.7: Latch and BrzVariable Waveform.

Chapter 5

Synthesis

This chapter describes the synthesis of the synchronous and the asynchronous imple-
mentation of the capacitive touch digital detection filter.

Both implementations are parametrised, and this allows for specifying the size of
internal registers in the data path. Both implementations are synthesised for N = §
bits, using the technology library specified in section 1.1.4.

Section 5.1 describes the synthesis and place & route (P&R) of the synchronous imple-
mentation, and section 5.2 describes the synthesis of the asynchronous implementation.

5.1 Synthesis of Synchronous Implementation

The synthesis of the synchronous implementation follows the flow described in section
5.1.1 using the tools listed in appendix D.2. The parameters for the synchronous
implementation is found in appendix B.1.

5.1.1 Flow

Figures 5.1a and 5.1b show the flow for synthesis of the synchronous implementation.

5.1.2 Synthesis

The following script is used to do synthesis of the synchronous implementation:
src/synch/standalone/synt/Makefile
The script is run with the command:

-> src/synch/standalone/synt/
make synt TOP0=0

o7

5.1.

Synthesis of Synchronous Implementation

58

la
1b
2

Pa
2b
Pc
2d
e

23
A-lh
21

Ba
b
B¢
d
Be

3¢
h
3i

3]
k

The synthesise report gives the following warnings:

Warning:
Warning:

Describe modules in Verilog.

Setup design constraints.

Compile Verilog code into Verilog
netlist with Design Compiler (DC).
Analyse design.

Elaborate and write design.

Link.

Apply logical design constraints.
Put clock domains in path groups.

2f Setup clock gating style

Compile design

Save design

Generate reports (timing, clock gat-
ing).

Clock Tree Synthesis (CTS) with
First Encounter (FE).

Load chip config data.

Load timing constraints.
Setup/generate floorplan of chip.
Place design on chip.

Optimise design before clock tree
synthesis.

3f Create Clock tree specification.

Generate clock tree.

Optimise design after CTS for hold
time.

Optimise design after CTS for design
rule violations

Save design

Save netlist

(a)

Verilog
source

Verilog Design
libraries constraints

Cl]

Technology
libraries

-

Compile design
into netlist

Verilog
netlist

.

Insert clock tree
in netlist

Verilog
netlist
(CTS)

(b)

Figure 5.1: Synchronous Synthesis Flow.

../../module/verilog/ema.v:66: unsigned to signed assignment occurs.
../../module/verilog/ema.v:87: signed to unsigned assignment occurs.

(VER-318)
(VER-318)

Both warnings can safely be ignored due to the assumptions described in section 3.9.1.

The synthesis report path is src/synch/standalone/synt/synt_logs/synt.log.

59 Chapter 5. Synthesis

5.1.3 Quick P&R

The following script is used to do a quick place&route and insert the clock tree into
the netlist:

src/synch/standalone/quick_fe/quick_cts.tcl
The script is run with the command:

-> src/synch/standalone/quick_fe/
make quick_cts

Figure 5.2 shows the physical layout of the netlist after inserting the clock tree.

'[

:

H’ 1

I

l

H
Figure 5.2: Physical Layout After Clock Tree Synthesis.

5.2 Synthesis of Asynchronous Implementation

The synthesis of the asynchronous implementation follows the design flow described
in section 2.5.1 using the tools listed in section D.3.

The following Makefile is used to synthesise a netlist from the Balsa description files.
-> src/asynch/module/balsa/Makefile
The script is run with the command:

-> src/asynch/module/balsa
make impl-top-impl4phbd

5.2. Synthesis of Asynchronous Implementation

60

The synthesis gives no warnings or errors.

The synthesis report path is src/asynch/module/balsa/impl-top-impl4phbd.log.

Chapter 6

Time-Based Power Estimation

Figures 6.1a and 6.1b show the flow for doing time based power estimation. Prime-
Time (PT) is used to estimate the power consumption of the synchronous and the
asynchronous implementation from a time-based simulation. PT can take a Synopsys
Binary Parasitics Format (SBPF) file, which has information about parasitics in the
synthesised circuit. However, only synthesis of a circuit using DC can generate an
SBPF, while synthesis using Balsa Asynchronous Synthesis System can not. Instead
wire load models are used. A wire load model uses statistical information to estimate
the wire load based on the number of fan-out pins on a net. This information is stored
in an Standard Delay Format (SDF) file. Using wire load models is less accurate, but
using it for both implementations is more fair when the aim is to compare them on
even grounds.

61

6.1. Script for Generating SDF for all corners

62

VPD

Convert
to VCD

VvCD
trace

Verilog
netlist

.

1 Convert VPD to VCD.

2 Write an SDF and PT session for
each corner.

3 Open FSDB file in nWave.

(a)

(b)

Figure 6.1: Time Based Power Estimation Flow.

6.1 Script for Generating SDF for all corners

standalone/quick_fe/make_sdf.tcl

standalone/quick_fe

6.2 Script Sequence for Converting VPD to VCD

Convert VPD to VCD and compress for all corners:

-> standalone/sim/tb/

make logs/top_tb.ntl.max.vcd.gz
make logs/top_tb.ntl.typ.vcd.gz
make logs/top_tb.ntl.min.vcd.gz

63 Chapter 6. Time-Based Power Estimation

6.3 Script Sequence for Time Based Power Estima-
tion

Run time based power estimation and report cell area for all corners:

-> standalone/pwr/

make power_vcd CORNER=max
make power_vcd CORNER=typ
make power_vcd CORNER=min

6.3. Script Sequence for Time Based Power Estimation

64

Chapter 7

Results

Sections 7.1, 7.2 and 7.3 present cell area cost results, power estimation results and
emission results.

7.1 Cell Area Cost

PT reports cell area. Cell area is measured in terms of the smallest two-input NAND
gate in the technology library that is used.

Table 7.1 shows the cell area cost of the synchronous and the asynchronous implemen-
tation.

Implementation | Cell Area
Synchronous 150754
Asynchronous 308985

Table 7.1: Implementation Cost

7.2 Power Consumption

7.2.1 Power Waveform

The power waveform is used to compare the power consumption in the synchronous and
asynchronous implementation, and to show when the submodules of the top module
in the two implementations contribute to the power consumption.

Figures 7.1 and 7.2 show the power consumption of the top module and its submodules
for the synchronous and the asynchronous implementation over one sample, filter and
threshold comparison sequence.

65

7.2. Power Consumption 66

Figure 7.3 shows a comparison of the total power waveforms of the synchronous and
the asynchronous implementation for each corner case.

7.2.2 Power Distribution and Power Density

Figures 7.4 and 7.5 show what contribute most to the power consumption in the two
implementations.

(kW]
0.4
0.3
0.2 M Internal
W Switching
E Leakage
- L .
0.0 |
max I | i m | | min
Synchronous Asynchronous
Figure 7.4: Power Distribution.
(kW]
0.5
I
0.4
Clock Network
_ M Sequential
0.2 1— m Combinational
0.1 —
0.0 1 — — -
max | typ
Smmrmous Asynchronous

Figure 7.5: Power Distribution.

67 Chapter 7. Results

Figures 7.6 and 7.7 show which modules that have the largest power density in the
two implementations.

7.2.3 Average Total Power

When doing 16 sequences per second:

Synch:

max: 228.5 [nW]
typ: 291.3 [nW]
min: 475.4 [nW]

Asynch (4phbd) :
max: 231.1 [nW]
typ: 290.2 [nW]
min: 464.9 [nW]

7.2.4 Energy/sequence

Equation 7.1 shows how to convert total average power into energy per sequence.

Pa'U {o} t o}
E/seq = %M[J/seq} (7.1)
seq

When doing 16 sequences per second:

Synch:

max: (228.5e-9)*1/16 = 14.3 [nJ/seq]
typ: (291.3e-9)*1/16 = 18.2 [nJ/seq]
min: (475.4e-9)*1/16 = 29.7 [nJ/seq]

Asynch (4phbd) :

max: (231.1e-9)*1/16 = 14.4 [nJ/seq]
typ: (290.2e-9)*1/16 = 18.1 [nJ/seq]
min: (464.9e-9)*1/16 = 29.1 [nJ/seq]

7.2.5 Average Power In Active Mode

Equation 7.2 shows how to convert average total power into average power in active
mode."

Pa'vgtot
L0 Ak Fgeq

Pa’ugact = tto}\fi[w] (72)
seq

Synch:

1The active time is the same for the three corners for the synchronous implementation, while it is
different for the three corners for the asynchronous implementation.

7.2. Power Consumption 68
max: ((2.285e-7)/e9)*587500/16 = 8.390 [pW]

typ: ((2.913e-7)/e9)*587500/16 = 10.697 [pW]

min: ((4.754e-7)/e9)*587500/16 = 17.456 [pW]

Asynch (4 Phase):

max: ((2.311e-7)/e9)*547000/16 = 7.900 [pW]

typ: ((2.902e-7)/e9)*544000/16 = 9.867 [pW]

min: ((4.649e-7)/e9)*541500/16 = 15.734 [pW]

7.2.6 Peak Power

The peak power says what the maximum power was during a simulation using typical
computing values. Figure 7.8 shows the peak power consumption of the synchronous
and the asynchronous implementation for each corner case.

[mW]
250

200

150

100

50

0 -

i

max

| typ | min ‘
Synchronous

Figure 7.8: Peak Power.

max

| wp |
Asynchronous

min

"TLIOJOARAA TOT}dWNSUO)) IOMOJ - UOIPRIUITR[dW] SNOUOIYIUAG :T°), 9INI3T]

(doadwooyy)

T

(do3paw)

(doyuajdwes)

(do3130)

(doy esjegq)

. ' ' ' ' /' ' ' | ' [' |
000009 00000S 000007 00000€ 000002 00000T

100000 200000 300000 400000 500000
|

(Balsa_top)

(ctritop)

(medtop) ___

(ematop)

(thcomptop)

Figure 7.2: Asynchronous Implementation - Power Consumption Waveform.

"WLIOJOARAN QOwE@QEOO Iomod T1eloJ, gL @.H.wam
ulw ‘ (doy esjeq)
dA3 ¢ (doy esjeg)

xew ‘ (doy esjeg)

uiw ‘ (doy)
dAy ‘ (do3)
xew ‘ (doj)

..t .’ . ' '/ [|
000002 000001

000005 000001 00000€

Analysis: |Total Power Density v Area Total power ERTOP (L.55057e-07) Total Power Density 7.1345%9e-12 2%

SAMPLERTOP

EMATOP

clk__I1 ||mepTOP

THCOMPTOP —n._.n_..ﬂ

e = R o

Figure 7.6: Power Density - Synchronous Implementation.

‘uoryejuewO[dW] SNOUOIYOUASY - AYSUS(] om0 :J°), 9INSIg

e
filst=]
ooo)
ooy

Szl

1al

£cl

Zal

vel

%t TT-2469T2'T Aususq Jamod [ejoL (L0-2T9067') 221 Jamod |ejoL esly - Ayusuaqg iamod [ejoL | sIsAleui

7.8. Emission 74

7.3 Emission

The emission from the circuit was found by performing a Discrete Fourier Transform
(DFT) on the time-based power simulation.

The Fast Signal Database (FSDB) file from PT is opened with nWaven. nWave
performs a DFT on the time-based power waveform. The DFT uses a Hamming
window [13, p. 622-628] and the maximum allowed sample rate (>2 the maximum
frequency).

Figure 7.9 shows the result of performing a DF'T of the time-based power simulation for
the synchronous implementation during one sample, filter and threshold comparison
sequence. Figure 7.10 shows the result of a DFT of the time-based power simulation for
the asynchronous implementation during one sample, filter and threshold comparison
sequence.

4.0e2-
3.0e2-]
')
o i
3
-
€ 2.0e2
o
]
= 1
1.0e2—
1 | ' \ K LJ
| |
°-°ez*‘,,,,.,“,,‘J,l,,,,.,,,\,JL,,,.,,,,|,,,,.,,\',‘,JL,,,,.,,,,L,,,,.,,,,|,,,,.,,,,H,.,,,,|,,,,.,,,,|,,,,.,,,,\'|'/,k“,
0.0e7 1.0e7 2.0e7 3.0e7 4.0e7 5.0e7 6.0e7 7.0e7 8.0e7 9.0e7 10.0e7
Frequency [Hz]
Figure 7.9: DFT of Power - Synchronous Implementation.
4.0e2 ||
3.0e2 |
)
o
3
=
€ 2.0e2
o
]
=
1.0e2

0.0e7 1.0e7 2.0e7 3.0e7 4.0e7 5.0e7 6.0e7 7.0e7 8.0e7 9.0e7 10.0e7
Frequency [Hz]

Figure 7.10: DFT of Power - Asynchronous Implementation.

Chapter 8

Discussion

8.1 Results

8.1.1 Power Consumption

The time based power estimation shows that the power consumption of the syn-
chronous and the asynchronous implementation are similar. It also shows that >90%
of the power in the synchronous implementation goes into the clock network, while
>90% of the power consumption in the asynchronous implementation goes into com-
binatorial logic. This is because the power consumption is dominated by activity in
the sampler module.

This result is not in accordance with the claims of low power consumption in [9,
p. 3-5], but it also notes that the designer must have much experience with designing
asynchronous circuits and the application must show characteristics that can benefit
from using a asynchronous methodologies.

