
Signal Processing for Communicating
Gravity Wave Images from the NTNU Test
Satellite

Marianne Bakken

Master of Science in Electronics

Supervisor: Tor Audun Ramstad, IET

Department of Electronics and Telecommunications

Submission date: July 2012

Norwegian University of Science and Technology

Problem Description

The payload defined for the NTNU Test Satellite to be launched in 2014 is an
infrared camera for observation of atmospheric gravity waves. Pictures taken by the
infrared camera should have sufficient resolution and quality, and cover appropriate
areas to be able to derive interesting properties of the waves.

The task in this thesis is to consider the different issues related to signal process-
ing for achieving good quality image rendition while being able to transmit as many
pictures as possible taking the transmission channel capacity into consideration.

One problem to be considered is blur resulting from the satellite motion and
the necessary long exposure times. Methods based on deblurring on one hand, and
the combination of multiple pictures with motion compensation on the other hand,
should be developed.

The image transfer rate depends on the image resolution and the number of
bits per pixel used. The bit number can be substantially reduced by image/video
compression. Appropriate compression techniques should be developed taking the
image characteristics and quality requirements into consideration.

The algorithms developed should be of moderate complexity to fit into the
available processing capability in the satellite. Simulations should be made to
indicate the potential of the suggested methods.

As the satellite construction is highly multidisciplinary where many parts de-
pend on each other, it is not expected that this work will result in final algorithms,
but rather point to avenues for final algorithm design.

iii

Preface

This report is one of the eight master’s theses that has been carried out as a part
of the NTNU Test Satellite (NUTS) project during the spring 2012. The NUTS
project is a student project aiming to design, develop, test, launch and operate a
double CubeSat by 2014. It is highly multidisciplinary, with final year students
from six departments at NTNU contributing in all stages.

To be a part of the NUTS project has been challenging, but also very interesting
and rewarding. In addition to the work regarding my thesis, a lot of time has been
spent on preparing and holding presentations, recruiting new students, making
flyers and information for the webpage, all in order to spread the word about the
project. I have also had the opportunity to participate in interesting workshops
and conferences, both in Norway and abroad.

Designing a payload for a satellite is a multidisciplinary task, and this project
evolved to cover a much wider field than first intended. This report is not only a
master’s thesis, it also serves as a documentation for the work that has been done
regarding the NUTS payload, and it has therefore grown to become quite extensive.

Quite a few people have helped me through this project. First of all, I would
like to thank my supervisor Tor Ramstad, for meeting me on a regular basis and
giving helpful advice both regarding signal processing and report writing. Secondly,
I should thank the members of the NUTS team for an amazing year with social
gatherings, fruitful discussions, unforgettable trips to Brussels and Andøya and a
lot of support. I should especially thank the project manager Roger Birkeland for
providing such an interesting master’s project. I would also like to thank Patrick
Espy for sharing his knowledge about atmospheric physics and sensor technology,
and for carrying out and analysing a sensor experiment for me. Lise Randeberg
has also given me useful input regarding camera technology.

Finally, I would like to thank all the people that have read and given feedback
on different parts of my thesis; Tor Ramstad, Roger Birkeland, Snorre Rønning,
Mehmet Altan and Patrick Espy, and especially Sigvald Marholm and Irene Bakken
for having the patience to read the complete thesis and giving me very valuable
feedback and support the last week.

v

Abstract

The NTNU Test Satellite (NUTS) is planned to have a payload for observation
of atmospheric gravity waves. The gravity waves will be observed by means of
an infrared camera imaging the perturbations in the OH airglow layer. So far, no
suitable camera has been found that complies with the restrictions that follows
when building a small satellite. Uncooled InGaAs has however been concluded to
be the most suitable detector type in terms of wavelength response and weight.

InGaAs sensors are known to have a high dark current when not cooled, and
processing must therefore be applied to remove the background offset and noise.
The combination of the high speed of the satellite and the long exposure time that
is required for the camera will create motion blur. Simulations with synthetic test
images in MATLAB showed that the integration time should at least be kept under
1 second in order not to destroy the wave patterns. Longer integration times may
however be required in order to get a sufficient SNR.

Two signal processing solutions to this problem was investigated: motion blur
removal by deconvolution and image averaging with motion compensation. The
former strategy is to apply a long exposure time to get a strong signal, and then
remove the blur with deconvolution techniques using knowledge of the blur filter.
Simulations applying the Lucy-Richardson (LR) algorithm showed that it was not
able to remove strong blur, and was very sensitive to errors in the blur filter and
noise in the image. The other approach is to obtain a sequence of images with
short exposure time in order to avoid motion blur, and provide the necessary SNR
by shifting the images according to the known motion and combine them into one
image. This concept is simpler and more reliable than the deconvolution approach,
and simulations showed that it is less sensitive to errors in the speed estimate
than the deconvolution algorithm. It was concluded that this is the most suitable
approach for the NUTS application, and it should be implemented on-board the
satellite in order to provide a good SNR for the compression to function optimally.

The downlink datarate of NUTS is of only 9600 bit/s, and it has been esti-
mated that 2.45 Mb of payload data can be downloaded on average per day. This
corresponds to less than 5 uncompressed images of 256× 256 pixels with 8 bit per
pixel.

vii

A sequence of overlapping combined images should be obtained to provide a
scan of a desired area, and it was suggested that it should be encoded as video
to enable efficient compression and transmission of as many images as possible to
the ground station. A three-dimensional DPCM algorithm combined with a dead-
zone quantizer and stack-run coding was implemented in MATLAB. Simulations
demonstrated that this simple compression scheme can provide a bit rate of less
than 1 bit/px for a sequence of gravity wave images. One of the quantizers that
was tried gave 0.83 bits per pixel with reasonable quality. If this number can be
achieved in practice, the image transfer rate would be increased to 45 images per
day, which is a significant improvement.

viii

Sammendrag
(Abstract in Norwegian)

NTNU Test Satellitt (NUTS) er planlagt å ha en nyttelast for observasjon av at-
mosfæriske tyngdebølger. Tyngdebølgene vil bli observert ved hjelp av et infrarødt
kamera som tar bilder av forstyrrelser i natthimmellyset (airglow). Så langt har det
ikke blitt funnet noen kameraer som passer til restriksjonene som følger når man
bygger en liten satellitt. Det har imidlertid blitt konkludert med at InGaAs uten
kjøling vil være den mest passende sensortypen når det gjelder bølgelengderespons
og vekt.

InGaAs sensorer har en høy mørkestrøm når de ikke er kjølt, og prosessering må
derfor til for å fjerne bakgrunnssignalet. Kombinasjonen av den høye farten til satel-
litten og at kameraet krever lang eksponeringstid vil forårsake bevegelsesuskarphet
i bildet. Simuleringer med syntetiske testbilder i MATLAB viste at integrasjonsti-
den må holdes godt under 1 sekund for å ikke ødelegge bølgemønstrene. Lengre
integrasjonstid kan imidlertid være nødvendig for å få et tilstrekkelig signal-støy
forhold.

To signalbehandlingsmetoder ble vurdert som mulige løsninger på dette prob-
lemet: fjerning av bevegelsesuskarphet ved hjelp av dekonvolusjon, og midling av
bilder kombinert med bevegelseskompensasjon. Den første av de to strategiene går
ut på å bruke en lang eksponeringstid for å få et godt signal, for deretter å fjerne
uskarphetene med dekonvolusjonsteknikker. Simuleringer med Lucy-Richardson al-
goritmen viste at denne algoritmen ikke var i stand til å fjerne kraftige uskarpheter.
Den var også veldig sensitiv for støy i bildet og feil i uskarphetsfilteret. Den andre
strategien går ut på å ta en bildesekvens med kort eksponeringstid for å unngå
bevegelsesuskarphet, og sørge for å få det nødvendige signal-støy forholdet ved å
forskyve bildene i henhold til den kjente bevegelsen og kombinere dem til ett bilde.
Dette er en enklere og mer pålitelig strategi enn dekonvolusjon, og simuleringer
viste at den også er mindre sensitiv for feil i fartsestimatet. Det ble konludert med
at dette er den mest passende strategien for denne applikasjonen, og at den skal
implementeres ombord på satellitten for å gi tilstrekkelig signal-støy-forhold slik at

ix

kompresjonsalgoritmen kan fungere skikkelig.
Nedlinken til satellitten har en datarate på bare 9600 bit/s, og det har blitt

estimert at bare 2,45 Mb med data fra nyttelasten kan bli lastet ned per dag i
gjennomsnitt. Dette tilsvarer mindre enn 5 ukomprimerte bilder med 256 × 256
piksler og 8 bit per piksel.

For å skanne et ønsket område kan man ta en sekvens med kombinerte bilder
som overlapper. Det ble foreslått at denne sekvensen bør kodes som video for
å gjøre effektiv kompresjon mulig og få overført så mange bilder som mulig til
bakkestasjonen. En tredimensjonell DPCM algoritme kombinert med en kvantis-
erer med dødsone og stack-run koding ble implementert i MATLAB. Simuleringer
demonstrerte at dette enkle kompresjonssystemet kan oppnå en bitrate på under
1 bit per piksel for en sekvens med bilder av tyngdebølger. En av kvantisererne
som ble testet ut ga 0.83 bit per piksel, med akseptabel kvalitet. Hvis dette kan
oppnås i praksis, vil antall bilder overført per dag øke til 45, som er en vesentlig
forbedring.

x

Contents

1 Introduction 1
1.1 The NUTS Payload . 1
1.2 Previous Work . 2
1.3 The Aim of This Thesis . 3
1.4 Outline . 3

2 Background 5
2.1 The NTNU Test Satellite (NUTS) 5

2.1.1 The NUTS Project . 5
2.1.2 Small Satellites . 6
2.1.3 Orbit and Launch . 7
2.1.4 The NUTS Subsystems . 7
2.1.5 Environmental Factors . 12
2.1.6 The European CubeSat Symposium 12

2.2 Downlink Capacity for NUTS . 15
2.2.1 Orbit and Visibility Time . 15
2.2.2 Simulations with STK and MATLAB 15
2.2.3 Results . 17

2.3 Atmospheric Gravity Waves . 19
2.3.1 What are Gravity Waves? . 19
2.3.2 Observation of Gravity Waves 20
2.3.3 Key Features . 20

2.4 Optical Remote Sensing . 22
2.4.1 Imaging Operation Modes . 22
2.4.2 Spatial Resolution and Image Coverage 22
2.4.3 Camera Parameters . 23
2.4.4 Atmospheric Absorption . 23
2.4.5 Examples of Similar Projects 24

3 The Infrared Camera 27
3.1 Infrared Radiation and Camera Technology 27

xi

3.2 Noise and SNR . 28
3.2.1 Signal-to-Noise Ratio Metrics 28
3.2.2 Signal . 30
3.2.3 Noise Sources in InGaAs Sensors 30
3.2.4 SNR for an InGaAs Detector 31
3.2.5 Noise Measurements for an InGaAs Sensor 33
3.2.6 Other Possible Disturbances 34

3.3 Camera Operation and Specification 36
3.3.1 Mode of Operation . 36
3.3.2 Calculations of Camera Parameters 36
3.3.3 Image Coverage . 36
3.3.4 Spatial Resolution . 38
3.3.5 Image Speed . 40

3.4 Summary of Camera Requirements 40
3.5 The Search for a Suitable Off-the-shelf

Camera . 41

4 Image Enhancement 43
4.1 Signal-to-Noise Ratio Metrics for Image

Processing . 44
4.2 Synthetic Test Images and Noise Removal 44

4.2.1 Assumptions . 45
4.2.2 Synthetic Test Images . 45
4.2.3 Background Subtraction . 45
4.2.4 Synthetic Test Images with Noise 47
4.2.5 Noise Removal . 48

4.3 Motion Blur in Images . 48
4.3.1 Image Degradation Model . 50
4.3.2 Modelling the Blur Filter . 50
4.3.3 Motion Blur Simulations . 51

4.4 Restoration of Motion Blurred Images by
Deconvolution . 54
4.4.1 Blind Deconvolution . 54
4.4.2 Non-blind Deconvolution . 54
4.4.3 The Lucy-Richardson (LR) Algorithm 56
4.4.4 The Boundary Value Problem 56
4.4.5 Other Artefacts . 58
4.4.6 Sensitivity to Deviations in Speed and Orientation 58

4.5 Image Averaging With Motion Compensation 58
4.5.1 Noise Reduction by Image Averaging 59
4.5.2 Motion Compensation . 60
4.5.3 Interpolation Methods . 60
4.5.4 Feasibility for NUTS . 61

4.6 Implementation and Simulation of Image
Enhancement Algorithms . 62
4.6.1 Restoration of Motion Blurred Images by Deconvolution . . . 62

xii

4.6.2 Image Averaging With Motion Compensation 65
4.7 Comparison of Algorithms . 70

5 Compression 73
5.1 Background . 74

5.1.1 Information Theory . 74
5.1.2 Lossless Compression . 75
5.1.3 Lossy Compression . 75

5.2 Differential Coding . 76
5.2.1 Differential Pulse Code Modulation (DPCM) 77
5.2.2 Differential Coding in Image Compression 79
5.2.3 Differential Coding in Video Compression 81

5.3 Motion Estimation for Video Coding 86
5.3.1 Block Matching . 86

5.4 Quantizer Design . 89
5.4.1 Quantization . 89
5.4.2 Quantization noise . 90
5.4.3 Design of a Uniform Quantizer for DPCM 93

5.5 Coding for Minimum Bit Representation 95
5.6 Suggestion for a Complete Compression

Algorithm . 96
5.7 Implementation and Simulations in MATLAB 98

5.7.1 Prediction and quantization 98
5.7.2 Motion Compensation . 100
5.7.3 Bitcoding . 100
5.7.4 Simulations . 102

5.8 Summary and Discussion . 103

6 Summary and Conclusion 111
6.1 Suggestion for a Complete Signal Processing System 111
6.2 Conclusion . 114

A Overview of The NUTS Subsystems 121

B Presentation Held at the European CubeSat Symposium 127

C Calculation of Camera and Satellite Parameters 133
C.1 Orbital Mechanics . 133
C.2 Imaging Parameters . 133
C.3 Spreadsheet for Calculations . 135

D Datasheets for Cameras and Sensors 136

E MATLAB code 151
E.1 Download Capacity . 151
E.2 DPCM Algorithm and Test Script 157
E.3 Stack-run coding . 169

xiii

E.4 Image Averaging . 174
E.5 Motion Blur . 184
E.6 Test Images . 192

xiv

List of Figures

2.1 NUTS . 6
2.2 Illustration a polar orbit . 8
2.3 NUTS system overview . 8
2.4 A 3D model of NUTS . 9
2.5 The bottom of the satellite indicating possible positions for the cam-

era lens. 11
2.6 Temperatures for CP3 . 12
2.7 An illustration of the elevation angle (ε) of a satellite in orbit. 16
2.8 Visibility time . 16
2.9 An example of elevation versus time. 17
2.10 Downlink capacity. 18
2.11 Illustration of gravity waves in the atmosphere 19
2.12 Image of airglow taken from the ISS 21
2.13 All-sky image showing gravity waves over Halley, Antartica 21
2.14 The absorption spectrum for the ultraviolet, visible and infrared region 24

3.1 The visible and infrared region . 28
3.2 Quantum efficiency for Si and InGaAs 29
3.3 Normalised DSNR as a function of integration time. 32
3.4 Measured background offset and thermal noise vs. integration time

for different temperatures. 35
3.5 Imaging parameters . 37
3.6 Synthetic image with diagonal sine wave. 39
3.7 Speed of the satellite w.r.t the OH layer, as a function of altitude. . 40

4.1 Synthetic test images without noise. 46
4.2 Illustration of a sine signal. 46
4.3 Detector background offset and noise. 49
4.4 Test images illustrating image quality. 49
4.5 Test images illustrating image quality for different integration times. 49
4.6 An illustration of how the SNR varies with integration time. 50

xv

4.7 Frequency responses of one-dimensional motion blur filters for dif-
ferent integration times. 52

4.8 Positions of the first zero in the blur filter frequency response. 52
4.9 Simulation of motion blur for different exposure times 55
4.10 Illustration of typical boundary artefacts 57
4.11 Restoration of motion blurred images for different exposure times . . 66
4.12 Examples of the performance of the deconvolution algorithm. 67
4.13 SNR for the blurred and recovered images. 68
4.14 Deconvolution with noise. 68
4.15 Recovered images for errors in the estimated speed. 69
4.16 Simulation of image averaging. 71

5.1 Generic encoder and decoder structure. 76
5.2 Block diagram for DPCM . 77
5.3 Illustration of 2D differential coding. 80
5.4 Illustration of 3D differential coding of video. 82
5.5 Example of a Group of Pictures (GOP) with I- P- and B-frames. . . 85
5.6 Illustration of block matching. 87
5.7 Illustration of how the search within a subblock is done to find the

best match. 88
5.8 Characteristic function of a quantizer with L=7 90
5.9 Uniform quantizers of the midrise and midtread type. 91
5.10 Quantization noise for a midtread quantizer with five quantization

levels. 91
5.11 Illustration of overload noise for a Laplace distributed source. 94
5.12 Design parameters for a dead-zone quantizer 95
5.13 Overview of the implementation of the compression system in MAT-

LAB. 99
5.14 Illustration of the three different prediction categories. 100
5.15 Illustration of 3D-prediction with simple motion compensation (MC).101
5.16 Simulation of the 3D DPCM algorithm. 104
5.17 Quantizers with different parameters 105
5.18 Original and recovered images after compression. 106
5.19 Distribution of quantized prediction error. 107
5.20 Distribution of the prediction error signal for a noisy image. 108

6.1 Overview of the whole system . 111
6.2 Image enhancement and compression 112

C.1 A simple illustration of imaging geometry 134
C.2 Spreadsheet for calculations . 135

xvi

List of Tables

2.1 Downlink capacity. 17
2.2 Some atmospheric absorption lines in the infrared region 24
2.3 Specifications for The Waves Explorer. 25
2.4 Specifications for the SwissCube. 25

3.1 Results . 34
3.2 Camera requirements . 41

4.1 Assumed satellite and camera parameters: 44

5.1 Simulation results for compression algorithm 103

xvii

List of Acronyms

ADCS Attitude Determination and Control System

A/D Analog-to-digital

ANSAT Norwegian Student Satellite Program

dB decibels

DPCM Differential Pulse Code Modulation

DSNR Detector Signal-to-Noise Ratio

EPS Electrical Power System

ESA European Space Agency

FMC Forward Motion Compensation

FOV Field of View

GOP Group of Pictures

GSD Ground Sample Distance

GW Gravity Waves

HAWI Hydroxyl Airglow Wave Imager

HDR High Dynamic Range imaging

InGaAs Indium Gallium Arsenide

ISS International Space Station

LEO Low Earth Orbit

LR Lucy-Richardson

xviii

MAD Mean Absolute Difference

MC Motion Compensation

MSE Mean Squared Error

NAROM Norwegian Centre for Space-related Education

NASA National Aeronautics and Space Administration

NEI Noise Equivalent Irradiance

NUTS NTNU Test Satellite

OBC On-Board Computer

OH Hydroxyl

P-POD Poly Picosatellite Orbital Deployer

PSF Point Spread Function

PSNR Peak-to-peak Signal to Noise Ratio

QE Quantum Efficiency

SAD Sum of Absolute Difference

Si Silicon

SNR Signal-to-Noise Ratio

SQNR Signal-to-quantization noise ratio

SR Stack-run

STK Analytical Graphics, Inc. Satellite Toolkit

SWIR Short-wave infrared

TDI Time-Delayed Integration

VNIR Visible and near-infrared

xix

Chapter 1
Introduction

1.1 The NUTS Payload

The NTNU Test Satellite (NUTS) payload is planned to be an infrared camera
observing atmospheric gravity waves in the Hydroxyl (OH) airglow layer in the
mesosphere. Gravity waves, not to be confused with gravitational waves from
General Relativity, are fluid-dynamical large-scale waves propagating vertically and
horizontally through the Earth’s atmosphere. They are mostly generated in the
lower atmosphere by air blowing over mountains and other weather phenomena.
The waves are believed to play a major role in the global north-south/south-north
(meridional) atmospheric circulation, which is a vital component in global climate
and weather models. Despite this, their properties are poorly understood, mainly
due to a lack of observational data.

The gravity waves can for instance be observed as perturbation patterns in the
airglow layers of the upper mesosphere. Ground-based observations have been made
by taking pictures of the airglow at night, which have provided some knowledge
about the properties of the waves. The NUTS payload camera is supposed to take
pictures of the OH airglow to provide data from other locations than the ground
based observations, and in this way contribute to a better understanding of the
global properties of the waves. A similar payload was planned by NASA in the late
90’s, but the mission was discontinued [1]. More than a decade later, observation of
gravity waves by means of infrared camera has not yet been done from a satellite.

Many different aspects spanning several disciplines must be considered regard-
ing the NUTS payload. First of all, an overview of the requirements for the camera
must be established, according to the properties of the satellite and the phenomenon
in question. Optical remote sensing from satellites is a well established field, and
the same holds for observation of gravity waves from the ground. But combining
the two technologies and fit it in a CubeSat is not a trivial task. When the re-
quirements for the camera have been found, a camera with suitable detector, optics
and readout electronics must be either purchased or built. How the images should

1

CHAPTER 1. INTRODUCTION

be communicated to the ground station must also be considered. The downlink
data rate is quite limited, and the satellite can only communicate with the ground
station when it is visible for a short period of time a few times a day. If a suitable
compression algorithm is applied, it will be possible to download more images,
which is preferable due to the short life-time of the satellite. Depending on the ex-
pected quality of the output of the camera, it might be necessary to perform some
simple image processing on-board the satellite to decrease the noise and enhance
the quality.

1.2 Previous Work

A pre-study considering many of the aspects mentioned above was carried out by
the author and Snorre Stavik Rønning during autumn 2011. The task of finding
the requirements for the camera turned out to be more complex than first assumed,
requiring knowledge of remote sensing, orbital mechanics, optics, infrared detector
technology and atmospheric physics all together. Due to many unknown parame-
ters, no definite specification for the camera was found, but a few basic requirements
such as detector type and resolution was established. This work therefore had to
be continued in spring 2012, together with the task of finding a suitable camera.
For completeness, most of the work done during the pre-study is also described in
this thesis.

One of the major topics of the pre-study was a study of the motion blur problem
in images. MATLAB simulations showed that this could be a problem for the
NUTS payload camera for long exposure times, which might be necessary to get the
sufficient Signal-to-Noise Ratio (SNR) from the infrared detector. To mitigate this
problem, it was investigated how motion blur can be removed by post-processing.
An algorithm applying non-blind deconvolution to invert the effect of the blur filter
was successfully applied to test images in MATLAB. This algorithm may however
cause artefacts in practice if the speed is not known exactly, which can result in
irreversible damage of the image if the algorithm is applied on-board the satellite.
Another strategy is to perform the post-processing on ground, but this also have
some issues, since the compression process may introduce errors crucial to the
performance of the deconvolution algorithm.

Observations of gravity waves by means of cameras has been done from a few
ground stations for instance in Antarctica [2] and on Hawaii [3]. These observations
are also based on obtaining images of the airglow, but in the visible range of the
electromagnetic spectrum.The wavelength of the gravity wave patterns have been
found to be in the range of 15-40 km with a mean of 26 km, and their wave phase
speeds to be around 25 m/s. But it is not possible to do global measurements from
the ground, and therefore many large-scale gravity wave properties still remains a
mystery.

More details about the NASA project and a similar CubeSat project are pre-
sented in Section 2.4.5.

2

1.3. THE AIM OF THIS THESIS

1.3 The Aim of This Thesis
The aim of this thesis is to give an overview of the whole payload system from
photons to bits, and to suggest suitable operation modes and algorithms for the
different stages. Most of the work have been carried out from a system point-of-
view, with preparation of images for transmission as the main focus. In order to
choose a suitable compression algorithm, and make sure that the images are of
sufficient quality to be further interpreted and processed on ground, many aspects
have to be taken into account. First of all, the downlink capacity of the satellite is
an important factor, which has to be discussed. Secondly, information about the
camera and the gravity wave phenomenon is also necessary, to provide a guess of
what the images will look like and what SNR that can be expected.

The design of the payload module is still in an early stage, and many assump-
tions have been made to be able to reach any conclusions at all. The focus of this
thesis is to provide an overview of all the aspects that must be regarded when de-
signing a signal processing system for such a payload, and suggest possible solutions
rather than presenting a perfect and finished implementation.

1.4 Outline
First, Chapter 2 gives an introduction to the satellite, the gravity wave phenomenon
and optical remote sensing, in order to provide the necessary background informa-
tion and set the context for the following chapters.

Chapter 3 is the first of the three main chapters of this thesis, with focus on the
infrared camera. A theoretical background on detector technology and noise will
be given, as well as experimental results showing what kind of noise that can be
expected in the images. A discussion of the camera parameters and possible camera
candidates is also given, and the chapter is brought to a close with a discussion of
what the images will look like.

Chapter 4 follows with focus on image enhancement. An introduction to the
motion blur problem is given, as well as simulations and a discussion of its possible
impact on the images. Two different strategies for motion blur removal by post
processing are presented theoretically, simulated and compared. Strategies for
removal of detector noise is also discussed.

A strategy for compression of the image sequences is presented in Chapter 5,
based on assumptions of the quality and content of the images. A three-dimensional
Differential Pulse Code Modulation (DPCM) system with motion compensation for
compression of low-rate video is proposed. A simplified version of the complete
compression algorithm is implemented in MATLAB to provide a demonstration.

A proposal for a complete signal processing system including both image enhance-
ment and compression is then presented in Chapter 6.1, and a simple simulation
is performed to serve as a proof of concept. Finally, the results are concluded in
Chapter 6.2, and a suggestion for further work is presented.

3

Chapter 2
Background

This chapter is meant to provide the reader with the necessary background for
the discussion in the following chapters. First, an overview of the NUTS satellite
is provided in Section 2.1. The downlink capacity for the satellite is discussed in
Section 2.2, and some simulations are made to provide a reasonable estimate of
this. Then, an introduction of atmospheric gravity waves and how they can be
observed is given in Section 2.3. Some terminology and concepts of optical remote
sensing is then presented in Section 2.4, together with examples of related projects.

2.1 The NTNU Test Satellite (NUTS)
This section is meant to give an overview of several aspects of the NTNU Test
Satellite, in order to provide essential information for the following chapters of
the report, as well as setting the context for this thesis. For further reading, it is
referred to [4] for a general overview of the mission. More detailed specifications
may be found in [5], and the NUTS website1 provides a publication list as well as
updated information on the subsystems. An illustration of the satellite is shown in
Figure 2.1.

2.1.1 The NUTS Project
As already introduced, NUTS is a small satellite that is being developed and built
by students at NTNU. It all started in 2006, when a pre-study of a new satellite
project at NTNU was done by three students [5] from the Department of Elec-
tronics and Telecommunications, resulting in a specification and a design proposal
for the Norwegian Student Satellite Program (ANSAT) run by Norwegian Centre
for Space-related Education (NAROM). The goal of the ANSAT is to launch three
student satellites by the end of 2014, and involves the University of Oslo, Narvik

1http://nuts.cubesat.no

5

CHAPTER 2. BACKGROUND

Figure 2.1: Illustration of the NTNU Test Satellite (NUTS) (Satellite image: Cour-
tesy of Kai Inge Midtgård Rokstad. Background image: Astronaut photograph
STS131-E-11693 obtained from the ISS, courtesy NASA JSC Image Science &
Analysis Laboratory)

University College and NTNU. It is intended to stimulate cooperation between dif-
ferent educational institutions and the industry, and to give the students experience
with team work and hands-on training. The NUTS project was officially started in
September 2010, and after that, final year students from several departments have
contributed.

One of the main challenges of such a long-term student project is administration.
Most of the master students are only involved in the project for one year, before a
new group of students takes over, which makes it hard to keep an overview. Fortu-
nately, the project has a full-time employed manager. In order to involve students
for a longer time period it was decided in spring 2012 to involve undergraduate
students on a voluntary basis.

2.1.2 Small Satellites
NUTS will follow the CubeSat standard [6], which is a picosatellite standard de-
veloped to make it easier to launch small payloads into space. A single CubeSat
is a 10 cm cube with a mass of up to 1.33 kg, and a double is thus 20 × 10 × 10
cm with a mass of up to 2.66 kg. The CubeSat standard specifies requirements for
design and testing, such that the satellite can be qualified for launch with a Poly
Picosatellite Orbital Deployer (P-POD) [6], which provides a safe interface between
the CubeSat and the main payload.

Small satellites offer a fast and affordable access to space; the development
time and financial costs are usually just a small fraction of what can be ex-
pected for conventional missions carried out by National Aeronautics and Space
Administration (NASA) or European Space Agency (ESA). Since the development

6

2.1. THE NTNU TEST SATELLITE (NUTS)

of the CubeSat standard, it has become more and more common for universities
to develop their own satellties, resulting in a diverse and innovative international
community. Small satellites are especially useful for technology demonstrations,
resulting in a wide range of payloads. Networks of picosatellites flying in formation
have also been suggested. Such a network would achieve a larger range and gather
information in a totally different way than one single satellite of the same total
weight. The first planned satellite network of this kind, called QB50, will consist
of 50 double and triple CubeSats and is a collaboration between several universities
from all over the world [7].

There are several restrictions to take into account when building a small and in-
expensive satellite. Commercial off-the-shelf electronic components are often used
in contrary to expensive space qualified components developed for the space in-
dustry. The size and mass constraints limit the available area for solar panels and
batteries, and thus also the available power for communication and operation of
the payload.

2.1.3 Orbit and Launch
The orbit of the NUTS CubeSat will be a polar Low Earth Orbit (LEO). The
altitude of a LEO is generally between 500 and 2000 km [8], but the NUTS orbit
will most likely lie between 450 and 650 km in order to limit the orbital lifetime.
Figure 2.2 shows an illustration of a polar orbit.

During launch, NUTS will comprise two of three CubeSat units in a P-POD
that is carried as a piggyback in a launch of a commercial payload. Until a specific
launch is scheduled, the exact orbit will remain unknown. For now it is assumed
to be sun-synchronous and circular, between 350 and 650 km. It will then orbit
the Earth approximately 14 times in 24 hours [9], passing near the north and south
pole for each period. In this way, the whole globe is covered as it rotates inside the
orbit.

2.1.4 The NUTS Subsystems
NUTS consists of several subsystems, as illustrated in Figure 2.3. The function of
each of these subsystems will be influenced by the others, and the aspects most vital
to the payload and the general function of the satellite is therefore presented in this
section. An overview of the main function of each subsystem can be found in the
document "The NUTS Subsystems", written by the master students participating in
the project spring 2012. A draft version of this document is enclosed in Appendix A.

The structure of the satellite will be as shown in Figure 2.4(a). An outer
frame of carbon fiber will be the main structure holding everything together. The
different modules are connected by the backplane, which provides communication
and power interfaces. The power will be supplied from a battery that is charged by
means of solar panels mounted on the exterior walls of the satellite. The Electrical
Power System (EPS) module makes sure that the batteries are charged efficiently
and safely, and provides two regulated 3.3 V and two regulated 5.0 V power rails

7

CHAPTER 2. BACKGROUND

Figure 2.2: Illustration a polar LEO, made by Snorre Stavik Rønning through
Analytical Graphics, Inc. Satellite Toolkit (STK).

Figure 2.3: NUTS system overview. By courtesy of Dan Erik Holmstrøm.

8

2.1. THE NTNU TEST SATELLITE (NUTS)

(a) Internal structure

(b) Position of the payload

Figure 2.4: 3D model of NUTS. By courtesy of Kai Inge Midtgård Rokstad

9

CHAPTER 2. BACKGROUND

to the backplane connector.
The main payload of NUTS will, as mentioned, be an infrared camera for ob-

servation of gravity waves, an atmospheric phenomenon which is further explained
in Section 2.3. It will be situated at the bottom of the satellite with its lens point-
ing in the nadir2 direction, as roughly illustrated in Figure 2.4(b). The camera
will take pictures of the OH airglow layer in the atmosphere at various locations,
which will be transmitted to a ground station for further analysis. These pictures
can only be obtained during night, which means that the camera depends on the
batteries to be sufficiently charged. It must also be made sure that the satellite
has an orbit that involves both day and night, which is not always the case.

No absolute constraints have been put on the size and weight of the camera yet,
but some indications have been given. Figure 2.5 shows a drawing of the layout
of the bottom of the satellite. The camera module must at least stay within the
grey area, which is approximately 80×80 mm. The height restriction is probably
around 5-6 cm. Due to circuitry and antenna fastening, there are only two possible
positions of the camera lens as indicated by the two circles in Figure 2.5, which
results in maximum lens diameters of either 50 or 38 mm [10]. When it comes to
weight, it is beneficial that the camera is as lightweight as possible. But one should
keep in mind that in addition to the total weight constraint of 2.66 kg, the CubeSat
specification also requires that the mass center of the whole satellite stays within
a certain radius from the geometrical center [6]. Since the camera is situated at
the bottom, it might be necessary to move the batteries or other heavy parts to
compensate.

The Attitude Determination and Control System (ADCS) of the satellite will
control the angular orientation (attitude) of the satellite such that the camera
points stably towards the Earth. An estimation algorithm uses inputs from various
sensors (sun sensor, gyroscope and magnetometer) in order to estimate the attitude.
If the estimated attitude deviates from the wanted reference, the orientation of the
satellite needs to be changed. This is done by means of magnetourqers, which
affect the magnetic field of the satellite that will align with the magnetic field of
the Earth. There will possibly be rotation around the nadir-zenith axis, but this
can be measured and is hopefully very slow.

The On-Board Computer (OBC) will provide computing power and storage for
the payload, issue commands to the other modules in the satellite and monitor the
state of the whole system. It has a powerful micro controller, making it suitable
for on-board processor-intensive tasks.

NUTS will have two transceivers and antennas for the VHF and UHF bands
to be able to communicate with ground stations, in addition to a transmitter for
UHF that will only send a beacon signal. Each of the two transceivers will have
a bandwidth of 25 kHz and a data rate of 9600 bps. The AX.25 communication
protocol will be used to enable communication with radio amateurs. The main
ground station is situated on a roof at NTNU and will be operated by students
participating in the project. Ground stations at Narvik, Andøya, Svalbard and
Oslo may also be used if available.

2Downward, toward the Earth. Opposite of zenith.

10

2.1. THE NTNU TEST SATELLITE (NUTS)

100

10 10

6

2025

19

25.5 50

2

3

P1P2

P3

P4

P5

20

Figure 2.5: The bottom of the satellite indicating possible positions for the camera
lens. By courtesy of Sigvald Marholm

11

CHAPTER 2. BACKGROUND

2.1.5 Environmental Factors
Space is known to be an extreme environment in many ways. The temperature
differences between shadow and direct sunlight is expected to be quite large. Dif-
ferent assumptions have been made when it comes to which temperature the dif-
ferent parts of the satellite will experience. Within the NUTS team, operating
temperatures between −40◦C and +85◦C has been assumed, but no explicit study
of this has been done yet. However, [11] presents temperatures measured on-board
the CP3 CubeSat, which has orbital parameters quite similar to those assumed
for NUTS. As shown in Figure 2.6, CP3 experienced exterior temperatures from
−30◦C to +20◦C under normal operation. The time between the temperature
minima is about the same as the orbital time, and reasonable to believe that these
minima occurred the instant before the satellite came out of the shadow and the
temperature started to rise again. It can be expected that the interior temperature
of the satellite will vary even less.

measured in 2007 and 2011, respectively.

Figure 2.6: Measured exterior temperatures for the CubeSat CP3, from [11]

2.1.6 The European CubeSat Symposium
As a part of the Norwegian and international space technology community, the stu-
dents in the NUTS project have participated at several national and international
conferences and workshops. This gives the master student an unique experience
in presenting their work for an international audience, and get more insight in
international space technology. NUTS was represented with three presentations
and one poster at the European CubeSat Symposium 2012 in Brussels in January,
among them a presentation of the pre-study for the infrared camera payload held
by Snorre Stavik Rønning and the author. The submitted abstract is given on the

12

2.1. THE NTNU TEST SATELLITE (NUTS)

following page, and the slides for the presentation can be found in Appendix B.

13

 - 30 -

Observation of Gravity Waves from a Small Satellite by
Means of an Infrared Camera

S.S. Rønning, M. Bakken, R. Birkeland, P. Espy, R. Hibbins and T.A. Ramstad

Department of Electronics and Telecommunications, Norwegian University of Science and

Technology (NTNU), Trondheim, Norway

The NUTS (NTNU Test Satellite) is a satellite being built in a student CubeSat project at the
Norwegian University of Science and Technology. The project was started in September 2010
and is a part of the Norwegian student satellite program run by NAROM (Norwegian Centre
for Space-related Education). The NUTS project goals are to design, manufacture and launch
a double CubeSat by 2014. The satellite will fly two transceivers in the amateur radio bands.
Final year master students from several departments are the main contributors in the project.

As a main payload, an infrared camera designed to observe gravity waves in the middle
atmosphere is planned. Gravity waves, created by air blowing over mountains and weather
phenomena, propagate throughout the atmosphere and drive the large scale flows in the
middle atmosphere. Despite this their properties are poorly understood, mainly due to a lack
of observational data. At an altitude of about 90 km in the atmosphere we find a layer of OH
molecules that emit short-wave infrared radiation. When gravity waves propagate through
this layer wave patterns in the radiation intensity are observed. Ground observations have
found the wavelength of these patterns to be around 20 km and wave phase speeds to be
around 25 m/s. But such observations have been limited to a few ground stations, and the
possibility for global coverage that observation from a satellite offers would be a useful
contribution to further research.

We discuss the design of a camera system and observation schedule to derive global data on
the wave parameters of wavelength, intensity, phase speed and direction within the CubeSat
constraints of available power, weight, size and download data rate. The choice of an off-the-
shelf infrared camera is also considered, as well as signal processing algorithms for image
restoration and compression.

2.2. DOWNLINK CAPACITY FOR NUTS

2.2 Downlink Capacity for NUTS
The downlink capacity at the ground station, i.e. how much data that can be
downloaded from the satellite, is an important parameter when deciding which
compression scheme to choose for the payload data. This issue is closely related
to the antennas and the communication module, and therefore a joint effort was
made by Sigvald Marholm and the author to estimate the download capacity for
the communication link between the satellite and the ground station in Trondheim.
The results in this section can also be found in the thesis Antenna Systems for
NUTS [10] written by Sigvald Marholm.

2.2.1 Orbit and Visibility Time
A satellite in a polar LEO will (almost) pass the north and south pole for every
period. But since the Earth is rotating around its own axis, the satellite’s ground
track will vary. The satellite can only communicate with the ground station when
it has line of sight, and it is therefore advantageous to have a ground station at
high latitude to get as many passes per day as possible.

When the satellite passes over the ground station, a minimum elevation angle
(see Figure 2.7) is required to obtain a stable radio link. For higher orbital altitudes,
a larger elevation angle is required to get a sufficient received SNR at the ground
station, as shown in [10]. The maximum length of a pass, or the visibility time, will
depend on the orbital altitude and the required minimum elevation angle, as shown
in 2.8. As an example, an altitude of 600 km and a minimum elevation angle of 20°
can be assumed, which gives a visibility time of around 6 minutes. But for most
passes it will unfortunately be smaller, since the satellite seldom passes straight
above the ground station.

2.2.2 Simulations with STK and MATLAB
In order to estimate the average downlink capacity between a ground station and
the satellite, knowledge about the total visibility time of several passes through a
day or a week is necessary. Figure 2.8 gives an indication of the maximum visibility
time, but it will vary a lot from pass to pass. To compute the total visibility time
is much more complex. Several parameters have to be taken into account, among
them the location of the ground station and the orbital parameters of the satellite.

Analytical Graphics, Inc. Satellite Toolkit (STK) was used to simulate the
elevation angle as a function of time for passes over a ground station in Trond-
heim3 during one week. A perfectly circular, sun-synchronous orbit4 was assumed,
and the simulations were performed for orbital altitudes of 350, 500 and 650
km. The obtained data was exported and read into MATLAB with the function
read_stk_elev(), and then processed by using threshold_stk_elev() to com-
pute the average downlink capacity in bits per day for different minimum elevation

3Coordinates: 63◦25’47”N, 10◦23’36”E
4Orbital elements: eccentricity = 0, inclination = 98◦, RAAN = 0◦, J4 perturbations included

15

CHAPTER 2. BACKGROUND

ε

Figure 2.7: An illustration of the elevation angle (ε) of a satellite in orbit. Courtesy
of Sigvald Marholm.

Figure 2.8: The maximum visibility time as a function of minimum visible elevation
angle for different orbit altitudes. Reproduced by courtesy of Asbjørn Dahl

16

2.2. DOWNLINK CAPACITY FOR NUTS

Figure 2.9: An example of elevation versus time.

Table 2.1: Required minimum elevation angle for different altitudes and the corre-
sponding downlink capacities.

Altitude Min. elev. Average capacity
350 km 21° 4.54 Mb/day
500 km 28° 4.90 Mb/day
650 km 34° 4.97 Mb/day

angles, assuming a downlink data rate of 9600 bit/s. The MATLAB functions can
be found in Appendix E.1.

2.2.3 Results
An example of how the elevation varies is given in Figure 2.9, which shows the
elevation angle as a function of time for the passes during the first day for an
altitude of 500 km. It is seen that many of the passes have an elevation angle
below 20 degrees, and only two of them are above 40 degrees. The resulting average
downlink capacity is shown in Figure 2.10(a). It decreases rapidly if the minimum
elevation angle is increased, since many of the short passes will be discarded when
a high elevation is required. It is also seen that for a fixed minimum elevation
angle, a higher orbit gives a larger downlink capacity. This is because a higher
altitude results in higher elevation and longer visibility time. On the other hand,
a larger elevation angle is required to get sufficient SNR for higher altitudes. It
turns out that the resulting downlink capacities are relatively independent on the
orbital altitude, as indicated in Figure 2.10(b). The resulting minimum elevation
angles and corresponding downlink capacities are listed in Table 2.1.

The results in Table 2.1 gives the average total download capacity. Some of it
has to be used for housekeeping, and how much of the capacity that will be left for
the payload data will probably vary, but approximately half has previously been
assumed. This would for instance mean that only 2.45 Mb of payload data can be
downloaded per day on average (for an orbital altitude of 500 km), which is not
much.

17

CHAPTER 2. BACKGROUND

(a) Elevations from 0° to 90°.

(b) Elevations from 15° to 40°. The circles indicate the computed
minimum elevation angle for the different altitudes.

Figure 2.10: Downlink capacity in Mb per average day for NUTS.

18

2.3. ATMOSPHERIC GRAVITY WAVES

Figure 2.11: Illustration of gravity waves in the atmosphere, from [1]

2.3 Atmospheric Gravity Waves
Gravity waves have never been observed by means of an infrared camera from a
satellite before. If our mission succeeds in delivering images of acceptable quality
it will be a useful resource for research within atmospheric physics. This section
gives a brief introduction to what this phenomenon is, and how it can be observed.
It is summarized with a list of key features that will impact the following discussion
regarding choice of camera and signal processing.

2.3.1 What are Gravity Waves?
Gravity waves, not to be confused with gravitational waves from General Relativ-
ity, are fluid-dynamical large-scale waves propagating vertically and horizontally
through the Earth’s atmosphere. They are mostly generated in the lower atmo-
sphere by air blowing over mountains and weather phenomena. Due to the decreas-
ing atmospheric density, they increase in amplitude as they propagate upward, as
described in [1] and shown in Figure 2.11. Gravity waves are analogous to water
waves; they are both generated in a fluid medium with gravity and buoyancy as
restoring forces. The most dramatic effects are seen in the mesosphere, lower ter-
mosphere and ionosphere, and the waves are understood to play a major role in

19

CHAPTER 2. BACKGROUND

the global north-south/south-north (meridional) atmospheric circulation. A more
detailed description of gravity waves in the context of atmospheric physics may be
found in [12].

2.3.2 Observation of Gravity Waves
Gravity waves can be observed by means of various remote sensing methods. Most
of the existing airborne observations has been done by measurements of temper-
ature and wind by means of radar [1], but this method only provides vertical
one-dimensional profiles. Because of this, ground based camera observations have
also been used to provide two-dimensional images and information about transver-
sal movement [2]. This method uses cameras to take pictures of the radiation
from airglow layers of the upper mesosphere to observe gravity wave perturbation
patterns [1]. The atmospheric airglow originates from atoms and molecules in the
upper atmosphere that are excited by sunlight, and release this energy by night
in form of visible green light as shown in Figure 2.12, but also infrared radiation.
The strongest airglow emissions come from a layer of OH at an altitude of around
90 km in the atmosphere that emit infrared radiation with two intensity peaks in
wavelengths at 1434 and 1381 nm [1]. Airglow emissions amplify the perturba-
tion caused by gravity waves propagating through them, which makes them a very
suitable observation medium.

Ground-based observations have shown that the gravity waves can be observed
as transversal sine patterns in the airglow, with amplitudes around 5-10% of the
average radiation intensity level. These observations have also found the wave-
length of the gravity wave patterns to be in the range of 15-40 km with a mean of
26 km, and their wave phase speeds to be around 25 m/s. An image taken from
ground is shown in Figure 2.13.

2.3.3 Key Features
Some key features of Gravity Waves (GW)s that are important for the following
discussions are listed below.

GW wavelength Mean: 26 km, Minimum of interest: 15 km

GW phase speed Mean: 25 m/s

GW waveform Sine wave, amplitudes 5-10 % of average radiation intensity

OH spectrum Intensity peaks at 1434 and 1381 nm

OH height approx. 89 km

20

2.3. ATMOSPHERIC GRAVITY WAVES

Figure 2.12: Image taken from the ISS. The airglow can be seen as a glowing green
layer in the atmosphere. (Courtesy NASA)

Figure 2.13: All-sky image showing gravity waves over Halley, Antartica, from [2].
The wave patterns in the upper right is far weaker than the Aurora at the lower
left.

21

CHAPTER 2. BACKGROUND

2.4 Optical Remote Sensing
Optical remote sensing in the visible and infrared region has various applications;
meteorological imaging, surveillance purposes, detection of hazards like earthquakes
or forest fires, vegetation mapping and many more. When designing a complete
optical remote sensing system, each link in the chain of modules, from optics to
image processing, will interact with each other. Atmospheric absorption, orbital
mechanics and properties of the satellite must also be taken into account. This
section will give a brief introduction to some terminology and concepts in optical
remote sensing, and show some examples of projects similar to the NUTS payload.

2.4.1 Imaging Operation Modes
There are several ways to build a 2D image of a scene with a detector on a moving
platform. The most obvious mode of operation resembles the way we would nor-
mally use a camera: use the whole 2D detector at once and “stare” at the scene
long enough to aquire enough photons, and move on before the next image is taken.
But it is also common to use a one-dimensional detector (a linear array) perpen-
dicular to the direction of motion, and utilize the motion of the platform to do a
scan of the scene. This mode of operation is called push-broom imaging. Timing
is very important in this case; the exact speed of the platform must be known in
order to obtain a continuous image of the scene. It is also possible to do some sort
of mechanical scan from side to side while the platform is moving forward, which
only requires a single detector. This operation mode is often called whisk-broom
imaging. All three operational modes are discussed in [8].

Since satellites are moving with a high speed, the image will experience a shift
during the exposure. This will typically introduce a blur in the direction of the
movement, but the extent of this blur depends on the exposure time and the speed
compared to the coverage area of the image. This effect is called motion blur
and will be discussed in detail in Chapter 4. The simplest solution is to use
a short integration time, but this can lead to low SNR, as further discussed in
Section 3.2. Other methods commonly used in remote sensing systems are Time-
Delayed Integration (TDI) and Forward Motion Compensation (FMC), as described
in [13]. TDI uses several rows of pixels in the along-track direction to obtain mul-
tiple images of the same area, which is combined into one image to increase the
effective integration time. FMC on the other hand, is based on controlling the
pointing of the detector mechanically, such that the speed is reduced. This can be
achieved for instance with moving mirrors, mechanical steering of the camera or
through attitude control of the satellite. It is also possible to remove motion blur
by post-processing, which will be discussed further in Chapter 4.

2.4.2 Spatial Resolution and Image Coverage
The spatial resolution is a measure of how fine details an optical system can resolve.
In digital imaging it will be limited due to sampling since the detector has a limited
number of pixels. In remote sensing the "footprint" of a pixel on the imaged scene

22

2.4. OPTICAL REMOTE SENSING

is sometimes referred to as a rezel, and the spatial resolution can thus be given
by rezel size5. Due to diffraction, the spatial resolution will also be limited by the
optics of the imaging system according to the Rayleigh criterion as discussed in [8].
The actual spatial resolution will be given by the maximum of the two terms.

The instantaneous area covered by the imaging system is also an important
parameter. It is sometimes referred to as the field of view or ground coverage, but
will in the following be denoted as image coverage to avoid confusion with other
parameters.

2.4.3 Camera Parameters
When choosing a camera, it is important to consider the impact of the parameters
given in the specifications. The following list gives an overview of some common
parameters that often appear in camera datasheets, both for the visible and the
infrared region.

Pixel resolution Or detector array size, given in pixels × pixels. In the following
a quadratic detector array is assumed, and the number of pixels in one of the
dimensions is denoted as Npx.

Field of View (FOV) The angle describing the area the camera can “see”, de-
termined by the focal length and detector size.

Focal length The distance between detector and the lens.

Pixel pitch The physical size of a pixel in the detector array.

Integration time Also called exposure time and shutter speed. Determines for
how long the shutter is open and thus how many photons that are detected.

Quantum Efficiency (QE) Ameasure of how many electrons that are generated
per incoming photon, indicating sensitivity to radiation. Often wavelength
dependent.

Spectral response The range of wavelengths the camera can detect.

Noise Equivalent Irradiance (NEI)
[

photons
cm2 s

]
The incident irradiance6 that

gives SNR equal to one.

2.4.4 Atmospheric Absorption
The atmospheric absorption of electromagnetic radiation is strongly dependent on
wavelength, as seen in Figure 2.14. Especially in the infrared region there are
several narrow peaks that must be taken into account, as discussed in [8]. Some of
these peaks, or absorption lines are given in Table 2.2. The absorption may be a

5The spatial resolution is often referred to as Ground Sample Distance (GSD) in remote sensing
literature, but the term rezel size is more general since one is not necessarily imaging the ground.

6Radiant flux density
[
W
m2

]
23

CHAPTER 2. BACKGROUND

Figure 2.14: The absorption spectrum for the ultraviolet, visible and infrared re-
gion, from [8]. Optical thickness is a measure of absorption.

problem for applications that aim at imaging the ground, but luckily most of the
water vapour is situated in the troposphere [12], well below the OH airglow layer.
Additionally, the peak in the OH radiation spectrum at 1.38 µm coincides quite
well with the water vapour absorption peak at 1.37 µm, which can be utilized to
reduce interfering background radiation from Earth.

Table 2.2: Some atmospheric absorption lines in the infrared region, as given in [8]
Wavelength Molecule
1.12 H2O
1.25 O2
1.37 H2O
1.85 H2O
1.95 CO2

2.4.5 Examples of Similar Projects
In order to further illustrate the purpose of the NUTS payload, and to discuss its
feasibility, it is at interest to consider a few similar projects.

The Waves Explorer

At the end of the 90’s NASA planned a satellite mission, The Waves Explorer,
for atmospheric research purposes [1]. It involved several payloads with different
cameras and other scientific equipment which was supposed to investigate various

24

2.4. OPTICAL REMOTE SENSING

properties of gravity waves on a global scale. One of the payload cameras, the
Hydroxyl Airglow Wave Imager (HAWI) was planned to image infrared radiation
from the OH layer mentioned in Section 2.3 in order to observe gravity waves. An
overview of the most interesting specifications are reproduced in Table 2.3, and
more detailed information can be found in [1]. The launch was planned to be in
2007, but the project was discontinued due to lack of financial support.

