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Abstract

The focus of this thesis is an fairly new approach to
phonotactic language recognition, i.e. identifying a language
from the sounds in an spoken utterance, known as iVector
subspace modeling. The goal of the iVector is to compactly
represent the discriminative information in a utterance so that
further processing of the utterance is less computationally
intensive. This might enable the system to be trained with
more data, and thereby reach an higher performance. We
present both the theory behind iVectors and experiments to
better fit the iVector space to our development data. The final
system got comparable result to our baseline PRLM system
on the NIST LRE03 30 second evaluation set.
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Sammendrag

Et automatisk språkidentifiseringssystem er et program
som gjennkjenner språket som ble brukt i tale. I denne opp-
gaven redgjør vi for en tilnærming til et slikt system som
bruker en såkalt iVektor underromsrepresentasjon av tale.
Med denne representasjonen forkastes informasjon som ikke
er nyttig for å gjenkjenne språket. Dette kan føre til raskere
behandling av talen, noe som lar oss trene systemet med
mer data og dermed oppnå høyere ytelse. Vi har også gjort
forsøk på å få underrommet bedre tilpasset til data den ikke
er trent fra. Det resulterende systemet oppnådde tilsvarende
ytelse som mer tradisjonelle språkidentifiseringssystemer på
segmenter med 30 sekunder tale fra NIST LRE03 testsettet.
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Introduction

Human beings will usually recognize the spoken language from lexical knowledge or
familiarization with more subtle language cues [1, p. 785]. Learning to recognize a
language requires a prolonged exposure to the language, making it unlikely for any
human to familiarize themselves with all of the around 7000 spoken languages in the
world [1, p. 798]. As more multimedia content becomes available on the internet and
the processing power of machines increases, computers are given the potential to exceed
at language recognition to a level beyond what humans are capable of. The technology
can in turn be applied e.g. to adding metadata to audio or video databases or as a
preprocessing step for multilingual spoken user interfaces.

To realize such a performance, machines will need intelligent learning methods
to structure the vast amounts of information available from spoken data. Since some
languages are spoken by very few people it might not be feasible for machines to be able
to recognize all languages. Still, further research efforts will be necessary in order to
enable the machines to identify the over 300 languages that are spoken by more than 1
million people around the world [1, p. 797].

1.1 Problem Description

The purpose of automatic language recognition is to identify which language is spoken
from a speech sample. One of the most popular approaches to language recognition is
based on phonotactics, i.e. the assumption that the distribution of sound combinations,
phone n-grams, is a distinguishing trait of a language. In these systems, a phone recog-
nizer first creates a phonemic representation of the speech. The number of occurrences of
phone n-grams in the recognized phone sequence is stored in a spoken document vector.

In the traditional approach, the document vector is scored against statistical phone
n-gram models for each language to determine which language is the most likely. An
alternative approach is vector space modeling where the document vector is transformed
from a pure count to a representation which emphasizes sound combinations distinctive
to a language and de-emphasizes combinations which occur uniformly across languages.

Finally, it is possible to use the document vector directly for classification, using
discriminative classifiers to separate the languages. This is the topic of this thesis. One
problem with direct classification is that the dimensionality of the document vectors is
very large. If the number of phones in the phone recognizer is 50, and we count 3-grams,
the dimension is 125 000. By nature, the vectors are sparse, since only a fraction of the



2 INTRODUCTION

125 000 possible 3-grams will occur in e.g. a 30-second utterance. Training classifiers
on full-sized document vectors will be computationally wasteful, in addition to being
difficult due to the limited coverage represented by any realistic training set. Techniques
to reduce the vector’s dimension are thus usually employed. iVector subspace modeling
is a recent approach to dimensionality reduction that has shown promising results. The
compressed vectors, called iVectors, are found through maximum likelihood estimation,
making it significantly different from minimum squared error techniques like latent
semantic mapping or principal component analysis. The assignment is to examine the
iVector approach, construct an iVector language recognition system, and evaluate its
performance against more traditional language recognizers.

1.2 Objectives for the Thesis

Our primary goal for this thesis is to construct an high-performing iVector language
recognition system. This will require both an understanding of how iVector subspace
modelling works, and experiments e.g. to ensure that the published approaches to best
train the system will also apply to our training material. Since building a state-of-the-art
language recognition system can be an huge undertaking, we will not focus on well-
established techniques that should increase the recognition performance of almost any
system. Example of such techniques are the use of lattices [1, p. 817] or training the
sytem with more material [1, p. 836].

We can use standardized test-sets to compare the performance of the system to
other systems but in order isolate the effect of only the iVector modeling, we will need
to construct a baseline system. If the two systems share all but the iVector related
components, then any difference in performance can be linked to the usage of iVectors.
The construction of a baseline language recognition system is therefore essential to
evaluate the fulfillment of our primary goal.

1.3 Structure

The rest of the thesis is structured as follows:

• Part I - Theory

– Chapter 2 - Language Recognition Systems introduces the goals and the
theory behind common components of a spoken language recognition system

– Chapter 3 - Statistical Language Modeling explains the theory behind the
language model used in the baseline system
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– Chapter 4 - iVector Subspace Modeling gives the theoretical background for
iVectors

– Chapter 5 - Discriminative Classification explains the vector based classifiers
needed for an iVector system

• Part II - Implementation

– Chapter 6 - Data Preparation outlines what data-set will be used for training
and testing the systems, and the tokenization of this data

– Chapter 7 - Baseline System discusses the implementation of a PRLM system
to compare the iVector system against

– Chapter 8 - iVector System explains design choices for the iVector system

• Part III - Results

– Chapter 9 - Identification Results documents the performance of the system
on language identification

– Chapter 10 - Detection Performance compares the systems on the language
detection task

– Chapter 11 - Summary discusses our results for iVector based language recog-
nition

– Chapter 12 - Conclusion sums up the work in this thesis





Part I

Theory
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Language Recognition Systems

2.1 Language Detection vs. Identification

Identification and detection of languages are two very related tasks in language recogni-
tion. In both tasks languages are constricted to be in a set of classes. Each class can be a
single language, dialect, or a set of languages, and the goal of our system is to separate
these classes. In this thesis we will only look at formulations where each class is a single
language and possibly one class that consists of all other languages, which we refer to as
an out of set language. We call it an open set recognition problem When the set includes an
out of set language, and closed set otherwise. With this formulation in mind, we drop the
notion of classes, and just call each class a language.

Given a hypothesized language, a language detection system will either accept or
reject the claimed language based on a set of observations. The confidence the language
detection system requires for its decisions will vary on application, but we say that we
accept the hypothesis if the probability that it is the hypothesized language, li, given the
systems knowledge of languages, θ, and observations, S, is greater than some threshold,
t. The acceptance criteria is then defined as

p(li|θ,X) ≥ t. (2.1)

Any claim that doesn’t satisfy the equation will be rejected. There are two sources of error
associated with a decision in equation 2.1. First we can choose to accept that language li
was used in the given utterance, when it actually was another language. This is called
a false accept. The second error type is when we reject the hypothesized language even
though it was true, which is called a false reject. The tolerance for false accepts and false
reject will vary for different applications. From equation 2.1 we see that the errors should
be inversely correlated, so there is no universally best threshold-value for any system.
E.g. a recognition system that redirects phone customers to an operator that knows the
customers language, could want to minimize the number of false accepts, and rather
have the caller type in his language when there is much doubt.

In language identification, our goal is just to find the most probable language from
the known languages, that is

argmax
i

p(li|θ,X). (2.2)

This means that unless we are implementing a system for a real application, the distinc-
tion between the two language recognition problems are not that important so long as we
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find P (li|θ,X). What is more important is that the model of the languages, θ, is suited to
distinguish languages.

2.2 Evaluation Metrics

As explained in the previous section, it is not clear how we should evaluate the system’s
performance without knowing the application it will be used for. A simple metric is the
percentage of correctly identified utterances by equation 2.2. This score easily calculated
and should be correlated with other metrics. A more thorough understanding of the
system’s performance is given by its detection error tradeoff- or DET-curve. This is a plot of
the false accept rate against the false reject rate when using different detection thresholds
in equation 2.1. The equal error rate (EER) is the point where the system makes just
as many false accepts as false rejects. This is a commonly used metric to reduce the
information from the DET-curve down to a single number. We have also included the
CDet metric which measures the expected cost of making a detection decision. This was
the primary evaluation metric in the 2003 NIST language recognition evaluation, and is
for each target language defined to be [2]

CDet = (CFalse rejectPFalse reject|TargetPTarget)+

(CFalse acceptPFalse accept|Non-targetPNon-target).

By adjusting the cost of making different errors, this metric can be used to evaluate
systems for a wide range of application requirements. In the NIST evaluation plan both
costs are set to 1, and the priors to 0.5.

2.3 Language Characterizations

There are many characteristics from speech that could be used to discriminate languages.
The speech features that we use for language recognition is likely to impact the systems
performance. In [1, p. 801] a number of sources of discriminative information for spoken
languages are given, including:

• Spectral characteristics. Languages are made up of different sounds, so it will
be possible to distinguish languages based on the acoustic features present in the
speech signal.

• Phonological information. In a language, a phoneme is the smallest unit of sound
that can change the meaning of a word. Different languages use different collections
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of phonemes which makes them distinguishable by e.g. the frequency that a
phoneme or a sequence of consecutive phonemes occur in a spoken utterance.

• Lexical information. Languages are separable by the vocabulary, or set of words,
that they use.

A language recognition system doesn’t necessarily need to use just one of these
sources. In practice, superior performances are reached by using a combination of the
language traits for recognition [1, p. 818]. This is because the different traits may yield
complementary information about the spoken language. There are different benefits
and drawbacks of using the different information sources. Lexical knowledge is often
the most important discriminative information source for humans [1, p. 787], and has
been used by language recognition systems to achieve excellent performance [1, p. 803].
Unfortunately such systems require speech recognizers for each language making it
computationally expensive and thereby impractical when we need to distinguish many
languages. For this thesis, we have only looked at phonotactically based language
recognition.

2.4 System Overview

In order to put the rest of the chapters into context, we will here present two typical
phonetic language recognition systems. The first system depicted in figure 2.1 is called a
Phoneme Recognition followed by Language Modeling (PRLM) [1, p. 817]. The speech
signal is first turned into discrete tokens or phonemes by a phoneme recognizer. The
whole transcript is split into n-grams. We do this so that the language model only needs
knowledge about a phoneme in the context of the n− 1 previous phonemes. As we will
see, this can simplify the rest of the components in the system. The n-grams from an
utterance is then evaluated against language models for each language. The scores from
the language models are then unified and calibrated before the final recognition decision.

