Master project description

Modeling and Design of a Dual-Residue Pipelined ADC in
130nm CMOS

The objective of this project is to model and design a 50MS /s, 9-bit dual-residue
pipelined ADC in a 130nm CMOS technology.

The project consists of the following tasks:
e Perform a literature survey of pipelined ADCs to establish current-state-
of-the-art
e Analyze and compare published work

e Develop a behavioral model of the ADC and use the model for deriving
specifications of the individual blocks

e Design key blocks at transistor level and study the effects of non-idealities
by analytical methods and simulation
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Abstract

A 9-bit 50MS/s dual-residue pipelined ADC is modeled and analyzed. The
first stage is a modified pipelined ADC stage, while the other stages uses an
interpolator to resolve the signals, the focus is on designing these stages. The
dual-residue architecture is insensitive to the gain of the residue amplifiers, and
only a matching between two amplifiers is necessary. Limiting parameters of the
ADC is the offset in the residue amplifiers, as well as gain mismatch between
the amplifiers. The maximum allowed offset voltage of the residue amplifier is
Vise and maximum allowable mismatch between the two residue amplifiers is
556 for a 9-bit ADC. Multiple amplifier topologies were discussed and the best
candidate for residue amplification is found to be a zero-crossing based amplifier.
With this type of amplifier the last 8 stages of the ADC has an estimated power
consumption of 2.1mW.






Sammendrag

En 9-bit 50MS/s dual-residue pipelined ADC har blitt modelert og analysert.
Det fgrste trinnet er et modifisert pipeline trinn mens de andre bruker en inter-
polator for a detektere signalet. Dual-residue arkitekturen er uavhenge av gain
i residue forsterkeren og bare en matching av forsterkningen i to forsterkere er
ngdvendig. Begrensende parametere for ADCen er offset i residue forsterkerene
og mismatch mellom de to forsterkerene i hvert trinn. Den storste offset spen-
ningen forsterkeren kan ha er V’QSb, og den maksimale mismatchen er ﬁ for en
9-bits ADC. Flere forsterker topologier ble diskutert og den beste kanditaden
for residue forsterkningen er en zero-crossing bassert forsterker. Med denne
forsterkeren brukte de siste 8 trinnene i ADCen 2.1mW.
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1 Introduction

The increasing demand for low power analog to digital converters push the ex-
isting topologies to the limits. With the new deep-submicron technologies the
supply voltage and intrinsic gain of a transistor decreases. Pipelined converters
are a good choice in order to decrease the power consumption and total area for
high-speed, low power ADCs. The traditional approach for pipelined convert-
ers uses a high gain OTA with feedback to generate an accurate amplification
between the stages. These amplifiers has a high power consumption, and be-
comes increasingly harder to design as the intrinsic gain decreases with newer
technologies. In [Mangelsdorf et al., 1993] another approach for solving this
problem where introduced. By adding another residue voltage the necessity of
an accurate gain is reduced to a demand of matching the gain of two amplifiers,
which is a easier goal to reach.

In this thesis such a converter is modeled and the advantages and disadvantages
are discussed. The ADC will be modeled in a 130nm CMOS process and all
high level models are written in Verilog-A. The report is divided into 5 parts,
first this short introduction before continuing with the background theory for
the converter. In section 3 the different design choices are presented and are
discussed in section 4.



2 Theory

2.1 Pipeline ADC

A single 1-bit stage of a conventional pipelined ADC is shown in Figure 1. These
stages are placed in series, where each stage resolve 1-bit, which is combined to
the final output code. A flash-stage compares the input voltage to the reference
and resolves the output bit of the stage. This bit is further sent into a DAC
which again is fed into an adder. This adder subtracts the DAC voltage from
the input, and generates a residue voltage. This voltage is amplified and sent
to the next stage.

In a conventional pipelined ADC all components in a single stage needs to be
as accurate as the total resolution of the remaining stages. The only exception
is the comparators s which can contain an error of Vl;b if a 1.5-bit architecture
and error correction is used. [Lewis et al., 1992]
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Figure 1: Single 1-bit pipeline stage

The amplifier is usually implemented as a high gain OTA with feedback to
produce an accurate gain of 2.[Shen and Kinget, 2008] The advantages of a
pipelined architecture compared to a normal flash ADC are reduced size and
power consumption, while still attaining the same throughput, but with a small
delay. Disadvantages is that the amplifier consumes a lot of power and in newer
processes with low intrinsic gain may be hard to implement.

Typical error sources in a pipelined ADC are inaccurate gain between the stages,
incomplete settling, input offset in the amplifiers and charge injections from
switches in switched capacitor circuits[Lee and Geiger, 1999, Taherzadeh-Sani
and Hamoui, 2006]



2.2 Dual-residue

By introducing an extra residue voltage to the conventional pipelined ADC, a
few of the dominant error sources can be completely removed, most importantly
the need for an accurate gain. [Mangelsdorf et al., 1993] This is achieved by
changing the representation of the signal from an exact voltage, to the position
of the zero-crossing between a positive and negative voltage. The conversion
between these representations is illustrated in Figure 2, a 1-bit per stage archi-
tecture is assumed. In Figure 2a an input voltage of approximately 1—70\/% ris
shown. The first output voltage, V, nign is identical to the residue voltage in a
conventional pipelined ADC, namely the difference between the input voltage
and the nearest lower quantization level, in this case VT;f . The second residue
voltage,Vj 10w is the difference between the input signal and the higher quanti-
zation level, in this case V,.r. These two voltages are shown in Figure 2b, this
is the dual-residue representation which will be transmitted to the next stage
in the pipeline.

Vref T Vref T Vref T
L - 2 L 2 L
| Vo,\ow L L
I~ T + r Vo,h\gh _ Vo,mgh
- \_/o,hlgh -
Varl2 |- = 0 _—%Tm
B Vet [
0 i il
(a) (b) (c)

Figure 2: Dual-residue representation and operation, the outputs are not am-
plified. (a) Input voltage of appr 7/10Vref. (b)Dual-residue representation after
the first bit is removed. (c) The second bit is resolved and zoomed in on the
Zero-crossing.

The way these voltages are generated it’s easy to show that V, pisn always
will be positive, while Vj ;0 always will be negative. This representation is
dimensionless and independent of any reference voltage and therefore only the



first stage in a dual-residue ADC will have reference voltages. In the ADC the
first stage will resolve the first bit as well as perform the transformation, hence
this stage will differ from all the following stages, which will use interpolation
to zoom in on the zero-crossing. [Vecchi et al., 2011]

2.2.1 Converter stage

The converter stage will be the first stage in the ADC and is shown in Figure 3.
This stage will transform the input signal to the dual-residue representation, as
well as resolve the first bit. This stage is quite similar to a conventional pipeline
stage, but with a few important modifications. An extra output amplifier and
subtracter are added as well as an extra output voltage from the DAC. This
is used to generate the second residue voltage. The possible residue voltages
for both outputs are shown mathematically in Table 1. The reference level
of the comparator is assumed to be % If the input voltage is above the
comparator level, as is the case in Figure 2a, the output code of the comparator
is 1. The high output volta‘ge will be the input voltage subtracted the lower
quantization level, which is =5 here, while the low output voltage will be the
input subtracted the high quantization level which is V,.; here. An amplifier
is used at the output to charge the sampling capacitors in the next stage, even
though no exact amplification is needed, a gain of 2 would keep the difference
in the two output voltages constant between the stages and is the recommended
value.