Table 2.3: Specifications for The Waves Explorer.
Orbit 650 km circular, 40◦ inclination
Payload weight budget 173 kg
HAWI specification:
Spectral cutoff 1650 nm
Detector type HgCdTe
Operation temperature 160 K (cooled by radiator)
Detector array size 256× 256 pixels
Spatial resolution ≤ 4 km
Operation mode Push-broom

The SwissCube

Another interesting mission, the SwissCube, is a single cubesat developed by stu-
dents at École Polytechnique Fédérale de Lausanne [14]. It was launched in 2009
and carries a telescope and a CMOS detector that captures images of airglow ra-
diation at 767 nm wavelength. The SwissCube is still in operation, and has sent
several successful images to the ground station. It is an interesting case because it
has proved it possible to do atmospheric imaging with such a small satellite, but
it is only measuring the strength of the airglow and has not done any attempt to
identify any gravity waves. An overview of a few specifications is given in Table 2.4,
and more details about the payload can be found in [15].

Table 2.4: Specifications for the SwissCube.
Payload weight budget 100 g
Detector type CMOS
Spectral response 767 nm, bandwidth of 20 nm
Spatial resolution ≤ 5 km
Detector array size 188× 120 pixels

25

Chapter 3
The Infrared Camera

The properties of the satellite orbit, the infrared camera and the remote sensing
system as a whole, will all affect the resulting image. This poses some requirements
on the camera to ensure that the obtained images contain useful information fit for
further analysis.

First, a brief introduction to infrared camera technology is given, and it is con-
cluded that uncooled InGaAs is the most suitable sensor type for our application.
Secondly, noise and SNR of the detector is treated, with emphasis on the different
noise types in InGaAs detectors, and how the integration time influences the SNR.
Then the specification of camera parameters are discussed, which involves sev-
eral parameters regarding the satellite, operation mode, optics and detector. Since
many of these parameters remain unknown, no definite specification for the camera
has been obtained yet, but an attempt has been made to give an overview of how
these parameters interact, and what kind of requirements that can be expected
regarding optics and detector. Based on this discussion, some possible camera
candidates are presented. Finally, synthetic test images were made based on as-
sumptions on the phenomenon and the camera, which will be very useful when
developing image processing and compression algorithms.

3.1 Infrared Radiation and Camera Technology
The infrared part of the electromagnetic spectrum has wavelengths that ranges
from 0.7 to 300 µm and can be divided into several spectral regions, as illustrated
in Figure 3.1. These names and boundaries of these regions in the literature vary
a bit, but for now the classification in Figure 3.1 will be used. This means that
the peaks in the OH airglow spectrum mentioned in Section 2.3 are situated in the
Short-wave infrared (SWIR) region.

Due to the large variation in wavelengths within the infrared spectrum, there
are also several different sensor types and applications for the different regions of
the spectrum. Silicon (Si) sensors are commonly used in the Visible and near-

27

CHAPTER 3. THE INFRARED CAMERA

Figure 3.1: The visible and infrared region. From [16]
.

infrared (VNIR) region, but does unfortunately not go beyond 1,1 µm[17]. For
longer wavelengths than this, other technologies must be used, as indicated in
Figure 3.1. For the SWIR region, Indium Gallium Arsenide (InGaAs) is the most
suitable sensor type [17]. InGaAs has a lower bandgap energy than Si, and is there-
fore sensitive to longer wavelengths, as illustrated in Figure 3.2. The wavelength
response of InGaAs typically covers a range from 0.9 to 1.7 µm.

Additionally, there are two main classes of infrared cameras; cooled and un-
cooled. As discussed further in Section 3.2.3, thermal noise can be a big problem
for infrared sensors. It is therefore common to apply external cooling to reduce the
thermal noise in the detector, especially for scientific applications that require very
high SNR. These cameras are usually heavy and power demanding, and therefore
not suited on-board a small satellite. Recently, commercial light-weight infrared
cameras without cooling have become more common, usually designed for appli-
cations such as night vision and thermal inspection, as discussed for instance in
[16].

3.2 Noise and SNR

3.2.1 Signal-to-Noise Ratio Metrics

As discussed in [18], many different definitions of the SNR are being used as metrics
for the image quality in remote sensing systems. The basic definition of SNR is
simply

SNR ≡ signal
noise , (3.1)

28

3.2. NOISE AND SNR

Figure 3.2: Quantum efficiency for Si and InGaAs. From [17]

but the signal and the noise can be measured either as an amplitude or a power, and
the result can be given in either linear scale or logarithmically with decibels (dB)1.
The SNR metrics from the detector point of view is often defined differently than
from the signal processing point of view. This can lead to some confusion when
looking at the complete remote sensing system as a whole, as attempted in this
report. For clarification, some different SNR metrics are therefore discussed below.

From the detector point of view, the signal and noise are counts of photons
and electrons, and it is therefore common to define the SNR as an amplitude or
signal level ratio. When comparing the incoming signal to the detector noise, the
Detector Signal-to-Noise Ratio (DSNR) can be defined as given in [18]:

DSNR = mean target signal
noise standard deviation = s̄target

σnoise
(3.2)

this can be seen as a measure of uncertainty in the detector output when imaging
a target with constant intensity level. It is also common to look at the difference
between two signal intensities, and compare this to the detector noise:

DSNR∆s = signal difference
noise standard deviation = ∆starget

σnoise
(3.3)

In signal and image processing on the other hand, SNR is usually given as a
power ratio, commonly defined as the variance of the wanted signal versus the
variance of a distortion, as further discussed in Section 4.1.

1Since the conversion to dB is defined differently for amplitude and power, the resulting SNR
in dB will be the same in both cases. (Power definition: (x2)dB = 10 log x2 = 20 log(x), amplitude
definition: xdB = 20 · log(x)

29

CHAPTER 3. THE INFRARED CAMERA

3.2.2 Signal
The signal in a remote sensing system has many possible units of measure. One of
them is the number of photoelectrons generated in the detector. The relationship
between the number of photons hitting the detector, np, and the number of pho-
toelectrons generated in the detector during exposure, npe, depends on the QE of
the detector. The average amount of photoelectrons, n̄pe, will also increase with
the integration time:

n̄pe = QE · n̄p (3.4)
= QE · n̄′p · tint (3.5)

where n̄′p is the number of photons hitting the detector per second, which depends
on the target radiation intensity and atmospheric effects, as well as optics and
detector size. The details of these effects are discussed further in [19] and [20], but
for now the value n̄′p is regarded as unknown.

After Analog-to-digital (A/D) conversion, the signal is measured in counts of
the A/D converter.

3.2.3 Noise Sources in InGaAs Sensors
The different types of noise discussed in this section appear in other optical detector
types as well, but for now the focus will be on their influence in InGaAs sensors.

Photon Noise

Photon noise is the shot noise associated with the number of incoming photons
in the detector [19]. Shot noise appears due to the discrete nature of electrons
and photons, and arises both in electronic and photonic devices. The signal plus
photon noise is Poisson-distributed [19] with expectation value equal to the signal
level (n̄pe). Since the standard deviation of a Poisson distribution is equal to the
square root of its expectation [21], it is clear that the noise increases as the signal
increases. The photon noise can often be modelled as Gaussian, since the Poisson
distribution approaches the normal distribution for large numbers.

Since photon noise is inevitable, the performance of an ideal detector is said to
be photon noise limited. Using the SNR definition in (3.2), the DSNR of an ideal
detector (i.e. with photon noise as the only noise source) can be given as

DSNRphoton = mean signal value
σphoton

= n̄pe√
n̄pe

=
√
n̄pe =

√
QE · n̄′p · tint, (3.6)

The SNR increases with the square of the number of photoelectrons, and the
photon noise is therefore more dominating for lower radiation intensity and short
integration time.

30

3.2. NOISE AND SNR

Dark current

Dark current is thermally generated charges that occurs even though there is no
light incident on the detector. This leads to a constant background offset in addition
to dark noise, which is the random shot noise associated with the dark current.
The dark charge is the number of charges counted during the integration time, and
is proportional to the dark current: ndark = idark · tint.

In the same way as for photon noise, the dark noise is also a kind of shot noise,
and therefore Poisson distributed. Its standard deviation is given by the square
root of average dark charge, n̄dark, and can be expressed as

σdark =
√
n̄dark =

√
īdark · tint (3.7)

where īdark is the average dark current given in electrons per second.
The offset level of the dark current is not considered as noise, but rather as a

constant background signal. It may however change with temperature, as shown
in the experiment in Section 3.2.5. Since the dark current is integrated along with
the photoelectrons, it will also increase for longer integration times.

Dark current may also cause fixed pattern noise due to permanent differences in
dark current for the different pixels. The variations from pixel to pixel arise from
random manufacturing differences of the diodes, but the pattern does not change
over time. It may however change with temperature or integration time, as shown
in Section 3.2.5.

In contrast to Si detectors, which are usually photon noise limited, InGaAs
detectors are dark noise limited devices [17]. This is due to the lower bandgap
energy of InGaAs, which makes it sensitive for longer wavelengths but also results
in higher dark current. A high dark current level leads to more dark noise, but it
also causes the detector to saturate for long integration times, and therefore puts
a limit to the maximum integration time that can be allowed [19]. As discussed
in [22], the dark current can be efficiently reduced by cooling. However, as long
as the integration time is kept short, the dark count level and the corresponding
fixed pattern noise can be removed by a simple background subtraction, as further
discussed in Section 4.2.3.

Readout Noise

The readout circuitry consisting of amplifiers and an A/D converter will also gener-
ate noise. The standard deviation of the readout noise is often measured in counts
and specified in the datasheet of the camera. The A/D converter would also intro-
duce some quantization noise, but for now it is assumed to have many levels, such
that the quantization noise is negligible compared to the noise from the detector.

3.2.4 SNR for an InGaAs Detector
The following discussion focus on the SNR from the detector itself, before the A/D
converter and readout. It is assumed that the fixed pattern noise can be removed,

31

CHAPTER 3. THE INFRARED CAMERA

Figure 3.3: Normalised DSNR as a function of integration time.

and that the dark noise and the photon noise are the dominating noise contributors
from the camera before readout.

Assuming that the total detector noise can be found by adding the noise sources,
and that the sources are independent Gaussian distributed variables, the variance
of the total noise will be equal to the sum of the variances. This leads to the
following standard deviation for the detector noise:

σnoise =
√
σ2

photon + σ2
dark + σ2

readout ≈
√
n̄pe + n̄dark , (3.8)

assuming that the readout noise in most cases is negligible compared to the two
shot noises. Using the metric from (3.2), the SNR of the detector can be expressed
as

DSNR = n̄pe√
n̄pe + n̄dark

(3.9)

which gives

DSNR =
QE · n̄′p · tint√

QE · n̄′p · tint + īdark · tint

=
QE · n̄′p√

QE · n̄′p + īdark

·
√
tint (3.10)

when inserting the expressions for n̄pe and n̄dark. īdark = 0 gives the same expres-
sion as for the ideal detector in (3.6).

The non-linear relationship between the incoming photons, the dark noise and
the quantum efficiency can be summarized in a factor K:

DSNR = K ·
√

tint, (3.11)

which can be convenient to use for simulations when the signal strength is unknown.
The normalised DSNR is obtained by setting K=1, and is plotted in Figure 3.3 to
illustrate the dependance on integration time.

32

3.2. NOISE AND SNR

3.2.5 Noise Measurements for an InGaAs Sensor
The high dark current level of InGaAs sensors will create a background signal
that is added on top of the signal from the target. In order to investigate the
impact of this background signal for different integration times and temperatures,
experiments were performed with a one-dimensional InGaAs sensor by Patrick Espy
at the Department of Physics at NTNU.

Experiment

The sensor that was used is an Andor IDus InGaAs detector with 1024 pixels and
25 µm pitch, with cooling to regulate the temperature. The complete specifications
for the sensor are enclosed in Appendix D.

Several images were taken at different temperatures and integration times with
closed shutter in order to detect the background signals.

By simple averaging and subtraction, three components of the background sig-
nal with different statistical properties were found: the background offset level, the
fixed pattern noise and the thermal noise. The thermal noise component of the
background signal was found by taking the difference between two of the images.
Several images were then averaged to reduce the influence of the thermal noise, and
get the fixed part of the background (fixed pattern noise plus offset). The back-
ground offset was then found by averaging the fixed background over the elements.
By subtracting the offset from the fixed background, the fixed pattern noise was
found. The results are measured in counts of the A/D converter.

Results

Figure 3.4 shows the results for the background offset level and the thermal noise
for increasing integration time. It is seen from Figure 3.4(a) that the background
offset increases linearly with integration time, but the slope is strongly dependent
on temperature. For 20◦C, it has a slope of more than 800 counts per second, for
0◦C it is reduced to less than 100 counts per second, and for lower temperatures it
has a constant value around 1000 counts. This corresponds well with the theoretical
behaviour of average dark charge mentioned in Section 3.2.3. There seems to be a
fixed offset of 1000 counts in the detector.

The thermal noise in Figure 3.4(b) on the other hand, shows a less regular
behaviour. First of all, it is about 200 times smaller than the offset. The curves for
the negative temperatures have a constant level of about 5 counts, and the same
holds for 0◦C up to 2 seconds. There seem to be some kind of threshold that the
background offset in Figure 3.4(a) must exceed before the thermal noise changes
its behaviour and starts to increase. This is probably due to a random readout
noise which dominates for low temperatures and integration times.

The fixed pattern noise in Figure 3.4(c) is about the same order of magnitude
as the background offset for high temperatures, but has a floor of about 150 counts
for low temperatures and short integration times. The results are summarized for
an integration time of 1 second and three different temperatures in Table 3.1.

33

CHAPTER 3. THE INFRARED CAMERA

The most important thing to note from this experiment is that the thermal
component is almost negligible compared to the background offset and fixed pattern
noise, especially for temperatures below 0◦C. But the thermal noise is the only
part of the background that is random in time, and the two other components
can therefore be easily removed by background subtraction, as further discussed
in Section 4.2.3. Some camera manufacturers claim, for instance in [17], that the
photon signal will drown in the high level of background signal, and that deep
cooling (down to -90◦C degrees) therefore is required. From this experiment it
seems that temperatures between -20◦C and 0◦C will be sufficient to keep the
thermal noise relatively low. As discussed in 2.1, temperatures of -30◦C to +20◦C
can be expected for the NUTS satellite. Since the camera only will operate during
night, cooling of the detector does not seem to be necessary.

Table 3.1: Measured background signal for an InGaAs sensor, at 1 second integra-
tion time

Temperature [◦C] -20 0 20
Offset (avg) 1054 1143 1826
FPNa (std) 139 228 1338
Thermal noise (std) 4.54 5.54 10.96
a Fixed Pattern Noise

3.2.6 Other Possible Disturbances

When aiming to observe the gravity wave patterns in the airglow, it would be
beneficial if there are as little disturbances from other radiation sources as possible.

Out-of-band background radiation from the Earth can be efficiently reduced by
applying an optical bandpass filter. As already discussed, there is a peak in the
water vapour absorption spectrum that coincides quite well with one of the peaks
of the OH spectrum. The water vapour is situated well below the OH airglow,
and is almost always present except for a few spots above dry places on Earth, for
instance the Sahara and Antarctica [23]. The water vapour will therefore block the
radiation from the Earth, while leaving the radiation from the airglow unaffected.
One should however beware that by applying an optical bandpass filter, the energy
of the incoming signal is reduced. The passband of the filter should therefore not
be made too narrow.

Gravity wave images taken from ground are often disturbed by auroral activity.
However, the aurora is mainly present in the visible part of the spectrum, and will
not appear in the SWIR region [24].

34

3.2. NOISE AND SNR

0 1 2 3 4 5 6 7 8 9 10

Integration Time (sec)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
ac

kg
ro

un
d

C
ou

nt
s

-60 oC
-40 oC
-20 oC
0 oC
20 oC

(a)

0 1 2 3 4 5 6 7 8 9 10

Time

0

10

20

30

40

50

R
M

S
 T

he
rm

al
 N

oi
se

 C
ou

nt
s

-60 oC
-40 oC
-20 oC
0 oC
20 oC

(b)

-60 -50 -40 -30 -20 -10 -0 10 20

Temperature oC

102

103

104

2

3

4

5
6
7
8

2

3

4

5
6
7
8

F
ix

ed
 P

at
te

rn
 N

oi
se

 C
o

un
ts

1/2 sec
1 sec
2 sec
5 Sec
10 sec

(c)

Figure 3.4: (a) Measured background offset and (b) thermal noise vs. integra-
tion time for different temperatures. (c) Fixed pattern noise vs. temperature for
different integration times. Reproduced by courtesy of Patrick Espy.

35

CHAPTER 3. THE INFRARED CAMERA

3.3 Camera Operation and Specification
3.3.1 Mode of Operation
Perturbations of the satellite velocity can be a big problem for the push-broom
and whisk-broom modes mentioned in Section 2.4. Additionally, most off-the-
shelf cameras have two-dimensional detectors, and are not designed for any special
remote sensing operation modes. A two-dimensional detector also have a larger
area than a one-dimensional array, which increases the incoming signal. Therefore,
the most suitable operation seems to be the simple “staring mode” with a two-
dimensional detector instead of push-broom or whisk-broom mode, in contrast to
many other optical remote sensing systems. From now on, it will be assumed that
the camera has a two-dimensional detector.

In order to cover a larger area at once, it will be convenient to obtain sequences
of images with a suitable overlap, instead of many single images from various
locations. How often these sequences can be obtained will depend on the power
available and the downlink capacity, as further discussed in Chapter 5.

3.3.2 Calculations of Camera Parameters
Based on the previous discussion of the gravity wave properties and the satellite
orbit, some assumptions are made, as listed in Table 3.2. In order to compute
the required number of pixels and FOV of the camera from the requirements in
Table 3.2, orbital parameters of the satellite also have to be taken into account.
The formulas used for these calculations are given in Appendix C. In order to get a
better overview of the problem, a spreadsheet with all the parameters and formulas
affecting the camera requirements was developed. This became a useful tool which
made it possible to simulate different scenarios, for instance by varying the altitude
of the satellite. A snapshot of the spreadsheet itself can be found in Appendix C,
and the most interesting imaging parameters are plotted in Figure 3.5 for varying
camera and satellite parameters. They will be further discussed below.

3.3.3 Image Coverage
Since the gravity waves is such a large-scale phenomenon, the image coverage is a
more crucial parameter than the resolution. To be able to see the wave patterns
properly, a coverage of about 10-20 wavelengths per image is suitable. If a mean
gravity wave wavelength of 26 km is assumed, this results in a required coverage
of about 260-520 km. The image coverage will depend on the detector size and
focal length as well as the distance to the target. As shown in Appendix C, the
relationship between detector size and focal length results in a FOV, which might
be a more intuitive parameter. The resulting image coverage as a function of FOV
for different orbits is shown in Figure 3.5(a). From this, it seems like a FOV of
around 40-45◦ would be a suitable choice, because this would provide a suitable
image coverage for a wide range of orbital altitudes. Since the orbital altitude is not
known yet, an image coverage of 300 km will be assumed in the further discussion.

36

3.3. CAMERA OPERATION AND SPECIFICATION

(a)

(b)

(c)

Figure 3.5: Image coverage, spatial resolution and image velocity for varying satel-
lite and camera parameters. (a) Image coverage as a function of FOV for different
satellite altitudes. (b) Spatial resolution given in GW wavelengths per pixel as a
function of number of pixels in the detector array, for different values of the image
coverage. (c) Image velocity as a function of image coverage, assuming a velocity
with respect to the airglow of V ′ = 7.16 km/s

37

CHAPTER 3. THE INFRARED CAMERA

This could for instance correspond to a satellite altitude of 500 km and FOV of
40◦.

3.3.4 Spatial Resolution

The main requirement for the spatial resolution, or rezel size, ∆x [km
px], is sim-

ply that the gravity wave patterns are clearly distinguishable. As mentioned in
Section 2.3, it is assumed that the shortest gravity wave wavelength one wants to
detect is 15 km. For an image coverage of 300 km, this corresponds to a spatial
frequency of 20 cycles per image. To ensure that this frequency will be visible in
the image, the image must be sampled at the Nyquist rate [25] or higher. This
means that sampling frequency must be at least twice the largest frequency one
wants to detect, or equivalently:

∆xλ = ∆x
λGWmin

<
1
2 (3.12)

where ∆xλ is the spatial resolution in wavelengths. If λGWmin
= 15 km, this means

that the rezel size, ∆x, must be smaller than 7.5 km.
To assure a reasonable perceptual quality, it is however advisable to choose a

finer resolution than the minimum that is required by the Nyquist criterion. An
illustration of the appearance of different values for ∆xλ is given in Figure 3.6,
which shows sine images of 15 cycles per image, sampled with different numbers
of pixels. From this example it seems that a ∆xλ of 0.1-0.2 is required to obtain
a reasonable quality, which is much lower than 0.5. This implies a maximum rezel
size of 1.5-3 km if λGWmin = 15 km.

Figure 3.5(b) shows the resulting ∆xλ as a function of Npx for different values
of the image coverage. If it is assumed that ∆xλ = 0.2 gives a sufficient quality,
and the image coverage is 300 km, a detector with only 100 pixels in each direction
would actually be sufficient. But if the coverage is 400 km and ∆xλ = 0.1 is
required, the detector must have at least 267 pixels in each direction.

As mentioned in Section 2.4, the spatial resolution may also be limited by
diffraction. This will depend on properties of the optics. For now it is assumed
that the spatial resolution will be limited by the rezel size, since the resolution of
the detector will be quite coarse. This should however be taken into consideration
when designing the optics.

It should also be noted that the number of pixels the detector is partitioned
into will affect the pixel pitch. From this point of view the number of pixels should
be kept low. A larger pitch gives more incoming photons per pixel, improving the
DSNR of the detector. For detectors with a high resolution and a small pixel pitch,
the pixel size can be increased artificially by binning [19], i.e. combining the signal
from several neighbouring pixels, in order to increase the DSNR at the expense of
spatial resolution.

38

3.3. CAMERA OPERATION AND SPECIFICATION

(a) Npx = 40, ∆xλ = 0.5 (b) Npx = 60, ∆xλ = 0.33

(c) Npx = 100, ∆xλ = 0.2 (d) Npx = 200, ∆xλ = 0.1

Figure 3.6: Synthetic image with diagonal sine wave, sampled with different num-
bers of pixels Npx resulting in different wavelength resolutions ∆xλ

39

CHAPTER 3. THE INFRARED CAMERA

Figure 3.7: Speed of the satellite w.r.t the OH layer, as a function of altitude.

3.3.5 Image Speed
As discussed in Section 2.4, the image might get blurry due to the speed of the
satellite. The image speed [image shift

second], i.e. how fast the satellite moves compared
to the coverage area of the image, is an important parameter when investigating
the impact of the blur.

The image speed depends on the image coverage and the speed of the satellite
with respect to the OH layer, V ′ [km/s]. This speed is calculated in Appendix C,
and plotted as a function of orbital altitude in Figure 3.7. It turns out that it
decreases relatively slowly. For the following calculations it is therefore regarded
as approximately independent on orbital altitude, and the value corresponding to
a 500 km orbit, V ′ = 7.16 [km/s], will be assumed.

Figure 3.5(c) shows the image speed as a function of the image coverage. The
image shift is measured in percentage of the total image, to make it independent
on resolution. The image coverage may correspond to different combinations of
FOV and altitude, as already shown in Figure 3.5(a).

It is hard to say what impact the different image velocities have on the image
quality, since this depends on the image content. The values of the image velocity
will be used in simulations in Section 4.3.3 to investigate this further.

3.4 Summary of Camera Requirements
To ensure a sufficient resolution and image coverage, the choice of detector and
optics must be made jointly. The uncertainties of the orbital altitude must also be
taken into account. The number of pixels should be chosen large enough to provide
the required resolution, but also be kept low to give a large pitch and good DSNR.
A detector size of 128× 128 pixels might be sufficient, but 256× 256 seems like a

40

3.5. THE SEARCH FOR A SUITABLE OFF-THE-SHELF
CAMERA

safer choice for the time being. This is by the way the same detector size as NASA
intended to use on their Waves Explorer, which was mentioned in Section 2.4.5.

According to the discussion in Section 3.3, Table 3.2 shows a summary of the
preliminary camera parameters that will be assumed in the following of this report.

Table 3.2: Summary of resulting camera parameters for some given assumptions:
Assumed physical parameters:
Orbital altitude 500 km
Mean GW wavelength 26 km
Min. GW wavelength 15 km

Assumed requirements:
Number of GWs per image 10-20
Spatial resolution in wavelengths 0.1-0.2

Resulting image requirements:
Image coverage 300 km
Spatial resolution 1.5-3 km/px

Resulting camera parameters:
Field of View 40◦
Number of pixels in detector 256×256

3.5 The Search for a Suitable Off-the-shelf
Camera

It is beyond the scope of this thesis to find and integrate a suitable camera.
Nonetheless, to investigate whether it is likely to find a suitable camera in terms
in weight and size, a few candidates have been considered.

Generally, there are a much wider range of light-weight silicon cameras avail-
able than InGaAs cameras, but as already mentioned, Si sensors are not able to
detect the wavelengths that are relevant for this application. Most of the InGaAs
cameras that are available are made for scientific applications, and are heavy and
power demanding because of cooling. There are however a few exceptions, and the
specifications for the three most relevant cameras that were found are enclosed in
Appendix D, in addition to the datasheet for a suitable detector.

The three cameras that have been considered are XSW-640 from Xenics, SU640HSX-
1.7RT from Goodrich and a SWIR camera developed by Optigo Systems. They
all have suitable size, weight and resolution, but have some disadvantages. The
Xenics camera seems promising when it comes to size, weight and power consump-
tion, but the specifications are preliminary and might change. According to Xenics,
the camera will not be commercially available until the last quarter of 2012. The
specifications for the Goodrich camera are also preliminary, and due to export re-

41

CHAPTER 3. THE INFRARED CAMERA

strictions it is probably impossible to buy it from outside the USA. The Optigo
camera is promising with respect to power consumption and operating temperature,
but is not commercially available at the moment.

A sensor from Hamamatsu has also been considered. Buying a sensor and
integrating it can provide a tailor-made solution, but require a lot of work and
expertise. Additionally, the resolution of this sensor is a bit low (128 × 128 px),
but other sensors should also be considered if it is decided that one should try to
build a camera.

Since no suitable and readily available camera has been found so far, the exact
properties of the camera that will be used remains unknown. The conclusion so
far is that it should be possible to find a commercially off-the-shelf camera with
suitable weight and size, but the candidates found so far all have their issues.

42

Chapter 4
Image Enhancement

Noise can be a big problem for infrared sensors, as indicated in the previous chapter.
To have images with sufficient signal-to-noise ratio is important for the interpre-
tation of the image, but also vital for the performance of any image compression
algorithm. It is assumed that a long integration time will be necessary to get a
sufficient DSNR, and that the background signal of the detector must be removed
somehow before compression. The combination of high speed and long integration
time may introduce blur in the image, but if the integration time is made shorter,
the DSNR will get worse, which can be crucial for the image quality when the
signal is weak.

To enable development and simulation of image enhancement and compression
algorithms, some simple test images will be generated according to the assumed
properties of the satellite orbit, the camera and the gravity waves phenomenon.
How the background signal and noise from the detector can be removed will also
be discussed. In order to investigate how the speed of the satellite will affect the
quality of the image, a model of the motion blur degradation is presented along
with simulations of the blur with synthetic test images in MATLAB. There are
several solutions that aim to give a better trade-off between DSNR and motion
blur, as briefly mentioned in Section 2.4. Two different post-processing strategies
will be discussed in this chapter; restoration of motion blur by deconvolution and
image averaging with motion compensation. The performance of the two will be
investigated through simulations, and compared in order to decide which one is the
most feasible for the NUTS application.

Some of the parameters regarding camera, satellite and gravity waves that were
found in Chapter 3 are repeated in Table 4.1.

43

CHAPTER 4. IMAGE ENHANCEMENT

Table 4.1: Assumed satellite and camera parameters:
Image coverage imcov 300 km
Number of pixels in detector Npx 256×256
Mean GW wavelength λGWmean 26 km
Min. GW wavelength λGWmin 15 km
Speed w.r.t. OH layer V’ 7.16 km/s

4.1 Signal-to-Noise Ratio Metrics for Image
Processing

Depending on the application, there are many different definitions of SNR, as al-
ready mentioned. The Detector Signal-to-Noise Ratio was defined in Section 3.2.1,
but from a signal processing point-of-view, there are other definitions of SNR that
are more practical. The definitions are stated with respect to a one-dimensional
discrete signal s(n), but are easily extended to images.

In signal and image processing, SNR is usually given as a power ratio. One of
the most common definitions is

SNRimage = σ2
s
σ2

n
(4.1)

where σ2
s is the variance of the pure and noiseless source signal, and σ2

n is the
variance of the noise, as stated for instance in [26].

In the context of image enhancement and compression, the Mean Squared Error
(MSE), defined as MSE = 1

N

∑N−1
i=0 (s(n)− ŝ(n))2, is often used to measure the

restored or compressed image’s resemblance to the original. This can also be stated
as an SNR metric, as given in [26]:

SNRMSE = σ2
s

MSE (4.2)

When it comes to measurement of visual pleasantness, SNR generally does a
rather poor job. An image can look terrible and have a better SNR than an image
that looks good to a human eye. It is however hard to incorporate the complexity
of visual perception in a simple SNR metric. The Peak-to-peak Signal to Noise
Ratio (PSNR) is often used to evaluate the quality of compressed images, and can
be defined as in [26]:

PSNR =
s2peak

MSE . (4.3)

where s2peak is the peak-to-peak value of s

4.2 Synthetic Test Images and Noise Removal
When working with algorithms for image enhancement and compression, it is useful
to know something about what the images will look like. An attempt is therefore

44

4.2. SYNTHETIC TEST IMAGES AND NOISE REMOVAL

made to summarize the information that is available so far, and come up with some
examples of synthetic test images with suitable parameters.

4.2.1 Assumptions
Ground based observations of gravity waves have provided some information about
their structure and nature. As already metioned in Section 2.3, the wavelengths
have been measured to have a range of 15-40 km with a mean of 26 km. A wave-
length of 15 km is assumed as the worst-case scenario when it comes to requirements
for resolution and quality.

The gravity wave patterns in the airglow are assumed to closely approximate
sine waves, with amplitudes of about 5-10% of the radiation intensity level. As
discussed in Section 3.2.6, the background radiation from Earth will most likely be
blocked by water vapour, and the aurora can be considered as nearly invisible in
the infrared. Of course there may show up other sources of radiation that has not
been considered, but these will probably have a small effect.

When it comes to signal strength, it is hard to find any information about the
radiation intensity from the OH airglow. It is also beyond the scope of this report
to calculate the resulting number of photons that will hit the lens and the detector.
It is therefore hard to say anything about the expected intensity of the signal. The
digital output of the camera should preferably have a fine quantization, between
12 and 16 bit per pixel seems common. However, images with 8 bits per pixels will
be used for the coming implementations and simulations, for speed and simplicity.

The different noise sources in InGaAs detectors have been treated thoroughly in
Section 3.2.3, and this provides knowledge of how the detector noise will affect the
images and how it can be removed. But since the intensity of the signal remains
unknown, it is hard to give any values of the DSNR. However, different scenarios
can be investigated by assuming high or low DSNR.

4.2.2 Synthetic Test Images
Based on the assumptions above, simple sine test images without noise were gen-
erated in MATLAB. The mean was set arbitrarily at 0.6 of the intensity range,
which corresponds to a pixel value of 153 for an 8-bit image. The amplitude was
set to 5 percent of the mean to mimic the intensity variations in the airglow. The
frequency of the sine was determined by the desired GW wavelength. The an-
gle can be chosen arbitrarily, since this will vary when the satellite rotates. Test
images with frequencies corresponding to the mean and minimum gravity wave
wavelengths are shown in Figure 4.1. The minimum wavelength corresponds to the
worst-case scenario for many of the coming simulations, and will therefore be used
most often.

4.2.3 Background Subtraction
The image in Figure 4.3(a) was synthesized in MATLAB to illustrate the impact
of the background signal of the detector. It is composed by a background offset

45

CHAPTER 4. IMAGE ENHANCEMENT

(a) (b)

Figure 4.1: Synthetic test images without noise. (a): A sine with 11.5 cycles/im-
age, corresponding to the mean GW wavelength (26 km). (b): A sine with 20
cycles/image, corresponding to the minimum GW wavelength (15 km)

s
_ A

Figure 4.2: Illustration of a sine signal with mean value s̄ and amplitude A. A ∝ s̄

46

4.2. SYNTHETIC TEST IMAGES AND NOISE REMOVAL

level, fixed pattern noise and thermal noise according to the results in Table 3.1 for
an exposure time of 1 second and a temperature of 0 degrees. The numbers where
however scaled such that offset level of the sine test image from Figure 4.1(a) is twice
the level of the background offset. The resulting summation of the background
signal and the sine image is shown in Figure 4.3(c). It is seen that the mean level
of the signal is very high, and that the sine pattern is almost drowned in noise.

Fortunately, most of the background signal in the detector is relatively station-
ary, and can therefore be removed by background subtraction. If the background
offset level and the fixed pattern noise is subtracted from the image in Figure 4.3(c),
only the small thermal noise component remains. This is not even visible in the
image, and is therefore not shown.

The experiment in Section 3.2.5 did however show that the background offset
level and the standard deviation of the fixed pattern noise is highly dependent on
temperature. The background image can easily be measured by taking a picture
with closed shutter and correct exposure time prior to the recording of an image or
image series, assuming that the temperature will stay constant for a short period
of time.

4.2.4 Synthetic Test Images with Noise
Since most of the disturbing detector background can be removed by a simple
subtraction operation, it is assumed that the noise of the image will be dominated
by dark noise and photon shot noise. The Detector Signal-to-Noise Ratio can then
be expressed as in (3.10). However, due to all the uncertainties regarding signal
strength, the factor K that was introduced in (3.11) will be used to describe the
DSNR in the following discussion.

In order to generate noisy test images that corresponds to specific values of the
normalised DSNR, the noise must be scaled according to the “signal” of the test
image. By rearranging (3.11), the standard deviation of the noise is given by

σn = s̄

K ·
√
tint

(4.4)

where K is the SNR factor from Section 3.2.4, and s̄ is the average value of the
"signal" in the test image. The resulting test images for different values of K is
shown in Figure 4.4.

It could be convenient to know the relation between the SNR metrics DSNR
and SNRimage for the test images. For a sine signal like the one in Figure 4.2, with
an amplitude proportional to the offset level of the sine

σs = A√
2

= r · s̄√
2

(4.5)

where r is the proportionality factor. r = 0.05 will be assumed for the gravity wave
images in accordance with previous discussions.

Inserting (4.5) and (4.4) into (4.1) results in the following relation between the

47

CHAPTER 4. IMAGE ENHANCEMENT

two SNR metrics for the signal in Figure 4.2:

SNRimage = r2
2 ·K

2 · tint = 0.00125 ·DSNR2 (4.6)

The value of K will however remain unknown until it has been decided on which
camera to use.

4.2.5 Noise Removal
Integration time and image averaging

As already indicated in Section 3.2.4, the DSNR can be increased by applying a
longer integration time. Figure 4.5 shows test images generated in a similar manner
as Figure 4.4, but for varying integration time. Figure 4.6 shows what values for
SNRimage that can be obtained for different values of the SNR factor K by varying
the integration time.

The effect shown in Figure 4.6 and Figure 4.5 can also be obtained by adding
several images of short exposure time, as further discussed in Section 4.5.

Mean filtering

If there still are some noise left in the image after background subtraction and image
averaging, one could apply an arithmetic or geometric mean filter, as discussed in
[25]. Mean filters have a lowpass effect that smooths the image, and works best
on random noise like Gaussian and uniformly distributed noise. This type of filter
will introduce blur, and the size of the blur kernel must be chosen carefully.

Median filtering

Median filters are non-linear filters of the so-called order-statistic type. As dis-
cussed in [25], a median filter replaces a pixel value with the median of its neigh-
bourhood. This often gives a less blurry result than mean filters, and is particularly
good for removing so-called salt-and-pepper noise.

A median filter could be applied to remove noise from defective pixels that
appear as white or black spots in the image.

4.3 Motion Blur in Images
Motion blur is caused by the combination of long exposure time and movement of
the camera while the image is taken. Photons originating from one particular point
of the target is spread over several pixels, which causes the characteristic blurry
lines. Whether the motion is caused by linear motion of the camera, a shaking
hand or a moving object within the image, changes the properties of the blur. For
the linear motion case, the blur is usually considered spatially invariant, but this
will not hold if different parts of the image move with different speeds or directions.

48

4.3. MOTION BLUR IN IMAGES

(a) (b) (c)

Figure 4.3: An example of what detector background offset and noise can look like.
The values are according to the experimental results, and the mean value of the
sine is set to twice the level of the background offset. (a): Detector background
(offset, fixed pattern noise and dark noise), (b): Sine signal (without photon noise)
(c): Detector background + sine signal

(a) K = 5 (b) K=10 (c) K=50

Figure 4.4: Test images illustrating image quality for different values of the SNR
factor.

(a) integration time = 0.1 s (b) integration time = 1 s (c) integration time = 5 s

Figure 4.5: Test images illustrating image quality for different integration times.
K = 10 for all three images.

49

CHAPTER 4. IMAGE ENHANCEMENT

Figure 4.6: An illustration of how the SNR varies with integration time.

4.3.1 Image Degradation Model
Generally, if the degradation of an image is linear and spatially invariant, it can be
described in the spatial domain as a convolution [25]:

g(x, y) = f(x, y) ∗ h(x, y), (4.7)

where g(x, y) is the degraded image, f(x, y) the original image, h(x, y) is the degra-
dation function, often called the Point Spread Function (PSF), and ∗ is the convo-
lution operator. To account for additive noise, this model can be extended with a
noise term n(x, y) :

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) (4.8)

which has the following frequency domain equivalent:

G(fx, fy) = F (fx, fy)H(fx, fy) +N(fx, fy) (4.9)

where the capital letters are the corresponding Fourier transforms of the terms in
(4.8).

4.3.2 Modelling the Blur Filter
It can be useful to find a good model of the motion blur filter in order to do
simulations of motion blur for different speeds and exposure times. Additionally,
the restoration problem can usually be solved more exactly when the degradation
function is known.

50

4.3. MOTION BLUR IN IMAGES

If the motion causing the blur is linear, e.g. no acceleration, the degraded image
can be expressed as given in [25]

g(x, y) =
tint∫
0

f(x− x0(t), y − y0(t)) dt (4.10)

given a uniform linear motion

x0(t) = a

tint
· t = vim · t (4.11)

y0(t) = b

tint
· t = vim · t (4.12)

Where x0(t) and y0(t) are the time-varying motion components, tint is the exposure
time, vim is the image velocity and a and b are the displacement in the x and y
directions at time t. As shown in [25], this results in the following frequency domain
degradation function:

H(fx, fy) = tint

π(fxa+ fyb)
sin(π(fxa+ fyb))e−jπ(fxa+fyb) (4.13)

For horizontal blur, this corresponds to a one-dimensional rectangular filter of
length a in the spatial domain. When discretized, it can be modelled as a uniform
one-dimensional array of length a in MATLAB. The low-pass nature of (4.13)
results in attenuation for high frequencies, which is the reason for the blurry effect.

The frequency response of the blur filter depends on the speed of the image,
which was discussed and calculated in Section 3.3. Assuming the parameters in
Table 4.1, results in a shift of 2.4% of the image per second, i.e. vim = 0.024 = 2.4%.
The blur filter frequency response also depends on the integration time, as shown
in the plot of the amplitude of the one-dimensional blur filter in Figure 4.7. The
position of the zeros in H(fx, fy) depends on the displacements a and b; for a large
displacement the first zero will occur at a lower spatial frequency. A plot of the first-
zero-frequency vs. integration time is shown in Figure 4.8(a), and Figure 4.8(b)
shows the same relation for the corresponding spatial wavelengths as seen from the
satellite.

4.3.3 Motion Blur Simulations
As indicated above, the impact of motion blur in an image will depend highly
on its frequency content in the direction of the blur. The position of the zeros in
Figure 4.7 can give an indication of how short the exposure time must be to preserve
content up to a certain frequency, but it is hard to know how much attenuation in
H(fx, fy) that can be allowed before the blur becomes slightly visible, and for which
attenuation the information in the image is lost. Therefore, MATLAB simulations
were performed on simple test images in order to investigate the possible motion
blur effect in images taken from the satellite with different integration times. The
simulations were based on filtering in the spatial domain, according to (4.7).

51

CHAPTER 4. IMAGE ENHANCEMENT

Figure 4.7: Frequency responses of one-dimensional motion blur filters for different
integration times. (The curves corresponds to integration times of 1, 2 and 3
seconds and vim = 0.024)

(a) (b)

Figure 4.8: Positions of the first zero in the blur filter frequency response, for
increasing blur lengths corresponding to increasing integration times for the pa-
rameters in Table 4.1. (a) shows the zeros for spatial frequencies measured in
cycles per image, while (b) shows the same relation translated into wavelengths
seen from the satellite, measured in kilometers.

52

4.3. MOTION BLUR IN IMAGES

First of all, the spatial motion blur filter had to be estimated for different expo-
sure times. For simplicity, the motion was assumed to be constant and horizontal
with respect to the image. As mentioned above, this should correspond to a motion
blur filter consisting of a one-dimensional uniform array. The length of the array,
in the following called blur length, is equal to the number of pixels the image moves
during the exposure time. To make the calculations independent on resolution,
this shift was measured as a ratio of the image width instead of pixels, just like
vim. Once again vim = 0.024 was assumed.

The synthetic motion blur filter was created by means of a built-in MATLAB
function named fspecial(), using the 'motion' option. This returns a filter
which approximates the linear motion of the camera, given a blur length and ori-
entation of the motion. For the case of horizontal motion, fspecial() returns a
vector with uniform elements that sums to one, and length equal to the input blur
length.

Simple sinusoidal test images with increasing frequencies were generated in
order to illustrate the impact of the blur filter for different spatial frequencies. The
images shown in the simulation results are separated into equally big sections with
frequencies of 5, 10, 15, 20, 25 and 30 cycles/image (see Figure 4.9).

The filtering operation was performed with imfilter(), with the blur filter
and the test image as inputs, creating synthetic motion blur in the image. This
should give a fairly good approximation to linear motion blur, except from close to
the edges of the image: Blur that is generated by real motion should also depend
on content beyond the field of view of the image due to the movement. The edges
were therefore cut after filtering.

Simulation results

Figure 4.9 shows the test images with synthetic blur corresponding to different
integration times, plotted together with the frequency response of the blur filters
and the original image for comparison. For an exposure of 1 second, a weak blur
occur for the highest frequencies, but the sine patterns are fully visible. However,
if the exposure time is increased to 2 seconds, the image section with a frequency
of 20 is completely wiped out, because this is very close to a zero in the blur filter
frequency response. It is also interesting to observe that the higher frequencies
seems less distorted, but a closer comparison with the original image reveals that
the sine pattern actually is inverted. This is due to the undershoot of the amplitude
response, which gives a phase inversion. For an exposure time of 3 seconds, this
effect occurs for the section with frequency of 20, while there is a zero blurring the
section with f = 15. For such a long exposure, all the frequencies are blurred to
some extent, except the lowest one.

The test image in Figure 4.1(b) representing the minimum gravity wave wave-
length has a frequency of 20 cycles per image. As indicated by the results in Fig-
ure 4.9, an exposure time of 2 seconds would wipe out this frequency completely.
Assuming that this is the highest frequency one needs to observe in the image, it
seem that the integration time must be limited to around 1 second, depending on
the required quality. The image quality for different integration times are further

53

CHAPTER 4. IMAGE ENHANCEMENT

discussed in Section 4.6.1.
For now it is concluded that motion blur will occur for integration times of

more than 1 second, and that action must be taken if longer integration times are
required due to a weak signal.

4.4 Restoration of Motion Blurred Images by
Deconvolution

One way of solving the joint motion blur and noise problem, is to apply a long
integration time to get a stronger signal, and allow some blur in the image which
is removed by post processing.

Motion blur can be considered as filtering with a spatially invariant degradation
function, as already discussed in Section 4.3. Restoration of the image after this
type of degradation can generally be done by some sort of deconvolution. As
indicated by the name, this approach aims at reversing the filtering in (4.8). It
can be divided into two cases: blind and non-blind deconvolution. If the PSF is
known, restoration of the image can be done by non-blind deconvolution, which is
generally a much easier problem than blind deconvolution.

The general goal of image restoration is to find an estimate of the original image,
denoted as f̂ in the spatial domain and F̂ in the frequency domain, which is as
close to the original as possible.

4.4.1 Blind Deconvolution
In the general case both the original image, degradation function and the noise
term are unknown, and the ill-posed problem of the blind deconvolution has to
be solved. A countless number of different algorithms have been developed to
solve this problem, often optimized to work for a certain kind of image degradation
assuming some statistical properties of the image or the degradation function. Some
examples are the concept proposed in [27], which utilizes blur in different directions,
and the algorithm presented in [28], which unifies blur filter estimation and image
restoration into one algorithm. The common problem for all these approaches is
that they do not work as well when the motion blur is too strong.

4.4.2 Non-blind Deconvolution
Fortunately, the problem of non-blind deconvolution is less ill-posed than blind
deconvolution. In this case, only the original image and the noise term remain
unknown, and the degradation function is known or estimated before the de-
convolution.

The most obvious approach to this problem is direct inverse filtering:

F̂ (fx, fy) = G(fx, fy)
H(fx, fy)

(4.14)

54

4.4. RESTORATION OF MOTION BLURRED IMAGES BY
DECONVOLUTION

(a) Frequency response blur filter

Figure 4.9: Simulation of motion blur for different exposure times: (a) shows the
frequency response of the motion blur filter, b) shows the original test image, c)- e)
shows the result from blurring with filters corresponding to different exposure times.
The frequency axis in the plot corresponds to the placement of the frequencies in
the test image.

55

CHAPTER 4. IMAGE ENHANCEMENT

By inserting (4.9), this can be further expressed as

F̂ (fx, fy) = F (fx, fy) + N(fx, fy)
H(fx, fy)

(4.15)

Because of the noise term, the resulting estimate would not be exact. The main
problem with this approach in practice is that H(fx, fy) usually has zeros and low
values at higher frequencies. The noise term will then be amplified and dominate
the estimate, and the result is usually not as intended.

One way to avoid the problems of the inverse filtering approach is to replace
it by a Wiener filter [25] or an iterative restoration method such as the Lucy-
Richardson Algorithm [29]. The Wiener filter requires knowledge or estimation of
the statistical properties of the noise and the original image. This is not required
when using the Lucy-Richardson Algorithm, which iteratively restores the image
based on knowledge of the degradation function only.

4.4.3 The Lucy-Richardson (LR) Algorithm
The Lucy-Richardson algorithm is an iterative non-linear restoration algorithm. In
contrast to the direct inverse filtering and Wiener filtering, this algorithm utilizes
the known degradation function in an update equation and restores the image
iteratively instead of performing the deconvolution directly. The algorithm is based
on a maximum-likelihood formulation, which gives the resulting update function:

f̂k+1(x, y) = f̂k(x+ y)
[
h(−x,−y) ∗ g(x, y)

h(x, y) ∗ f̂k(x, y)

]
(4.16)

Where f̂k is the estimate of the original image for the k-th iteration, as given in
[29]. A derivation can be found in [30].

The main disadvantage of the Lucy-Richardson (LR) algorithm and non-linear
methods in general is that they are more computationally intensive than direct
methods such as the Wiener filter and direct deconvolution. But whether this is a
problem or not depends on the application. If the image is small and there is a lot
of computational power available, this is usually not an issue.

It can also be hard to determine whether (4.16) has converged or not, and the
number of iterations often has to be decided through manual observation of the
result. If the algorithm is stopped too early, the result may still be blurry, but too
many iterations is a waste of computational power and may even cause additional
noise and artefacts as shown in [29].

The LR algorithm usually gives a better result than the Wiener filter in the
case of blur removal when there is little or no noise present. But there are a few
issues to cope with, that are discussed in the following sections.

4.4.4 The Boundary Value Problem
Boundary artefacts is a well-known problem for image restoration algorithms based
on deconvolution, caused by the limited field of view of the image. This is known

56

4.4. RESTORATION OF MOTION BLURRED IMAGES BY
DECONVOLUTION

Figure 4.10: Illustration of typical boundary artefacts, from [31]. (a) The original
image with field of view within the white lines. (b) Blurred image padded with
mean values along the boundaries. (c) Restored image with boundary artefacts.

as the boundary value problem1. It causes disturbing ripples along the edges in the
restored image that increases in strength and propagation as the size of the blur
filter increases.

The limited size of the image causes discontinuity problems both in the spatial
domain and the frequency domain, as discussed in [31]. In the spatial domain, the
convolution operator depends on information outside the image, and is therefore
dependent on some kind of extrapolation beyond the field of view of the image.
A simple zero padding would provide wrong information and cause discontinuities
at the border. The problem in the frequency domain is that the Discrete Fourier
Transform assumes periodicity of the data. A simple periodic extension in 2D
implies a splice between both the right-hand and left-hand sides and the top and
bottom of the image, which causes discontinuities across the borders unless the
image is uniform along the edges. These artificial discontinuities creates Gibbs
oscillations [32], or ripples, in the restored image as shown in Figure 4.10.

Several methods have been developed to deal with this problem, with varying
complexities and results. One of the simplest is the MATLAB function edgetaper(),
which blurs the edges of the image to avoid discontinuities. This works well as long
as the degradation is not too strong, but some information along the edges of the
image is lost. Simple linear interpolation between the edges of the image may also
be done, which preserves the image content and gives continuity across the bor-
ders. Another approach is to extend the image in such a way that the continuity
at the image borders is preserved, as in the case of reflective boundary conditions
[33]. This can be further extended to keeping the gradient continuous, as for anti-
reflective boundary conditions [34]. Especially the latter gives very good results,
but the problem with these algorithms is that they result in a large input image
for the restoration algorithm, which makes it computationally expensive. A similar
boundary condition approach based on tile-generation was discussed in [31], aiming
at reduced complexity.

1Used in accordance with [31] and others. Not to be confused with the boundary value problem
of partial differential equations.

57

CHAPTER 4. IMAGE ENHANCEMENT

4.4.5 Other Artefacts
Ringing artefacts also tend to show up along strong edges within the image. Even
small errors in the estimated degradation function may cause such artefacts, be-
cause it gets mixed with the noise and is thereby modelled incorrectly in the LR
algorithm, as discussed in [28].

Many algorithms are proposed to deal with this problem as well, usually in-
volving complicated mathematical regularisation problems. One example is the
algorithm in [28], which proposes a unified probabilistic model of both blind and
non-blind deconvolution to handle errors in the estimated degradation function.
Global and local priors based on image statistics are proposed in order to preserve
edges and at the same time keep the constant regions smooth. It shows excep-
tional results even for blind deconvolution, but the derivation is mathematically
extensive.

4.4.6 Sensitivity to Deviations in Speed and Orientation
The LR algorithm requires a good estimation of the degradation function to work
properly. Even small errors in the estimated blur filter may cause artefacts in the
restored image, as discussed in [28]. The estimation of the blur filter in Section 4.3
assumes a straight movement at a constant and known speed.

The length of the blur filter is computed by means of the integration time and
image speed, which will depend on distance to the airglow layer and the speed of
the satellite. Ideally, the speed of the satellite should be known and constant if the
orbital altitude is known. However, orbital perturbations may cause variations in
the speed. Additionally, inaccuracy of the ADCS system may cause the pointing
direction of the camera to vary, which also might influence the image velocity.

The estimated blur filter might also be erroneous due to wrong information
about the direction of the motion blur. The direction of blur within the image will
depend on the orientation of the satellite with respect to the direction of velocity.
This is assumed to be known with a certain precision, but it will depend on the
final specifications of the ADCS of the satellite.

For now, the inaccuracies of the ADCS system is assumed to be negligible.
It is hard to foresee how much orbital perturbations will affect the speed, but a
worst-case deviation of ±10% is assumed for the remainder of this report.

4.5 Image Averaging With Motion Compensation
Removing noise generally seems easier than reverting motion blur in images. From
this perspective, an alternative and completely different approach for solving the
motion blur and noise problem was investigated. The idea is to obtain several
images with short integration times and low DSNR to avoid motion blur, and
combine these afterwards to get a longer integration time and better SNR in total.