Another design for language recognition systems shown in figure 2.2 is based
on an utterance’s Vector Space Characterization (VSC). The technique is inspired from
the information retrieval community where documents are represented by a document
vector [1, p. 826]. For language recognition systems we can construct spoken document
vectors from the counts of n-grams in an utterance. If the distribution of n-grams is
different for languages, then the documents for languages will lie in different regions of
the document space. A classifier can then recognize languages based on the region that a
document vector is situated in. The size of the document vectors will grow exponentially
with n, often resulting in a sparse document vector of a very high dimension. This often
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Figure 2.1: Block diagram of a PRLM system, based on [1, Fig. 41.5]

makes it possible to reduce the dimension of the document vectors without the document
space losing its discriminative power. An example of such dimensionality reduction is
iVectors, which is the topic in section 4

Figure 2.2: Block diagram of a VSC language recognition system. The use of dimensionality reduciton is
optional.

It would be possible to construct the two systems using rules to recognize languages.
The approach taken by many recent language recognition systems is to build a statistical
model from training data. Without speculating on how much time it would take to create
a rule based system, a statistical driven system should at least be easier to extend to new
languages.

2.5 Phoneme Recognizers

In a PRLM or VSC recognition system, we first transform the speech signal to a phoneme
sequence or string. This is done by a phoneme recognizer. With the many-to-one
mapping by the phoneme recognizer we hope that there still is enough information
about the language identity of the utterance, while the computational requirements for
further processing will benefit from the reduced complexity of the problem. Even though
each language uses its own set of phonemes, it is not necessary to train the phoneme
recognizer to identify phonemes from all languages. This is because the phoneme
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recognizer doesn’t need to make an correct transcription for an utterance, the system
just needs the transcripts to be sufficiently distinct for each language [1, p. 818]. For
this reason it is possible to train the phoneme recognizer on a single language, which
even may not have to be in the set of languages we are recognizing. Phone recognizers
can utilize many of the techniques used in speech recognition, where words often are
recognized by their phoneme sequence [3, p. 414]. Here we will only present one such
approach.

The speech signal is first split into short frames using a window function to reduce
spectrum leakage [3, p. 257]. For each frame we can calculate the Mel-Frequency Cepstral
Coefficients (MFCC). The transform takes the spectrum of the windowed signal through
a set of filter banks that are spaced to approximate the Mel-frequency scale [3, p. 314].
After taking the logarithm of the filter outputs, we use the discrete cosine transform to get
the cepstral coefficients. The whole process approximates the way the human auditory
system responds to sound, which means that it should be suited for automatic phoneme
recognition as well [3, p. 314]. Patterns in the cepstral coefficients when uttering a given
phoneme can then be learned using labeled training data to train Gaussian Mixture
Models (this is presented in section 2.7 for recognizing score-vectors).

The size of each frame is limited, in order to make the speech signal in each
frame approximately stationary, but this doesn’t mean that the neighboring frames
have no information about the phoneme uttered in the current frame. Many recent
phone recognizers use long temporal context techniques to capture the evolution of
the signal outside of the frame [4, p. 8]. One such technique is to concatenate the n
cepstral coefficients in the current frame together with the k past and future frames [4,
9], resulting in a n(2k + 1)-dimensional feature vector. The high number of parameters
in the long temporal context feature vector can make it difficult to train the phoneme
recognizer without having huge amounts of training material. By assuming that the
coefficients in past frames are independent of future frames, we can split the vector into
a left and right context. This enables us to first classify each context separately, and then
merge the results into a final decision of what phoneme was spoken [4, p. 36]. We can
use Gaussian mixture models 2.7 for both classifying steps. The halving of the feature
vector then increases the probability of observing similar features in the training set,
reducing the need for much training data.

It is also possible for the phoneme recognizer to give multiple hypoteses for the
phonemes used in an utterance. Such phoneme recognizers are said to be lattice based.
Intuitively a lattice based phoneme recognizer will keep more of the information from
the original speech signal, and has been shown to improve the performance of many
language recognition systems [1, p. 818].
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2.6 Language Models and Classifiers

The responsibility of a language model or classifier is to output a single score per language
from the phoneme sequence S. Since our final recognition decision will be based on the
probability that an utterance belongs to a language, p(li, |S), it seems natural to want the
scores to approximate that probability. This is a somewhat strict requirement for systems
as described in section 2.4 since the scores will be further processed by the backend. At
the very least, a good language model should give scores that are easily transformable to
an estimate of this probability.

In order for the system to perform well for languages with limited available training
data, it will be beneficial that the system is easily trained. A too complex classifier or
language model will not be able to see patterns in the data, it will instead be over-fitted
to explain each utterance independently which makes it unfit to score utterances outside
of the training set [5, p. 311]. Over-fitting can be reduced by using a larger training set
[6, p. 147], but it is clearly an undesirable feature for language models. This is also the
reason why we need a separate data set to evaluate the recognition system. The systems
recognition performance on the data it was trained for will not necessarily extend to
unseen data.

If we introduce the notion that training and test data are generated from a random
process, the system’s ability to correctly estimate p(li|S), and thereby make correct
recognition decisions, will be given by two error sources called model bias and variance
[6, 149]. Bias is high if the system consistently over- or underestimate p(li|S) for some
documents regardless of the training set. In this way it represents the systems inability
to correctly predict certain documents. Model variance is the variance in the probability
estimate of an utterance belonging to a language when the model is trained with different
data. It represents the systems sensitivity to noise in the training data. Over-fitting is
a symptom of a high variance system where the model is only expected to give correct
probability estimates for utterances that are very close to a training utterance. A system
with limited training data can generally not have both low variance and bias [5, 312], so
a concession between the two errors has to be made.

2.7 Backend Calibration of Score Vectors

The backend will calibrate the scores from the classifier or language model into the
posterior, p(li|S, θ), so that so that they can be applied to the recognition decisions
discussed in section 2.1. This calibration can also be trained using real data. A separate
calibration step allows us to ignore application dependent information like what other
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languages should the system recognize, and the prior probability of a user speaking each
language. The language models for each language can then be trained independently
since it only needs to return some number that in some way correlates with the posterior
probability for its language. Even if the language model is trained to return estimates
of the posterior, there may still be some benefits calibrating the score vectors [1, p. 820]
as there might exist patterns in the scores that can be exploited. Furthermore, the back-
end can be used to fuse scores for an utterance from multiple systems using different
phoneme recognizers or language models. The fused system is then expected to perform
better than each of the individual systems as long as the errors each system makes are
somewhat uncorrelated [1, p. 818].

2.7.1 Gaussian Backend

It is likely that the best calibration method will depend on the nature of the score-vectors
given from the language models. A very flexible tool to perform calibrations that impose
little demands on the score vector is to use a multivariate Gaussian mixture model
(GMM). With this framework, the score vector, y, for a given language is assumed to be
produced from a generative statistical model. The likelihood of a r-dimensional Gaussian
component k to produce a score vector y is then

p(y|µk,Σk,K = k) =
1

(2π)r/2|Σk|1/2
exp(−1

2
(y − µk)TΣ−1k (x− µk)) (2.3)

where µk is the r-dimensional mean of the score vectors produced by the mixture, Σk is
the covariance of the mixture and |Σk| its determinant [3, p. 94]. From Bayes rule we
have that

p(K = k|µk,Σk,y) =
p(y|µk,Σk,K = k) · p(K = k)

p(y)

=
p(y|µk, σk,K = k) · p(K = k)∑
∀i∈K p(y|µi,Σi,K = i) · p(K = i)

(2.4)

where p(K = k) is the prior probability of the score vector being generated from mixture
k. If we know what mixture each score vector in a training set belongs to, then µk can be
estimated as

µk = E(y|y ∈ k) (2.5)

and Σk as
Σk = E

(
(y − µk)(y − µk)T |y ∈ k

)
(2.6)

where E(a|b) is the conditional expectation [3, p. 94]. The power of the Gaussian mixture
model we have now described is that it is enable to model any probability distribution [3,
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p. 95], which means that it is applicable to any type of score-vector. Even for a training
set, we will generally only know the language of an utterance, but not the mixture the
score vector belongs to. This means that equation 2.5 and 2.6 cannot directly be solved.
We can still estimate the parameters using the iterative EM-algorithm [6, p. 439]. With
one mixture per language, equation 2.5 and 2.6 can be solved by noting that y ∈ k is
equivalent to that the score vector stems from the given language, li, and p(K = k) is the
prior for the language. We can then use p(L = li|µi,Σi,y) given in equation 2.4 to label
unknown utterances.



3

Statistical Language Modeling

We will here look at how the baseline system utilizes the phoneme sequences from the
phone recognizer to construct language models, which then are used to differentiate
languages with other phoneme sequences. This is the only module that the baseline
system exclusively uses. Intuitively the best performing system will be determined by
the total information loss from its modules, so the performance difference between the
two systems will be determined by the information loss from assumptions made in
this module versus the iVector specific modules. In section 3.1 we will present how to
train a model and use it to decode an utterance. In section 3.2 the concept of smoothing
the language models will be presented to make the language model better fit unseen
utterances.

3.1 Model training

Using Bayes rule, the probability that the utterance stems from language li, will be

p(li|S) =
p(S|li) · p(li)

p(S)
. (3.1)

Since p(S) is independent of the spoken language, it only serves as a constant to enforce
that the probability of the utterance belonging to any language is 1. The prior distribution
of languages, p(li), will depend on the application and can be set by the Gaussian beck-
end discussed in section 2.7. A suited score with no loss of information will be p(S|li).
An estimate of this score could be found by letting p(S|li, θ) equal the frequency the
phoneme sequence appears in the training data for that language. Unfortunately the
number of possible phoneme sequences grows exponentially with the sequence length,
N . With an almost infinite number of probabilities to measure, it will be impossible to
train.

The probability of the phoneme sequence can also be written as chain of random
events

p(S|li) =

N∏
j=1

p(si|Sj−1
1 , li) (3.2)

where Sb
a = smax(a,1), smax(a+1,1), ..., smax(b,1). We can limit the number of parameters

that need to be estimated by making the n-gram assumption, that the probability for the
current phoneme will only depend on the n− 1 previous outcomes. We call the phoneme
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sequence Sj
j−n+1 an n-gram at position j. Equation 3.2 can then be approximated to

p(S|li) ≈
N∏
j=1

p(sj |Sj−1
j−n+1, li). (3.3)

Phonemes with this model can be seen as drawn from multinomial distributions, with
one distribution per phonemes history, Sj−1

j−n+1. The probability of events occurring in
the multinomial models can then be estimated from training data as

p(sj |Sj
j−n+1, li, θ) =



Ci(S
j
j−n+1)

Ci(S
j−1
j−n+1)

if n ≥ 2

Ci(sj)

Ci(s)
if n = 1

(3.4)

where Ci(S
b
a) is the number of times the phoneme sequence Sb

a occurs- and Ci(s) the
total number of phonemes in the training data for language li. Using these estimates, an
unknown utterance can be scored for each language by

p(S|li, θ) =

N∏
j=1

p(sj |Sj−1
j−n+1, li, θ). (3.5)

Since the first n phonemes in equation 3.5 has less than n− 1 preceding phonemes, the
transition probabilities given less than n previous states has to be estimated as well.

