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Problem Description
The starting point of this thesis is to use an excisting recognizer for phonetic
characteristics as a front-end of a language recognition system. Instead of a
purely phonotactic approach, an alternative approach of vector space modeling
(VSM) is to be the basis for the recognizer back-end.
The assignment is to implement a VSM-based language recognizer based on a
phonetic attribute tokenizer and to investigate alternatives to performing the
final classification such as Support Vector Machines (SVM) and Gaussian Mix-
ture Models (GMM).

I



II



Abstract
This thesis has taken a closer look at the implementation of the back-end of
a language recognition system. The front-end of the system is a Universal At-
tribute Recognizer (UAR), which is used to detect phonetic characteristics in
an utterance. When a speech signal is sent through the UAR, it is decoded into
a sequence of attributes which is used to generate a vector of term-count. Vec-
tor Space Modeling (VSM) have been used for training the language classifiers
in the back-end. The main principle of VSM is that term-count vectors from
the same language will position themselves close to eachother when they are
mapped into a vector space, and this property can be exploited for recognizing
languages.

The implemented back-end has trained vectors space classifiers for 12 dif-
ferent languages, and a NIST recognition task has been performed for evaluating
the recognition rate of the system. The NIST task was a verification task and
the system achived a equal error rate (EER) of 6.73%. Tools like Support Vector
Machines (SVM) and Gaussian Mixture Models (GMM) have been used in the
implementation of the back-end. Thus, are quite a few parameters which can
be varied and tweaked, and different experiments were conducted to investigate
how these parameters would affect EER of the language recognizer. As a part
test the robustness of the system, the language recognizer were exposed to a
so-called out-of-set language, which is a language that the system has not been
trained to handle. The system showed a poor performance at rejecting these
speech segments correctly.
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Sammendrag
Denne oppgaven har tatt en nærmere titt på implementeringen av back-end for
et språkgjenkjennelses-system. Front-end av systemet er en Universal Attributt
Gjenkjenner (UAG), som brukes til å oppdage fonetiske egenskaper i en ytring.
Når et talesignal sendes gjennom UAG-en, blir det dekodet til en sekvens av
attributter som igjen brukes til å generere en vektor med tellere. VektorRoms-
Modellering (VRM) har blitt brukt til trening av språk-klassifisererne i back-
end. Hovedprinsippet for VRM er at teller-vektorene fra det samme språket
vil posisjonere seg nær hverandre når de blir tegnet i et vektorrom, og denne
egenskapen kan utnyttes for å gjenkjenne språk.

Den implementerte back-end har trent vektorroms-klassifiserere for 12
forskjellige språk, og en gjenkjennelses-oppgave fra NIST har blitt utført for å
evaluere gjenkjennelses-raten til systemet. NIST-oppgaven var en verifikasjon-
oppgave og systemet oppnådde en Equal Error Rate (EER) på 6, 73%. Verktøy
som Support Vector Machines (SVM) og Gaussiske Blandings-Modeller (GBM)
har blitt brukt i implementasjonen av back-end. Dermed er ganske mange
parametere som kan varieres og skiftes, og forskjellige eksperimenter ble ut-
ført for å undersøke hvordan disse parametrene vil påvirke EER-en til språk-
gjenkjenneren. For å teste robustheten i systemet, ble språk-gjenkjenneren ut-
satt for et såkalt out-of-set-språk, som er et språk som systemet ikke har blitt
opplært til å håndtere. Systemet var ikke spesielt flink til å klassifisere disse
talesegmentene riktig.
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Chapter 1

Introduction

Language recognition (LRE) is a task which is getting more and more important
in the field of speech recognition. As a result of globalization, it is getting more
common to encounter speech and conversations on different languages, and LRE
could be an important tool to handle this information in a correct way. Lan-
guage recognition have several fields of applications, for instance in multilingual
call-centers where the language spoken by the caller needs to be detected, or
for indexing the recordings in a speech data base. LRE could also be used as
a pre-processing step for a multi-lingual speech recognizer. In addition, the use
of loan words from other languages are becoming quite usual, and detection of
these words could possibly help to improve the speech recognition.