The concept of combining images in order to increase the quality is already uti-
lized in many different applications, for instance in High Dynamic Range imaging
(HDR), which is used more and more in digital cameras to enhance the dynamic

58

4.5. IMAGE AVERAGING WITH MOTION COMPENSATION

range of an image. The approach is to take a sequence of differently exposed im-
ages of the same scene, and combine them afterwards to obtain one image with
improved dynamic range. The combination of several independently exposed im-
ages will also lead to an increase in SNR, if the detector noise is independent and
Gaussian, as discussed in [35]. Another example is so-called image stacking, which
is a method that has already been used for decades by astrophotographers. The
SNR is increased by averaging several images obtained of a constant scene.

Combination of images is widely used to improve the SNR, but if the scene is
moving, some sort of motion compensation must be applied between the images to
avoid motion blur. In this section, the concept of image averaging and motion com-
pensation will first be discussed in general, and then a discussion of the feasibility
for our application follows.

4.5.1 Noise Reduction by Image Averaging
Assume that {fi(x, y)} is a set of N noisy images formed by addition of an under-
lying noiseless image g(x, y) and different realisations of independently distributed
Gaussian noise ni(x, y) with zero mean and variance σ2

n.

fi(x, y) = g(x, y) + ni(x, y) (4.17)

Using the metric in (4.1), the SNR of fi can be expressed

SNRimage,f =
σ2

g

σ2
n

(4.18)

The combined image f̄(x, y) is formed by averaging the images in {fi(x, y)}:

f̄(x, y) = 1
N

N∑
i=1

fi(x, y) (4.19)

As discussed in [25], the averaging operation reduces the variance of the noise with
a factor of N , and the SNR of the combined image is therefore N times higher than
the SNR of each single image:

SNRimage,̄f =
σ2

g
1
Nσ

2
n

= N · SNRimage,f (4.20)

It is however important to assure that the underlying noiseless image is the
same for the whole set. This means that misalignments between these images must
be taken care of before averaging. This is further discussed in Section 4.5.2.

Noise reduction by image averaging has exactly the same effect on the SNR
as increasing the integration time like discussed in Section 3.2.4. The SNR will
be proportional to the total integration time ttot = N · tint for the whole series of
images. Taking one picture with an exposure of 1 s should therefore have the same
effect as taking ten pictures with exposures of 0.1 s.

59

CHAPTER 4. IMAGE ENHANCEMENT

4.5.2 Motion Compensation
If the scene changes during exposure, either due to movement of the camera or
movement of objects in the scene, care must be taken when combining the frames
in order to avoid a blurry result.

In the case of a uniform and known movement, for instance a camera moving
with constant and known speed, a fairly simple compensation can be done by
shifting the images δ = vim · tframe pixels, where tframe is the inverse of the frame
rate. The required shift is not necessarily an integer number of pixels, and a
suitable interpolation scheme should therefore be chosen, as will be discussed in
Section 4.5.3.

On the other hand, if the movement is unknown or not uniform, motion compen-
sation can be a very complicated problem. Motion estimation is further discussed
in Section 5.3.

4.5.3 Interpolation Methods
In general, interpolation is the process of estimating an unknown value from known
points. This is widely used in image processing, for instance in connection with
resizing, rotation or translation of an image, or any other operation where the
new pixel values does not fit the old sampling grid any more. According to the
sampling theorem [32], any band-limited signal can be perfectly recovered as long
as it is sampled with sufficiently high sampling frequency. In practice, the quality
of the resulting image depends on the interpolation algorithm.

Three different interpolation methods are introduced in [25]: Nearest neighbour
interpolation, bilinear interpolation and bicubic interpolation. The main concept
of all three is described below.

Nearest Neighbour Interpolation is the simplest form of interpolation. The
intensities of the pixels in the new image is simply set as the intensity of the nearest
neighbour in the original sampling grid. The disadvantage of this approach is that
artefacts occur along edges and in areas with fine detail.

Bilinear Interpolation is a bit more complicated, but gives a much better re-
sult. With this approach, intensities of the pixels in the new image are given by a
weighted average of the four nearest neighbours. We want to find f(x, y), which is
the intensity value in a point (x, y) on the new sampling grid. This is obtained by

f(x, y) = a+ bx+ cy + dxy (4.21)

where the coefficients can be found by solving a set of four linear equations con-
taining the values of the four nearest neighbours of (x, y).

Bilinear interpolation gives a significant improvement compared to the nearest
neighbour approach with a modest increase of complexity, but tends to blur sharp
edges.

60

4.5. IMAGE AVERAGING WITH MOTION COMPENSATION

Bicubic Interpolation is an even better, but a bit more computationally ex-
pensive interpolation algorithm than bilinear interpolation. In this approach, the
sixteen nearest neighbours of each pixel is taken into account to find the pixel values
in the new image. Instead of linear interpolation, this algorithm is based on fitting
cubic polynomials subsequently in the x- and y-direction. The advantage of bicubic
interpolation is that it produces less blurred edges than bilinear interpolation.

There also exists algorithms which take more surrounding pixels into consid-
eration, and are therefore also much more computationally expensive. Bicubic
interpolation is however considered as a good combination of processing time and
output quality, and is the standard algorithm used in for instance Adobe Photo-
shop.

4.5.4 Feasibility for NUTS
There are several advantages of applying image averaging with motion compen-
sation on the images from the infrared camera. Instead of one image with long
exposure, a series of subsequent images with short exposure times can be obtained.
Shorter exposure time for each image means that the images have a lower DSNR,
but is without motion blur. It also prevents the detector to saturate due to dark
current. The short exposure time results in low SNR, but is efficiently improved
by averaging the images, which results in a longer exposure time in total. The
images must however be motion compensated properly before averaging to avoid
the motion blur. This can be done by simply shifting the images as long as the
estimate of the speed of the satellite is good enough.

In practice, such an image sequence can be obtained with a video camera with
low frame rate. Most commercially available infrared cameras already have the
ability of recording video, and many of them do not have the option for sufficiently
long integration times to obtain still images with satisfactory DSNR. It should
however be noted that video cameras always have a required reset time between
each frame, and the integration time will therefore be shorter than the frame du-
ration.

Assuming that the motion compensation align the images perfectly, and that
no other disturbances change the images, the graphs in Figure 4.6 can indicate the
expected improvement in SNR for different values of the total integration time.
Increasing the total integration time from 1 to 5 seconds will for instance give an
improvement of almost 7 dB.

A simple implementation followed by simulations and further discussion is done
in Section 4.6.2.

61

CHAPTER 4. IMAGE ENHANCEMENT

4.6 Implementation and Simulation of Image
Enhancement Algorithms

The algorithms discussed in the previous sections were implemented in MATLAB
in order to perform simulations. Some simplifying assumptions were made when
implementing the algorithms, in order to demonstrate proof-of-concept and evalu-
ate their performance.

4.6.1 Restoration of Motion Blurred Images by Deconvolution
In order to demonstrate removal of motion blur from images by means of de-
convolution, a simplified algorithm was implemented in MATLAB and applied to
some simple test images.

Implementation in MATLAB

The built-in LR algorithm in MATLAB, deconvlucy(), was used to restore the
motion blurred images. For most of the simulations, the degradation filters causing
the motion blur was assumed to be perfectly estimated. The exact same blur filters
as the ones generated during the motion blur simulations were therefore used as
input to the deconvlucy() function. The number of iterations was set to 15 after
a quick inspection of the resulting images, but was not optimized further.

As discussed in Section 4.4, the boundary value problem should be appropriately
handled to avoid boundary artefacts in the restored image. For simplicity, the built-
in solution in MATLAB, edgetaper(), was used for the simulations. It outputs an
image with blurred edges according to a user-specified PSF, for instance a Gaussian
filter. The size and standard deviation of the PSF should be chosen according to
the extent of blur in the motion blurred image.

A test script was developed in order to vary the integration time and type of
test images used in the simulations, as well plot functions for image sets to make
it easier to compare results. Only synthetic images were used in the simulations,
to have a better control on the image content.

Performance for Varying Exposure Time

To investigate the LR algorithm’s capability of restoring different degrees of mo-
tion blur, and find out how long exposure times that can be allowed, simulations
were performed with synthetically blurred test images corresponding to different
integration times in the same manner as in Section 4.3.3. For simplicity, only hor-
izontal motion blur was applied, and ideal conditions (known speed and no noise)
was assumed.

First, the restoration algorithm was applied to the blurred images in Figure 4.9
to investigate the performance for different combinations of integration time and
image frequencies. The result is shown in Figure 4.11, again plotted together with
the original image and the frequency response of the blur filter. For the image
with exposure time of 1 second, the slight blur in Figure 4.9 is gone, and the image

62

4.6. IMPLEMENTATION AND SIMULATION OF IMAGE
ENHANCEMENT ALGORITHMS

looks perfectly recovered for all frequencies. For an exposure time of 2 seconds on
the other hand, the image is still blurry for the frequency closest to the zero in
the frequency response. The same holds for the image with an exposure time of
3 seconds, where most of the image remains blurry. It is interesting to note that
the image sections that was inverted in Figure 4.9 has been restored back to their
correct phase, and they are the frequencies that looks sharpest in image Figure 4.11
(d) and (e). It may seem like the restoration algorithm has a sharpening effect on
these frequencies, which may cause distortions, especially when the sharpness vary
a lot between the frequencies, as is the case in this example. These effects may be
due to an incorrect number of iterations for the LR algorithm, which may cause
artefacts if set too high, as mentioned in Section 4.4.3. A lower number of iterations
could however lead to more blur.

Simulations were also performed with the noiseless test image in Figure 4.1(b),
with a sine frequency of 20 cycles per image. The worst-case image for horizontal
motion blur would be a sine image with vertical wavefronts, but the angle of the
waves was set to 10◦ to make it a bit less regular. As above, the test image
was blurred with filteres corresponding to different integration times, and restored
afterwards. This was done for many different integration times to evaluate the
performance of the algorithm for this particular image. Figure 4.12 shows sections
of the blurred and recovered images for three examples of integration time, together
with the corresponding section of the original image. This test image has a low
contrast in the first place, which makes it even more sensitive to strong blur than
the test image in Figure 4.11, but weak blur may be harder to spot. For an
exposure time of one second, the recovered image shows a slight improvement from
the blurred version, but the wave patterns are clearly visible in both cases. For
1.6 seconds however, the wave pattern starts getting quite dim, but the recovered
image still shows a good quality. For 2 seconds, the wave pattern has not been
recovered at all.

The cut-off for performance of the restoration algorithm applied to the test
image seems to lie somewhere in between 1.6 and 2 second exposure. Simulations
were done with other parameters than the ones shown in Figure 4.12, but it was
hard to determine a definite cut-off value, since this should depend on the required
quality. The quality of the blurred and recovered images could have been measured
in many ways, but the SNR-metric in (4.2) was chosen for simplicity. The SNR was
computed for blurred and recovered images for various exposure times, using the
same test image as in Figure 4.12. The results are shown in Figure 4.13 together
with the normalised frequency responses, |H(f = 20)|/tint, for different integration
times. The SNR of the recovered image is relatively constant around 25 dB for
short integration times, and is actually lower than the SNR for the blurred image
for the lowest integration times. From tint = 1.7 s, it drops quickly towards a
minimum at tint = 2.1 s. The SNR of the blurred image on the other hand, drops
quickly in the beginning and has a steady decrease. An interesting thing to notice
is that when the value of the frequency response is zero, as indicated by the dotted
line, the SNR of the blurred and the recovered image is equal, i.e. the restoration
algorithm has no effect at all. But the SNR of the recovered images rise again for

63

CHAPTER 4. IMAGE ENHANCEMENT

higher frequencies, in accordance with the observations in Figure 4.11.
From simulations with images, SNR = 20 dB seem to be a reasonable quality

criterion for this type of images. As seen from Figure 4.13, this results in a max-
imum integration time of 1.1 seconds without processing, and 1.8 seconds if the
restoration algorithm is used. Thus, a longer integration time can be allowed if
applying this type of post-processing, but just to some extent.

Performance under non-ideal conditions

Until now, noise-free test images and a perfectly known blur filter has been assumed.
Simulations were also performed with noisy images and inaccurate blur lengths to
investigate how the algorithm performs under non-ideal conditions.

The whole point of the motion blur restoration algorithm is to increase the
integration time in order to get a stronger signal and better SNR with respect to
detector noise. But if the signal is very weak in the first place, there might still be
some noise present for longer exposure times as well. Simulations were therefore
performed with the same synthetic test images as in the previous section, but
Gaussian noise was added after the blurring process to imitate detector noise. The
restoration algorithm was then applied to the blurry and noisy images. Figure 4.14
shows the results for an exposure time of 1.6 seconds, and noise levels corresponding
to SNR factors ofK = 50 andK = 100. Even though these images have a relatively
low noise level, it is very visible in the recovered images. It seems like the LR
algorithm amplifies the noise a bit.

In order to investigate how sensitive the LR algorithm is to errors in the esti-
mated blur filter, images were restored with blur filters corresponding to another
image velocity than the one used to synthesise the motion blur. Figure 4.15 shows
the recovered images for deviations of −10% and +10% in the estimated speed of
the satellite, since this is assumed to be the worst-case scenario. It is seen that
when the estimated speed is smaller than the actual one, the blur is not fully re-
covered. However, when the estimated speed is higher, a sharpening effect is seen
for some of the frequencies. This may cause distortions in the recovered image.
The impact of these effects is smaller for shorter exposure times.

Summary

Under ideal conditions, the algorithm can increase the maximum integration time
a little bit, but not as much as hoped for. The main problem is that some detector
noise must be expected, and this can get amplified. Since the reason for increasing
the integration time in the first place was to get a better SNR, this is not a very
satisfactory outcome.

The parameters of the LR has not at all been optimized, but this section was
first of all meant as a feasibility study. A better result with respect to noise might
be obtained using a Wiener filter instead of the LR algorithm, but it was not
investigated further for this case. Due to the zeros of the blur filter, there will
often be some information in the image that is impossible to recover for strong
blurs, which puts a general limitation to the deconvolution approach.

64

4.6. IMPLEMENTATION AND SIMULATION OF IMAGE
ENHANCEMENT ALGORITHMS

Since artefacts appear so easily when using the LR algorithm, for instance due
to noise, inaccurate blur filters or wrong number of iterations, it should probably
not be applied on-board the satellite. However, compressing and sending blurry
images to the ground station may not be a good option either. If lossy compression
is applied, artefacts caused by the compression algorithm can be amplified in the
same manner as the noise.

This type of motion blur removal is probably better suited for removal of weak
motion blur to make an image look more visually pleasant, than to extend the
allowed integration time for a scientific application.

4.6.2 Image Averaging With Motion Compensation
To demonstrate how image averaging can be applied as a principle to avoid mo-
tion blur, a simple version working on a sequence of synthetic test images was
implemented in MATLAB.

The image averaging is in itself a simple concept, but in order to test it on an
image sequence that is as realistic as possible, the test script that was made had
to incorporate parameters regarding the satellite and camera. Since there still is
a lot of uncertainty regarding the values of these parameters, it was important to
have the option to vary them when performing simulations.

Care should be taken to choose a suitable frame rate of the video; the integration
time should be kept short enough to avoid blur completely, but it should also be
chosen as long as possible not to waste too much time on resetting the detector,
and to increase the signal strength compared to readout noise of the detector.

Implementation and Test Script

As mentioned, a script was developed for simulation and generation of image se-
quences, or video, for different combinations of satellite and camera parameters.
video_sim reads parameters from a text file, and generates different sets of video
parameters (for instance resolution, frame rate and number of frames). Different
sets of image parameters (for instance SNR, and amplitude and intensity of the
sine wave) for generation of synthetic test images as discussed in Section 4.2.4, are
also generated. High resolution images with different parameters are made for use
in the generation of the videos.

The synthetic image sequence, or video, is generated in video_maker() by
sliding a window over a synthetic test image with high resolution, to give a sequence
of low-resolution images. Noise is added after the low-resolution image is obtained,
in order to make it independent from frame to frame. video_maker() also takes
a set of video and image parameters as input, in order to provide the desired
properties in terms of for instance frame rate, DSNR, gravity wave wavelength and
satellite speed.

video_sim utilize video_maker() to generate different videos according to
the parameters that are specified. Since these parameters also are of interest for
the functions using the video, the parameter sets are exported to a text file. An
example is shown in Appendix E.4.

65

CHAPTER 4. IMAGE ENHANCEMENT

(a) Frequency response blur filter

Figure 4.11: Restoration of motion blurred images for different exposure times: (a)
shows the frequency response of the motion blur filter, b) shows the original test
image, c)- e) shows the recovered versions of images with motion blur corresponding
to different exposure times. For comparison, the blurred images can be found in
Figure 4.9. The frequency axis in the plot corresponds to the placement of the
frequencies in the test image.

66

4.6. IMPLEMENTATION AND SIMULATION OF IMAGE
ENHANCEMENT ALGORITHMS

(a) Section of original image

Blurred images Recovered images

1 s

1.6 s

2 s

Figure 4.12: Examples of the performance of the deconvolution algorithm for dif-
ferent integration times (for a test image with f = 20 cycles per image)

67

CHAPTER 4. IMAGE ENHANCEMENT

Figure 4.13: SNR (using the metric in (4.2)), for the blurred and recovered images
when the test image of 20 cycles per image is used. The blur filter frequency
response for f=20 at the different integration times is also shown.

Blurred images Recovered images

K = 50

K = 100

Figure 4.14: Deconvolution with noise for SNR factors of K = 50 and K = 100,
and exposure time of 1.6 seconds.

68

4.6. IMPLEMENTATION AND SIMULATION OF IMAGE
ENHANCEMENT ALGORITHMS

Figure 4.15: Recovered images for errors in the estimated speed. The motion blur
corresponds to an integration time of 1.6 seconds.

69

CHAPTER 4. IMAGE ENHANCEMENT

video_frame_comb() performs image averaging and motion compensation on
a video sequence. The frames of the video are shifted according to the shift spec-
ified in the video parameters, and interpolated onto a common grid with bilinear
interpolation (using the built-in functions meshgrid() and interp2()). Areas
along the edges where the images do not overlap are cut away afterwards.

A simple framework for simulations with different videos and parameters is
provided with the script frame_comb_sim.

Simulations

Various simulations were performed assuming different parameters for the satellite
and the camera. However, for the results presented here, the parameters from
Table 4.1 and an orbital altitude of 500 km have been used. The frame rate was
set to 5 frames per second, with an effective exposure time of 0.19 seconds. Videos
with different values of the SNR factor K was generated. An overview of the
parameters can be found in Appendix E.4.

Two examples of what the images looked like after averaging is shown in Fig-
ure 4.16. The noise is reduced significantly in both cases, but for an SNR factor
as low as K = 5 many frames had to be averaged to get a reasonable quality, and
even after 25 frames (corresponding to a total integration time of 4.75 seconds) the
image is still quite noisy. For higher values of K, fewer frames were needed, but
the qualities where difficult to compare due to very small differences. Therefore,
only two examples with low SNR were given here.

As long as the motion compensation is perfect, the SNR of the images for differ-
ent exposure times can be computed with (4.1), which was illustrated in Figure 4.6
for different values of K.

If the speed of the satellite is not known exactly, the motion compensation will
apply the wrong shift to the images, and blur could potentially occur. Simulations
were performed with a deviation in speed of ±10%, and a video duration of 5
seconds (25 frames). No visible degradation could be seen for this case, and images
are therefore not included. The effect may however become visible if very long
sequences are used.

4.7 Comparison of Algorithms
Two different algorithms have been discussed in this chapter as a possible solution
to the motion blur and noise problem; motion blur restoration by deconvolution
and image averaging with motion compensation.

The deconvolution approach may look like a good idea in theory, but simula-
tions showed that it was incapable of restoring images with strong blur, and the
integration time could therefore not be extended as much as hoped for. Addition-
ally, the algorithm is very sensitive to errors in the estimated blur filter, which may
cause problematic artefacts.

The image averaging and motion compensation approach is much simpler than
deconvolution, and not limited by long integration times. The main requirement for

70

4.7. COMPARISON OF ALGORITHMS

(a) K = 5, 1 frame (b) K = 5, 25 frames

(c) K = 20, 1 frame (d) K = 20, 10 frames

Figure 4.16: Simulation of image averaging for SNR factors of K = 5 and K = 20,
tint = 0.19, frame rate of 5 frames per second and perfect motion compensation.

71

CHAPTER 4. IMAGE ENHANCEMENT

this algorithm is that the motion compensation must be accurate enough to avoid
blur. Simulations showed that the algorithm is much less sensitive to errors in the
speed estimate than the deconvolution approach. Even if the motion compensation
is very inaccurate, it only introduces a bit of blur, which is less dramatic than the
artefacts created by deconvolution. Additionally, the LR deconvolution algorithm
turned out to amplify the noise, while the image averaging approach gives the
opposite effect. It is also less computationally extensive than the LR algorithm.

One of the few drawbacks of the image averaging approach is that the signal
of each image can become very weak and drown in detector readout noise if the
integration time is too short. The video should therefore be obtained with relatively
low frame rate. The exposure time should however be kept short enough to be
sure to avoid motion blur. A numerical value for the exposure time can first be
determined when a camera is obtained, and should be configurable in order to
adapt to the signal strength.

Image averaging is clearly the best of the two approaches, and it seems to be
a good option for our application. Hopefully, it will provide a good enough SNR,
and enable more efficient compression, as will be further discussed in the coming
chapter.

72

Chapter 5
Compression

As mentioned in Section 3.3.1, it is preferred to obtain sequences of overlapping
images of the gravity waves rather than single images taken at independent loca-
tions. Motion blur and noise should preferably be removed before compression, and
it is assumed that the image averaging approach will be applied for this purpose
as discussed in Chapter 4. This means that there will be sequences of images with
short exposure times, that are combined to give a new sequence of images with
higher SNR and lower frame rate, which will be compressed and transmitted to
the ground station. This will be further discussed in Section 6.1. The discussion in
this chapter will regard compression of the sequence of combined images with low
frame rate and good SNR.

As discussed in Section 2.2, an average download capacity of 4.9 Mb/day can
be assumed for an orbital altitude of 500 km, but it will be assumed that only
half of this capacity is available for the payload data. If a resolution of 256× 256
pixels and an output of 8 bits per pixel is assumed for the images from the infrared
camera, a sequence of 10 uncompressed images will comprise 5.24 Mb. It will not
be possible to download this sequence in one day, maybe not even in two days.
A simple compression algorithm would make it possible to download much more
images, which is desirable since the lifetime of the satellite is quite limited, and it
may take a few attempts to get good images of the phenomenon.

The image sequence can either be regarded as a stream of independent images,
or as low rate video, depending on how much the images overlap. If the images
are taken with significant overlap, there is a lot of redundant information that can
be taken advantage of by video coding. This also assures a continuous scan of
the area. Generally, there is more to gain in coding video than still images. The
strategy will therefore be to compress the image sequence as low rate video.

This chapter will describe a simple video compression scheme for compression
of gravity wave image sequences. The design is not complete, but suggests possible
algorithms that can be used in different stages of a typical compression system.
The main focus is on the design of a three-dimensional differential coder, but a

73

CHAPTER 5. COMPRESSION

suitable quantizer, bitcoder and motion compensation scheme is also suggested for
the sake of completeness.

First, the underlying principles for compression algorithms are presented. Dif-
ferential coding is first derived for the one-dimensional case, and then extended to
two and three dimensions for use in image and video coding. It continues with a
discussion of motion compensation for video compression, followed by discussion
of quantizer design for the differential coder and optimal bit coding of the output.
In the end, an overview of the complete compression system will be given followed
by a presentation of simulations.

5.1 Background
To give a full introduction to compression and information theory is beyond the
scope of this report, but an overview of the some fundamental principles is given
below to support the discussion in the coming sections. A more detailed treatment
can be found in textbooks on information theory and data compression, for instance
[26] and [36]. It is assumed that the reader has basic knowledge of statistical signal
processing. If not, a brief introduction is given in [37].

5.1.1 Information Theory
Information theory gives the general mathematical foundation that is necessary for
a discussion of compression methods. First of all, it defines the bounds on what is
theoretically achievable, which can be used as goals for practical algorithms.

In information theory, the entropy is used as a measure of average information,
or unpredictability, of an uncorrelated source. The entropy for a discrete source is
defined as

H = −
∑
i

pi log pi (5.1)

where pi is the probability of the ith source symbol. According to Shannon’s source
coding theorem [36], the entropy gives the minimum value for the average number
of bits required for representing a source without introducing errors. In practice
this implies a lower bound to what can be obtained with lossless compression.

With lossy compression algorithms it is possible to trade lower bit rate against
higher distortion, and in this way get bit rates lower than the entropy of the source.
The best achievable trade-off between bitrate and distortion is given by the rate-
distortion function, as discussed in [26]. The rate-distortion function gives the
lowest achievable rate R for a given distortion constraint D. It can be difficult
to compute it for an arbitrary continuous source, but for a memoryless Gaussian
source it is given by

R(D) =
{

1
2 log2

σ2

D for D < σ2

0 for D > σ2 [bits] (5.2)

as shown for instance in [26]. It is seen that if a higher D, i.e. more distortion,
is allowed, a lower rate can be achieved, but only to a certain limit. If the dis-

74

5.1. BACKGROUND

tortion is higher than the variance of the signal, there is no point in transmitting
anything, and the rate is zero. The Gaussian case also gives the upper bound for
any continuous memoryless source. This will however only hold for memoryless
sources (uncorrelated signals), but it illustrates the principle of rate-distortion. A
discussion of rate-distortion for correlated signals is given for instance in [38].

5.1.2 Lossless Compression
Lossless compression schemes does not involve any loss of information, and the
original data can therefore be recovered from the compressed data without errors.
The main principle in any compression algorithm is to exploit redundancies in the
data. The two types of redundancies that can be exploited in lossless compression
algorithms for digital signals are coding redundancy and spatial/temporal redun-
dancy.

Coding redundancy implies that the information is represented with more bits
than necessary. Entropy coding schemes such as Huffmann coding and arithmetic
coding [36] exploit statistical properties of the source in order to get a code rate as
close to the entropy as possible.

Spatial and temporal redundancy implies that the samples of the source are
correlated in space and/or time. If this is not taken into account, information will
be replicated. Various decomposition or decorrelation schemes can be applied to
remove correlation in the signal to ensure a more efficient representation. Examples
of such algorithms range from simple run-length coding [26] to differential coding
(discussed further in Section 5.2.1) and more complex wavelet transforms [25].

The expressions for the entropy and the rate-distorion function given in this
section only hold for uncorrelated sources. A treatment of correlated sources is
given for instance in [38].

5.1.3 Lossy Compression
As indicated by the name, lossy compression schemes implies some loss of informa-
tion. Since errors are introduced in the compression, the original data can not be
perfectly recovered as in lossless compression. But a perfect reconstruction is not
always necessary, because the data often contain irrelevant information, which can
be seen as a third type of redundancy. The degree of irrelevancy may be hard to
measure, and depends on the application. For compression of photographies and
audio, errors in the human perception play an important role. In other cases, some
of the information is just not relevant for the intended use of the data. In any case,
it is important to bear the application in mind when deciding what types of errors
to introduce. The errors introduced are often referred to as a distortion, measured
in terms of MSE and SNR.

As already mentioned in Section 5.1.1, the ideal trade-off between rate and
distortion in lossy compression is limited by the rate-distortion function. The goal
of lossy compression algorithms is therefore to come as close to this bound as
possible with a suitable complexity.

As discussed in [38], practical lossy coding schemes can often be divided into

75

CHAPTER 5. COMPRESSION

(a) Generic encoder

(b) Generic decoder

Figure 5.1: Generic encoder and decoder structure. From [38].

three subsystems, as shown in Figure 5.1. On the encoder side, the decomposition
unit (block D) composes the signal into a set of coefficients by some transform,
to enable more efficient scalar quantisation. The coefficients are then quantized in
block Q, and the quantization levels are coded to a minimum bit representation in
block B. At the decoder, the incoming bitstream is decoded back to quantization
levels in unit I, which is mapped to approximations of the coefficients at the inverse
quantizer (unit Q−1). The last unit is the reconstruction unit which performs the
inverse transform to obtain an approximation of the original signal.

The building blocks in the compression system must usually be co-designed to
get the best performance. The optimal properties of the quantizer will for instance
depend on the statistical properties of the output from the decomposition unit,
but also on the desired format of the final output and how the quantizer levels are
coded.

5.2 Differential Coding
Differential coding is a simple compression scheme which is widely used in speech,
image and video coding. The basic concept is to encode the difference between
samples instead of the sample values. This works as a decomposition of the signal as
mentioned in Section 5.1, leading to a smaller variance, and fewer bits are therefore
needed to represent the information. The most common algorithm for differential

76

5.2. DIFFERENTIAL CODING

Q

P

+

+
+

-

s(n) e(n)

e(n)

^

s(n)^s(n)~

Q -1

e (n)q

(a) Encoder

P

+

+

e(n)^ s(n)^

s(n)
~

Q -1e (n)q

(b) Decoder

Figure 5.2: Block diagram for DPCM. (a) shows the encoder, and (b) shows the
decoder.

coding in practice is called Differential Pulse Code Modulation (DPCM), which
includes a prediction of the samples in order to reduce the variance even further.
The principles of DPCM is discussed in for instance [39] and [26]. An introduction
to the one-dimensional case with emphasis on linear prediction is given below.

The basic 1D-predictor in Section 5.2.1 can be extended into two and three
dimensions and be utilized in image and video coding

5.2.1 Differential Pulse Code Modulation (DPCM)
The basic principle of DPCM is illustrated by the block diagrams in Figure 5.2.
The two main building blocks are the quantizer and the predictor denoted by Q and
P. Their functionality will be explained in more detail later. The difference between
the incoming signal sample s(n) and the predicted sample s̃(n) is denoted by e(n)
and is often called the prediction residual or prediction error. The prediction error
is quantized and represented by quantization levels, denoted by eq(n), which is the
output of the DPCM encoder. eq(n) is also fed into the feedback loop that performs
inverse quantization to map it back to an approximation of the prediction error
ê(n), and reconstructs s(n) in order to perform the prediction of the next sample.

As long as there is no quantizer, differential coding can be a lossless coding

77

CHAPTER 5. COMPRESSION

scheme, but this is often not the case in practice. The quantizer in Figure 5.2(a)
introduces errors that will accumulate in the decoding process. This problem is
solved by making sure that the encoder and decoder both use the reconstructed
signal ŝ(n) to perform the prediction. This is done by integrating a decoder in the
encoder, as indicated by the dotted box in Figure 5.2(a). The compression will still
be lossy, but the error will not accumulate anymore. This is often referred to as
closed-loop DPCM. In contrast to the structure in Figure 5.1, closed-loop DPCM
performs decomposition and quantization in the same block.

Prediction

The purpose of the predictor in Figure 5.2 is to remove redundant information in
the signal by predicting it from previous samples. The predictor should be chosen
such that the error is as small as possible, to enable good compression. The variance
of the prediction error can be written as

σ2
e = E

[
e2(n)

]
= E

[
(s(n)− s̃(n))2

]
(5.3)

To find the optimal predictor is a very complex problem, but a few assumptions
are made to make it possible to estimate it based on statistical properties of the
signal:

The first assumption restricts the prediction function to a linear combination
of N previous samples

s̃(n) =
N∑
i=1

ais(n− i) (5.4)

The second assumption is fine quantization

ŝ(n) = ê(n) + s̃(n) ≈ e(n) + s̃(n) = s(n) (5.5)

such that ŝ(n) can be used in the prediction instead of s(n)

s̃(n) =
N∑
i=1

aiŝ(n− i) (5.6)

The optimal predictor given these assumptions is found by computing the pre-
diction coefficients {ai} that gives the minimal σ2

e . Inserting (5.6) into (5.3), we
get

σ2
e = E

(s(n)−
N∑
i=1

aiŝ(n− i)
)2 , (5.7)

which is differentiated with respect to each of the ai and set equal to zero to find
the minima. As shown in for instance [39] this results in a set of N + 1 linear
equations called the normal equations:

rs(n)−
N∑
i=1

airs(n− 1) = σ2
eδ(n) , for n = 0, . . . , N (5.8)

78

5.2. DIFFERENTIAL CODING

where rs(n) is the covariance of the input signal.
For higher order predictors, (5.8) can be written on matrix form and solved by

linear algebra. In the case of a first-order predictor, the solutions for the prediction
coefficient and the minimum prediction error variance is

a = rs(0)
rs(1) (5.9)

σ2
e = rs(0)− a1rs(1) (5.10)

A covariance function that is often assumed for the input signal is

rs(k) = σ2
sρ
|k| (5.11)

where ρ is the one-step correlation coefficient, which gives

a = ρ (5.12)
σ2
e = σ2

s(1− ρ2) (5.13)
(5.14)

Thus, a strong correlation of the input signal gives a low prediction error variance,
and efficient compression.

Quantization

The assumption made in (5.5), means that the prediction is performed ignoring the
quantization error. To legitimate this assumption, the quantizer should be designed
to minimize the quantization noise according to the statistical properties of the
resulting prediction error. Quantization design is further discussed in Section 5.4.

5.2.2 Differential Coding in Image Compression
Natural images usually have a strong correlation between adjacent pixels, which is
easily exploited with differential coding. DPCM for images works similarly to the
encoding and decoding of one-dimensional signals described in Section 5.2.1, but the
input samples must come from a scan of the image, usually from top left to bottom
right. If samples that are used in the prediction come from the same scan line, the
algorithm works similarly to the encoding and decoding of one-dimensional signals.
But the DPCM-algorithm can also be extended into a two-dimensional version that
also takes the nearest pixels from the scan line above into account, and in this way
exploits both the horizontal and vertical correlation. Since only information that is
known to the decoder should be used, only the pixels that are already scanned and
predicted can be taken into account in the prediction process. The 2D predictor
reduces the variance of the prediction error compared to the 1D version.

By extending (5.6) to two dimensions, one gets the expression for a 2D linear
predictor as given in [40]:

f̃(x, y) =
∑

(i,j)∈W

ai,j f̂(x− i, y − j) (5.15)

79

CHAPTER 5. COMPRESSION

f(x,y)

W

N8

Figure 5.3: Illustration of 2D differential coding. The grey pixels are the ones
who are already scanned and predicted, the black pixel is the current pixel f(x, y),
the blue region W represents the prediction window and the dotted blue square
represents the N8 neighbourhood of (x, y).

where W is the prediction window; a set of pixels that are already scanned, with
coordinates relative to the current pixel (x, y). The prediction window can for
instance be defined as the four pixels from the N8 neighbourhood 1 of (x, y), giving
W = {(0, 1), (1, 1), (1, 0), (−1, 1)} as illustrated by the blue pixels in Figure 5.3.
This results in the following first-order two-dimensional predictor:

f̃(x, y) = a0,1f̂(x, y− 1)+ a1,1f̂(x− 1, y− 1)+a1,0f̂(x− 1, y)+a−1,1f̂(x+1, y− 1)
(5.16)

A commonly used statistical model for images is a two-dimensional covariance
function separable in the vertical and horizontal directions:

Cov [x, y] = r(x, y) = rv(x)rh(y) = σ2
fρ
|x|
v ρ
|y|
h (5.17)

where ρv and ρh are the vertical and horizontal one-step correlation coefficients
given by ρv = r(1,0)

σ2
f

and ρh = r(0,1)
σ2
f

.
The optimal prediction coefficients can be found in a similar manner as de-

scribed in Section 5.2.1. The set of normal equations for the two-dimensional case
can then be expressed as

r(k, l)−
∑

(i,j)∈W

ai,jr(k − i, l − j) = σ2
eδ(k, l) , for (k, l) ∈W ′ (5.18)

where W ′ is a set of pixels including the prediction window and (0,0). This set of
1The D8 distance measure between the pixels p and q with coordinates (x,y) and (s,t) is

defined as D8(q, p) = max(|x − s|, |y − t|). The pixels with D8 = 1 from (x,y) is called the N8
neighbourhood of (x, y). N8 is indicated with dotted blue lines in Figure 5.3. It is referred to [25]
for a general discussion of neighbourhoods and distance measures.

80

5.2. DIFFERENTIAL CODING

equations can be conveniently expressed on matrix form:

Γa =γγγ (5.19)
σ2
e =σ2

s(1− aTγγγ) (5.20)

where the content of Γ, γγγ and a depends on the prediction window. Assuming the
covariance function in (5.17), and the predictor in (5.16) results in the following
vectors and matrices:

Γ =


1 ρvρh ρh ρh

ρvρh 1 ρv ρvρ
2
h

ρh ρv 1 ρ2
h

ρh ρvρ
2
h ρ2

h 1

 (5.21)

a =


a1,0
a0,1
a1,1
a1,−1

 , γγγ =


ρv
ρh
ρvρh
ρvρh

 (5.22)

Solving for {ai,j} results in the following optimal prediction coefficients and corre-
sponding prediction error variance:

a0,1 = ρh, a1,1 = −ρhρv, a1,0 = ρv, a−1,1 = 0 (5.23)
σ2
emin = σ2

f (1− (ρ2
v + ρ2

h − ρ2
vρ

2
h)) (5.24)

and (5.16) is thus reduced to a predictor with three coefficients.

5.2.3 Differential Coding in Video Compression
Temporal differential coding is commonly used in international video standards in
order to exploit the strong correlation between adjacent frames. Each pixel is then
predicted from the corresponding pixels in the previous frames. In order to reduce
the variance of the prediction error, some form of motion compensation is usually
applied before prediction, as further discussed in Section 5.3.

The most common practice is to apply differential coding between each frame,
and then code the prediction error with subband or transform coding as discussed
in [26]. However, if the image compression also is done with differential coding,
it is advantageous to apply differential coding in both the spatial and temporal
dimensions at once to avoid unnecessary quantization errors. This results in a
three-dimensional prediction, as further discussed below.

3D differential coding

Although it has probably been done before, no sources describing three-dimensional
differential coding was found. The expressions for the predictor and the optimal
prediction coefficients were therefore obtained by extending the expressions from

81

CHAPTER 5. COMPRESSION

Figure 5.4: Illustration of 3D differential coding of video. The foremost frame is
the current one at time n. The black pixel is the current pixel f(x, y, n), that is
to be predicted from a three-dimensional set of pixels from both the current and
previous frames. An example of such a set is indicated by the blue pixels.

82

5.2. DIFFERENTIAL CODING

Section 5.2.2 one dimension further. The three-dimensional predictor can then be
given by

f̃(x, y, n) =
∑

(i,j,k)∈W

ai,j,kf̂(x− i, y − j, n− k) (5.25)

where W is a three-dimensional prediction window formed by a set of pixels from
both current and previous frames. An example of such a set is illustrated with
the blue pixels in Figure 5.4, but a smaller prediction window is usually sufficient.
One could for instance choose a prediction window based on the three nearest
neighbours, givingW = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and get the following predictor:

f̃(x, y, n) = a1,0,0f̂(x− 1, y, n) + a0,1,0f̂(x, y − 1, n) + a0,0,1f̂(x, y, n− 1) (5.26)

The normal equations is also easily extended one dimension further in the same
manner as in (5.18)

r(x, y, n)−
∑

(i,j,k)∈W

ai,j,kr(x− i, y − j, n− k) = σ2
eδ(x, y, n) , for (x, y, n) ∈W ′

(5.27)

As in the one- and two-dimensional case, a stationary separable covariance is as-
sumed:

r(x, y, n) = σ2
fρ
|x|
v ρ
|y|
h ρ
|n|
t (5.28)

where ρt is the one-step correlation coefficient in time. This gives

Γ =

 1 ρvρh ρvρt
ρvρh 1 ρhρt
ρvρt ρhρt 1

 (5.29)

a =

 a1,0,0
a0,1,0
a0,0,1

 , γ =

 ρv
ρh
ρt

 (5.30)

which can be inserted into (5.19) and (5.20) to find the optimal prediction coef-
ficients ai,j,k, and the prediction error σ2

e . Solving this with linear algebra does
unfortunately not result in an expression as simple and intuitive as for the one-
and two-dimensional cases discussed earlier. But it can easily be solved if numeri-
cal values for the correlation coefficients are known. Assuming ρv = ρh = 0.9 and
ρt = 0.95 and solving in MATLAB results in

a1,0,0 = 0.25, a0,1,0 = 0.25, a0,0,1 = 0.50 (5.31)

Estimation of prediction coefficients

Since the underlying statistics of the image sequences is unknown, the optimal
prediction coefficients should be calculated with correlation coefficients ρv, ρh and
ρt that is estimated from samples in the image sequence. A possible estimator for

83

CHAPTER 5. COMPRESSION

the covariance of a (M ×N ×P) array is formed by rewriting the two-dimensional
estimator in [39]:

r̂(x, y, n) = 1
(M − x)(N − y)(P − n) ·

M−x∑
x′=1

N−y∑
y′=1

P−n∑
p′=1

f0(x′, y′, n′)f0(x′ + x, y′ + y, n′ + n) (5.32)

where f0(x, y, n) = f(x, y, n)− µ̂f . This results in the following estimators for the
correlation coefficients:

ρ̂v = r̂(1, 0, 0)
σ2
f

= 1
σ2
f (M − 1)NP

M−1∑
x′=1

N∑
y′=1

P∑
p′=1

f0(x′, y′, n′)f0(x′ + 1, y′, n′)

(5.33)

ρ̂h = r̂(0, 1, 0)
σ2
f

= 1
σ2
fM(N − 1)P

M∑
x′=1

N−1∑
y′=1

P∑
p′=1

f0(x′, y′, n′)f0(x′, y′ + 1, n′)

(5.34)

ρ̂t = r̂(0, 0, 1)
σ2
f

= 1
σ2
fMN(P − 1)

M∑
x′=1

N∑
y′=1

P−1∑
p′=1

f0(x′, y′, n′)f0(x′, y′, n′ + 1)

(5.35)

These estimators assume stationarity for the whole image series, which may often
not be the case in practice. Videos often have a varying correlation between frames;
it will be high for slow-varying scenes and low for abrupt motion and scene-changes.
To mitigate this problem, it is common to make the differential coding adaptive.
If short-time stationarity is assumed, the signal can be partitioned into shorter
segments, and the optimal prediction coefficients can then be estimated for each
segment. Since the decoder must use the same prediction coefficients as the encoder,
these must be sent as side information, which requires extra bits. Additionally, the
estimation of the prediction coefficients requires more memory and computational
power in the encoder than if fixed prediction coefficients are used. Whether the
additional complexity and overhead in an adaptive scheme pays off will depend
on the application. If the image statistics are assumed to be relatively stationary
and low complexity is important, an algorithm using fixed prediction coefficients
is probably sufficient. This is assumed to be the case for the NUTS application.

Anchor Frames and Bidirectional Prediction

One problem with differential coding of video is that the whole encoded image
sequence depends on the first frame. This is inconvenient for practical video appli-
cations because it makes random access impossible, and it is often useful to split

84

5.2. DIFFERENTIAL CODING

GOP

Forward
prediction

Bidirectional
prediction

Figure 5.5: Example of a Group of Pictures (GOP) with I- P- and B-frames,
illustrating forward and bidirectional prediction. The white frame is an I-frame,
the blue ones are P-frames, and the grey ones are B-frames.

the video into shorter sequences to fit it into a packet format for transmission.
Additionally, noise from the transmission will propagate through all the differen-
tially coded frames, which makes it necessary to reset the coding now and then.
Therefore, it is quite common to make sure that with a certain interval there are
frames that are coded without any reference to past frames.

As discussed in [26], three frame types are defined in the MPEG-1 and -2
standards: intracoded I-frames, predictively coded P-frames and bidirectionally
predicted B-frames. The different frame types are organized in a Group of Pictures
(GOP), which is the smallest random access unit in the video sequence. The I-
frames enable random access, but have a low compression rate because they are
coded without any reference to other frames. The number of I-frames is a trade-off
between compression rate and convenience, but there must be at least one I-frame
in each GOP. The P-frames are coded predictively from the last P- or I-frame,
and has a much better compression efficiency than the I-frames. The B-frames are
bidirectionally predicted from the two nearest P- or I-frames, which is even more
efficient than forward prediction. P- and I-frames are also referred to as anchor
frames. An example of a possible GOP is shown in Figure 5.5.

The general 3D predictor in (5.25) already enables bi-directional prediction, it
is just a matter of defining the prediction window W in such a way that it includes
pixels from the two nearest anchor frames. For a bidirectional predictor with a

85

CHAPTER 5. COMPRESSION

prediction window of four pixels, a possible set could be

W = {(x− 1, y, n), (x, y − 1, n), (x, y, n− k), (x, y, n+ l)}

where k and l are the distances to the previous and following anchor frames re-
spectively.

It is important to remember that the prediction only should be based on infor-
mation known to the decoder, that is, the frames that are already predicted. I- and
P-frames must be encoded and decoded first, in order to perform the bidirectional
prediction of the B-frames in between. The encoding/decoding order of a GOP is
therefore not the same as the display order when B-frames are included.

As discussed in [41], introducing B-frames will often improve the overall com-
pression efficiency, but this depends on among other things the accuracy of the
motion compensation. As mentioned, the B-frames have a better compression effi-
ciency than P-frames. Additionally, they are not used for prediction of any other
frames, and can therefore tolerate more error since the quantization error does not
propagate further. But using B-frames also leads to reduced compression efficiency
for the P-frames because it increases the difference between the predicted frame
and the reference frame. How many B-frames to insert, and whether they should
be used or not, will therefore depend on the application.

5.3 Motion Estimation for Video Coding
The problem with temporal differential coding for video, is that motion corrupts
the temporal pixel-by-pixel correlation, which makes the coding less effective. For
videos with abrupt motion, differential coding may even lead to an expansion in-
stead of compression. To deal with this problem, it is common to apply some kind
of motion compensation, to match corresponding parts of successive frames.

5.3.1 Block Matching
There are various ways to estimate the motion in a sequence of images. The one
most commonly used for video compression purposes is called block matching, and
is described in detail in [42]. The concept of block matching is to partition a frame
into m× n subblocks, and then search for the best match of each subblock in the
previous frame. In the simplest form of block matching, it is common to assume
rectangular non-overlapping blocks of a fixed size, and pure translational motion
which is uniform within each block.

Block size

For each subblock, the search for the best match is performed within a search
window of size p × q as illustrated in Figure 5.6. A correlation window of size
m × n is slided over positions within the search window as shown in Figure 5.7,
to compute the corresponding matching criteria for different offsets. The relative
position with the best match gives the displacement vector for that subblock.

86

5.3. MOTION ESTIMATION FOR VIDEO CODING

p

q

Search window

Subblock
m

n

Figure 5.6: Illustration of block matching.

The blocksize affects the precision of the motion estimation, and should be
chosen carefully. In order to approximate rotation, zooming or non-uniform motion
in the image, the block size needs to be small. However, since small block size
leads to more subblocks and motion vectors, this leads to a heavier computational
burden and more side information. 16 × 16 pixels is considered to be a suitable
compromise for general video, and is used in many international video standards,
for instance MPEG. But it should be noted that the optimal block size depends
on resolution, image content and frame rate and should be chosen according to the
suitable precision for the application in question.

The size of the search window is chosen according to the maximal displacement
in all four directions (dN , dE , dS and dW in Figure 5.7). The search window should
be as small as possible to give fewer computations of the matching criterion, and
to prevent matching with similar regions other places in the image.

Matching criteria

The criteria for the best match can be defined in several ways. One possible match-
ing criteria is to maximise the correlation between blocks, but this expression is
heavy to compute. An other option is to minimize the dissimilarity, or the average
error, between the two images. The error between the subblock in the current
frame fk and the shifted correlation window in the previous frame fk−1 can be

87

CHAPTER 5. COMPRESSION

d_E

d_S

d_W

d_N(dx,dy)

(0,0)

Search window

Correlation
window

Subblock

Figure 5.7: Illustration of how the search within a subblock is done to find the best
match.

expressed as

D(dx, dy) = 1
mn

m∑
i=1

n∑
j=1

M(fk(i, j), fk−1(i+ dx, j + dy))) (5.36)

where M(u, v) is an error metric and dx ∈ (−dW , dE) and dy ∈ (−dN , dS) are the
shifts of the correlation window in the x- and y-direction as illustrated in Figure 5.7.
Various error metrics have been proposed in literature, among them the MSE and
the Mean Absolute Difference (MAD) given by

MMSE(u, v) = (u− v)2 (5.37)

and
MMAD(u, v) = |u− v| (5.38)

Due to its simple expression, MAD is commonly used. To get an even more
computationally efficient error measure, one can also use the Sum of Absolute
Difference (SAD), which is the same as MAD just without the 1/mn factor. The
matching criterion is then given by

D(dx, dy) = SAD(x, y) =
m∑
i=1

n∑
j=1
|fk(i, j)− fk−1(i+ x, j + y)))| (5.39)

Searching procedures

In the search for the correlation window with the best match, the chosen search pro-
cedure will affect the computational burden. A full search will result in (dW +dE×
dN +dS) computations of D(dx, dy) in addition to the same amount of comparison

88

5.4. QUANTIZER DESIGN

operations to find the minimum, for each subblock. For a frame with 512 × 512
pixels, partitioned into 32 16 × 16 subblocks with 32 × 32 search windows, this
leads to 8192 comparison operations and computations of the matching criterion
per frame. A full search gives the best accuracy, but alternative search methods
have been developed to decrease the computational burden, as discussed in [42]

In order to increase the accuracy of the estimated motion vector, spatial inter-
polation can be applied to get sub-pixel precision. This will of course lead to more
computation, and more bits will be needed for the coding of the motion vector. The
opposite operation, subsampling, can also be done to decrease the computational
burden at the expense of lower accuracy.

5.4 Quantizer Design
The quantizer module in Figure 5.2 makes DPCM a lossy coding scheme, which
means that precision can be traded for a higher compression ratio. The goal of
quantizer design is to simultaneously minimize the output rate and the quanti-
zation error for a source with given properties. The solutions range from simple
scalar uniform quantizers to complex adaptive quantizers and vector quantizers.
There will always be a trade-off between performance and complexity, and a sim-
ple quantizer combined with entropy coding can give a sufficient result for many
applications.

For simplicity, only scalar quantizers will be discussed in this section, with
emphasis on the optimization of uniform quantizers for DPCM. To enable this dis-
cussion, basic concepts will be treated first. Coding of the output of the quantizer
will be discussed later, in Section 5.5. For a complete treatment of quantizers, it
is referred to [26].

5.4.1 Quantization
The quantization operation divides the range of the time discrete source s(n) into
L quantization intervals, Ik, which is bounded by the decision boundaries bk and
represented with the corresponding representation levels ŝk, as illustrated in Fig-
ure 5.8. The expression for this operation is given by

Q[s(n)] = ŝk, if s(n) ∈ Ik = (bk, bk+1] , (5.40)

where k = 1 . . . L.
Figure 5.8 shows a uniform quantizer, which means that the quantization inter-

vals are of equal lengths, and the representation levels are placed in the middle of
each interval. For uniform quantizers, the step size ∆ denotes the spacing between
the decision boundaries, which is the same as the distance between the represen-
tation levels. Generally, the quantization intervals can be of different lengths, and
the representation levels can have any position inside the intervals.

Quantizers can be either of the midtread or midrise type. As illustrated in
Figure 5.9, the midtread quantizer has a representation level in zero, while the
midrise has a decision level at zero. The midtread type is often preferred, to assure

89

CHAPTER 5. COMPRESSION

s

Q(s)

b b b bbbbb

ŝ

ŝ

ŝ

ŝ

ŝ

ŝ
1

1 2 3 4 5 6 7 8

2

3

6

7

5

4ŝ

Figure 5.8: Characteristic function of a quantizer with L=7

correct representation of zero values in the source, but it results in an odd number of
representation levels. If the quantizer output is coded with a constant word length
of B bits, codewords will be wasted unless L = 2B . An asymmetric number of
representation levels can be assigned to make sure this is fulfilled. For the further
discussion, a uniform midtread quantizer is assumed. Expressions for a midrise
quantizer can be found in [26], but the discussion is quite similar for the two cases.

5.4.2 Quantization noise
As opposed to sampling, quantization is a non-invertible process which produces
inevitable errors. This error can be expressed as the difference between the contin-
uous sample value and the corresponding quantized level:

q(s) = s(n)−Q(s(n)) (5.41)

q(s) is stochastic in nature due to its dependence of the source, and is referred to as
quantization noise because it is often modelled as additive noise on the signal. As
shown in Figure 5.10, it is limited by the distance between the representation levels
and the decision boundaries for the inner quantization intervals, but if the source
is unbounded the error in the two outer intervals can become infinitely large. This
type of error is referred to as overload noise, while the error for the inner intervals
is referred to as granular noise.