The results from using a 4-phase BD handshake protocol can be biased by low per-
forming handshake components [5, p. 45]. The results could improve if a 2-phase BD
handshake protocol was used instead.

8.1.2 Area Cost

The overhead of the control logic in the asynchronous implementation led to twice the
area of the synchronous implementation. This result is in accordance with the claims
in [9, p. 3-5].

75

8.2. Design Optimisation 76

8.1.3 Emission

The emission is analysed by looking at the frequency components in the time-based
power simulation. The DFT of the synchronous shows two major frequency compo-
nents at 10MHz and 20MHz, and their harmonies. The DFT of the asynchronous
shows one major frequency component at 10MHz and its harmonies, while the rest
of the frequency content has a randomised characteristic. The asynchronous imple-
mentation shows a significant improvement over the synchronous implementation in
terms of lower frequency components. This result is in accordance with the claims in
[9, p. 3-5].

8.2 Design Optimisation

It is possible to improve the performance of the design by implementing a variety of
optimisations.

8.2.1 Data Path

Reducing the Number Range

If a constant value is subtracted from each charge+discharge time measurement from
the sampler module, the number range for the filter calculations can be reduced. This
would introduce an additional subtraction operation. Instead of doing the subtraction
after receiving the value from the sampler module, the subtraction can be performed by
loading the result register for the charge+discharge time measurement with a negative
value before doing the additions related to the sampling. In this way, the number
range can be reduced without adding much extra logic. !

Dividing the Number Range

The data path can be optimised by dividing it into a high and low number range, where
the high range is only active when interesting stuff happens (like a touch) and the low
range is for processing noise when nothing interesting happens. By keeping half of
the data path inactive, the power consumption could in theory almost be reduced to
a half.

1The register for the constant to be subtracted and the load operation has been implemented, but
the register is set to zero and the rest of the data path still use the full number range.

7 Chapter 8. Discussion

Recurring Structures

The median-3 filter, the EMA filter and the threshold comparator all use full-adder
chain structures for addition and subtraction. All three use 2’s complement number
representation and N-bit length unsigned vectors, with the exception of the EMA filter
which uses (N+41)-bit length signed vectors.

The multiplicator in the EMA filter has been implemented using a combination of
adder and shift structures. Apart from the shift operations and conditional additions,
the adder portion of the multiplicator could share adder structure with other opera-
tions. In this circuit the multiplicator has been implemented using (2*N)-bit length
intermediate registers?.

There is a potential for saving area by combining these structures into a architecture
more resembling a processor architecture. An architecture with sharing of hardware
leads to more control signals and a more complex architecture. Whether it is beneficial
to choose such an architecture with regards to saving power and area as opposed to
the chosen implementation remains unanswered.

8.3 Verification

8.3.1 Simulation Time

Simulation of an asynchronous circuit goes fast if the circuit is idle, since it does not
generate new events to the simulator queue. An asynchronous circuit only contributes
to dynamic power consumption when it is not idle. Thus it is possible to get a feel
for the dynamic power consumption of an asynchronous circuit if the simulation is
fast. This is would be more discernible in a larger design, when synthesising for large
register sizes/vector lengths.

Simulation of a synchronous circuit can be almost as fast, if the clock gating is good
enough. The synthesis log shows that the current clock gating style is set to using a
minimum register bank size of 3.

8.3.2 Timing Violations

No delay matching has been done for the 4-phase BD handshake protocol used in the
asynchronous implementation. The BD protocol is relies on the timing assumption
that the circuit is not faster than the control logic. Section 4.7.3 shows that the typ
and min corner cases result in timing violations, while the maz corner case does not.
This is because the typ and min corner run faster than the maz corner case. The
timing violations are related to setup and hold-time violations of latches used in the
BrzVariable Balsa handshake component. This can be solved by either inserting delays
(e.g. inverter(s)) in the control signal path, thus widening the pulse width, or a faster

2]t is possible to use N-bit intermediate registers, but the signed portion of the multiplication
becomes a bit more complex due to the subtraction for the sign bit.

8.3. Verification 78

latch must be designed. Since, the circuit is almost 4 times faster than the latch, the
former is the most feasible option. An other option is to use a delay-insensitive DR,
protocol instead of the BD protocol.

Chapter 9

Conclusion

9.1 Conclusions Drawn from This Thesis

For a capacitive touch digital detection filter circuit, a straight forward asynchronous
implementation using Balsa lead to similar power consumption (sec. 7.2) to the syn-
chronous implementation. It was claimed that using asynchronous methodologies
would result in lower power consumption [9, p. 3-5] , but this was not the case for
the chosen implementation. This is because the number of switchings in the sampler
module dominates the power consumption, as shown in section 7.2.2.

The asynchronous implementation shows less peak power consumption (sec. 7.2.6) and
less harmonics in the emission spectrum (sec. 7.3) than the synchronous implementa-
tion. This supports the claim that asynchronous methodologies lead to less emission
than synchronous methodologies [9, p. 3-5].

The asynchronous implementation uses twice as much area as the synchronous imple-
mentation. This supports the claim that asynchronous methodologies lead to higher
area cost than synchronous methodologies [9, p. 3-5].

9.2 Summary of the Contributions this Thesis Has
Made

In this thesis, both synchronous and asynchronous implementation methods have been
explored for implementing a capacitive touch digital detection filter circuit. An asyn-
chronous implementation of a capacitive touch digital detection filter circuit has never
before been published.

Comparisons between the synchronous and asynchronous implementation show that
asynchronous circuit methodologies do not automatically lead to low power consump-
tion, but can lead to larger area cost and lower emission. These results lead to a

79

9.83. Prospect of Further Research 80

better understanding of the possibilities and limitations of asynchronous methodolo-
gies. Thus, this thesis can be used as a reference when other designers evaluate whether
their application will benefit from using asynchronous methodologies.

In addition, new approaches for interfacing an asynchronous circuit, described in Balsa,
with an analog circuit has been found (sec. 3.5.3). This also covers an approach for
implementing a variable speed sampler clock with a minimum fixed sample period.

9.3 Prospect of Further Research

The approaches for interfacing an asynchronous circuit with an analog circuit can be
implemented and tested.

The design and test of the delay element for the variable speed sampler clock can be
done.

Startup time and power consumption of synchronous vs. asynchronous oscillator can
be researched.

The data path of the capacative touch digital detection filter can be optimised by
employing a reduced range dual bank data path.

The Balsa Asynchronous Synthesis System makes it possible to synthesise for different
handshake protocol, e.g. 2-phase BD, and 2-phase and 4-phase DR protocols. Research
into combinations of different handshake protocols and optimizations to existing or
completely new handshake libraries is possible.

Section 8.3.2 discusses possible solutions for solving the timing violations from the sim-
ulation of the asynchronous implementations NTL. Automatic delay insertion based
on static timing analysis is missing from Balsa Asynchronous Synthesis System design
flow.

Interfacing the capacative touch digital detection filter circuit with a microcontroller.
The microcontroller can be responsible for timing the start of new capacitance mea-
surements, by using a low power slow oscillator.

The technology used is old and is characterised by high threshold and high voltage.
New technology comes with a new set of challenges, but can benefit from lower total
area cost and less dynamic power consumption.

Bibliography

[1]

[10]

[11]

[12]

Advanced Processor Technologies Group Balsa Project Site. http://apt.cs.
manchester.ac.uk/projects/tools/balsa/.

Balsa Freecode Project Site. http://freecode.com/projects/balsaasync.
Balsa FTP Download Site. ftp://ftp.cs.man.ac.uk/pub/apt/balsa/4.0/.

Financial Times. http://wwuw.ft.com/intl/cms/s/2/
6ecd4ala-280a-11el-ad4c4-00144feabdcO.htm.

Bjarne Drotningshaug. Design of Asynchronous Circuits with Focus on Low Power
Consumption using the Balsa Synthesis System, 2011.

C. N.Marimuthu, Dr. P. Thangaraj, Aswathy Ramesan. Low Power Shift And
Add Multiplier Design. http://arxiv.org/ftp/arxiv/papers/1006/1006.
1179.pd£, 2010.

D.E. Muller an W.S. Bartky. A Theory of Asynchronous Circuits. Proc. of an
International Symposium on the Theory of Switching, pages 204—243, 1959.

Doug Edwards, Andrew Bardsley, Lilian Janin, Luis Plana and Will Toms.
Balsa: A Tutorial Guide. ftp://ftp.cs.man.ac.uk/pub/apt/balsa/3.5/
BalsaManual3.5.pdf, 2006.

J. Sparso. Asynchronous Circuit Design: A Tutorial. http://www.imm.dtu.dk/
pubdb/views/publicationdetails.php?id=855, 2006.

James H. McClellan, Ronald W. Schafer, Mark A. Yoder. Signal Processing First,
2003.

J.D. Garside, W.J. Bainbridge, A. Bardsley, D.A. Edwards, S.B. Furber, J. Liu,
D.W. Lloyd, S. Mohammadi, J.S. Pepper, O. Petlin, S. Temple, J.V. Woods.
AMULETSi — an Asynchronous System-on-Chip. Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 162-175,
April 2000.

Jeroen Domburg. AVR-based FM-transmitter. http://spritesmods.com/7art=
avrfmtx.

81

http://apt.cs.manchester.ac.uk/projects/tools/balsa/
http://apt.cs.manchester.ac.uk/projects/tools/balsa/
http://freecode.com/projects/balsaasync
ftp://ftp.cs.man.ac.uk/pub/apt/balsa/4.0/
http://www.ft.com/intl/cms/s/2/6ecd4a0a-280a-11e1-a4c4-00144feabdc0.htm
http://www.ft.com/intl/cms/s/2/6ecd4a0a-280a-11e1-a4c4-00144feabdc0.htm
http://arxiv.org/ftp/arxiv/papers/1006/1006.1179.pdf
http://arxiv.org/ftp/arxiv/papers/1006/1006.1179.pdf
ftp://ftp.cs.man.ac.uk/pub/apt/balsa/3.5/BalsaManual3.5.pdf
ftp://ftp.cs.man.ac.uk/pub/apt/balsa/3.5/BalsaManual3.5.pdf
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=855
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=855
http://spritesmods.com/?art=avrfmtx
http://spritesmods.com/?art=avrfmtx

[13]

[14]
[15]

[16]

John G. Proakis, Dimitris G. Manolakis. Digital Signal Processing - Principles,
Algorithms and Applications (Fourth Edition). , 2007.

Larry K. Baxter. Capacitive Sensors: Design and Applications, 1996.

LS Nielsen, J. Sparso. Designing Asynchronous Circuits for Low Power: An IFIR
Filter Bank for a Digital Hearing Aid. http://www.eng.utah.edu/~cs5830/
handouts/00740020.pdf, 1999.

Otto H. Schmitt. A Thermionic Trigger. Journal of Scientific Instruments, Volume
15, Number 1, 1938.

Ran Ginosar. Fourteen Ways to Fool Your Synchronizer. Proceedings of the Ninth
International Symposium on Asynchronous Circuits and Systems, 2003.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. In-
troduction to Algorithms, 2009.

Truls Magnus Aamodt Gulbrandsen. Capacative Touch Digital Detection Filter
Circuit, 2011. Specialization Report for Master Thesis.

http://www.eng.utah.edu/~cs5830/handouts/00740020.pdf
http://www.eng.utah.edu/~cs5830/handouts/00740020.pdf

© 00 O U WN -~

WWNDNNNNNDNDNNDNFH R FH B2 = e
H OO WNRFE OO0 U R WN=O

Appendix A

Balsa Code

The following sections show Balsa code listings.