There are several characteristics in speech that can be used to differentiate
between languages, but for this thesis, languages will be identified by looking at
the phonotactic content of a speech signal. The main idea is that an utterance
can be regarded as a sequence of features, and languages can be distinguished
by looking at how frequently these features occur. In addition, it’s possible to
look at combinations (n-grams) of subsequent features and make a model which
describes how often they appear for each language. When people are exposed
to a language they don’t understand, they tend to rely on the phonotactics in
order to make a qualified guess. To identify the spoken language they listen
for certain cues, like the nasal vowels in French, consonant cluster in Eastern
Europe languages or the characheristic vowel endings of Italian.

Most Language Identification (LID) systems uses some form of tokeniza-
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CHAPTER 1. INTRODUCTION

tion when classifying a speech signal. This tokenization is, in most cases, per-
formed by sending the acoustic signal through a phoneme recognizer, and the
decoded phoneme string is used for further processing. Phoneme recognizers are
actually language dependant, which can cause trouble, for instance, if we want
to design language identifiers for languages where there are little training data.
An alternative approach to the process of tokenization is to do a detection of the
phonetic characteristics (parameters which describes how sounds are physically
realized). The phonetic characteristics are language independant, which means
that a universal recognizer can be built for all languages.

There are some diserable advantages of using phonetic characteristics (at-
tributes) compared to the use of phonemes. First of all, the attributes are
universal for all languages, which means that the set of attributes doesn’t need
to be extended if the set of target languages is extended. This is not the case
when using phonemes since a language that is added to the set of target lan-
guages may include phonemes that haven’t been observed earlier. Secondly, if
more training data becomes available, the attribute recognizer can be re-trained,
regardless of which language new material origins from. The starting point of
this thesis is to use an existing universal attribute recognizer (UAR) as a front-
end of a LRE system. The task is to implement a back-end with classfiers based
on the vector space model (VSM) approach. The main principle of the VSM is
that the content in the decoded sequence of attributes from the front-end is used
to generate a document vector, and this vector can be mapped as a point in
a multi-dimensional vector space. Different utterances from the same language
will form a set of document vectors which will be positioned close to each other
in this vector space. Hopefully, these clusters of document vectors for each lan-
guage will be separated in such a way that they can be used to uniquely describe
a language. In a recognition task a new document vector, d̃, is generated based
on the test utterances and it is mapped in the same vector space. By looking
at which cluster of document vectors that is positioned closest to the document
vector d̃, the language can be identified.

The report will start off by explaining some more background information
on language recognition in the next chapter. In chapter 3.1, the UARs will be
presented along with the necessary theory for the VSM-backend. In chapter 4,
the conducted experiments are explained and the results are presented. There
will also be a discussion in the same chapter. Finally, a conclusion will be drawn
in chapter 5.
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Chapter 2

Language Recognition

2.1 Language Characterization

There are multiple features which characterize a spoken language, and knowl-
edge of these features is useful and necessary when developing an LRE system.
The main principle of LRE is to build statistical model for each target language,
by using one or more of these features, in order to separate the languages from
one another. The following list mentions some examples of language character-
istics that may be used for recognition purposes [2]:

• Spectral characteristics: Purely acoustic features with no linguistic
content.

• Prosody: Patterns of duration, pitch and stress may differ from one
language to another.

• Phonological information: Information about a language’s phonemic
inventory, phonotactics and articulatory features.

• Lexical information: Different languages have different vocabularies.
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CHAPTER 2. LANGUAGE RECOGNITION

2.2 Approaches

There are several ways of performing language recognition, but roughly speak-
ing, the approaches can be divided into two categories:

2.2.1 Spectrally Based LRE

This approach uses only the acoustic information in a speech signal to generate
a set of feature vectors which describe the language. These features can be
extracted by applying short time analysis to the speech signal, while linguistic
data, such as words or phones, are not used at all. Mel-Frequency Cepstral
Coefficients (MFCC) are a common choice of features, but Shifted-Delta Cep-
stral (SDC) features are often preferred as it provides information on temporal
evolution. A decision is made by evaluating the features in a bank of classifiers
to find the language that have the highest probability of producing the known
observations.