90

5.4. QUANTIZER DESIGN

s

Q(s)

Δ/2

3Δ/2

5Δ/2

-3Δ/2

-5Δ/2

-Δ/2

-7Δ/2

7Δ/2

Δ 2Δ 3Δ-Δ-2Δ-3Δ 4Δ-4Δ

(a) Midrise uniform quantizer

s

Q(s)

3Δ

5Δ/2-3Δ/2

-Δ

-2Δ

Δ

2Δ

Δ/2-Δ/2 3Δ/2-5Δ/2

-3Δ

7Δ/2-7Δ/2

(b) Midtread uniform quantizer

Figure 5.9: Uniform quantizers of the (a) midrise and (b) midtread type.

s

q(s)

-3Δ/2 5Δ/2

Δ/2

-Δ/2

3Δ/2Δ/2-Δ/2-5Δ/2

Figure 5.10: Quantization noise for a midtread quantizer with five quantization
levels.

91

CHAPTER 5. COMPRESSION

The Mean Squared Error of the quantizer, or the variance of the quantization
noise, is an important means of measuring the error, and can be computed by

σ2
q =

∞∫
−∞

q2(s)ps(s) ds (5.42)

=
L∑
k=1

bk+1∫
bk

(s− ŝk)2ps(s) ds (5.43)

The integral must be partitioned into L terms due to the discontinuities in q(s).
Note that b1 = −∞ and bL+1 = ∞ for unbounded sources. The Signal-to-
quantization noise ratio (SQNR) is given by

SQNR(dB) = 10 log10

(
σ2
s

σ2
q

)
(5.44)

As seen from (5.43), the variance of the quantization noise depends on the interac-
tion between the quantizer properties (L, bk and ŝk) and the probability distribu-
tion of the source. Various strategies have been proposed to optimize the positions
of the decision boundaries and representation levels according to the distribution
of the source, in order to minimize the quantization error. Optimal quantizers are
usually non-uniform, i.e. bk and ŝk are not equally distributed along the range
of the quantizer. Finding an optimal quantizer is a very complex problem and
depends on good knowledge and/or estimation of the statistical properties of the
signal, but can be done for instance by means of the Lloyd-Max algorithm [26].

If fixed-length binary codewords are used to represent the quantizer output, the
rate simply depends on the number of quantization intervals:

R = dlog2 Le [bits] (5.45)

But if variable-length codewords are allowed, the rate will depend on the posi-
tions of the representation levels and decision boundaries as well as the probability
distribution of the source:

R =
L∑
k=1

liP (ŝk) (5.46)

=
L∑
k=1

bk+1∫
bk

pS(s)ds (5.47)

where P (ŝk) is the probability of occurrence for the representation level ŝk.

Uniform Quantizer and Uniformly Distributed Source

If a uniformly distributed source is assumed, the resulting expression for the quanti-
zation variance is quite simple. s(n) is then limited by a maximum amplitude smax,

92

5.4. QUANTIZER DESIGN

which gives a finite range of the signal and the following probability distribution

ps(s) = 1
2smax

for − smax < s(n) ≤ smax (5.48)

This results in an optimal step size ∆ = 2smax
L . The quantization noise will be

uniformly and equally distributed within each quantization interval, and (5.43)
can therefore be simplified into

σ2
q = L

∆∫
0

s2
1

2smax
ds (5.49)

= 1
∆

∆
2∫

−∆
2

s2 ds (5.50)

= ∆2

12 (5.51)

Uniform Quantizer and Non-uniformly Distributed Source

Non-uniformly distributed sources are generally not bounded, and as already men-
tioned this results in overload noise. The total quantization noise is given by

σ2
q = σ2

granular + σ2
overload (5.52)

where

σ2
granular =

L−1∑
i=2

di∫
di−1

(s− yi)2pS(s) ds (5.53)

σ2
overload = 2

∞∫
dL−1

(s− yM)2pS(s) ds , (5.54)

where it is assumed that both the source distribution and the quantizer are symmet-
ric. The impact of the overload noise thus depends on the tails of the probability
distribution, as illustrated in Figure 5.11. The granular noise can be approximated
with (5.49), if the quantization levels are small compared to the variance of the
source. This will not be the case for low-rate applications with coarse quantization.

5.4.3 Design of a Uniform Quantizer for DPCM
For a uniform quantizer, the design parameters are reduced to the number of levels
L and the step size ∆. These parameters should be designed according to the
probability distribution of the signal to be quantized, to reach a good trade-off
between quantization noise and final output rate. How this should be done depends
on the application.

93

CHAPTER 5. COMPRESSION

bbb = ∞ b b b = ∞
0

-Δ-2Δ Δ 2Δ

ŝ ŝ ŝ ŝŝ
1 2 3 4 5

1 2 3 4 5 6

p(s)
s

s

Quantizer range

Overload probability

Figure 5.11: Illustration of overload noise for a Laplace distributed source.

The prediction error signal in DPCM is often modelled as Laplacian distributed:

f(e|µ, β) = 1
2β exp−|s− µ|

β
(5.55)

where the parameters µ and β are the mean and the scale. The standard deviation
is directly given by the scales as σ =

√
2β.

An additional design parameter, the loading factor λ, is often defined to describe
the trade-off between step size and range. The loading factor is defined as the ratio
of the maximum value within the granular region (as illustrated with the dotted
line in Figure 5.11) to the standard deviation of the source:

λ = range
σe

= bL−1 + ∆
σe

(5.56)

Often, a constant word length of B bits is required for coding of the quantizer
output, which restricts the number of levels in the quantizer to L = 2B . To
find the optimal ∆ for the given L in terms of quantization noise, σq should be
minimized with respect to ∆ for the current probability distribution. This trade-off
between granular and quantization noise is not equally important when designing
a quantizer whos output is coded with variable word length. Theoretically, the
granular noise can then be avoided completely by having an infinite number of
quantization intervals, and code the less probable ones with many bits if they ever

94

5.5. CODING FOR MINIMUM BIT REPRESENTATION

t -t

Δ

range

Q(s)

s

Figure 5.12: Design parameters for a dead-zone quantizer

appear. In practice it is easier to implement a quantizer with a finite number of
levels, but the range of the quantizer can be relatively wide to avoid overload noise.

For uniform midtread quantizers, it is quite common to introduce a so-called
dead-zone, which means that the step size of the zero-interval is widened, and
the quantizer is not strictly uniform any more. This actually introduces additional
noise, but it also results in a removal of distortions around the zero-level, an the re-
sult can therefore look more visually pleasing than the uniformly quantized version.
Since the distribution of the prediction error signal in DPCM is very concentrated
around zeros, a dead-zone can make a run-length coding scheme more effective, and
can therefore reduce the final output rate. Run-length coding is further discussed
in Section 5.5. The design parameters for a uniform dead-zone quantizer is shown
in Figure 5.12. The threshold t defines the one-sided width of the dead-zone inter-
val, while ∆ gives the step size for the other intervals. The dead-zone quantizer is a
bit harder to optimize than the plain uniform quantizer, because the final bit rate
after encoding has to be taken into account as well. If a certain SQNR is required,
the parameters t and ∆ can be chosen such that this requirement is fulfilled, and
further simulations or calculations can be performed to optimize in terms of output
rate.

5.5 Coding for Minimum Bit Representation
As mentioned in Section 5.1, the quantizer levels should in some way be coded for
minimum bit representation. How this should be done depends on many factors,
for instance the desired format of the output. If a variable wordlength is allowed,
the quantizer levels can be entropy coded with Huffman code or arithmetic coding
as described in [26] to reduce the bitrate. But if a constant wordlength is required,
more care must be taken in the quantizer design itself.

If the output of the quantizer contains long runs of zeros, it can be effectively
represented by run-length coding. This principle is for instance applied in the

95

CHAPTER 5. COMPRESSION

facsimile standard as described in [26]. The basic principle of run-length coding is
to encode the lengths of runs with the same value instead the values itself. How
the corresponding value for each run is encoded depends on the application.

One variety of run-length coding is called Stack-run (SR). The main principle
of SR encoding is to code the zero-runs and the non-zero values binary with two
different alphabets, and then encode the stream of the four different symbols binary
or with entropy coding. This scheme is discussed in detail in [43], which applies
it for efficient encoding of wavelet coefficients. It can also be useful for differential
coding, especially for low rate applications. If a dead-zone quantizer is applied, it
can be expected that most of the output values will be zero, which can be efficiently
encoded with SR encoding.

If a major part of the signal is represented by zero, the SR encoder will efficiently
reduce the bit rate. On the other hand, if most of the quantizer output values take
other values than zero, the SR encoder may increase the bit rate since it employs
a four-symbol alphabet. The non-zero values are therefore represented with twice
as many bits as if they were binary coded directly.

5.6 Suggestion for a Complete Compression
Algorithm

This section gives a suggestion for a complete compression system based on differ-
ential video coding for the NUTS application.

A three-dimensional DPCM scheme was chosen for compression of the grav-
ity wave image sequences, due to its simplicity compared to other video coding
schemes. The gravity waves image sequences are expected to have a high correla-
tion both spatially and temporarily, at least if most of the detector noise can be
removed before compression. A three-dimensional predictor will be used for most
of the pixels, while a two-dimensional one will be used where there are no data
from earlier samples available. For the 3D-prediction, a prediction window with
the three nearest neighbours will be used, resulting in the predictor in (5.26). The
three first terms of the 2D predictor in (5.16) was chosen for the first frame of the
sequence. For the DPCM algorithm to work optimally, the input signal should be
zero mean. The mean value of the images should be subtracted before compression.
This can either be sent as side information or be omitted completely.

Since the satellite is moving fast and the frame rate of the image sequence
should be relatively low, some kind of motion compensation needs to be applied. If
the speed of the satellite is known accurately enough, this could be done by shifting
the whole image with a constant number of pixels, as for the image averaging in
Section 4.5. This can be incorporated into the DPCM algorithm simply by shifting
the coordinates of the pixel from the previous frame that is used for the prediction,
if a precision of integer pixels is good enough. However, if the speed of the satellite
is not accurately known, a simplified version of the block matching scheme in
Section 5.3 can be applied. If the velocity is assumed to be constant in the whole
image and close to the estimated speed, the block matching can in principle be

96

5.6. SUGGESTION FOR A COMPLETE COMPRESSION
ALGORITHM

performed using only one block in the middle of the image, with a narrow search
window around the estimated shift. The estimated motion vector for this block
will then be used to shift the whole image. For robustness, a grid of for instance 9
blocks can be used in the same manner, and the average of the estimated motion
vectors can be used. However, if there is any significant rotation or non-uniform
movement between the images, motion compensation with a constant vector may
lead to inaccurate results. But full block matching as described in Section 5.3
is computationally demanding, and will lead to a huge increase in complexity for
the compression algorithm. It is advised that the motion compensation is kept as
simple as possible to keep the complexity of the algorithm low.

If the differential coding works as intended, the variance of the prediction error
images will be much lower than for the original images. This means that the range
of the quantizer can be quite small, and fewer bits are needed to encode the output.
A midtread uniform quantizer with dead-zone was chosen for quantization of the
prediction error signal, in order to enable Stack-run coding and low bitrate.

The predictors and quantizer depend on several parameters that should be op-
timized with respect to the statistics of the image sequence. The correlation coeffi-
cients of the image sequence can be estimated using the expressions in (5.33),(5.34)
and (5.35), and the prediction coefficients for the two- and three-dimensional predic-
tor can be computed from these estimated values by solving the normal equations.
The dead-zone threshold and range of the quantizer should be determined accord-
ing to the distribution of the prediction error images. If the standard deviation of
the prediction error images is computed, the loading factor will determine the range
of the quantizer, and a dead-zone loading factor λdz = t

σe
will set the dead-zone

threshold in a similar way. Simulations can be performed to find the loading and
dead-zone loading factors and the number of levels that give the desired trade-off
between output rate and distortion.

Assuming that the statistics of the gravity wave images are relatively stationary,
the parameters discussed above can have fixed values known to both the encoder at
the satellite, and the decoder at the ground station. However, since there are a lot
of uncertainties regarding what the images will look like, it could be advantageous
to estimate the parameters from images obtained by the camera while the satellite
is in orbit. The suggested solution is to transmit the first images obtained by the
satellite without any compression, and use these to estimate the optimal parameters
for the compression algorithm. The parameters can then be sent to the satellite
and used for efficient encoding. This option does of course require the possibility
to change the parameters of the algorithms when the satellite is in orbit.

It is also suggested to apply Stack-run coding, in order to reach low bit rates.
The performance of the SR encoder will depend on the distribution of the quan-
tizer output. If the quantizer output turns out to have a wider distribution than
expected, simple binary coding will perform better. The optimal type of bit coding
for the SR symbols depends on their distribution. If the distribution is relatively
uniform, simple binary encoding may be just as good as Huffman coding.

97

CHAPTER 5. COMPRESSION

5.7 Implementation and Simulations in MATLAB

The proposed three-dimensional DPCM algorithm were implemented in MATLAB,
and simulated for different input images and parameters. The implementation is
not complete, and is first of all meant as a proof-of-concept, to demonstrate that
this scheme might be feasible for our application. An attempt has been made to
choose reasonable values for the parameters, but most of the parameter values can
be optimised further, and also be adapted to the image material, to improve the
performance of the algorithm.

An overview of the MATLAB functions in the implementation is given in Fig-
ure 5.13, and their content is further discussed below.

5.7.1 Prediction and quantization

A simple one-dimensional DPCM algorithm was modified to work in three di-
mensions, as discussed in Section 5.6. dpcm3D_encode incorporates the complete
3D DPCM encoder, taking a zero-mean three-dimensional array, representing the
image sequence, as input. Other inputs are the quantization parameters and pre-
diction coefficients. The output is also a three-dimensional array, representing the
prediction error image sequence.

As mentioned in Section 5.6, a 2D predictor will be used for the first frame
of the sequence. Since both the two- and three-dimensional predictors depend
on values of previous pixels vertically and horizontally, the pixels in the first row
and column of each frame will not be predicted and their value must be encoded
as it is. This results in three different prediction categories for the pixels in a
sequence; those without prediction, those with 2D prediction and those with 3D
prediction, as illustrated in Figure 5.14(a). Quantizers have been implemented,
with different parameters for the three different prediction categories. Uniform
dead-zone quantizers are used for the 2D and 3D predicted pixels, while a plain
uniform quantizer with wider range is applied for the pixels without prediction.

The quantization parameters and the prediction coefficients are estimated in
separate functions: set_q_param, est_2Dpredcoeffs and est_3Dpredcoeffs.
For simulation purposes, these are included in the same script as the DPCM en-
coder, providing updated estimates for each image sequence. This should however
not be the case in the final implementation, which should use static parameters
known to both the encoder and decoder, as discussed in Section 5.6.

The estimation of the prediction coefficients is performed by estimating the
correlation coefficients from the image sequence as described earlier, and using them
to generate and solve the normal equations containing the prediction coefficients.

The three different quantization parameters (L, ∆ and t) are determined by
running an image sequence through the complete DPCM encoder without quan-
tization, and then estimate the standard deviation of the outputs corresponding
to the three different prediction categories. These estimates are used to determine
the quantization parameters as discussed in Section 5.6.

98

5.7. IMPLEMENTATION AND SIMULATIONS IN MATLAB

dpcm3D_encode()

sr3D_encode()

sr3D_decode()

dpcm3D_decode()

set_q_param()

est_2D_predcoeffs()

est_3D_predcoeffs()

pred_coeffs
q_param

e_q_3D

e_q3D_codeed

e_q3D_decoded

f_rec3D

im_mat0

(transmission...)

Figure 5.13: Overview of the implementation of the compression system in MAT-
LAB.

99

CHAPTER 5. COMPRESSION

(a)
MC shift

(b)

Figure 5.14: Illustration of the three different prediction categories. (a) shows a
sequence of three images without motion compensation. (b) shows a frame where
motion compensation is performed by applying a shift "MC shift" between the
images, which results in an area where 3D prediction can not be applied.

5.7.2 Motion Compensation

The motion compensation has not been implemented yet, but based on the knowl-
edge of the satellite’s motion, it is assumed that a simple scheme with a constant
shift for the whole image will be sufficient. The prediction has been implemented
such that a shift of an integer number of pixels can be applied for the pixel in the
previous image that is used for prediction, as shown in Figure 5.15. Due to the
motion, there is an area along the edges that the previous image does not cover,
as shown in Figure 5.14(b) for a horizontal shift of two pixels. The 2D prediction
scheme must therefore be applied in this area.

5.7.3 Bitcoding

For the SR encoding and decoding, a MATLAB implementation made by Anna
Kim based on [43] was used. The same encoding was used for the whole image
sequence. It would probably be better to use another encoding scheme for the
pixels in the edges that are not predicted, but this would complicate the decoding.
The SR symbols were binary coded.

100

5.7. IMPLEMENTATION AND SIMULATIONS IN MATLAB

MC shift

Figure 5.15: Illustration of 3D-prediction with simple motion compensation (MC).
The turquoise squares indicate the pixels used for the prediction (the prediction
window) of the current pixel (indicated with a black square). The current image is
shifted with "MC shift" compared to the previous image, and the turquoise pixel in
the previous frame is therefore shifted in order to correspond to the image content
of the current pixel.

101

CHAPTER 5. COMPRESSION

5.7.4 Simulations
Some simulations with representative test images and parameters were performed,
but the parameters have not been optimized. The test script dpcm_demo generates
test images, performs 3D DPCM with quantization and SR encoding, and subse-
quent decoding. Some of the functions used have a debug option that enable plots
and display of parameters for simulation and debugging purposes.

Test Image Sequence

Ideally, an image sequence with a shift between the images should have been used,
to simulate the motion, but since the motion compensation has not been imple-
mented yet, images that are already aligned had to be used. The test image se-
quence that was generated consisted of five sine images, with Gaussian noise and a
small random shift in angle, to ensure that there is some difference between them.
The test images were generated as discussed in Section 4.2, with possibility to vary
the SNR factor K and the number of periods of the sine wave. For the simulations
discussed in this section, sine waves with 11.5 periods per image (corresponding to
the mean GW wavelength) and an angle of 10◦ was used, and an SNR factor of
K=50 was used unless other values are specified.

Prediction Error Signal and Quantizers

Figure 5.16 shows distributions of the prediction error signal for the different pre-
diction categories, as well as an example of corresponding quantizers. The top his-
togram of Figure 5.16(a) shows the distribution of the pixel values along the edges
that are not predicted. This corresponds to the distribution of the whole image
before prediction, and looks roughly uniform. The distribution of the prediction
error of the 2D- and 3D-predicted pixels, in the middle and bottom histograms
of Figure 5.16(a), looks much narrower, and resemble laplacian distributions. It
was expected that the three-dimensional predictor would perform better than the
two-dimensional, and the slightly narrower distribution of the 3D-predicted pix-
els confirm this. The difference is however not that large, especially not for the
distributions of the quantized prediction error in Figure 5.16(c). The distribution
of the 3D-predicted pixels is slightly askew, but the reason for this is not known.
Figure 5.16(b) shows the quantizers that were used for the simulations, which cor-
responds to row (c) in Table 5.1.

Quantization Parameters

Different quantizer parameters were tried relatively arbitrarily, to investigate how
the PSNR and output rate varies with different values for the dead-zone threshold
t and step size ∆. For all the simulations, a loading factor of λ = 5 was used
for the quantizers to avoid overload noise. The number of levels, L, and the dead
zone loading factor λdz was used to adjust the dead-zone threshold t and the step
size ∆. The results are summarized in Table 5.1, and the corresponding quantizer

102

5.8. SUMMARY AND DISCUSSION

Table 5.1: Simulation results for four different quantizers.
Parameters Results

L λdz
2t
∆

PSNR Entropy Output rate
[dB] [bit/px] [bit/px]

(a) 5 1 1 50.7 1.44 1.04
(b) 7 0.71 1 53.4 1.78 1.27
(c) 7 1.25 2 50.9 1.25 0.83
(d) 7 1.66 3 48.8 0.94 0.61

characteristics are shown in Figure 5.17 while the distribution of the quantized
3D-prediction errors are given in Figure 5.19.

The results in Table 5.1 clearly shows that by increasing the width of the dead-
zone, the output rate is lowered due to increased efficiency of the SR coding, but
the PSNR also gets lower. The dead-zone quantizer in row (c), which has a dead-
zone that is twice as big as the step size, has a rate of only 0.83 bit/px, but also
a PSNR of more than 50 dB. This shows that a rate of less than 1 bit per pixel is
possible while still maintaining a good quality. The corresponding recovered image
is shown in Figure 5.18(c).

Noisy Images

Simulations for test images with different SNR factors were also tried, in order
to investigate how the performance of the DPCM algorithm would vary. A test
image for an SNR factor of K = 10 is shown in Figure 5.18(b). As illustrated
in Figure 5.20, the signal cannot be decorrelated properly, and the distribution of
the prediction signal remain as wide as the source signal. First, this prediction
error was quantized with the parameters of row (b) in Table 5.1. This resulted
in a low rate, but a poor PSNR of the recovered image since the prediction error
signal could not be reconstructed properly. The reconstructed image is shown in
Figure 5.18(d). Then, a uniform quantizer with L = 11 was used. This resulted in
better PSNR, but a very high rate since the SR coding did not function properly
anymore.

5.8 Summary and Discussion
The implementation and simulations of the three-dimensional DPCM algorithm
with dead-zone quantizer and SR coding showed that even with such a simple al-
gorithm, bitrates of less than 1 bit per pixel can be achieved, with an acceptable
image quality. A bitrate of 0.83 bits per pixel, as obtained with one of the quan-
tizers in the simulations, results a compression factor of 9.64 compared to a 8-bit
representation, and gives 54.4 Kb per image with a resolution of 256× 256 pixels.
A sequence of 10 images can then be represented by 0.54 Mb. This gives the op-
portunity to either download more image sequences, or to obtain longer sequences
with the same download capacity as before. However, the number of images that

103

CHAPTER 5. COMPRESSION

(a)
(b)

(c)

Figure
5.16:

Sim
ulation

of
the

3D
D
PC

M
algorithm

.
(a)

show
s
the

distribution
of

the
prediction

error
for

the
different

prediction
categories,

w
ithout

any
further

quantization.
(b)

show
s
the

characteristic
function

of
the

three
quantizers.

(c)
show

s
the

distribution
ofthe

quantized
prediction

error
for

the
different

prediction
categories.

104

5.8. SUMMARY AND DISCUSSION

(a)

(b)

(c)

(d)

Figure 5.17: Quantizers with different parameters as given in Table 5.1

105

CHAPTER 5. COMPRESSION

(a) (b)

(c) (d)

Figure 5.18: Original and recovered images after compression. (a): Test image
with K = 50. (b): Test image with K = 10. (c): Recovered version of (a) after
compression. (d): Recovered version of (b) after compression.

106

5.8. SUMMARY AND DISCUSSION

(a)

(b)

(c)

(d)

Figure 5.19: Distribution of quantized prediction error (3D) for the quantizers in
Figure 5.17 and Table 5.1

107

CHAPTER 5. COMPRESSION

Figure 5.20: Distribution of the prediction error signal (without quantization) for
the test image in Figure 5.18(b)

108

5.8. SUMMARY AND DISCUSSION

can be transmitted is still quite limited due to the low download capacity.
The algorithm should be optimised further by performing simulations with dif-

ferent parameters for the dead-zone quantizer, in order to get the desired image
quality at the lowest possible rate. The simulations were performed without taking
motion compensation into account. However, as long as the motion compensation
works well, the results should not be very different from the ones obtained here.
But there will be a section along the edges where the 3D-predictor cannot be ap-
plied, as discussed earlier, due to the fact that the images do not overlap. This can
lead to some decrease in the performance of this compression algorithm, especially
if the shift between the images is large.

As shown in the simulations, the DPCM algorithm does not work that well on
noisy images, which leads to an increased output rate to get the quality required.
This confirms the importance of noise removal before compression.

The implementation and simulations in this section is by no means complete.
It has however been demonstrated that a simple differential coding scheme might
be feasible for compression of payload data from NUTS. The foundation that has
been laid regarding the implementation of a three-dimensional DPCM algorithm
can hopefully be useful when the complete algorithm is to be implemented on the
satellite in the future.

109

Chapter 6
Summary and Conclusion

6.1 Suggestion for a Complete Signal Processing
System

This section attempts to provide an overview of the payload system, with main
focus on obtaining a complete signal processing strategy to prepare the images for
transmission and assure a sufficient quality. A schematic of the complete system is
provided in Figure 6.1.

A suitable InGaAs camera must be found as soon as possible, and be integrated
with optics and other modules of the satellite. The optics and detector must be
chosen such that a suitable image coverage and resolution can be obtained. For
most of the discussion in this thesis, an image coverage of 300 km and a detector
with 256 × 256 pixels have been assumed. An optical bandpass filter should also
be applied, in order to eliminate background radiation from Earth, as discussed in
Section 3.2.6. InGaAs sensors are known to have a strong background signal due to
dark current, which must be removed in some way to get sufficient image quality.

Camera Image
enhancement CompressionSource Transmission

- Background
subtraction
- Image averaging with
MC
-(Additional filtering)

- 3D DPCM with MC
- SR coding

- Optical bandpass
filtering
- InGaAs detector
- A/D converter

- GW patterns in
OH airglow

- (Error protection)

Figure 6.1: Overview of the whole system

111

CHAPTER 6. SUMMARY AND CONCLUSION

...100111010111101...

3D DPCM

Image averaging

Figure 6.2: Image enhancement and compression

The A/D converter of the camera is assumed to have a fine quantizer, but this also
means a high number of bits per pixel in the output image from the camera.

Several sequences of images with short exposure times should be obtained as
shown at the top of Figure 6.2. Each sequence is to be combined by image averaging
to yield one image for transmission. The number of images should be chosen to give
a total integration time that is long enough to give sufficient DSNR. Furthermore,
the integration time for each image should be short enough to prevent motion
blur. The first image of the sequence can be a calibration image (indicated by the
black square in Figure 6.2) obtained with closed shutter to measure the background
signal of the detector. How often this calibration should be done depends on the
temperature variations.

Background subtraction should be performed by subtracting the calibration im-
age from the following images in the sequence, as suggested in Section 4.2.3. Image
averaging with motion compensation will then be applied to rest of the images, as
discussed in Section 4.5. If necessary, additional filtering (lowpass and/or median
filter) may be applied to reduce the noise further, as discussed in Section 4.2.5.

A sequence of overlapping combined images (indicated by the dark grey squares
in Figure 6.2) should be obtained to provide a scan of a desired area. This sequence
can be regarded as a video with low frame rate, and should be compressed with
the 3D DPCM algorithm combined with SR coding, as discussed in Section 5.6.
There are several parameters regarding the prediction and quantization in this
algorithm that should be adjusted according to the image material. It is suggested

112

6.1. SUGGESTION FOR A COMPLETE SIGNAL PROCESSING SYSTEM

that there should be an option to transmit uncompressed images to the ground
station, in order to determine suitable parameters for the algorithms, as discussed
in Section 5.6.

As shown by the simulations of the DPCM algorithm in Section 5.7.4, it will
not be able to compress noisy images efficiently. This is the reason why the image
averaging should be performed before compression, and must therefore be imple-
mented on-board the satellite. One should however have the possibility to turn
off the averaging and adjust the exposure time, in case the algorithm fails or the
incoming signal is completely different than expected.

It is important to have accurate information about the motion of the satellite,
both regarding orbital velocity and any possible rotation. The image averaging
algorithm depends on precise motion compensation to avoid blur, and this is also
important for the compression algorithm to function optimally. Some form of
motion estimation could be applied for the compression algorithm, but this is not
trivial to implement, and would increase the complexity. For the images with
short exposure time that is combined with image averaging, it is probably hard
to perform any motion estimation at all, due to the noise. Since there still are
some uncertainties regarding the specification of the ADCS system, this should
be further investigated before the final enhancement and compression algorithms
are implemented. It may also be convenient to adjust some parameters regarding
motion compensation after launch, in case the ADCS system works differently than
expected.

The image enhancement and compression algorithms contain several parame-
ters that must be optimized further, but many important factors are still unknown.
Most of the implementation and optimization can be done when a launch is sched-
uled and the camera has been found, but there are also several parameters that
must be adjusted after launch. This requires the possibility to send commands that
can change the parameters in question while the satellite is in orbit.

As shown in the discussion of the downlink capacity in Section 2.2, an average
downlink capacity of 4.9 Mb per day can be assumed, where approximately half of
it can be used for payload data, i.e. 2.45 Mb per day. This corresponds to an image
transfer rate of less than 5 uncompressed images1 per day. Assuming that video
compression can provide 0.83 bits per pixel (as in Table 5.1), the image transfer
rate is increased to 45 images per day. Whether this should be obtained as one
long sequence or several short ones depends on the kind of data that is desired for
further analysis of the images. The compression will however be most efficient for
long sequences of images with significant overlap.

Several factors have been mentioned that might degrade the performance of
the compression algorithm compared to the simulations performed in Section 5.7.4,
but the parameters have not been optimized yet. All in all, it is therefore believed
that the result from these simulations can give a good indication to what can be
achieved. One should however investigate the algorithm’s vulnerability to channel
errors, and what kind of protection that is necessary for the NUTS downlink. If
necessary, a forward error correcting code should be applied, but this will reduce

1Assuming 256× 256 pixels and 8 bit per pixel.

113

CHAPTER 6. SUMMARY AND CONCLUSION

the image transfer rate. A turbo-code could for instance be applied to the payload
date, since this type of error correction provides a low complexity at the encoder
side [44] and a low overhead, but this needs to be investigated further.

6.2 Conclusion
In this thesis, several issues regarding the NUTS payload camera have been dis-
cussed. The main focus has been on suggesting suitable signal processing algo-
rithms that can assure good quality and compression.

A suitable and available InGaAs infrared camera is yet to be found, and many
parameters regarding the camera are therefore still unknown. The studies and
experiments concerning InGaAs sensors in Chapter 3 indicated that a significant
background signal, both in terms of offset and noise, can be expected. Long in-
tegration time and background subtraction will therefore be necessary in order to
ensure a satisfying image quality.

The simulations of motion blur in Section 4.3.3 show that even though a low
resolution is required to observe the large-scale gravity wave patterns, motion blur
will be a problem for long integration times due to the high speed of the satellite.
The maximum integration time that can be allowed will depend on the required
image quality. It should at least be kept below 1 second to preserve gravity wave
patterns down to a wavelength of 15 km.

Image averaging with motion compensation was concluded to be the best strat-
egy for avoiding motion blur and at the same time get a sufficient SNR with respect
to detector noise. Simulations showed that this is a more reliable and flexible strat-
egy than the deconvolution approach.

The processing required for image averaging and motion compensation should
be done on-board the satellite before compression, in order to provide a sufficient
SNR for the compression algorithm. A sequence of overlapping combined images
can be obtained to provide a scan of a desired area, and should be encoded as video
to enable efficient compression and transmission of as many images as possible to
the ground station.

Through simulations with synthetic test images, it has been indicated that
video coding with three-dimensional DPCM combined with a dead-zone quantizer
and SR coding can provide a bit rate lower than 1 bit per pixel for a sequence of
gravity wave images. The simulations performed in Section 5.7.4 show bit rates
down to 0.61 bit/px with an acceptable quality, but 0.83 bit/px was required to get
a PSNR above 50 dB. The parameters of the dead-zone quantizer should however
be optimized further, to provide a good trade-off between distortion and bitrate.
Accurate motion compensation and low noise levels are vital factors that will affect
the performance of this algorithm.

This work has only provided suggestions for a suitable camera type and algo-
rithms for the payload. A lot of work still remains to be done to get an operational
payload, and many of the remaining tasks have been mentioned earlier in this
thesis:

• Obtain a suitable InGaAs camera

114

6.2. CONCLUSION

• Integrate the camera with optics and electronics

• Investigate the assumed motion of the satellite, implement motion compen-
sation (and estimation if necessary)

• Optimize and perform further simulations of the quantization and SR decod-
ing, enable adjustment of parameters in orbit

• Implement the image enhancement and compression algorithms on a micro-
controller on the satellite

115

Bibliography

[1] G. R. Swenson, “The waves explorer,” Research Proposal to NASA. Submitted
by: The Board of Trustees of the University of Illinois, 1998.

[2] K.Nielsen, M.J.Taylor, R. Hibbins, and M. Darvis, “Climatology of short-
period mesospheric gravity waves over halley, antarctica(761s, 271w),” Journal
of Atmospheric and Solar-Terrestrial Physics, 2009.

[3] Z. Li, A. Z. Liu, X. Lu, G. R. Swenson, and S. J. Franke, “Gravity wave charac-
teristics from OH airglow imager over maui,” JOURNAL OF GEOPHYSICAL
RESEARCH, VOL. 116, D22115,, 2011.

[4] R. Birkeland, “NUTS-1 mission statement,” 2011.

[5] R. Birkeland, E. K. Blom, and E. Narverud, “Small student satellite,” 2006.

[6] The CubeSat Program, Cal Poly SLO, CubeSat Design Specication rev. 12,
2011.

[7] R. R. J. Muylaert and C. Asma, “The QB50 project,” in 4th European CubeSat
Symposium, Book of Abstracts (R. Reinhard, ed.), Von Karman Institute for
Fluid Dynamics, 2012.

[8] W.G.Rees, Physical Principles of Remote Sensing. Cambridge University
Press, 2001.

[9] S. Marholm, “Antenna systems for NUTS.” Specialization
Project Report, NTNU, published at http://nuts.cubesat.no/
publications-and-reports, 2011.

[10] S. Marholm, “Antenna systems for nuts,” Master’s thesis, NTNU, 2012. Will
be published in Autumn 2012.

[11] J. Friedel and S. McKibbon, “Senior project: Thermal analysis of the cubesat
CP3 satellite,” 2011.

117

BIBLIOGRAPHY

[12] D. G.Andrews, An Introduction to Atmospheric Physics. Cambridge Univer-
sity Press, 2010.

[13] A. G. Villafranca, J. Corbera, F. Martin, and J. F. Marchan, “Limitations of
hyperspectral earth observation on small satellites,” Journal of Small Satel-
lites, vol. 1, 2012.

[14] “Telescope - payload swisscube.” École Polytechnique Fédérale de Lausanne,
published on the SwissCube website. Retrieved 09.12.2011.

[15] N. Scheidegger, “SwissCube payload system engineering draft.” École Poly-
technique Fédérale de Lausanne, published on the Swisscube webpage, 2006.

[16] R. Vandersmissen, “Night-vision camera combines thermal and low-light-level
images,” Photonik International, vol. 2, 2008.

[17] Princeton Instruments imaging group, Introduction to Scientific InGaAs FPA
cameras, 2012.

[18] R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for
remote sensing systems,” Optical Engineering, vol. Volume 40, p. 574, 2001.

[19] G. C. Holst, CCD Arrays, Cameras and Displays. SPIE Press, 1996.

[20] S. S. Rønning, “Notes on signal to noise ratio.” Unfinished.

[21] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics
for Engineers and Scientists. Prentice-Hall, 2002.

[22] R. Guntupalli and R. Allen, “Evaluation of ingaas camera for scientific near
infrared imaging applications,” in Proc. SPIE 6294, 629401, 2006.

[23] Oral statement from Patrick Espy.

[24] P.J.Espy, W.R.Pendleton, G. Sivjee, and M. Fetrow, “Vibrational development
of the n+

2 meinel band system in the aurora,” Journal of Geophysical Research,
vol. 92, pp. 11257–11261, 1987.

[25] R. C. Gonzales and R. E. Woods, Digital Image Processing. Pearson, 2008.

[26] K. Sayood, Introduction to Data Compression. Morgan Kaufmann, 2005.

[27] A. Rav-Acha and S. Peleg, “Restoration of multiple images with motion blur
in different directions,” in Proceedings of the Fifth IEEE Workshop on Appli-
cations of Computer Vision, 2000.

[28] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a
single image,” in SIGGRAPH ’08 ACM SIGGRAPH 2008 papers, 2008.

[29] R. C. Gonzales, R. E. Woods, and S. L.Eddins, Digital Image Processing Using
MATLAB. Pearson, 2004.

118

BIBLIOGRAPHY

[30] W. H. Richardson, “Bayesian-based iterative method of image restoration,”
Journal of the Optical Society of America, Volume 62, 1972.

[31] R. Liu and J. Jia, “Reducing boundary artifacts in image deconvolution,” in
Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on,
pp. 505 –508, oct. 2008.

[32] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Pearson, Pren-
tice Hall, 1996.

[33] R. Chan, M. Ng, and W. Tang, “A fast algorithm for deblurring models with
neumann boundary conditions,” SIAM J. SCI. COMPUT., Vol. 21, 1999.

[34] M. Donatelli, C. Estatico, A. Martinelli, and S. Serra-Capizzano, “Improved
image deblurring with anti-reflective boundary conditions and re-blurring,”
Institute of Physics Publishing, Inverse Problems 22, 2006.

[35] A. A. Bell, C. Seiler, J. N. Kaftan, and T. Aach, “Noise in high dynamic
range imaging,” in Proc. 15th IEEE Int. Conf. Image Processing ICIP 2008,
pp. 561–564, 2008.

[36] J. C. A. van der Lubbe, Information Theory. Cambridge University Press,
1997.

[37] B. Gajić, “Introduksjon til statistisk signalbehandling.” Lecture notes
TTT4120 Digital Signal Processing, 2006.

[38] T. A. Ramstad, “Image communication.” Lecture notes, TTT05 Digital
bildekommunikasjon, 2011.

[39] A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, N.J.
: Prentice-Hall, 1989.

[40] D. Daut, R. Fries, and J. Modestino, “Two-dimensional DPCM image cod-
ing based on an assumed stochastic image model,” Communications, IEEE
Transactions on, vol. 29, pp. 1365 – 1374, sep 1981.

[41] R. Krishnamurthy, J. Woods, and P. Moulin, “Frame interpolation and bidi-
rectional prediction of video using compactly encoded optical-flow fields and
label fields,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 9, pp. 713 –726, aug 1999.

[42] Y. Q. . Shi and H. Sun, Image and Video Compression for Multimedia Engi-
neering. CRC Press, 2008.

[43] M.-J. Tsai, J. Villasensor, and F. Chen, “Stack-run coding for low bit rate
image communication,” in Image Processing, 1996. Proceedings., International
Conference on, vol. 1, pp. 681 –684 vol.1, sep 1996.

[44] J. H. Weber, “Error-correcting codes.” Lecture notes in ET4030 Error-
Correcting Codes at TU Delft, 2007.

119

BIBLIOGRAPHY

[45] K. Wakker, Astrodynamics-I. Delft University of Technology, 2010.

120

Appendix A
Overview of The NUTS Subsystems

This is a draft of a document written by the master students working on the NUTS
project Spring 2012.

121

The NUTS Subsystems

Version: draft

About the Project

The Norwegian University of Science and Technology (NTNU) Test Satellite (NUTS) project is
aiming to launch a nanosatellite into Low Earth Orbit (LEO) by 2014. The satellite is a double
CubeSat, measuring 10 cm x 10 cm x 20 cm and weighing less than 2.66 kg, which conforms to
the CubeSat Standard. The satellite will carry an IR-camera for atmospheric observations as its
main payload.

The NUTS project was started in September 2010, and is a part The Norwegian Satellite
Program, ANSAT, run by NAROM (Norwegian Centre for Space-related Education). This
program involes three educational establishments, namely the University of Oslo (UiO), Narvik
University College (HiN) and NTNU. The program is developed with the intention to stimulate
cooperation between different educational institutions in Norway and with the industry. The
students will experience team work and hands-on training.

System Overview

Mechanical Structure

The satellite structure is typically 10-15% of the total satellite weight, where the main task is to
make it possible to install and keep all the components connected. The most critical phase is
the launch where the major forces and vibrations occur. After launch, the structure has a more
passive role where the proper thermal and electrical conductivity is of interest, in addition to the
ability to protect internal components against radiation.

Unlike previous CubeSat projects, which expand »typically have used aluminum, this project
aims to utilize composite materials (carbon fiber/epoxy). Although some minor components
have been made of carbon fiber in the past, launching a CubeSat with an all-composite primary

structure has not yet been done.
Composite materials have been used in the aircraft and aerospace industry several years
and have an ever-growing popularity. One its main advantages having a superior relationship
between stiffness and weight than other materials. In addition, due to the manufacturing method
of long-fiber composites, we have the ability to create materials with very high anisotropic
properties. Together, the high stiffness and the ability to tailor mechanical properties give rise
to significant potential weight savings. Typical weight savings from aluminum to composites is
highly dependent on the circumstances, but is about 30%.

The development of the frame this spring has been the development of secondary structure
(attachment between primary structure and components), as well as tests to detect interactions
between composite frame and P-POD. It has also been developed simulation and test methods
for dynamic testing of the satellite later in the project.

+figur x 2
+referanse til masterrapport

On-Board Computer (OBC)
-tekst fra Dan Erik

Attitude Determination and Control System (ADCS)

An attitude determination and control system (ADCS) is important for the orientation control of a
satellite. Without reliable attitude estimates, mission objectives may be severely compromised.
It is important that the satellite rotates in a controlled way and that one of its sides points
towards the Earth. This way, the infrared camera will be able to take pictures of the gravity
waves. An ADCS system consists of two main parts; estimation and control. The attitude of the
satellite is estimated through information from sensors, and the orientation is controlled to a
known reference by using actuators.

A sun sensor, a magnetometer and a gyroscope will be used as sensors in the NUTS CubeSat.
The solar panels can in theory be used instead of sun sensors, but as most sun sensors are
low cost and light weight, buying them will be more convenient. A vector pointing towards the
Sun is measured by the sun sensor, while the magnetometer measures a magnetic field vector
pointing towards the Earth. The gyroscope gives the angular velocity of the satellite. The vector
measurements are used as input for the attitude estimation.

The satellite will be controlled by magnetourqers, which will affect the local magnetic field.
Therefore it is important that the attitude estimation and the attitude control are strictly
separated. Since the estimated attitude will be inaccurate during control, the results would
be useless. By switching the attitude determination off, power can be saved. Therefore a
short start-up time of the estimation method is preferred. The number of coil windings for the
magnetorquers are yet to be designed.

Estimation methods are needed to determine the current attitude. An extended quaternion
estimation (EQUEST) method and a nonlinear observer have been developed and implemented
in order to test the different qualities of the methods. Due to limited space, weight and power,
estimation methods used for larger satellites are less suited for implementation in CubeSats.
The EQUEST method obtains a solution in one time-step, which makes it fast. However it is
very sensitive to disturbances. The nonlinear observer has a slower start-up phase, but can
cope better with noise. A combination of the two methods, where the EQUEST method is used

to find the initial values for the nonlinear observer, can be considered if the power of the ADCS
is sufficient.

If the estimated attitude deviates from the wanted reference, the orientation of the satellite
needs to be changed. Two phases for the control must be considered; the detumbling phase
and the stabilization phase. After the satellite is launched into orbit, it will get an initial spin
around its centre of gravity relative to the Earth. After a while, the satellite will be stabilized,
and the rotation will slow down. However, gravity forces from the Sun, the moon and different
planets will still cause the satellite to rotate. In addition, magnetic field disturbances and
other factors will influence the satellite. A dissipative controller has been investigated for the
detumbling control, but unless more testing is done, a more familiar B-dot controller will be
used. For the stabilization, optimization controllers have been evaluated. No definite decision for
the choice of stabilization controller is made.

Radio and Antenna Systems

The radio system is a major part of the Telemetry, Tracking and Command (TT&C) system. The
satellite will receive commands from the ground station and transmit payload and housekeeping
data to it through two radio links. The radio waves will have center frequencies of approximately
437 MHz and 146 MHz which are both located within amateur radio frequency bands. The
transmitted power will be less than a watt for both links.

The data will be modulated onto the radio waves as a stream of 9600 bits per second (bps) by
applying a Frequency Shift Keying (FSK) modulation scheme. In the other end of the link, be
it the satellite or the ground station, the received signal will be demodulated such the data can
be further processed. Moreover, the transmitted data will be protected by an error-correcting
code (ECC). On the 437 MHz frequency there will also be a beacon transmitting a simple morse
code. This will be helpful as a first means for the ground station to locate the satellite.

Since the satellite will be at different angles as seen from the ground station, it is important
that the radiated power is somewhat evenly distributed in all directions (the satellite antenna
has a near-isotropic pattern). This will ensure a robust and long-lasting link and it will also be
a redundancy in case of an ADCS failure when one cannot know the attitude of the satellite.
To achieve a near-isotropic pattern it has been decided to use two crossed dipole antennas,
one for each frequency. The antennas will be made of measuring tape and wrapped around
the satellite during launch. 30 minutes after the satellite has been ejected from the P-POD the
antennas will be deployed such that one antenna is located on the nadir plane and the other at
the zenith plane.

The radio system is also designed to take into account atmospheric and ionospheric
propagation effects such as attenuation and Faraday rotation (rotation of the electric field vector
through ionized gases). The ground station will track the satellite with mechanically steered
antennas and account for the Doppler shift due to the mutual speed between the ground station
and the satellite.

For more information about the radio systems, see [1,2]

Power System

The power system of the NUTS satellite is divided into two parts; a power distribution system,

the backplane, and a power condition system, the Electrical Power System (EPS). The power
system is a crusial part of the satellite because without power the satellite will not be able to
operate.

The backplane is the medium used to connect the different modules together, and provides
communication and power interfaces for the rest of the system. It also provides protection
by allowing individual modules to be isolated, reset or powered off. The design is based on
a single I2C bus with bus repeaters for each submodule, with the ability to isolate individual
modules from the system in case of a malfunction. Power is distributed with dual 3:3V and
dual 5V busses working in active redundancy, ensuring continued operation should a voltage
converter fail. Power distribution for each module consists of three parts: power supply or-ing,
current-limit switch and power monitor, and is integrated into the backplane. The state of the
power switches and bus repeaters are controlled from two master modules, and a watchdog
timer ensures return to a default state should both master modules be disabled. For more
information on the backplane, see [3].

The Electrical Power System (EPS) is an important part of the NUTS satellite in that it provides
power to the rest of the systems of the satellite. The primary tasks of the EPS module are to
charge the batteries with energy from the solar cells efficiently and safely, and to provide two
regulated 3.3 V and two regulated 5.0 V power rails to the backplane connector. The secondary
task is to provide telemetric data about provided power from the solar cells and the state-of-
charge of the batteries.

The EPS module provides an efficient charging of the batteries through the SPV1040, which
integrates the strategies of maximum power point tracking (MPPT) and constant current -
constant voltage (CCCV). The MPPT strategy tracks the solar cell's most efficient operating
point, as the temperature and irradiation of the cell changes, utilizing the maximum potential of
the solar cells. The CCCV strategy allows efficient and safe charging of the LiFePO4 batteries.
The power to the backplane is provided with fixed output voltage step-down converters from
Texas Instruments. Power monitoring is implemented by using current monitor sensors on the
output of each charger circuit and the batteries. For more information on the EPS, see [4].

The NUTS satellite will carry 18 GaAs solar cells for energy harvesting and 2 x battery pack
consisting of 4 LiFePO4 cells.

The Infrared Camera Payload

The main payload will be an infrared camera for observing gravity waves in the upper
atmosphere. Gravity waves, created by air blowing over mountains and weather phenomena,
propagate throughout the atmosphere and drive the large scale flows in the middle atmosphere.
Despite this their properties are poorly understood, mainly due to a lack of observational data.
At an altitude of about 90 km in the atmosphere we find a layer of OH molecules that emit short-
wave infrared radiation. When gravity waves propagate through this layer wave patterns in the
radiation intensity are observed.

By taking series of images with an infrared camera pointing towards the Earth, the wavelength,
direction and phase speed of the gravity waves can be observed through intensity variations in
the OH airglow layer. This method for gravity wave observation has been employed in several
ground based observations, but never for a satellite mission. Due to limited space, weight,
power and downlink data rate, several challenges arise.

A lightweight uncooled InGaAs camera with suitable optics and readout electronics must either
be designed or bought commercially off-the-shelf. Due to the large scale of the gravity waves, a
relatively low resolution will be sufficient.

To ensure sufficient image quality for compression and interpretation, some processing of the
images will be performed on-board the satellite before transmission. For InGaAs detectors, long
exposure times are usually required due to the high noise levels in the detector. But since the
satellite has such a high speed, the images with long exposure will be distorted by motion blur.
In order to avoid this, the camera will be operating as a video camera with low frame rate, and
series of images with short exposures will be combined into blur-free images with improved
signal-to-noise ratio. To be able to download more images per pass over the ground station,
series of combined images will be compressed with a video compression scheme before
transmission. The image processing and compression algorithms require relatively constant and
known speed, low rotation and good pointing stability.

More information about the camera and image processing can be found in [TBD: cite
Marianne's thesis]

[1] S. Marholm, Specialization project: Antenna Systems for NUTS. Norwegian University of
Science and Technology (NTNU), 2011.

[2] S. Marholm, Masters thesis: Antenna Systems for NUTS. Norwegian University of Science
and Technology (NTNU), 2012.

[3] D. De Bruyn, Masters thesis: Power Distribution and Conditioning for a Small Student
Satellite. Norwegian University of Science and Technology (NTNU), 2011.

[4] L. Jacobsen, Masters thesis: Electrical Power System of the NTNU Test Satellite. Norwegian
University of Science and Technology (NTNU), 2012.

Appendix B
Presentation Held at the European
CubeSat Symposium

127

Observation of Gravity Waves From a Small
Satellite by Means of an Infrared Camera

Snorre Rønning and Marianne Bakken
Norwegian University for Science and Technology

The NTNU Test Satellite (NUTS)
• Double cubesat
• Launch planned in 2014
• 10-15 master students at NTNU

working on it
• Infrared camera payload for

observation of gravity waves

Outline:
• Atmospheric Gravity Waves
• The Infrared Camera
• The Motion Blur Problem

Introduction

http://nuts.iet.ntnu.no Snorre Rønning, snorrero@stud.ntnu.no

Atmospheric Gravity Waves

http://nuts.iet.ntnu.no Snorre Rønning, snorrero@stud.ntnu.no

What are they?

How to study them?
• Hydroxyl (OH) layer at 90 km

– SWIR, 1434 nm and 1381 nm
• Wavelength, phase speed, intensity

Atmospheric Gravity Waves

http://nuts.iet.ntnu.no Snorre Rønning, snorrero@stud.ntnu.no

 Why do we want to study them?

• Momentum deposition
• Global meridional circulation
• Weather models
• Global coverage by satellite

• Camera type
• Uncooled detector required
• Suitable detector type: InGaAs

• Camera requirements
• Resolution: Sufficient to distinguish the wave patterns
• Integration time: A trade-off between noise and motion blur
• Optics: Wide Field-of-view

• Background radiation blocked by atmospheric absorption

The Infrared Camera

http://nuts.iet.ntnu.no Marianne Bakken, mariba@stud.ntnu.no

Camera and Satellite Parameters

http://nuts.iet.ntnu.no Marianne Bakken, mariba@stud.ntnu.no

Camera and Satellite Parameters

http://nuts.iet.ntnu.no Marianne Bakken, mariba@stud.ntnu.no

• High speed and long exposure → motion blur
• MATLAB simulations (Alt.: 450 km, Resolution: 128x128 px, Field of view: 30°):

The Motion Blur Problem

http://nuts.iet.ntnu.no Marianne Bakken, mariba@stud.ntnu.no

Original image Blurred image
(4 px = 1 s exposure)

Blurred image
(9 px = 2 s exposure)

• The image content can be restored with signal processing
• Images restored in MATLAB by means of Richardson-Lucy algorithm

Restoration of Motion Blur

http://nuts.iet.ntnu.no Marianne Bakken, mariba@stud.ntnu.no

Original image Restored image Blurred image
(9 px = 2s exposure)

http://nuts.iet.ntnu.no

Sponsors:

Kongsberg Seatex,
supporting the trip to
this conference

QUESTIONS?

Marianne Bakken, mariba@stud.ntnu.no

Appendix C
Calculation of Camera and Satellite
Parameters

In the following, formulas used for computation of auxiliary parameters needed for
the camera requirements are presented.