A.1 Parameters

Listing A.1: params.balsa

-- params.balsa

constant N = 10

constant M = 4

constant NUM_BITS = 8

constant EMA_FRACBITS = NUM_BITS
constant MSB = NUM_BITS-1

type regdata is NUM_BITS bits

type mode is enumeration READ, WRITE end
type addr is (log N) bits

type cntr is (log N) bits

type in_bundle is record
data : regdata;
mode : mode;
addr : addr

end

type out_bundle is record
data : regdata
end

type samplertop_sampler_bd is record
numsamples, subvalue : regdata
end

type sensedrive_bd is record

sense_oe, sense_out, drive_oe, drive_out
end

83

bit

32
33
34

0O Utk WN

type thcomptop_thcomp_bd is record
value, threshold : regdata
end

A.2 Modules

Listing A.2: top.balsa

-- Import libraries

import [balsa.types.basic]
import [params]

import [regs]

import [samplertop]

import [medtop]

import [ematop]

import [thcomptop]

import [ctrltopl]

procedure top (
-- Input(s)
sync top_ctrltop_start;
input top_ctrltop : in_bundle;

input semnse_in : bit;
-- Output(s)
output sensedrive_out : sensedrive_bd;

output ctrltop_top : regdata;
output ctrltop_top_start : bit
) is
-- Channel(s)
sync ctrltop_samplertop

channel samplertop_medtop : regdata
channel medtop_ematop : regdata
channel ematop_thcomptop : regdata

channel thcomptop_ctrltop : bit
array N of sync reg_r
array N of sync cfg_r
array N-M of channel reg_data_in
array M of channel cfg_data_in
array N of channel reg_data_out
array N of channel cfg_data_out
begin

regs (

-- Input(s)

reg_r,

cfg_r,

reg_data_in,

cfg_data_in,

-- Output (s)

reg_data_out,

cfg_data_out
)

samplertop (
-- Input(s)
ctrltop_samplertop,
sense_in,
-- Output (s)

regdata
regdata
regdata
regdata

N O UL W N

{reg_rlo],

{reg_data_out [0],

sensedrive_out,

samplertop_medtop
)

medtop (

Input (s)
samplertop_medtop,
{reg_data_out [4],
-- Output (s)
{reg_r[4], reg_r([5],
{reg_data_in[0],
medtop_ematop

)

ematop (

Input (s)
medtop_ematop,
{reg_data_out [7],
-- Output (s)
{reg_r[7], reg_rl(8],
{reg_data_in[3],
ematop_thcomptop

)

thcomptop (

Input (s)
ematop_thcomptop,
{reg_data_out [9],
-- Output(s)
{reg_r[9], reg_r[3]}
reg_data_in [5],
thcomptop_ctrltop

)

ctrltop(

Input (s)
top_ctrltop_start,
top_ctrltop,
thcomptop_ctrltop,
cfg_data_out,
Output (s)
ctrltop_samplertop,
ctrltop_top,
ctrltop_top_start,
cfg_r,

cfg_data_in

)

end -- procedure top

reg_data_out [5],

reg_data_in[1],

reg_data_out [8],

reg_r([1]},
reg_data_out [1]},

reg_data_out [6]},

reg_r[61},
reg_data_in[2]},

reg_data_out [2]},

reg_r[2]},

reg_data_in[4]},

reg_data_out [3]},

5>

Listing A.3: ctrltop.balsa

Import libraries
import [balsa.types.basic]
import [params]

procedure ctrltop (
Input (s)
sync top_ctrltop_start;

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

50

51

52

53

54

55

56

input top_ctrltop in_bundle;
input thcomptop_ctrltop bit;
array N of input cfg_data_out
Output (s)
sync ctrltop_samplertop;
output ctrltop_top regdata;
output ctrltop_top_start bit;
array N of sync cfg_r;
array M of output cfg_data_in
) is
begin
loop
select top_ctrltop_start then
[
sync ctrltop_samplertop

regdata;

regdata

select thcomptop_ctrltop then

[
ctrltop_top_start <-

end --

end
end -- select top_ctrltop_start
loop

select top_ctrltop then

select thcomptop_ctrltop

case (top_ctrltop.mode as mode) of

WRITE then
case (top_ctrltop.addr as
0 then cfg_data_in[0]
1 then cfg_data_in[1]
2 then cfg_data_in[2]
else cfg_data_in[3]
end -- case (top_ctrltop.

READ then

addr) of
<_

<- top_ctrltop.
<- top_ctrltop.
<- top_ctrltop.

addr as 2 bits

case (top_ctrltop.addr as addr) of

0 then cfg_data_out [0]
cfg_r[0] |

1 then cfg_data_out [1]
cfg_r[1] |

2 then cfg_data_out [2]
cfg_r[2] |

3 then cfg_data_out [3]
cfg_r[3] |

4 then cfg_data_out [4]
cfg_r[4] |

5 then cfg_data_out [5]
cfg_r[5] |

6 then cfg_data_out [6]
cfg_r[6] |

7 then cfg_data_out [7]
cfg_r[7] |

8 then cfg_data_out [8]

cfg_r[8]

else cfg_data_out [9]
cfg_r[9]

end --

-> ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top
ctrltop_top

ctrltop_top

case (top_ctrltop.addr as addr)

end -- case (top_ctrltop.mode as mode)

top_ctrltop.

thcomptop_ctrltop

data
data
data
data

sync

sync

sync

sync

sync

sync

sync

sync

sync

sync

58
59
60

© 00 O U WN -

WWWRNNDNNDNDNDNNDNDN -
N OO UUR WNRFE OO Uk WN-O

end -- select top_ctrltop
end -- loop
end -- procedure ctrltop

Listing A.4: samplertop.balsa

-- Import libraries

import [balsa.types.basic]
import [params]

import [sampler]

procedure samplertop (

-- Input(s)
sync ctrltop_samplertop;
input sense_in : bit;
array 2 of sync reg_r;
array 2 of input reg_data_out : regdata;
-- Output(s)
output sensedrive_out : sensedrive_bd;
output samplertop_medtop : regdata
) is
-- Channel(s)
channel samplertop_sampler : samplertop_sampler_bd
channel sampler_samplertop : regdata
-- Variable(s)
variable numsamples : regdata
variable subvalue : regdata
begin

sampler (
samplertop_sampler,
sense_in,
sensedrive_out,
sampler_samplertop

I
loop
L
-- Wait for ctrltop_samplertop
select ctrltop_samplertop then continue end

-- Read numsamplesreg
[sync reg_r[0] || reg_data_out[0] -> numsamples]

-- Read subvaluereg
[sync reg_r[1]|| reg_data_out[1] -> subvalue]

[
-- Start sampler and wait for sampler data
samplertop_sampler <- {
numsamples,
subvalue

}

select sampler_samplertop then
-- Send data to medtop
samplertop_medtop <- sampler_samplertop
end -- select sampler_samplertop

end -- loop

55

© 00O U WN

end -- procedure samplertop

Listing A.5: sampler.balsa

-- Import libraries
import [balsa.types.basic]
import [params]

procedure sampler (

-- Input(s)
input samplertop_sampler : samplertop_sampler_bd;
input sense_in : bit;
-- Output(s)
output sensedrive_out : sensedrive_bd;
output sampler_samplertop : regdata
) is
-- Variable(s)
variable counter : regdata
variable value : regdata
-- Shared
shared add is
begin
value := (value + 1 as regdata)
end
shared dec is
begin
counter := (counter - Obl as regdata)
end
begin
loop

-- Wait for data

select samplertop_sampler then
-- Load value reg with negative constant
value := samplertop_sampler.subvalue

-- Reset counter
counter := samplertop_sampler.numsamples

sensedrive_out <- {
-- sense_oe high

1,
-- sense_out low
0,
-- drive_oe high
1,
-- drive_out 1low
0

sensedrive_out <- {
-- sense_oe high-7Z

0,
-- sense_out low
0,
-- drive_oe high
1,
-- drive_out high
1

value

57 -- Count number of times sense_in is low

58 loop while counter > O then

59 select sense_in then -- Synchronize on clock
signal

60 [

61 if (sense_in = 0) then

62 add O

63 end

64 ;

65 dec ()

66]

67 end -- select sense_in

68 end -- loop

69 ;

70 -- Reset counter

71 counter := (samplertop_sampler.numsamples as regdata)

72 ;

73 sensedrive_out <- {

74 -- sense_oe high

75 1,

76 -- sense_out high

T 1,

78 -- drive_oe high

79 1,

80 -- drive_out high

81 1

82 }

83 H

84 sensedrive_out <- {

85 -- sense_oe high-Z

86 o,

87 -- sense_out low

88 1,

89 -- drive_oe high

90 1,

91 -- drive_out 1low

92 0

93 }

94 ;

95 -- Count number of times sense_in is high

96 loop while (counter > 0) then

97 select sense_in then

98 L

99 if (sense_in) then

100 add ()

101 end

102 ;

103 dec ()

104]

105 end -- select sense_in

106 end -- loop

107 H

108 -- Output sample data

109 sampler_samplertop <- (value as regdata)

110 end -- select samplertop_sampler

111 end -- loop

112 | end -- procedure sampler

Listing A.6: medtop.balsa

O~ O Ui W

-- Import libraries

import [balsa.types.basic]
import [params]

import [med]

procedure medtop (
-- Input(s)

input samplertop_medtop regdata;

array 3 of input reg_data_out regdata;
-- Output (s)

array 3 of sync reg_r;

array 3 of output reg_data_in regdata;

output medtop_ematop
) is

regdata

-- Channel (s)
channel medtop_med
channel med_medtop
-- Variable(s)
variable data
variable old
variable newold
begin
med (medtop_med,

regdata

array 3 of regdata
2 bits
2 bits

med_medtop)
Il
loop
-- Wait for samplertop_medtop
select samplertop_medtop then

-- Write samplertop data to
case old of
O0b0O0 then
L
reg_data_in[0] <-
newold := 0bO1
]
|
ObO1 then
L
reg_data_in[1] <-
newold := 0b1l0
]
else
L
reg_data_in[2] <-
newold := 0bOO
]
end -- case old
end -- select samplertop_medtop
old := newold

-- Read medregs

reg_data_out [0] -> datal[0] ||
reg_data_out [1] -> datal[1] ||
reg_data_out [2] -> datal[2] ||

array 3 of regdata

reg

samplertop_medtop

samplertop_medtop

samplertop_medtop

sync reg_r [0]
sync reg_r [1]

sync reg_r [2]

60
61
62
63
64
65
66
67
68
69
70
71

© 00 O Ut WN

B R R R O W W W W W DWW WERNDNDNDNDNDNNDNDN e e e e e
G W R OO UERE WNF OO UUR WNFEO OO Ut WN O

-- Start med and wait for med data
medtop_med <- data

select med_medtop then
-- Send data to ematop
medtop_ematop <- med_medtop

end -- select med_medtop
end -- loop
end -- procedure medtop

Listing A.7: med.balsa

-- Import libraries
import [balsa.types.basic]
import [params]

procedure med (
-- Input (s)
input medtop_med : array 3 of regdata;
-- Output (s)
output med_medtop : regdata

) is
-- Variable(s)
variable res_tmp : bit
variable res : array 3 of bit
variable c : array 2 of regdata

-- Shared procedure(s)
shared cmp is
begin
if c¢[0] > c[1] then
res_tmp := 1
else
res_tmp := 0
end
end
begin
loop
select medtop_med then
[
-- LOAD1
c[0] := medtop_med[0]

c[1] := medtop_med[1]

-- COMP1
cmp ()

res[0] := res_tmp

-- LOAD2
if res[0] then

c[0] := medtop_med[0]
else

c[0] := medtop_med[1]
end -- if res [0]

c[1] := medtop_med[2]

© 00O Ut WN -~

-- COMP2
cmp ()

res[1] := res_tmp

-- LOAD3
if res[0] then
L
c[0] := medtop_med[1]

if res[1] then

c[1] := medtop_med[2]
else

c[1] := medtop_med[0]
end -- if res [1]

else
c[0] := medtop_med[0]

if res[1] then
c[1] := medtop_med [2]
else
c[1] := medtop_med [0]
end -- if res [1]
]
end -- if res [0]

-- COMP3
cmp ()

res[2] := res_tmp

-- FIN
case res of
{0,1,1}, {0,0,1}, {1,0,0} then med_medtop <-
medtop_med [0]

{1,0,1}, {1,1,1}, {0,0,0} then med_medtop <-
medtop_med [1]
|
{0,1,0}, {1,1,0} then med_medtop <- medtop_med[2]

end -- case res
end -- select medtop_med
end -- loop
end -- procedure med

Listing A.8: ematop.balsa

-- Import libraries

import [balsa.types.basic]
import [params]

import [ema]

procedure ematop (
-- Input(s)
input medtop_ematop : regdata;
array 3 of input reg_data_out : regdata;

10
11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52

© 00O Ut WN -

= = e
wNn = o

-- Output (s)
array 3 of sync reg_r;

array 2 of output reg_data_in : regdata;
output ematop_thcomptop : regdata
) is
-- Channel (s)
channel ematop_ema : array 3 of regdata
channel ema_ematop : regdata
-- Variable(s)
variable data : array 3 of regdata
begin

ema (ematop_ema, ema_ematop)
Il
loop
L
-- Wait for medtop_ematop
select medtop_ematop then
-- Write to reg
reg_data_in[0] <- medtop_ematop
end -- select medtop_ematop

-- Read emaregs

med_1i

[reg_data_out [0] -> datal[0] || sync reg_r[0]]

[reg_data_out [1] -> datal[l1] || sync reg_r[1]]

-1}

[reg_data_out [2] -> data[2] || sync reg_r[2]]

-- Start ema and wait for ema data

ematop_ema <- data
|
select ema_ematop then
-- ema_i overwrites ema_{i-1}
reg_data_in[1] <- ema_ematop

-- Send data to thcomptop
ematop_thcomptop <- ema_ematop
end -- select ema_ematop

end -- loop
end -- procedure ematop

ema_i

-- med_i

ema_{i

alpha

Listing A.9: ema.balsa

-- Import libraries

import [balsa.types.basic]
import [balsa.sim.string]
import [mult_shiftadd]

procedure ema (

-- Input (s)

input ematop_ema : array 3 of regdata;
-- Output (s)

output ema_ematop : regdata

) is
-- Variable(s)
variable rO : TNS

14
15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

H O ©OWO0 Utk Wi~

=

variable r1 : TNS
variable res_tmp : TNS
-- Channel(s)
channel ch_xy : EMA_MULT_BD
channel ch_product : TN
-- Shared procedure(s)
shared add is
begin
res_tmp := (r0 + r1l as TNS)
end -- shared add
begin
mult_shiftadd(
ch_xy,
ch_product
)
Il
loop
select ematop_ema then
[
r0