With Ci(S
j−1
j−n+1) draws from a multinomial distribution the variance in our esti-

mate for the conditional likelihood will be

VAR(p(sj |Sj
j−n+1, li, θ)) =

p(sj |Sj−1
j−n+1, li)(1− p(sj |S

j−1
j−n+1, li))

Ci(S
j−1
j−n+1)

(3.6)

By definition Ci(Sj−n+1) ≤ Ci(Sj−(n−1)+1) so using a smaller value for n will produce
a model with less variance. But this will also make the model more biased, as it will
only capture short term dependencies between phonemes. Returning to the discussion
in section 2.6, n has to be set as a trade-off between model bias and variance. Clearly
a too high value for n will make the model unfit to measure the probability of unseen
sequences.

3.2 Model Smoothing

A problem with equation 3.5 is that any trigram not observed in the training set will make
the probability of observing the whole sequence zero. Furthermore, the granularity of
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equation 3.4 is no more thanCi(S
j−1
j−n+1). This means that for rare events, the relative error

between the true and estimated probabilities is unbounded. By estimating the probability
of rare events with lower order n-grams, the granularity will increase. With only a few
observation of an n-gram, it is unlikely that we will find useful dependencies between
phonemes spaced far apart, making a high order Markov assumption unnecessary
complicated. The method described is known as backoff smoothing [3, p. 559]. The
smoothed probability, p̂ of a n-gram will be given by

p̂(sj |Sj−1
j−n+1, li, θ) =

p(si|S
j−1
j−n+1, li, θ) if Ci(S

j
j−n+1) > ki

αi(S
j−1
j−n+1)p̂(sj |Sj−1

j−n+2, li, θ) if Ci(S
j
j−n+1) ≤ ki

(3.7)

where ki is some possibly language dependent constant, and αi(S
j−1
j−n+1) is a constant

that makes the sum of probabilities for any n-gram with a given history equal 1. We find
αi by ∑

sj :Ci(S
j
j−n+1)≤k

p(sj |Sj−1
j−n+1, li, θ) =

∑
sj :Ci(S

j
j−n+1)≤k

αi(S
j−1
j−n+1)p̂(sj |Sj−1

j−n+2, li, θ)

αi(S
j−1
j−n+1) =

∑
sj :Ci(S

j
j−n+1)≤k

p(si|Sj−1
j−n+1, li, θ)∑

sj :Ci(S
j
j−n+1)≤k

p̂(sj |Sj−1
j−n+2, li, θ)

=
1−

∑
sj :Ci(S

j
j−n+1)>k p(si|S

j−1
j−n+1, li, θ)

1−
∑

sj :Ci(S
j
j−n+1)>k p(sj |S

j−1
j−n+2, li, θ)

(3.8)

Since both the granularity and variance should be good for unigrams (1-grams), the
values for αi can be found iteratively for larger values of n by assuming that the unigram
frequency requires no smoothing.





4

iVector Subspace Modeling

iVectors are one example of subspace modeling approaches that can be used to reduce
the dimensionality of the data before training and applying classifiers to recognize the
language used in an utterance. The dimensionality reduction should make training of the
classifiers less computational expensive, which could enable us to train the system with
more data. The goal of the reduction is to separate trends in the data that are common to
all languages from the information that is unique between utterances. If this separation
is properly performed, we will still retain the discriminative information of the utterance
in the iVector.

4.1 Background

The idea for iVectors first came from the joint factor analysis (JFA) model used in speaker
verification [7]. In JFA continuous speech features are generated from a multivariate
Gaussian model

M = m + Vy + Ux + Dz (4.1)

where y, x and z are low dimensional normal distributed vectors with zero mean and
unit diagonal covariance [7], while m is the mean distribution vector. By careful training
the column span of U should model the possible effects of channel variability, while
V and D should model variations in speakers. By having m, V and D fixed for all
utterances, the speaker dependent information in the utterance would be isolated in the
low-dimensional vectors y and z which then can be used to recognize speakers. In [7] it
was proposed to use a total variability matrix to model the distribution of M by

M = m + Tw. (4.2)

The low-dimensional vector w, called an iVector, would now be affected by channel
characteristics. Recognition of the speaker could still be performed by first filtering out
channel-dependent information in w. This framework was then adapted in [8] to model
discrete features by assuming a multinomial distribution where the probability of feature
c in utterance n would be

φnc =
exp(mc + tc ·wn)∑C
i=1 exp(mi + ti ·wn)

(4.3)

where C is the total number of discrete features, · denotes the inner product, ti is the i-th
row of the total variability matrix T, and mi the i-th element of the m-vector. This model
was then utilized for language recognition in [9].
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4.2 Interpretation of iVector Model

From equation 4.3 we can see the iVector as a set of parameters that govern the probability
distribution for features in any utterance. The columns of T should then span the
subspace of likely probability distributions for features in order for the model to fit the
actual data [8]. Discrete features like phoneme n-grams should not require us to filter
out channel noise, as channel variability should be handled the phoneme recognizer. In
this respect, the total variability model should be more fit for discrete features. The mean
vector m is used to move origo in the iVector parameter space. This vector should make
iVectors and T invariant to the mean distribution of document vectors, so that degrees
of freedom are only spent on modeling variations in utterances.

Using the assumption of a multinomial model, the log-likelihood of an utterance
will be

log(p(γn|φn)) =

C∑
c=1

γnc log(φnc) (4.4)

where γnc is the number of times feature c was observed in utterance n. If features are
n-grams, then the likelihood given from this model will be quite similar to the model
presented in section 3 except that only one multinomial distribution is used per utterance,
not one per possible n-gram history. This is a slight inaccuracy in the model when using
n-grams, since per definition, only a fraction of the n-grams can follow the previous
n-gram. But like JFA, the recognition decision will be based solely on the latent vector, or
iVector in our case. We will perhaps model some redundant information since the model
requires us to estimate probabilities for n-grams that cannot occur from any context in
the utterance. The iVector should make these probabilities low so that there is more
probability mass for features that do occur. In any case the iVectors will measure the
n-gram probability distribution in the utterance, but using a more general framework
than strictly needed [9].

log(p(γ|φ)) =
N∑

n=1

log(p(γn|φn)). (4.5)

4.3 Model Training

We can find the parameters for our model by likelihood maximization of equation 4.5. In
[9], m was given the value

mc = log

(
1

N

N∑
n=1

γnc

)
. (4.6)
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Now φnc will equal the frequency of feature c when the iVector is all zero. There is no
closed form solution to finding values for T that maximize the likelihood in equation 4.5,
but in [9] the problem was given to be concave so that a gradient ascent method could be
used to find the absolute maxima. The gradient of equation 4.5 with respect to row c of
T is

gc =

N∑
i=1

γic − φic C∑
j=1

γij

wi (4.7)

This gradient will be all zero at any maxima. We can find this point by using the iterative
Newton Raphson method, there new estimates for row c of T will be

tc(new) = tc(old) + H−1c (old)gc(old) (4.8)

where tc(new) denotes the new estiamte for tc, while f(old) means that the old values
for the row should be used. Hc is the Hessian matrix of equation 4.5 with respect to the
cth row of T. In [8] it was proposed to use an approximation of the Hessian to simplify
calculations. The Hessian was approximated as

Hc =

N∑
i=1

max

γic, φic C∑
j=1

γij

wiw
T
i . (4.9)

A problem with this method is that the equations depend on the iVector, wn. This
means that we cannot find the maximum in equation 4.5 without both finding values
for T and iVectors. As with T, there is no closed form solution to finding iVectors
maximizing the log-likelihood. In [8] the same approach of using Newton Raphson
updates were used to find values for iVectors. The gradient for wn was given to be

gn =

C∑
i=1

γni − φni C∑
j=1

γnj

 ti, (4.10)

the approximate for the Hessian

Hn =

C∑
i=1

max

γni, φni C∑
j=1

γnj

 tit
T
i (4.11)

making the Newton Raphson update step equal

wn(new) = wn(old) + H−1n (old)gn(old). (4.12)

To find values for T maximizing equation 4.5, we can do iterations of updating T

and iVectors from a training set. In order to avoid over-fitting the model to the training



22 IVECTOR SUBSPACE MODELING

data, we can check that an update of T enables us to increase the likelihood of another set
of documents using equation 4.5. We will then have to find iVectors for this set as well,
but under no circumstance use these documents to update T. In [9], T was initialized
with small random numbers. This indicates that the updates should converge to the local
maxima from most values.

4.4 Extraction of iVectors from the Model

In the previous section we found values for the model parameters T and m. As a by-
product, the training method also found iVectors for the training data. During extraction,
when we use the iVector model to find subspace representations of documents, the
same process of iteratively finding iVectors using equation 4.12 can be used. This vector
should then represent the most important traits of an utterance, and can be used for
language classification. Since the classifiers shown in section 5 requires training as well,
the iVectors for training utterances will also be needed. It would be possible to use the
iVectors found during training of T, but those vectors might be more (or less) converged
to the likelihood maxima than the vectors produced during extraction, making them
unrepresentative for iVectors found when only performing updates of equation 4.12. A
minor point that might benefit the system performance is therefore to discard the iVectors
found when training T.

In order for the iVector extraction to be deterministic, the iVectors should be
initialized with fixed values. It seems natural to initialize the iVectors as an all zero vector,
since origo in the iVector space should correspond to the mean feature distribution of all
utterances. The same initial values can be used when we find T as long as the first step
is to update the iVectors. This is because all zero iVectors would cause gc and Hc to be
zero as well.

4.5 The Iterative Update Process

Here we are going to look more closely at the Newton Raphson update steps for produc-
ing iVectors and the total variability matrix. In a real-time implementation we would
need to extract iVectors using these updates for live data which makes the operation time-
sensitive. At the same time these updates involve linear algebra on a high-dimension
space, making the operations computationally expensive. An inefficient implementation
of these updates will therefore severely impact the computational requirements for train-
ing and live usage of the system. It is also critical for the total performance of the system
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that the iVectors convey meaningful information about an utterance. A thorough study
of the Newton Raphson update process is therefore warranted.

4.5.1 Solving the Newton Raphson Systems

To avoid issues with numeric instability, it is often desirable not to calculate the inverse
of a matrix [10, p. 743]. We can rewrite the linear systems in equation 4.12 and 4.8 to

Hn(old)δwn = gn (4.13)

and
Hc(old)δtc = gc(old) (4.14)

respectively where δ means the difference between the new and old vectors. It is ben-
eficial to ensure that these equations have one, and just one, solution. More than one
solution would indicate that some of the dimensions in the rows of T or iVector is
redundant, making us solve a more complicated problem than strictly needed. The
requirements on T and iVectors to guarantee just one solution, is shown in appendix A.2.
As long as our goal is to find global relationships between utterances, and not over-fit
iVectors to each utterance (by letting the iVector dimension approach the number of
training utterances or unique features), these requirements should be met. One exception
is when we update rows of T that correspond to features not seen in the training set.
Since it is unlikely that we gain much information from such features anyways, we can
assume that those rows are always all zero. The rows can then be ignored during iVector
updates without much, if any, loss in performance.