2.2.2 Token Based LRE

In token-based LRE, speech is decoded into a sequence of labels using a tok-
enizer. The most common tokens used in LRE are phones, which can be used to
build n-gram language models. This is the case for PRLM (Phone Recognition
followed by Language Modeling), which has proven to be an effective system for
recognizing languages [12]. However, the use of phone recognizers has some ma-
jor drawbacks since the recognizers are language dependant, and labeled data
is needed for each recognizers. By using an universal tokenizer these problems
will be eliminated.

2.3 Types of Recognition Tasks

There are two different types of recognition tasks that will be evaluated in this
thesis. The first tasks is language identification, which is the process of iden-
tifying a language of a spoken utterance from a closed set of target languages.
The other task is language verification, where a speech signal is presented along
with a claim that the utterance belong to a certain language. In this case, the
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2.3. TYPES OF RECOGNITION TASKS

task is to determine whether this initial hypothesis is true or false. When per-
forming language verification, the utterance may belong to a language which
the system haven’t encountered before, and this complicates the task. However,
the verification task is in general an easier task than the identification task.
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Chapter 3

System Overview

A language recognition system is usually divided into a front-end and a back-
end. The front-end will perform some kind of feature extraction and represent
an utterance as a sequence of features. The back-end of the system will use these
features to classify which language the utterance belongs to. A block diagram
of the LRE system can be seen in figure 3.1, and each block will be described
step-by-step in this chapter.

3.1 Universal Attribute Recognizers

The UARs that will be used in the following LRE system was developed by
Sabato Marco Sinischalchi at Kore University of Enna, for researching purposes
in connection with the work in [10]. The architecture of the UARs can be seen
in figure 3.2. The recognizers perform feature extraction by looking at the
temporal context of a windowed segment of an utterance. It splits the segment
into a left context (LC) and a right context (RC) and evaluates the temporal
changes between them. The classifiers are based on a hybrid of the hidden
Markov model and an artificial neural network (HMM/ANN), and the Viterbi
algorithm is used to determine the label with the highest state probability at a
point in an utterance. Both of the UARs for manner and place attributes have
a set of 12 different labels (including silence), which can be seen in table 3.1.
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CHAPTER 3. SYSTEM OVERVIEW

Figure 3.1: Block diagram of the LRE system, separated into a UAR-Frontend
and a VSM-backend [10].

The output from the UARs will be two sets of transcriptions (manner-based
and place-based) for each utterance.

Figure 3.2: The structure of the UAR, which is based on the split temporal
context idea.

A part of the OGI-TS corpus, which has phonetic transcriptions for six
different languages (English, German, Hindi, Japanese, Mandarin and Spanish),
was used to train the two UARs. On average, less than 1 hour of transcribed
data from each language was used, which is a fairly small amount compared to
the amount that is normally used when training phonotactic tokenizers. The
performance of the UARs on the OGI-TS test sentences, for different number
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3.2. MODELING N-GRAMS

Table 3.1: The sets of attribute labels for the UAR

manner affricate, diphtong, flap, fricative, glide, liquid, nasal,
sibilant, unvoiced-stop, voiced-stop, vowel, silence

place alveolar, alveo-palatal, bilabial, dental, glottal, high,
labio-dental, low, mid, palatal, velar, silence

of attributes, have been investigated in [10]. The LRE system in this thesis will
use UARs with the maximum number of attributes (12, including silence), and
their respectively error rates can be seen in table 3.2.

Table 3.2: Error rate for the two UARs on the OGI-TS test files when all 11
attribues (excluding silence) are being used.