(ematop_ema [0] as TNS) -- (med_i)

ri := (-(ematop_ema[1] as TN1) as TNS)
-1

add() -- (med_i + (-ema_{i-1})

L
ch_xy <- {
(ematop_ema[2] as TN) , -- (alpha)
(res_tmp as TNS)
}

select ch_product then
rl := (ch_product as TNS)
end -- select ch_product
r0 := (ematop_ema[1] as TNS)
add () -- (ema_{i-1} + res_tmp)
ema_ematop <- (res_tmp as regdata)
end -- select ematop_ema

end -- loop
end -- procedure ema

(-ema_{i

Listing A.10: mult_shiftadd.balsa

-- Import libraries

import [balsa.types.basic]

import [balsa.sim.string]

import [params]

-- Local type(s)

type cntrmult is (log NUM_BITS) bits
type T2N is (NUM_BITS#*2)+1 signed bits
type TN is (NUM_BITS) bits

type TN1 is (NUM_BITS+1) bits

type TNS is (NUM_BITS+1) signed bits
type EMA_MULT_BD is record

multiplier : TN;
multiplicand : TNS
end

procedure mult_shiftadd(

-- Input(s)

input xy : EMA_MULT_BD;
-- Output (s)

output product : TN

) is
--Variable(s)
variable a : T2N
variable b : T2N
variable q : TN
variable n : cntrmult
-- Shared procedure(s)
shared shiftright is

begin
q := (#q[MSB..1] @ #0bO as TN)
end -- shared shiftright
shared shiftleft is
begin
b := (((#0b0) @ (#b[2*MSB+1..0])) as T2N)
end -- shared shiftleft
shared add is
begin
a := (a + b as T2N)
end -- shared add
begin
loop
select xy then
[
b := (xy.multiplicand as T2N)
q := xy.multiplier
a := 0
n := (NUM_BITS as cntrmult)
5
loop
[
if #q[0] then
add ()
end
shiftleft ()
shiftright ()
n := (n - 1 as cntrmult)
]
while (n /= 0)
end -- loop
product <- (#a[(2*xMSB)+1..MSB+1] as TN)
end -- select xy
end -- loop

end -- procedure mult_shiftadd

Trunk

00O Uk WN

Listing A.11: thcomptop.balsa

-- Import libraries

import [balsa.types.basic]
import [params]

import [thcomp]

procedure thcomptop (

-- Input(s)
input ematop_thcomptop : regdata;
array 2 of input reg_data_out : regdata;
-- Output (s)
array 2 of sync reg_r;
output reg_data_in : regdata;
output thcomptop_ctrltop : bit
) is
-- Channel(s)
channel thcomptop_thcomp : thcomptop_thcomp_bd
channel thcomp_thcomptop : bit
-- Variable(s)
variable value : regdata
variable threshold : regdata
begin
thcomp (
thcomptop_thcomp,
thcomp_thcomptop
)
I'l
loop
L
-- Wait for ematop_thcomptop
select ematop_thcomptop then
-- Write ematop data to reg
reg_data_in <- ematop_thcomptop
end -- select ematop_thcomptop
-- Read thcompreg
[reg_data_out [0] -> value || sync reg_r[0]]
-- Read thresholdreg
[reg_data_out [1] -> threshold || sync reg_r[1]]
[
-- Start thcomp and wait for thcomp data
thcomptop_thcomp <- {
value,
threshold
}
|
select thcomp_thcomptop then
-- Send data to ctrltop
thcomptop_ctrltop <- thcomp_thcomptop
end -- select thcomp_thcomptop
]
end -- loop
end -- procedure thcomptop

Listing A.12: thcomp.balsa

© 00 O U WN

16
17
18
19

20
21
22

© 00O U W~

WWWWNNNNNNDNNNDNDFH R R 2 = =
WN R OO UER WD O OO Utk WwN—=O

-- Import library
import [params]

procedure thcomp (

if (thcomptop_thcomp.value > thcomptop_thcomp.threshold

end -- if (thcomptop_thcomp.value > thcomptop_thcomp.

-- Input(s)
input thcomptop_thcomp : thcomptop_thcomp_bd;
-- Output(s)
output thcomp_thcomptop : bit
) is
begin
loop
-- Wait for data
select thcomptop_thcomp then
-- Compare data with threshold
) then
thcomp_thcomptop <- 1
else
thcomp_thcomptop <- O
threshold)
end -- select thcomptop_thcomp
end -- loop
end -- procedure thcomp

Listing A.13: regs.balsa

-- Import libraries

import [balsa.types.basic]
import [params]

import [regilregw2rl]

import [reglcfgw2r]

procedure regs (
-- Input(s)
array N of sync reg_r;
array N of sync cfg_r;

array N-M of input reg_data_in : regdata;
array M of input cfg_data_in : regdata;
-- Output (s)
array N of output reg_data_out : regdata;
array N of output cfg_data_out : regdata
) is
begin
for || i in M .. N-1 then
reglregu2r (
reg_r[i]l,
cfg_r[i],

reg_data_in[i-M],
reg_data_out [i],
cfg_data_out [i]

end -- for || i in M .. N 1
I
for || 1 in O .. M-1 then
reglcfgw2r(
reg_r[i],
cfg_r[i],

cfg_data_in[il],
reg_data_out [i],

34
35
36
37

© 00O Ut WN -

W W W WWWWWwWhhNNDDNDNDNDNDNDN = = = =
N U WNFRF OO UERE WNF OOV U WN O

0O Uk WN

©

cfg_data_out [i]
end -- for || i in O .. M 1
end -- procedure regs
Listing A.14: reglcfgw2r.balsa

-- Import libraries
import [balsa.types.basic]
import [params]
procedure reglcfgw2r (

-- Input(s)

sync reg_r;

sync cfg_r;

input cfg_data_in : regdata;

-- Output(s)
output reg_data_out : regdata;
output cfg_data_out : regdata
) is
-- Variable(s)
variable reg : regdata
-- Channel(s)
channel ch_r : bit
begin
loop
arbitrate
ch_r then
case ch_r of
0 then reg_data_out <- reg |
1 then cfg_data_out <- reg
end
cfg_data_in then
reg := cfg_data_in
end
end
I
loop
arbitrate reg_r then ch_r <- 0
| cfg_r then ch_r <- 1
end
end
end
Listing A.15: reglregw2r.balsa
-- Import libraries
import [balsa.types.basic]
import [params]
procedure reglregw2r (
-- Input(s)
sync reg_r;
sync cfg_r;

input reg_data_in : regdata;
-- Output (s)

output reg_data_out : regdata;
output cfg_data_out : regdata

)

S U W

10

12
13
14
15
16
17
18
19
20

-- Variable(s)

variable reg : regdata
-- Channel(s)
channel ch_r : bit
begin
[
loop
arbitrate

ch_r then
case ch_r of
0 then reg_data_out <- reg |
1 then cfg_data_out <- reg

end
|
reg_data_in then reg := reg_data_in
end -- arbitrate
end -- loop
]
I
[
loop
arbitrate reg_r then ch_r <- 0
| cfg_r then ch_r <- 1
end -- arbitrate reg_r
end -- loop
]

end

A.3 Verification Tests

Listing A.16: med_tb.balsa

-- Threshold Comparator Testbench

--import [balsa.types.builtin] -- Functions and type necessary for
balsa-c functionality.

import [balsa.types.basic] -- Type comprehension functions.

import [balsa.sim.string] -- Other String handling functions.

import [balsa.sim.fileio] -- File I/0.

import [balsa.sim.memory] -- Functions and types to implement
memory models.

import [balsa.sim.portio] -- Port file/console I/0 used by balsa-
make-test.

import [balsa.sim.sim] -- Simulator specific operations such as

time and command line argument access.
import [med]
import [inputGen]
import [outputComp]

procedure med_tb (

input filename_i0 : String;
input filename_il : String;
input filename_o : String
) is
channel ch_input_vect : array 3 of regdata

channel ch_output_vect : regdata

21
22
23
24
25

27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

[\

S UL W

10
11
12
13
14
15
16
17
18
19
20
21

23
24

variable file_i0, file_il : File
variable file_o : File
begin
filename_iO0, filename_il, filename_o -> then
L
-- 0Open file
file_i0 := FileOpen (filename_iO, read)

-- Generate input vector(s)
inputGen (3, regdata, array 3 of regdata, "Input vector(s)
", <-file_iO, ch_input_vect)

-- DUT
med (ch_input_vect, ch_output_vect)

L
-- Open file(s)
file_il := FileOpen (filename_il, read)
file_o := FileOpen (filename_o, write)

outputComp (regdata, "Output vector", <- file_il, <-
file_o, ch_output_vect)

end
end

Listing A.17: ema_tb.balsa

-- Threshold Comparator Testbench

--import [balsa.types.builtin] -- Functions and type necessary for
balsa-c functionality.

import [balsa.types.basic] -- Type comprehension functions.

import [balsa.sim.string] -- Other String handling functions.

import [balsa.sim.fileio] -- File I/0.

import [balsa.sim.memory] -- Functions and types to implement
memory models.

import [balsa.sim.portio] -- Port file/console I/0 used by balsa-
make-test.

import [balsa.sim.sim] -- Simulator specific operations such as

time and command line argument access.
import [emal]
import [inputGen]
import [outputComp]

procedure ema_tb (

input filename_i0 : String;

input filename_il : String;

input filename_o : String
) is
channel ch_input_vect : array 3 of regdata
channel ch_output_vect : regdata

variable file_iO, file_il : File
variable file_o : File

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

TUR W N~

=2}

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26

28
29

begin
filename_iO, filename_il, filename_o -> then
L
-- 0Open file
file_i0 := FileOpen (filename_iO, read)
-- Generate input vector(s)
inputGen (3, regdata, array 3 of regdata, "Input vector(s)
", <-file_i0, ch_input_vect)
]
Il
-- DUT
ema (ch_input_vect, ch_output_vect)
Il
L
-- Open file(s)
file_il := FileOpen (filename_il, read)
file_o := FileOpen (filename_o, write)
outputComp (regdata, "Output vector", <- file_il, <-
file_o, ch_output_vect)
]
end
end

Listing A.18: thcomp_tb.balsa

-- Threshold Comparator Testbench

import [balsa.types.basic] -- Type comprehension functions.

import [balsa.sim.stringl -- Other String handling functions.

import [balsa.sim.fileio] -- File I/0.

import [balsa.sim.memory] -- Functions and types to implement
memory models.

import [balsa.sim.portio] -- Port file/console I/0 used by balsa-
make-test.

import [balsa.sim.sim] -- Simulator specific operations such as

time and command line argument access.
import [thcomp]
import [inputGen]
import [outputComp]

procedure thcomp_tb (
input filename_iO : String;
input filename_il : String;
input filename_o : String
is
-- Channel(s)
channel ch_input_vect : thcomptop_thcomp_bd
channel ch_output_vect : bit
-- Variable(s)
variable file_iO, file_il : File
variable file_o : File
begin
filename_i0O, filename_il, filename_o -> then
L
-- Open file
file_i0 := FileOpen (filename_iO, read)

-- Generate input vector(s)

30

31
32
33
34
35
36
37
38
39
40
41
42

43
44
45

end

end

inputGen (regdata,

<-file_i0, ch_input_vect)

DUT
thcomp (ch_input_vect,

thcomptop_thcomp_bd,

ch_output_vect)

"Input vector(s)",

L
-- Open file(s)
file_il := FileOpen (filename_il, read)
file_o := FileOpen (filename_o, write)
outputComp (bit, "Output vector", <- file_il, <- file_o,

ch_output_vect)

© 00 O Ut WN -

Appendix B

Verilog Code

The following sections show Verilog code listings. Emacs autoassignments have been
removed for better readability.