In appendix A.2 we also show that the Hessian in equation 4.13 and 4.14 are positive
definite. This enables us to use simple algorithms like LU decomposition to solve the
systems [10, p. 749]. With an iVector dimension of R, LU decomposition will solve the
systems in O(R3) asymptotic time [10, p. 750]. While there are faster solvers for positive
definite systems like the O(R2) solver in [11], R should be of a size that probably doesn’t
necessitate excessive optimization.

In equation 4.11 Hn is found by calculating the outer product of rows of T C times,
making the asymptotic runtime Ω(CR2). Similarly for Hc the asymptotic runtime of
equation 4.9 is Ω(NR2). Since R should be significantly less than N and C to ensure
that the linear systems only have one solution, calculating the Hessian will be more
computationally demanding than solving the resulting linear systems. In appendix A.1
we show that the Hessian is symmetric, which enables us to only calculate the upper (or
lower) half of the Hessians. While the asymptotic runtime remains the same, the actual
runtime of should be nearly halved.
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4.5.2 Achieving higher performance

In appendix A.3 we show that the increase in likelihood by updating iVectors using the
Newton Raphson method in equation 4.13 will only depend on two factors. The iVector’s
values before the update and the column span of the total variability matrix. This means
that techniques like having T orthogonal should give no benefit to the likelihood. There
might still be performance benefits when the iVectors are classified as e.g. SVMs are not
invariant to linear transforms of the document vectors [12]. However, there are some
more promising methods that might increase the performance of the system.

In an iterative algorithm it is important to ensure that each iteration brings you
closer to the solution of the problem. The Newton Raphson method is oblivious to
high-order derivatives, and we only use an approximation to the Hessian, so an increase
in likelihood is not guaranteed from updates using equation 4.13 and 4.14. In [13], Kock-
mann et. al. would halve the update step until the likelihood from equation 4.5 increased
when updating either row of T or iVectors. If a higher likelihood wasn’t achieved after
some attempts, the old vector would be used. Seemingly the only downside with such a
check would be the additional computational requirements in an update.

In section 5.4 we argued that using unscaled features could cause the classifier
to label data only based on high-variance features. This problem might apply to the
iVector model as well. A good model of high-variance features would likely be crucial
to maximize equation 4.5 and many dimensions in the iVector may then be spent on
accurately controlling φ for those features. It is not clear if we gain much information
from this precise fitting, rather than having coarser knowledge about the exact frequency
of those features, and having more degrees of freedom in the iVector to model other
features. In [9] the iVector system’s performance increased when the square root of
elements in the document vector, γn, was used. By taking the square root, the dynamic
range of high variance features will be heavily scaled, and the importance of modeling
each feature should be spread more evenly across the whole document vector.
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Discriminative Classification

Discriminative classifiers differ from the generative Gaussian mixture model approach
given in section 2.7.1 in that it cannot be used to generate synthetic data. This often results
in a simpler optimization problem which is easier to train to give good performance [6,
p. 204]. The classifiers we present here can be used on either the full sized document
vector or one that is compressed using subspace modeling. We will first look at binary
classifiers, where each utterance can take one of two classes in section 5.1 and 5.2, and
then extend the technique to multiple classes in section 5.3. Finally we will explore
techniques that can increase the effectiveness of the classifier in section 5.4.

5.1 Support Vector Machines

The Support Vector Machine (SVM) has been extensively used and represents the state-
of-the-art classifier for text-classification problems [5, 319]. During training, the binary
SVM will find a hyperplane that separates the two classes (known as +1 and −1 class).
Any coordinates, x, that lie on this plane will satisfy

wTx + b = 0

where w is the normal vector to the plane and b a scalar. Classification is performed by
checking what side of the hyperplane a document, y, lies on by

sign(wTy + b) (5.1)

where sign(a) returns +1 if a is positive and −1 otherwise [5, 322]. Since the plane can be
defined using both w and −w, we can choose a planar equation during training so that
the output from equation 5.1 can be directly interpreted as the most probable identity
of document y . A natural measure of our confidence in the labeling of document y
would be the geometric distance between a document and the decision boundary. If the
distance is high, then the document is far inside the region where typical documents of
the region’s class lie. On the other hand, a small distance implies that minor changes in
the document vector or the separating hyperplane could result in a different classification.
The Euclidean distance between a document and the hyperplane will be the absolute
value of

wTy + b

|w|
(5.2)

[5, p. 323]. This equation is quite similar to equation 5.1 except that it is invariant to the
length of the vector w.
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During training of the SVM we need to find the hyperplane that separates the
training data. For now we will assume that the data is linearly separable, so that there
exists at least one such plane. If there exist more than one plane that separates the classes,
we would prefer to use the separating plane that has the largest geometric distance from
all documents in the training set. Because the normal vector of all hyperplanes can be of
any length, we can require 1/|w| to be the minimum Eucledian distance betweeen all
training documents and the plane defined by w and b. This can be stated as the constraint
[5, p. 324]

ci(w
Tyi + b) ≥ 1,∀i (5.3)

where ci ∈ {−1,+1} is the true class of training document yi. The hyperplane with the
largest geometric margin between any training vector can then be found by minimizing
|w|while upholding the constraints in equation 5.3.

Since it generally cannot be expected that all classes can be linearly separated, there
will be some data sets where the constraints in equation 5.3 cannot be fulfilled. Even if
the constraints can be fulfilled, there might be some sets where a few unrepresentative
document vectors force us to settle with a decision boundary with very little margin
between the two classes, just so that we can correctly classify those vectors with any
margin at all. Since a single document can have a drastic effect on the decision boundary,
the constraints in equation 5.3 will make the classifier have a high model variance. In
order to give the learning method less variance, it might be better to have a more biased
model that isn’t able to correctly classify all documents in the training set. Because of
this, SVM often solves an unconstrained problem, where some documents may disregard
the constraints in equation 5.3. One such problem is that of a l2 regularized SVM, where
we find

argmin
w,b

1

2
|w|2 + C

∑
∀i

max(1− ci(wTxi + b), 0)2 (5.4)

where C > 0 is a penalty or regularization parameter that can be set to adjust for model
bias or variance [14]. Here a penalty is only given if a document fails to meet the
conditions in equation 5.3, and when C goes to infinity, the regularized SVM will solve
the constrained problem.

For some types of data there might not be any plane that comes close to separate
the two classes. For such problems, it is possible to use a nonlinear SVM. Such SVMs
first map a document to a higher dimension where it is linearly separable by using a
kernel function, and then apply a linear SVM [5, p. 331].
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5.2 Logistic Regression

Logistic Regression (LR) is another discriminative classifier where the confidence mea-
sure takes a probabilistic and not geometric approach. With two classes, the probability
of a given class can be written as

p(C = 1|y) =
p(y|C = 1)p(C = 1)

p(y|C = 1)p(C = 1) + p(y|C = −1)p(C = −1)

=
1

1 + exp(− ln p(y|C=1)p(C=1)
p(y|C=−1)p(C=−1) )

=
1

1 + exp(−a)
= σ(a) (5.5)

where σ(a) is called the logistic sigmoid function [6, p. 197], and a is

a = ln
p(y|C = 1)p(C = 1)

p(y|C = −1)p(C = −1)
. (5.6)

The advantage of this seemingly inconvenient expression for p(C = 1|y) is that a can
take any real value, and σ(a) will transform a to a value between 0 and 1. In section 5.1
we argued that the distance from a separating hyperplane could be used as a measure of
confidence in our classification. With logistic regression, we can use this distance from a
given hyperplane as a measure the log probability ratio [6, p. 205]

a = ln
p(y|C = 1)p(C = 1)

p(y|C = −1)p(C = −1)
= wTy + b. (5.7)

We can then find the hyperplane that maximize the probability of a set of documents
belonging to their true class

argmax
w,b

∏
∀i

p(ci|yi) = argmax
w,b

∏
∀i

σ(ci(w
Tyi + b))

argmin
w,b

−
∑
∀i

ln p(ci|yi) = argmax
w,b

∑
∀i

ln
1

1 + exp(−ci(wTyi + b))

= argmin
w,b

ln(1 + exp(−ci(wTyi + b))). (5.8)

Given that there exists a hyperplane that separates the classes, we can always find a
hyperplane where p(ci|yi) can be arbitrarely close to 1 for all the training documents by
giving the normal vector, w, an infinite length. As with the SVM we need an incentive to
separate the classes with a plane that has a large Euclidean distance to documents in each
class. A more suited formulation is to penalize hyperplanes that makes a documents true
class improbable using equation 5.8, and maximize 1/|w| so that the log probability ratio
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given in equation 5.7 isn’t oversensitive to small Euclidean changes in the document
vector y. A formulation that should give models with less variance could then be

arg min
w,b

1

2
|w|2 + C

∑
∀i

ln(1 + exp(−ci(wTyi + b))) (5.9)

[14] where C is a regularization parameter to avoid over-fitting. Other than using a
different penalty-function, this optimization problem is then the same as the one from
equation 5.4 that was used to train SVMs. After we’ve found the hyperplane parameters
from a training set, we can use σ(wTyi + b) as an estimate of the probability p(C = 1|yi).

5.3 Extending Binary Classification to Multi-class Problems

So far the classification methods that have been described can only differentiate two
classes. This is a problem since a general language identification problem will have
numerous classes. There exists generalizations of the classifiers that we have discussed
that support multiple classes, but these are often avoided due to the additional training
time required [15]. A more commonly used approach is to train multiple classifiers on
different classes, and then fuse the results to scores for each language. The merging of the
results can be done by training Gaussian mixtures discussed in section 2.7.1 to recognize
the typical scores from equation 5.2 or the probability scores for the positive class when
using LR.

WithN classes, the One vs. Rest (OVR) approach is to trainN classifiers. Each of the
classes will act as the +1 class in one classifier, and the −1 class in all the other classifiers
[15]. The pattern in the scores that should emerge from such a setup is that the classifier
trained with a document’s true class as +1 class should give the highest score. This
means that without backend calibration of the scores, a simple way to perform language
identification would be to label a vector to belong to the +1 class of the classifier that
gave the highest score. This is known as max-score wins OVR classification.

Another approach to multiclass classification is to train N(N − 1)/2 classifiers in a
One vs One (OVO) pattern. One classifier is then trained for all pairs of classes [15]. Each
class is then tested against the n− 1 other classes as either the positive or negative class.
Identification without performing score calibration can be performed by either selecting
the class that won most of its n− 1 trials [15] or the language that received the highest
sum of scores.