C.1 Orbital Mechanics
The orbital period of a satellite is given by Kepler’s third law [45]:

T = 2π

√
(re + hsat)3

µ
, (C.1)

Where µ = 398601 km3

s2 is the gravitational parameter of the Earth, re = 6371 km
is the mean earth radius and hsat is the altitude of the satelitte. Then the orbital
velocity follows as the circumference O of the orbit divided by T :

V = O

T
= 2π(re + hsat)

T
(C.2)

C.2 Imaging Parameters
Figure C.1 illustrates the geometry used in the following calculations. It is seen
that the image coverage x can be expressed by

x = ud

f
[m] (C.3)

where f is the focal length, u is the distance to the target, and d is the detector
size.

133

APPENDIX C. CALCULATION OF CAMERA AND SATELLITE
PARAMETERS

x

u f

θ θ d

Δd

Δx

Camera

Object

Lens

Figure C.1: A simple illustration of imaging geometry

The pixel pitch will be given by ∆d = d
Npx

. The rezel size can thus be calculated
as

∆xrezel = u∆d
f

[m] (C.4)

(C.3) and (C.4)may also be expressed by the field of view θ instead of the focal
length, which might be more intuitive:

x = 2u tan θ2 [m] (C.5)

∆xrezel =
2u tan θ

2
Npx

[m] (C.6)

The image coverage in wavelengths can be defined as:

xλ = x

λgravity waves
(C.7)

The spatial resolution is also limited by the optics is according to [8]:

∆xoptics = uλrad
D

[m] (C.8)

The satellite velocity with respect to the airglow layer will be slightly reduced
compared to the orbital velocity given in (C.2):

V ′ = O′

T
= 2π(re + hOH)

T
[m/s] (C.9)

Where hOH = 89 km is the altitude of the OH airglow layer. This must be taken
into account when computing the image velocity, i.e. how many pixels the camera
will move per second:

Vim = V ′

∆x [px/s] (C.10)

134

C.3. SPREADSHEET FOR CALCULATIONS

Figure C.2: Spreadsheet for calculations

C.3 Spreadsheet for Calculations
The equations relating the satellite parameters and the camera specification with
the resulting imaging and video parameters were inserted into a spreadsheet to
easier get an overview of the system. Figure C.2 shows the spreadsheet for a
fixed set of parameters. The intact spreadsheet with formulas can be found in the
enclosed CD/zip-file.

135

Appendix D
Datasheets for Cameras and
Sensors

136

XSW-640

Imagine the invisible

High resolution
uncooled SWIR infrared module

Ready-to-integrate
SWIR infrared module
consuming ultra-low power

M
od

ul
es

 &
 c

om
po

ne
nt

s

OEM applications

• Night vision
• SWIR sights
• Border security

• Driver assistance
• Search & Rescue

Key features

• Made in Europe
• High resolution
• Easy connectivity
• Small 20 µm pixel pitch

 Person identification Camouflage detection Vision enhancement: looking through haze with SWIR

Designed for use in

 VisNIR

SWIR

Ph
ot

or
es

po
ns

e
(A

/W
) (

R
el

at
iv

e
to

 m
ax

im
um

)

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Wavelength (µm)

1 . 0 0

0 . 0 0

0 . 8 0

0 . 6 0

0 . 4 0

0 . 2 0

1 . 2 0

1 . 4 0

Xenics’ XSW-640 camera module is an
extremely compact and versatile core for
easy and swift integration in your SWIR
imaging confi guration.

The XSW-640 camera module detects
short wave infrared radiation between
0.9 and 1.7 µm with a wide dynamic
range.

Typical OEM applications include
infrared imaging for man–portable and
unmanned (airborne and land-based)
vehicle payloads, night vision, border
security, Search & Rescue and more.

Preliminary

Ready-to-integrate

 Specifications

www.xenics.com
www.sinfrared.com

Xenics Headquarters
Ambachtenlaan 44, BE-3001 Leuven, Belgium
T +32 16 38 99 00 • sales@xenics.com

XB
-0

51
 is

su
e

0
1|

 In
fo

rm
at

io
n

fu
rn

is
he

d
by

 X
en

ic
s

is
 b

el
ie

ve
d

to
 b

e
re

lia
bl

e.
 H

ow
ev

er
, n

o
re

sp
on

si
bi

lit
y

is
 a

ss
um

ed
 fo

r
po

ss
ib

le
 in

ac
cu

ra
ci

es
 o

r
om

is
si

on
s

Sp
ec

ifi
ca

ti
on

s
ar

e
su

bj
ec

t t
o

ch
an

ge
 w

it
ho

ut
 n

ot
ic

e.
 T

hi
s

in
fo

rm
at

io
n

su
pe

rs
ed

es
 a

ll
pr

ev
io

us
ly

 s
up

pl
ie

d
in

fo
rm

at
io

n.

Array Specifications XSW-640

Array type Uncooled InGaAs

Spectral band 0.9 to 1.7 µm
pixels 640 x 512
Pixel pitch 20 µm

Pixel operability > 99 %

Module Specifications XSW-640

Lens (not included)

Optical interface Multiple lens mounts

Imaging performance

Frame rate 50 Hz

A to D conversion resolution 14 bit

Interfaces

Connector type Samtec 40 pin QTE

Digital output
Digital output following BT.601-6/BT.656-5 standard
Parallel uncompressed video data

Digital control Serial LVCMOS 3 V interface using XSP protocol

Trigger In and out

GPIO Extended GPIO via I2C

Power requirements

Power consumption 2.0 W

Power supply 3.3 V

Physical characteristics

Shock 70 G, 2 ms halfsine profile

Vibration 4.5 G, (5 Hz to 500 Hz)

Ambient operating temperature 0 °C to 50 °C

Dimensions 45 W x 45 H x 20 L mm³

Weight module 60 g

ISO 9001:2008 certified

O
P

T
IG

O
 S

W
IR

 B
U

IL
D

IN
G

 B
L

O
C

K
S

0
.5

0

0
.6

0

0
.7

0

0
.8

0

0
.9

0

1
.0

0

-4
0

-3
0

-2
0

-1
0

0
1

0
2

0
3

0
4

0

F
ie
ld
 A
n
g
le
 [
d
e
g
]

P
ix

e
l E

n
c

ir
c

re
ld

 e
n

e
rg

y
 @

 f
o

c
u

s
+

2
2

u
m

P
ix

e
l E

n
c

ir
c

re
ld

 e
n

e
rg

y
 @

 b
e

s
t

fo
c

u
s

R
e

la
ti

v
e

 I
llu

m
in

a
ti

o
n

•
W

ei
gh

t
<

 1
50

gr

•-
30

C
<

 T
 <

 +
60

C

•
D

ua
l B

an
d

�
CM

O
S/

CC
D

�
SW

IR

•C
am

-L
in

k™
 o

ut
pu

ts

•1
00

0
FP

S
,
32

0×
25

6

•
25

0
 F

PS
,
 6

40
×

51
2

•
P

<
 2

.5
 W

at
t

•
R
ea

l T
im

e
im

ag
e

pr
oc

es
si

ng
 @

1G

bp
s

•
P

<
 6

W

•
Se

ria
l C

om
m

 o
ut

pu
ts

•
O

ut
pu

t
Vi

de
o

in
te

rf
ac

e

•
U

SB
-2

 o
ut

pu
ts

•
N

av
.
 D

at
a

in
pu

ts

•
Ba

tt
er

y
op

er
at

ed

A-
th

er
m

al
iz

ed
 le

ns
M

in
ia

tu
re

 I
m

ag
e

pr
oc

es
so

r

G
.
T
id
h
a
r,
 P
ro

c
 S
P
IE
 6
9
4
0
 (
2
0
0
8
)

 Preliminary SU640HSX-1.7RT

Doc. No. 4110-0252 Rev. 2 ©2011, Goodrich Corporation reserves the right to make product design or specification changes without notice. Effective Date: 13 JUN 2011
Camera Link is a registered trademark of the Automated Imaging Association

Goodrich area cameras and associated technical data are subject to the controls of the International Traffic in Arms Regulations (ITAR). Export, re-export, or transfer of these items by any means

to a foreign person or entity, whether in the US or abroad, without appropriate US State Department authorization, is prohibited and may result in substantial penalties.

The compact SU640HSX-1.7RT is a Mil-Rugged InGaAs
video camera featuring high-sensitivity and wide
operating temperature range. It provides real-time
daylight to low-light imaging in the Short Wave Infrared
(SWIR) wavelength spectrum for persistent surveillance,
laser detection, and penetration through fog, dust, and
smoke. In addition, the camera employs on-board
Automatic Gain Control (AGC), proprietary dynamic-range
enhancement technology, and built-in non-uniformity
corrections (NUCs), allowing it to address the challenges
of urban night imaging without blooming.
Simultaneous RS170 analog and Camera Link® digital
output provide a means for plug-and-play video and high
quality 12-bit images for image processing or
transmission. The light-weight, compact size, and low power consumption enables easy integration into
surveillance systems, whether hand-held, mobile, or aerial. Optional NIR/SWIR technology is available
to extend the sensitivity of Goodrich cameras down to 0.7 µm, offering the advantage of both Near
Infrared (NIR) and Short Wave Infrared wavelength response.

APPLICATIONS

• Low-light level imaging

• Covert surveillance with passive 24 hr/7 day

operation

• Driver Vision Enhancement (DVE)

• Imaging through atmospheric obscurants

• OEM version for easy integration into UAVs,

handheld, or robotic systems

• Laser spotting and tracking

FEATURES

• Highest sensitivity available in 0.9 to 1.7 µm

spectrum; NIR/SWIR, from 0.7 to 1.7 µm

• Images from partial starlight to direct sun

illumination

• 640 x 512 pixel format, 25 µm pitch

• Compact OEM module size < 3.8 in
3

• Enclosed module size < 9.5 in
3

• Low power, < 2.7 W at 20 °C

• All solid-state InGaAs imager

• On-board non-uniformity corrections

• Simultaneous digital & analog outputs

• Advanced Automatic Gain Control (AGC)

• Selectable contrast enhancement modes

• Region of Interest (ROI) windowing mode

• FCC CE and MIL-461F certified

• MIL-STD-810G certified

• Operation from -40 °C to 70 °C

• Environmental Stress Screening

SSUU664400HHSSXX--11..77RRTT
MMiill--RRuuggggeedd HHiigghh SSeennssiittiivviittyy

IInnGGaaAAss SSWWIIRR CCaammeerraa wwiitthh AAddvvaanncceedd
DDyynnaammiicc RRaannggee EEnnhhaanncceemmeennttss

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

600 800 1000 1200 1400 1600 1800

Wavelength (nm)

Standard QE

(electrons/photon)

Responsivity (A/W)
NIR/SWIR QE

3490 U.S. Route 1 • Princeton, New Jersey 08540

Phone: (609) 520-0610 • Fax: (609) 520-0638

www.sensorsinc.com • sui_sales@goodrich.com

 Preliminary SU640HSX-1.7RT

Doc. No. 4110-0252 Rev. 2 ©2011, Goodrich Corporation reserves the right to make product design or specification changes without notice. Effective Date: 13 JUN 2011
Camera Link is a registered trademark of the Automated Imaging Association

Goodrich area cameras and associated technical data are subject to the controls of the International Traffic in Arms Regulations (ITAR). Export, re-export, or transfer of these items by any means

to a foreign person or entity, whether in the US or abroad, without appropriate US State Department authorization, is prohibited and may result in substantial penalties.

MECHANICAL SPECIFICATIONS

Model: Enclosed OEM
Module dimensions
Width x Height x Depth

2.1 x 2.1 x 2.55 inches
52.1 x 52.1 x 64.7 mm

(with I/O connectors, no lens or mount)

1.64 x 1.5 x 1.6 inches
42 x 38 x 41 mm

Weight (no lens) < 270 g < 90 g (analog out)
Lens Mount C-mount adapter in M42x1 mount M42x1 mount bracket
Included Lens f/1.4, 50 mm, 18° FOV width, M42x1-mount none
Camera Link Connector 3M SDR26 Connector none
I/O Connector 3M SDR14 Connector none
Interface Connector Not applicable Harwin Datamate

M80-5020805
Pixel Pitch 25 µm
Focal Plane Array Format 640 x 512 pixels
Active Area 16 mm x 12.8 mm x 20.5 mm diagonal

ENVIRONMENTAL & POWER SPECIFICATIONS

Operating Case Temperature -40 °C to 70 °C

Storage Temperature -54 °C to 85 °C

Humidity 100 % Non-condensing

Power Requirements:
AC Adapter Supplied
DC Voltage
Typical Power

100-240 VAC, 47-63 Hz
+9-16 V

<2.7 W at 20 °C ambient, <4 W @ 40 °C

Functional Shock, Thermal Shock, Random Vibration,
Storage Temperature, Temperature/Altitude Combine,
Humidity, Transportability

MIL-STD-810G compliant

Conducted & Radiated Emissions CE FCC Part 15, MIL-STD-461F

Mean Time Between Failure >10,000 hours, MIL-HDBK-217F N2

Fungus-Inert Material MIL-HDBK-454B

ELECTRICAL SPECIFICATIONS

Optical Fill Factor 100 %

Spectral Response Standard, 0.9 µm to 1.7 µm

 NIR/SWIR, 0.7 µm to 1.7 µm

Quantum Efficiency Standard, > 65 % from 1 µm to 1.6 µm

 NIR/SWIR, > 65 % from 0.9 µm to 1.6 µm

Mean Detectivity, D*
1
 > 3.51 x 10

13
 cm√Hz/W

Noise Equivalent Irradiance
1
 < 3.46 x 10

8
 photons/cm

2
⋅s

Noise (RMS)
1

< 50 electrons

Full Well (Typical) In OPR0

12 x 10
6
 electrons

Dynamic Range (Typical)
4
 > 3000:1

Operability
2
 > 99 %

Exposure Times
3
 60 µs to 33 ms in 12 steps

Image Correction 2-point (offset and gain) pixel by pixel, user selectable

Digital Output Format
12 bit Camera Link

®
 (SDR connector for enclosed version, ribbon for

OEM version)

Analog Output Format Buffered EIA170 compatible video, 30 fps (both versions)

Digital Output Frame Rate 30 fps (faster frame rates in windowed operation)

Scan Mode Continuous, or 4 externally triggered modes, or ROI windowing mode
1

λ = 1.55 µm, exposure time = 33.2 ms, Highest Sensitivity OPR setting, no lens, x1 digital gain with enhancement, AGC, and correction off.
2
 The fraction of pixels with responsivity deviation between +/- 35 % from the mean

3
 The 12 pre-configured exposure times include factory stored non-uniformity corrections.
Additional exposure times are programmable via RS-232 commands.
4
 In high dynamic range OPR settings.

APPENDIX D. DATASHEETS FOR CAMERAS AND SENSORS

142

143

APPENDIX D. DATASHEETS FOR CAMERAS AND SENSORS

144

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 1 of 6

Features and Benefits
	 •	 0.6 to 1.7 μm
		 Operating wavelength range

	 •	 Peak QE of > 85%
		 High detector sensitivity	

	 •	 TE cooling to -90°C •1
		 Negligible dark current without the
 inconvenience of LN2

	 •	 UltraVac™ •2
		 Permanent vacuum integrity, critical for 	
		 deep cooling and sensor performance

	 •	 Single window design
		 Delivers maximum photon throughput

	 •	 25 µm pixel width option
	 	 Ideal for high-resolution NIR spectroscopy

	 •	 Simple USB 2.0 connection
		 USB plug and play – no controller box.
		 Inputs & Outputs: External Trigger, Fire and 	
		 Shutter TTL readily accessible. I2C for the 	
		 more adventurous user

	 •	 Software selectable output amplifiers
		 Allows user to optimize operation with 	
		 choice of High Dynamic Range (HDR) or 	
		 High Sensitivity (HS) modes of operation

	 •	 Minimum exposure time of 1.4 µs
		 Enables higher time-resolution and 		
		 minimization of dark current contribution 	
		 for applications with reasonable signal level

Andor’s iDus InGaAs detector array for Spectroscopy

Andor’s iDus InGaAs 1.7 array detector series provides the most optimized platform for

Spectroscopy applications up to 1.7 µm. The TE-cooled, in-vacuum sensors reach cooling

temperatures of -90°C where best Signal-to-Noise ratio can be achieved.

Indeed dark current will improve moderately below -90°C where scene black body radiation

will dominate, while Quantum Efficiency of the sensor will be greatly impacted at these lower

temperatures and lead to a lower Signal-to-Noise ratio.

S
pectroscopy

40

50

60

70

80

90

100

Q
E

 (
%

)

0

10

20

30

40

50

0.6 0.8 1 1.2 1.4 1.6 1.8

Q
E

Wavelength (µm)

Specifications Summary

Active pixels 512 or 1024

Pixel size (W x H) 25 x 500 or 50 x 500 μm

Pixel well depth (typical)

High Dynamic Range mode

High Sensitivity mode

170 Me-

5 Me-

Maximum cooling •1 -90ºC

Maximum spectra per sec 193

Read noise (typical) 580 e-

Dark current (typical) 11.7 ke-/pixel/sec

Minimum exposure time 1.4 µs

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 2 of 6

Key Specifications •3

Model number DU490A DU491A DU492A

Sensor options 512 pixels, 25 μm pitch 1024 pixels, 25 μm pitch 512 pixels, 50 μm pitch

Active pixels 512 1024 512

Pixel size 25 x 500 25 x 500 50 x 500

Cooler type DU

Wavelength range 600 nm - 1.7 µm

Minimum exposure time •4 1.4 µs

Minimum temperatures •5

Air cooled	
Coolant chiller, coolant @ 16°C , 0.75l/min	
Coolant chiller, coolant @ 10ºC, 0.75l/min

-70ºC
-85ºC
-90ºC

Max spectra per second (100 kHz readout) 193 97 193

System window type Single quartz window, uncoated

Digitization 16 bit

Have you found what you are looking for?

Need extended NIR response? The iDus InGaAs 2.2 μm series offer three array formats.

Need to work below 1 µm? The iDus 401 & 420 series offer Deep Depletion NIR optimized sensors.

Need a customized version? Please contact us to discuss our Customer Special Request options.

The iDus InGaAs series combines seamlessly with Andor’s research grade Shamrock Czerny-Turner spectrographs. These
instruments are available on request with gold or silver coated optics for optimised NIR operations.

Advanced Specifications •3

Dark current ke-/pixel/sec @ max cooling •6 10.1 10.1 18.9

Pixel well depth (Me-) •7

	
High Dynamic Range mode

High Sensitivity mode
170

5

Read noise (e-) •8

	
High Sensitivity mode

High Dynamic Range mode
580

8150

Sensitivity (e-/count)

High Dynamic Range mode
High Sensitivity mode

2800
90

Blemishes •9 0 10 5

Linearity Better than 99%

Insertion delay from external trigger 2.95 µs ± 0.1 µs

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 3 of 6

1000

Coolant Temperature

100

en
t [

ke
- /p

ix
/s

]

A

Coolant Temperature

A = 30°C
B = 20°C
C = 10°C

10

D
ar

k
C

ur
re

nt
 [k

e

B

A

C

1
-80 -70 -60 -50 -40 -30 -20 -10

Sensor Temperature (°C)

C

80 70 60 50 40 30 20 10

Sensor Temperature (°C)

System Dark Current v Temperature •10 Quantum Efficiency Curve •11

20°C

0

10

20

30

40

50

60

70

80

90

100

0.6 0.8 1 1.2 1.4 1.6 1.8

Q
E

 (
%

)

Wavelength (µm)

Typical ApplicationTypical Setup

PC
Software CD

Power Supply

InGaAs Detector
Complementary Detector

(e.g. iDus BR-DD)

USB 2.0 Spectrograph

Courtesy of: Dr. Benito Alén, Instituto de Microelectrónica
de Madrid, Spain.

Conductivity behaviour study
of Single Semiconductor
Quantum Wires.
Spectra acquired with an Andor
InGaAs array detector.

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 4 of 6

Creating The Optimum
Product for You

How to customize the iDus InGaAs 1.7 :

The iDus InGaAs 1.7 comes with
3 options for sensor types. Please
select the sensor which best suits
your needs.

Step 1.

Please select which software you
require.

Step 2.

For compatibility, please indicate
which accessories are required.

Step 3.

example shown

InGaAs mounted on a
Shamrock 163 mm spectrograph,
ideal combination for NIR
Photoluminescence Spectroscopy.

490A-DU 1.7

Choose sensor array

490: 25 µm x 250 µm, 512 pixel array
491: 25 µm x 250 µm, 1024 pixel array
492: 50 µm x 250 µm, 512 pixel array

Step 2.

The iDus InGaAs requires at least one of the following software options:

Solis for Spectroscopy A 32-bit application compatible with 32 and 64-bit Windows (XP, Vista

and 7) offering rich functionality for data acquisition and processing. AndorBasic provides

macro language control of data acquisition, processing, display and export. Control of Andor

Shamrock spectrographs and a very wide range of 3rd party spectrographs is also available, see

list below.

Andor SDK A software development kit that allows you to control the Andor range of cameras

from your own application. Available as 32 and 64-bit libraries for Windows (XP, Vista and 7)

and Linux. Compatible with C/C++, C#, Delphi, VB6, VB.NET, LabVIEW and Matlab.

Step 1.

Step 3.

The following accessories are available:

XW-RECR Coolant re-circulator for enhanced cooling performance.

ACC-XW-CHIL-160 Oasis 160 Ultra Compact Chiller Unit (tubing to be ordered separately)

ACC-6MM-TUBING-2xxxxM 6 mm tubing option for ACC-XW-CHIL-160

SR-ASZ-0033 SR-750 Adapter Flange for InGaAs detector.

SR1-ASZ-8044 SR-163 Adapter Flange for InGaAs detector

ACC-SD-VDM1000 Shutter Driver for NS25B Bistable Shutter (not needed for Shamrock

spectrographs)

ACC-SHT-NS25B Bistable Shutter, Standalone (not needed for Shamrock spectrographs)

Spectrograph Compatibility

The InGaAs series is fully compatible with Andor’s Shamrock spectrograph (163 - 750 nm focal

lengths) family. Shamrock spectrographs are supplied with Al/MgF2 mirror coatings as standard,

gold or silver optics are avaialable on request. Spectrograph mounting flanges and software

control are available for a wide variety of 3rd party spectrographs including, McPherson, JY/

Horiba, PI/Acton, Chromex/Bruker, Oriel/Newport, Photon Design, Dongwoo, Bentham, Solar

TII and others.

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 5 of 6

Connecting to the InGaAs

Camera Control

Connector type: USB 2.0

TTL / Logic

Connector type: SMB, provided with SMB - BNC cable

1 = Fire (Output), 2 = External Trigger (Input), 3 = Shutter (Output)

I2C connector

Compatible with Fischer SC102A054-130

1 = Shutter (TTL), 2 = I2C Clock, 3 = I2C Data, 4 = +5 Vdc, 5 = Ground

Minimum cable clearance required at rear of camera

90 mm

Applications Guide DU490-1.7 DU491-1.7 DU492-1.7

NIR Absorption-Transmission-Reflection Spectroscopy

NIR Photoluminescence

1064 nm Raman Spectroscopy

= Suitable

= Optimum

Product Drawings
Dimensions in mm [inches]

10.0 [0.69] ±0.4 [0.16]

Focal plane
of Detector

155 [6.10]

4.0 [0.16]

48.1 [1.80]diameter soft PVC hose
2 off 6.0mm internal
Water connections

4 off mounting holes
to clear 6-32 UNC

O-ring groove Ø54.5int
2 wide x 1.4 deep

73
.0

12
.0

 [1.39]

 [2
.8

7]

 [0
.4

7]

35.0

84
.0

 [3
.3

1]

 [3.54]90.0

 [2
.0

5]
52

.0

100.0 [3.94]

42.0 [1.65]

10
1.

0
[3

.9
8]

Weight: 2 kg [4 lb 8 oz]

= position of pixel 1,1n

1 off 1/4-20 UNC
x 1/2 deep
(mounting point)

22
.4

 [0
.8

8]

Shutter SMB

I²C

PowerFire SMB
External trigger SMB

USB 2.0

Mounting hole locations

NOTE: There are 2x holes:
1x on top and 1x on the
bottom of the camera head

Rear connector panel

n

Third-angle projection

andor.com discover new ways of seeing™

iDus InGaAs 1.7 µm 600 nm - 1.7 µm
Spectroscopy InGaAs PDA

Page 6 of 6

Minimum Computer Requirements:

•	3.0 GHz single core or 2.4 GHz multi core processor

•	2 GB RAM

•	100 MB free hard disc to install software (at least

 1 GB recommended for data spooling)

•	USB 2.0 High Speed Host Controller capable of

 sustained rate of 40 MB/s

•	Windows (XP, Vista and 7) or Linux

Operating & Storage Conditions

Operating 0°C to 20°C ambient (air cooling)

Operating 0°C to 30°C ambient (deep cooling)

Relative Humidity < 70% (non-condensing)

Storage Temperature -25°C to 50°C

Power Requirements

110 - 240 Vac, 50 - 60 Hz

Order Today
Need more information? At Andor we are committed to finding
the correct solution for you. With a dedicated team of technical
advisors, we are able to offer you one-to-one guidance and
technical support on all Andor products. For a full listing of our
local sales offices, please see:

Our regional headquarters are:
Europe	 				 Japan

Belfast, Northern Ireland 			 Tokyo

Phone +44 (28) 9023 7126			 Phone +81 (3) 3518 6488

Fax +44 (28) 9031 0792			 Fax +81 (3) 3518 6489

North America				 China

Connecticut, USA 				 Beijing

Phone +1 (860) 290 9211			 Phone +86 (10) 5129 4977

Fax +1 (860) 290 9566			 Fax +86 (10) 6445 5401

	 1.		 Typically obtainable at ambient temperature of 20°C, coolant chillers operating with 10°C 	

			 coolant @ 0.75l/min.

	 2. 	 Assembled in a state-of-the-art facility, Andor’s UltraVac™ vacuum process combines a

			 permanent hermetic vacuum seal (no o-rings), with a stringent protocol and proprietary

			 materials to minimize outgassing. Outgassing is the release of trapped gases that would

			 otherwise degrade cooling performance and potentially cause sensor failure.

	 3.		 Figures are typical unless otherwise stated.

	 4.		 The InGaAs sensor starts to ‘open’ to light up to approximately 1 μs before the rising edge of 	

			 the Fire pulse. It then starts to ‘close’ to light up to 1 μs before the falling edge of Fire. This 	

			 ensures that the camera is 100% responsive by the time the Fire pulse has risen and closed 	

			 by the falling edge. These figures only need to be taken into account for extremely short 	

			 exposures.	

	 5.		 The standard PS-25 power supply is suitable for air cooling and deep cooling. Measured at 	

			 ambient temperature of 20°C.

	 6.		 Measured using 10°C water and 10°C target/scene.		

	 7.		 At exposures below 20 μs, well depth will be reduced by approximately 1/3 of typical value 	

			 stated.

	 8.		 Noise is measured on a single pixel.

	 9.	 Blemishes as stated by sensor manufacturer.

	 10.	 The coolant temperature is also representative of the scene temperature that the camera is 	

			 exposed to during these measurements.

	 11. Quantum efficiency of the sensor at 20°C as measured by the sensor manufacturer.

Footnotes: Specifications are subject to change without notice

andor.com/contact

SInGaAs17SS 1111 R2

Windows is a registered trademark of Microsoft Corporation.
Labview is a registered trademark of National Instruments.
Matlab is a registered trademark of The MathWorks Inc.

1x 2m BNC - SMB conection cable

1x 3m USB 2.0 cable Type A à Type B

1x Set of Allen keys (7/64” & 3/32”)

1x Power supply (PS-25) with mains cable

1x Quick launch guide

1x CD containing Andor user guides

1x Individual system performance booklet

1x CD containing either Solis software or SDK

(if ordered)

Items shipped with your camera:

Appendix E
MATLAB code

E.1 Download Capacity
This code is the result of a cooperation between Sigvald Marholm and the author.

pass_duration.m

1 % This i s a s c r i p t used to g a i n knowledge about the d u r a t i o n o f the p a s s e s
2
3 %c l e a r a l l
4 c l o s e a l l
5
6 % SIMULATION INPUT GOES HERE (AND IN STK)
7 a l t i t u d e s = [3 5 0 500 6 5 0] ; % d i f f e r e n t o r b i t a l a l t i t u d e s
8 t h r e s h o l d s = [2 1 28 3 4] ; % d i f f e r e n t t h r e s h o l d e l e v a t i o n a n g l e s
9 %t h r e s h o l d s = [0 0 0] ; % to s i m u l a t e TOTAL v i s i b i t y

10
11 % one a n g l e f o r each a l t i t u d e .
12 schemes = s t r v c a t (' r ' , ' g ' , ' b ') ; % D i f f e r e n t p l o t c o l o r s (and d o t s e t c .)
13
14 % Loads the d a t a . I f the v a r i a b l e a l r e a d y e x i s t , the program w i l l assume i t
15 % i s from the p r e v i o u s run , and s a v e time by not l o a d i n g i t a g a i n . The
16 % " c l e a r a l l " command at the top o f the s c r i p t must be commented f o r t h a t .
17 i f (~ e x i s t (' data '))
18 f o r i =1: l e n g t h (a l t i t u d e s)
19 data { i }= read_stk_elev ([num2str (a l t i t u d e s (i)) ' c . t x t ']) ;
20 d i s p ([' D a t a f i l e f o r a l t i t u d e ' num2str (a l t i t u d e s (i)) ' km l o a d e d . ']) ;
21 end
22 e l s e
23 d i s p ([' Data a l r e a d y l o a d e d . I f not t r u e ; run " c l e a r data " . ']) ;
24 end
25
26 f o r ind =1: l e n g t h (a l t i t u d e s)
27
28 i n t e r v a l s = t h r e s h o l d _ s t k _ e l e v (data { ind } , t h r e s h o l d s (ind)) ;
29
30 i f (isempty (i n t e r v a l s)) % E l e v a t i o n n e v e r p a s s e s t h r e s h o l d
31 s t a r t =0;
32 s t o p =0;
33 e l s e
34 s t a r t = datenum (i n t e r v a l s (: , 1 : 6)) ;
35 s t o p = datenum (i n t e r v a l s (: , 7 : 1 2)) ;
36 end
37
38 duration_d = stop−s t a r t ; % This i s the d u r a t i o n o f the p a s s e s i n d a y s .
39 duration_h = duration_d ∗ 2 4 ; % . . . and i n hours
40 duration_m = duration_h ∗ 6 0 ; % . . . and i n m i n u t e s .
41 duration_s = duration_m ∗ 6 0 ; % . . . and i n s e c o n d s .
42
43 N = s i z e (i n t e r v a l s , 1) ; % The number o f p a s s e s d u r i n g the

151

APPENDIX E. MATLAB CODE

44 % s i m u l a t i o n time (1 week)
45
46 % Length on the p a s s e s (i n a s c e n d i n g o r d e r) a r e s t o r e to o u t s i d e the
47 % l o o p i n t h i s v a r i a b l e f o r a l l a l t i t u d e s .
48 dur { ind } = s o r t (duration_m) ;
49
50 d i s p ([' S i m u l a t i o n f o r a l t i t u d e ' num2str (a l t i t u d e s (ind)) ' km f i n i s h e d . ']) ;
51
52 end
53
54 % C r e a t i n g l e g e n d s
55 l e g s = [] ;
56 f o r a l t =1: l e n g t h (a l t i t u d e s)
57 l e g s = s t r v c a t (l e g s , [num2str (a l t i t u d e s (a l t)) ' km ']) ;
58 end
59
60 f o r ind =1: l e n g t h (a l t i t u d e s)
61 a l t s t r = num2str (a l t i t u d e s (ind)) ;
62 durt = dur { ind } ;
63 mindur = num2str (min (durt)) ;
64 maxdur = num2str (max(durt)) ;
65 meddur = num2str (median (durt)) ;
66 meandur = num2str (mean (durt)) ;
67 d i s p ([' Pass d u r a t i o n i n f o r m a t i o n f o r ' a l t s t r ' km a l t i t u d e : ']) ;
68 d i s p ([' Minimum d u r a t i o n : ' mindur ' min. ']) ;
69 d i s p ([' Maximum d u r a t i o n : ' maxdur ' min. ']) ;
70 d i s p ([' Mean d u r a t i o n : ' meandur ' min. ']) ;
71 d i s p ([' Median d u r a t i o n : ' meddur ' min. ']) ;
72
73 f i g u r e
74 h i s t (durt , 5) ;
75 t i t l e ([' D i s t r i b u t i o n o f d u r a t i o n f o r ' a l t s t r ' km a l t i t u d e ']) ;
76 x l a b e l (' Duration [min] ') ;
77 y l a b e l (' Number o f p a s s e s ') ;
78 end

plot_data_down.m

1 % This i s a s c r i p t t h a t p l o t s the downloaded data per a v e r a g e day f o r
2 % d i f f e r e n t o r b i t a l h e i g h t s and t h r e s h o l d e l e v a t i o n a n g l e s .
3
4 %c l e a r a l l
5 c l o s e a l l
6
7 % SIMULATION INPUT GOES HERE (AND IN STK)
8 a l t i t u d e s = [3 5 0 500 6 5 0] ; % d i f f e r e n t o r b i t a l a l t i t u d e s
9 t h r e s h o l d s = 0 : 9 0 ; % d i f f e r e n t t h r e s h o l d e l e v a t i o n a n g l e s

10 zoom = 1 5 : 4 0 ; % Make a p l o t f o r t h e s e a n g l e s o n l y
11 schemes = s t r v c a t (' r ' , ' g ' , ' b ') ; % D i f f e r e n t p l o t c o l o r s (and d o t s e t c .)
12
13 % D and I i s hold the a v e r a g e kB downloaded d u r i n g an a v e r a g e day and an
14 % a v e r a g e pass , r e s p e c t i v e l y , f o r v a r i o u s a l t i t u d e s and t h r e s h o l d s .
15 D = z e r o s (l e n g t h (a l t i t u d e s) , l e n g t h (t h r e s h o l d s)) ;
16 I = D;
17
18 % Loads the d a t a . I f the v a r i a b l e a l r e a d y e x i s t , the program w i l l assume i t
19 % i s from the p r e v i o u s run , and s a v e time by not l o a d i n g i t a g a i n . The
20 % " c l e a r a l l " command at the top o f the s c r i p t must be commented f o r t h a t .
21 i f (~ e x i s t (' data '))
22 f o r i =1: l e n g t h (a l t i t u d e s)
23 data { i }= read_stk_elev ([num2str (a l t i t u d e s (i)) ' c . t x t ']) ;
24 d i s p ([' D a t a f i l e f o r a l t i t u d e ' num2str (a l t i t u d e s (i)) ' km l o a d e d . ']) ;
25 end
26 e l s e
27 d i s p ([' Data a l r e a d y l o a d e d . I f not t r u e ; run " c l e a r data " . ']) ;
28 end
29
30 f o r a l t =1: l e n g t h (a l t i t u d e s)
31
32 f o r t h r =1: l e n g t h (t h r e s h o l d s)
33
34 i n t e r v a l s = t h r e s h o l d _ s t k _ e l e v (data { a l t } , t h r e s h o l d s (t h r)) ;
35
36 i f (isempty (i n t e r v a l s)) % E l e v a t i o n n e v e r p a s s e s t h r e s h o l d
37 s t a r t =0;
38 s t o p =0;
39 e l s e
40 s t a r t = datenum (i n t e r v a l s (: , 1 : 6)) ;
41 s t o p = datenum (i n t e r v a l s (: , 7 : 1 2)) ;
42 end
43
44 duration_d = stop−s t a r t ; % This i s the d u r a t i o n o f the p a s s e s i n ...

d a y s .

152

E.1. DOWNLOAD CAPACITY

45 duration_h = duration_d ∗ 2 4 ; % . . . and i n hours
46 duration_m = duration_h ∗ 6 0 ; % . . . and i n m i n u t e s .
47 duration_s = duration_m ∗ 6 0 ; % . . . and i n s e c o n d s .
48
49 T = sum (duratio n_s) ; % Total d u r a t i o n o f p a s s i n s e c o n d s
50 N = s i z e (i n t e r v a l s , 1) ; % The number o f p a s s e s d u r i n g the
51 % s i m u l a t i o n time (1 week)
52
53 R = 9 6 0 0 ; % Assuming b i t r a t e o f 9600 bps
54 W = R∗T; % B i t s downloaded d u r i n g s i m u l a t i o n time (1 week)
55 % W = (W/8) / 1 0 2 4 ; % W i s now kB per week.
56 W = W/ (1 0 2 4 ^ 2) ; % W i s no Mb (megabit) per week.
57 D(a l t , t h r) = W/ 7 ; % D i s Mb per a v e r a g e d a y .
58 I (a l t , t h r) = W/N; % I i s Mb download per a v e r a g e p a s s .
59
60 end
61
62 d i s p ([' S i m u l a t i o n f o r a l t i t u d e ' num2str (a l t i t u d e s (a l t)) ' km f i n i s h e d . ']) ;
63
64 end
65
66 % C r e a t i n g l e g e n d s
67 l e g s = [] ;
68 f o r a l t =1: l e n g t h (a l t i t u d e s)
69 l e g s = s t r v c a t (l e g s , [num2str (a l t i t u d e s (a l t)) ' km ']) ;
70 end
71
72 % P l o t Data per Day
73 f i g u r e
74 hold on
75 g r i d on
76 f o r a l t =1: l e n g t h (a l t i t u d e s)
77 p l o t (t h r e s h o l d s ,D(a l t , :) , schemes (a l t , :)) ;
78 end
79 x l a b e l (' Minimum E l e v a t i o n Angle [d e g r e e] ') ;
80 y l a b e l (' Average Downlink Capacity [Mb/ day] ') ;
81 % t i t l e (' Average Data per Day f o r D i f f e r e n t C r i t e r e a ') ;
82 l e g e n d (l e g s) ;
83
84 % P l o t Data per Day (with zoom)
85 f i r s t = f i n d (t h r e s h o l d s==zoom (1)) ;
86 l a s t = f i n d (t h r e s h o l d s==zoom (end)) ;
87
88 f i g u r e
89 hold on
90 g r i d on
91 f o r a l t =1: l e n g t h (a l t i t u d e s)
92 p l o t (t h r e s h o l d s (f i r s t : l a s t) ,D(a l t , f i r s t : l a s t) , schemes (a l t , :)) ;
93 end
94 x l a b e l (' Minimum E l e v a t i o n Angle [d e g r e e] ') ;
95 y l a b e l (' Average Downlink Capacity [Mb/ day] ') ;
96 % t i t l e (' Average Data per Day f o r D i f f e r e n t C r i t e r e a ') ;
97 l e g e n d (l e g s) ;
98 % a = [1 8 , 2 4 , 3 0] ;
99 % b = [D(1 , 1 9) D(2 , 2 5) D(3 , 3 1)] ;

100 a = [2 1 , 2 8 , 3 4] ;
101 b = [D(1 , 2 2) D(2 , 2 9) D(3 , 3 5)] ;
102 p l o t (a , b , ' ok ') ;
103
104 % P l o t Data per Pass
105 f i g u r e
106 hold on
107 g r i d on
108 f o r a l t =1: l e n g t h (a l t i t u d e s)
109 p l o t (t h r e s h o l d s , I (a l t , :) , schemes (a l t , :)) ;
110 end
111 x l a b e l (' Minimum E l e v a t i o n Angle [d e g r e e] ') ;
112 y l a b e l (' Average Downlink Capacity [Mb/ p a s s] ') ;
113 % t i t l e (' Average Data per (Usable) Pass f o r D i f f e r e n t C r i t e r i a ') ;
114 l e g e n d (l e g s) ;

plot_stk_elev.m

1 f u n c t i o n p l o t _ s t k _ e l e v (data)
2
3 N = s i z e (data , 1) ;
4
5 % Remove s p u r i o u s e l e v a t i o n s caused by a bug i n STK
6 data = stk_remove_spurious (data) ;
7
8 % This l i n e e l i m i n a t e s a l l rows t h a t a r e f i l l e d with j u s t z e r o s . They a r e
9 % s e p a r a t o r s to s e p a r a t e between the p a s s e s .

10 data (a l l (ismember (data , [0 0 0 0 0 0 0]) , 2) , :) = [] ;

153

APPENDIX E. MATLAB CODE

11
12 % Takes i n the date v e c t o r (f i r s t s i x e l e m e n t s) and c o n v e r t s i t to MATLABs
13 % s e r i a l date f o r m a t .
14 time_axis = datenum (data (: , 1 : 6)) ;
15
16 p l o t (time_axis , data (: , 7)) ;
17 d a t e t i c k (' x ' , 'HH:MM') ;
18
19 end

read_stk_elev.m

1 f u n c t i o n [data sep] = read_stk_elev (fname)
2 % Function to read STK data f i l e s c o n t a i n i n g e l e v a t i o n . For now i t o n l y
3 % s u p p o r t s e l e v a t i o n . The usage i s as f o l l o w s :
4 %
5 % You s e t up a s c e n a r i o with a s a t e l l i t e and a ground s t a t i o n f a c i l i t y i n
6 % STK and you e x p o r t the e l e v a t i o n as s e e n from the ground s t a t i o n to a
7 % . d a t f i l e . You have to e x p o r t ONLY the e l e v a t i o n and not azimuth and
8 % range s i n c e read_stk_elev () doesn ' t s u p p o r t t h a t . I f done c o r r e c t l y , a l l
9 % the l i n e s i n the . d a t f i l e s h o u l d l o o k l i k e the f o l l o w i n g :

10 %
11 % E l e v a t i o n (deg) 47 1 . 1 . 2 0 1 2 0 3 : 3 6 : 1 5 , 0 0 0 2 ,27845993613939
12 %
13 % The f i r s t number i s s i m p l e an index , the number o f the s a m p l e .
14 % S u b s e q u e n t l y f o l l o w s the date and time , and f i n a l l y the e l e v a t i o n a n g l e
15 % i n d e g r e e s .
16 %
17 % There i s an i s s u e with the format o f the . d a t f i l e STK p r o d u c e s ; they
18 % cannot be read by MATLAB. To f i x that , open them i n a t e x t−e d i t o r and
19 % s a v e them with UTF−8 e n c o d i n g b e f o r e u s i n g read_stk_elev () .
20 %
21 % Import the data to a MATLAB matrix c a l l e d data by
22 %
23 % data = read_stk_elev (fname)
24 %
25 % where fname i s a v a r i a b l e (o f type s t r i n g) c o n t a i n i n g the f i l e n a m e (or
26 % URL) o f the . d a t− f i l e e x p o r t e d from STK.
27 %
28 % data w i l l be a N x 7 matrix where N i s the number o f samples i n the
29 % . d a t− f i l e from STK. The f i r s t dimension i s the number o f samples whereas
30 % the second dimension h o l d s d i f f e r e n t i n f o r m a t i o n (f i e l d s) about the
31 % samples :
32 %
33 % 1 − Year
34 % 2 − Month
35 % 3 − Day
36 % 4 − Hour
37 % 5 − Minute
38 % 6 − Second
39 % 7 − E l e v a t i o n
40 %
41 % For example , data (2 3 , 7) y i e l d s the e l e v a t i o n o f the 23 rd s a m p l e .
42 %
43 % Note t h a t between the p a s s e s , when the s a t e l l i t e i s not empty , STK
44 % p r o d u c e s an empty (s e p a r a t o r) s a m p l e . For t h e s e samples a l l the f i e l d s
45 % a r e s e t to 0 i n the data m a t r i x . In some c a s e s , i t w i l l be u s e f u l f o r the
46 % u s e r to know which samples a r e s e p a r a t o r s . I n s t e a d o f t e s t i n g f o r i t , the
47 % u s e r can g e t a l i s t o f s e p a r a t o r s , sep , i n the f o l l o w i n g way :
48 %
49 % [data sep] = read_stk_elev (fname)
50 %
51 % Made by :
52 % Marianne Bakken <mariba@stud.ntnu.no >, MSc. t h e s i s f o r NUTS 2012
53 % S i g v a l d Marholm <marholm@stud.ntnu.no >, MSc. t h e s i s f o r NUTS 2012
54 %
55 % Copyright 2012 , NUTS − NTNU Test S a t e l l i t e
56 %
57
58
59
60 % A t y p i c a l l i n e may l o o k l i k e the f o l l o w i n g , f o l l o w e d by r e g e x p b l o c k s and
61 % name o f v a r i a b l e s they w i l l be s t o r e d i n t o .
62
63 % E l e v a t i o n (deg) 47 1 . 1 . 2 0 1 2 0 3 : 3 6 : 1 5 , 0 0 0 2 ,27845993613939
64 % −−−%s−−−− −%s−− %d −−−%s−−− −−−−−%s−−−−− −−−−−−−%s−−−−−−−
65 % i n d e x date time e l e v a t i o n
66
67 % The two f i r s t b l o c k s a r e j u s t waste
68 % The %d can be used as i n d e x i n a matrix
69 % The t h r e e l a s t b l o c k s a r e read as s t r i n g s to be p a r s e d l a t e r
70
71 p a t t e r n= '%s %s %d %s %s %s ' ;

154

E.1. DOWNLOAD CAPACITY

72
73 f i d = f o p e n (fname) ;
74 unparsed = t e x t s c a n (f i d , p a t t e r n) ;
75 f c l o s e (f i d) ;
76
77 % Read out the r e g e x p b l o c k s
78 i n d e x = unparsed (3) ;
79 date = unparsed (4) ;
80 time = unparsed (5) ;
81 e l e v a t i o n = unparsed (6) ;
82
83 % MATLAB s t o r e s them as a 1−element c e l l−a r r a y f o r some r e a s o n .
84 % Read out the one c e l l e l e m e n t .
85 i n d e x = i n d e x { 1 } ;
86 date = date { 1 } ;
87 time = time { 1 } ;
88 e l e v a t i o n = e l e v a t i o n { 1 } ;
89
90 N = s i z e (index , 1) ; % The output i s a Nx7 matrix
91
92 % Reads out the data i n a Nx7 matrix o f the form data (index , parameter)
93 % where i n d e x i s the same i n d e x as i n the f i l e , parameter i s a v a l u e o f
94 % the f o l l o w i n g :
95 %
96 % 1 − y e a r
97 % 2 − month
98 % 3 − day
99 % 4 − hour

100 % 5 − minute
101 % 6 − second
102 % 7 − e l e v a t i o n
103 %
104 % So f o r example data (2 3 , :) y i e l d s the time and e l e v a t i o n f o r sample 23 .
105
106 % I n i t i a l i z e data matrix and sep v e c t o r
107 data = z e r o s (N, 7) ;
108 sep = [] ;
109
110 f o r i=i n d e x . '
111
112 date_ = date (i) ;
113 time_ = time (i) ;
114 e l e v a t i o n _ = e l e v a t i o n (i) ;
115
116 % For some r e a s o n MATLAB s t o r e s t h i s i n t o 1−d i m e n s i o n a l c e l l a r r a y s as w e l l
117 date_ = date_ { 1 } ;
118 time_ = time_ { 1 } ;
119 e l e v a t i o n _ = e l e v a t i o n _ { 1 } ;
120
121 i f (isempty (e l e v a t i o n _))
122 % STK Produces an empty row with j u s t an i n d e x when the s a t e l l i t e
123 % i s not v i s i b l e . R e g . e x p . f u n c t i o n s run i n t o t r o u b l e i f they t r y
124 % to p a r s e an empty s t r i n g . The c o n v e n t i o n w i l l be t h a t the matrix
125 % i s l e f t with z e r o s at t h e s e p l a c e s . A v e c t o r sep i s a v a i l a b l e as
126 % an output f o r the u s e r . This i s an e a s y way f o r the u s e r to keep
127 % t r a c k o f where t h e s e samples a r e .
128 sep = [sep i] ;
129 e l s e
130
131 % Replace d e l i m i t e r s with s p a c e
132 date_ = r e g e x p r e p (date_ , ' \ . ' , ' ') ; % '1 . 1 . 2 0 1 2 ' => '1 1 2012 '
133 time_ = r e g e x p r e p (time_ , ' : ' , ' ') ; % ' 0 3 : 3 6 : 1 5 , 0 0 0 ' => '03 36 ...

1 5 , 0 0 0 '
134
135 % Replace d e c i m a l , with .
136 time_ = r e g e x p r e p (time_ , ' , ' , ' . ') ; % '03 36 1 5 , 0 0 0 ' => '03 36 ...

15 .000 '
137 e l e v a t i o n _ = r e g e x p r e p (e l e v a t i o n _ , ' , ' , ' . ') ; % ' 2 , 2 7 8 4 5 9 9 3 6 1 3 9 3 9 ' => ...