B.1 Parameters

Listing B.1: sync_params.v

localparam

NUM_REGS = 10,
MSB_REGS_ADDRESS = $clog2(NUM_REGS)-1,
LENGTH = 8,

MSB = LENGTH - 1,
EMA_FRACBITS = LENGTH,
MSB_MULT = MSB,

MSB_MULTI = EMA_FRACBITS-1,
NUMSAMPLESREG = 4’b0000,
SUBVALUEREG = 4’b0001,
MEDREGO = 4°’b0010,

MEDREG1 = 4°b0011,

MEDREG2 = 4°’b0100,

EMAREGO = 4°b0101,

EMAREG1 = 4°b0110,

ALPHAREG = 4’b0111,
THCOMPREG = 4’b1000,
THRESHOLDREG = 4’b1001;

103

© 00O U W~

QOO LW W W W WWWNhNDNDDDNDNDNDNDNDN e e =
OO N U R WNRFRF OO UERE WNFRF OO0 Uk W —=O

© 00O Ut WN -

= = e
wNn = O

B.2 Synchronous Modules

Listing B.2: top.v

module top (/*AUTOARG*/);

‘include

input
input
input
input
input
input
input
input
input

e

clk;

clk_sampler;

"sync_params.v"
Input Ports---------------------—---—-—----

rst_n;
top_ctrltop_start;

[MSB:0] top_ctrltop_cfg_data_in;
[MSB_REGS_ADDRESS:0] top_ctrltop_cfg_addr;

output
output

output

output
output
output
output
/*AUTOWIRE */

wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

[MSB:0]

[MSB:0]

top_ctrltop_cfg_r;
top_ctrltop_cfg_w;
sense_in;

Output Ports---------------------------—-

ctrltop_top_start;
ctrltop_top_start_data;
ctrltop_top_data;
sense_oe;

sense_out;

drive_oe;

drive_out;

rst_n;

clk;

clk_sampler;
top_ctrltop_start;
ctrltop_top_start;
ctrltop_top_data;
sense_in;
sense_oe;
sense_out;
drive_oe;
drive_out;
thcomptop_ctrltop_finish;

samplertop SAMPLERTOP (/*AUTOINST=*/);

medtop MEDTOP (/*AUTOINST*/);

ematop EMATOP (/*AUTOINST=*/);

thcomptop THCOMPTOP (/*AUTOINST*/);

ctrltop CTRLTOP (/*AUTOINST=*/);
endmodule

Listing B.3: ctrltop.v

module ctrltop (/*AUTOARG*/);

‘include

input
input
input
input
input
input
input
input
input
input

clk;

"sync_params.v"
Input Ports-—-—-----=—-=—-————————————~———~———

rst_n;
top_ctrltop_start;
top_ctrltop_cfg_w;
top_ctrltop_cfg_r;
[MSB_REGS_ADDRESS:0] top_ctrltop_cfg_addr;

[MSB:
:0]
[MSB:
:0]

[MSB

[MSB

0]

0]

top_ctrltop_cfg_data_in;
samplerregs_ctrltop_cfg_data_outO;
samplerregs_ctrltop_cfg_data_outl;
medregs_ctrltop_cfg_data_outO;

14
15
16
17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73

input [MSB:0] medregs_ctrltop_cfg_data_outl;

input [MSB:0] medregs_ctrltop_cfg_data_out2;
input [MSB:0] emaregs_ctrltop_cfg_data_outO;
input [MSB:0] emaregs_ctrltop_cfg_data_outl;
input [MSB:0] emaregs_ctrltop_cfg_data_out2;
input [MSB:0] thcompregs_ctrltop_cfg_data_outO;
input [MSB:0] thcompregs_ctrltop_cfg_data_outl;
input thcomptop_ctrltop_data;
input thcomptop_ctrltop_finish;
[/ =—=====—======= Output Ports---------------—--—--—-~———-———-
output reg ctrltop_top_start;
output reg ctrltop_top_start_data;
output reg ctrltop_samplertop_start;
output reg [MSB:0] ctrltop_top_data;
output reg cfg_we;
output reg [MSB:0] cfg_data_in;
output reg [MSB_REGS_ADDRESS:0] cfg_addr;
[/ === Registers-—-—--------—-—----—-—-———————~——-~—~——-~—-
reg state_r;
reg state_nxt;
/) === Parameters-—---------------—-—————————————
parameter

IDLE=1’b0,

MEASURING=1’b1;
// FSM, Combinatorial logic
always @* begin
state_nxt = state_r;
/*AUTORESET */
ctrltop_top_start = 1’°b0;
ctrltop_top_start_data = 1’b0;
ctrltop_samplertop_start = 1’b0;
cfg_we = 1°b0;
cfg_addr = 0;
cfg_data_in = O0;
if (top_ctrltop_cfg_r)
case (top_ctrltop_cfg_addr)
NUMSAMPLESREG: begin
ctrltop_top_data = samplerregs_ctrltop_cfg_data_outO;
end
SUBVALUEREG: begin
ctrltop_top_data = samplerregs_ctrltop_cfg_data_outl;
end
MEDREGO: begin
ctrltop_top_data = medregs_ctrltop_cfg_data_outO;
end
MEDREG1: begin
ctrltop_top_data = medregs_ctrltop_cfg_data_outl;
end
MEDREG2: begin
ctrltop_top_data = medregs_ctrltop_cfg_data_out2;
end
EMAREGO: begin
ctrltop_top_data = emaregs_ctrltop_cfg_data_outO;
end
EMAREG1: begin
ctrltop_top_data = emaregs_ctrltop_cfg_data_outl;
end
ALPHAREG: begin
ctrltop_top_data = emaregs_ctrltop_cfg_data_out2;
end

74 THCOMPREG: begin

75 ctrltop_top_data = thcompregs_ctrltop_cfg_data_outO;
76 end

7 THRESHOLDREG: begin

78 ctrltop_top_data = thcompregs_ctrltop_cfg_data_outl;
79 end

80 endcase

81 else if (top_ctrltop_cfg_w) begin

82 cfg_we = 1°bi;

83 cfg_addr = top_ctrltop_cfg_addr;

84 cfg_data_in = top_ctrltop_cfg_data_in;
85 end

86 case (state_r)

87 IDLE: begin

88 if (top_ctrltop_start) begin

89 ctrltop_samplertop_start = 1’bl;
90 state_nxt = MEASURING;

91 end

92 end

93 MEASURING: begin

94 if (thcomptop_ctrltop_finish) begin
95 ctrltop_top_start = 1’bil;

96 ctrltop_top_start_data = thcomptop_ctrltop_data;
97 state_nxt = IDLE;

98 end

99 end

100 endcase

101 end

102 // Sequential logic

103 always @ (posedge clk or negedge rst_n)
104 if (!rst_mn)

105 state_r <= IDLE;

106 else

107 state_r <= state_nxt;

108 | endmodule

Listing B.4: medtop.v

1 |module medtop (/*AUTOARG=*/);

2 | “‘include "sync_params.v"

3 [/ === Parameters -—--------------—------

4 parameter

5 IDLE=2’b00,

6 START=2’b01,

7 FIN=2’b10;

8 [/ =—============ Input Ports----------------—---—-

9 input clk;

10 input rst_n;

11 input samplertop_medtop_start;

12 input [MSB:0] samplertop_medtop_data;

13 /] =—====—————=== Qutput Ports-------------------

14 output reg medtop_ematop_start;

15 output reg [MSB:0] medtop_ematop_data;

16 output [MSB:0] medregs_ctrltop_cfg_data_outO;
17 output [MSB:0] medregs_ctrltop_cfg_data_outl;
18 output [MSB:0] medregs_ctrltop_cfg_data_out2;
19 e Registers-------------------—---

20 reg medtop_med_start;

21 reg [MSB:0] medtop_medregs_reg_data_inO;

22 reg [MSB:0] medtop_medregs_reg_data_inl;

61
62
63
64
65

66
67
68
69
70

71
72
73
74
75
76
7
78
79

reg [MSB:0] medtop_medregs_reg_data_in2;

reg medtop_medregs_reg_weOl;

reg medtop_medregs_reg_wel;

reg medtop_medregs_reg_we2;

reg [1:0] state_r;

reg [1:0] state_nxt;

reg [1:0] old_r;

reg [1:0] old_nxt;

[/ =====———————- Wires---------—-—-----—-——————~——-———
/*AUTOWIRE*/

always @ (posedge clk or negedge rst_n)
if (!rst_n) begin
state_r <= IDLE;
old_r <= 2’°b00;
end
else begin
state_r <= state_nxt;
old_r <= old_nxt;

end
always @* begin
state_nxt = state_r;

old_nxt = old_r;
medtop_med_start = 1’b0;
medtop_medregs_reg_we0 = 1°b0;
medtop_medregs_reg_wel = 1’b0;
medtop_medregs_reg_we2 = 1’b0;
medtop_medregs_reg_data_inO = O0;
medtop_medregs_reg_data_inl = 0;
medtop_medregs_reg_data_in2 = O0;
medtop_ematop_start = 1°b0;
medtop_ematop_data = 0;
case (state_r)
IDLE: begin
if (samplertop_medtop_start) begin
case (old_r)
2’b00: begin
medtop_medregs_reg_we0O = 1’bl;
medtop_medregs_reg_data_in0 =
samplertop_medtop_data;
old_nxt = 2’b01;
end
2’b01: begin
medtop_medregs_reg_wel = 1’bl;
medtop_medregs_reg_data_inl =
samplertop_medtop_data;
old_nxt = 2’°b10;
end
2’°b10: begin
medtop_medregs_reg_we2 = 1’bl;
medtop_medregs_reg_data_in2 =
samplertop_medtop_data;
old_nxt = 2’°b00;

end
2’bl1: begin
end
endcase
state_nxt = START;
end
end

START: begin

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

0O Utk WN -

medtop_med_start = 1’bil;
state_nxt = FIN;

end
FIN: begin
if (med_medtop_finish) begin
medtop_ematop_start = 1’bl;

medtop_ematop_data = med_medtop_data;
state_nxt = IDLE;
end
end
endcase
end
medregs MEDREGS (/*AUTOINST*/);
med MED (/*AUTOINST*/);
endmodule

Listing B.5: med.v

module med (/*AUTOARG=*/);
‘include "sync_params.v"
[/ =—============ Parameters-——--—----———--—————————~——~—~——~——
parameter
IDLE=3’b000,
LOAD1=3’b001,
CMP1=3’b010,
LOAD2=3’b011,
CMP2=3’b100,
LOAD3=3’b101,
CMP3=3’b110,
FIN=3’Db111;
parameter MSB_STATE = 2;
parameter MSB_RES = 2;
/] =====———————= Input Ports-----—--=-—---—--—————————————~———
input clk;
input rst_n;
input medtop_med_start;
input [MSB:0] medregs_med_reg_data_outO;
input [MSB:0] medregs_med_reg_data_outl;
input [MSB:0] medregs_med_reg_data_out2;

[/ === Qutput Ports---------------—-———-——————-————
output reg med_medtop_finish;

output reg [MSB:0] med_medtop_data;

e Wires----------=---=—-—-—-——-———~——~———~———~————
wire clk;

wire rst_n;

wire medtop_med_start;

wire [MSB:0] medregs_med_reg_data_outO;

wire [MSB:0] medregs_med_reg_data_outl;

wire [MSB:0] medregs_med_reg_data_out2;

[/ ======—======= Registers----------------—-—"—-~—-"——-~—-~——-~—-~——-~—-
reg [MSB_STATE:0] state_r;

reg [MSB_STATE:0] state_nxt;

reg [MSB:0] cmp_r0;

reg [MSB:0] cmp_rl;

reg [MSB:0] cmp_nxtO;

reg [MSB:0] cmp_nxti;

reg [MSB_RES:0] res_r;

reg [MSB_RES:0] res_nxt;

always @ (posedge clk or negedge rst_n)
if (!rst_n) begin

100
101
102

state_r <= IDLE;
res_r <= 0;
cmp_r0 <= 0;
cmp_rl <= 0;

end

else begin
state_r <= state_nxt;
res_r <= res_nxt;
cmp_r0 <= cmp_nxtO0;
cmp_rl <= cmp_nxtl;

end
always @x*
begin
state_nxt = state_r;
res_nxt = res_r;
cmp_nxt0 = cmp_r0;
cmp_nxtl = cmp_ril;

med_medtop_finish =
med_medtop_data = 0;
case (state_r)
IDLE: begin
if (medtop_med_start) begin
state_nxt = LOAD1;
end

1°b0;

end
LOAD1: begin
cmp_nxt0 = medregs_med_reg_data_outO;
cmp_nxtl = medregs_med_reg_data_outl;
state_nxt = CMP1;
end
CMP1:
begin
if (cmp_r0 > cmp_rl) begin
res_nxt [0] = 1°bil;
end
else begin
res_nxt [0] = 1°b0O;
end
state_nxt = LOAD2;
end
LOAD2: begin
cmp_nxtl = medregs_med_reg_data_out?2;
if (res_r [0]) begin
cmp_nxt0 = medregs_med_reg_data_outO;
end
else begin
cmp_nxt0 = medregs_med_reg_data_outl;
end
state_nxt = CMP2;
end
CMP2: begin
if (cmp_r0 > cmp_ril)
res_nxt[1] = 1°bil;
else
res_nxt [1] = 1°b0;
state_nxt = LOADS3;
end
LOAD3: begin
if (res_r[0])
cmp_nxt0 = medregs_med_reg_data_outl;

103 else

104 cmp_nxt0 = medregs_med_reg_data_outO;

105 if (res_r[1])

106 cmp_nxtl = medregs_med_reg_data_out2;

107 else

108 if (res_r[0])

109 cmp_nxtl = medregs_med_reg_data_outO;

110 else

111 cmp_nxtl = medregs_med_reg_data_outl;

112 state_nxt = CMP3;

113 end

114 CMP3: begin

115 if (cmp_r0 > cmp_ril)

116 res_nxt [2] = 1°bil;

117 else

118 res_nxt [2] = 1°b0;

119 state_nxt = FIN;

120 end

121 FIN: begin

122 med_medtop_finish = 1’bil;

123 case ({res_r[0],res_r[1],res_r[2]})

124 3°b011, 3’°b001, 3’b100 : med_medtop_data =
medregs_med_reg_data_outO;

125 3’b101, 3’bl11l, 3’°b000 : med_medtop_data =
medregs_med_reg_data_outl;

126 3°b010, 3’b110 : med_medtop_data = medregs_med_reg_data_out2;

127 endcase

128 state_nxt = IDLE;

129 end

130 endcase

131 end

132 | endmodule

Listing B.6: ematop.v

1 [module ematop (/*AUTOARG*/);

2 | ‘include "sync_params.v"