Although there are more classifiers to train in the OVO approach, this setup should
still be faster to train since each classifier require only documents from two classes [1,
832]. The performance of the two methods should be comparable [16].
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5.4 Normalization of Document Vectors for Classification

In both the optimization problems for the SVM and LR, we would like to find a hyper-
plane that separates the data with a large Euclidean distance between documents from
the two classes. Dimensions where the document vectors have a very high variance can
have a large effect on the Euclidean distance between documents and a hyperplane [12].
This doesn’t necessarily mean that those dimensions have more information about the
class identity than the dimensions with lower variance. To make the Euclidean distance
a more suited confidence measure, document vectors are often whitened by giving each
dimension zero mean and unit variance.

After whitening another problem might be that the inner product between the
document vector and hyperplane vector can take a very large dynamic range [12]. This
can be avoided by giving the whitened document vector, y unit length. The range of
the inner product will then be limited by the length of the hyperplane’s normal. Simply
dividing the document vector by its euclidean norm would be a many-to-one mapping
that looses information. In [12] a more elegant lossless transformation was given where
the new score vector, ŷ, is

ŷ =
[yT , D]T

|[yT , D]|
(5.10)

where we concatenate some constant D to each document vector. The scaling of the
extra dimension in the new document vector will then reflect the length of the original
document vector and can be used to separate document vectors of different lengths.
The significance of keeping length-information will likely depend on the distribution of
document vectors.





Part II

Implementation
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Data Preparation

6.1 Training and Development Corpus

To train the systems we used data from the Linguistic Data Consortium CallFriend
corpus1. This database contains several hours of unscripted telephone conversations
for twelve languages. The languages are shown in table 6.1. For the English, Mandarin

Table 6.1: Languages in the CallFriend corpus

American English Canadian French Egyptian Arabic Farsi
German Hindi Japanese Korean

Mandarin Chinese Spanish Tamil Vietnamese

and Spanish languages the database includes speech from two dialects. The dialects
are given in table 6.2. For each language or dialect there is about 60 hours of speech.

Table 6.2: Dialects included in the CallFriend Database

Dialects
American English Non-Southern Southern
Mandarin Chinese Mainland Taiwan
Spanish Non-Caribbean Caribbean

Approximately 50 minutes of speech from each dialect was used as development data.
This data set is used to test the performance of the system during development. By
using a separate data set for the final evaluation, the performance of the system will be
given from unseen data. If implementation decisions were to be influenced by the data
set used for the final performance evaluation, then the resulting performance might be
too optimistic. To make sure that the system recognizes languages and not persons, no
speaker was present in both the training and development set. We aimed for having
few speakers in the development set in order for the systems to be trained on as many
speakers as possible.

(1) http://www.ldc.upenn.edu/Catalog/

http://www.ldc.upenn.edu/Catalog/
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6.2 Evaluation Set

For the final evaluation of the systems the 2003 NIST Language Recognition Evaluation
set was used2. By using a standardized test set, we can easily compare the performance
of our system with others. The NIST set mostly includes data collected for (but not used
in) the CallFriend corpus [2] so, the conditions for the test segments should be similar
to the training data. The NIST set includes the same twelve target languages that were
included in the training set given in table 6.1. The set also includes out of set utterances
in Russian. The Russian segments can be used to test the system’s ability to recognize
if any of the trained languages were spoken at all. In accordance with the evaluation
rules [2], no attempts were made to prepare the system specifically for Russian out of set
segments.

The NIST set includes data of 3, 10 and 30 seconds duration of speech. While our
main focus has been on the 30 second segments, we will report results for the other
segment lengths as well. The segment lengths were enforced by using an automatic
speech activity algorithm to split utterances to the correct size. For each language and
duration at least 80 segments from 40 speakers were provided.

6.3 Phoneme Transcription

Phoneme transcription for all the systems were performed using the Brno University
of Technology (BUT) phoneme recognizer 3. The recognizers utilizes the long temporal
context features as explained in section 2.5. The phoneme recognizer was trained on
Hungarian utterances and has previously performed well on language recognition tasks
[9, 17]. With this training, the recognizer distinguishes 62 different classes. The high
number of classes can make training material sparse when using higher order n-grams.
In order to reduce the sparsity any token labeled as noise were ignored, and consecutive
tokens of silence were stripped to just one token. Experiments were also performed using
a many-to-one token mapping suggested in [17]. With this mapping, information about
phoneme duration is ignored resulting in only 32 different tokens. By itself, we expect
this loss of information to negatively impact the performance of the system. However,
this mapping can severely reduce the training time for some of the systems. This could
potentially mean that we could train the systems with more data, or use higher-order
n-grams.

After utterances have been transcribed, we split the transcription into parts so that
e.g. the length of a development set utterance match the length of the test set utterances.

(2) http://www.itl.nist.gov/iad/mig/tests/lre/2003/
(3) http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context

http://www.itl.nist.gov/iad/mig/tests/lre/2003/
http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context


PHONEME TRANSCRIPTION 35

Since the system’s performance should be dependent on the utterance length, this should
make development scores more closely approximate the score we would expect during
final evaluations.





7

Baseline System

7.1 Baseline Language Models

The baseline system is an implementation of the smoothed language model described
in chapter 3. For each language, one model is created for up to phoneme trigrams. The
k-parameter that determines the model’s degree of smoothing was set independently
for each language. A range of parameter values were tested for each language, and
the parameter that maximized the log-likelihood in equation 3.5 was chosen. Since
smoothing adds bias to the model, the likelihood for the training set will decrease for
a higher value of k. Because of this, the total likelihood over the development set was
used for the tests. Another strategy might have been to use the same value for k for each
language. We could then select the value that maximized the identification rate using
equation 2.2 with the likelihoods produced from the model. The former approach was
used since trigrams not seen in the training set appeared with clearly different frequency
for each language. This indicated that each model would require a different degree of
smoothing. It did not seem feasible to maximize the identification rate using different
k-values for each language as the parameter search-space would be too great.

The identification rate for 30, 10 and 3 second development utterances all seemed
to benefit slightly from using the unmapped phoneme transcript and it was therefore
used for the final system. The log-likelihoods produced by the language model was
somewhat unsuited to use as score-vector for the Gaussian backend. This is because
the likelihoods are affected by the number of phonemes in the utterance. Instead we
calculated the posterior probability for each class using equal language priors for the
score-vector. This can be viewed as a normalization of the score-vector, making it similar
to the score-vector produced by logistic regression.

7.2 Gaussian Backend

For processing of the score-vectors we used the Focal Multiclass Toolkit1. The toolkit can
be applied to a wide range of machine-learning problems, but it includes methods that are
specifically designed for the NIST language recognition evaluation. E.g. find detection
threshold values that minimizes the expected cost, Cdet, of a recognition decision. It
also implements training and evaluation using GMMs as discussed in section 2.7. An

(1) https://sites.google.com/site/nikobrummer/focalmulticlass

https://sites.google.com/site/nikobrummer/focalmulticlass
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issue with the backend was that it couldn’t be trained on score-vectors from the training
set. This is because the language models and classifiers are expected to perform very
well when tested on its training data. The score-vectors would then be unrepresentative
for the score-vectors we would expect from unseen data. A possible solution would be
to introduce a separate training set just for the backend training. Instead of reducing
the amount of training material for other system components, we opted for training
the backend with the development data. Since we no longer have a set for testing the
implementation of the backend, we could no longer experiment with- and compare
different backends. For this reason we used simple and easily trained models in the
backend that should ensure reasonable results.

For each language, a single Gaussian Multivariate Model was trained. We followed
the recommendation given in [18, p. 70] to treat dialects as separate languages in the rest
of the system, and fuse the scores for these languages in the backend. This makes the
single Gaussian Model an obvious source of bias error, since we expect that score-vectors
from utterances of different dialects will be located in separate clusters of score-vectors.
On the other hand, we could easily end up with an over-fitted model if we were to
represent languages with Gaussian Mixtures.

7.2.1 Universal Background Model for Out-of-Set Languages

The Gaussian backend was also responsible for recognizing the out-of-set language in
the evaluation set. It would be possible to train a language model to distinguish most
other languages from the target languages. This approach was taken in [18, p. 55]
with good results, but it would require training material for an ensemble of out-of-set
languages. For our systems, we make the assumption that the score vector from an
out-of-set language will be contained in the same region in the score-space as utterances
from all the target languages. We train an Universal Background Model (UBM) using all
the development data from target languages. The UBM is just another Gaussian Mixture
that can then synthesize utterances for any language. Due to the risks of over-fitting,
a single Gaussian component was used for the out-of-set language as well. Since the
single Gaussian component has to model score-vectors from more than one language,
we expect this component to have a higher variance than the components for single
languages. This means that the model will give a target language higher likelihood than
the UBM if an unknown utterance is scored close to the mean of a "single-language"
component. Thus the UBM creates the desired effect of requiring some confidence before
we assign an utterance to any target language at all. Still, this simplification is expected
to degrade the performance of the system.
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Implementation of iVector System

In this chapter we will go over the implementation details of the iVector system. The
iVector system will use an equivalent Gaussian backend as the baseline system covered
in section 7.2. Since we couldn’t test the system using the Gaussian backend during
development, most implementation decisions in this chapter were decided with the
identification rate of classifier on 30 second development iVectors using the max score
wins techinque described in section 5.3.

8.1 Classifier

To classify iVectors, we used the LIBLINEAR library 1. It is optimized for linear clas-
sification on large sets of data and features [14], well documented and supports both
SVM-based and logistic regression classification. We normalized iVectors according to
the techniques in section 5.4. Using a standard iVector implementation, we tested both
the OVO and OVR approach to multiclass classification. We found a slight adaption of
the OVR approach to perform best. When a dialect was the +1 class, we didn’t use the
other dialect of the same language in the −1 class. This simpler classification task greatly
reduced the identification error rate for the two-dialect languages, while the identifica-
tion rate for the other languages remained more or less the same. This technique did not
extend that easily to OVO classification as dialects would then have less tests than the
other languages. The number of wins, or sum of scores for a language would then have
to be normalized by the number of classes it was tested against. This more complicated
treatment of dialects had little effect on the identification performance which was about
the same as we got when using standard OVR.

We tested three approaches to set the penalty-parameter for the regularized classi-
fier. For all three approaches we tested a finite set of parameters against development
vectors. In the first test we assumed that each classifier would use the same penalty-
parameter, and simply chose the parameter that got the highest total identification rate.
For the other two approaches the penalty-parameter was set independently for each
classifier the OVR-bank consisted of. This was performed by either maximizing the
number of correctly labeled utterances minus the incorrectly labeled, or maximizing the
sum of soft scores for a document belonging to its true class. Using the same penalty
parameter slightly but consistently outperformed the other methods.