'2 .27845993613939 '
138
139 % Read out ' day month year ' from date_
140 temp = t e x t s c a n (date_ , '%d %d %d ' , ' C o l l e c t O u t p u t ' , 1) ;
141 temp = temp { 1 } ;
142
143 data (i , 1) = temp (3) ; % y e a r
144 data (i , 2) = temp (2) ; % month
145 data (i , 3) = temp (1) ; % day
146
147 % Read out ' hour minute second ' from time_
148 temp = t e x t s c a n (time_ , '%f %f %f ' , ' C o l l e c t O u t p u t ' , 1) ;
149 temp = temp { 1 } ;
150
151 data (i , 4) = temp (1) ; % hour
152 data (i , 5) = temp (2) ; % minute
153 data (i , 6) = temp (3) ; % second
154
155 % Read out ' e l e v a t i o n ' from e l e v a t i o n _
156 temp = t e x t s c a n (e l e v a t i o n _ , '%f ' , ' C o l l e c t O u t p u t ' , 1) ;
157 temp = temp { 1 } ;
158

155

APPENDIX E. MATLAB CODE

159 data (i , 7) = temp (1) ; % e l e v a t i o n
160
161 end
162
163 end
164
165 end

stk_remove_spurious.m

1 f u n c t i o n data = stk_remove_spurious (data)
2 % This f u n c t i o n remove s p u r i o s s p i k e s t h a t STK p r o d u c e s due to a bug i n the
3 % e l e v a t i o n a n g l e at the b e g i n n i n g / end o f a p a s s .
4
5 N = s i z e (data , 1) ;
6
7 % This i s a l o g i c a l v e c t o r (f i l l e d with ones and z e r o s) t h a t i n d i c a t e where
8 % t h e r e i s an i n c r e a s e from a g i v e n sample to the next o n e .
9 i n c r e a s e = data (1 : end−1 ,7)<data (2 : end , 7) ;

10
11 % This l o g i c a l v e c t o r i n d i c a t e where t h e r e i s a d e c r e a s e from a g i v e n
12 % sample to the next o n e .
13 d e c r e a s e = [~ i n c r e a s e ; 0] ;
14
15 % Now i t r e p r e s e n t s whether a g i v e n sample has i n c r e a s e d w . r . t . the
16 % p r e v i o u s s a m p l e . I . e . i f i n c r e a s e (3 4)==1 then data (3 4 , 7) i s l a r g e r than
17 % the p r e v i o u s e l e v a t i o n , data (3 3 , 7) .
18 i n c r e a s e = [0 ; i n c r e a s e] ;
19
20 % This i s a l o g i c a l v e c t o r r e p r e s e n t i n g a l l the s e p a r a t o r s
21 sep = a l l (ismember (data , [0 0 0 0 0 0 0]) , 2) ;
22
23 % These a r e l o g i c a l v e c t o r s r e p r e s e n t i n g the samples b e f o r e and a f t e r the
24 % s e p a r a t o r s
25 p r e s e p = [sep (2 : end) ; 0] ;
26 p o s t s e p = [0 ; sep (1 : end−1)] ;
27
28 % This i s a l o g i c a l v e c t o r r e p r e s e n t i n g the e l e m e n t s where the sample
29 % b e f o r e the s e p a r a t o r i n c r e a s e d w . r . t . the one b e f o r e t h a t . That i s a
30 % s p u r i o u s e l e v a t i o n angle , a bug from STK. We know t h a t i t i s below 1 , we
31 % w i l l s e t i t to 0 to f i x i t .
32 % spur = or (and (presep , i n c r e a s e) , and (p o s t s e p , ~ i n c r e a s e)) ;
33 spur = or (and (presep , i n c r e a s e) , and (p o s t s e p , d e c r e a s e)) ;
34 data (spur , 7) =0;
35
36 end

threshold_stk_elev.m

1 f u n c t i o n i n t e r v a l s = t h r e s h o l d _ s t k _ e l e v (data , t h r e s h o l d)
2 % Given a s e t o f e l e v a t i o n data from STK s i m u l a t i o n s and read with
3 % read_stk_data () , t h i s f u n c t i o n d e t e r m i n e s the time i n t e r v a l s when the
4 % e l e v a t i o n i s h i g h e r than a c e r t a i n t h r e s h o l d , i . e . 10 d e g r e e s .
5 %
6 % Usage :
7 %
8 % i n t e r v a l s = t h r e s h o l d _ s t k _ e l e v (data , t h r e s h o l d)
9 %

10 % where data i s the output data matrix from read_stk_data () and t h r e s h o l d
11 % i s the e l e v a t i o n t h r e s h o l d .
12 %
13 % The output i s a matrix where each i n t e r v a l i s r e p r e s e n t e d by one row o f
14 % 12 e l e m e n t s . The f i r s t 6 e l e m e n t s o f the row a r e the year , month , day ,
15 % hour , minute and second o f the s t a r t o f the p e r i o d . The 6 l a s t e l e m e n t s
16 % r e p r e s e n t the end o f the p e r i o d i n the same manner.
17 %
18 % Example output :
19 %
20 % i n t e r v a l s =
21 %
22 % 1 1 2012 13 43 23 1 1 2012 13 48 43
23 % 1 1 2012 15 32 11 1 1 2012 15 42 12
24 %
25 % This example shows t h a t the data c o n t a i n s two i n t e r v a l s where the
26 % e l e v a t i o n i s h i g h e r than the user−s p e c i f i e d t h r e s h o l d e l e v a t i o n . The
27 % second i n t e r v a l , f o r example , s t a r t s on 1 . 1 . 2 0 1 2 1 5 : 3 2 : 1 1 and ends

156

E.2. DPCM ALGORITHM AND TEST SCRIPT

28 % 1 5 : 4 2 : 1 2 the same d a y .
29
30 i n t e r v a l s = [] ;
31
32 % The a l g o r i t h m works by i t e r a t i n g through a l l samples and d e t e c t when the
33 % e l e v a t i o n i n c r e a s e above , or d e c r e a s e below , the g i v e n t h r e s h o l d . When
34 % t h a t happens , i t w r i t e s to the i n t e r v a l s a r r a y . I t remembers whether or
35 % not the e l e v a t i o n i s above the t h r e s h o l d by a f l a g c a l l e d a b o v e .
36
37 above = 0 ; % Nominally not i n an i n t e r v a l
38 N = s i z e (data , 1) ;
39
40 data=stk_remove_spurious (data) ;
41
42 f o r i =1:N
43
44 i f ((data (i , 7)>=t h r e s h o l d) && ~ above)
45
46 i f (~ a l l (data (i , 1 : 6) ==[0 0 0 0 0 0])) % I g n o r e empty samples
47
48 % Sometimes STK p r o d u c e s s p u r i o u s output (u n b e l i e v a b l y enough) .
49 % When the e l e v a t i o n p a s s e s below 1 d e g r e e i t s t a r t s t y p i n g them i n
50 % e x p o n e n t i a l form , i . e . 7 ,442341 e−001 e x c e p t t h a t sometimes i t
51 % doesn ' t g e t the exponent r i g h t . I n s t e a d the exponent becomes 0 ,
52 % and t h e r e i s a s i n g l e sample b e f o r e the s a t e l l i t e g o e s down where
53 % the e l e v a t i o n i s s u p p o s e d l y 7 d e g r e e s . This f u n c t i o n h a n d l e s t h a t
54 % by c h e c k i n g t h a t the next sample i s a l s o above the t h r e s h o l d .
55
56 i f (i +1)<=N % Check t h a t t h e r e i s a next sample and i g n o r e i f n o t .
57
58 i f (data (i +1 ,7)>=t h r e s h o l d)
59
60 % An i n t e r v a l s t a r t s at t h i s s a m p l e . Add a new row i n
61 % i n t e r v a l s and add the time i n the s i x f i r s t c o l u m n s .
62
63 i n t e r v a l s (end + 1 , 1 : 6) = data (i , 1 : 6) ;
64 above = 1 ;
65 end
66 end
67 end
68
69 e l s e i f ((data (i , 7)<t h r e s h o l d) && above)
70
71 % An i n t e r v a l s t o p s at t h i s s a m p l e . Add the time to the s i x l a s t
72 % columns i n the l a s t row.
73 i n t e r v a l s (end , 7 : 1 2) = data (i , 1 : 6) ;
74 above = 0 ;
75
76 e l s e i f (a l l (data (i , 1 : 6) ==[0 0 0 0 0 0]) && above)
77
78 % i f t h r e s h o l d = 0 the above mechanism to d e t e c t an end o f the
79 % i n t e r v a l doesn ' t work s i n c e STK doesn ' t s a v e samples with
80 % n e g a t i v e e l e v a t i o n , and hence a l l samples w i l l have v a l u e s >=0 .
81 % I n s t e a d , STK s a v e s a s e p a r a t o r sample between e v e r y p a s s where
82 % a l l f i e l d s (year , e t c .) a r e s im pl y z e r o . When such an sample
83 % occur , and the above f l a g i s s t i l l s e t , you know t h a t the
84 % PREVIOUS sample was the l a s t o n e .
85
86 i n t e r v a l s (end , 7 : 1 2) = data (i −1 ,1:6) ;
87 above = 0 ;
88
89 end
90
91 end

E.2 DPCM Algorithm and Test Script
autocorrcoeffs_2D.m

1 f u n c t i o n [c o r r _ c o e f f s power]= a u t o c o r r c o e f f s _ 2 D (M)
2 %i n p u t : Array M (1D, 2D or 3D) , zero−mean
3 %output : − v e c t o r c o r r _ c o e f f s with c o r r e l a t i o n c o e f f i c i e n t s
4 % (a l o n g 1 st , 2nd and 3 rd dimension)
5 % − e s t i m a t e d power (v a r i a n c e) o f M
6 N = l e n g t h (M(:)) ; %t o t a l number o f samples
7 s h i f t s = [1 0] ;
8 r = z e r o s (1 , 2) ; %i n i t i a t i n g c o v a r i a n c e v e c t o r
9 f o r i = 1 : 2

10 r (i) = sum (sum (M(1 : end−s h i f t s (1) , 1 : end−s h i f t s (2)) . . .
11 . ∗M(s h i f t s (1) +1: end , s h i f t s (2) +1: end))) /N;

157

APPENDIX E. MATLAB CODE

12 s h i f t s = c i r c s h i f t (s h i f t s , [0 1]) ;
13 end
14 power = sum (sum (sum (M. ^ 2))) /N;
15 c o r r _ c o e f f s = r / power ;
16 end

autocorrcoeffs_3D.m

1 f u n c t i o n [c o r r _ c o e f f s power] = a u t o c o r r c o e f f s _ 3 D (M)
2 %i n p u t : 3D array , zero−mean
3 %output : − v e c t o r c o r r _ c o e f f s with c o r r e l a t i o n c o e f f i c i e n t s
4 % (a l o n g 1 st , 2nd and 3 rd dimension)
5 % − e s t i m a t e d power (v a r i a n c e) o f M
6
7 N_tot = l e n g t h (M(:)) ; %t o t a l number o f samples
8 s h i f t s = [1 0 0] ; %i n d i c a t i n g which dimension to s h i f t
9 r = z e r o s (1 , 3) ; %i n i t i a t i n g c o v a r i a n c e v e c t o r

10 f o r i = 1 : 3
11 N_r = prod (s i z e (M)−s h i f t s) ; %t o t a l number o f samples i n e s t i m a t i o n
12 r (i) = sum (sum (sum (M(1 : end−s h i f t s (1) , 1 : end−s h i f t s (2) , 1 : end−s h i f t s (3)) . . .
13 . ∗M(s h i f t s (1) +1: end , s h i f t s (2) +1: end , s h i f t s (3) +1: end)))) /N_r ;
14 s h i f t s = c i r c s h i f t (s h i f t s , [0 1]) ;
15 end
16 power = sum (sum (sum (M. ^ 2))) /N_tot ;
17 c o r r _ c o e f f s = r / power ;
18 end

deadzone_quantizer.m

1 f u n c t i o n q _ l e v e l = d ea dz o ne _q ua nt i ze r (x , q_param)
2 %% −−Q u a n t i z a t i o n with uniform deadzone q u a n t i z e r
3 % i n p u t : x − i n p u t s i g n a l (one sample)
4 % d z _ o f f s e t − (two−s i d e d) width o f dead−zone i n t e r v a l
5 % range − one−s i d e d range
6 % L − number o f q u a n t i z a t i o n l e v e l s
7 % output : q u a n t i z a t i o n l e v e l f o r sample x
8 %% −−−−−−−
9 L = q_param.L ;

10 range = q_param.range ;
11 d z _ o f f s e t = q_param.dz_offset ;
12
13 % Compute s t e p s i z e o u t s i d e deadzone
14 s t e p _ s i z e = (2∗ range−d z _ o f f s e t) /(L−1) ;
15 % Compute maximum q u a n t i z a t i o n l e v e l
16 %max_q_level = (d z _ o f f s e t+s t e p _ s i z e ∗(L−1)−s t e p _ s i z e ∗0 . 5) / 2 ;
17 max_q_level = range−0. 5 ∗ s t e p _ s i z e ;
18 %c l i p i n p u t o u t s i d e the q u a n t i z e r range :
19 x_clipped = min (abs (x) , max_q_level) ;
20 %map to one−s i d e d uniform midtread with s t e p _ s i z e =1
21 x_mapped = max (0 , (x_clipped−0. 5 ∗(d z _ o f f s e t−s t e p _ s i z e)) / s t e p _ s i z e) ;
22 % add s i g n back :
23 x_signed = s i g n (x) . ∗x_mapped ;
24 % s h i f t s i g n a l to g e t a l l−p o s i t i v e v a l u e s :
25 x_pos = x_signed+L+1;
26 % round to n e a r e s t i n t e g e r and add s i g n :
27 q_level_pos = round (x_pos) ;
28 % s h i f t s i g n a l back
29 q _ l e v e l = q_level_pos−(L+1) ;
30 end

dpcm3D_decode.m

1 f u n c t i o n f _ r e c = dpcm3D_decode (e_q , p r e d _ c o e f f s , q_param , MC_shift)
2 i m s i z e = s i z e (e_q) ;
3 f _ r e c = z e r o s (i m s i z e) ;
4
5 q_param_nopred = q_param { 1 } ;
6 q_param2D = q_param { 2 } ;

158

E.2. DPCM ALGORITHM AND TEST SCRIPT

7 q_param3D = q_param { 3 } ;
8
9 a2D = p r e d _ c o e f f s { 1 } ;

10 a3D = p r e d _ c o e f f s { 2 } ;
11
12 x_mc = MC_shift ; %Assume s h i f t i n the x−d i r e c t i o n common to a l l f ram es
13
14 % C o o r d i n a t e s f o r 3D p r e d i c t i o n window :
15 m = [1 0 −x_mc] ; % image x−d i r e c t i o n
16 n = [0 1 0] ; % image y−d i r e c t i o n
17 p = [0 0 1] ; % time d i r e c t i o n
18 % C o o r d i n a t e s f o r 2D p r e d i c t i o n window :
19 m2D = [1 0 1] ; % image x−d i r e c t i o n
20 n2D = [0 1 1] ; % image y−d i r e c t i o n
21
22 f o r t = 1 : i m s i z e (3) % For each frame
23 f o r y = 1 : i m s i z e (1) % For each row
24 f_p = 0 ; %p r e d i c t e d v a l u e
25 f o r x = 1 : i m s i z e (2) % For each p i x e l
26 i f ((~ (y <= 1 | | x < 1 | | x == i m s i z e (2)) && (t <= 1)) . . . %due ...

to p r e d i c t i o n window
27 | | (~ (y <= 1 | | x == i m s i z e (2)) && x >= (i m s i z e (2)−x_mc))) ...

%due to motion compensation
28 pred_mode = ' 2D ' ;
29 e l s e i f (~ (y <= 1 | | x < 1 | | x == i m s i z e (2)) && (t > 1))
30 pred_mode = ' 3D ' ;
31 e l s e
32 pred_mode = ' none ' ;
33 end
34
35 %−−R e c o n s t r u c t i o n
36 i f (strcmp (pred_mode , ' none '))
37 e_q_rec (y , x , t) = inv_uniform_quantizer (e_q (y , x , t) , ...

q_param_nopred) ;
38 e l s e i f (strcmp (pred_mode , ' 2D '))
39 e_q_rec (y , x , t) = inv_deadzone_quantizer (e_q (y , x , t) , ...

q_param2D) ;
40 e l s e i f (strcmp (pred_mode , ' 3D '))
41 e_q_rec (y , x , t) = inv_deadzone_quantizer (e_q (y , x , t) , ...

q_param3D) ;
42 end
43 % e_q_rec (y , x , t) = e_q (y , x , t) ; %t e s t i n g without Q
44 f _ r e c (y , x , t) = e_q_rec (y , x , t) + f_p ;
45
46 %−−P r e d i c t i o n−−−
47 %Update p r e d i c t i o n s i g n a l (f o r next sample)
48 f_p_temp = 0 ;
49 i f (strcmp (pred_mode , ' 2D '))
50 %2D p r e d i c t i o n f o r the f i r s t frame :
51 f o r l = 1 : l e n g t h (a2D)
52 f_p_temp = f_p_temp+a2D (l) ∗ f _ r e c (y−n2D (l) , x−m2D(l) +1, t) ;...

%i n d e x e s r e l a t i v e to c u r r e n t px !
53 end
54 e l s e i f (strcmp (pred_mode , ' 3D '))
55 %3D p r e d i c t i o n f o r the r e s t :
56 f o r k = 1 : l e n g t h (a3D)
57 %f (y , x+1, t) %t e s t i n g
58 %f (y , x+1, t−1)%t e s t i n g
59 f_p_temp = ...

f_p_temp+a3D (k) ∗ f _ r e c (y−n (k) , x−m(k) +1, t−p (k)) ;%%i n d e x e s...
r e l a t i v e to c u r r e n t px !

60 end
61 end
62
63 f_p = f_p_temp ;
64 end
65 end
66 end
67 end

dpcm3D_encode.m

1 f u n c t i o n e_q = dpcm3D_encode (f , p r e d _ c o e f f s , q_param , MC_shift)
2 %DPCM e n c o d e r with 3D p r e d i c t o r , o r d e r d e c i d e d by p r e d i c t i o n window W
3 %Input s i g n a l : f (3D matrix) , i n p u t image s e q u e n c e (v i d e o) , must have z e r o ...

mean !
4 %Output s i g n a l s : e_q (3D matrix) , q u a n t i z e d p r e d i c t i o n e r r o r
5 % a (double v e c t o r) , p r e d i c t i o n c o e f f i c i e n t s
6
7 i f (~ i s c e l l (q_param))
8 q u a n t i z e = 0 ;
9 e l s e

10 q u a n t i z e = 1 ;

159

APPENDIX E. MATLAB CODE

11 q_param_nopred = q_param { 1 } ;
12 q_param2D = q_param { 2 } ;
13 q_param3D = q_param { 3 } ;
14 end
15
16 a2D = p r e d _ c o e f f s { 1 } ;
17 a3D = p r e d _ c o e f f s { 2 } ;
18
19 x_mc = MC_shift ; %Assume s h i f t i n the x−d i r e c t i o n common to a l l fr am es
20
21 f _ s i z e=s i z e (f) ;
22 f _ r e c = z e r o s (f _ s i z e) ; %i n t e r n a l r e c o n s t r u c t e d s i g n a l
23 % C o o r d i n a t e s f o r 3D p r e d i c t i o n window :
24 %without MC
25 % m = [1 0 0] ; % image x−d i r e c t i o n
26 % n = [0 1 0] ; % image y−d i r e c t i o n
27 % p = [0 0 1] ; % time d i r e c t i o n
28 % % C o o r d i n a t e s f o r 2D p r e d i c t i o n window :
29 % m2D = [1 0 1] ; % image x−d i r e c t i o n
30 % n2D = [0 1 1] ; % image y−d i r e c t i o n
31 m = [1 0 −x_mc] ; % image x−d i r e c t i o n
32 n = [0 1 0] ; % image y−d i r e c t i o n
33 p = [0 0 1] ; % time d i r e c t i o n
34 % C o o r d i n a t e s f o r 2D p r e d i c t i o n window :
35 m2D = [1 0 1] ; % image x−d i r e c t i o n
36 n2D = [0 1 1] ; % image y−d i r e c t i o n
37
38 %Encoding :
39 f o r t = 1 : f _ s i z e (3) % For each frame
40 f o r y = 1 : f _ s i z e (1) % For each row
41 f_p = 0 ; %p r e d i c t e d v a l u e
42 f o r x = 1 : f _ s i z e (2) % For each p i x e l
43 i f ((~ (y <= 1 | | x < 1 | | x == f _ s i z e (2)) && (t <= ...

1)) . . . %due to p r e d i c t i o n window
44 | | (~ (y <= 1 | | x == f _ s i z e (2)) && x >= ...

(f _ s i z e (2)−x_mc))) %due to motion compensation
45 pred_mode = ' 2D ' ;
46 e l s e i f (~ (y <= 1 | | x < 1 | | x == f _ s i z e (2)) && (t > 1))
47 pred_mode = ' 3D ' ;
48 e l s e
49 pred_mode = ' none ' ;
50 end
51 %D i f f e r e n c e s i g n a l s
52 e = f (y , x , t)−f_p ; %p r e d i c t i o n e r r o r
53
54 %−−Q u a n t i z a t i o n and i n v e r s e q u a n t i z a t i o n :
55 i f (q u a n t i z e == 0) %q u a n t i z a t i o n turned o f f
56 e_q (y , x , t) = e ;
57 e_q_rec (y , x , t) = e ;
58 e l s e i f (strcmp (pred_mode , ' none '))
59 e_q (y , x , t) = u n i f o r m _ q u a n t i z e r (e , q_param_nopred) ;
60 e_q_rec (y , x , t) = inv_uniform_quantizer (e_q (y , x , t) , ...

q_param_nopred) ;
61 e l s e i f (strcmp (pred_mode , ' 2D '))
62 e_q (y , x , t) = de a dz on e_ q ua nt iz e r (e , q_param2D) ;
63 e_q_rec (y , x , t) = inv_deadzone_quantizer (e_q (y , x , t) , ...

q_param2D) ;
64 e l s e i f (strcmp (pred_mode , ' 3D '))
65 e_q (y , x , t) = de a dz on e_ q ua nt iz e r (e , q_param3D) ;
66 e_q_rec (y , x , t) = inv_deadzone_quantizer (e_q (y , x , t) , ...

q_param3D) ;
67 end
68
69 %−−R e c o n s t r u c t i o n (i n t e r n a l d e c o d i n g)
70 f _ r e c (y , x , t) = e_q_rec (y , x , t) + f_p ;
71
72 %−−P r e d i c t i o n−−−
73 %Update p r e d i c t i o n s i g n a l (f o r next sample)
74 f_p_temp = 0 ;
75 i f (strcmp (pred_mode , ' 2D '))
76 %2D p r e d i c t i o n f o r the f i r s t frame :
77 f o r l = 1 : l e n g t h (a2D)
78 f_p_temp = ...

f_p_temp+a2D (l) ∗ f _ r e c (y−n2D (l) , x−m2D(l) +1, t) ; ...
%i n d e x e s r e l a t i v e to c u r r e n t px !

79 end
80 e l s e i f (strcmp (pred_mode , ' 3D '))
81 %3D p r e d i c t i o n f o r the r e s t :
82 f o r k = 1 : l e n g t h (a3D)
83 f_p_temp = ...

f_p_temp+a3D (k) ∗ f _ r e c (y−n (k) , x−m(k) +1, t−p (k)) ;%%i n d e x e s...
r e l a t i v e to c u r r e n t px !

84 end
85 end
86
87 f_p = f_p_temp ;
88 end
89 end
90 end

160

E.2. DPCM ALGORITHM AND TEST SCRIPT

dpcm_demo.m

1 % DPCM parameter t e s t i n g s c r i p t
2 c l e a r
3 c l o s e a l l
4
5 %−−− Prepare p a r a m e t e r s and i n p u t s −−−
6
7 %D e f i n e images :
8 make_test_images_dpcm %make t e s t images s e q u e n c e without motion compensation
9 %f r a m e _ s h i f t = [0 3] ;

10 %make_test_images_dpcm_mc %make t e s t image s e q u e n c e with motion compensation
11
12 im_mat = video_mat ;
13 nr_px = numel (video_mat) ;
14 nr_px_frame = s i z e (video_mat , 1) ^ 2 ;
15 nr_frames = s i z e (video_mat , 3) ;
16 nr_rows = s i z e (video_mat , 1) ;
17 %MC_shift = round (f r a m e _ s h i f t (2)) ;
18 MC_shift = 0 ;
19 %P r e d i c t i o n windows :
20 W3D = [1 0 0 ; 0 1 0 ; 0 0 1] ;
21 W2D = [1 0 ; 0 1 ; 1 1] ;
22 %S u b t r a c t mean :
23 im_mat_mean = mean (mean (im_mat)) ;
24 f o r i = 1 : s i z e (im_mat , 3)
25 im_mat0 (: , : , i) = im_mat (: , : , i)−im_mat_mean (1 , 1 , i) ;
26 end
27 %Compute p r e d i c t i o n c o e f f i c i e n t s
28 p r e d _ c o e f f s = c e l l (1 , 2) ;
29 [a2D power2D] = e s t _ 2 D p r e d c o e f f s (im_mat0 (: , : , 1) , W2D, ' debug ') ;
30 [a3D power3D] = e s t _ 3 D p r e d c o e f f s (im_mat0 , W3D, ' debug ') ;
31 p r e d _ c o e f f s {1} = a2D ;
32 p r e d _ c o e f f s {2} = a3D ;
33
34
35 %−−−E s t i m a t i o n o f Q u a n t i z a t i o n parameters−−−−−
36
37 L1 = 1 1 ;
38 L2 = 7 ;
39 L3 = 7 ;
40 dz_l = 1 . 2 5 ;
41 q_param = set_q_param (L1 , L2 , L3 , dz_l , im_mat0 , p r e d _ c o e f f s , MC_shift , ' debug ') ;
42
43 %−−−−−DPCM Encode−−−−−−−−−
44 e_q3D = dpcm3D_encode (double (im_mat0) , p r e d _ c o e f f s , q_param , MC_shift) ;
45 %SR−e n c o d i n g
46 e_q3D_coded = sr3D_encode (e_q3D) ;
47 r a t e = l e n g t h (e_q3D_coded) / l e n g t h (e_q3D (:))
48
49 %−−−−−Decode−−−−−−−−−
50 e_q3D_decoded = e_q3D ; %no SR−c o d i n g
51 %−SR−d e c o d i n g :
52 %e_q3D_decoded = sr3D_decode (e_q3D_coded , nr_rows , nr_frames) ;
53
54 f_rec3D = dpcm3D_decode (e_q3D_decoded , p r e d _ c o e f f s , q_param , MC_shift) ;
55 f o r i = 1 : s i z e (im_mat , 3)
56 f_rec3D (: , : , i) = f_rec3D (: , : , i)+im_mat_mean (1 , 1 , i) ;
57 end
58 im_mat_rec3D = u i n t 8 (f_rec3D) ;
59
60
61 %Recovered s e q u e n c e v s . o r i g i n a l s e q u e n c e
62 %step_im_sequence (im_mat_rec3D)
63 f i g u r e
64 imshow (im_mat_rec3D (: , : , 2)) ;
65 t i t l e (' r e c o v e r e d image , with mean ')
66 f i g u r e
67 imshow (u i n t 8 (im_mat (: , : , 2))) ;
68 t i t l e (' O r i g i n a l image , with mean ')
69
70 %−−Histograms :
71 e_q3D0 = [e_q3D (1 : end , 1 , 1) ' e_q3D (1 , 1 : end , 1)] ;
72 e_q3D1 = e_q3D (2 : end , 2 : end , 1) ;
73 e_q3D2 = e_q3D (2 : end , 2 : end , 2) ;
74 f i g u r e
75 s u b p l o t (3 , 1 , 1)
76 h i s t (e_q3D0 (:) ,max(e_q3D0 (:))−min (e_q3D0 (:)))
77 t i t l e (' Edges without p r e d i c t i o n ')
78 %t i t l e (' Histogram o f q u a n t i z e r output , not p r e d i c t e d p i x e l s 1 s t frame ')
79 s u b p l o t (3 , 1 , 2)
80 h i s t (e_q3D1 (:) ,max(e_q3D1 (:))−min (e_q3D1 (:)))
81 t i t l e (' 2D p r e d i c t i o n ')
82 %t i t l e (' Histogram o f q u a n t i z e r output , 2D p r e d i c t e d p i x e l s 1 s t frame ')
83 s u b p l o t (3 , 1 , 3)
84 h i s t (e_q3D2 (:) +0.5 , max(e_q3D2 (:))−min (e_q3D2 (:)))
85 t i t l e (' 3D p r e d i c t i o n ')

161

APPENDIX E. MATLAB CODE

86 %t i t l e (' Histogram o f q u a n t i z e r output , 3D p r e d i c t e d frames ')
87
88
89 %−− Compute e n t r op y and SNR :
90 %e_q3D = e_q3D (2 : end , 2 : end , 2 : end) ;
91 b i n s = max(e_q3D (:))−min (e_q3D (:)) ;
92 h i s t o g r a m = h i s t (e_q3D (:) , b i n s) ;
93 prob = h i s t o g r a m . /sum (h i s t o g r a m) ; %p r o b a b i l i t y d i s t r i b u t i o n
94 f i g u r e
95 e n tr o p y = 0 ;
96 f o r m=1: b i n s
97 i f prob (m) > 0
98 e n t r op y = e n tr o p y − prob (m) ∗ l o g 2 (prob (m)) ;
99 end

100 end
101 e n tr o p y
102
103 d i f f _ s i g = u i n t 8 (im_mat (2 : end , 2 : end , 2 : end))−im_mat_rec3D (2 : end , 2 : end , 2 : end) ;
104 PSNR=20∗ l o g 1 0 (255/ s t d (double (d i f f _ s i g (:))))

est_2Dpredcoeffs.m

1 f u n c t i o n [a norm_power] = e s t _ 2 D p r e d c o e f f s (f ,W, debug)
2
3 i f (n a r g i n < 3)
4 debug = 0 ;
5 e l s e
6 debug = 1 ;
7 end
8
9 %Compute a u t o c o r r e l a t i o n c o e f f i c i e n t s :

10 rho = a u t o c o r r c o e f f s _ 2 D (f) ;
11 rho_h=rho (1) ;
12 rho_v=rho (2) ;
13
14 W_0 = [0 0 ; W] ;
15 x_0 = W_0(: , 1) ;
16 y_0 = W_0(: , 2) ;
17 m = W(: , 1) ;
18 n = W(: , 2) ;
19 A = z e r o s (l e n g t h (W_0) , l e n g t h (W)) ;
20 r_w = z e r o s (l e n g t h (W_0) , 1) ;
21 f o r i = 1 : l e n g t h (W_0)
22 r_w(i) = rho_v ^ x_0 (i) ∗rho_h ^ y_0 (i) ;
23 f o r j = 1 : s i z e (W, 1)
24 A(i , j) = rho_v ^ abs ((x_0 (i)−m(j))) ∗rho_h ^ abs ((y_0 (i)−n (j))) ;
25 end
26 end
27
28 a = A(2 : end , :) \r_w (2 : end) ;
29 %power = r_w (1) ∗a ' ∗ r_w (2 : end) ;
30 norm_power = 1−a ' ∗ r_w (2 : end) ;
31
32 %S c a l i n g to sum to one :
33 weight = sum (a) ;
34 a = a/ weight ;
35 i f (debug == 1)
36 d i s p (' 2D p r e d i c t i o n p a r a m e t e r s ')
37 rho
38 A
39 r_w
40 weight
41 a
42 norm_power
43 g a i n = 1/ norm_power
44 end
45 end

est_3Dpredcoeffs.m

1 f u n c t i o n [a norm_power] = e s t _ 3 D p r e d c o e f f s (f ,W, debug)
2 % W − p r e d i c t i o n window : matrix with c o o r d i n a t e s as row v e c t o r s
3 % f −i n p u t a r r a y (3D)
4
5 i f (n a r g i n < 3)
6 debug = 0 ;

162

E.2. DPCM ALGORITHM AND TEST SCRIPT

7 e l s e
8 debug = 1 ;
9 end

10 %−−−−Compute a u t o c o r r e l a t i o n c o e f f i c i e n t s :−−−−
11 rho = a u t o c o r r c o e f f s _ 3 D (f) ;
12 rho_h=rho (1) ;
13 rho_v=rho (2) ;
14 rho_t=rho (3) ;
15
16 % −−−− LPC a n a l y s i s −−−−−
17 % D e f i n i n g windows and c o u n t e r s
18 W_0 = [0 0 0 ; W] ;
19 x_0 = W_0(: , 1) ;
20 y_0 = W_0(: , 2) ;
21 n_0 = W_0(: , 3) ;
22 i = W(: , 1) ;
23 j = W(: , 2) ;
24 k = W(: , 3) ;
25 A = z e r o s (s i z e (W_0, 1) , s i z e (W, 1)) ;
26 r_w = z e r o s (s i z e (W_0, 1) , 1) ;
27 % G e n e r a t i n g matrix A and v e c t o r r_w :
28 f o r m = 1 : s i z e (W_0, 1) % f o r a l l (x , y , n)
29 r_w(m) = rho_v ^ x_0 (m) ∗rho_h ^ y_0 (m) ∗ rho_t ^n_0 (m) ; %v i l d e t t e b l i noe ...

annet enn 1?
30 f o r n = 1 : s i z e (W, 1) % f o r a l l (i , j , k)
31 A(m, n) = ...

rho_v ^ abs (x_0 (m)−i (n)) ∗rho_h ^ abs (y_0 (m)−j (n)) ∗ rho_t ^ abs (n_0 (m)−k (n)) ;
32 end
33 end
34 % S o l v i n g f o r a and power :
35 a = A(2 : end , :) \r_w (2 : end) ;
36 %power = r_w (1) ∗a ' ∗ r_w (2 : end)
37 norm_power = 1−a ' ∗ r_w (2 : end) ;
38
39 %S c a l i n g to sum to one :
40 weight = sum (a) ;
41 a = a/ weight ;
42
43 i f (debug == 1)
44 d i s p (' 3D p r e d i c t i o n p a r a m e t e r s ')
45 rho
46 A
47 r_w
48 weight
49 a
50 norm_power
51 g a i n = 1/ norm_power
52 end
53 end

inv_deadzone_quantizer.m

1 f u n c t i o n x_q = inv_deadzone_quantizer (q _ l e v e l , q_param)
2 %% Map q u a n t i z a t i o n s l e v e l back to c o r r e s p o n d i n g r e p r e s e n t a t i o n v a l u e
3 % i n p u t : q _ l e v e l − q u a n t i z a t i o n l e v e l (i n t e g e r)
4 % d z _ o f f s e t − (two−s i d e d) width o f dead−zone i n t e r v a l
5 % range − one−s i d e d range
6 % L − number o f q u a n t i z a t i o n l e v e l s
7 % output : x_q − r e p r e s e n t a t i o n v a l u e
8 L = q_param.L ;
9 range = q_param.range ;

10 d z _ o f f s e t = q_param.dz_offset ;
11
12 s t e p _ s i z e = (2∗ range−d z _ o f f s e t) /(L−1) ;
13 % x_q − r e p r e s e n t a t i o n l e v e l
14 q _ l e v e l _ u n s i g n e d = abs (q _ l e v e l) ;
15 %x_mapped = max(0 ,(−0 . 5 ∗(d z _ o f f s e t−s t e p _ s i z e)) / s t e p _ s i z e) ;
16 x_q_unsigned = q _ l e v e l _ u n s i g n e d ∗ s t e p _ s i z e +0 . 5 ∗(d z _ o f f s e t−s t e p _ s i z e) ;
17 x_q = s i g n (q _ l e v e l) ∗ x_q_unsigned ;
18 end

inv_uniform_quantizer.m

1 f u n c t i o n x_q = inv_uniform_quantizer (q _ l e v e l , q_param)
2 %% Map q u a n t i z a t i o n l e v e l s back to c o r r e s p o n d i n g r e p r e s e n t a t i o n v a l u e
3 % i n p u t : q _ l e v e l − q u a n t i z a t i o n l e v e l (i n t e g e r)

163

APPENDIX E. MATLAB CODE

4 % range − one−s i d e d range
5 % L − number o f q u a n t i z a t i o n l e v e l s
6 % output : x_q − r e p r e s e n t a t i o n v a l u e
7 L = q_param.L ;
8 range = q_param.range ;
9

10 s t e p _ s i z e = 2∗ range /L ;
11 x_q = q _ l e v e l ∗ s t e p _ s i z e ;
12 end

make_sine_image_for_video.m

1 f u n c t i o n im_sine = make_sine_image_for_video (video_param , image_param)
2 %−−−−−−−−−−−
3 % Input : the s t r u c t s video_param and image_param
4 %−−−−−−−−−−−
5
6 % E x t r a c t i n g the s i n e p a r a m e t e r s :
7 i n t e n s i t y = i m a g e _ p a r a m . i n t e n s i t y ;
8 amplitude = image_param.sine_amplitude ;
9 a n g l e = image_param.sine_angle ;

10 % E x t r a c t i n g the video_parameters :
11 im_size = v i d e o _ p a r a m . h i g h r e s ;
12 %satcam_param = video_param.satcam_param ;
13 num_of_periods = satcam_param.image_cov_wl ;
14
15 % Making the s i n e image :
16 im_sine = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...

amplitude , a n g l e) ;
17 end

make_sinus_image.m

1 f u n c t i o n im_sinus = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...
amplitude , a n g l e)

2 %making an image with s i n u s o i d a l s t r i p e s o f with mean " i n t e n s i t y " and
3 %amplitude " amplitude "
4
5 im_sinus=z e r o s (im_size) ;
6 N = s i z e (im_sinus , 2) ;
7 M = s i z e (im_sinus , 1) ;
8 kx = c o s (a n g l e ∗ p i /180) ∗ num_of_periods /N;
9 ky = s i n (a n g l e ∗ p i /180) ∗ num_of_periods /N;

10 u = (1 :N) ∗(2∗ kx∗ p i) ;
11 U = ones (M, 1) ∗u ;
12 v = (1 :M) ∗(2∗ ky∗ p i) ;
13 V = v ' ∗ ones (1 ,N) ;
14
15 im_sinus = amplitude ∗ s i n (U+V)+i n t e n s i t y ;
16 im_sinus = u i n t 8 (256∗ im_sinus) ;
17 end

make_test_images_dpcm.m

1 % Make t e s t images f o r DPCM (without MC)
2
3 % Many images , high r e s (Very slow when SR−c o d i n g) :
4 % N = 1 0 ; %number o f t e s t images
5 % im_size = 2 5 6 ;
6 % number_of_periods = 11 . 5 ;
7 % SNR_factor = 5 0 ;
8 % exp_time = 1 ;
9

10 % Short v e r s i o n f o r e f f i c i e n t t e s t i n g :
11 N = 5 ; %number o f t e s t images
12 im_size = 1 2 8 ;
13 number_of_periods = 11 . 5 ;
14 SNR_factor = 5 0 ;

164

E.2. DPCM ALGORITHM AND TEST SCRIPT

15 exp_time = 1 ;
16
17 sine_dc = 0 . 6 ; % DC l e v e l o f s i n e images
18 sine_amp = 0 . 0 5 ∗ sine_dc ; % Amplitude o f s i n e images
19 n o i s e _ s t d = sine_dc /(SNR_factor ∗ s q r t (exp_time)) ;
20 skew_factor = 2 0 ;
21 a n g l e = 1 0 ;
22 s i n e _ a n g l e s = a n g l e +skew_factor ∗ rand (1 ,N) ; % Angles around 45 d e g r e e s ;
23 %s i n e _ a n g l e s = 45+ z e r o s (1 ,N) ; %c o n s t a n t a n g l e
24 im_mat = u i n t 8 (z e r o s (im_size , im_size , N)) ;
25 f o r i = 1 :N
26 im_sine = make_sinus_image (im_size , number_of_periods , sine_dc , sine_amp , ...

s i n e _ a n g l e s (i)) ;
27 im_mat (: , : , i) = im_sine+(u i n t 8 (256∗ n o i s e _ s t d ∗ randn (im_size))) ;
28 end
29
30 video_mat = double (im_mat) ;

make_test_images_dpcm_mc.m

1 % Make t e s t images f o r DPCM (with MC)
2 video_param = s t r u c t (' s i z e _ o u t ' , [1 2 8 1 2 8] , ' fr am es ' , 5 , ' f r a m e _ s h i f t ' , ...

f r a m e _ s h i f t , . . .
3 ' frame_rate ' , 1 , ' h i g h r e s ' , [1 2 8 1 0 2 4] , ' exp_time ' , 1) ;
4 image_param = s t r u c t (' i n t e n s i t y ' , 0 .6 , ' SNR_factor ' , 50) ;
5 %h i g h r e s _ t e s t _ i m = make_sine_image_for_video (video_param , image_param) ;
6 im_size = v i d e o _ p a r a m . h i g h r e s ;
7 num_of_periods = 2 0 ∗ 8 ;
8 i n t e n s i t y = 0 . 6 ;
9 amplitude = 0 . 0 5 ∗ i n t e n s i t y ;

10 a n g l e = 0 ;
11 h i g h r e s _ t e s t _ i m = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...

amplitude , a n g l e) ;
12
13 video_mat = video_maker (highres_test_im , video_param , image_param) ;

plotQ.m

1 f u n c t i o n plotQ (q_param , t e x t)
2 s t r u c t _ l e n = s i z e (f i e l d n a m e s (q_param) , 1) ;
3 i f (s t r u c t _ l e n == 2) %uniform q u a n t i z e r
4 range = q_param.range ;
5 x = −range : 0 . 0 1 : range ;
6 x_q = u n i f o r m _ q u a n t i z e r (x , q_param) ;
7 e l s e % deadzone q u a n t i z e r
8 range = q_param.range ;
9 x = −range : 0 . 0 1 : range ;

10 x_q = d ea d zo ne _q u an ti ze r (x , q_param) ;
11 end
12 p l o t (x , x_q)
13 t i t l e ([' L e v e l s ' t e x t])
14 x l a b e l (' x ')
15 y l a b e l ('Q(x) ')
16 end

set_q_param.m

1 f u n c t i o n q_param = set_q_param (L1 , L2 , L3 , dz_loading , f , p r e d _ c o e f f s , MC_shift , debug)
2
3 i f (n a r g i n < 3)
4 debug = 0 ;
5 e l s e
6 debug = 1 ;
7 end
8
9 l o a d i n g = 5 ;

10
11 %e n c o d i n g without q u a n t i z a t i o n :

165

APPENDIX E. MATLAB CODE

12 e_q = dpcm3D_encode (double (f) , p r e d _ c o e f f s , 0 , MC_shift) ;
13
14 %Grouping p i x e l s i n p r e d i c t i o n c a t e g o r i e s :
15 % Group 1 : without p r e d i c t i o n
16 e_q1 = [e_q (1 : end , 1 , 1) ' e_q (1 , 1 : end , 1)] ;
17 % Group 2 : 2D p r e d i c t e d
18 e_q2 = e_q (2 : end , 2 : end , 1) ;
19 % Group 3 : 3D p r e d i c t e d
20 e_q3 = e_q (2 : end , 2 : end , 2 : end) ;
21
22 %Compute s t a n d a r d d e v i a t i o n o f d i f f e r e n t p r e d i c t i o n c a t e g o r i e s :
23 std_eq1 = s t d (e_q1 (:)) ; %b e t t e r to e s t i m a t e from the whole image ?
24 std_eq2 = s t d (e_q2 (:)) ;
25 std_eq3 = s t d (e_q3 (:)) ;
26
27 %Compute q u a n t i z a t i o n p a r a m e t e r s :
28 range1 = std_eq1 ; %compute d i f f e r e n t l y ?
29
30 range2 = std_eq2 ∗ l o a d i n g ;
31 range3 = std_eq3 ∗ l o a d i n g ;
32
33 d z _ o f f s e t 2 = 2∗ std_eq2 ∗ dz_loading ;
34 d z _ o f f s e t 3 = 2∗ std_eq3 ∗ dz_loading ;
35
36 q_param = c e l l (1 , 3) ;
37 q_param{1} = s t r u c t ('L ' , L1 , ' range ' , range1) ;
38 q_param{2} = s t r u c t ('L ' , L2 , ' range ' , range2 , ' d z _ o f f s e t ' , d z _ o f f s e t 2) ;
39 q_param{3} = s t r u c t ('L ' , L3 , ' range ' , range3 , ' d z _ o f f s e t ' , d z _ o f f s e t 3) ;
40
41
42 i f (debug ==1)
43 d i s p (' Q u a n t i z e r 1 ')
44 std_eq1
45 f i g u r e
46 s u b p l o t (3 , 1 , 1)
47 d i s p (q_param {1})
48 plotQ (q_param {1} , ' Q u a n t i z e r 1 ')
49
50 d i s p (' Q u a n t i z e r 2 ')
51 std_eq2
52 s u b p l o t (3 , 1 , 2)
53 d i s p (q_param {2})
54 plotQ (q_param {2} , ' Q u a n t i z e r 2 ')
55
56 d i s p (' Q u a n t i z e r 3 ')
57 std_eq3
58 s u b p l o t (3 , 1 , 3)
59 d i s p (q_param {3})
60 plotQ (q_param {3} , ' Q u a n t i z e r 3 ')
61
62 %P l o t t i n g h i s t o g r a m o f d i f f e r e n t frame o u t p u t s :
63 % f i g u r e
64 % h i s t (e_q1 (:) ,max(e_q1 (:))−min (e_q1 (:)))
65 % t i t l e (' Histogram o f q u a n t i z e r output frame 1 , e d g e s without p r e d i c t i o n ')
66 % f i g u r e
67 % h i s t (e_q2 (:) ,max(e_q2 (:))−min (e_q2 (:)))
68 % t i t l e (' Histogram o f q u a n t i z e r output frame 1 , 2D p r e d i c t i o n ')
69 % f i g u r e
70 % h i s t (e_q3 (:) ,max(e_q3 (:))−min (e_q3 (:)))
71 % t i t l e (' Histogram o f q u a n t i z e r f o r 3D p r e d i c t e d frames ')
72 f i g u r e
73 s u b p l o t (3 , 1 , 1)
74 h i s t (e_q1 (:) ,max(e_q1 (:))−min (e_q1 (:)))
75 t i t l e (' Edges without p r e d i c t i o n ')
76 a x i s ([−15 15 0 3 0])
77 s u b p l o t (3 , 1 , 2)
78 h i s t (e_q2 (:) ,max(e_q2 (:))−min (e_q2 (:)))
79 t i t l e (' 2D p r e d i c t i o n ')
80 a x i s ([−15 15 0 3 0 0 0])
81 s u b p l o t (3 , 1 , 3)
82 h i s t (e_q3 (:) ,max(e_q3 (:))−min (e_q3 (:)))
83 t i t l e (' 3D p r e d i c t i o n ')
84 a x i s ([−15 15 0 1 5 0 0 0])
85 end
86 end

set_q_param.new.m

1 f u n c t i o n q_param = set_q_param (L1 , d e l t a 2 , d e l t a 3 , tau , f , p r e d _ c o e f f s , MC_shift , debug)
2
3 i f (n a r g i n < 3)
4 debug = 0 ;
5 e l s e

166

E.2. DPCM ALGORITHM AND TEST SCRIPT

6 debug = 1 ;
7 end
8
9 l o a d i n g = 5 ;

10 %e n c o d i n g without q u a n t i z a t i o n :
11 e_q = dpcm3D_encode (double (f) , p r e d _ c o e f f s , 0 , MC_shift) ;
12
13 %Grouping p i x e l s i n p r e d i c t i o n c a t e g o r i e s :
14 % Group 1 : without p r e d i c t i o n
15 e_q1 = [e_q (1 : end , 1 , 1) ' e_q (1 , 1 : end , 1)] ;
16 % Group 2 : 2D p r e d i c t e d
17 e_q2 = e_q (2 : end , 2 : end , 1) ;
18 % Group 3 : 3D p r e d i c t e d
19 e_q3 = e_q (2 : end , 2 : end , 2 : end) ;
20
21 %Compute s t a n d a r d d e v i a t i o n o f d i f f e r e n t p r e d i c t i o n c a t e g o r i e s :
22 std_eq1 = s t d (e_q1 (:)) ; %b e t t e r to e s t i m a t e from the whole image ?
23 std_eq2 = s t d (e_q2 (:)) ;
24 std_eq3 = s t d (e_q3 (:)) ;
25
26 %Compute q u a n t i z a t i o n p a r a m e t e r s :
27 range1_temp = 2∗ std_eq1 ; %compute d i f f e r e n t l y ?
28
29 range2_temp = std_eq2 ∗ l o a d i n g ;
30 range3_temp = std_eq3 ∗ l o a d i n g ;
31
32 d z _ o f f s e t 2 = 2∗ std_eq2 ∗ tau ;
33 d z _ o f f s e t 3 = 2∗ std_eq3 ∗ tau ;
34
35 s t e p _ s i z e 1 = d e l t a 1 ∗ std_eq1
36
37 q_param = c e l l (1 , 3) ;
38 q_param{1} = s t r u c t ('L ' , L1 , ' range ' , range1) ;
39 q_param{2} = s t r u c t ('L ' , L2 , ' range ' , range2 , ' d z _ o f f s e t ' , d z _ o f f s e t 2) ;
40 q_param{3} = s t r u c t ('L ' , L3 , ' range ' , range3 , ' d z _ o f f s e t ' , d z _ o f f s e t 3) ;
41
42
43 i f (debug ==1)
44 d i s p (' Q u a n t i z e r 1 ')
45 std_eq1
46 f i g u r e
47 s u b p l o t (3 , 1 , 1)
48 d i s p (q_param {1})
49 plotQ (q_param {1} , ' Q u a n t i z e r 1 ')
50
51 d i s p (' Q u a n t i z e r 2 ')
52 std_eq2
53 s u b p l o t (3 , 1 , 2)
54 d i s p (q_param {2})
55 plotQ (q_param {2} , ' Q u a n t i z e r 2 ')
56
57 d i s p (' Q u a n t i z e r 3 ')
58 std_eq3
59 s u b p l o t (3 , 1 , 3)
60 d i s p (q_param {3})
61 plotQ (q_param {3} , ' Q u a n t i z e r 3 ')
62
63 %P l o t t i n g h i s t o g r a m o f d i f f e r e n t frame o u t p u t s :
64 % f i g u r e
65 % h i s t (e_q1 (:) ,max(e_q1 (:))−min (e_q1 (:)))
66 % t i t l e (' Histogram o f q u a n t i z e r output frame 1 , e d g e s without p r e d i c t i o n ')
67 % f i g u r e
68 % h i s t (e_q2 (:) ,max(e_q2 (:))−min (e_q2 (:)))
69 % t i t l e (' Histogram o f q u a n t i z e r output frame 1 , 2D p r e d i c t i o n ')
70 % f i g u r e
71 % h i s t (e_q3 (:) ,max(e_q3 (:))−min (e_q3 (:)))
72 % t i t l e (' Histogram o f q u a n t i z e r f o r 3D p r e d i c t e d frames ')
73 f i g u r e
74 s u b p l o t (3 , 1 , 1)
75 h i s t (e_q1 (:) ,max(e_q1 (:))−min (e_q1 (:)))
76 t i t l e (' Edges without p r e d i c t i o n ')
77 a x i s ([−15 15 0 3 0])
78 s u b p l o t (3 , 1 , 2)
79 h i s t (e_q2 (:) ,max(e_q2 (:))−min (e_q2 (:)))
80 t i t l e (' 2D p r e d i c t i o n ')
81 a x i s ([−15 15 0 3 0 0 0])
82 s u b p l o t (3 , 1 , 3)
83 h i s t (e_q3 (:) ,max(e_q3 (:))−min (e_q3 (:)))
84 t i t l e (' 3D p r e d i c t i o n ')
85 a x i s ([−15 15 0 1 5 0 0 0])
86 end
87 end

sr3D_decode.m

167

APPENDIX E. MATLAB CODE

1 f u n c t i o n im_sequence = sr3D_decode (b i t c o d e d _ v e c t o r , frame_res , nr_frames)
2 nr_px = frame_res ∗ frame_res ∗ nr_frames ;
3 coded_vector = b i t s 2 s y m b o l (b i t c o d e d _ v e c t o r , ' char ') ;
4 decoded_vector = SRdecode (coded_vector , nr_px , ' char ') ;
5 decoded_array = r e s h a p e (decoded_vector , frame_res , frame_res , nr_frames) ;
6 im_sequence = permute (decoded_array , [2 1 3]) ; %" t r a n s p o s e " the fr am es back
7
8 % nr_rows = l e n g t h (bitcoded_rows) ;
9 % nr_frames = nr_rows / frame_res ;

10 % im_sequence = z e r o s (frame_res , frame_res , nr_frames) ;
11 % f o r k = 1 : nr_rows
12 % coded_row = b i t s 2 s y m b o l (bitcoded_rows {k })
13 % row_index = mod(k , fram_res)
14 % frame_index = mod(k ,
15 % im_sequence (
16 % end
17 %
18 end

sr3D_encode.m

1 f u n c t i o n b i t c o d e d _ v e c t o r = sr3D_encode (array_in)
2 % Encode t h r e e−d i m e n s i o n a l a r r a y with SRencode
3 array_in = permute (array_in , [2 1 3]) ; %" t r a n s p o s e " each frame
4 v e c t o r _ i n = array_in (:) ; %r e s h a p e i n t o v e c t o r
5 coded_vector = SRencode (vector_in , ' char ') ;
6 b i t c o d e d _ v e c t o r = s y m b o l 2 b i t s (coded_vector) ;
7 end

uniform_quantizer.m

1 f u n c t i o n q _ l e v e l = u n i f o r m _ q u a n t i z e r (x , q_param)
2 %% −−Q u a n t i z a t i o n with uniform deadzone q u a n t i z e r
3 % i n p u t : x − i n p u t s i g n a l (one sample)
4 % d z _ o f f s e t − (two−s i d e d) width o f dead−zone i n t e r v a l
5 % range − one−s i d e d range
6 % L − number o f q u a n t i z a t i o n l e v e l s
7 % output : q u a n t i z a t i o n l e v e l f o r sample x
8 %% −−−−−−−
9 L = q_param.L ;

10 range = q_param.range ;
11
12 % Compute s t e p s i z e o u t s i d e deadzone
13 s t e p _ s i z e = 2∗ range /L ;
14 % Compute maximum q u a n t i z a t i o n l e v e l
15 %max_q_level = (d z _ o f f s e t+s t e p _ s i z e ∗(L−1)−s t e p _ s i z e ∗0 . 5) / 2 ;
16 max_q_level = range−0. 5 ∗ s t e p _ s i z e ;
17 %c l i p i n p u t o u t s i d e the q u a n t i z e r range :
18 x_clipped = min (abs (x) , max_q_level) ;
19
20 %map to one−s i d e d uniform midtread with s t e p _ s i z e =1
21 x_mapped = max (0 , (x _ c l i p p e d . / s t e p _ s i z e)) ;
22 % add s i g n back :
23 x_signed = s i g n (x) . ∗x_mapped ;
24
25 % s h i f t s i g n a l to g e t a l l−p o s i t i v e v a l u e s :
26 x_pos = x_signed+L+1;
27 % round to n e a r e s t i n t e g e r and add s i g n :
28 q_level_pos = round (x_pos) ;
29 % s h i f t s i g n a l back
30 q _ l e v e l = q_level_pos−(L+1) ;
31 end

video_maker.m

1 f u n c t i o n v i d e o = video_maker (im_in , video_param , image_param)
2 s i z e _ o u t = video_param.size_out ;
3 f ra me s = video_param.frames ;

168

E.3. STACK-RUN CODING

4 f r a m e _ s h i f t = v i d e o _ p a r a m . f r a m e _ s h i f t ;
5 exp_time = video_param.exp_time ;
6 SNR_factor = image_param.SNR_factor ;
7 i n t e n s i t y = i m a g e _ p a r a m . i n t e n s i t y ;
8
9 i f (SNR_factor ==0)