3 [/ ======——————- Parameters----------—------—-—-—-—--
4 parameter

5 IDLE=2’b00,

6 START=2’b01,

7 FIN=2’b10;

8 e Input Ports----------------—----
9 input clk;

10 input rst_n;

11 input medtop_ematop_start;

12 input [MSB:0] medtop_ematop_data;

13 input cfg_we;

14 input [MSB:0] cfg_data_in;

15 input [MSB_REGS_ADDRESS:0] cfg_addr;

16 /] =—====—————=== Qutput Ports-------------------
17 output reg ematop_thcomptop_start;

18 output reg [MSB:0] ematop_thcomptop_data;

19 output [MSB:0] emaregs_ctrltop_cfg_data_outO;
20 output [MSB:0] emaregs_ctrltop_cfg_data_outl;
21 output [MSB:0] emaregs_ctrltop_cfg_data_out2;
22 e Registers----------—------—-—----
23 reg [MSB:0] ematop_emaregs_reg_data_inO;
24 reg [MSB:0] ematop_emaregs_reg_data_inl;

25 reg ematop_emaregs_reg_weO;

S TR WN -

reg ematop_emaregs_reg_wel;

reg ematop_emaregs_reg_we2;

reg [1:0] state_r;

reg [1:0] state_nxt;

reg ematop_ema_start;

[/ === ————— Wires-—---==-c--mmmmcm e
/*AUTOWIRE*/

always @ (posedge clk or negedge rst_n)
if (!rst_n) begin
state_r <= IDLE;
end
else begin
state_r <= state_nxt;

end

always @* begin
state_nxt = state_r;
ematop_ema_start = 1’b0;
ematop_emaregs_reg_weO = 1’b0;
ematop_emaregs_reg_wel = 1’b0;
ematop_emaregs_reg_data_in0 = 0;
ematop_emaregs_reg_data_inl = 0;
ematop_thcomptop_start = 1’b0;

ematop_thcomptop_data = 0;
case (state_r)
IDLE: begin
if (medtop_ematop_start) begin
ematop_emaregs_reg_we0 = 1’bl; // Write signal high
ematop_emaregs_reg_data_in0 = medtop_ematop_data; //
Overwrite sample
state_nxt = START;

end

end

START: begin
ematop_ema_start = 1’bl;
state_nxt = FIN;

end

FIN: begin

if (ema_ematop_finish) begin
ematop_thcomptop_start = 1’bl;

ematop_thcomptop_data = ema_ematop_data;
ematop_emaregs_reg_wel = 1’bl; // Write signal high
ematop_emaregs_reg_data_inl = ema_ematop_data; //

Overwrite EMA_i-1 with EMA_i
state_nxt = IDLE;
end
end
endcase
end
emaregs emaregs (/*AUTOINST=*/);
ema ema (/*AUTOINST*/);
endmodule

Listing B.7: ema.v

module ema (/*AUTOARG*/);
‘include "sync_params.v"
e Parameter (s) --------------—--——-——-———-——--
parameter
IDLE=4’b000,
SUB=4’b001,

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58

59
60
61
62
63

MULT=4’b010,
TRUNK=4’b011,

ADD=4’b100,

FIN=4’b101;
parameter MSB_STATE = 2;
[/ ===—mmm—————— Input Port(s)------------------"-"--"-"-—~—"——-
input clk;

input rst_n;

input ematop_ema_start;

input [MSB:0] emaregs_ema_reg_data_outO;
input [MSB:0] emaregs_ema_reg_data_outl;
input [MSB:0] emaregs_ema_reg_data_out2;

/] ======—————== Output Port(s)--------------------——"————-
output reg ema_ematop_finish;

output reg [MSB:0] ema_ematop_data;

[/ === Wire(s) —=—=—=—-—====—-———————-—"—~—~—~——~—~—~—~—~———~—~—-
wire clk;

wire rst_n;

wire [MSB:0] emaregs_ema_reg_data_outO;

wire [MSB:0] emaregs_ema_reg_data_outl;

wire [MSB:0] emaregs_ema_reg_data_out2;

/] =—==—====———=== Register(s) —------------—-—-————"——"——~——~——~——-

reg [MSB_STATE:0] state_r;

reg [MSB_STATE:0] state_nxt;

reg signed [(2*xMSB_MULT)+2:0] result_r;
reg signed [(2*MSB_MULT)+2:0] result_nxt;

reg ema_multshiftadd_start;
reg [MSB_MULT:0] ema_multshiftadd_multiplicand;
reg [MSB_MULTI:O0] ema_multshiftadd_multiplier;

always @ (posedge clk or negedge rst_n)
if (!rst_n) begin
state_r <= IDLE;
result_r <= 0;
end
else begin
state_r <= state_nxt;
result_r <= result_nxt;

end
always @x*
begin
state_nxt = state_r;
result_nxt = result_r;
ema_ematop_finish = 1’b0;
ema_ematop_data = O0;

case (state_r)
IDLE: begin
if (ematop_ema_start)
state_nxt = SUB;

end
SUB:
begin
result_nxt = emaregs_ema_reg_data_outO + (&
emaregs_ema_reg_data_outl + 1’bl); //Unsigned to
signed subtraction(addition)
state_nxt = MULT;
end
MULT :
begin

result_nxt = result_r * $signed ({1°bO,
emaregs_ema_reg_data_out2}); //Signed

74
75
76
77
78
79
80
81
82
83
84

0O~ O Ui W

WWWWWNNNNDNDNDNNNDDN R P = e
WP, OO UR WO OO Uk WN = O©

multiplication
state_nxt = TRUNK;

end
TRUNK :
begin
result_nxt = result_r >>> LENGTH; //Signed rightshift
state_nxt = ADD;
end
ADD:
begin
result_nxt = result_r + $signed({emaregs_ema_reg_data_outl [MSB
],emaregs_ema_reg_data_outl}); //Signed addition
state_nxt = FIN;
end
FIN:
begin
ema_ematop_finish = 1’bil;
ema_ematop_data = result_r; //Signed to unsigned
state_nxt = IDLE;
end
endcase
end
endmodule

Listing B.8: thcomptop.v

module thcomptop (/*AUTOARG*/);
‘include "sync_params.v"

[/ == ———————— Parameters—---------————————————————————
parameter

IDLE=2’b00,

START=2’b01,

CMP=2’b10;
parameter MSB_STATE = 1;
/] =—======——==== Input Ports-------------———————-—"———~——~———
input clk;

input rst_n;

input ematop_thcomptop_start;

input [MSB:0] ematop_thcomptop_data;
input cfg_we;

input [MSB:0] cfg_data_in;

input [MSB_REGS_ADDRESS:0] cfg_addr;

[/ =—====—======= Qutput Ports---------------—-———-———-——~——-———--
output reg thcomptop_ctrltop_data;

output reg thcomptop_ctrltop_finish;

output [MSB:0] thcompregs_ctrltop_cfg_data_outO;
output [MSB:0] thcompregs_ctrltop_cfg_data_outl;

[/ =—=====—======= Registers------------—-—---—-—"—-—-"—"-~—-~-—"—-~—-~—\—~—-
reg thcomptop_thcompregs_weO;

reg [MSB:0] thcomptop_thcompregs_reg_data_inO;
reg thcomptop_thcomp_start;

reg [MSB_STATE:0] state_r;
reg [MSB_STATE:0] state_nxt;
/*AUTOWIRE x/

thcomp thcomp (/*AUTOINST*/);
thcompregs THCOMPREGS (/*AUTOINST*/);

// Sequential logic
always @(posedge clk or negedge rst_n)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71

0O Utk WN -

if (!rst_n) begin
state_r <= IDLE;
end
else begin
state_r <= state_nxt;
end

// FSM Combinatorial logic
always @* begin
state_nxt = state_r;
thcomptop_thcompregs_weO = 1°b0;
thcomptop_thcompregs_reg_data_inO = O0;
thcomptop_thcomp_start = 1’°b0;
thcomptop_ctrltop_finish = 1°b0;
thcomptop_ctrltop_data = 0;
case (state_r)
IDLE: begin
if (ematop_thcomptop_start) begin
thcomptop_thcompregs_weO = 1°bl;
thcomptop_thcompregs_reg_data_in0O =
ematop_thcomptop_data;
state_nxt = START;
end
end
START: begin
thcomptop_thcomp_start = 1’bil;
state_nxt = CMP;
end
CMP: begin
if (thcomp_thcomptop_finish) begin
thcomptop_ctrltop_data = thcomp_thcomptop_data;
thcomptop_ctrltop_finish = 1°bl;
state_nxt = IDLE;
end
end
endcase
end
endmodule

Listing B.9: thcomp.v

module thcomp (/*AUTOARG*/);
‘include "sync_params.v"

/] ============= Parameters-——-------—---——---—————————~——~—~——~——
parameter

IDLE=1"b0,

CMP=1’b1;
/] =—============ Input Ports---------------—-—---—-—"——-~———-~——-
input clk;

input rst_n;

input thcomptop_thcomp_start;

input [MSB:0] thcompregs_thcomp_reg_data_outO;
input [MSB:0] thcompregs_thcomp_reg_data_outl;

[/ === Output Ports--------------——-———-———-———-————
output reg thcomp_thcomptop_finish;

output reg thcomp_thcomptop_data;

/) === mmm - Wires----------=---=--—--—-———-——————-—————-
wire thcomptop_thcomp_start;

/) === mmm - Registers-—----------------———-————————~——-

reg state_r;

20
21
22
23
24
25
26
27
28
29
30
31
32

0O Utk WN -

e e el el e
© 00U bW~ O©

reg state_nxt;

always @* begin
state_nxt = state_r;
thcomp_thcomptop_finish = 1’b0;
thcomp_thcomptop_data = 1’b0;
case (state_r)
IDLE: begin
if (thcomptop_thcomp_start)
state_nxt = CMP;
end
CMP: begin
if (thcompregs_thcomp_reg_data_outo >
thcompregs_thcomp_reg_data_outl) begin
thcomp_thcomptop_data = 1’b1l;
end
else begin
thcomp_thcomptop_data = 1’b0;
end
thcomp_thcomptop_finish = 1’°bil;
state_nxt = IDLE;
end
endcase
end

always @ (posedge clk or negedge rst_n)

if (!rst_n) begin

state_r <= IDLE;
end
else begin

state_r <= state_nxt;
end

endmodule

B.3 Verification Tests

Listing B.10: med_tb.sv

module median3_tb();

‘include "sync_params.v"
localparam MAX_LINE_LENGTH = 11; // 10 bits + newline
task run();

reg [MSB:0] DataOutExpected;
integer file_in,
file_out,
file_mon;
integer return_in,

return_out ,
return_mon;

integer success_counter;
integer run;
integer match_counter,

error_counter;
reg [MAX_LINE_LENGTH#*8-1:01] str;
begin
run = 1;
match_counter = 0;

20
21
22
23
24

26

27

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

error_counter = 0;
tb.start = 0;
tb.data_i0 = 0;
tb.data_il1l = 0
tb.data_i2
DataOutExpected = O0;
file_in = $fopen("../../../standalone/sim/tests/median3/_input.
dat","r"); //Open file in read mode.
file_out = $fopen("../../../standalone/sim/tests/median3/_output.
dat","r"); //Open file in read mode.
file_mon = $fopen("../../../standalone/sim/tests/median3/_monitor
.dat","w"); //Open file in write mode.
$fwrite(file_mon, "median3_tb test started.\n");
$display("median3_tb test started.");
while (run) begin
//Load input data

]
o

return_in = $fgets(str, file_in);
if ('return_in)
run = 0;
else begin
success_counter = $sscanf (str, "%b", tb.data_i0);
return_in = $fgets(str, file_in);
success_counter = $sscanf (str, "%b", tb.data_il);
return_in = $fgets(str, file_in);
success_counter = $sscanf(str, "%b", tb.data_i2);

@(negedge tb.clk);

//Initiate filter sequence
@(negedge tb.clk);
tb.start = 1;

@(negedge tb.clk);
tb.start = 0;

//Wait for filter sequence finished
@(posedge tb.finish);

//Compare output data

return_out = $fgets(str, file_out);
success_counter = $sscanf (str, "%b", DataOutExpected);
@(negedge tb.clk);
if (DataOutExpected !== tb.data_o) begin
$display ("%0dns ERROR : Output wrong",$time);
$display (" Got %b", tb.data_o);
$display (" Exp %b", DataOutExpected);
error_counter = error_counter + 1;
end

else begin
$display ("%0dns MATCH : Output correct",$time);

$display (" Got %b", tb.data_o);
$display (" Exp %b", DataOutExpected);
match_counter = match_counter + 1;
end
@(posedge tb.clk);
end
end // while (run)
$fwrite(file_mon, "#Matches : %d\n",match_counter);
$fwrite(file_mon, "#Errors : %d\n",error_counter);

$fwrite(file_mon, "median3_tb test finished.\n");
$display ("#Matches : %d",match_counter);
$display ("#Errors : %d",error_counter);

T
78
79
80
81

83

00O~ O Ui W

39
40

41
42

43
44

$display("median3_tb test finished.");
$fclose(file_in);
$fclose(file_out);
$fclose(file_mon);
end
endtask
endmodule

Listing B.11: ema_tb.sv

module ema_tb();