# attributes Error rate
Manner 11 30.40 %
Place 11 34.50 %

3.2 Modeling n-grams

The first step in the back-end is to generate a term-count vector by analysing
the transcriptions from the UAR. An utterance will be decoded by the UAR
and tokenized into a set of speech features. This set, called a spoken document,
contains speech units that are drawn from a fixed inventory, U = u1, u2, ..., uJ ,
which consists of J different attributes. The attributes are counted with respect
to how many times they appear in the spoken document, and this result in a
term-count vector of length M = J . The UAR tokenizers for both place and
manner transcriptions chooses attributes from a set of J = 12 symbols. This
vector is too small for doing any descent language recognition, so in order to im-
prove the statistical resolution, terms are modeled as n-grams. This means that
in addition to counting occurences of single attributes (unigrams), occurences
of order-dependent groups of attributes are counted, i.e. bi-grams (uiuj , a
pair of attributes), tri-gram (uiujuk, group of three subsequent attributes), and
so on. The number of acoustic labels and n-grams must be chosen carefully
when implementing an LRE system, and there is an important trade-off in-
volved in this decision. In order to cover all of the acoustic variations in a
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CHAPTER 3. SYSTEM OVERVIEW

language, M need to be large, but if it’s too large it will result in a system with
high computational complexity. The system implemented in this thesis will use
n-grams up to the order of 4 (quad-grams), and since the manner tokenizer
has a set of J = 12 different attributes, resulting in a term-count vector with
M = J + J2 + J3 + J4 = 22620 terms. The place transcriptions also have 12
different attributes as well, which results in a term-count vector with a total of
45240 terms.

3.3 Latent Semantic Analysis (LSA)

Generating the term-count vector, described in chapter 3.2, can be regarded as
the first step in the latent semantic analysis. The term-count vectors, dm and
dp, that are generated using respectively manner and place transcriptions, can
be evaluated seperately in order to investigate the effect of using each set of
attributes. By merging the count-vectors from both place and manner tran-
scriptions, the seperation in the LSA procedure will improve. This is simply
done by concatenating the two term-count vectors from the same utterance,
d = [dTm dTp ]T . In training, a document matrix is generated by using all the
available training data from all languages, and each column in this matrix cor-
responds to a term-count vector. The next step is to normalize the entropies
of the data by analyzing the set of vectors and the terms they contain. This
is because some terms appear frequently in all languages and these terms are
therefore less informative in terms of distinguishing between languages. Terms
that occur regularly for a language, but rarely for other languages are more
describing and needs to be weighted more heavily [1]. The result after perform-
ing the weighting of the count values is a term-document matrix, W = {wi,j},
where

wi,j = (1− εi)
ni,j
nj

(3.1)

εi = − 1

logN

N∑
j=0

ni,j
ni

log
ni,j
ni

(3.2)

ni,j is the number of times term i appear in document j, nj is the number of
terms in document j and ni is the number of times term i appears in total in
the N training documents. The value (1− εi) will be close to zero if a term
appears uniformely across all languages, and close to 1 if a term only appears
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in a few document vectors. The resulting term-document matrix, W , will have
a dimension of M ×N .

The term-count vectors have very high dimentionality, and in addition,
they are quite sparse since only a minority of the terms occur in an utterance.
Singular Value Decomposition (SVD) are used inn order to reduce the com-
putational complexity of these long vectors. This is the final step in the LSA
procedure. During training, the SVD procedure performs a factorization of the
term-document matrix into the following form:

W ≈ Ŵ = USV T . (3.3)

U have a dimentionality of M × Q, S is Q × Q and V is N × Q. The value
of Q, is the rank of approximation matrix Ŵ , and it has to be chosen. This
value determines how many singular values will be retained and used for the
final classification. If Q = M the matrices W and Ŵ will be equal, but the
value should be chosen as Q << M . The main purpose of the SVD is to convert
the term-count space into a new concept space with much lower dimentional-
ity, by retaining only the largest singular values. When performing language
recognition, an utterance is transcribed by the UAR and a term-count vector
is generated. The next step is to make a pseudo vector by using the U matrix
which was calculated during training. The reduced Q-rank pseudo vector is
calculated as

d̃Q = dT U (3.4)

This results in a vector whose dimentionality has been reduced from M = 45280
to rank Q. Although the dimensionality is severely reduced, the most describing
data is hopefully retained, which means that two document vectors with similar
content (i.e. two documents from the same language) will have a small distance
between themselves in the Q-rank concept space.