- 2% Von
V Vdac,l
o— S/H DAC >
Vdac,h Va A
- 2X '

Figure 3: Converter stage topology,1-bit case



Table 1: Output voltages of the Converter stage, 1-bit case

Code Vg ow Vo.high
0 2:(Vi—gVies)  2-(Vi = 3Vies)
1 2-(Vi—5Vier) 2-(Vi—3Vier)

2.2.2 Dual-residue stage

The rest of the stages in the ADC will be dual-residue stages. The basic topology
is shown in Figure 4. It differs from the conversion stage by using an interpolator
instead of the DAC and subtraction circuitry. Also the input voltages should be
a dual-residue representation. The interpolator is used to zoom in on the zero-
crossing to generate the output voltage, as well as generate the input voltage for
the comparator. The input voltage for the comparator should be the mean value
of the two input voltages, and is compared to zero to check if the zero-crossing
is higher or lower than the mean value.

The output voltages of the stage are selected from the comparator result as
shown in Table 2. In Figure 2 the zooming operation is shown, the illustration
is made without amplification of the output to better show the operation. In 2b
the middle point of the input voltages is shown as a black line. Since this point
is negative the zero-crossing have to be in the upper half of the signal, hence
the interpolator will zoom in on this half. The output voltages will therefore be
the high input voltage, and the middle point as shown in Figure 2c. The same
argument is valid if the middle point is positive as is the case in 2c, here the
output voltages will be the low input voltage and the middle point.

Table 2: Output Voltages of the Dual-residue stage, 1-bit case

Code Vo7high V07low
0 2 _%(Vg,high - Vvi,low) + ‘/i,low_ 2 _%(Vvi,high - ‘/i,low) + Vvi,low_
1 2|5 (Vihigh = Vitow) + Vitow|  2|5(Vihigh = Viiow) + Vi iow

2.3 Proof of operation

Let V; be the input voltage, V nign the maximum input voltage, and Vg jo4 the
minimum input voltage. The dual-residue representation is given by (1) and (2)
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Figure 4: Topology of the Dual-residue stage
Vo,high = sz - VQ,low (1)
Vo,lo’w = sz - VQ,high (2)

The position of the zero crossing is given by (3). Here V; — Vg jow is the distance
from the minimum voltage to the input voltage, and Vg nigh — V10w is the total
range, hence the zero crossing is a representation of the input voltage.

Vh V1 - VQ,low Vz - VQ,low (3)

7 = = =
Vi =Vi (Vi=Vgiow) — (Vi = VQ,high)  VQ,high — VO, 10w

2.4 DModifications for 1.5-bit stages

By using a 1.5-bit per stage architecture instead of 1-bit it is possible to take
advantage of the added redundancy for digital error correction.[Vecchi et al.,
2011] In order to resolve the extra bit a extra comparator is added to each
stage. When this is done the output voltages and comparator voltages of each
stage is changed, such that the output voltages overlap. The input voltages for
the comparators should be placed in the middle of this overlap area to remove



small offset errors. This is illustrated in Figure 5 for the dual-residue stage.
The voltages V.o and V,; are the input voltages for the two comparators, and
are placed in the middle of the overlaps to make room for errors which can
be digitally corrected later. This principle also applies for the converter stage.
In Table 3 and Table 4 the output voltages and comparator voltages for the
converter and dual residue stage are shown.

— Vinigh
00 =
Vel
- So1
Veol-
11 =
—_— Vi,Iow

Figure 5: Output voltages for an 1.5-bit architecture, Vo and V,; are the input
voltages for the comparators

Table 3: Output and comparator voltages for the Converter stage, 1.5-bit case

Code Vo,low Vo,high

00 2(‘/1_2‘/7‘6]‘) Q(W_eref)

00 2(Vi— ) 2 (V- 1)

11 2-(Vi— %Vref) 2-(Vi= 3Viey)
Vcomp,low Vcomp,high
%‘/ref %‘/ref

2.5 Error analysis
2.5.1 Amplifier offset

Because the dual-residue ADC does not require an accurate gain, the offset
voltage in the amplifiers becomes one of the dominant error sources.[Vecchi et al.,
2011] The position of the zero-crossing can be written as (4). By introducing the
offset errors, Vo r £ high and Voz £ 10w,0n the amplifiers, the equation is modified to



Table 4: Output and comparator voltages for the dual-residue stage, 1.5-bit
case

Code Vo,high
00 2 _é(v;,high - ‘/i,low) + Vvi,low_
01 2 _g(‘/i,high - ‘/i,low) + V;,low_
11 2 Z(‘/i,high — Vi,low) + Vi,low
Vcomp,low
%(‘/i,high — Vvi,low) + ‘/i,low

Jow
(V,hi h — Vvi,low) + ‘/i,low
g 4
%(V;l,high - V;,low) + V;l,low_
Z(V;,high — Vi,low) + ‘/i,low
comp,high
(Vvi,high — ‘/i,low) + Vvi,low

iy

g

<N)IN)

poluy

(5). To get the expression for the error in the zero-crossing caused by an offset
error, (5) is subtracted from (4). By assuming Vi, 7 10w — Vorf,nigh 1S significantly
smaller than V; o,y — Vi nign the the expression can be written as (6)

Vvi,low

=
V;,low - V:i,high

(4)

V;,low + Voff,low

7' =
Visiow + Vorfiow — Vinigh — Vogfhigh

(5)

AL — 7 — 7 Visiow - Vogf.iow — Vorfnigh) — Vot f.10w(Viiow — Vi high) (
=77~
(‘/i,low - ‘/i,high)2

If both offset voltages are identical there will be a constant offset in the zero-
crossing of Vlv“ff{/h} However if the offset is differential there will be a signal
i tow—Vhigh

6)

dependent error as shown in Figure 6. The error will be between :&:%
i low—Vhig
Since V; 10w — Vhign is equal to the total distance between the two input voltages,

offset voltages for the amplifiers should be lower than %



0.6

0.4

0.2

0.0

error [LSB]

-0.2

0.4

-0.6
0.0 0.2 0.4 0.6 0.8 1.0
Position

_1

T of full scale

Figure 6: Error in the zero-crossing due to an offset error of +
in the two amplifiers.

2.5.2 Gain mismatch

The second most important error source is due to gain mismatch between the two
amplifiers.[Vecchi et al., 2011] The equation for the zero-crossing can be modified
to include the gain, and if there is no mismatch in the gain the expression
becomes (7). By introducing a mismatch in the gain the equation is modified to
(8), where a; and as is the errors of the two amplifiers. By subtracting (8) from
(7) we have the error in the zero-crossing due to mismatch in the two amplifiers
as given in (9). The assumption that Vosf.1ow — Vo high is significantly smaller
than Vj 0w — Vihign is made to simplify the expression. The error is shown in
Figure 7 with the mismatch a; — as equal to 2% and the resolution is 9 bits.
The error in the zero-crossing is signal dependent with a maximum error of LSTB
when V; high = —Vijiow. This indicates that the amplifiers should be matched
to a gain within N — 1 bits.

A- V;,low

Z = 7
A- V;Jow —A- V;,high ( )
A- * Vilow
7' = o - Vil 8)
A- ay - V;Jow —-A- ag - sz}high
V;,' ow * V:L 7 — a2
AZ =7 — 7, ~ Jid high(a1 — a2) (9)

(Vi,low - ‘/z',high)z
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3 Design

The ADC is divided into two types of stages, a converter stage and a dual-residue
stage. These stages are connected as shown in Figure 8 where the first stage
is a converter stage and is followed by 8 of the dual residue stages to complete
the ADC. There’s also a block which performs the digital error correction. All
analog blocks are differential or pseudo differential with a common mode of 1.1V
to make room for NMOS input transistors. The common-mode could be moved

if needed.