(1) http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/


40 IMPLEMENTATION OF IVECTOR SYSTEM

In our identification tests, the SVM and logistic regression gave comparable results.
The similar iVector system from [9] still reported that the system performed better
on language detection tasks when it used logistic regression. This is perhaps not so
unexpected if we use backend score-calibration since the soft-scores from the logistic
regression is a more meaningful interpretation of the class assignment confidence than
the distance from decision boundary we get from SVMs. Although we didn’t get to
verify this argument, we ended up using logistic regression in our final system.

LIBLINEAR also uses the same interface as LIBSVM 2 which allowed us easily
to experiment with non-linear classifiers as well. For the non-linear SVM we followed
the developers of LIBSVM’s guide to SVM classification [19]. Their recommendation
for a non-linear classifier did not yield a performance better than the linear classifiers
regardless of the iVector dimension. We expect that with more experimentation we could
have gotten better results with kernel based classifiers, as there should be parameters
that make some non-linear classifiers behave as if they are linear [20]. This means that
the performance of the linear classifier is a lower bound for the performance we could
achieve with a non-linear classifier, but the time required to search for SVM parameters
did however take considerably longer for the non-linear classifiers. Since it seemed like
the iVectors were just as separable with a linear decision boundary, we did not investigate
using non-linear SVMs further.

8.2 Document Vector

We use the same process as in 6.3 to generate the phoneme transcripts that are used
to construct the document vectors. As expected, the system performed better when
no mapping of the phoneme labels was used. Although this result was consistent for
all the tests we ran, the savings in computational complexity was significant enough
for us to use the mapping for some of our experiments. We used only trigrams as
features in the document vector as bigram and unigram counts did not seem to add
supplementary information to the vector. In fact the identification rate on 30 second
development utterances slightly decreased when we included bigrams and unigrams as
features. There was a more significant drop in performance when we used the square root
of trigram counts as features. E.g. for a typical iVector-implementation, we experienced
more than a 20 % relative decrease in the error rate when ordinary features were used.
This result contradicts the findings from the similar iVector system given in [9]. A
possible reason for this might be that the other system used phoneme lattices which

(2) http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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would make the document vectors richer in information. Without lattices, it might just
be harmful to spread the significance of trigrams to those with lower counts.

From the gradient of T and iVectors given in equations 4.7 and 4.10 we see that a
maxima isn’t affected by the number of features in the utterance as long as the direction of
the document vector is the same. We trained the total variability matrix using utterances
with a length of about five minutes of speech. The reason for not matching the training
utterance length with the test utterance length was twofold. It is difficult to exploit
the sparsity of the document vectors, so having fewer training utterances with more
features reduced the time required to train the system significantly. We also expect that
the direction of the document vector will be more influenced by noise when the utterance
is short. If the total variability matrix were trained on short vectors, then it would also
have to model more of this noise that cannot be used to recognize languages. In a way,
we might view the shorter development and test utterances as projected into the less
noisy subspace when we find their iVectors. This frees up dimensions in the iVector to
model more important features. Longer training utterances were also used in the iVector
system in [9]. We did not perform an extensive search for the optimal training utterance
length, but the identification rate was a bit higher when we used 5 minute rather than 4
or 6 minute training utterances.

After training T with longer utterances, it might have been beneficial to train the
classifier with iVectors from shorter utterances. The classifier would then have more
training data available, and the training iVectors would come from utterances of more
similar lengths to the test data. This turned out to be true for the mapped phonemes
document vectors, where the absolute performance increased slightly when the classifier
was trained with two minute long utterances.Without the phoneme mapping, there was
no change in the performance, but the classifier ended up with a less regularized model.
This might indicate that even though there would be more variance in the short duration
iVectors, the decision boundaries between classes weren’t much affected. Instead the
classifier would more frequently mislabel some of the training vectors. Since shorter
training utterances would increase the training time and not provide any significant
increase in performance, we opted to use the five minute utterances for training of the
classifier as well.

8.3 Standard iVector system

For the basic iVector system we implemented the techniques described in section 4.3
and 4.4. The total variability matrix is then trained with the iterative approach of one
update of the ivectors from the train set using equation 4.12 and one update of the
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matrix using equation 4.8. Pseudocode for the algorithm is given in appendix B.2.1. We
used an iVector dimension of 200. This is substantially lower than the 600 dimension
iVectors used in [9], but that system had more training documents, and used phoneme
lattices to produce more dense document vectors. The log-likelihood for training and
development documents during a typical training can be seen in figure 8.1. In the figure,

Figure 8.1: Average log-likelihood per second of speech for training and development data during the training
algorithm after 0 to 7 iterations. The iVector dimension was set to 200.

the development documents are seen to have a slightly higher log-likelihood than the
training documents. This is because we ignore the features in the development document
vectors that are not seen in the training set since they would have an likelihood of −∞.
The development utterances then seem to have fewer features per second of speech. This
effect makes it difficult to directly compare the training likelihoods against development
likelihoods, but what we do see is the effect of over-fitting the model to the training
data when we use too many iterations of the algorithm. For this reason we stop training
T when a decrease in likelihood for development vectors are observed. In figure 8.1
we would observe an decrease in likelihood during the fourth iteration, so the optimal
matrix T would be the one we found in the third iteration. We also implemented the
safeguard against making too large update steps described in section 4.5.2, but it had
only a minimal effect on the iVectors.

When extracting iVectors either for training the classifier, or testing the performance
of the classifier, we initialize the iVectors to zero. We then do a number of iterations of
updating equation 4.12 using the total variability matrix we found during training. Since
these are the iVectors that will be used for classification, it seems natural to also take a
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look at how the iVectors during extraction react to the trained total variability matrix.
In figure 8.2 we show the achieved likelihood for the first 6 iterations of the extraction
algorithm for total variability matrices trained in 0 to 7 iterations. Figure 8.2b confirms
what we saw in figure 8.1, that too many iterations of updating T will give the model a
worse fit to development utterances. This effect of over-fitting is however not so clear in
this figure when the documents are given many iterations to find the likelihood maxima.
Still the maximum, regardless of the number of iterations during extraction, is reached
when the total variability matrix is trained with around three iterations.

(a) (b)

Figure 8.2: Average log-likelihood per second of speech when extracting iVectors with 1 to 6 iterations using
a total variability matrix trained in 0 to 7 iterations. (a) likelihood for training documents, (b) development
documents. For both tests the iVector dimension was set to 200.

Figure 8.2a showing the likelihood for training iVectors is more troublesome. As
expected the figure shows that when T is trained with more iterations, there will exist
iVectors that will give the training data higher likelihood. The problem is that when the
iVectors are initialized to zero, it may take many iterations of the extraction algorithm
before any benefit of a more fitted T-matrix is shown. With only one iteration of extract-
ing iVectors, the likelihood will actually decrease for training data if T is trained with
more than three iterations. While this decrease in likelihood is only present after T is
over-trained for training utterances, the underlying problem might be a cause of concern
as it also may limit the performance of the system when T is trained with fewer iterations.
We suspect the problem to be that as T gets more fitted to specific iVectors, the Hessian,
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or second derivative, to the log-likelihood will change more rapidly in the iVector space.
This can make the updates of iVectors converge slower because the Hessian in a Newton
Raphson update is approximated to be constant between the old and new vectors.

8.4 Reset-Trained iVector System

One possible solution to the problems with the default system would be to train the
total variability matrix using the iVectors we would get during the first few iterations of
iVector extraction. Instead of performing iterations of updating iVectors and then update
T, each iteration could be to train iVectors from zero and then update T. It seemed
natural to try one update of the iVectors per iteration. This keeps the computational
requirements during training similar to the standard system, while the total variability
matrix is optimized to give documents a high likelihood from the first iteration of the
iVector extraction process.

Figure 8.3: Likelihood for training and development utterances during training when iVectors are reset to
zero before each iteration. The iVector dimension was 200.

The likelihoods for training and development documents during this training
process is shown in figure 8.3. From the figure we see that the likelihood for both training
and development utterances ceases to increase after a few iterations and T never becomes
over-fitted to the training data. Still the likelihoods during this training method is smaller
than the likelihoods we got using the standard training method, shown in figure 8.1. This
is not so unexpected since we restrict the iVectors by resetting them before each iteration.
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During iVector extraction, where the iVectors are given more iterations to converge to
their maxima, the likelihood for development data even slightly exceeded the maximum
likelihood we got from the standard training method.

Figure 8.4: Identification rate for 200-dimensional iVectors. The horizontal axis denotes the number of
iterations used during extraction to produce the iVectors for training and testing the system

In figure 8.4 we compare the identification rate of the standard and reset-trained
systems on 30 second development vectors. As expected the reset-trained system has
a higher identification rate when iVectors are extracted with few iterations. It is more
surprising that the identification rate for the standard system doesn’t exceed the reset
trained system at any iteration. We are not sure if this improvement would extend
to other data-sets or systems. It might be that the reset-training results in the system
having less model variance, since T is trained on iVectors that have only captured coarse
details of the utterances. The standard training method on the other hand is able to
model minor details in utterances. Although the updates of T stop before this results
in a deterioration of the development likelihood, the modeling of the minor details
might offer little discriminative information for unseen data. This slight over-fitting
is also supported by the earlier observation that we achieved a higher likelihood for
development utterances during iVector extraction, when we used the reset trained total
variability matrix.

We also attempted to update the iVectors twice after resetting it in each training
iteration of T. Since the iVectors are more closely converged to their maxima, this training
method could resemble a middle ground between the standard and reset training. This
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did not yield lower likelihoods for development data during extraction.

8.5 iVector Dimension

A very important parameter that hasn’t been much discussed is the iVector dimension.
Since there will be more degrees of freedom, it seems natural that a higher iVector-
dimension will result in lower likelihood for both training and development vectors.
Still, this does not mean that we should use iVectors of high dimension. A high likelihood
does not necessarily mean that the system will perform better, and using low-dimension
iVectors is less computational intensive. In figure 8.5 we show the identification rate
for the standard and reset-trained iVector system. We have both trained and tested
the classifier using iVectors that where extracted with the same number of Newton
Raphson updates. This follows our previous logic of accommodating so that training,
development and test iVectors all come from as similar as possible statistical distributions.
The number of extraction iterations that gave the best result varied with each system. As
we see, the reset-trained system consistently outperformed the regular system regardless
of dimension.

Figure 8.5: Identification rate for standard and reset-trained iVector system with different dimensions. The
rates were measured from 30 second development utterances.



SYSTEM FOR SHORTER DURATION UTTERANCES 47

It should be noted that the difference between the best and the worst results is
only about 35 more correctly identified utterances out of about 1500. We only try a
discrete set of penalty-parameters for the classifier, and also plain luck might simply
make a few utterances in an iVector-space of some dimension barely cross over the
decision boundary to the wrong or correct class. This explains some of the noise in the
performance results, and why it is difficult to see clear trends in the performance when
increasing or decreasing the performance. The dimension that performed best in the test
might not objectively be best suited to separate the languages, and it is no guarantee that
it will perform best on the NIST test set. For the final system we used the 150-dimensional
reset-trained iVector system. Although the 250 dimensional system performed slightly
better on the devtest vectors, the high dimensionality made the system much slower to
train and test.