3.4 Classifier Using Support Vector Machines (SVM)

At this point, the term-count vectors are represented as pseudo document vec-
tors, and vector-based classifiers must be built to perform language recognition.
There excist several techniques for doing so, but the system described in this
paper uses a classifier based on Support Vector Machines (SVM). For each lan-
guage, a 1-versus-all classifier is trained by using the pseudo document vectors
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from the LSA, and this will result in a bank of binary SVMs. The training doc-
uments are labeled x+ if the data belongs to the target language of the specific
SVM, and they are labeled x− if they belong to another language. The system
trains a classifier of the form f(d) = aTφ(d) + b, where a is the vector weight,
b is the offset, and φ(.) denotes the kernel function. In training, the goal is to
seperate the data from the two classes with a hyperplane while maximizing the
margin (the distance between the hyperplane and the nearest training vectors).
An example of different seperation possibilities using a linear kernel, and how
it affects the margin, can be seen in figure 3.3. It is possible to alter the posis-
tion of the hyperplane and deliberately misclassify some of the training data to
achieve a wider margin.

Figure 3.3: H3 (green line) doesn’t seperate the two classes. H1 (blue) does,
but the margin is very small. H2 seperates the classes with a maximum possible
margin.

However, the class data aren’t always linearly separable. In that case, a
non-linear kernel could be used in order to improve the accuracy of the classifier
(see figure 3.4). These kernels perform a transformation and map the training
data into a Euclidian space where they are linearly separable. In the LRE
system, both classifiers with linear and non-linear kernels will be trained and
their performances will be evaluated and compared.

12
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Figure 3.4: Non-linear kernel function used for better fitting of the training
data.

3.5 GMM and Final Decision

For each language, a pair of GMMs are modeled. The training documents for
a target language are evaluated by the bank of SVMs and uses the SVM dis-
tances (the distances from the seperating hyperplane and the training vectors)
to model the first GMM. The other GMM, which will describe a so-called anti-
target model, is modeled by using the SVM distances from all other languages.
When performing a verification task, the pair of GMMs for a claimed language
are evaluated, and the final decision is made based on the log-likelihood ratio
which is compared to a threshold. Two possible errors can be made when doing
verification, namely a false rejection (rejection of a hypothesis which is true) or
false alarm (accept a hypothesis which is wrong). There’s a bit of a trade-off
between these two errors, and the threshold in the final decision will affect these
two error rates. By lowering this threshold less false rejections will be made, but
in return, the probability of false alarms will increase. Results from a system
evaluation are usually expressed in terms of equal error rate (EER), which is
the the point when the probability of a false alarm is equal to the probability
of a false rejection. Figure 3.5 shows a more detailed sketch of the classifier.
When performning a identification task, the languages’ model GMM is evalu-
ated by using the SVM distances, and the language with the highest probability
is selected.
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Figure 3.5: A more detailed block diagram of the classifier in the back-end. K
denotes number of trained languages in the system.
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Chapter 4

Experiments, Results and
Discussion

In this chapter, the executed experiments will be explained and the system’s
performance will be evaluated. The recognition rate of the system will primar-
ily be investigated by performing a verification task on the NIST 2003 evaluation
set [7]. The goal is to decide whether a hypotesized language is present or not in
a given utterance, and the performance will be expressed in terms of EER. This
evaluation set consists of test utterances with a duration of 30 seconds. The
languages included in this set are the same twelve languages found in the Call-
Friend corpus and there are 80 segments of each language. In addition, there are
80 test segments with Russian speech to evaluate the system’s robustness with
respect to an out-of-set language, and English and Japanese have an additional
number of test segments of 160 and 80, respectively, from other corpora. This
result in a total of 1280 test segments. There are several factors and variables
in the implementation that can be changed, and the effect of varying these will
also be evaluated. Finally, a language identification test (identifying the lan-
guange of an utterance from a closed set) will be executed. Details concerning
the results will be discussed as they are presented, and a more general discussion
will be presented in the final section.
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CHAPTER 4. EXPERIMENTS, RESULTS AND DISCUSSION

4.1 CallFriend Corpus

Speech from the CallFriend database will be used for training and evaluation
of the language identifier. The database contains several hours of telephone
conversations for twelve different languages (see 4.1). Three of the languages
(English, Mandarin and Spanish) have available data for two different dialects,
but only one of these dialects are chosen when training the VSM backend.