Converter stage Dual residue stage Dual residue stage Dual residue stage
Voh+ Vih+ Voh+ Vih+ Voh+——+++| Vih+
— Vi+ 8 Voh- Vih- Voh- Vih- Voh- —— +++| Vih-
i Vol+ vie 7 vol+ vie 6 vorrl—- | vy 0
Vol- Vil- Vol- Vil- Vol- ——++| Vil-
code code code code
2/, 2/, 2/, 2’/

Digital Error Correction
code

°r

Figure 8: Topology of the Dual-residue pipelined ADC

Since the converter stage is basically a conventional pipeline stage with an extra
output, the main focus was on designing the dual residue stage. Therefore only a
high level model was created for the converter stage. The topology of the model
is shown in Figure 9. Differential signals are left out to simplify the figure.
All blocks are created in Verilog-A and the code can be viewed in Appendix A.
Care should be taken when the first stage ultimately is designed as it is the stage
which is expected to contribute most to both accuracy and power consumption.
Not shown in the figure is the reference generator needed to supply the reference
voltages to the DAC.

The second stage consists of an interpolator and residue amplifiers as described
in Section 2.2.2, the basic topology is shown in Figure 10. Differential signals
are left out. The interpolation is performed as described in 3.1.2 and the ampli-
fication is done by amplifier models described in Section 3.2. The comparator

11
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Figure 9: Topology of the Converter stage

is a normal single ended comparator and uses the differential voltage to check
if the input is positive or negative and does not need any external reference.

3.1 Interpolator

The interpolator needs to generate the voltages from Table 4. There are mul-
tiple ways to perform this interpolation by using resistors, capacitors or active
circuits. [Mangelsdorf et al., 1993, Vecchi et al., 2011] Three methods were
considered to be used, a resistive ladder, a capacitive ladder and a charge dis-
tribution array.

3.1.1 Resistive ladder

A resistive ladder is the simplest method and consists of voltage dividers with
multiple resistors in series between the input voltages as shown in Figure 11.
The correct nodes are selected as the output and comparator voltages. To
reduce the thermal noise enough to support 9 bits the resistance would have to
be small, this would again consume a lot of power and the resistive ladder was
discarded as a option.

3.1.2 Capacitive ladder

A capacitive ladder is shown in Figure 12. As with the resistive ladder multiple
identical capacitors are placed in series and the correct nodes are selected as the

12
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Figure 10: Topology of the Dual-residue stage
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Figure 11: Resistive ladder as interpolator



output. All nodes in the ladder are reset to common mode periodically, before
connecting the inputs to the top and bottom node to generate the voltages. This
method would generate all needed voltages at same time, as well as function as
the sample and hold of the stage.

A problem with the capacitive ladder is parasitic capacitance. All the nodes in
the capacitive ladder will have a parasitic capacitance to ground. This capaci-
tance will be charged to common mode during reset, hence the output voltages
will move towards common mode compared to their ideal voltage. To compen-
sate for this error the capacitors in the ladder can be of different sizes to match
them to the parasitic capacitance. However due to the dual-residue architecture
the mean voltage between the two input voltages will vary, and not be constant
at common-mode. This will introduce a new error where the output voltages
still won’t be correct, except when the input voltages are differential such that
the mean value is the common mode voltage. Again this can be compensated by
adding the difference in the charge over the parasitics when charged to common
mode, and if they were reset to the mean value of the input. To do this either
large capacitors or an extra buffer is needed, and both the current consumption
and the complexity would increase. Another drawback by a capacitive ladder
is that by placing capacitors in series the effective capacitance would decrease,
hence the total capacitance would need to be increased to reduce the thermal
noise. Because of these disadvantages the capacitive ladder was discarded as an
option.

| Vo,high
—o0

Vem
o—q—/L Switches

Vo,low
—O

Vi,low .

Figure 12: Capacitive ladder used as interpolator
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3.1.3 Charge redistribution

A differential charge redistribution array as shown in Figure 13 may be used as
the interpolator. The positive and negative halves are symmetrical, therefore
only the positive half is explained. The output voltage is generated by connect-
ing the output node to common mode while the capacitors are connected to
either V3,4 or V4, depending on the desired output voltage. In the next phase
the output node is disconnected from common mode and all the capacitors are
switched to common mode. This generates the output voltage in (10) where
C; and Cj is the total capacitance connected to V;, and V; respectively. Since
there are two residue voltages in the ADC, two differential arrays are used in
parallel, with different number of capacitors connected to each input voltage, to
generate both the high and the low residue voltage. In (11) the position of the
zero crossing is calculated. Here C5 and Cjy is the capacitances in the second
array. Since the arrays are identical, C; + Cs = C3 + (4, hence the parasitic
capacitance C}, can be removed from the equation and does not affect the zero
crossing. The parasitic capacitances will however reduce the output voltage.

Vg = Vi )C1 + (Vi = Vi )Gy
Vo - 10
Ci+Cy + Cp ( )

Vo,l
VOJ - Vo,h
Vi,nC14+V;,1Co
C1+C2+C)
Vi,nC1+Vi,1Co Vi hC3+ Vi 1Cy

C1+C2+C) C3+Cy+C)p
Vi,nCr 4V, Co
VinCr+V,Cy — Vi 1,Cs — V), 1 Cy

(11)

The interpolator has to generate both the voltages for the comparators as well
as the output voltages. The timing diagram to do this for two following stages
is shown in Figure 14. First the comparator voltages are generated, one is
generated by each array before the digital control circuitry reads the comparator
outputs, and uses this to set the appropriate output voltage. Table 5 summarizes
the number of unit capacitors connected to each input voltage to generate any
residue voltage as well as the voltages for the comparators. The arrays is also
used as the sample and hold of the stage and the clock is stopped to hold the
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Figure 13: Differential charge redistribution array used for interpolation



output while the next stage is sampling. The digital control was written in
Verilog-A and can be viewed in Appendix B.

o L LU L N O
® LI [ ) I
sampley/ hold \/sample hold sample}y/ hold \/sample hold
State 1 )
State 2 hold sampley hold \/sample hold sampley hold \/sample
out comp A\ comp out out comp A comp out

Figure 14: Clock scheme of SAR when a time continues amplifier is used

Table 5: Capacitance connected to each input voltage for both charge redistri-
bution arrays to generate any output

Array H Array L
code Cvin | Cvil | Cvin | Cviy
00 8 0 4 4
01 6 2 2 6
11 4 4 0 8
comparator | 5 3 3 )

Capacitor sizes

To ensure low enough thermal noise the capacitor sizes should be selected such
that the noise is below % This is calculated in (12) for a 9 bit converter
with +100mV swing. This capacitance is calculated for the first stage and can
be reduced for each stage given there is a gain of over 1 in each stage. In the
simulations a unit capacitance of 20fF is used giving a total capacitance of
320fF in each array.

kT V;'wing 2
c ( 2.29 )
KT - (2-29)2
= = = %) _108fF 12
c 0.2 08f (12)
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3.2 Residue amplifier

The amplifier in the ADC should have a gain close to 2 to reduce the effects
of thermal noise in later stages, an exact gain is not important but it needs
to be possible to match the two amplifiers in each stage. Because of the SAR
operation of the interpolator the amplifier will have to settle within VL% within
% of the clock period of each stage or in the case of a 50MS ADC within 2.5ns.
There are numerous possible architectures and approaches.

3.2.1 Comparator based switched capacitor (CBSC) amplifier

A comparator based switched capacitor amplifier can be used in a pseudo dif-
ferential configuration as shown in Figure 15 to get a accurate gain for the
residue voltage. The CBSC works like a switched capacitor amplifier based on
an opamp, but with an current source controlled by a comparator instead. In
phase 1 the input voltage is sampled over two capacitors, and the output is reset
to a given voltage, as common mode or rail. In the second phase the the capaci-
tors are connected in a feedback loop from the output to the comparator. When
the current source charges the output capacitance the voltage in the feedback
will move towards the reference of the comparator and when the correct output
voltage is reached the current source will switch off.