‘include "sync_params.v"
localparam MAX_LINE_LENGTH = 5;
task run();

reg [MSB:0] DataOutExpected;
integer file_in,

file_out,

file_mon;

integer return_in,

return_out ,
return_mon;

integer success_counter;
integer run;
integer match_counter,

error_counter;
reg [MAX_LINE_LENGTH*8-1:0] str;

begin
run = 1;
match_counter = 0;
error_counter = 0;
tb.ematop_ema_start = 0;
tb.emaregs_ema_reg_data_outO0 = 0;
tb.emaregs_ema_reg_data_outl = 0;
tb.emaregs_ema_reg_data_out2 = 0;

DataOutExpected = 0;
//0Open file(s) in read/write mode.
file_in = $fopen("../../../standalone/sim/tests/ema/_input.dat","

r");

file_out = $fopen("../../../standalone/sim/tests/ema/_output.dat"
KEDY

file_mon = $fopen("../../../standalone/sim/tests/ema/_monitor.dat
n . Ilwll

$fwrite(file_mon, "ema_tb test started.");
$display("ema_tb test started.");
while (run) begin
//Load input data
return_in = $fgets(str, file_in);
if (!return_in)
run = 0;
else begin
success_counter = $sscanf (str, "%b", tb.
emaregs_ema_reg_data_out0);
return_in = $fgets(str, file_in);
success_counter = $sscanf (str, "%b", tb.
emaregs_ema_reg_data_outl);
return_in = $fgets(str, file_in);
success_counter = $sscanf (str, "%b", tb.
emaregs_ema_reg_data_out2);
@(posedge tb.clk);
//Initiate filter sequence

45
46
47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75

e
78
79
80
81

© 00O Ut WN -

I e e R il e il
OO0 U b WN O

@(posedge tb.clk);
tb.ematop_ema_start = 1’bl;
@(posedge tb.clk);
tb.ematop_ema_start = 1’b0;

//Wait for filter sequence finished
@(posedge tb.ema_ematop_finish);
//Compare output data

return_out = $fgets(str, file_out);
success_counter = $sscanf (str, "%b", DataOutExpected);
@(negedge tb.clk);
if (DataOutExpected !== tb.ema_ematop_data) begin
$display ("%0dns ERROR : Output wrong",$time);
$display (" Got %b", tb.ema_ematop_data);
$display (" Exp %b", DataOutExpected);
error_counter = error_counter + 1;
end

else begin
$display ("%0dns MATCH : Output correct",$time);

$display (" Got %b", tb.ema_ematop_data);
$display (" Exp %b", DataOutExpected);
match_counter = match_counter + 1;
end
@(posedge tb.clk);
end
end // while (run)
$furite(file_mon, "#Matches : %d\n", match_counter);
$fwrite(file_mon, "#Errors : %d\n", error_counter);

$fwrite(file_mon, "ema_tb test finished.\n");
$display ("#Matches : %d", match_counter);
$display ("#Errors : %d", error_counter);
$display("ema_tb test finished.");
$fclose(file_in);
$fclose(file_out);
$fclose(file_mon);
end
endtask
endmodule

Listing B.12: thcomp_tb.sv

module thcomp_tb();

‘include "sync_params.v"
localparam MAX_LINE_LENGTH_I
localparam MAX_LINE_LENGTH_O
task run();

reg DataOutExpected;
integer file_in,
file_out,
file_mon;
integer return_in,
return_out ,
return_mon;
integer success_counter;
integer run;
integer match_counter,
error_counter;
reg [MAX_LINE_LENGTH_I*8-1:0] str_ij;
reg [MAX_LINE_LENGTH_0#*8-1:0] str_o;
begin
run = 1;

11; // 10 bits + newline
2; // 1 bit + newline

21
22
23
24
25

27
28

29

match_counter 0
error_counter = 0;
tb.thcomp_start =
tb.thcomp_i = 0;
tb.threshold = 0;
DataOutExpected = 0;

//0Open file(s) in read/write mode.

file_in = $fopen("../../../standalone/sim/tests/thcomp/_input.dat

n,llrvv);

file_out = $fopen("../../../standalone/sim/tests/thcomp/_output.
dat","r"

file_mon = $fopen("../../../standalone/sim/tests/thcomp/_monitor.
dat","w"

$furite(file_mon, "thcomp_tb test started.\n");
$display("thcomp_tb test started.");
while (run) begin
//Load input data

return_in = $fgets(str_i, file_in);
if (!return_in)
run = 0;
else begin
success_counter = $sscanf(str_i, "%b", tb.thcomp_i);
return_in = $fgets(str_i, file_in);
success_counter = $sscanf(str_i, "%b", tb.threshold);

@(negedge tb.clk);

//Initiate comparator sequence
@(negedge tb.clk);

tb.thcomp_start = 1;

@(negedge tb.clk);

tb.thcomp_start = 0;

//Wait for comparator sequence finished
@(posedge tb.thcomp_finish);

//Compare output data

return_out = $fgets(str_o, file_out);
success_counter = $sscanf (str_o, "%b", DataOutExpected);
@(negedge tb.clk);
if (DataOutExpected !== tb.thcomp_o) begin
$display ("%0dns ERROR : Output wrong",$time);
$display (" Got %b", tb.thcomp_o);
$display (" Exp ’%b", DataOutExpected);
error_counter = error_counter + 1;
end

else begin
$display ("%0dns MATCH : Output correct",$time);

$display (" Got %b", tb.thcomp_o);
$display (" Exp %b", DataOutExpected);
match_counter = match_counter + 1;
end
@(posedge tb.clk);
end
end // while (run)
$fwrite(file_mon, "#Matches : %d\n",match_counter);
$fwrite(file_mon, "#Errors : ’%d\n",error_counter);

$fwrite(file_mon, "thcomp_tb test finished.\n");
$display ("#Matches : %d",match_counter);
$display ("#Errors : %d",error_counter);
$display("thcomp_tb test finished.");
$fclose(file_in);
$fclose(file_out);
$fclose(file_mon);

78
79
80

© 00O Ut WN -

O W W W WWNDNDNLNDNDNDDNDDNDNDN — e
QR WINHF OO UR WD O OO U kR WwNn~O

36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52

end
endtask
endmodule

Listing B.13: top_tb.sv

module top_tb();
‘include "sync_params.v"
localparam MAX_LINE_LENGTH = LENGTH+1; // 10 bits + newline
localparam FREQ = 16;
localparam MAX_NAME_LENGTH = 10;
realtime start_period = 1e9/FREQ;
reg enabled;
initial enabled = 1’b0;
task run();

integer file_in;
integer file_out;
integer file_mon;
integer return_in;
integer return_out;
integer return_mon;
integer success_counter;
integer run_counter;
integer match_counter;
integer error_counter;
integer start_time;
integer stop_time;
integer diff_time;
integer sleep_time;
reg [MAX_LINE_LENGTH*8-1:0] str;
reg [MSB:0] DataOutExpected;
begin

enabled = 1’°bl;

match_counter = 0;

error_counter = 0;

tb.top_ctrltop_start = 1’b0;

tb.top_ctrltop_cfg_addr = 0;

tb.top_ctrltop_cfg_w = 1°b0;

tb.top_ctrltop_cfg_r = 1’°b0;

tb.top_ctrltop_cfg_data_in = O0;

//tb.single_extres_model.C = 10e-12; //Change to emulate
capacitance changes/’touch’

DataOutExpected = O0;

@(posedge tb.rst_mn);

//0pen file in write mode.

file_mon = $fopen("../../../standalone/sim/tests/top/_monitor
.dat","w");

$fwrite(file_mon, "top_tb test started.\n");

$display("top_tb test started.");

//Module configuration:

//Write config data to numsampesreg

write_cfg_data (NUMSAMPLESREG, "numsamples", {4{2’°b11}});

//Read config data from numsamplesreg

read_cfg_data (NUMSAMPLESREG, "numsamples");

//Write config data to subvaluereg

write_cfg_data (SUBVALUEREG, "subvalue", {8{1°b0}});

//Read config data from subvaluereg

read_cfg_data (SUBVALUEREG, "subvalue");

//Write config data to alphareg

write_cfg_data (ALPHAREG, "alpha", {4{2°b10}});

//Read config data from alphareg

read_cfg_data (ALPHAREG, "alpha");

//Write config data to thresholdreg

write_cfg_data (THRESHOLDREG, "threshold", {4{2’b11}});
//Read config data from thresholdreg

read_cfg_data (THRESHOLDREG, "threshold");

run_counter = 16;
while (run_counter) begin
tb.clk_en = 1’bil;

start_time = $realtime;

$display("start time : ", start_time);
start_circuit () ;

run_counter = run_counter - 1;
stop_time = $realtime;

$display("stop time : ", stop_time);
diff_time = stop_time - start_time;
$display("diff time : ", diff_time);
sleep_time = start_period - diff_time;
$display("sleep time : ", sleep_time);

tb.clk_en = 1°b0;
#(sleep_time);
end
$display("top_tb test finished.");
$fclose(file_in);
$fclose(file_out);
$fclose(file_mon);
end
endtask
// Task for writing config data
task write_cfg_data;
input [MSB_REGS_ADDRESS:0] addr;
input [8*MAX_NAME_LENGTH-1:0] name;
input [MSB:0] data;
begin
$display("Writing %0d to J%Osreg", data, name);
@(posedge tb.clk_dly);
tb.top_ctrltop_cfg_addr = addr;
tb.top_ctrltop_cfg_w = 1’bl;
tb.top_ctrltop_cfg_data_in = data;
@(posedge tb.clk_dly);
tb.top_ctrltop_cfg_addr = 16’hx;
tb.top_ctrltop_cfg_w = 1’°b0;
tb.top_ctrltop_cfg_data_in = 16’hx;
$display("Finished writing to %Osreg.", name);
end
endtask
// Task for reading config data
task read_cfg_data;
input [MSB_REGS_ADDRESS:0] addr;
input [8*MAX_NAME_LENGTH-1:0] name;
begin
$display ("Reading from J%Osreg", name);
@(posedge tb.clk_dly);
tb.top_ctrltop_cfg_addr = addr;
tb.top_ctrltop_cfg_r = 1’bil;
@(posedge tb.clk_dly);
tb.top_ctrltop_cfg_addr = O0;
tb.top_ctrltop_cfg_r = 1’°b0;
$display ("Read value: %0d", tb.ctrltop_top_data);

113 $display("Finished reading from %Osreg.", name);
114 end

115 endtask

116 // Tast for performing a sample and filter sequence
117 task start_circuit;

118 begin

119 //Initiate filter sequence

120 $display("Starting filter sequence");
121 @(posedge tb.clk_dly);

122 tb.top_ctrltop_start = 1’bl;

123 @(posedge tb.clk_dly);

124 tb.top_ctrltop_start = 1°Db0;

125 //Wait for filter sequence finished
126 wait (tb.ctrltop_top_start);

127 end

128 endtask

129 // Probe samplertop_medtop data signal

130 | ‘define SM_START tb.U_DUT.MEDTOP.samplertop_medtop_start
131 | ‘define SM_DATA tb.U_DUT.MEDTOP.samplertop_medtop_data

132 initial begin

133 wait (enabled);

134 forever begin

135 @(negedge ‘SM_START);

136 $display ("samplermedtop data %d", ‘SM_DATA);
137 end

138 end

139 // Probe medtop_ematop data signal

140 | ‘define ME_START tb.U_DUT.EMATOP.medtop_ematop_start
141 ‘define ME_DATA tb.U_DUT.EMATOP.medtop_ematop_data

142 initial begin

143 wait (enabled) ;

144 forever begin

145 @(negedge ‘ME_START);

146 $display ("medtopematop data %d", ‘ME_DATA);
147 end

148 end

149 // Probe ematop_thcomptop data signal

150 | ‘define ET_START tb.U_DUT.THCOMPTOP.ematop_thcomptop_start
151 | ‘define ET_DATA tb.U_DUT.THCOMPTOP.ematop_thcomptop_data

152 initial begin

153 wait (enabled) ;

154 forever begin

155 @(negedge ‘ET_START);

156 $display ("ematopthtop data %d", ‘ET_DATA);
157 end

158 end

159 | endmodule

© 00O U W~

B.4 Pad/RC Circuit Model

Listing B.14: single_extres_model.sv

module single_extres_model (/*AUTOARG=*/
// Outputs
sense_in,
// Inputs
sense_oe, sense_out, drive_oe, drive_out
)
input sense_oe, sense_out;
input drive_oe, drive_out;
output reg sense_in;

real C = 10e-12;

real vcc = 3.3;

real vc = 0;

real vc_drive = 0;
real Rsens = 50;

real Rext = 1le6;

real Rstrong = 50;
real delta_t = 1e-10;
real delta;

always @* begin

delta_t = Rsens*C/50;

if (delta_t > 500e-9) delta_t = 500e-9;
end

// Hysteresis thresholding:
initial sense_in = 1’°b0;
always @x*

if (sense_in)

sense_in = vc > 0.3%xvcc;
else
sense_in = vc > 0.7%xvcc;

always @x*
casez ({sense_oe, sense_out, drive_oe, drive_out})
4°b0707: begin // Both pins floating.

vc_drive = vc;

end

4°b0710: begin // Drive driven low, sensing on sense.
Rsens = Rext;
vc_drive = 0;

end

4°b0711: begin // Drive driven high, sensing on sense.
Rsens = Rext;
vc_drive = vcc;

end

4°b107?: begin // Sense driven low.
Rsens = Rstrong;
vc_drive = 0;

end

4°b1177: begin // Sense driven high.
Rsens = Rstrong;
vc_drive = vcc;

end

endcase

57
58
59
60
61
62

63
64
65
66
67
68
69

70
71
72
73
74

// RC computer:
always begin
delta = vc_drive - vc;
if ((delta>0?7delta:-delta) > 0.01) begin
vec = vc + delta_t*delta/(Rsens*C);
// Neat implementation of a cancellable delay (note the
join_any):
fork
#(delta_tx*1e9);
@(vc_drive or delta_t);
join_any
end
else begin
// We have converged. Wait until vc_drive changes for
recomputation.
@(vc_drive);
#(0.01) ;
end
end
endmodule

N O Utk WN

10
11

13
14
15
16
17
18

20
21
22
23
24
25

27
28
29
30
31
32
33
34
35

Appendix C

Python Code

Listing C.1: med.py

#Python script for generating test data for median-3 filter
simulation.
import random # For generating random numbers.

import time # For timing each sort function with "time.clock()".