Table 4.1: Languages included in CallFriend

Arabic English Farsi French
German Hindi Japanese Korean
Mandarin Spanish Tamil Vietnamese

The length of the conversations in the database varies somehow, but most
of the recordings have a length of 30 minutes. However, the files are continous
recordings, and as a result, they contain a considerable amount of silence. Thus,
the amount of speech in each recording are somewhat less than 30 minutes. In
total, for each language, there are approximately:

• 10 hours of training data - used for building the initial VSM.

• 10 hours of development test data (devtest) - can be used for testing during
development in order to tweak on variables that creates the most optimal
VSM.

• 10 hours of evaluation test data (evltest) - used for evaluting the system.
These data must be unknown for the system until the final evaluation
tests.

4.2 Results

4.2.1 Singular Value Resolution

This first experiment will investigate the number of singular values needed to
achieve a good seperation between languages. This step is done in the LSA
procedure, where the term-document vector is mapped into a Q-rank space in
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4.2. RESULTS

order to reduce the dimentionality and the sparsity problem. The results from
the NIST 2003 task evaluation is shown in figure 4.1. Terms in the document
vector are modeled up to quad-grams (4-grams). The graph to the left shows
the results when the term-count vectors from the UMR and UPR transcriptions
are modeled and evaluated seperately. The error rate decreases when more
singular values are retained, but as the curves approach 200 both of them flatten
out. Thus, the number of retained singular values in all of the subsequent
experiments are chosen to be 200. The right panel of figure 4.1 shows the error
rate when the manner and place documents are combined, and this result verifies
that the selection of 200 singular values was a good choice. The EER achived
in this experiment was, respectively, 13.2% and 12.1% for manner and place
transcriptions. When these transcription were merged, the system attained an
EER of 7.1%.

0 100 200 300
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15

20

Number of retained singular values

E
E
R

[%
]

Separate UMR/UAR

Manner
Place

0 100 200 300

10

15

20

Number of retained singular values

Merged UMR/UAR

Figure 4.1: EER for NIST 2003 task with respect to number of retained sin-
gular values. Result for seperated manner and place transcriptions to the left,
and merged document vectors to the right. These results were achieved using
classifiers modeled with LIBLINEAR [5].
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4.2.2 Different Kernel Functions

The experiments described in the previous section were all executed using clas-
sifiers with linear kernels. For this part, the use of unlinear kernels will be
investigated. The use of a radial basis function, which has been proven effective
in previous work [11], and a polynomial kernel will be evaluated. The classifiers
were implemented using LIBSVM [3]. Cross validation was used by dividing the
training data into five folds. Four folds are used for training and the last one
is used for validation. By doing so, one can find the optimal parameters which
assures a well fitted decision boundary for the classifier.

Table 4.2: The system’s EER on the NIST 2003 task for different types of
kernels.

Kernel Type EER
Linear 7.03 %

Polynomial (second order) 7.11 %
Radial basis function 6.73 %

4.2.3 Number of Mixture Components in GMM

The final step in the back-end is to evaluate a pair of GMMs with respect
to the outputted SVM distances from the classifiers. These two GMMs are,
respectively, a model and an anti-model of the hypotesized language in the ver-
ification task. The model GMM is trained using SVM distances from the target
language, and if these distances are represented as a vector, it is reasonable to
assume that the vectors will position themselves close to eachother in a vec-
tor space. Therefore, this GMM is modeled with only one mixture component.
Since the anti-model is built using SVM distances from all other languages, it
is likely to assume that a GMM with 11 mixture components will fit the data
well. To verify this hypothesis, a series of experiments were executed, where the
number of mixture components for the anti-model was varied. The GMMs are
built using the SciKit-Learn library [9], which uses the EM-algorithm to fit the
statistical models.