The output voltage of a CBSC can be written as (13) where Cy,; is the equivalent
capacitance from the output and the feedback and V..se; is the reset voltage of
the output. This can be rewritten to calculate the minimum current as in (14).

Since a real comparator will have both delay and offset, the output voltage will
contain an error based on the time the comparator uses to turn of the current
source compared to the ideal timing. This will generate the output error as
shown in (15), however since a pseudo differential configuration is used this
error will cancel out if the two circuits are identical. Instead the common mode
voltage will be change by the same amount. To keep this common mode error
as low as possible, the current should be kept to a minimum. If this error gets
to big it might be necessary to introduce a level-shifter in order to move the

common-mode back. I -4
Vo = ( ) : + ‘/reset (13)
Ctot
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Figure 15: Topology of the CBSC amplifier



(‘/;wing)ctot

I= : (14)
I(t) - At

Verr = = 15

Ctot ( )

The cancellation of the delay error will only occur when the current from the
current source is constant during the active period. Since the current source
will be implemented by a current mirror with a final output impedance this
assumption is not valid.[Wulff and Ytterdal, 2008b] The two amplifiers in the
pseudo differential pair will have different output voltages, hence the voltage
over the current mirrors will be different. In (16) this error is presented, I, is
the average difference in the current between the positive and negative amplifier
during the delay of the comparator.

Al - At

V:—:rr =
Ctot

(16)

Since the error due to the current source and the delay of the comparator are
strongly connected the error can be reduced by one or both of the comparator
and the current source. However since the common mode offset error is only due
to the non-idealities in the comparator this is the component where it’s most
room for improvement. All errors described above can be modeled as offset
errors in the dual residue ADC and should be designed accordingly to (6) in
Section 2.5.

The CBSC needs needs to work synchronous with both an charge redistribution
array on the input and output. The digital control was modified to work with
the CBSC and can be found in Appendix C.

3.2.2 Open loop buffer and charge pump

One method to get the gain between the stages is to use a charge pump to
get close to 2 in gain[Ahmed et al., 2009] and an open loop buffer. This was
attempted by connecting a charge pump at the output of the charge redistribu-
tion array followed by an open loop buffer, but due to the input capacitance of
the buffer combined with the small capacitances used in the charge pump the
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gain was reduced to less than 1. Also the input capacitance in the buffer will be
signal dependent and will be a problem with small capacitors. Larger capacitors
in the charge pump would decrease the problem with the input capacitance in
the buffer, however this would also decrease the output voltage of the charge
redistribution array and the overall gain would still be to low. A possibility is
to add another buffer between the charge redistribution array and the charge
pump at the cost of extra power consumption.

3.2.3 Dynamic source follower

A dynamic source follower as shown in Figure 16 has been proven an efficient
method for residue amplification[Hu et al., 2009]. The parasitic capacitances in
a MOS combined with a small external capacitor is used to set the gain, the
expression for the gain is given in (17) where C7; is the gate drain capacitance
in the amplification phase. This method will give a inaccurate gain, and when
used in a conventional pipeline calibration is required. However it should still
be possible to match two separate transistors and thereby get the matching
required to work in a dual residue architecture without calibration.

Cgs,emt + Cgs + ng + Cgb
C’
gd

T T T T

Vbias floating
(a) Sample (b) Amplify

A =

(17)

Figure 16: Dynamic source follower

3.3 Error correction

To get the final output code of the ADC the outputs of each stage needs to be
combined. Since it’s a pipelined ADC the output from the stages needs to be
delayed such that the output of all stages appears at the same time, this can
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be done with shift registers of different length. Further the two bits from each
stage needs to be combined to one output word. This is done digitally by using
Algorithm 1. The basic operation of the error correction algorithm is that each
stage is either added, subtracted, or not used in the final output. If both bits
is one the the stage contributes +2~ where N is the significance of the stage.
If both bits is 0 the stage contributes —2~, and finally if one bit is 1 and the
other one 0 the the stage does not contribute to the final output code.

Algorithm 1 Error correction algorithm
Input: ¢[N][2]
Output: code

fori=N-1—0do

if c[i][1] == 1ANDc][i][0] == 1 then
operation < 1
else

if c[i][1] == 0AN Dc[i][0] == 0 then
operation < —1
else
operation < 0
end if
end if
code + code + operation - pow(2,1)
end for
code < (code + 512)/2
return code

3.4 Summary of block demands
3.4.1 Flash Comparators

Because of the digital error correction the offset voltage of the flash comparators
can be :I:%. The comparator needs to resolve the input in one clock cycle of
the charge redistribution array and the delay has to be lower than 2.5ns. The

input voltages for the comparator will be Ve, £ Viwing
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3.4.2 Amplifier

The gain of the residue amplifiers should be close to 2, but no exact value is
needed. The two amplifiers should however be matched to ﬁlﬁ, and the offset
should be lower than % The amplifiers also need to be linear to 9 bits within
the input range. Because of the SAR operation of the interpolator the amplifier
will have to settle within 2.5ns.

3.4.3 Switches

Due to the dual-residue architecture the voltages don’t have to settle com-
pletely[Vecchi et al., 2011], this relaxes the demands on the switches as they
only needs to be matched. The switches should still be designed for full settling
to reduce problems caused by thermal noise.

More important is to keep the charge injection down. Charge injection will
introduce an offset error and should cause an voltage error lower than % De-
pending on the size of the switches it may be necessary to introduce techniques
to reduce the charge injection like dummy switches.
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4 Results and Discussion

4.1 Accuracy

Table 6 shows a summary of the results simulated with different parameters
and amplifier models. The simulations were run with an ideal converter stage
as described in Section 3, followed by 8 identical dual-residue stages. The blocks
used in the dual-residue stage consists both of Verilog-A models and transistor
level models. All simulations used the charge redistribution array with a unit
capacitance of 20fF as the interpolator. The results are calculated from 2048
samples using the Matlab-script in Appendix D. The sampling frequency was
49.152M'S/s and the input frequency was 4.008MHz with an input swing of
+200mV. The offset and mismatch errors were applied to all 9 stages in the
ADC.

Table 6: Summary of simulation results

TYPE ol ol ol ol ol CBSC
Gain mismatch 0 75  Etmm O 0 0
offset 0 0 0 t1; Erm O
SNDR 55.9 55.0 50.7 53.6 50.3 55.
SNR 56.0 55.8 524 55.4 54.0 56
ENOB 8.99 885 8.13 8.61 8.13 8.9

The first simulation was run with zero offset and gain mismatch, using an ideal
amplifier model with a gain of 2. The resulting ENOB is 8.99 bits and proves
that the overall topology of a dual-residue pipelined ADC with a charge redis-
tribution array as the interpolator works. The simulation with a gain mismatch
of ﬁ shows a ENOB of 8.85 bits. This is the calculated maximum gain mis-
match for a 9-bits ADC and 8.85-bits is and expected result. When the gain
mismatch was increased to 5—%2 the ENOB was reduced to 8.13 bits. This is a bit
higher than expected from the equations in Section 2.5, but taking into account
that the error is signal dependent, and will be at its maximum at just a single
point, the average error during a dynamic test would be lower. If a static test
is performed this error should show up as a linearity error.