8.6 System for Shorter Duration Utterances

In the past sections we have based our design decisions for the iVector systems per-
formance on 30 second utterances. At least to some degree, many of these decisions
should be valid for the 10 and 3 second tests as well. In section 8.2 we argued that the
total variability matrix could, and should, be trained using long-duration utterances.
For the reset-trained total variability matrix, figure 8.3 shows that over-fitting was not
an issue, so it would probably make little difference for the final matrix to check for
over-fitting using shorter duration development vectors. All this suggests that the same
total variability matrix could be used for utterances of all sizes.

We are however not sure that the same iVector dimension will be optimal for
utterances of all lengths. Shorter utterances will have sparser document vectors, and
perhaps reduce the need for high-dimensional iVectors. This was not checked, and we
used the 150-dimensional reset-trained total variability matrix for the shorter utterances
as well. In section 8.2 we found no significant improvement when training the classifier
with shorter utterances than what we used when training the total variability matrix. It is
possible that there would be clearer performance benefits of using shorter utterances to
train the classifiers for 10 and 3 second utterances. The number of utterances will increase
if each utterance is shorter, and extracting 3 or even 10 second training utterances for the
classifier using the whole training set would simply take too long. A possible solution
would be to train the classifier with short utterances from only a subset of the training
set, but this was not tested. Since we expect the system to have a worse performance on
shorter utterances, the development utterances had the same length as the test utterances.
This allows us to optimize the classifiers penalty-parameter for each test.
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Identification Results

For presenting identification results, it seemed beneficial to not use the likelihoods
from the Gaussian back-end, and simply select the language that was given the highest
likelihood by the language model or classifier. This enables us to compare the results
from the NIST 2003 set with the development set. We will here only present the closed
set results for the two systems.

9.1 Baseline system

Table 9.1 shows the identification performance of the baseline system on 30 second
utterances from both the NIST and development set. For many of the languages there is
a big difference in performance for the two sets. This variation seems to be because we
used few different speakers in the dev set. For Vietnamese utterances where the error-
rate is 0% and 27.7% on the NIST and development set respectively, all the erroneous
classifications were from utterances by one speaker. For this speaker only 11 out of
39 utterances were correctly identified. This just illustrates why it was important to
train the system on as many speakers as possible, the distribution of phonemes will
vary amongst speakers, so it should be beneficial to train the system on a diverse set of
speakers. The average identification rate over languages were 93.3% and 91.1% for the
NIST set and development set respectively. Also, 93.0% of the 30 second NIST utterances
were correctly identified, against 92.1% of the development utterances.

9.2 iVector system

In table 9.2 we show the identification rate of the iVector system. Compared to the
baseline system, we got a much higher identification rate on Vietnamese and Tamilian
development utterances. German development utterances were however a problem for
both systems. In the development set, 96.2% of the utterances were correctly identified,
against only 92.8% in the NIST set. This drop in performance for the NIST set, which
we didn’t see in the baseline system, is probably because the utterances in the NIST-set
on average were shorter than the development utterances. Development utterances
were split when the phoneme recognizer had transcribed 30 seconds of speech, but
the recognizer found on average only 20 seconds of speech in the NIST set. It was not
checked whether this was because large parts of the conversation was labeled as noise,
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Language Ar En Fa Fr Ge Hi Ja Ko Ma Sp Ta Vi
Arabic 72 0 1 0 0 0 1 0 0 0 0 0
English 2 228 0 4 0 0 0 0 1 1 0 0
Farsi 2 1 72 0 1 1 0 0 0 0 0 0
French 1 0 0 71 0 0 0 0 0 0 0 0
German 0 0 0 1 75 0 2 0 0 0 0 0
Hindi 0 0 0 0 0 72 0 0 0 1 0 0
Japanese 0 0 0 1 4 0 137 1 0 1 0 0
Korean 0 2 2 1 0 4 8 79 2 0 0 0
Mandarin 1 4 1 1 0 3 4 0 75 0 0 0
Spanish 1 1 0 0 0 0 4 0 0 76 0 0
Tamil 1 1 0 0 0 0 0 0 0 1 79 0
Vietnamese 0 3 4 1 0 0 4 0 2 0 1 80
NIST ER % 10.0 5.0 10.0 11.3 6.3 10.0 14.4 1.3 6.3 5.0 1.3 0.0
Dev ER % 1.9 2.4 9.9 7.9 23.8 9.0 3.0 0.0 2.0 5.4 13.9 27.7

Table 9.1: Confusion matrix from identifying 30 second documents from the 30 second NIST 2003 evaluation
set with the baseline system. The columns denote the true identity of the document, while rows denote the
identified language. ER is the error-rate of the system, which is reported for both the development set and
NIST set in the last two rows.

or the automatic speech activity algorithm used to split NIST utterances also included
short pauses as conversation. We simply weren’t able to see this drop in identification
rate for the baseline system, since it had severe trouble with recognizing utterances from
some of the speakers in the development set. The average identification rate for each
language was 95.5% for the development set and 92.9% for the NIST set

In [21] a SVM based language recognition system using anchor models could
correctly identify 90.5% of the utterances in the NIST 2003 set. Both of our systems
performed well compared to this result, but the slightly higher performance might
however just be the result of using more modern processing of the speech signal.
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Language Ar En Fa Fr Ge Hi Ja Ko Ma Sp Ta Vi
Arabic 73 1 1 1 2 2 0 1 0 1 0 0
English 2 223 0 1 0 0 1 0 2 1 0 0
Farsi 1 1 74 0 1 1 0 0 0 0 0 0
French 1 3 0 73 0 0 0 0 0 0 0 0
German 0 0 0 1 74 1 0 0 2 0 0 0
Hindi 1 1 0 0 0 67 2 0 0 0 0 2
Japanese 0 1 1 0 3 0 147 1 1 1 0 0
Korean 1 1 0 1 0 3 2 78 0 0 0 0
Mandarin 0 3 2 1 0 1 4 0 73 0 1 0
Spanish 0 2 0 1 0 2 2 0 0 76 0 1
Tamil 1 3 1 0 0 3 0 0 0 1 79 0
Vietnamese 0 1 1 1 0 0 2 0 2 0 0 77
NIST ER % 8.8 7.1 7.5 8.8 7.5 16.3 8.1 2.5 8.8 5.0 1.3 3.8
Dev ER % 1.0 0.0 4.0 5.0 16.8 5.9 8.0 0.0 1.0 3.0 3.0 5.9

Table 9.2: Confusion matrix from identifying 30 second NIST utterances with the iVector system. The
columns denote the true identity of the document, while rows denote the identified language. ER is the
error-rate of the system, which is reported for both the development set and NIST set in the last two rows.
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Detection Performance

In this chapter we will present the performance for the baseline and iVector system both
for open and closed set detection.

10.1 Baseline System on 30 Second Utterances

In figure 10.1 the DET-curve for the baseline system is shown. The system achieved
an CDet of 0.0330 for the closed set and 0.0478 for the open set evaluations. From the
DET-curve we see that the miss probability cannot be reduced to below about 4% without
a severe increase in false alarms. This might be because the Bayesian models are capable
of discriminating classes, even though they give poor probability estimates [22]. Usually
the score-vector (which was the probability for each class) used in the backend was
dominated by one class with a probability close to 1. This made the score-vector contain
almost no information for alternative suggestions to the dominating class, so the backend
had to make blind guesses if it were to further reduce the miss probability below a
certain point. In hindsight, normalizing the score-vector by dividing by the number
of phonemes in the utterance, would perhaps avoid this problem. Such normalizing
was used in [23]. The EER is seen to be beyond the point where the miss-probability
stagnates, and is 4.91% and 4.38% for the closed and open set respectively.

10.2 iVector system 30 second performance

The Det-curves for 30 second utterances recognized by the iVector system is shown in
figure 10.2. A noticeable difference from the baseline system is that this system is more
adaptable to different requirements for the miss or false alarm probability. Still the CDet

is 0.0353 and 0.0494 for the closed and open set respectively which is slightly higher
than the baseline system. The EER is however significantly lower, at only 2.76% for the
closed set and 3.59% for the open set. The better EER should probably not be contributed
to improved recognition capabilities by iVectors, but rather the shortcomings in the
score-vector used by the baseline system. The difference between the open and closed
set results suggest like we expected that the assumptions made to incorporate out-of-set
languages weren’t completely valid. E.g. at the threshold used to calculate CDet, 55% of
the out-of-set utterances were recognized as target language utterances.
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Figure 10.1: Baseline system DET-curves for the 30 second open and closed set NIST utterances. The crosses
indicates the miss and false alarm probability used when calculating CDet.

10.3 Ten and Three Second Performance

The DET-curves for the 3 and 10 second tests of the baseline and iVector system are shown
in figure 10.3. The iVector system is seen to outperform the baseline system for these
conditions. There are only minor differences between the open and closed set results,
except for the three second baseline performance. This was caused by the backend
recognizing more target language utterances than out-of-set utterances as being out-of-
set. Although the assumptions made to accommodate shorter utterances in section 8.6
seems to fit fairly well, we expect that it is possible to improve these results significantly
for both systems. This is supported by the comparison of other systems given in the next
section, where the EER for our systems are seen to deteriorate faster when the length of
the utterances are reduced.

10.4 Comparison to Other Systems

We’ve listed the performance of the baseline, iVector and 6 other systems in table 10.1.
The four systems from MITLL consisted of a trigram PRLM system running in parallel



COMPARISON TO OTHER SYSTEMS 57

Figure 10.2: iVector system DET-curves for the 30 second open and closed set NIST utterances. The crosses
indicates the miss and false alarm probability used when calculating CDet.

with six phoneme recognizer, an acoustic GMM and SVM VSC system and the fusion of
the aforementioned systems. The baseline and iVector system performed competitively
against these systems for the 30 second test, but they were surpassed by the fusion
system for the shorter durations.

System 30s 10s 3s
iVector 2.8 13.3 26.5
Baseline 4.9 18.6 32.0
MITLL-PPRLM 6.6 14.3 25.5
MITLL-GMM 4.8 9.8 19.8
MITLL-SVM 6.1 16.4 28.2
MITLL-FUSE 2.8 7.8 20.3
BUT-SPDAT 2.4 8.1 19.1
BUT-PRLM 1.8 6.6 18.8

Table 10.1: EER in % for an ensemble of language recognition systems for the NIST LRE 2003 closed set
evaluations. The MITLL systems are published in [24], while the BUT systems are from [23].