As seen in figure 4.2, the initial hypothesis of 11 components was not a
bad choice. The EER varies from 7.00% to 7.45% when using 4 and 7 compo-
nents, respectively. When increasing the number of components to 12 the EER
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Figure 4.2: Equal Error Rate (EER) of the NIST 2003 task evaluation for
different number of mixture components in the anti-model’s GMM.

reaches a low point of 6.93%. Although the use of 11 components didn’t give the
best score, the initial hypothesis will be kept, and the remaining experiments
will be executed using 11 components in the GMM of the anti-model.

4.2.4 Language Recognition Evaluation

After investigating the effects of different parameters in the back-end, it is time
to evaluate the full LRE system. 200 singular values are retained and the
classifiers use a RBF kernel. Figure 4.3 shows the Detection Error Trade-off
(DET) curves for the NIST 2003 task when using the UAR transcriptions for
manner and place seperately, and when merging the document vectors. The
equal error rate is reduced to 6.73% when both manner and place transcriptions
are used.

The DET-curves for each individual language can be seen in figure 4.4,
and it is quite evident that there are some differences between the languages in
terms of performance. German, Tamil and Vietnamese are the three languages
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Figure 4.3: DET-curves for the LRE system when using manner and place
transcription seperatly (dashed lines), and when merging the document vectors.

with the lowest EER, while Spanish and Hindi have the highest EER. The
EERs for each language can also be seen in table 4.3. The performance on the
evaluation set of CallFriend has also been investigated (see table 4.4).

Table 4.3: Equal Error Rate (EER) for each language in the NIST 2003 task
evaluation.

Language Arabic English Farsi French German Hindi
EER [%] 6.25 5.89 8.75 4.91 2.81 11.25

Language Japan. Korean Mand. Spanish Tamil Viet.
EER [%] 8.15 7.50 8.75 8.88 3.75 3.88
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Figure 4.4: DET-curves for each individual language in the NIST 2003 evalua-
tion.

Table 4.4: Evaluation results of the NIST 2003 task and CallFriend evaluation
set.

Test set EER
NIST 2003 6.73 %

CallFriend Evaluation 5.13 %

4.2.5 Effect of Out-of-Set Languages in the Evaluation

The LRE system has been trained on a set of 12 different languages, which
is a fairly limited number, so it’s very likely to encounter a language which is
unknown to the system. The NIST 2003 task has included 80 test segments
of Russian to evaluate the robustness of the system regarding so-called out-
of-set languages. Table 4.5 shows the evaluation results, in terms of rejecting
the Russian segments, when they were claimed to be another language. It is
worth noting that most of the Indo-European languages have signifigantly lower
rejection rate compared to other languages like Arabic, Japanese and Mandarin.
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This could be explained by the fact that Russian is also an Indo-European
language and therefore harder to discriminate. The average rejection error is
quite prominent compared to the EER of the in-set languages. A universal
background model was built in an attempt of improving the error rate for out-
of-set languages. This was simply done by modeling a GMM using all available
SVM distances in the training, and reject all test files that was below a certain
threshold when evaluating it. This resulted in a better rejection rate for the
out-of-set language. However, it also resulted in a much higher rate of false
rejections which lead to worse EER for the overall system.

Table 4.5: Percent of the russian utterances that was rejected when it was
claimed to be one of the trained languages in the system.

Claimed Arabic English Farsi French German Hindi
Rejected [%] 81.25 63.75 58.75 21.25 32.50 27.50

Claimed Japan. Korean Mand. Spanish Tamil Viet.
Rejected [%] 80.00 73.75 85.00 21.25 52.5 51.25

Average Accuracy [%] 54.06

4.2.6 Language Identification

Finally, a language identification task have been performed on the NIST 2003
set and the CallFriend evaluation set. It is quite clear that the identification
task is a much more difficult task than verification. Almost 1 in 5 ( 80.25%) test
files are identified wrongly for the NIST set, but the results from the CallFriend
evaluation set is slightly better.