When an input offset of iﬁ of the full scale range is added to the amplifier

the ENOB was 8.61-bits, and correlates with the equations in Section 2.5. By

increasing the offset error to iﬁ the ENOB drops to 8.13bits. Once again this
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is a bit higher than expected, but since the offsets are differential for the two
amplifiers, the error is signal dependent and the average error is lower than the
maximum. Also here it’s likely to show up as a linearity error in a static test.

4.2 Amplifier choice

The circuit was simulated with models of different types of amplifiers. An open-
loop buffer with a charge-pump was implemented, but a large input capacitance
in the buffer reduced the overall gain below 1 and further simulations were dis-
carded. A pseudo differential CBSC amplifier was designed and simulated with
ideal switches and comparators, the current source used delivered 70uA. From
Table 6 the effective number of bits was 8.9. Keeping in mind that most of the
components in the simulation were ideal, this is an expected result, and proves
that a CBSC amplifier is possible to use as the residue amplifier. The power
estimate for the CBSC circuit is 140uW per stage, but the capacitance in each
stage is higher than required and it should be possible to decrease the power
consumption further. However this only includes the charging and discharging
of the capacitors, while the main contribution to the current consumption in
addition to the capacitors is the comparator. In [Wulff and Ytterdal, 2005] a
comparator with similar specs is reported to use 222uW, and with two for each
pseudo differential CBSC pair, in total 4 in each stage, the power consumption
will be dominated by the comparators. The estimated power consumption of the
CBSC would be 500uW. An possible approach to reduce the power consump-
tion is by exchanging the CBSC with a zero-crossing based switched capacitor
circuit(ZCBC)[Brooks and Lee, 2007]. A zero-crossing based switched capacitor
amplifier will be faster than a CBSC, and will not consume any static power,
hence it is likely to reduce the power consumption for the amplifiers.

The performance of the CBSC amplifier will degrade with comparator delay
and offset voltage. A comparator designed for this purpose may have a delay
of 400ps[Wulff and Ytterdal, 2005]. With the currents and capacitances used
here this would move the common mode voltage at the output 175mV. This is
not necessary a problem, and can easily be corrected in the charge redistribu-
tion array, but will increase power consumption as the capacitors will have a
larger voltage swing than needed. The current source will also be subject to
an error due to the finite output resistance, and a delay from the comparator
will introduce an error due to different voltages over the positive and negative
output mirror, hence the current in the two mirrors will not be matched. In
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[Wulff and Ytterdal, 2008a] it was proposed to introduce an offset voltage to
the comparators such that the delay is corrected. This is possible since the
feedback voltage will change linearly with time as the current source charges
the capacitance, and thereby an voltage offset can remove a time delay. If a
ZCBC is used instead, it will have a lower delay and thereby reduce this error,
and might be better suited.

Another possible amplifier choice is an open loop amplifier. A dynamic source
follower was proposed in [Hu et al., 2009], and used in a 9.4bit 50MS/s ADC.
The total power consumption from the amplifiers were 0.49mW for all 14 stages.
This amplifier depends on capacitances in MOS devices combined with an ex-
ternal capacitor to set the gain, hence the gain is inaccurate, and calibration
had to be used to compensate. In a dual-residue ADC it should be possible to
match two devices, and thereby remove the need for calibration. Another ad-
vantage is that this amplifier depend on high intrinsic gain and is well suited for
technology down scaling. The low power consumption of this amplifier makes
it an interesting option for implementation.

4.3 Power consumption estimate for the different ampli-
fiers

To get a quantitative comparison foundation of the power consumption, an
estimate is calculated for the different amplifiers. The estimate only accounts for
the current needed to charge the output capacitances and the power consumed
by the comparators. The converter stage is left out from the estimation and
only the 8 dual-residue stages are accounted for, but the results should still be
valuable to chose amplifiers to be used in the converter stage. Since the last
stage does not need an output voltage the power for the amplifiers are multiplied
by 7 as show in (18). In [Hu et al., 2009] the comparators used for 14 stages
consumed less than 950uW or 68uW for each comparator and this is used as
the estimated current consumption.

P= Pamp -7 + Pcomparators -8 (18)
The ADC with CBSC amplifiers is calculated to consume 5.2mW, where the
main part is consumed by the comparators in the amplifiers. By using a ZCBC

amplifier instead the estimated power consumption is 2.1mW, a significant im-
provement. It’s important to keep in mind that this is only an estimate under
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the assumption that no significant power is consumed by the amplifier itself.
The advantages by moving from a CBSC to a ZCBC is verified by looking
at[Murmann, 2012] where the best CBSC has a FOM of 764% while the best
ZCBC has a FOM of 87.5%. The dynamic source follower is estimated to con-
sume the same power as the ZCBC, this is because the output capacitors will be
reset and charged in a similar matter and the total swing over the capacitors are
expected to be identical. From the estimates of power consumption the ZCBC
and dynamic source follower seems to be the best choice as amplifiers. Because
the reliability of the ZCBC is better proven[Brooks and Lee, 2007, Hershberg
et al., 2010, Brooks and Lee, 2009] it might be the safest choice.

Popse = (144pW +2-220uW) -7+ 2-68uW -8 = 5.2mW  (19)
Pzepe = 144uW - 7+ 2 - 68uW - 8 = 2.1mW (20)
Popentoop = (144puW) - 7+ 2 - 68uW -8 = 2.1mW (21)

4.4 1-bit architecture

The comparators are expected to be the main contributor to the power con-
sumption of the ADC. Because of this it might be an advantage to reduce the
number of comparators by using a 1-bit pr stage architecture instead. This
would remove 1 comparator from each stage, but at the same time increase
the demands of the comparators that is left. If this is done fewer voltages are
needed to be generated by the interpolator, and only the two input voltages
and the mean value between them is needed, hence a simpler interpolator can
be designed.
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5 Conclusion and Further work

A 9-bit 50M'S/s dual-residue pipelined ADC using a charge redistribution array
as the interpolator is presented and analyzed. When simulated with idealized
components the ADC had an ENOB of 8.99-bits and the topology is proven
to work. The maximum non-idealities for the different blocks were found and
verified by simulations. The maximum allowed offset voltage of the residue
amplifier is %, and with this offset voltage for all the amplifiers in the ADC
the ENOB dropped to 8.61-bits. The maximum allowable mismatch between
the two residue amplifiers is ﬁ , with this mismatch the ENOB is 8.85-bits.
Both these demands should be possible to reach without the use of calibration.
The best candidate for residue amplification is a zero-crossing based amplifier,
and with this type of amplifier the last 8 stages of the ADC has a estimated
power consumption of 2.1mW. Both scaling of the stages and reducing the unit
capacitance can decrease the power consumption.