It is difficult to directly compare the iVector approach to other recognition systems
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(a) (b)

Figure 10.3: DET-curves of the baseline and iVector system for 10 and 3 second NIST LRE03 utterances.
(a) is the iVector performance, (b) is the baseline. The crosses indicates the point where CDet was calculated
from.

since the performance will heavily depend on the quality of the phoneme transcripts [4,
p. 64]. The BUT-SPDAT system used four phoneme recognizers for a trigram PPRLM
system, but a superior performance was reached by the BUT-PRLM system. The increased
recognition capabilities were partially contributed to better phoneme recognition and
use of phone lattices [23]. The phoneme recognizer in the BUT-PRLM system had an
phoneme error rate similar to the phoneme recognizer we used [4, p. 58], and lattices
were only given to reduce the EER by 0.8% absolute [23]. In light of this, it might have
been expected from the discriminative information in our phoneme transcripts to get a
higher performance than even the fused MITLL system.



11

Summary

We got perhaps the most reliable comparison of the iVector system’s performance from
the identification results, where the baseline’s performance was unaffected by the badly
normalized score-vectors. Although not necessarily statistically significant, the identifi-
cation rate for the baseline system was slightly higher for 30 seconds.

Resetting iVectors to zero during training of the total variability matrix seems to
offer an interesting alternative to the standard training method to prevent over-training
of the model, but it would not be surprising if the learning method is too naive for more
complex data. It is possible that tweaking the standard training method to deliberately
scale down the change in the iVectors from an update step could result in a trade-off
between the two learning methods. I.e. the total variability matrix will at first be
trained on iVectors that only portray the rudimentary characteristics of the utterance,
but then gradually captures the finer details of the utterance in later iterations until
over-training occurs. Even if this has the potential to result in a better subspace it could
be time-consuming to experimentally find the best scaling-parameters.

A simpler solution that should in any case increase the performance might be to
use more complex data. E.g. the less sparse document vectors we would get from using
phoneme lattices. While the standard training method over-trained the total variability
matrix after three iterations, the lattice-based iVector system in [9] needed six iterations
to be over-fitted. We can’t isolate this need for more iterations to just using lattices as
that system used other training and development data. Still it seems like more complex
data will make the total variability matrix more gradually adapt to the data, which in
turn might give finer control over the bias and over-training of the model.
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Conclusion

While the final system performed similarly to other well-established techniques for
language recognition, it did perhaps not quite reach the performance we would expect
given the advantage of using a modern phoneme recognizer. We believe there to be two
reasons for this. Some well known techniques to increase a systems performance were
left out of scope, but our experiments also suggested that excisting training methods for
iVector systems might be better suited for more complicated data.
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A

Properties for the Newton Raphson Updates

This chapter will prove the properties used in section 4.5.

A.1 Proof of Symmetry

From equation 4.11 we have

HT
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= Hn

which concludes the proof that Hn is symmetric. A similar proof using equation 4.9 will
show that Hc is symmetric as well.

A.2 Conditions for Positive Definity and for Nonsingularity

We will here show the conditions for the Hessian of iVectors and rows of T being positive
definite and nonsingular. A nonsingular matrix, A is a matrix that has one and only one
solution to a linear system Ax = b [25, p. 54]. Also A is positive definite if xTAx > 0

for all non-zero vectors x [25, p. 246]. When we apply this to the approximation to the
Hessian from equation 4.11 we get
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The inequality above is given by the fact that φnc and γnc ≥ 0∀n, i and that xT tc will be
a real scalar. Since the update process explained in section 4.3 only gives iVectors and
rows of T finite values φnc from equation 4.3 will only equal 0 when mc = −∞. From
equation 4.6, this will only happen if the feature, c, is not seen in the set used to calculate
mc. We now let t̃n denote the set of rows from T that correspond to features seen in the
training set or the current vector n, that is

t̃n = {tc|mc 6= −∞∪ γnc 6= 0}

Equality in equation A.1 can only be reached if x is orthogonal to all the vectors in t̃n.
If R is the dimension of rows of T (and iVectors), then x can only be orthogonal to the
vectors in t̃n if these vectors span a true subset of the R-dimensional space. Each row of
Hn will be a weighted sum of the vectors in t̃n, so the row span of Hn will be a subspace
of t̃n’s span. If there is an orthogonal vector x, then Hn will have rank less than R and
be singular [25, p. 54]. Since it is given that a positive definite matrix also is nonsingular
[10, p. 760], we have that Hn will be nonsingular and positive definite if and only if the
vectors in t̃n span the entire R-dimensional space.

With similar calculations as in equation A.1 we can show when Hc is nonsingular
and positive definite. As with t̃n we let w̃c denote the set of iVectors that contribute (isn’t
multiplied with zero in equation 4.9) to Hc. Given that we use the same set to train m

and T, γnc can only be zero if mc is −∞. So w̃c is either all iVectors from the training set,
or the empty set if c is a feature that is not seen in the training set. For features found in
the training set, this means that Hc will be nonsingular and positive definite if and only
if all the i-vectors from the training set span all R dimensions.

A.3 Column Span of the Total Variability Matrix

Given two total variability matrices, T and T̂, with the same column span, there will for
any iVector wn exist an iVector ŵn where
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Twn = T̂ŵn. (A.2)

This is because both sides of the equation will be a linear combinations of the column
vectors of T or T̂ that share the same subspace.

We’ll here show that if two iVectors satisfy equation A.2 using some total variability
matrices with common column span, then the iVectors we get after a Newton Rapshon
update will also satisfy equation A.2. From equation 4.3, this will also imply that φnc
and thereby the likelihood when using either of the total variability matrices with the
corresponding iVectors will be equal before and after an update. By inserting equation
4.10 and 4.11, the equations for the gradient and Hessian respectively, into equation 4.13,
a Newton Raphson update will then be

C∑
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bnctct
T
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where the scalars
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If this equality holds using tc, wn(new) and wn(old), then we only need to check that it
holds when we instead use t̂c and the iVectors ŵn(old) and ŵn(new) satisfying equation
A.2 that we know exists. By using the condition in equation A.2 in equation A.3 we have

C∑
c=1

(
bnctct

T
c (wn(new)−wn(old))− anctc

)
=

C∑
c=1

(
bnctct̂

T
c (ŵn(new)− ŵn(old))− anctc
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where
knc =

(
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T
c (ŵn(new)− ŵn(old))− anc

)
.

Since φnc(old) is equal for total variability matrices and iVectors satisfying equation A.2,
anc, bnc and thereby knc will also be unaffected by the change of matrix and iVectors. We
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can conclude the proof if tc can be interchanged with t̂c in equation A.4 which also can
be written as

TTkn = 0, (A.5)

where the i-th element in the vector kn is kni. Since the matrices span the same column
space, kn will either be orthogonal to neither or both the rows of TT and T̂T . Assuming
that the system is nonsingular, then equation A.5 will have a solution, and when equation
A.2 is satisfied for the old iVectors the nonsingularity will imply that the only possible
values for the new iVectors will also satisfy that constraint.
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Overview of the Implemented Systems

We will here give a summary of the scripts and programs developed for the iVector
and baseline system. The systems are in no way production ready, and any settings
will for the most part be defined in constants. Complete source code can be found at
http://www.github.com/asmundto/ivector.

B.1 Scripts

These are the script needed to run the baseline or iVector system.

• convert.py will convert the NIST sound-files to the .raw format expected for the
phoneme recognizer.

• runphnrec.py and NISTrunphnrec.py runs the phoneme recognizer on speech-files
from the CallFriend and NIST set respectively. Requires the BUT phoneme recog-
nizer1.

• splitfile.py splits the phoneme transcripts from the CallFriend set into the desired
length. This script will also define the training and development set.

• baseline.py trains and then tests the baseline system on development and NIST
utterances. The script will report the identification results for both development
and NIST data in addition to creating score-vectors for the backend.

• ivectdocnumvectorizer.py creates the document vectors required for the iVector sys-
tem

• ovarunclassifier.py trains and performs one-vs-all classification on the iVectors. Us-
age: -t <path_to_traindata> -e <path_to_development_or_test_data> -f <0 or 1>. The
first time the script is used on a training set, it will find hyperplane parameters
that best separate training data, and the regularization parameters that best explain
the development data. Any subsequent calls to the script will use the models
already found unless the -f option is set to 1. The script will both show max-win
identification results and produce score-vectors. Requires LIBLINEAR2.

(1) http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
(2) http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://www.github.com/asmundto/ivector
http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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• lrebackend.m Uses the score-vectors from development and NIST data to create and
test the Gaussian backend and plot DET-curves. Requires the FoCal Multiclass
toolkit3.

B.2 Usage of iVector Program

The iVector program responsible for the subspace modeling is the only component
written in C++. It requires the Boost libraries4 for threading and numeric algebra. While
it only has been tested on Windows and Mac platforms it should be cross-compatible. To
compile the program using g++ type:

g++ -Wall -I <path_to_boost_headers> -DNDEBUG -o IVECT Document.cpp
FeatureSpace.cpp iVectIO.cpp iVectMath.cpp iVectThread.cpp iVectTrain.cpp
log.cpp main.cpp test.cpp Configuration.cpp -L<path_to_boost_compiled_libraries>
-lboost_thread -O3

The program has a number of options. While some options can only be changed
directly from the source code, the program can be launched with these parameters:

• -i <dir> sets the directory to read the file-lists that specify where the location and
language of the training, development and test files. These files were created by
the document vectorizer.

• -o <dir> sets the directory to save the total variability matrix and iVectors.

• -C <num> specifies the number of features or dimension of the input document
vector.

• -r <num> sets the iVector dimension.

• -s <num> sets the seed used to initialize the total variability matrix.

• -L <num> specifies the column to read features from the document vector files.
Usually 1 should correspond to ordinary feature counts, and 2 the square root of
counts.

• -t <num> the number of threads used by the application.

• -l <path> skips training T and instead loads it from a file.

(3) https://sites.google.com/site/nikobrummer/focal
(4) www.boost.org

https://sites.google.com/site/nikobrummer/focal
www.boost.org
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Algorithm for Training T
This algorithm computes the iVectors and trained matrix T using a set of spoken
document vectors from both training and development data with C features.
The dimension of the computed iVectors are given by parameter R.

1. Calculate the mean vector, m, from equation 4.6

2. Initialize CxR matrix T with random numbers, and iVectors as zero

3. Find new iVectors from both training and development set using equation
4.12

4. Check likelihood of development data using equation 4.5. If likelihood
has:

a) increased then continue to step 5

b) decreased then return the last matrix T that did increase the likeli-
hood.

5. Find new matrix T using equation 3 with only iVectors from the training
set on all rows. Loop to step 3

Table B.1: Standard training algorithm for the total variability matrix.

B.2.1 Algorithms for Training the Total Variability Matrix

The standard training method for T is given in table B.1. The reset training would be
quite similar, except that in step 3 we would first reset the iVectors from both training
and development set to zero before updating them.
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