Table 4.6: LID results of the NIST 2003 task and CallFriend evaluation set.

Test set Correct
NIST 2003 80.25 %

CallFriend Evaluation 85.39 %
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4.3 Further Discussion

Recognizing a language based on a recording of a telephone conversation can be
a bit challenging, and there are several reasons:

• First of all, a telephone conversation tends to be very unformal, and there-
fore, sloppy pronounciation is quite common. Laughter can also occur
frequently in a conversation between friends.

• Between sentences, a speaker may utter sounds without any lingustic
meaning, like hmm- and ehh-sounds.

• It’s not unusual that a speaker produces a lot of unwanted noises, such as
coughs and smacking of the lips.

• In addition, the speech of a telephone conversation is degraded and cor-
rupted due to noise in the tranciever or on the channel.

All of these are factors that will cause problems for the front-end tokenizer and
the vector space model, and consequently reduce the accuracy of the recognizer.

The accuracy of the tokenizer is probably the most limiting factor in the
LRE system in terms of performance. It was shown in [8], that there is a evident
correlation between the error rate of the LRE system and the error rate of the
tokenizer. According to [10], which used the same attribute sets in the UARs
as in this thesis, it was shown that the system achived 100% correct recognition
if there were no tokenization errors. This was done by using provided reference
documents, since the UARs are not error free, but it proves that the selected
set of attributes is sufficient for performing language recognition.

The selection of a kernel function in the classifiers did not prove to be
very crucial. The improvement in performance was not very significant when
choosing a non-linear kernel, compared to the use of a linear kernel. This is
probably due to the fact that the system uses 200 singular values, which means
that the data sent to the classifiers are represented as 200-dimensional vectors.
In high dimensional vector spaces, the linear separability improves [4] and there-
fore, the linear kernel achieves an acceptable separation. A known problem with
non-linear kernels is the possibility of overfitting the classifier during training.
This could result in a smaller margin and/or simply a non-optimal decision
boundary.

When investigating what number of mixture components should be cho-
sen for the anti-model GMM, 12 mixture components appeared to give the best

23



CHAPTER 4. EXPERIMENTS, RESULTS AND DISCUSSION

result. This coincide well with tests performed while implementing the system,
where a Bayesian Information Criterion (BIC) was calculated for the statisti-
cal model with respect to the training data [6]. These test showed that, for
all trained languages in the system, the use of one mixture component for the
model and 11 mixture components for the anti-model fitted the training data
best.

The closed set of target languages consisted of 12 languages, which is a
fairly small amount compared to the large number of languages that excist in
the world. The place of origin for these 12 languages are spread over a large
geographical area, and in addition, they appear to sound very different from one
another. It would be reasonable to assume that the system would perform worse
if it had to differ between languages that have a similiar phonotactic content
(say Swedish and Norwegian).
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Conclusion

The two UARs used in this thesis has proven to work well as front-ends in a
language recognition system, although the number of attributes are relatively
limited compared to other tokenizers. Since the number of attributes are re-
stricted to 12 attributes for both the UMR and the UPR, document terms
can be modeled as quad-grams without making the system too computational
complex. The accuracy of the front-end tokenizers have a great impact on the
overall performance of a language recognition system, but the results from the
NIST 2003 task are satisfying. When combining the document vectors gener-
ated from the UMR and UPR transcriptions, the system’s EER was reduced to
6.73%. In order to improve the dimentionality and the sparsity problem of the
document vectors, LSA was used to convert the document vectors into a con-
cept vector space of just 200 dimensions. The use of a non-linear kernel in the
SVM classifiers proved to have little profit, because the absolute improvement
of using a RBF kernel compared to a linear kernel was just 0.3%, which is not
very significant. By investigating the recognition results of the Russian test in
the NIST 2003 task it is quite evident that out-of-set languages could be very
problematic. Only 54.06% of the Russian utterances were correctly rejected, so
there’s a lot of room for improvement for this type of problems.
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