5.1 Further work

In this thesis error sources in the amplifiers and power consumption has been
estimated and simulated. A deeper noise analysis should be performed to get
better design equation for noise parameters, and also include noise generated by
the amplifiers. Also no mismatch simulations were performed and should be per-
formed to ensure correct operation, especially when the circuit is implemented
with transistor-level blocks .
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A Verilog-A code for the converter stage

Listing 1: Ideal Adder Verilog-A code

1 // VerilogA for highlevel_adc, adder_diff, veriloga

© 0 N o U A W N

‘include
‘include

module adder_diff(viap,vian, visp,visn ,vop,von);

input viap, vian, visp,visn;

output vop,von;

electrical viap,vian,visp,visn ,vop,von;

parameter real vem=1.1;

analog begin
V(vop)<+ vem + (V(viap ,vian)—V(visp,visn))/2;
V(von)<+ vem — (V(viap,vian)-V(visp,visn))/2;
//V(vop ,von )<+ V(viap ,vian )-V(visp ,visn);

end

17 endmodule

Listing 2: Residue amplifier Verilog-A code

1 // VerilogA for highlevel_adc, 2zamp_diff, veriloga

© 0 N o o oA W N

‘include
‘include

module amp2x_diff(vip,vin,vdd, vss,vop,von);

input vdd,vss,vip,vin;
output vop,von;
electrical vdd,vss, vin,vip,von,vop;
analog begin
//V(vop ,von)<+2+V(vip , vin);
V(vop) <+2+(V(vip)) —(V(vip)+V(vin))/2;
V(von)<+2x(V(vin)) —(V(vip)+V(vin)) /2;
end

18 endmodule




Listing 3: Comparator Verilog-A code

1 // VerilogA for highlevel_adc, comparator_diff, veriloga

© 0 N o oA W N

‘include
‘include

module comparator_diff(vdd, vss,vin,vip,vrefn ,vrefp ,vo);

input vdd,vss,vin,vip,vrefn ,vrefp;
output vo;
electrical vdd,vss,vin,vip,vrefn ,vrefp ,vo;

analog begin

if (V(vip,vin)>V(vrefp ,vrefn))
V(vo) <+1.5;

else
V(vo)<+0;

end

18 endmodule

Listing 4: Dac Verilog-A code

1 // VerilogA for highlevel_adc, dac_dualresidue_diff, veriloga

2
3
4
5
6

‘include
‘include

module dac_dualresidue_diff(vdd, vss,vrefdd4p ,vref4dd4n ,vref3ddp ,

vref3d4n ,vref2d4p ,vref2d4n ,vrefOd4p ,vrefld4n ,vrefld4p ,
vrefO0d4n ,vohp,vohn,volp ,voln,cl,c0);
input vdd,vss,vrefdd4p ,vrefdd4n ,vref3d4p ,vref3d4n ,vref2d4dp,
vref2d4n ,vrefOd4p ,vrefld4n ,vrefld4p ,vrefOd4n ,cl,cO;
output vohp,vohn,volp,voln;

electrical vdd,vss,vrefdddp ,vrefdd4dn ,vref3d4p ,vref3d4dn ,vref2d4p
,vref2d4n ,vrefOd4p ,vrefld4n ,vrefld4p ,vrefOd4n ,vohp,vohn,
volp ,voln ,cl,c0;

real vohpv,vohnv, volpv, volnv;
parameter real tdelay=0.0;
parameter real trise=ln;
parameter real tfall=In;

analog begin
if(V(el)<(V(vdd) /2) && V(c0)<(V(vdd) /2))
begin
gohpv: V(vref2d4p);




21 vohnv= V(vref2d4n);

22 volpv= V(vref0d4p);

23 volnv= V(vref0d4n);

24 end

25 else if (V(cl)<(V(vdd)/2) && V(c0)>(V(vdd)/2))
26 begin

27 vohpv= V(vref3ddp);

28 vohnv= V(vref3d4n);

29 volpv= V(vrefld4dp);

30 volnv= V(vrefld4n);

31 end

32 else if (V(cl)>(V(vdd)/2) && V(c0)>(V(vdd)/2))
33 begin

34 vohpv= V(vrefdd4p);

35 vohnv= V(vref4d4n);

36 volpv= V(vref2d4p);

37 volnv= V(vref2d4n);

38 end

39

40 V(vohp)<+transition ( vohpv, tdelay, trise, tfall);
41 V(vohn)<+transition( vohnv, tdelay, trise, tfall);
42 V(volp)<+transition( volpv, tdelay, trise, tfall);
43 V(voln)<t+transition( volnv, tdelay, trise, tfall);
44

45 end

46 endmodule

Listing 5: Reference generator Verilog-A code

1 // VerilogA for highlevel_adc, refgen_diff, veriloga

2

3 ‘include
4 ‘include
5
6

module refgen_diff(vdd,vss, vref8d8p ,vref8d8n ,vref6d8p ,vref6d8n ,
vref5d8p ,vref5d8n , vrefdd8p ,vref4d8n, vref3d8p,vref3d8n ,
vref2d8p ,vref2d8n ,vref0d8p , vref0d8n) ;

8 parameter VMAX=1.2;

9 parameter VMIN=1.0;

10

11 input vdd, vss;

12 output vref8d8p ,vref8d8n ,vref6d8p ,vref6d8n, vref5d8p ,vref5d8n ,
vref4d8p ,vref4dd8n, vref3d8p ,vref3d8n, vref2d8p,vref2d8n,
vref0d8p , vrefO0d8n ;

13 electrical vdd,vss,vref8d8p ,vref8d8n ,vref6d8p ,vref6d8n ,
vref5d8p ,vref5d8n, vrefdd8p,vrefdd8n, vref3d8p,vref3d8n,
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vref2d8p , vref2d8n , vref0d8p , vref0d8n ;
14 real vcm;
15 analog begin
16 vem=(VMAX}4VMIN) /2;
17 V(vref8d8p )<+VMAX;
18 V(vref8d8n )<+VMIN;
19 V(vref6d8p )<+vem+(VMAX-VMIN) %6 /8 /2;
20 (vref6d8n )<+vem—(VMAX-VMIN) %6 /8 /2;
(vref5d8p )<+vem+(VMAX-VMIN) x5 /8 /2;
(vref5d8n )<+vem—(VMAX-VMIN) x5 /8 /2;
23 (vrefd4d8p )<+vem+(VMAX-VMIN) x4 /8 /2;
24 V(vref4dd8n )<+vem—(VMAX-VMIN) x4 /8 /2;
V(vref3d8p )<+vem+(VMAX-VMIN) %3 /8 /2;
26 V(vref3d8n)<+vem—(VMAX-VMIN) x3/8/2;
27 V(vref2d8p )<+vem+(VMAX-VMIN) %2 /8 /2;
28 V(vref2d8n )<+vem—(VMAX-VMIN) %2 /8 /2;
20 V(vref0d8p )<+vcm;
30 V(vref0d8n )<+vcm;
31 end
32 endmodule
33
34
35 /+ V(vref8d8p )<+VMAX;
36 V(vref8d8n)</2;
37 V(vref6d8p ,vref6d8n )<+(VMAX-VMIN) 6 /8/2;
38 V(vref6d8p , vref6d8n )<+(VMAX-VMIN) x6/8/2;
39 V(vref5d8p , vref5d8n )<+(VMAX-VMIN) x5/8/2;
40 V(vref5d8p , vref5d8n )<+(VMAX-VMIN) x5/8/2;
41 V(vref4d8p , vref4d8n )<+(VMAX-VMIN) x4 /8/2;
42 V(vref4d8p ,vref4d8n )<+(VMAX-VMIN) x4 /8/2;
43 V(vref3d8p , vref3d8n )<+(VMAX-VMIN) x3/8/2;
44 V(vref3d8p ,vref3d8n )<+(VMAX-VMIN) x3/8/2;
45 V(vref2d8p , vref2d8n )<+(VMAX-VMIN) x2/8/2;
46 V(vref2d8p , vref2d8n )<+(VMAX-VMIN) x2/8/2;
a7 V(vref0d8p , vref0d8n)</2;
48 V(vref0d8p , vref0d8n)</2;
49 end x/

21
22

v



Listing 6: Sample and hold Verilog-A code
1 // VerilogA for highlevel_adc, samplehold_diff, wveriloga

2

3 ‘include

4 ‘include

5

6 module samplehold_diff(clk,vip,vin,vop,von);
7 input clk ,vip,vin;

8 output vop,von;

9 electrical clk,vip,vin,vop,von;

10 real sampp,sampn;

11 parameter real tdelay=On;

12 parameter real trise=ln;

13 parameter real tfall=ln;