10 n o i s e _ s t d = 0 ;
11 e l s e
12 n o i s e _ s t d = i n t e n s i t y /(SNR_factor ∗ s q r t (exp_time)) ;
13 end
14 %n o i s e _ s t d = n o i s e _ s t d _ n o r m a l i z e d ∗ s q r t (exp_time) ;
15 r e s _ r a t i o = min (s i z e (im_in) . / s i z e _ o u t) ; %The r a t i o between the low and high ...

r e s o l u t i o n , assuming a r e c t a n g u l a r image
16 v i d e o = z e r o s ([s i z e _ o u t fr am es]) ; %Making a 3 dim matrix f o r video , l a s t ...

i n d e x i s frame number
17 f o r i = 1 : f ra me s
18 y=0;
19 x=0;
20 s h i f t _ h i g h r e s = f r a m e _ s h i f t . ∗ r e s _ r a t i o ;
21 s i z e _ h i g h r e s = s i z e _ o u t . ∗ r e s _ r a t i o ;
22 y = ((1 : s i z e _ h i g h r e s (1))+round (s h i f t _ h i g h r e s (1) ∗(i−1))) ; %must round to ...

make i n t e g e r i n d e x . Any b e t t e r s o l u t i o n s ? I n t e r p o l a t i o n ?
23 x = ((1 : s i z e _ h i g h r e s (2))+round (s h i f t _ h i g h r e s (2) ∗(i−1))) ;
24 i f ((y (end) <= s i z e (im_in , 1)) && (x (end) <= s i z e (im_in , 2))) %c h e k i n g i f ...

the i n p u t image i s l a r g e enough
25 im_highres = im_in (y , x) ;
26 im_lowres = i m r e s i z e (im_highres , s i z e _ o u t) ;
27 e l s e
28 i = fr am es +1; %(noen s m a r t e r e åmte å a v b r y t e ø f o r l k k e åp ?)
29 end
30 v i d e o (: , : , i) = im_lowres+(u i n t 8 (256∗ n o i s e _ s t d ∗ randn (s i z e _ o u t))) ;
31 %v i d e o (: , : , i) = im_lowres ;
32 end
33 end

E.3 Stack-run coding
The following code was used for SR- encoding and decoding in the simulations of
the DPCM algortihm, and is made by Anna Kim.

bit2int.m

1 f u n c t i o n N =b i t 2 i n t (b i t s)
2 % c o n v e r t b i t s to i n t e g e r s .
3
4 n = l e n g t h (b i t s)−1;
5 w =2 . ^ (n :−1:0) ;
6 N = sum (b i t s . ∗w) ;

bits2symbol.m

1 f u n c t i o n symbols = b i t s 2 s y m b o l (b i t s ,FMT)
2 % c o n v e r t b i t s back to symbols
3 % b i t s dimension 2xL
4 L = s i z e (b i t s , 2) ;
5
6 i f n a r g i n == 1 | | strcmp (FMT, ' double ')==1
7 symbols = z e r o s (1 , L) ;
8 f o r l = 1 : L
9 i f b i t s (: , l) ==[1 1] '

10 symbols (l) = 3 ;
11 e l s e i f b i t s (: , l) ==[1 0] '
12 symbols (l) = 2 ;
13 e l s e i f b i t s (: , l) ==[0 1] '
14 symbols (l) = 1 ;
15 e l s e i f b i t s (: , l) ==[0 0] '
16 symbols (: , l) = 0 ;
17 e l s e
18 symbols (: , l) = −1;
19 end

169

APPENDIX E. MATLAB CODE

20 end
21 e l s e
22 symbols = repmat ('+ ' , 1 , L) ;
23 f o r l = 1 : L
24 i f b i t s (: , l) ==[1 1] '
25 symbols (l) = '+ ' ;
26 e l s e i f b i t s (: , l) ==[1 0] '
27 symbols (l) = '− ' ;
28 e l s e i f b i t s (: , l) ==[0 1] '
29 symbols (l) = ' 1 ' ;
30 e l s e i f b i t s (: , l) ==[0 0] '
31 symbols (: , l) = ' 0 ' ;
32 e l s e
33 symbols (: , l) = ' s ' ;
34 end
35 end
36 end

int2bit.m

1 % c o n v e r t i n t e g e r to b i t s . we use l i t t l e Endian.
2 % N: i n p u t i n t e g e r . n : number o f b i t s f o r o u t p u t .
3 % n must be g r e a t e r or e q u a l to l o g 2 (N) .
4 f u n c t i o n b i t s = i n t 2 b i t (N, n)
5 i f n a r g i n == 1
6
7 i f N ==0 | | N ==1
8 b i t s = rem (N, 2) ;
9 e l s e

10 n = f l o o r (l o g 2 (N)) +1;
11 b i t s = z e r o s (1 , n) ;
12 f o r i = 1 : n
13 b i t s (i) = rem (N, 2) ;
14 %N = N−2^(n−i +1) ;
15 %N = N−2^ i ;%
16 N=(N−b i t s (i)) /2 ;
17 end
18 b i t s = f l i p l r (b i t s) ;
19 end
20
21 e l s e
22 b i t s = z e r o s (1 , n) ;
23
24 i f N ==0 | | N ==1
25 b i t s (end) = rem (N, 2) ;
26 e l s e
27
28 f o r i = 1 : n
29 b i t s (i) = rem (N, 2) ;
30 %N = N−2^(n−i +1) ;
31 %N = N−2^ i ;%
32 N=(N−b i t s (i)) /2 ;
33 end
34 b i t s = f l i p l r (b i t s) ;
35 end
36
37
38
39 end

SRdecode.m

1 f u n c t i o n x = SRdecode (Y, output_length ,FMT)
2 %SR_decode This i s the d e c o d e r o f the s t a c k run run−l e n g t h e n c o d e r .
3 %
4 % INPUT : Y i s an a r r a y o f i n t e g e r s c o n t a i n 3 , 2 , 1 , 0 or s t r i n g s
5 % c o n t a i n '+ ,− ,1 ,0 ' .
6 % FMT i s the s t r i n g i n d i c a t i n g format o f i n p u t . ' char ' or ' double '
7 % a r e a l l o w e d . ' double ' i s d e f a u l t f o r m a t .
8 % output_length i s the d e s i r e d output l e n g t h .
9 %

10 % OUTPUT: x i s an a r r a y o f i n t e g e r s .
11 %
12 %
13
14

170

E.3. STACK-RUN CODING

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 % by A. Kim
17 % date c r e a t e d : 02 . 1 0 . 2 0 1 1
18 % l a s t change : 02 . 1 0 . 2 0 1 1
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 %
21 x = [] ;
22
23 i f n a r g i n == 0
24 f p r i n t f ('ERROR: no i n p u t g i v e n ') ;
25 e l s e i f n a r g i n ==1 | | n a r g i n == 2 | | strcmp (FMT, ' double ')==1
26 y = Y;
27 e l s e i f strcmp (FMT, ' char ')==1
28 % c o n v e r t i n g s t r i n g i n t o to d o u b l e .
29 y (Y=='+ ') = 3 ;
30 y (Y=='− ') = 2 ;
31 y (Y==' 1 ') = 1 ;
32 y (Y==' 0 ') = 0 ;
33 e l s e
34 f p r i n t f ('ERROR: unknown i n p u t f o r m a t . ') ;
35 y = [] ;
36 end
37
38
39
40
41 w h i l e ~ isempty (y)
42 i f l e n g t h (y)>1
43 % f i n d the '+ ' , '− ' , ' 1 ' and ' 0 ' p o s i t i o n s
44 PM_pos = f i n d (y==3| y==2) ;
45 OZ_pos = f i n d (y==1|y==0) ;
46
47 % y always s t a r t s with the symbol '+ ' or '− '
48
49 i f isempty (OZ_pos) % o n l y runs o f z e r o s .
50 temp3 = y (1 : l e n g t h (y)) ;
51 y = [] ;
52 temp3 (temp3==3)=1;
53
54 temp3 (temp3==2)=0;
55
56 numbr = b i t 2 i n t ([1 temp3]) ;
57
58 % check i f the l e n g t h i s 2^ k−1
59
60 i f round (l o g 2 ((numbr) +1))−l o g 2 ((numbr) +1)==0
61 r l = b i t 2 i n t (temp3) ;
62 r l _ z e r o s = z e r o s (1 , r l) ;
63 e l s e
64 r l _ z e r o s = z e r o s (1 , numbr) ;
65 end
66
67
68 x = [x r l _ z e r o s] ;
69
70 e l s e i f isempty (PM_pos) % o n l y 1 or z e r o s . (not v a l i d code word)
71 x = y ;
72 y = [] ;
73 e l s e i f ~ isempty (OZ_pos) && OZ_pos (1)==2 % f i r s t codeword i s none−z e r o v a l u e
74
75 % check the s i g n o f the none−z e r o v a l u e .
76 i f y (PM_pos (1))==3
77 nz_sign = 1 ;
78 e l s e i f y (PM_pos (1))==2
79 nz_sign = −1;
80 end
81
82
83 %c o n v e r t the b i n a r y i n t o d e c i m a l .
84 % remove the codeword from y
85
86 i f l e n g t h (PM_pos)>1
87 temp = [1 y (2 : PM_pos (2)−1)] ;
88 y = y (PM_pos (2) : l e n g t h (y)) ;
89
90 e l s e% no o t h e r v a l i d e codeword i n the i n p u t .
91 temp = [1 y (2 : l e n g t h (y))] ;
92 y = [] ;
93 end
94
95
96 x = [x nz_sign ∗(b i t 2 i n t (temp)−1)] ;
97
98 e l s e i f OZ_pos (1) ==1 %f i r s t codword i s 1/0 . decode as 1/0 .
99 x = [x y (1)] ;

100
101 % remove codeword.
102 y = y (2 : l e n g t h (y)) ;
103
104 e l s e i f OZ_pos (1)>2% f i r s t code word i s run l e n g t h o f z e r o s .

171

APPENDIX E. MATLAB CODE

105 %i f ~ isempty (OZ_pos)
106 temp3 = y (1 : OZ_pos (1)−2) ;% remember the nz v a l has MSB.
107 y = y (OZ_pos (1)−1: l e n g t h (y)) ;
108
109 temp3 (temp3==3)=1;
110
111 temp3 (temp3==2)=0;
112
113 numbr = b i t 2 i n t ([1 temp3]) ;
114
115
116 i f round (l o g 2 ((numbr) +1))−l o g 2 ((numbr) +1)==0 % i f the l e n g t h i s ...

2^ k−1
117 r l = b i t 2 i n t (temp3) ; % then a l l b i t s a r e t h e r e
118 r l _ z e r o s = z e r o s (1 , r l) ;
119 e l s e % i f not , need the one with added b i t s .
120 r l _ z e r o s = z e r o s (1 , numbr) ;
121 end
122
123
124 x = [x r l _ z e r o s] ;
125 end
126
127 e l s e i f l e n g t h (y)==1
128 i f y == 3 | | y == 0% h e r e y = +, then o n l y 1 z e r o i s l e f t .
129 x = [x 0] ;
130 e l s e i f y == 2 % h e r e y = −, two z e r o s a r e l e f t .
131 x = [x 0 0] ;
132 e l s e i f y == 1
133 x = [x 1] ;
134
135 end
136 y = [] ;
137 end
138 end
139
140
141 %check to s e e i f x i s at the r i g h t l e n g t h .
142 i f n a r g i n >=2
143 i f output_length > l e n g t h (x)
144 x = [x z e r o s (1 , output_length−l e n g t h (x))] ;
145 e l s e
146 x = x (1 : output_length) ;
147 end
148 end

SRencode.m

1 f u n c t i o n Y = SRencode (x ,FMT)
2
3 % SRencode SR (Stack−Run) run−l e n g t h encoder , encode the l e n g t h o f z e r o s and ...

v a l u e o f
4 % non−z e r o e l e m e n t s . [Tsai ' 9 6]
5 %
6 %
7 %
8 % The SRencode t a k e s i n p u t o f an a r r a y c o n t a i n s z e r o s and non−z e r o v a l u e s
9 % o u t p u t s a s t r i n g a r r a y c o n s i s t s o f f o u r symbols : + ,− ,0 ,1

10 %
11 % a l l non−z e r o v a l u e s a r e f i r s t i n c r e m e n t e d (or decremented) by 1 .
12 % 0 ,1 a r e used to d e s c r i b e the LSB o f the non−z e r o v a l u e s i n b i n a r y .
13 % +,− a r e used to d e s c r i b e the MSB and s i g n o f non−z e r o v a l u e s i n b i n a r y
14 %
15 %
16 % + i s 1 and − i s 0 i n d e s c r i b i n g the run−l e n g t h o f z e r o s i n b i n a r y .
17 % the MSB (s i n c e i t ' s always 1) i s omitted , e x c e p t when the run l e n g t h i s
18 % 2^ k−1, where k i s an i n t e g e r .
19 %
20 %
21 % INPUT : ' x ' e . g . q u a n t i z a t i o n l e v e l s , a r r a y i n d o u b l e .
22 % FMT i s a s t r i n g i d e n t i f i e s the output format , can be ' char ' ,
23 % or ' double ' . d e f a u l t format i s ' double ' .
24 % OUTPUT: Y i s the output a r r a y . when FMT i s NOT ' char ' , '+ ' becomes 3 and
25 % '− ' becomes 2 .
26 %
27 % Example : x = [−11 0 0 0 34 0 0 0 0 2 1 0 0 0 5] ;
28 % y = SRencode (x , ' char ')
29 % y = −100+++00011−−+1+0+++10
30 %
31 %
32
33 % %%%%%%%%%%%%%%%%%%%%%%%%
34 % by A. Kim

172

E.3. STACK-RUN CODING

35 % date : 28 . 0 2 . 2 0 1 1
36 % l a s t change : 24 . 0 9 . 2 0 1 1
37 % %%%%%%%%%%%%%%%%%%%%%%%%%%
38
39
40 %pre a l l o c a t e codeword s i z e . −1 i s dummy b i t .
41 y = −ones (s i z e (x)) ;
42
43 s i z e y 1 = 1 ; %s t a r t i n g p o s i t i o n o f the codeword
44 s i z e y 2 = 0 ; %end p o s i t i o n .
45
46 w h i l e ~ isempty (x) % check i f x has any v a l u e
47
48 i f isempty (f i n d (x ~=0 , 1))% x has o n l y z e r o s .
49
50 RLbin_str = i n t 2 b i t (l e n g t h (x)) ;
51
52 % c h e c k i n g to s e e i f run−l e n g t h i s 2^ k−1
53 i f round (l o g 2 (l e n g t h (x) +1))−l o g 2 (l e n g t h (x) +1)~=0
54
55 RLbin_str = RLbin_str (2 : l e n g t h (RLbin_str)) ;
56
57 end
58
59 % mapping to '+ ' , '− ' . where '+ ' i s 3 , '− ' i s 2 .
60 RLbin_str = RLbin_str +2;
61
62
63 %d e t e r m i n e end p o s i t i o n o f codeword
64 s i z e y 2 = s i z e y 2+l e n g t h (RLbin_str) ;
65
66 % remove the encoded z e r o s .
67 x = [] ;
68
69 % a s s i g n to output and update s t a r t i n g p o s i t i o n o f codeword
70 y (s i z e y 1 : s i z e y 2)=RLbin_str ;
71 s i z e y 1 = s i z e y 2 +1;
72
73
74 e l s e % x has both z e r o and nonzero e l e m e n t s
75
76
77 i f x (1)==0 % when f i r s t element i s zero , code run l e n g t h :
78
79 % d e t e r m i n e l e n g t h o f z e r o s , c o n v e r t to b i n a r y .
80 marker = l e n g t h (x (1 : f i n d (x ~=0 , 1)−1)) ;
81 RLbin_str = i n t 2 b i t (marker) ;
82
83 % c h e c k i n g to s e e i f run−l e n g t h i s 2^ k−1, i f not remove MSB
84 i f round (l o g 2 (marker +1))−l o g 2 (marker +1)~=0
85
86 RLbin_str = RLbin_str (2 : l e n g t h (RLbin_str)) ;
87
88 end
89
90 %change 0 , to −, 1 to +
91
92 RLbin_str = RLbin_str +2;
93
94
95 %update codeword s t a r t and end p o s i t i o n s and output a r r a y
96 s i z e y 2 = s i z e y 2+l e n g t h (RLbin_str) ;
97
98 y (s i z e y 1 : s i z e y 2)=RLbin_str ;
99 s i z e y 1 = s i z e y 2 +1;

100
101
102
103 % remove the encoded z e r o s from i n p u t a r r a y
104 x = x (f i n d (x ~=0 ,1) : l e n g t h (x)) ;
105
106
107
108 e l s e % encode the f i r s t nonzero v a l u e
109
110
111 % f i r s t i n c r e m e n t the a b s o l u t e v a l u e by 1 . r e t a i n s i g n .
112 nz_val = abs (x (1)) +1;
113
114 %NZbin_str = d e c 2 b i n (abs (nz_val)) ;
115 NZbin_str = i n t 2 b i t (nz_val) ;
116
117 % change the MSB i n t o '+ ' or '− '
118 i f s i g n (x (1))>0
119 NZbin_str (1) =3; % '+ ' i s 3
120 e l s e
121
122 NZbin_str (1) =2;% '− ' i s 2 ;
123 end
124

173

APPENDIX E. MATLAB CODE

125 % update codeword p o s i t i o n s and output a r r a y
126 s i z e y 2 = s i z e y 2+l e n g t h (NZbin_str) ;
127 y (s i z e y 1 : s i z e y 2)=NZbin_str ;
128 s i z e y 1 = s i z e y 2 +1;
129
130
131
132 % remove the nonzero v a l u e from i n p u t a r r a y
133 i f l e n g t h (x)==1 % come to the l a s t element
134 x = [] ;
135 e l s e
136 x = x (2 : l e n g t h (x)) ;
137
138 end
139
140
141 end
142
143 end
144
145
146
147
148
149 end
150
151 % remove the dummy b i t s −1;
152
153 y = y (y>=0) ;
154
155 i f n a r g i n==1 | | strcmp (FMT, ' double ')==1
156 Y = y ;
157
158 e l s e i f strcmp (FMT, ' char ')==1
159
160 Y(y==3) = '+ ' ;
161 Y(y==2) = '− ' ;
162 Y(y==0) = ' 0 ' ;
163 Y(y==1) = ' 1 ' ;
164
165 e l s e
166 f p r i n t f ('ERROR: unknown output f o r m a t . ') ;
167 Y = [] ;
168 end

symbol2bits.m

1 f u n c t i o n b i t s = s y m b o l 2 b i t s (symbols)
2 % c o n v e r t s symbols o f + ,− ,0 ,1 i n t o b i t s
3 % u s e s 2 b i t s per symbol +: 11 −: 10 1 : 01 , 0 : 0 0
4 % −1 i s the dummy b i t . i t i s t r a n s f o r m e d i n t o [−1 −1];
5
6 b i t s = z e r o s (2 , s i z e (symbols , 2)) ;
7
8 f o r i = 1 : s i z e (symbols , 2)
9 i f symbols (i) =='+ ' | | symbols (i)==3

10 b i t s (: , i) = [1 1] ' ;
11 e l s e i f symbols (i)== '− ' | | symbols (i) ==2
12 b i t s (: , i) = [1 0] ' ;
13 e l s e i f symbols (i)==' 1 ' | | symbols (i) ==1
14 b i t s (: , i) = [0 1] ' ;
15 e l s e i f symbols (i) == ' 0 ' | | symbols (i) == 0
16 b i t s (: , i) = [0 0] ' ;
17 e l s e
18 b i t s (: , i) = ones (s i z e (2 , 1)) ∗ symbols (i) ;%[−1 −1] ' ;
19 end
20 end

E.4 Image Averaging
The function import_vars.m is made by Sigvald Marholm.

compute_and_set_image_param.m

174

E.4. IMAGE AVERAGING

1 f u n c t i o n image_param = ...
compute_and_set_image_param (i n t e n s i t y , SNR_factor , s i n e _ a n g l e , s i n e _ a m p l i t u d e)

2 % A l l q u a n t i t i e s a r e n o r m a l i s e d to 1 s e x p o s u r e time
3 i f (n a r g i n == 0)
4 i n t e n s i t y = 0 . 5 ;
5 SNR_factor = 1 0 0 ;
6 s i n e _ a n g l e = 0 ;
7 end
8
9 i f (n a r g i n ~=4)

10 a m p l i t u d e _ f a c t o r = 0 . 0 5 ;
11 s i n e _ a m p l i t u d e = a m p l i t u d e _ f a c t o r ∗ i n t e n s i t y ;
12 end
13
14 % n o i s e _ f l a g = 0 ;
15 % i f ((n a r g i n > 0))
16 % i f (i n t e n s i t y == ' no n o i s e ')
17 % n o i s e _ f l a g = 1 ;
18 % i n t e n s i t y = 1 0 ;
19 % dark_current = 0 ;
20 % end
21 % end
22 %
23 % i f (n a r g i n == 0)
24 % i n t e n s i t y = 1 0 0 ; %i n t e n s i t y n o r m a l i z e d to one second e x p o s u r e
25 % dark_current = 5 ;
26 % end
27 % i f (n a r g i n < 3)
28 % s i n e _ a n g l e = 0 ;
29 % end
30 %
31 %
32 % i f (n o i s e _ f l a g == 1)
33 % n o i s e _ s t d = 0 ;
34 % e l s e
35 % n o i s e _ s t d = s q r t (i n t e n s i t y+dark_current) ;
36 % end
37 %
38
39 % D e f i n i n g the output s t r u c t :
40 image_param = s t r u c t (' i n t e n s i t y ' , i n t e n s i t y , ' SNR_factor ' , ...

SNR_factor , ' s i n e _ a m p l i t u d e ' , sine_amplitude , ' s i n e _ a n g l e ' , s i n e _ a n g l e) ;
41 end

compute_and_set_satcam_param.m

1 f u n c t i o n satcam_param = compute_and_set_satcam_param (column_number)
2 % column_number : p i c k s the column (i . e . s e t o f p a r a m e t e r s) i n sat_param.txt
3
4 % Import v a r i a b l e s and c o n s t a n t s from t e x t f i l e s (column number c h o o s e s which ...

column i n sat_param to use
5 import_vars (' sat_param.txt ' , column_number) ;
6 import_vars (' s a t _ c o n s t . t x t ' , 1) ;
7
8
9 % Compute v a r i a b l e s r e g a r d i n g s a t e l l i t e and camera :

10 T = 2∗ p i ∗ s q r t ((e a r t h _ r a d i u s+h e i g h t _ s a t) ^3/ g_param) ; % S a t e l l i t e o r b i t a l p e r i o d
11 speed_sat_OH = 2∗ p i ∗(e a r t h _ r a d i u s ∗1000+height_OH ∗1000) /T; % s a t e l l i t e speed ...

w . r . t OH l a y e r
12 image_cov = (2 ∗ ((height_sat−height_OH) ∗1000) ∗ tan ((FOV∗ p i /180) /2)) ; % Image c o v e r a g e
13 image_cov_wl = image_cov /(gw_min_wl ∗1000) ; % Image c o v e r a g e i n w a v e l e n g t h s
14 s p a t _ r e s = image_cov / a r r a y _ s i z e ; % c o v e r a g e per p i x e l [m]
15 image_speed = speed_sat_OH/ s p a t _ r e s ; %s a t e l i t e speed i n p i x e l s per second
16
17 % D e f i n i n g the output s t r u c t :
18 satcam_param = s t r u c t ('T ' ,T, ' speed_sat_OH ' , speed_sat_OH , ' image_cov ' , image_cov , . . .
19 ' image_cov_wl ' , image_cov_wl , ' s p a t _ r e s ' , spat_res , . . .
20 ' image_speed ' , image_speed , ' h e i g h t _ s a t ' , height_sat , 'FOV ' , ...

FOV, . . .
21 ' a r r a y _ s i z e ' , a r r a y _ s i z e , ' r e s e t _ t i m e ' , r e s e t _ t i m e) ;
22
23 end

compute_and_set_video_param.m

175

APPENDIX E. MATLAB CODE

1 f u n c t i o n video_param = compute_and_set_video_param (satcam_param , frame_rate , fr ame s)
2 image_speed = satcam_param.image_speed ;
3 a r r a y _ s i z e = satcam_param.array_size ;
4 r e s e t _ t i m e = satcam_param.reset_time ;
5 % frame_rate = satcam_param.frame_rate ;
6 % fr am es = satcam_param.frames ;
7
8 a p p r o x _ r e s _ r a t i o = 1 0 ; % Approximate r a t i o between the low and high r e s o l u t i o n
9 %−do something with the r a t i o s t u f f ?

10 l o w r e s = a r r a y _ s i z e ∗ [1 1] ; % R e s o l u t i o n o f the r e s u l t i n g v i d e o fr am es
11 f r a m e _ s h i f t = (1/ frame_rate) ∗ image_speed ∗ [0 1] ;
12 h i g h r e s _ s h i f t = round (f r a m e _ s h i f t ∗ a p p r o x _ r e s _ r a t i o) ; % Make s u r e t h i s i s an ...

i n t e g e r !
13 r e s _ r a t i o = h i g h r e s _ s h i f t / f r a m e _ s h i f t ; % Computed r a t i o between low and high ...

r e s o l u t i o n
14 h i g h r e s = round ((l o w r e s (1) ∗ r e s _ r a t i o) +[0 (h i g h r e s _ s h i f t (2) ∗ f ra mes)]) ; %The ...

r e s o l u t i o n o f the " a n a l o g " i n h e r e n t image
15 exp_time = 1 . / frame_rate−r e s e t _ t i m e ;
16 % D e f i n i n g the output s t r u c t (i n c l u d i n g the c o r r e s p o n d i n g satcam_param as a ...

n e s t e d s t r u c t) :
17 video_param = s t r u c t (' s i z e _ o u t ' , l o w r e s , ' fr am es ' , frames , ' frame_rate ' , frame_rate , . . .
18 ' f r a m e _ s h i f t ' , f r a m e _ s h i f t , ' h i g h r e s ' , h i g h r e s , ' exp_time ' , ...

exp_time , . . .
19 ' satcam_param ' , satcam_param) ;
20 end

display_struct_rows_rec.m

1 f u n c t i o n d i s p l a y _ s t r u c t _ r o w s _ r e c (s t r u c t _ i n)
2 % D i s p l a y s an 1byN a r r a y o f s t r u c t s as a t a b l e , with the f i e l d names i n the
3 % f i r s t column , and s t r u c t number i n the f i r s t row.
4
5 % Make column o f row names−−−−−−−−−−
6 %I n i t i a l i z e row names and row c o u n t e r :
7 names{1} = ' ' ;
8 c o u n t e r = 1 ;
9 %Pick up names from the s t r u c t s r e c u r s i v e l y :

10 [names c o u n t e r] = struct_names_rec (s t r u c t _ i n , names , c o u n t e r) ;
11
12 %making a column with w h i t e s p a c e s to put inbetween the columns :
13 empty_col = char (ones (l e n g t h (names) , 1) ∗ ' ') ;
14 matrix_out = [] ;
15 matrix_out = [s t r v c a t (names) empty_col] ;
16
17 % F i l l columns with s t r u c t v a l u e s−−−−−−−−−−−
18
19 M = l e n g t h (names) ; %number o f rows
20 N = s i z e (s t r u c t _ i n , 2) ; %number o f columns
21 c e l l _ i n = s t r u c t 2 c e l l (s t r u c t _ i n) ;
22 f o r i = 1 :N
23 s t r _ c e l l = c e l l (M, 1) ;
24 %Make header f o r column :
25 s t r _ c e l l {1} = num2str (i) ;
26 c o u n t e r =1;
27
28 % Fetch s t r u c t v a l u e s r e c u r s i v e l y :
29 [s t r _ c e l l c o u n t e r] = s t r u c t _ v a l u e s _ r e c (c e l l _ i n (: , 1 , i) , s t r _ c e l l , c o u n t e r) ;
30
31 % Extend output matrix with one column :
32 matrix_out = [matrix_out s t r v c a t (s t r _ c e l l) empty_col] ;
33 end
34
35 d i s p (matrix_out)
36 end
37
38 % 1 2 3
39 % T 5792 . 3 3 0 1 5792 . 3 3 0 1 5730 . 1 2 3 1
40 % speed_sat_OH 7007 . 4 3 5 1 7007 . 4 3 5 1 7083 . 5 0 8 8
41 % image_cov 423326 . 2 6 0 7 423326 . 2 6 0 7 247049 . 1 5 5 4
42 % image_cov_wl 21 . 1 6 6 3 21 . 1 6 6 3 12 . 3 5 2 5
43 % s p a t _ r e s 3307 . 2 3 6 4 1653 . 6 1 8 2 965 . 0 3 5 8
44 % image_speed 2 . 1 1 8 8 4 . 2 3 7 6 7 . 3 4 0 2
45 % h e i g h t _ s a t 600 600 550
46 % FOV 45 45 30
47 % a r r a y _ s i z e 128 256 256
48 % exp_time 0 . 0 3 0 . 0 3 0 . 0 3
49 % frame_rate 25 25 10
50 % fr am es 50 50 30
51 % my_struct
52 % |− f i e l d 1
53 % |− f i e l d 2
54 % '− f i e l d 3

176

E.4. IMAGE AVERAGING

frame_comb_sim.m

1 %% −−−−−Image a v e r a g i n g−−−−−−−
2 % S c r i p t f o r s i m u l a t i o n o f image a v e r a g i n g with motion compensation
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 c l o s e a l l
5 %% Choose and l o a d v i d e o s and p a r a m e t e r s
6 c l e a r a l l
7 %video_sim %Run v i d e o sim the f i r s t time to g e n e r a t e t e s t v i d e o s and p a r a m e t e r s
8 param_set_name = ' r e p o r t _ s e t _ t e s t i n g ' ; % Choose parameter s e t
9 l o a d ([' parameters_ ' param_set_name] , ' all_param ') % Load p a r a m e t e r s

10 l o a d ([' videos_ ' param_set_name] , ' v i d e o s ') % Load v i d e o s
11
12 % Show the f i r s t image o f each v i d e o as a thumbnail :
13 thumbnails = show_video_thumbnails (v i d e o s) ;
14 % D i s p l a y p a r a m e t e r s :
15 d i s p l a y _ s t r u c t _ r o w s _ r e c (all_param)
16 %% −−−−−−−−−−−−−−−−−−−
17
18 %% Simple demo :
19 i n d e x = 3 ; % Choose which v i d e o (s) i n the v i d e o s e t to work with
20 v i d e o _ d u r a t i o n = 5 ;
21 im_comb_stack = c e l l (1 , i n d e x) ;
22 video_param = all_param (i n d e x) .video_param ;
23 frames_to_combine = v i d e o _ d u r a t i o n ∗ video_param.frame_rate ;
24 % Combine f ra me s :
25 [im_comb im_comb_cropped] = ...

video_frame_comb (v i d e o s { i n d e x } , video_param , frames_to_combine) ;
26 % P l o t f i r s t frame and ave rage d image :
27 im_comb_stack = c e l l (1 , 2) ;
28 im_comb_stack{1} = thumbnails { i n d e x } ;
29 im_comb_stack{2} = im_comb_cropped ;
30 plot_im_stack (im_comb_stack , 'w ' , { ' F i r s t frame ' , ' Averaged image ' })
31
32 %% Varying v i d e o d u r a t i o n s :
33 i n d e x = 2 ; % Choose which v i d e o (s) i n the v i d e o s e t to work with
34 v i d e o _ d u r a t i o n = [2 5] ;
35 im_comb_stack = c e l l (1 , i n d e x) ;
36 video_param = all_param (i n d e x) .video_param ;
37 %Combine fra me s :
38 im_comb_stack{1} = thumbnails { i n d e x } ;
39 im_comb_stack_eq{1} = h i s t e q (thumbnails { i n d e x } , 2 5 6) ;
40 f o r j = 1 : l e n g t h (v i d e o _ d u r a t i o n)
41 frames_to_combine = v i d e o _ d u r a t i o n (j) ∗ video_param.frame_rate ;
42 [im_comb im_comb_cropped] = ...

video_frame_comb (v i d e o s { i n d e x } , video_param , frames_to_combine) ;
43 im_comb_stack{ j +1} = im_comb_cropped ;
44 end
45 plot_im_stack (im_comb_stack , 'w ')
46
47
48 %% T e s t i n g frame combining with i n c o r r e c t frame s h i f t v a l u e s :
49 i n d e x = 3 ; % Choose which v i d e o i n the v i d e o s e t to work with
50 video_param = all_param (i n d e x) .video_param ;
51 v i d e o _ d u r a t i o n = 5 ;
52 frames_to_combine = video_param.frame_rate ∗ v i d e o _ d u r a t i o n ;
53 % Make v e c t o r with wrong f r a m e _ s h i f t s :
54 f r a m e _ s h i f t = v i d e o _ p a r a m . f r a m e _ s h i f t ;
55 e r r o r _ v e c t o r = [0 . 9 1 0 . 9] ' ;
56 f r a m e _ s h i f t _ f a k e =z e r o s (l e n g t h (e r r o r _ v e c t o r) , 2) ;
57 f r a m e _ s h i f t _ f a k e (: , 1) = z e r o s (l e n g t h (e r r o r _ v e c t o r) , 1) ;
58 f r a m e _ s h i f t _ f a k e (: , 2) = f r a m e _ s h i f t (2) ∗ e r r o r _ v e c t o r . ∗ ones (l e n g t h (e r r o r _ v e c t o r) , 1) ;
59 e r r o r s = f r a m e _ s h i f t _ f a k e (: , 2)−(f r a m e _ s h i f t (2) . ∗ ones (l e n g t h (e r r o r _ v e c t o r) , 1)) ;
60 %im_comb_fake = c e l l (1 , l e n g t h (e r r o r _ v e c t o r)) ;
61 im_stack = c e l l (1 , l e n g t h (e r r o r _ v e c t o r)) ;
62 t i t l e s = c e l l (1 , l e n g t h (e r r o r _ v e c t o r)) ;
63 f o r i = 1 : l e n g t h (e r r o r _ v e c t o r)
64 v i d e o _ p a r a m . f r a m e _ s h i f t = f r a m e _ s h i f t _ f a k e (i , :) ;
65 t i t l e s { i } = num2str (e r r o r _ v e c t o r (i)) ;
66 [im_comb_fake im_comb_fake_cropped] = ...

video_frame_comb (v i d e o s { i n d e x } , video_param , frames_to_combine) ;
67 im_stack { i } = im_comb_fake_cropped ;
68 end
69 % P l o t r e s u l t i n g combined images :
70 plot_im_stack (im_stack , ' q ' , t i t l e s) ;

import_vars.m

1 f u n c t i o n import_vars (fname , column)
2 % import_vars (fname , column)

177

APPENDIX E. MATLAB CODE

3 %
4 % This f u n c t i o n i s p r i m a r i l y w r i t t e n f o r i m p o r t i n g l i n k budget p a r a m e t e r s
5 % but can be used i n a more g e n e r i c manner as− i s .
6 %
7 % fname i s the name o f the f i l e to be i m p o r t e d .
8 %
9 % The f i l e can have s e v e r a l s e c t i o n s s e p a r a t e d by l i n e s o f ============

10 % The v a r i a b l e s a r e s t o r e d i n the 2nd s e c t i o n l i k e t h i s :
11 %
12 % Header Comments (m y f i l e . t x t)
13 % Set 1 Set 2 Set 3
14 % =================================
15 % c o o l 100 200 300
16 % fun 40 . 4 5 . 5 6 e3
17 % =================================
18 % Footer Comments
19 %
20 % The column argument i s which column to import as the v a r i a b l e ' s v a l u e s .
21 % In our example , import_vars (' m y f i l e . t x t ' , 2) w i l l be e q u i v a l e n t to w r i t i n g
22 % c o o l = 2 0 0 ;
23 % fun = 5 . 5 ;
24 %
25
26 % Create the r e g e x p p a t t e r n t h a t e x t r a c t s the v a r i a b l e name and v a l u e
27 p a t t e r n = '%s ' ; % E x t r a c t v a r . name
28 f o r i =1: column−1
29 p a t t e r n = s t r c a t (p a t t e r n , ' %∗ f ') ; % I g n o r e (column−1) v a l u e s
30 end
31 p a t t e r n = s t r c a t (p a t t e r n , ' %f ') ; % E x t r a c t column v a l u e
32
33 s e c t i o n = 1 ; % Which s e c t i o n o f f i l e .
34 % Each s e c t i o n i s s e p e r a t e d by =======
35
36 f h = f o p e n (fname) ;
37 w h i l e 1
38 f l i n e = f g e t l (f h) ;
39
40 i f (f l i n e ==−1) % End−of− f i l e
41 f c l o s e (f h) ;
42 break ;
43 end
44
45 i f (l e n g t h (f l i n e) >0)
46
47 i f (f l i n e (1)=='= ')
48 s e c t i o n = s e c t i o n + 1 ; % S e c t i o n s e p a r a t i o n d e t e c t e d
49 e l s e
50
51 i f (s e c t i o n ==2) % This i s where the v a r i a b l e s a r e at
52 A = t e x t s c a n (f l i n e , p a t t e r n , ' MultipleDelimsAsOne ' , t r u e) ;
53 varname = A(1) ;
54 v a r v a l u e = A(2) ;
55 varname = varname {1}{1};
56 v a r v a l u e = v a r v a l u e { 1 } ;
57 v a r v a l u e = v a r v a l u e (1) ;
58 e v a l i n (' c a l l e r ' , s t r c a t (varname , '= ' , num2str (v a r v a l u e) , ' ; ')) ;
59 end
60
61 end
62 end
63
64 end
65
66 end

make_sine_image_for_video.m

1 f u n c t i o n im_sine = make_sine_image_for_video (video_param , image_param)
2 %−−−−−−−−−−−
3 % Input : the s t r u c t s video_param and image_param
4 %−−−−−−−−−−−
5
6 % E x t r a c t i n g the s i n e p a r a m e t e r s :
7 i n t e n s i t y = i m a g e _ p a r a m . i n t e n s i t y ;
8 amplitude = image_param.sine_amplitude ;
9 a n g l e = image_param.sine_angle ;

10 % E x t r a c t i n g the video_parameters :
11 im_size = v i d e o _ p a r a m . h i g h r e s ;
12 satcam_param = video_param.satcam_param ;
13 num_of_periods = satcam_param.image_cov_wl ;
14
15 % Making the s i n e image :

178

E.4. IMAGE AVERAGING

16 im_sine = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...
amplitude , a n g l e) ;

17 end

make_sinus_image.m

1 f u n c t i o n im_sinus = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...
amplitude , a n g l e)

2 %making an image with s i n u s o i d a l s t r i p e s o f with mean " i n t e n s i t y " and
3 %amplitude " amplitude "
4 %a n g l e g i v e n i n d e g r e e s , 0 = v e r t i c a l s t r i p e s
5
6 im_sinus=z e r o s (im_size) ;
7 N = s i z e (im_sinus , 2) ;
8 M = s i z e (im_sinus , 1) ;
9 kx = c o s (a n g l e ∗ p i /180) ∗ num_of_periods /N;

10 ky = s i n (a n g l e ∗ p i /180) ∗ num_of_periods /N;
11 u = (1 :N) ∗(2∗ kx∗ p i) ;
12 U = ones (M, 1) ∗u ;
13 v = (1 :M) ∗(2∗ ky∗ p i) ;
14 V = v ' ∗ ones (1 ,N) ;
15
16 im_sinus = amplitude ∗ s i n (U+V)+i n t e n s i t y ;
17 im_sinus = u i n t 8 (256∗ im_sinus) ;
18 end

plot_im_stack.m

1 % d r a f t f o r smart s u b p l o t−f u n c t i o n
2 f u n c t i o n plot_im_stack (im_cell , mode , t i t l e _ c e l l)
3
4 n _ t o t a l = l e n g t h (i m _ c e l l) ; %number
5 % Quadratic c o n s t e l l a t i o n
6 i f (mode == ' q ')
7 % Determining the numbers o f f i g u r e s and p l o t s i n each f i g u r e :
8 number_of_figures = c e i l (n _ t o t a l /12) ;
9 n = 12∗ ones (1 , number_of_figures) ;

10 n _ l a s t _ f i g u r e = mod(n_total , 1 2) ;
11 n (number_of_figures) = n _ l a s t _ f i g u r e ;
12
13 f o r i =1: number_of_figures
14 % d e t e r m i n i n g the number o f rows to p l o t
15 n = n (i) ;
16 i f (n < 4)
17 rows (i) = 1 ;
18 e l s e i f (n >= 4 && n < 9)
19 rows (i) = 2 ;
20 e l s e i f (n >= 9 && n <= 12)
21 rows (i) = 3 ;
22 end
23 %number o f columns :
24 columns (i) = c e i l (n/ rows (i)) ;
25 end
26
27 e l s e i f (mode == ' l ')
28 number_of_figures = c e i l (n _ t o t a l /4) ;
29 n = 4∗ ones (1 , number_of_figures) ;
30 n (number_of_figures) = mod(n_total , 1 2) ;
31 rows = n ;
32 columns = ones (1 , number_of_figures) ;
33 e l s e i f (mode == 'w ')
34 number_of_figures = c e i l (n _ t o t a l /4) ;
35 n = 4∗ ones (1 , number_of_figures) ;
36 n (number_of_figures) = mod(n_total , 1 2) ;
37 columns = n ;
38 rows = ones (1 , number_of_figures) ;
39 e l s e
40 d i s p (' I n v a l i d p l o t c o n s t e l l a t i o n ')
41 end
42
43 %making s u b p l o t s :
44 plot_count = 0 ;
45 f o r k = 1 : number_of_figures
46 f i g u r e
47 f o r j = 1 : n (k)
48 plot_count = plot_count +1;

179

APPENDIX E. MATLAB CODE

49 s u b p l o t (rows (k) , columns (k) , j)
50 imshow (i m _ c e l l { plot_count })
51 i f (n a r g i n ==3)
52 t i t l e (t i t l e _ c e l l { plot_count })
53 end
54 end
55 %s e t (g c f , ' P o s i t i o n ' , g e t (0 , ' S c r e e n s i z e ')) ; % Maximize f i g u r e .
56 end
57 end

sat_const.txt

1 S a t e l l i t e and camera c o n s t a n t s (s a t _ c o n s t . t x t)
2 =================================
3 e a r t h _ r a d i u s 6371
4 g_param 398601
5 gw_mean_wl 20
6 gw_min_wl 15
7 gw_mean_speed 25
8 height_OH 89
9 airglow_wl 0 . 0 0 0 0 0 1 5

10 =================================
11 Footer Comments

sat_param.txt

1 S a t e l l i t e and camera p a r a m e t e r s (sat_param.txt)
2 Set 1 Set 2 Set 3 Set 4
3 ==
4 h e i g h t _ s a t 500 500 350 350
5 FOV 40 40 30 30
6 a r r a y _ s i z e 128 256 256 128
7 r e s e t _ t i m e 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
8 ==

show_video_thumbnails.m

1 f u n c t i o n thumbnails = show_video_thumbnails (v i d e o s)
2 thumbnails = c e l l (1 , l e n g t h (v i d e o s)) ;
3 t i t l e s = c e l l (1 , l e n g t h (v i d e o s)) ;
4
5 f o r i n d e x = 1 : l e n g t h (v i d e o s) ;
6 %s u b p l o t (1 , l e n g t h (v i d e o s) , i n d e x)
7 %Pick the f i r s t frame o f the v i d e o as thumbnail :
8 thumbnails { i n d e x } = u i n t 8 (v i d e o s { i n d e x } (: , : , 1)) ;
9 t i t l e s { i n d e x } = num2str (i n d e x) ;

10 end
11
12 plot_im_stack (thumbnails , ' q ' , t i t l e s)
13 end

step_im_sequence.m

1 f u n c t i o n step_im_sequence (im_matrix)
2 % S c a l e image to f i l l a l a r g e r window :
3 approx_res = 6 0 0 ;
4 s c a l e _ f a c t o r = round (approx_res / s i z e (im_matrix , 1)) ;
5 im_matrix_sc = i m r e s i z e (im_matrix , s c a l e _ f a c t o r) ;
6 % Show one image at a time s e p a r a t e d by button p r e s s :
7 f i g u r e
8 %s e t (g c f , ' P o s i t i o n ' , g e t (0 , ' S c r e e n s i z e ')) ;

180

E.4. IMAGE AVERAGING

9 f o r i = 1 : s i z e (im_matrix , 3)
10 imshow (u i n t 8 (im_matrix_sc (: , : , i))) ;
11 w a i t f o r b u t t o n p r e s s
12 end
13 c l o s e g c f %c l o s e the c u r r e n t f i g u r e
14 end

struct_names_rec.m

1 f u n c t i o n [outer_names c o u n t e r] = struct_names_rec (s t r u c t _ i n , outer_names , c o u n t e r)
2
3 c e l l _ i n = s t r u c t 2 c e l l (s t r u c t _ i n) ;
4 names = f i e l d n a m e s (s t r u c t _ i n) ;
5 s t r u c t _ l e n g t h = s i z e (names , 1) ;
6 %i s s t r u c t _ a r r a y = ones (s t r u c t _ l e n g t h) ;
7
8 f o r i = 1 : s t r u c t _ l e n g t h
9 c o u n t e r = c o u n t e r +1;

10 outer_names{ c o u n t e r } = names{ i } ;
11 i s s t r u c t _ a r r a y (i) = i s s t r u c t (c e l l _ i n { i , 1 , 1 }) ;
12 i f (i s s t r u c t _ a r r a y (i) ==1)
13 i n n e r _ s t r u c t= c e l l _ i n { i , 1 , 1 } ;
14 [outer_names c o u n t e r] = ...

struct_names_rec (i n n e r _ s t r u c t , outer_names , c o u n t e r) ;
15 end
16 end
17 end

struct_values_rec.m

1 f u n c t i o n [s t r _ c e l l c o u n t e r] = s t r u c t _ v a l u e s _ r e c (c e l l _ i n , s t r _ c e l l , c o u n t e r)
2 s t r u c t _ l e n g t h = l e n g t h (c e l l _ i n) ;
3
4 f o r i = 1 : s t r u c t _ l e n g t h
5 i s s t r u c t _ a r r a y (i) = i s s t r u c t (c e l l _ i n { i }) ;
6 c o u n t e r=c o u n t e r +1;
7 i f (i s s t r u c t _ a r r a y (i) == 0)
8 s t r _ c e l l { c o u n t e r } = num2str (c e l l _ i n { i }) ;
9 e l s e

10 s t r _ c e l l { c o u n t e r } = '−−−−−− ' ;
11 i n n e r _ c e l l = s t r u c t 2 c e l l (c e l l _ i n { i }) ;
12 [s t r _ c e l l c o u n t e r] = s t r u c t _ v a l u e s _ r e c (i n n e r _ c e l l , s t r _ c e l l , c o u n t e r) ;
13 end
14 end
15 end

video_frame_comb.m

1 f u n c t i o n [im_comb im_comb_cropped] = video_frame_comb (video , video_param , ...
frames_to_combine)

2
3 f r a m e _ s h i f t = v i d e o _ p a r a m . f r a m e _ s h i f t ;
4 l o w r e s = video_param.size_out ;
5 %f ra me s = video_param.frames ;
6 fr am es = frames_to_combine ;
7
8 t o t a l _ s h i f t = c e i l (fr am es ∗ f r a m e _ s h i f t) ;
9 im_comb = z e r o s (l o w r e s+t o t a l _ s h i f t) ; %D e f i n i n g the s i z e o f the r e s u l t i n g ...

combined image
10 im_comb (1 : s i z e (video , 1) , 1 : s i z e (video , 2))=v i d e o (: , : , 1) ; %P l a c i n g the f i r s frame
11 f o r i = 2 : fr am es
12 % Zero−padding and i n t e r p o l a t i o n :
13 im_in = v i d e o (: , : , i) ; % Rename (too s i m i l a r to i n t e r p o l a t i o n . . .)
14 % i n p u t g r i d :
15 x_in = (1 : l o w r e s) +((i−1)∗ f r a m e _ s h i f t (2)) ;
16 y_in = (1 : l o w r e s) +((i−1)∗ f r a m e _ s h i f t (1)) ;
17 [X_in Y_in] = meshgrid (x_in , y_in) ;
18 % i n t e r p o l a t e d g r i d :

181

APPENDIX E. MATLAB CODE

19 x_interp = 1 : s i z e (im_comb , 2) ;
20 y_interp = 1 : s i z e (im_comb , 1) ;
21 [X_interp Y_interp] = meshgrid (x_interp , y_interp) ;
22 % I n t e r p o l a t i o n and z e r o f i l l i n g :
23 im_interp = i n t e r p 2 (X_in , Y_in , im_in , X_interp , Y_interp) ;
24 im_interp (i s n a n (im_interp)) = 0 ;
25 % Adding to the r e s u l t i n g image :
26 im_comb = im_comb+im_interp ;
27 end
28 im_comb = u i n t 8 (im_comb/ fr am es) ;
29 im_comb_cropped = u i n t 8 (im_comb (: , t o t a l _ s h i f t (2) : (end−t o t a l _ s h i f t (2)−1))) ;
30
31 end

video_maker.m

1 f u n c t i o n v i d e o = video_maker (im_in , video_param , image_param)
2 % s i z e _ o u t and f r a m e _ s h i f t a r e r e l a t i v e to the low r e s o l u t i o n image !
3 %im_in = double (im_in) ; % any way to c a s t a u t o m a t i c a l l y when c a l l e d ?
4 % n o i s e _ s t d i s the s t a n d a r d d e v i a t i o n o f the n o i s e (s h o u l d be z e r o i f no n o i s e)
5 % % s i z e _ o u t = get_video_param (video_param , ' s iz e _ ou t ') ;
6 % % fr am es = get_video_param (video_param , ' frames ') ;
7 % % f r a m e _ s h i f t = get_video_param (video_param , ' f r a m e _ s h i f t ') ;
8 % % n o i s e _ s t d = get_video_param (video_param , ' noise_std ') ;
9 s i z e _ o u t = video_param.size_out ;

10 fr am es = video_param.frames ;
11 f r a m e _ s h i f t = v i d e o _ p a r a m . f r a m e _ s h i f t ;
12 exp_time = video_param.exp_time ;
13 %n o i s e _ s t d _ n o r m a l i z e d = image_param.noise_std ;
14 SNR_factor = image_param.SNR_factor ;
15 i n t e n s i t y = i m a g e _ p a r a m . i n t e n s i t y ;
16
17 i f (SNR_factor ==0)
18 n o i s e _ s t d = 0 ;
19 e l s e
20 n o i s e _ s t d = i n t e n s i t y /(SNR_factor ∗ s q r t (exp_time)) ;
21 end
22 %n o i s e _ s t d = n o i s e _ s t d _ n o r m a l i z e d ∗ s q r t (exp_time) ;
23 r e s _ r a t i o = min (s i z e (im_in) . / s i z e _ o u t) ; %The r a t i o between the low and high ...

r e s o l u t i o n , assuming a r e c t a n g u l a r image
24 v i d e o = z e r o s ([s i z e _ o u t f ra me s]) ; %Making a 3 dim matrix f o r video , l a s t i n d e x ...

i s frame number
25 f o r i = 1 : fr am es
26 y=0;
27 x=0;
28 s h i f t _ h i g h r e s = f r a m e _ s h i f t . ∗ r e s _ r a t i o ;
29 s i z e _ h i g h r e s = s i z e _ o u t . ∗ r e s _ r a t i o ;
30 y = ((1 : s i z e _ h i g h r e s (1))+round (s h i f t _ h i g h r e s (1) ∗(i−1))) ; %must round to make...

i n t e g e r i n d e x . Any b e t t e r s o l u t i o n s ? I n t e r p o l a t i o n ?
31 x = ((1 : s i z e _ h i g h r e s (2))+round (s h i f t _ h i g h r e s (2) ∗(i−1))) ;
32 % y = (1 : s i z e _ o u t (1) ∗ r e s _ r a t i o)+f r a m e _ s h i f t (1) ∗ r e s _ r a t i o ;
33 % x = (1 : s i z e _ o u t (2) ∗ r e s _ r a t i o)+f r a m e _ s h i f t (2) ∗ r e s _ r a t i o ;
34 i f ((y (end) <= s i z e (im_in , 1)) && (x (end) <= s i z e (im_in , 2))) %c h e k i n g i f the ...

i n p u t image i s l a r g e enough
35 im_highres = im_in (y , x) ;
36 im_lowres = i m r e s i z e (im_highres , s i z e _ o u t) ;
37 e l s e
38 i = f ra me s +1; %(noen s m a r t e r e åmte å a v b r y t e ø f o r l k k e åp ?)
39 end
40 v i d e o (: , : , i) = im_lowres+(u i n t 8 (256∗ n o i s e _ s t d ∗ randn (s i z e _ o u t))) ;
41 %v i d e o (: , : , i) = im_lowres ;
42 end
43 end

video_sim.m

1 %% −−−−−Video s i m u l a t i o n s c r i p t−−−−−−−−
2 % S c r i p t f o r s i m u l a t i o n o f v i d e o g e n e r a t i o n
3 % Computes and d e f i n e s s e t s o f d i f f e r e n t p a r a m e t e r s f o r v i d e o g e n e r a t i o n and s t o r e s
4 % them i n the s t r u c t s satcam_param , video_param and image_param.
5 % S e r i e s o f v i d e o s a r e then g e n e r a t e d by videomaker2 , with the parameter s e t s ...

chosen i n p a r a m e t e r s . T
6
7 % To show any o f the f i n i s h e d v i d e o s (number 1 i n t h i s example) :
8 % implay (u i n t 8 (v i d e o s {1}) ,0 . 2 5 ∗ video_param (1) . f r a m e _ r a t e)
9 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

182

E.4. IMAGE AVERAGING

10 c l o s e a l l
11 c l e a r a l l
12
13 %% D e f i n e p o s s i b l e frame r a t e and v i d e o d u r a t i o n :
14 frame_rate = [5 1 0] ;
15 video_time = 5 ; %s e t t i n g number o f f ra me s as a c o n s t a n t t i m e s frame r a t e
16 fr am es = v i d e o _ t i m e . ∗ frame_rate ;
17
18 %% Read p a r a m e t e r s from f i l e s and g e n e r a t e v i d e o p a r a m e t e r s
19 %(Generate v i d e o p a r a m e t e r s f o r d i f f e r e n t c o m b i n a t i o n s o f s a t e l i t e
20 %p a r a m e t e r s and frame r a t e s)
21 i =1;
22 k=1;
23 w h i l e (i ~= 0) % runs as l o n g as import_vars manages to read a new column from ...

sat_param.txt
24 t r y
25 % I m p o r t i n g and computing s a t e l l i t e and camera p a r a m e t e r s and c o n s t a n t s :
26 satcam_param (i) = compute_and_set_satcam_param (i) ;
27 % Computing and s e t t i n g v i d e o p a r a m e t e r s :
28 f o r j = 1 : l e n g t h (frame_rate)
29 video_param (k) = ...

compute_and_set_video_param (satcam_param (i) , frame_rate (j) , f ra me s (j)) ;
30 k=k+1;
31 end
32 i=i +1;
33 c a t c h me
34 i =0;
35 %rethrow (me) %f o r debugging o f the t h i n g s i n s i d e t r y
36 end
37 end
38
39 % D i s p l a y the v i d e o p a r a m e t e r s :
40 d i s p l a y _ s t r u c t _ r o w s _ r e c (video_param)
41
42 %% D e f i n e p a r a m e t e r s f o r s i n e image used f o r v i d e o g e n e r a t i o n :
43 %(syntax : dc l e v e l , SNR_factor , a n g l e)
44 image_param (1) = compute_and_set_image_param (0 .6 , 0 , 10) ;
45 image_param (2) = compute_and_set_image_param (0 .6 , 5 , 10) ;
46 image_param (3) = compute_and_set_image_param (0 .6 , 20 , 10) ;
47 image_param (4) = compute_and_set_image_param (0 .6 , 50 , 10) ;
48 image_param (5) = compute_and_set_image_param (0 .6 , 100 , 10) ;
49
50 %% D e f i n e parameter s e t c o m b i n a t i o n s f o r v i d e o making :
51 %(Choose c o m b i n a t i o n s o f v i d e o p a r a m e t e r s and image p a r a m e t e r s
52 % Syntax : [video_param image_param] , p o s s i b l e to g e n e r a t e s e v e r a l s e t s)
53
54 name = ' r e p o r t _ s e t _ t e s t i n g ' ;
55 p a r a m e t e r _ s e t s = [. . . %new syntax : video_param image_param
56 3 1
57 3 2
58 3 3
59 3 4
60 3 5] ;
61
62 %% Making high r e s o l u t i o n images and low r e s o l u t i o n v i d e o :
63 f o r j = 1 : s i z e (parameter_sets , 1)
64 %S e t t i n g c u r r e n t image and v i d e o p a r a m e t e r s
65 v_index = p a r a m e t e r _ s e t s (j , 1) ;
66 im_index = p a r a m e t e r _ s e t s (j , 2) ;
67 % Make high r e s o l u t i o n image and c o r r e s p o n d i n g v i d e o with c u r r e n t p a r a m e t e r s :
68 h i g h r e s _ i m a g e s { j } = make_sine_image_for_video (video_param (v_index) , ...

image_param (im_index)) ;
69 v i d e o s { j } = ...

video_maker (h i g h r e s _ i m a g e s { j } , video_param (v_index) , image_param (im_index)) ;
70 % D i s p l a y a l l the p a r a m e t e r s :
71 d i s p (['−−−−−−−−−−Parameters v i d e o ' num2str (j) '−−−−−−−−−−−−−−− '])
72 d i s p (video_param (v_index))
73 d i s p (' −−−−−−−−−−−−−−−−−−−− ')
74 d i s p (video_param (v_index) .satcam_param)
75 d i s p (' −−−−−−−−−−−−−−−−−−−− ')
76 d i s p (image_param (im_index))
77 % C o l l e c t a l l the p a r a m e t e r s :
78 all_param (j) = s t r u c t (' video_param ' , video_param (v_index) , . . .
79 ' image_param ' , image_param (im_index)) ;
80 end
81 %% Save v i d e o s and c o r r e s p o n d i n g p a r a m e t e r s f o r use i n t e s t s c r i p t s :
82 s a v e ([' videos_ ' name] , ' v i d e o s ')
83 s a v e ([' parameters_ ' name] , ' all_param ')

Video parameters
Example of video parameters sets generated by video_sim:

183

APPENDIX E. MATLAB CODE

1 1 2 3 4 5
2 video_param −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
3 s i z e _ o u t 256 256 256 256 256 256 256 256 256 ...