#Function for converting integer to binary.
def int2bin(n, count=128):
return "".join([str((n >> y) & 1) for y in range(count-1,

D

length = 8 #Number of bits, length of testvectors.
X = 255 #Max value.

N = 100 #Number of testcases.
M =3 #Number of input vectors.
list = []

#Erase file content.

w = open(’_input.dat’, ’w’)
w.close ()

w = open(’_output.dat’, ’w’)
w.close ()

#0pen files.
input_file = open(’_input.dat’, ’a+’)
output_file = open(’_output.dat’, ’a+’)

#Generate N input and output test vectors sets.
for k in range (0, N):
#Append M random input test vectors to list.
for i in range (0, M):
list.append(random.randint (0, X-1))

#Write input data in binary to "input_file".

for j in range (0, M):
input_file.write(int2bin(list[j], length))
input_file.write("\n")

125

-1, -1)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

—_

N O Ul W

10
11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39

#Compute median value.
list.sort ()
median = list[1]

#Write output test vector in binary to "output_file".
output_file.write(int2bin(median, length))
output_file.write("\n")

#Clean 1list.
for j in range(0, M):
list.pop()

#Close files.
input_file.close ()
output_file.close ()

Listing C.2: ema.py

#Python script for generating test vectors for EMA filter
simulation.

import random #For generating random numbers.

import time #For timing each sort function with "time.clock()".

#Function for converting integer to binary.
def int2bin(n, count=128):

return "".join([str((n >> y) & 1) for y in range(count-1, -1, -1)
iD)
length = 8 #Number of bits, length of testvectors.
X = 255 #Max value.
N = 100 #Number of testcases.
M =3 #Number of input vectors.
list = []

#Erase file content.

w = open(’_input.dat’, ’w’)
w.close ()
w = open(’_output.dat’, ’w’)

w.close ()

#0pen files.
input_file = open(’_input.dat’, ’a+’)
output_file = open(’_output.dat’, ’a+’)

#Generate N input and output test vectors sets.
for k in range(0, N):
#Append M random input test vectors (SAM_i EMA_{i-1} ALPHA)to list

for i in range (0, M):
list.append(random.randint (0, X-1))

#Write input test vectors in binary to "input_file".

for j in range(0, M):
input_file.write(int2bin(list[j], length))
input_file.write("\n")

#Compute "EMA_i".
sam = list [0]
emaold = list[1]
alpha = list[2]

40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56

—

N O Utk WN

10
11
12
13
14

16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

tmp = sam - emaold
tmp = alphax*tmp

tmp = tmp >> length
tmp = emaold + tmp
emanew = tmp

#Write output test vectors in binary to "output_file".
output_file.write(int2bin(emanew, length))
output_file.write("\n")

#Clean 1list.
for j in range (0, M):
list.pop ()

#Close files.
input_file.close ()
output_file.close()

Listing C.3: thcomp.py

#Python script for generating test data for threshold comparator
simulation.

import random #For generating random numbers.

import time #For timing each sort function with "time.clock()".

#Function for converting integer to binary.
def int2bin(n, count=128):
return "".join([str((n >> y) & 1) for y in range(count-1, -1, -1)
D

length = 8 #Number of bits, length of testvectors.
X = 255 #Max value.

N = 100 #Number of testcases.
M =2 #Number of input vectors.
list = []

#Erase file content.

w = open(’_input.dat’, ’w’)
w.close ()

w = open(’_output.dat’, ’w’)
w.close ()

#0pen files.
input_file = open(’_input.dat’, ’a+’)
output_file = open(’_output.dat’, ’a+’)

#Generate N input and output test vectors sets.
for k in range (0, N):
for j in range (0, M):

#Append random input test vectors to list.

list.append(random.randint (0, X-1))

#Write input data in binary to "input_file".
input_file.write(int2bin(list[j], length))
input_file.write("\n")

#Compute threhold value.
if 1list[0] > 1list[1]
result = 1
else

39
40
41
42
43
44
45
46
47
48
49
50
51

result = 0

#Write output comparison data in binary to
output_file.write(int2bin(result, 1))
output_file.write("\n")

#Clean 1list.
for i in range (0, M):
list.pop()

#Close files.
input_file.close ()
output_file.close ()

"output_file".

Appendix D

Tools

The following sections list the version information for the tools used in this thesis, so
that the results can be replicated.

D.1 Common Tools

Common tools are:
Synopsys Verilog Simulator (VCS)

Discovery Visualization Environment
Version C-2009.06
Platform Linux RH 4.0
DVE Build Date: May 19 2009 23:36:07
Copyright 2007 Synopsys, Incorporated.
ALL RIGHTS RESERVED

VCD+ Writer
Version C-2009.06
Copyright 2005 Synopsys Inc.

PrimeTime (R)
PrimeTime (R) SI
PrimeTime (R) PX
Version E-2010.12-8P3 for linux -- Apr 14, 2011
Copyright (c) 1988-2011 by Synopsys, Inc.
ALL RIGHTS RESERVED

129

D.2 Synchronous Flow Tools

Tools for synchronous design flow:

Design Compiler Graphical
DC Ultra (TM)
DFTMAX (TM)
Power Compiler (TM)
DesignWare (R)
DC Expert (TM)
Design Vision (TM)
HDL Compiler (TM)
VHDL Compiler (TM)
DFT Compiler
Library Compiler (TM)
Design Compiler (R)
Version E-2010.12-SP5 for linux -- Jul 17, 2011
Copyright (c) 1988-2011 Synopsys, Inc.

D.3 Asynchronous Flow Tools

Tools for asynchronous design flow:

o 1 - _ [valsa-c: Balsa —-> Breeze Compiler]
12)CNIZ/ (LN = (_ (C) 1995-2009, The University of Manchester

version 4.0

I -1 __ S P .~ _ - _T[..1 _ [balsa-make-makefile: Makefile generator]
[2)CNIZ/Z N = THTCONING? = THECNING? | 11 ¢=? (C) 2003-2008, The University of Manchester
version 4.0

| - - ’)._ _ [breeze2ps: Breeze -> Postscript Converter]

I (=2 /_(=>/_1_)_/ (C) 2000-2008, The University of Manchester
|

version 4.0

l_ . - _ __ _ _ _ _l_ [breeze-cost: Breeze cost estimation]
[(=22 /_(=? = (_.()_/ |_ (C) 1998-2008, The University of Manchester

version 4.0

l_ o _ _ __ _ el [breeze-sim: Breeze simulator]
[0 “(=>(=> /_(=> = _/ Illl (C) 2003, The University of Manchester

	Title Page
	Problem Description
	Abstract
	Sammendrag
	Preface
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Specification
	1.1.1 Goals
	1.1.2 Design Constraints
	1.1.3 Structure and Functionality
	1.1.4 Technology
	1.1.5 Design Techniques
	1.1.6 Fabrication

	1.2 Outline of the Thesis

	2 Background
	2.1 Capacitive Sensing
	2.1.1 RC Circuit and Relaxation Oscillator
	2.1.2 Classification of Signal
	2.1.3 Analog to Digital Conversion

	2.2 Digital Filters
	2.2.1 Median-3 Filter
	2.2.2 Exponential Moving Average Filter

	2.3 Asynchronous Circuit Design
	2.3.1 Handshake Protocols
	Bundled Data Protocols
	Bundled Data Channel Types
	4-Phase Bundled Data Protocol
	2-Phase Bundled Data Protocol

	2.3.2 Data Validity Schemes
	2.3.3 Muller-C Element
	Gate Level Implementation

	2.4 Clock Domain Crossing
	2.4.1 Setup, Hold time and Metastability of Flop
	Setup time
	Hold time
	Metastability

	2.4.2 Mean Time Between Failures

	2.5 Balsa Asynchronous Synthesis System
	2.5.1 Balsa Design Flow
	2.5.2 Data Typing Issues
	Non-Delay-Insensitive Components

	3 Implementation
	3.1 Top Module
	3.1.1 Architecture
	Channels
	Behaviour of Top Module

	3.2 Control Module
	3.3 Register Bank
	3.3.1 Registers
	Synchronous Implementation
	Asynchronous Implementation

	3.4 Sampler Top Module
	3.4.1 Synchronous Implementation of Sampler Top Module
	Implementation
	Synchronisation

	3.4.2 Asynchronous Implementation of Sampler Top Module
	Wrapper Module

	3.5 Sampler Module
	3.5.1 Synchronous Implementation of Sampler Module
	3.5.2 Synchronous Implementation of Sense/Drive Output Ports
	3.5.3 Asynchronous Implementation of Sampler Module
	Alternative 1
	Alternative 2
	Alternative 3
	Alternative 4
	Implementation

	3.5.4 Implementation of Sense/Drive Output Ports
	Alternative 1
	Alternative 2
	Implementation

	3.6 Median-3 Filter Top Module
	3.7 Median-3 Filter Module
	3.7.1 Registers
	Register Storage

	3.7.2 Median-3 Algorithm
	Comparison

	3.8 EMA Filter Top Module
	3.9 EMA Filter Module
	3.9.1 EMA Algorithm
	3.9.2 Addition
	3.9.3 Subtraction
	3.9.4 Multiplication
	Alternative 1
	Alternative 2
	Implementation

	3.9.5 Synchronous Implementation of EMA Filter Module
	Addition in Verilog
	Subtraction in Verilog

	3.9.6 Asynchronous Implementation of EMA Filter Module
	Adder in Balsa
	Subtraction
	Multiplication in Balsa

	3.10 Threshold Comparator Top Module
	3.11 Threshold Comparator Module

	4 Functional Verification
	4.1 Method
	4.2 Pad/RC Circuit Model
	4.3 Testbench
	4.4 Tests
	4.4.1 Top Module Tests
	Configuration Test
	Sample, Filter and Threshold Comparison Test

	4.4.2 Submodule Tests

	4.5 Simulation Flow
	4.6 Submodule Simulation
	4.6.1 Synchronous Implementation - Submodule RTL Simulation
	4.6.2 Asynchronous Implementation - Submodule Breeze Simulation

	4.7 Top Module Simulation
	4.7.1 Synchronous Implementation - Top Module RTL Simulation
	4.7.2 Synchronous Implementation - Top Module NTL Simulation
	Sampling and Pad/RC Model Circuit

	4.7.3 Asynchronous Implementation - Top Module NTL Simulation

	5 Synthesis
	5.1 Synthesis of Synchronous Implementation
	5.1.1 Flow
	5.1.2 Synthesis
	5.1.3 Quick P&R

	5.2 Synthesis of Asynchronous Implementation

	6 Time-Based Power Estimation
	6.1 Script for Generating SDF for all corners
	6.2 Script Sequence for Converting VPD to VCD
	6.3 Script Sequence for Time Based Power Estimation

	7 Results
	7.1 Cell Area Cost
	7.2 Power Consumption
	7.2.1 Power Waveform
	7.2.2 Power Distribution and Power Density
	7.2.3 Average Total Power
	7.2.4 Energy/sequence
	7.2.5 Average Power In Active Mode
	7.2.6 Peak Power

	7.3 Emission

	8 Discussion
	8.1 Results
	8.1.1 Power Consumption
	8.1.2 Area Cost
	8.1.3 Emission

	8.2 Design Optimisation
	8.2.1 Data Path
	Reducing the Number Range
	Dividing the Number Range
	Recurring Structures

	8.3 Verification
	8.3.1 Simulation Time
	8.3.2 Timing Violations

	9 Conclusion
	9.1 Conclusions Drawn from This Thesis
	9.2 Summary of the Contributions this Thesis Has Made
	9.3 Prospect of Further Research

	Bibliography
	A Balsa Code
	A.1 Parameters
	A.2 Modules
	A.3 Verification Tests

	B Verilog Code
	B.1 Parameters
	B.2 Synchronous Modules
	B.3 Verification Tests
	B.4 Pad/RC Circuit Model

	C Python Code
	D Tools
	D.1 Common Tools
	D.2 Synchronous Flow Tools
	D.3 Asynchronous Flow Tools