14 analog begin

15 // on Rise edges of clk, sample vin

16 Q( cross(V(clk)—0.75, 1)) begin

17 sampp=V(vip) ;

18 sampn=V(vin) ;

19 end

20

21

22

23

24

25 // assign output

26 V(vop) <+ transition( sampp, tdelay, trise, tfall);
27 V(von) <+ transition( sampn, tdelay, trise, tfall);
28

29 end

30

31

32 endmodule




B Charge redistribution control Verilog-A code

Listing 7: Charge redistribution control Verilog-A code

1 // VerilogA fosr highlevel_adc, sar_ctrl, wveriloga

‘include
‘include
‘define RISING +1
‘define FALLING -1

© N o A W N

module sar_ctrl(cnt-o,c0,cl,clk, vc4h_h,vc4l_h ,vc2h_h,vc2l_h,
vclah_h,vclal_h ,vclbh_h,vclbl_-h,vcdh_1,vc4l_1,vc2h_l,vc2]_1,
vclah_1,vclal_l ,vclbh_1,vclbl_l, vcsample,vcem, cO_out ,
cl_out);

9 input c0,cl,clk;

10 output cnt_o,vcdh_h,vc4l_h ;vc2h_h,vc2l_h ,vclah_h,vclal_h,
vcelbh_h,velbl_h ;vcdh_1,vc4l_l ,vc2h_1,vc2l_1 ,vclah_l,vclal_l
,vclbh_l,vclbl_1,vecsample ,vcem,cO_out, cl_out;

11 electrical cnt_o, c0,cl,clk, vcdh_h,vcd4l_h ,vc2h_h 6 vc2l_h,

vclah_h ,vclal_h ,vclbh_h,vclbl_h ,vcdh_1,vc4l_1,vc2h_1,vc2l_1

,vclah_1,vclal_l ,vclbh_.l,vclbl_.1, vcsample,vcecm,cO_out,
cl_out;

12 parameter real vhi=1.5;

13 parameter real vlo=0.0;

14 parameter real tdelay=0.0;

15 parameter real trise=ln;

16 parameter real tfall=ln;

17 integer cnt;

18 real cO_reg,cl_reg;

19 real cnt_ov ,vc4dh_hv , vcd4l_hv ,vc2h_hv ,vc2l_hv ,vclah_hv,vclal_hv

vcelbh_hv ,velbl_hv ;vcdh_lv ,vcdl_1v ;vc2h_lv ;vc2l_1lv ;vclah_lv
vclal_lv ;veclbh_lv ,vclbl_lv ,vcsamplev ,vcemv,cO_outv, cl_outv

)
20

21 analog begin

22 @(initial_step ( , , , )) begin
23 cnt =3;

24 end

25 @( cross(V(clk)—vhi/2, ‘RISING)) begin
26 if (cnt==1) begin

27 cl_reg=V(cl);

28 c0_reg=V(c0);

29 end

30 cnt=(cnt+1)%4;

31

32 end

33 cnt_ov=cnt;
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34 cO_outv=cO_reg;

35 cl_outv=cl_reg;
36

37 if (cnt==0)

38 begin //generate comparator voltages
39 vcdh_hv=vhi;
40 vc4l_hv=vlo;
41 vc2h_hv=vlo;
42 vc2l_hv=vhij;
43 vclah_hv=vhi;
44 vclal_hv=vlo;
45 vclbh_hv=vlo;
46 vclbl_hv=vhij;
a7

48 vcdh_lv=vlo;
49 vc4l_lv=vhi;
50 vc2h_lv=vhi;
51 vc2l_lv=vlo;
52 vclah_lv=vhi;
53 vclal_lv=vlo;
54 vclbh_lv=vlo;
55 vclbl_lv=vhi;
56

57 vesamplev=vhi;
58 veemv=vlo ;

59 end

60 else if (cnt==1) begin //compare
61 vcdh_hv=vlo;
62 vcdl_hv=vlo;
63 vc2h_hv=vlo;
64 vc2l_hv=vlo;
65 vclah_hv=vlo;
66 vclal_hv=vlo;
67 vclbh_hv=vlo;
68 vclbl_hv=vlo;
69

70 vcdh_lv=vlo;
71 vcdl_lv=vlo;
72 vc2h_lv=vlo;
73 ve2l_lv=vlo;
74 vclah_lv=vlo;
75 vclal_lv=vlo;
76 vclbh_lv=vlo;
77 vclbl_lv=vlo;
78

79 vesamplev=vlo;
80 veemv=vhi;

81

82 end
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else if (cnt==2) begin // generate output voltages
if (cO_.reg<vhi/2 && cl_reg < vhi/2) begin //0
vcdh_hv=vhi;
vcdl_hv=vlo;
vc2h_hv=vhi;
vc2l_hv=vlo;
vclah_hv=vhi;
vclal_hv=vlo;
vclbh_hv=vhi;
vclbl_hv=vlo;

vcdh_lv=vlo;
vcdl_lv=vhi;
vc2h_lv=vhi;
vc2l_lv=vlo;
vclah_lv=vhi;
vclal_lv=vlo;
vclbh_lv=vhi;
velbl_lv=vlo;

vesamplev=vhi;
veemv=vlo ;
end

else if (cO_reg>vhi/2 && cl_reg < vhi/2) begin //2

vcdh_hv=vhi;
vcdl_hv=vlo;
vc2h_hv=vhi;
vc2l_hv=vlo;
vclah_hv=vlo;
vclal_hv=vhi;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vcdl_lv=vhi;
vc2h_lv=vhi;
vc2l_lv=vlo;
vclah_lv=vlo;
vclal_lv=vhi;
vclbh_lv=vlo;
vclbl_lv=vhi;

vcsamplev=vhi;
veemv=vlo ;
end

else if (cO.reg>vhi/2 && cl_reg > vhi/2) begin //4

vcdh_hv=vhi;
vcdl_hv=vlo;
vc2h_hv=vlo;
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vc2l_hv=vhi;

vclah_hv=vlo;
vclal_hv=vhi;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vc4l_lv=vhi;
vc2h_lv=vlo;
vc2l_lv=vhi;
vclah_lv=vlo;
vclal_lv=vhi;
vclbh_lv=vlo;
vclbl_lv=vhi;

vesamplev=vhi;
veemv=vlo;
end

end

else
vcdh_hv=vlo;
vc4l_hv=vlo;
vc2h_hv=vlo;
vc2l_hv=vlo;
vclah_hv=vlo;
vclal_hv=vlo;
vclbh_hv=vlo;
velbl_hv=vlo;

vcdh_lv=vlo;
vcdl_lv=vlo;
vc2h_lv=vlo;
vc2l_lv=vlo;
vclah_lv=vlo;
vclal_lv=vlo;
vclbh_lv=vlo;
velbl_lv=vlo;

vcsamplev=vlo;
veemv=vhi;
end

//set aoll

outputs

V(vcdh_ h) <+
V(vecdl-h) <+
V(ve2h.oh) <+
V(vc2l h) <+

transition (vcdh_hv
transition (vc4l_hv
transition (vc2h_hv
transition (vc2l_hv

IX

if (cnt==3) begin //set output

, tdelay ,
, tdelay ,
, tdelay ,
,tdelay ,

trise ,
trise ,
trise ,
trise ,

tfall);

tfall);

tfall);
tfall);




end

205 endmodule

-

tfall);

)

3

)

trise , tfall);

tfall);

)