256
4 fr ame s 25 25 25 25 25
5 frame_rate 5 5 5 5 5
6 f r a m e _ s h i f t 0 1 . 2 2 5 5 0 1 . 2 2 5 5 0 1 . 2 2 5 5 0 1 . 2 2 5 5 0 ...

1 . 2 2 5 5
7 h i g h r e s 2507 2807 2507 2807 2507 2807 2507 2807 2507...

2807
8 exp_time 0 . 1 9 0 . 1 9 0 . 1 9 0 . 1 9 0 . 1 9
9 satcam_param −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−

10 T 5668 . 1 4 0 4 5668 . 1 4 0 4 5668 . 1 4 0 4 5668 . 1 4 0 4 ...
5668 . 1 4 0 4

11 speed_sat_OH 7160 . 9 6 8 9 7160 . 9 6 8 9 7160 . 9 6 8 9 7160 . 9 6 8 9 ...
7160 . 9 6 8 9

12 image_cov 299183 . 5 3 2 6 299183 . 5 3 2 6 299183 . 5 3 2 6 299183 . 5 3 2 6 ...
299183 . 5 3 2 6

13 image_cov_wl 19 . 9 4 5 6 19 . 9 4 5 6 19 . 9 4 5 6 19 . 9 4 5 6 19 . 9 4 5 6
14 s p a t _ r e s 1168 . 6 8 5 7 1168 . 6 8 5 7 1168 . 6 8 5 7 1168 . 6 8 5 7 ...

1168 . 6 8 5 7
15 image_speed 6 . 1 2 7 4 6 . 1 2 7 4 6 . 1 2 7 4 6 . 1 2 7 4 6 . 1 2 7 4
16 h e i g h t _ s a t 500 500 500 500 500
17 FOV 40 40 40 40 40
18 a r r a y _ s i z e 256 256 256 256 256
19 r e s e t _ t i m e 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
20 image_param −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
21 i n t e n s i t y 0 . 6 0 . 6 0 . 6 0 . 6 0 . 6
22 SNR_factor 0 5 20 50 100
23 s i n e _ a m p l i t u d e 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3
24 s i n e _ a n g l e 10 10 10 10 10

E.5 Motion Blur
make_chirp_image.m

1 f u n c t i o n im_chirp = make_chirp_image (f_x)
2
3 i f (n a r g i n ==0)
4 f_x = [5 10 20 40 70 1 0 0] ; %c y c l e s per image
5 end
6 f_x
7 N = l e n g t h (f_x) ;
8 l e n = 2 0 0 ;
9 im_chirp = z e r o s (3 0 0 ,N∗ l e n) ; %Set s i z e and r e s o l u t i o n o f c h i r p image

10 f_x = f_x /(N∗ l e n) ; %c y c l e s per p i x e l
11
12 i n t e n s i t y= 0 . 5 ;
13 amplitude= 0 . 3 ;
14
15 s t a r t _ p o s = 1 ;
16 phase = z e r o s (1 ,N) ;
17 phase (1) = 0 ;
18 f o r i = 1 :N
19 end_pos = s t a r t _ p o s+len −1;
20 n = 0 : len −1;
21 s i n e = amplitude ∗ s i n (2∗ p i ∗ f_x (i) ∗n+phase (i))+i n t e n s i t y ;
22 im_chirp (: , s t a r t _ p o s : end_pos) = ones (s i z e (im_chirp , 1) , 1) ∗ s i n e ;
23 s t a r t _ p o s = end_pos +1;
24 phase (i +1) = phase (i) +2∗ p i ∗ f_x (i) ∗ l e n ;
25 end
26
27 im_chirp = u i n t 8 (256∗ im_chirp) ;

make_sinus_image.m

1 f u n c t i o n im_sinus = make_sinus_image (im_size , num_of_periods , i n t e n s i t y , ...
amplitude , a n g l e)

2 %making an image with s i n u s o i d a l s t r i p e s o f with mean " i n t e n s i t y " and
3 %amplitude " amplitude "
4 %a n g l e g i v e n i n d e g r e e s , 0 = v e r t i c a l s t r i p e s
5
6 im_sinus=z e r o s (im_size) ;

184

E.5. MOTION BLUR

7 N = s i z e (im_sinus , 2) ;
8 M = s i z e (im_sinus , 1) ;
9 kx = c o s (a n g l e ∗ p i /180) ∗ num_of_periods /N;

10 ky = s i n (a n g l e ∗ p i /180) ∗ num_of_periods /N;
11 u = (1 :N) ∗(2∗ kx∗ p i) ;
12 U = ones (M, 1) ∗u ;
13 v = (1 :M) ∗(2∗ ky∗ p i) ;
14 V = v ' ∗ ones (1 ,N) ;
15
16 im_sinus = amplitude ∗ s i n (U+V)+i n t e n s i t y ;
17 im_sinus = u i n t 8 (256∗ im_sinus) ;
18 end

make_sinus_image2.m

1 f u n c t i o n im_sinus = make_sinus_image2 (im_size , p e r i o d , i n t e n s i t y , amplitude , a n g l e)
2 %making an image with s i n u s o i d a l s t r i p e s o f with mean " i n t e n s i t y " and
3 %amplitude " amplitude "
4 %p e r i o d i s the p e r i o d o f the s i n e i n #p i x e l s
5
6 im_sinus=z e r o s (im_size) ;
7 N = s i z e (im_sinus , 2) ;
8 M = s i z e (im_sinus , 1) ;
9 kx = c o s (a n g l e ∗ p i /180) ∗(1/ p e r i o d) ;

10 ky = s i n (a n g l e ∗ p i /180) ∗(1/ p e r i o d) ;
11 u = (1 :N) ∗(2∗ kx∗ p i) ;
12 U = ones (M, 1) ∗u ;
13 v = (1 :M) ∗(2∗ ky∗ p i) ;
14 V = v ' ∗ ones (1 ,N) ;
15
16 im_sinus = amplitude ∗ s i n (U+V)+i n t e n s i t y ;
17 end

motionblur_deconv.m

1 f u n c t i o n im_recovered = motionblur_deconv (im_blurred , h_motionblur)
2 % R e s t o r a t i o n o f motion b l u r r e d image , with e d g e t a p e r and r i c h a r d s o n l u c y ...

d e c o n v o l u t i o n
3 num_it = 1 5 ;
4 h_gaussian = f s p e c i a l (' g a u s s i a n ' , 15 , 7) ;
5
6 im_edgetaper = e d g e t a p e r (im_blurred , h_gaussian) ;
7 im_recovered = d e c o n v l u c y (im_edgetaper , h_motionblur , num_it) ;
8 end

motionblur_maker.m

1 f u n c t i o n [im_blurred_mat h_mb] = motionblur_maker (im , blur_len , b l u r _ a n g l e)
2 %S i m u l a t i o n o f motion blur , r e t u r n i n g a matrix with b l u r r e d images and
3 %b l u r k e r n e l s
4 %(f o r m e r name : mb_sim)
5
6 i f (nargin <4)
7 b l u r _ a n g l e =0;
8 end
9

10 c u t_ l en g th = c e i l (max(b l u r _ l e n) /3) ; %D e f i n i n g how much to cut a c c o r d i n g to ...
b l u r l e n g t h

11
12
13 %im_blurred_mat = z e r o s (s i z e (im , 1)−2∗cut_length , s i z e (im , 2)−2∗cut_length , ...

l e n g t h (b l u r _ l e n) +1) ;
14 im_blurred_mat = c e l l (l e n g t h (b l u r _ l e n) +1) ;
15
16 % Cutting , p l o t t i n g and s a v i n g the o r i g i n a l image :
17 im_cut = ...

im ((cu t _l e ng t h +1) : (end−c ut _ le n gt h) , (c ut _ le n gt h +1) : (end−c ut _ le n gt h)) ; ...
%Cut to compare with b l u r r e d image

185

APPENDIX E. MATLAB CODE

18 im_blurred_mat {1} = im_cut ;
19 h_mb{1}=0;
20 %{
21 f i g u r e
22 s u b p l o t (c e i l (l e n g t h (b l u r _ l e n) /3) , 3 , 1)
23 imshow (im_cut)
24 t i t l e (im_name) ;
25 %}
26
27 % G e n e r a t i n g and p l o t t i n g b l u r r e d images :
28
29 f o r i = 1 : l e n g t h (b l u r _ l e n)
30 % Create b l u r
31 h_mb{ i +1} = f s p e c i a l (' motion ' , b l u r _ l e n (i) , b l u r _ a n g l e) ;
32 temp = i m f i l t e r (im , h_mb{ i +1}, ' conv ' , ' r e p l i c a t e ') ;
33
34 % Cut e d g e s to a v o i d a r t i f a c t s :
35 im_blurred_mat{ i +1} = ...

temp ((c ut _ le n gt h +1) : (end−c ut _ le n gt h) , (c ut _ le n gt h +1) : (end−c ut _ le n gt h)) ;
36
37 % P l o t
38 %{
39 s u b p l o t (c e i l (l e n g t h (b l u r _ l e n) /3) , 3 , i +1)
40 imshow (u i n t 8 (im_blurred_mat (: , : , i +1)))
41 t i t l e ([' b l u r l e n g t h =' num2str (f l o o r (b l u r _ l e n (i)))]) ;
42 %}
43 end
44 end

motionblur_sim.m

1 %% S i m u l a t i o n o f motion b l u r
2 c l o s e a l l
3 c l e a r a l l
4
5 %To s a v e f i g u r e s :
6 %s a v e a s (g c f , '/ home/ marianne / S k o l e /NUTS/ r e p o r t 2 / m a t l a b f i g u r e r /name ' , ' f i g ')
7 %s a v e a s (g c f , '/ home/ marianne / S k o l e /NUTS/ r e p o r t 2 / m a t l a b f i g u r e r /name ' , ' pdf ')
8
9 % number_of_pixels = 5 1 2 ;

10 % i n t e n s i t y = 0 . 6 ;
11 % amplitude = 0 . 0 5 ∗ i n t e n s i t y ;
12 % a n g l e = 0 ;
13 % number_of_periods = [2 3 4 5 6 1 0] ;
14 % v_im = 0 . 0 2 ; %image v e l o c i t y r e l a t i v e to image s i z e !
15 % t _ i n t = 1 ;
16 % b l u r _ l e n = v_im∗ t _ i n t ; %b l u r l e n g t h r e l a t i v e to image s i z e ! ! !
17 % b l u r _ a n g l e = 0 ;
18 %
19 % f o r i = 1 : l e n g t h (number_of_periods)
20 % im_sinus = make_sinus_image (number_of_pixels , ...

number_of_periods (i) , i n t e n s i t y , amplitude , a n g l e) ;
21 % [im_blurred_mat{ i } h_mb{ i }] = motionblur_maker (im_sinus , ...

b l u r _ l e n ∗ number_of_pixels , b l u r _ a n g l e) ;
22 % im_blurred_stack { i } = im_blurred_mat{ i }{2};
23 % end
24
25 %plot_im_stack (im_blurred_stack , ' q ')
26 %
27 %
28 %% −−−−P l o t t i n g o f f r e q u e n c y r e s p o n s e :
29 % v_im = 1 ;
30 % t _ i n t = 1 ;
31 % u = l i n s p a c e (0 , 1 0 , 1 0 0 0) ;
32 % H = 1 . /(p i ∗u∗v_im) . ∗ s i n (p i ∗u∗v_im∗ t _ i n t) ;
33 % f i g u r e (1 0)
34 % p l o t (u ,H)
35 % g r i d on
36 % x l a b e l (' Frequency [c y c l e s / image] ')
37 % hold on
38 %% Computing z e r o s :
39 % c l e a r a l l
40 % syms v
41 % syms v_im
42 % syms t _ i n t
43 % H = 1/(p i ∗v∗v_im) ∗ s i n (p i ∗v∗v_im∗ t _ i n t) ;
44 % %diff_H = d i f f (H) ;
45 % v = s o l v e (H)
46
47
48 %% p l o t t i n g z e r o s :
49 %v_im = 0 . 0 1 8 5 ; %c o r r e s p o n d i n g p a r a m e t e r s : 550 ,45
50 v_im = 0 . 0 2 4 ; %c o r r e s p o n d i n g to image c o v e r a g e 300 km, V' = 7 . 1 6 (h_sat = 500)

186

E.5. MOTION BLUR

51 t _ i n t = l i n s p a c e (0 , 5 , 100) ;
52 im_cov = 3 0 0 ;
53 z e r o c r o s s i n g s = 1 . /(v_im∗ t _ i n t) ;
54 z er o _w a ve l en g th s = im_cov. / z e r o c r o s s i n g s ;
55 f i g u r e
56 p l o t (t_int , z er o _w a ve l en g th s)
57 x l a b e l (' I n t e g r a t i o n time [s] ')
58 y l a b e l (' Wavelength at f i r s t z e r o [km] ')
59
60 f i g u r e
61 p l o t (t_int , z e r o c r o s s i n g s)
62 x l a b e l (' I n t e g r a t i o n time [s] ')
63 y l a b e l (' Wavelength at f i r s t z e r o [km] ')
64 a x i s ([0 5 0 2 0 0])
65
66
67 v_im = [0 . 0 1 0 7 0 . 0 1 3 3 0 . 0 1 8 5 0 . 0 2 8 7 0 . 0 3 7 4] ;
68 %c o r r e s p o n d i n g p a r a m e t e r s : 650 ,60 − 550 ,60 − 550 ,45 − 550 ,30 − 450 ,30
69 im_cov = [6 4 8 532 382 247 1 9 3] ; %c o r r e s p o n d i n g image c o v e r a g e
70 t _ i n t = l i n s p a c e (0 , 1 0 , 100) ;
71 f i g u r e
72 c o l o u r s = [' b ' ' r ' ' g ' ' c ' 'm'] ;
73 f o r i = 1 : l e n g t h (v_im)
74 z e r o c r o s s i n g s = 1 . /(v_im (i) ∗ t _ i n t) ;
75 ze r o_ w av e le n gt h s = im_cov (i) . / z e r o c r o s s i n g s ;
76 p l o t (t_int , zero_wavelengths , c o l o u r s (i))
77 hold on
78 end
79 l e g e n d (' 650 ,60 ' , ' 550 ,60 ' , ' 550 ,45 ' , ' 550 ,30 ' , ' 450 ,30 ')
80 x l a b e l (' I n t e g r a t i o n time [s] ')
81 y l a b e l (' Wavelength at f i r s t z e r o [km] ')
82
83 % %Computing second d e r i v a t i v e to f i n d " vendepunkt " :
84 % delta_x = u (2)−u (1) ;
85 % ddH = (H(1 : end−2)−2∗H(2 : end−1)+H(3 : end)) / delta_x ^ 2 ;
86 % p l o t (u (2 : end−1) ,10∗ddH)
87 % g r i d on
88 %
89 % syms u
90 % H = 1/(p i ∗u∗v_im) ∗ s i n (p i ∗u∗v_im∗ t _ i n t) ;
91 % diff_H = d i f f (d i f f (H))
92 % s o l v e (diff_H)
93
94 %% T e s t i n g with c h i r p image :
95 %−−−parameters−−−−
96 c h i r p _ f r e q = [5 10 15 20 25 3 0] ;
97 im_chirp = make_chirp_image (c h i r p _ f r e q) ;
98 t _ i n t = [1 2 3] ;
99 v_im = 0 . 0 2 4 ; %image v e l o c i t y r e l a t i v e to image s i z e !

100 b l u r _ l e n = v_im∗ t _ i n t ; %b l u r l e n g t h r e l a t i v e to image s i z e ! ! !
101 b l u r _ a n g l e = 0 ;
102 number_of_pixels = s i z e (im_chirp , 2) ;
103 % %−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 % make c h i r p image :
105 [im_blurred_mat_chirp h_mb] = motionblur_maker (im_chirp , ...

b l u r _ l e n ∗ number_of_pixels , b l u r _ a n g l e) ;
106 %p l o t c h i r p image :
107 % t i t l e s {1}=[' S i n e f r e q u e n c i e s : ' mat2str (c h i r p _ f r e q) ' , O r i g i n a l image '] ;
108 % f o r i = 1 : l e n g t h (b l u r _ l e n)
109 % t i t l e = [' S i n e f r e q u e n c i e s : ' mat2str (c h i r p _ f r e q) ' , e x p o s u r e time = ' ...

num2str (t _ i n t (i))] ;
110 % t i t l e s { i +1} = t i t l e ;
111 % end
112 % plot_im_stack (im_blurred_mat_chirp , ' l ' , t i t l e s)
113
114
115 %% P l o t b l u r and f r e q u e n c y r e s p o n s e t o g e t h e r
116 % c l e a r t i t l e
117 % f i g u r e
118 % s u b p l o t (5 , 1 , 1)
119 % %f r e q r e s p o n s e :
120 % u = l i n s p a c e (1 , 1 0 0 , 1 0 0 0) ;
121 % c o l o r = [' r ' ' g ' ' b '] ;
122 % f o r i = 1 : l e n g t h (b l u r _ l e n)
123 % H = 1 . /(p i ∗u∗v_im) . ∗ s i n (p i ∗u∗ b l u r _ l e n (i)) ;
124 % p l o t (u , H, c o l o r (i))
125 % hold on
126 % end
127 % g r i d on
128 % %t i t l e (' Motion b l u r f i l t e r i n the f r e q u e n c y domain ')
129 % x l a b e l (' Frequency [c y c l e s / image] ')
130 % a x i s ([2 . 5 32 . 5 −0 . 7 3])
131 % l e g e n d ([' t_{ i n t } =' num2str (t _ i n t (1))] , [' t_{ i n t } =' ...

num2str (t _ i n t (2))] , [' t_{ i n t } =' num2str (t _ i n t (3))])
132 % hold o f f
133 % %images :
134 % s u b p l o t (5 , 1 , 2)
135 % imshow (im_blurred_mat_chirp {1})
136 % t i t l e (' f r e q : [5 10 15 20 25 3 0] , o r i g i n a l ')
137 % s u b p l o t (5 , 1 , 3)

187

APPENDIX E. MATLAB CODE

138 % imshow (im_blurred_mat_chirp {2})
139 % t i t l e (' f r e q : [5 10 15 20 25 3 0] , t_{ i n t } = 1 ')
140 % s u b p l o t (5 , 1 , 4)
141 % imshow (im_blurred_mat_chirp {3})
142 % t i t l e (' f r e q : [5 10 15 20 25 3 0] , t_{ i n t } = 2 ')
143 % s u b p l o t (5 , 1 , 5)
144 % imshow (im_blurred_mat_chirp {4})
145 % t i t l e (' f r e q : [5 10 15 20 25 3 0] , t_{ i n t } = 3 ')
146 %
147 % t i t l e s = { ' (b) O r i g i n a l image ' , ' (c) Exposure time 1 s ' , ' (d) Exposure time 2 ...

s ' , ' (e) Exposure time 3 s ' }
148 % plot_im_stack (im_blurred_mat_chirp , ' l ' , t i t l e s)
149 %
150 %
151 %
152 % %% −−− D e b l u r r i n g a s i n g l e c h i r p image :
153 % blur_index = 4 ;
154 % im_blurred = im_blurred_mat_chirp { blur_index } ;
155 % h_motionblur = h_mb{ blur_index } ;
156 % num_it = 1 5 ;
157 % h_gaussian = f s p e c i a l (' g a u s s i a n ' , 15 , 7) ;
158 % im_r_plain = d e c o n v l u c y (im_blurred , h_motionblur , num_it) ;
159 % im_edgetaper = e d g e t a p e r (im_blurred , h_gaussian) ;
160 % im_r_edgetaper = d e c o n v l u c y (im_edgetaper , h_motionblur , num_it) ;
161 %
162 % % p l o t with f r e q u e n c y r e s p o n s e :
163 % f i g u r e
164 % s u b p l o t (4 , 1 , 4)
165 % imshow (im_r_edgetaper)
166 % s u b p l o t (4 , 1 , 3)
167 % imshow (im_blurred)
168 % s u b p l o t (4 , 1 , 2)
169 % imshow (im_blurred_mat_chirp {1})
170 % s u b p l o t (4 , 1 , 1)
171 % u = l i n s p a c e (min (c h i r p _ f r e q) ,max(c h i r p _ f r e q) , 1 0 0 0) ;
172 % H = 1 . /(p i ∗u∗v_im) . ∗ s i n (p i ∗u∗ b l u r _ l e n (blur_index−1)) ;
173 % p l o t (u ,H)
174 % g r i d on
175 % x l a b e l (' Frequency [c y c l e s / image] ')
176 % a x i s ([min (c h i r p _ f r e q)−2 . 5 max(c h i r p _ f r e q)+2 . 5 −0. 5 2 1 . 9])
177
178 % % D e b l u r r i n g s e v e r a l c h i r p images :
179 % t i t l e s {1}=[' S i n e f r e q u e n c i e s : ' mat2str (c h i r p _ f r e q) ' , O r i g i n a l image '] ;
180 % im_r_mat_chirp {1} = im_blurred_mat_chirp { 1 } ;
181 % f o r i = 1 : l e n g t h (b l u r _ l e n)
182 % im_blurred = im_blurred_mat_chirp { i +1};
183 % h_motionblur = h_mb{ i +1};
184 % im_r_plain = d e c o n v l u c y (im_blurred , h_motionblur , num_it) ;
185 % im_edgetaper = e d g e t a p e r (im_blurred , h_gaussian) ;
186 % im_r_edgetaper = d e c o n v l u c y (im_edgetaper , h_motionblur , num_it) ;
187 %
188 % im_r_mat_chirp{ i +1} = im_r_edgetaper ;
189 % t i t l e = [' S i n e f r e q u e n c i e s : ' mat2str (c h i r p _ f r e q) ' , e x p o s u r e time = ' ...

num2str (t _ i n t (i))] ;
190 % t i t l e s { i +1} = t i t l e ;
191 % end
192 % t i t l e s = { ' (b) O r i g i n a l image ' , ' (c) Exposure time 1 s ' , ' (d) Exposure time 2 ...

s ' , ' (e) Exposure time 3 s ' }
193 % plot_im_stack (im_r_mat_chirp , ' l ' , t i t l e s)
194 %
195
196 %t i t l e (' r e c o v e r e d image ')
197 %d i f f e r e n c e between r e c o v e r e d and o r i g i n a l image :
198 % i m _ d i f f = im_blurred_mat_chirp{1}−im_r_edgetaper ;
199 % f i g u r e
200 % imshow (i m _ d i f f)
201
202 %% b l u r / d e b l u r images :
203 N_px = 2 5 6 ;
204 n r _ p e r i o d s = 2 0 ;
205 i n t e n s i t y = 0 . 6 ;
206 amplitude = 0 . 0 5 ∗ i n t e n s i t y ;
207 a n g l e = 1 0 ;
208
209 im_sine = make_sinus_image (N_px , nr_periods , i n t e n s i t y , amplitude , a n g l e) ;
210
211 t _ i n t = 1 ;
212 v_im = 0 . 0 2 4 ; %image v e l o c i t y r e l a t i v e to image s i z e !
213 b l u r _ l e n = v_im∗ t _ i n t ;
214 [im_blurred_sine h_mb] = motionblur_maker (im_sine , b l u r _ l e n ∗N_px , b l u r _ a n g l e) ;
215
216 num_it = 1 5 ;
217 h_gaussian = f s p e c i a l (' g a u s s i a n ' , 15 , 7) ;
218 %im_r_plain = d e c o n v l u c y (im_blurred_sine {2} ,h_mb{2} , num_it) ;
219 im_edgetaper = e d g e t a p e r (im_blurred_sine {2} , h_gaussian) ;
220 im_r_edgetaper = d e c o n v l u c y (im_edgetaper , h_mb{2} , num_it) ;
221 %
222 % c l e a r t i t l e
223 % f i g u r e
224 % imshow (im_sine)

188

E.5. MOTION BLUR

225 % t i t l e (' o r i g i n a l image ')
226 % f i g u r e
227 % imshow (im_blurred_sine {2})
228 % t i t l e (' b l u r r e d image ')
229 % f i g u r e
230 % imshow (im_r_edgetaper)
231 % t i t l e (' r e c o v e r e d image ')
232
233 %% b l u r / d e b l u r s e v e r a l images :
234 t _ i n t = 0 . 5 : 0 . 1 : 3 ;
235 v_im = 0 . 0 2 4 ; %image v e l o c i t y r e l a t i v e to image s i z e !
236 b l u r _ l e n = v_im∗ t _ i n t ;
237
238 [im_blurred_sine h_mb] = motionblur_maker (im_sine , b l u r _ l e n ∗N_px , b l u r _ a n g l e) ;
239 im_r_mat{1} = im_blurred_sine { 1 } ;
240 im_r_mat_cut{1} = im_blurred_sine {1}(N_px/2−25:N_px/2+25 ,N_px/2−50:N_px/2+50) ;
241 im_blurred_cut {1} = im_blurred_sine {1}(N_px/2−25:N_px/2+25 ,N_px/2−50:N_px/2+50) ;
242 %im_diff_mat{ i +1} = im_r_mat_cut{1}−im_r_mat_cut { 1 } ;
243
244 f o r i = 1 : l e n g t h (b l u r _ l e n)
245 im_blurred = im_blurred_sine { i +1};
246 im_blurred_cut { i +1} = ...

im_blurred_sine { i +1}(N_px/2−25:N_px/2+25 ,N_px/2−50:N_px/2+50) ;
247
248 h_motionblur = h_mb{ i +1};
249
250 %im_r_plain = d e c o n v l u c y (im_blurred , h_motionblur , num_it) ;
251 im_edgetaper = e d g e t a p e r (im_blurred , h_gaussian) ;
252 im_r_edgetaper = d e c o n v l u c y (im_edgetaper , h_motionblur , num_it) ;
253
254 im_r_mat{ i +1} = im_r_edgetaper ;
255 im_r_mat_cut{ i +1} = im_r_edgetaper (N_px/2−25:N_px/2+25 ,N_px/2−50:N_px/2+50) ;
256
257 end
258
259 % % SNR and f r e q u e n c y r e s p o n s e :
260 % snr_r = z e r o s (1 , l e n g t h (t _ i n t)) ;
261 % s n r _ b l u r = z e r o s (1 , l e n g t h (t _ i n t)) ;
262 % f o r i = 1 : l e n g t h (b l u r _ l e n)
263 % im_power = sum (double (im_r_mat_cut { 1 } (:) . ^ 2)) ;
264 % %SNR between o r i g i n a l and r e c o v e r e d image :
265 % im_diff_r = im_r_mat_cut{1}−im_r_mat_cut{ i +1};
266 % diff_r_power = sum (double (im_diff_r (:) . ^ 2)) ;
267 % snr_r (i) = im_power. / diff_r_power ;
268 % %SNR between o r i g i n a l and b l u r r e d image :
269 % i m _ d i f f _ b l u r = im_blurred_cut{1}−im_blurred_cut { i +1};
270 % d i f f _ b l u r _ p o w e r = sum (double (i m _ d i f f _ b l u r (:) . ^ 2)) ;
271 % s n r _ b lu r (i) = im_power. / d i f f _ b l u r _ p o w e r ;
272 % end
273 % u = 2 0 ;
274 % H_20 = 1 . /(p i ∗u∗v_im) . ∗ s i n (p i ∗u∗v_im∗ t _ i n t) ;
275 % H_20_norm = H_20./ t _ i n t ;
276 % %p l o t SNR and f r e q u e n c y r e s p o n s e t o g e t h e r :
277 % c l e a r t i t l e
278 % f i g u r e
279 % p l o t (t_int , 1 0 ∗ l o g 1 0 (s n r _ b l u r) , ' s− ')
280 % hold on
281 % [AX, H1 , H2] = p l o t y y (t_int , 1 0 ∗ l o g 1 0 (snr_r) , t_int , H_20_norm) ;
282 % s e t (g e t (AX(1) , ' Ylabel ') , ' S t r i n g ' , ' SNR (dB) ')
283 % s e t (g e t (AX(2) , ' Ylabel ') , ' S t r i n g ' , ' Normalized |H(f_x = 20) | ' , ' c o l o r ' , ' r ')
284 % s e t (AX(2) , ' YColor ' , ' r ')
285 % s e t (H1 , ' Marker ' , ' o ')
286 % s e t (H2 , ' Color ' , ' r ')
287 % g r i d on
288 % l e g e n d ('SNR b l u r r e d image ' , ' SNR r e c o v e r e d image ' , ' Frequency r e s p o n s e ')
289 % x l a b e l (' I n t e g r a t i o n time [s] ')
290 % p l o t ([2 . 1 2 . 1] , [1 0 4 0] , ' k−−')
291
292 % p l o t t i n g o f many image segments :
293 c l e a r t i t l e
294 c l e a r t i t l e s
295 %i n d e x = [1 0 12 14 15 16 17 18 2 0] ; %l o n g i n t t i m e s
296 i n d e x = [1 2 4 6 8 10 12 1 4] ; %s h o r t i n t t i m e s
297 %i n d e x = [6 12 1 7] ; % t _ i n t =[1 1 . 6 2 . 1] , s e l c t i o n f o r r e p o r t
298 t _ i n t (i n d e x)
299 t i t l e s {1}= ' O r i g i n a l image ' ;
300 p l o t _ r {1} = im_r_mat_cut { 1 } ;
301 p l o t _ b l u r {1} = im_blurred_cut { 1 } ;
302 plot_combo = c e l l (1 , 6) ;
303 t i t l e s _ c o m b o = c e l l (1 , 6) ;
304 %makin image s t a c k s f o r p l o t t i n g :
305 f o r i = 1 : l e n g t h (i n d e x)
306 t i t l e = [' Exposure time = ' num2str (t _ i n t (i n d e x (i)))] ;
307 t i t l e s { i +1} = t i t l e ;
308 p l o t _ r { i +1} = im_r_mat_cut{ i n d e x (i) +1};
309 p l o t _ b l u r { i +1} = im_blurred_cut { i n d e x (i) +1};
310
311 plot_combo {3∗ i−2} = p l o t _ b l u r { i +1}; %dummy image
312 t i t l e s _ c o m b o {3∗ i−2} = ' ' ;
313 plot_combo {3∗ i−1} = p l o t _ b l u r { i +1};

189

APPENDIX E. MATLAB CODE

314 t i t l e s _ c o m b o {3∗ i−1} = ' ' ;
315
316 plot_combo {3∗ i } = p l o t _ r { i +1};
317 t i t l e s _ c o m b o {3∗ i } = ' ' ;
318 end
319 plot_im_stack (p l o t _ b l u r , ' q ' , t i t l e s)
320 plot_im_stack (plot_r , ' q ' , t i t l e s)
321
322 %plot_im_stack (plot_combo , ' q ' , t i t l e s _ c o m b o)
323
324 %% T e s t i n g f o r d e v i a t i o n s i n speed :
325 %s i n e t e s t image
326 N_px = 2 5 6 ;
327 n r _ p e r i o d s = 2 0 ;
328 i n t e n s i t y = 0 . 6 ;
329 amplitude = 0 . 5 ∗ i n t e n s i t y ;
330 a n g l e = 1 0 ;
331 im_sine = make_sinus_image (N_px , nr_periods , i n t e n s i t y , amplitude , a n g l e) ;
332
333 %b l u r r e d image
334 v_im = 0 . 0 2 4 ; %image v e l o c i t y r e l a t i v e to image s i z e !
335 t _ i n t _ t e s t = 1 . 6 ;
336 b l u r _ a n g l e = 0 ;
337 b l u r _ l e n = v_im∗ t _ i n t _ t e s t ;
338 %[im_blurred_sine h_mb] = motionblur_maker (im_sine , b l u r _ l e n ∗N_px , b l u r _ a n g l e) ;
339 %R e c o v e r i n g image with v a r y i n g e s t i m a t e d image speed :
340 %v_im_fake = [1 0 . 6 0 . 8 1 . 1 1 . 2] ∗ v_im ;
341 v_im_fake = [1 0 . 9 1 . 1] ∗ v_im ;
342 b l u r _ l e n _ f a k e = v_im_fake. ∗ t _ i n t _ t e s t ;
343
344 %c h i r p image or s i n e images :
345 %c h i r p :
346 im_test = im_chirp ;
347 N_px = number_of_pixels ;
348 [im_blurred_mat_chirp h_mb] = motionblur_maker (im_test , b l u r _ l e n ∗N_px , b l u r _ a n g l e) ;
349 im_blurred = im_blurred_mat_chirp { 2 } ;
350 im_r_fake = c e l l (1 , l e n g t h (b l u r _ l e n _ f a k e)) ;
351 im_r_fake {1} = im_chirp ;
352 f o r i = 1 : l e n g t h (b l u r _ l e n _ f a k e)
353 h_motionblur = f s p e c i a l (' motion ' , b l u r _ l e n _ f a k e (i) ∗N_px , b l u r _ a n g l e) ;
354 im_r_fake{ i +1} = motionblur_deconv (im_blurred , h_motionblur) ;
355 end
356 c l e a r t i t l e s
357 c l e a r t i t l e
358 %t i t l e s = { '−40% ' , '−20% ' , '+10% ' , '+20% '};
359 t i t l e s = { ' O r i g i n a l image ' , ' Recovered image , c o r r e c t speed ' '−10% d e v i a t i o n i n ...

speed ' , '+10% d e v i a t i o n i n speed ' , } ;
360 plot_im_stack (im_r_fake , ' l ' , t i t l e s)
361 f i g u r e
362 imshow (im_r_fake {2})
363 %t i t l e (' c o r r e c t image speed ')
364 f i g u r e
365 imshow (im_r_fake {1})
366 %t i t l e (' o r i g i n a l image ')
367
368 %% T e s t i n g with n o i s e :
369 v_im = 0 . 0 2 4 ; %image v e l o c i t y r e l a t i v e to image s i z e !
370 b l u r _ a n g l e = 0 ;
371 b l u r _ l e n = v_im∗ t _ i n t ;
372
373 %make t e s t image without n o i s e :
374 im_size = 2 5 6 ;
375 number_of_periods = 2 0 ;
376 t _ i n t = 1 . 6 ;
377 SNR_factor = [5 0 1 0 0] ;
378 sine_dc = 0 . 6 ; % DC l e v e l o f s i n e images per second
379 s i n e _ a n g l e = 1 0 ;
380 sine_amp = 0 . 0 5 ∗ sine_dc ;
381 im_sine = make_sinus_image (im_size , number_of_periods , sine_dc , ...

sine_amp , s i n e _ a n g l e) ;
382 %b l u r image :
383 [im_blurred h_mb] = motionblur_maker (im_sine , b l u r _ l e n ∗ im_size , b l u r _ a n g l e) ;
384 %add n o i s e :
385 new_im_size = s i z e (im_blurred {2} ,1) ;
386 n o i s e _ s t d = s i n e _ d c . /(SNR_factor ∗ s q r t (t _ i n t)) ;
387 im_blurred_noisy1 = im_blurred {2}+(u i n t 8 (256∗ n o i s e _ s t d (1) ∗ randn (new_im_size))) ;
388 im_blurred_noisy2 = im_blurred {2}+(u i n t 8 (256∗ n o i s e _ s t d (2) ∗ randn (new_im_size))) ;
389 %r e c o v e r :
390 im_rec_noisy1 = motionblur_deconv (im_blurred_noisy1 , h_mb{2}) ;
391 im_rec_noisy2 = motionblur_deconv (im_blurred_noisy2 , h_mb{2}) ;
392 im_rec = motionblur_deconv (im_blurred {2} ,h_mb{2}) ;
393 %p l o t :
394 %im_plot = c e l l (1 , 5) ;
395 % t i t l e s = c e l l (1 , 5) ;
396 % t i t l e s = { ' ' , ' ' , ' ' , ' ' , ' ' , } ;
397 % im_plot {1} = im_blurred { 1 } ;
398 % im_plot {2} = im_blurred { 2 } ;
399 % im_plot {3} = im_blurred_noisy ;
400 % im_plot {4} = im_rec ;
401 % im_plot {5} = im_rec_noisy ;

190

E.5. MOTION BLUR

402 % plot_im_stack (im_plot , ' q ' , t i t l e s)
403
404 % cut out segments f o r p l o t t i n g :
405 im_plot = c e l l (1 , 4) ;
406 im_plot {1} = im_blurred_noisy1 ;
407 im_plot {2} = im_rec_noisy1 ;
408 im_plot {3} = im_blurred_noisy2 ;
409 im_plot {4} = im_rec_noisy2 ;
410 N_px = new_im_size ;
411 f o r i = 1 : l e n g t h (im_plot)
412 im_plot_cut { i } = im_plot { i }(N_px/2−25:N_px/2+25 ,N_px/2−50:N_px/2+50) ;
413 end
414
415 t i t l e s = { ' ' , ' ' , ' ' , ' ' , } ;
416 plot_im_stack (im_plot_cut , ' q ' , t i t l e s)

plot_im_stack.m

1 % d r a f t f o r smart s u b p l o t−f u n c t i o n
2 f u n c t i o n plot_im_stack (im_cell , mode , t i t l e _ c e l l)
3
4 n _ t o t a l = l e n g t h (i m _ c e l l) ; %number
5 % Quadratic c o n s t e l l a t i o n
6 i f (mode == ' q ')
7 % Determining the numbers o f f i g u r e s and p l o t s i n each f i g u r e :
8 number_of_figures = c e i l (n _ t o t a l /12) ;
9 n = 12∗ ones (1 , number_of_figures) ;

10 n _ l a s t _ f i g u r e = mod(n_total , 1 2) ;
11 n (number_of_figures) = n _ l a s t _ f i g u r e ;
12
13 f o r i =1: number_of_figures
14 % d e t e r m i n i n g the number o f rows to p l o t
15 n = n (i) ;
16 i f (n < 4)
17 rows (i) = 1 ;
18 e l s e i f (n >= 4 && n < 9)
19 rows (i) = 2 ;
20 e l s e i f (n >= 9 && n <= 12)
21 rows (i) = 3 ;
22 end
23 %number o f columns :
24 columns (i) = c e i l (n/ rows (i)) ;
25 end
26
27 e l s e i f (mode == ' l ')
28 number_of_figures = c e i l (n _ t o t a l /4) ;
29 n = 4∗ ones (1 , number_of_figures) ;
30 n (number_of_figures) = mod(n_total , 1 2) ;
31 rows = n ;
32 columns = ones (1 , number_of_figures) ;
33 e l s e i f (mode == 'w ')
34 number_of_figures = c e i l (n _ t o t a l /4) ;
35 n = 4∗ ones (1 , number_of_figures) ;
36 n (number_of_figures) = mod(n_total , 1 2) ;
37 columns = n ;
38 rows = ones (1 , number_of_figures) ;
39 e l s e
40 d i s p (' I n v a l i d p l o t c o n s t e l l a t i o n ')
41 end
42
43 %making s u b p l o t s :
44 plot_count = 0 ;
45 f o r k = 1 : number_of_figures
46 f i g u r e
47 f o r j = 1 : n (k)
48 plot_count = plot_count +1;
49 s u b p l o t (rows (k) , columns (k) , j)
50 imshow (i m _ c e l l { plot_count })
51 i f (n a r g i n ==3)
52 t i t l e (t i t l e _ c e l l { plot_count })
53 end
54 end
55 %s e t (g c f , ' P o s i t i o n ' , g e t (0 , ' S c r e e n s i z e ')) ; % Maximize f i g u r e .
56 end
57 end

191

APPENDIX E. MATLAB CODE

E.6 Test Images

image_detector_sim.m

1 %% S i m u l a t i o n o f d e t e c t o r background and n o i s e
2
3 c l e a r a l l
4 c l o s e a l l
5 % numbers f o r dark o f f s e t and fpn from experiment (1 s 20 deg) :
6 d a r k _ o f f s e t = 1 1 2 3 ;
7 std_fpn = 2 4 8 ;
8 std_dn = 5 . 5 4 ;
9

10 im_size = [2 5 6 2 5 6] ;
11 %% 1D
12
13 fpn = std_fpn ∗ randn (1 , 2 5 6) ;
14 dn = std_dn ∗ randn (1 , 2 5 6) ;
15 s n r _ s c a l e = 2 ;
16
17 %s i g n a l
18 x = 1 : 2 5 6 ;
19 num_of_periods = 1 5 ;
20 s i n e _ p e r i o d = l e n g t h (x) / num_of_periods ;
21 s i n e _ o f f s e t = s n r _ s c a l e ∗ d a r k _ o f f s e t ;
22 sine_amp = 0 . 0 5 ∗ s i n e _ o f f s e t ;
23 s i g _ s i n e = s i n e _ o f f s e t+sine_amp ∗ s i n (2∗ p i ∗1/ s i n e _ p e r i o d ∗x) ;
24
25 % add photon n o i s e :
26 % std_photon = s q r t (s i n e _ o f f s e t) ;
27 % photon_noise = std_photon. ∗ randn (1 , 2 5 6) ;
28 % s i g _ n o i s e 1 = s i g _ s i n e + photon_noise ;
29 % f i g u r e
30 % stem (x , photon_noise)
31
32 yrange = 4 0 0 0 ;
33
34 f i g u r e
35 s u b p l o t (1 , 3 , 1)
36 p l o t (x , s i g _ s i n e)
37 y l a b e l (' Counts ')
38 a x i s ([1 256 0 yrange])
39
40 % f i g u r e
41 % p l o t (x , s i g _ n o i s e 1)
42 % a x i s ([1 256 0 2∗ s i n e _ o f f s e t])
43
44 s i g _ n o i s e 2 = s i g _ s i n e + d a r k _ o f f s e t + fpn + dn ;
45 sig_dark = d a r k _ o f f s e t+fpn+dn ;
46 % f i g u r e
47 % p l o t (x , sig_dark)
48 % a x i s ([1 256 0 2∗ s i n e _ o f f s e t])
49
50 s i g _ n o i s e 3 = s i g _ n o i s e 2−fpn−d a r k _ o f f s e t ;
51
52 s u b p l o t (1 , 3 , 2)
53 p l o t (x , s i g _ n o i s e 2)
54 y l a b e l (' Counts ')
55 a x i s ([1 256 0 yrange])
56 s u b p l o t (1 , 3 , 3)
57 p l o t (x , s i g _ n o i s e 3)
58 y l a b e l (' Counts ')
59 a x i s ([1 256 0 yrange])
60
61 %% 2D:
62 %Making image with s i n e s i g n a l and background
63
64 common_scale = 0 . 8 ; %must be s c a l e d down f o r high background l e v e l s
65
66 %s i n e p a r a m e t e r s :
67 number_of_periods = 11 . 5 ;
68 sine_dc = 0 . 6 ; % DC l e v e l o f s i n e images
69 sine_dc = sine_dc ∗ common_scale ;
70 s i n e _ a n g l e = 3 0 ;
71 sine_amp = 0 . 0 5 ∗ sine_dc ;
72 std_phn = s q r t (sine_dc) ;
73
74 s n r _ s c a l e = 1 ; %r a t i o between s i n e dc l e v e l and background l e v e l
75 b g _ s c al e = sine_dc /(s n r _ s c a l e ∗ d a r k _ o f f s e t) ;
76
77 %making image n o i s e :
78 fpn = std_fpn ∗ randn (im_size) ; %background f i x e d p a t t e r n n o i s e
79 dn = std_dn ∗ randn (im_size) ; %background dark (thermal) n o i s e
80 %phn = std_phn ∗ randn (im_size) ; %photon n o i s e
81

192

E.6. TEST IMAGES

82 bg = z e r o s (im_size)+d a r k _ o f f s e t+fpn+dn ; %background s i g n a l
83 %bg_normalized = b g . /max(bg (:)) ; %n o r m a l i z i n g to one ;
84 bg_normalized = common_scale ∗ b g _ s c a l e . ∗bg ;
85 dn_normalized = common_scale ∗ b g _ s c a l e . ∗dn ;
86 im_bg = u i n t 8 (256∗ bg_normalized) ; %making an 8−b i t image
87 im_dn = u i n t 8 (256∗ dn_normalized) ;
88
89 im_sig = make_sinus_image (im_size (1) , number_of_periods , sine_dc , ...

sine_amp , s i n e _ a n g l e) ;
90 %im_sig_noisy = im_sig+(u i n t 8 (256∗ phn)) ; %t r i e d to make photon n o i s e , g e t the ...

wrong s c a l i n g
91
92 im_total = im_sig+im_bg ;
93 im_dn_sig = im_sig+im_dn ;
94
95 f i g u r e
96 imshow (im_bg)
97 %s a v e _ f i g u r e (g c f , [' bg_k ' num2str (s n r _ s c a l e)])
98 f i g u r e
99 imshow (im_sig)

100 %s a v e _ f i g u r e (g c f , [' sig_k2 ' num2str (s n r _ s c a l e)])
101 f i g u r e
102 imshow (im_total)
103 %s a v e _ f i g u r e (g c f , [' total_k ' num2str (s n r _ s c a l e)])
104 f i g u r e
105 imshow (im_dn_sig)

make_test_im.m

1 %S c r i p t f o r making one s i n g l e t e s t image with n o i s e
2 im_size = 2 5 6 ;
3 number_of_periods = 2 0 ;
4 %
5 t _ i n t = 1 . 6 ;
6 SNR_factor = 2 0 ;
7 %
8 sine_dc = 0 . 6 ; % DC l e v e l o f s i n e images per second
9 s i n e _ a n g l e = 1 0 ;

10 sine_amp = 0 . 0 5 ∗ sine_dc ;
11 n o i s e _ s t d = s i n e _ d c . /(SNR_factor ∗ s q r t (t _ i n t)) ;
12 %n o i s e _ s t d = 0 ;
13
14 im_sine = make_sinus_image (im_size , number_of_periods , sine_dc , ...

sine_amp , s i n e _ a n g l e) ;
15 im_noisy = im_sine+(u i n t 8 (256∗ n o i s e _ s t d ∗ randn (im_size))) ;
16 f i g u r e
17 imshow (im_noisy)

193

	Title Page
	masteroppgave.pdf