V(vclah_h) <+ transition(vclah_hv , tdelay, trise
V(vclal_h) <+ transition(vclal_hv , tdelay, trise
V(vclbh_h) <+ transition(vclbh_hv , tdelay, trise
V(vclbl.h) <+ transition(vclbl hv , tdelay, trise
V(vcdh_ 1) <+ transition(vcdh_lv , tdelay, trise,
V(vcdl.l) <+ transition(vecdl_lv , tdelay, trise,
V(vc2h_l) <+ transition(vc2h_lv |, tdelay, trise,
V(vc2l.1) <+ transition(vec2l_lv , tdelay, trise,
V(vclah_1) <+ transition(vclah_lv , tdelay, trise, tfall)
V(vclal_l) <+ transition(vclal_lv , tdelay, trise, tfall);
V(velbh_l) <+ transition(vclbh_lv , tdelay, trise, tfall)
V(vclbl.l) <+ transition(veclbl_.lv , tdelay, trise, tfall)
V(vcsample) <+ transition (vcsamplev , tdelay,

V(vcem) <+ transition (vccmv , tdelay , trise,
V(cl_out)<+ transition(cl_outv, tdelay, trise, tfall)
V(cO_out )<+ transition(cO_-outv, tdelay, trise, tfall);
V(cnt_o)<+ transition(cnt_ov , tdelay, trise, tfall);




C Charge redistribution and CBSC control Verilog-
A code

Listing 8: Charge redistribution and CBSC control Verilog-A code

1 // VerilogA fosr highlevel_adc, sar_ctrl, veriloga

‘include
‘include
‘define RISING +1
‘define FALLING -1

® N o oA W N

module sar_ctrl(cnt_o,c0,cl,clk, vcdh_h,vc4l_h ,vc2h_h, vc2l_h,
vclah_h ,vclal_h vclbh_h,veclbl_h ,vcd4h_1,vc4l_1,vc2h_1,vc2l_1,
vclah_1,vclal_l ,vclbh_1,vclbl_.l, vcsample,vcecm, cO_out ,
cl_out, sync, cbsc_samp,cbsc_rst ,cbsc_feedback ,6 cbsc_current);

9 input c0,cl,clk,sync;

10 output cnt_o ,vcdh_h,vc4l_h ,vc2h_h,vc2l_h ,vclah_h,vclal_h,
vclbh_h ,veclbl_h ,vcdh_1,vc4l_l ,vc2h_l,vc2]l_1 ,vclah_l,vclal_l
,vclbh_1,vclbl_1,vecsample ,vcecm,cO_out, cl_out, cbsc_samp,
cbsc_rst ,cbsc_feedback ,cbsc_current ;

11 electrical cnt_o, c0,cl,clk, vcdh_h,vcd4l_h ,vc2h_h 6 vc2l_h,
vclah_h ,vclal_h ,vclbh_h,vclbl_h ,vcdh_1,vc4l_1 ,vc2h_1,vc2l_1
,vclah_1,vclal_l ,vclbh_.l,vclbl_.1, vcsample,vccm,cO_out,
cl_out ,sync, cbsc_samp,cbsc_rst ,cbsc_feedback ,cbsc_current;

12 parameter real vhi=1.5;

13 parameter real vlo=0.0;

14 parameter real tdelay=0.0;

15 parameter real trise=ln;

16 parameter real tfall=ln;

17 integer cnt;

18 real cO_reg,cl_reg;

19 real cnt_ov ,vcdh_hv ,vc4l_hv ,vc2h_hv ,vc2l_hv ,vclah_hv,vclal_hv,

vclbh_hv  velbl_hv ;vcdh_lv ,vcdl_1v ;vc2h_lv ,vc2l_1lv ;vclah_lv
vclal_lv ;velbh_lv ,vclbl_lv ,vecsamplev ,vcemv,cO_outv, cl_outv
, cbsc_sampv ,cbsc_rstv ,cbsc_feedbackv ,cbsc_currentv;

20

21 analog begin

22 @(initial_step ( , , , )) begin
23 cnt=0;

24 end

25 @( cross(V(clk)-vhi/2, ‘RISING)) begin

26 if (cnt==1) begin

27 cl_reg=V(cl);

28 cO0_reg=V(c0);

29 end

30 if (V(sync)>vhi/2) begin
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cnt=0;
end
else begin
cnt=(cnt+1);
end

end
cnt_ov=cnt;
cO_outv=cO_reg;
cl_outv=cl_reg;

if (cnt==0)
begin //generate comparator voltages
vcdh_hv=vhi;

vcd4l_hv=vlo;
vc2h_hv=vlo;
vc2l_hv=vhi;
vclah_hv=vhi;
vclal_hv=vlo;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vec4l_lv=vhi;
vc2h_lv=vhi;
vc2l_lv=vlo;
vclah_lv=vhij;
vclal_lv=vlo;
vclbh_lv=vlo;
velbl_lv=vhi;

vecsamplev=vhi;
veemv=vlo;

// CBSC controll signals
cbsc_sampv=vhi;
cbsc_rstv=vhi;
cbsc_feedbackv=vlo;
cbsc_currentv=vlo;

end
else if (cnt==1) begin //compare
vcdh_hv=vlo;
vcdl_hv=vlo;
vc2h_hv=vlo;
vc2l_hv=vlo;
vclah_hv=vlo;
vclal_hv=vlo;
vclbh_hv=vlo;
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vclbl_hv=vlo;

vcdh_lv=vlo;
vcdl_lv=vlo;
vc2h_lv=vlo;
vc2l_lv=vlo;
vclah_lv=vlo;
vclal_lv=vlo;
vclbh_lv=vlo;
vcelbl_lv=vlo;

vesamplev=vlo;
vecemv=vhi;

// CBSC controll signals
cbsc_sampv=vhi;
cbsc_rstv=vhi;
cbsc_feedbackv=vlo;
cbsc_currentv=vlo;

end
else if (cnt==2||cnt==3) begin // generate output voltages
if (cO_-reg<vhi/2 && cl_-reg < vhi/2) begin //0
vcdh_hv=vhi;
vcdl_hv=vlo;
vc2h_hv=vhi;
vc2l_hv=vlo;
vclah_hv=vhi;
vclal_hv=vlo;
vclbh_hv=vhi;
vclbl_hv=vlo;

vcdh_lv=vlo;
vcdl_lv=vhi;
vc2h_lv=vhi;
vc2l_lv=vlo;
vclah_lv=vhi;
vclal_lv=vlo;
vclbh_lv=vhi;
vclbl_lv=vlo;

vcsamplev=vhi;
veemv=vlo ;
end
else if (cO.reg>vhi/2 && cl_reg < vhi/2) begin //2
vcdh_hv=vhi;
vcdl_hv=vlo;
vc2h_hv=vhi;
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165

vc2l_hv=vlo;

vclah_hv=vlo;
vclal_hv=vhi;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vc4l_lv=vhi;
vc2h_lv=vhi;
vc2l_lv=vlo;
vclah_lv=vlo;
vclal_lv=vhi;
vclbh_lv=vlo;
vclbl_lv=vhi;

vesamplev=vhi;
veemv=vlo;

end
else if (cO-reg>vhi/2 && cl_reg > vhi/2) begin //4
vcdh_hv=vhi;

vcd4l_hv=vlo;
vc2h_hv=vlo;
vec2l_hv=vhi;
vclah_hv=vlo;
vclal_hv=vhi;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vcdl_lv=vhi;
vc2h_lv=vlo;
vc2l_lv=vhi;
vclah_lv=vlo;
vclal_lv=vhi;
vclbh_lv=vlo;
vclbl_lv=vhi;

vcsamplev=vhi;
veemv=vlo ;
end

// CBSC controll signals
cbsc_sampv=vhi;
cbsc_rstv=vhi;
cbsc_feedbackv=vlo;
cbsc_currentv=vlo;

end
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179 else if (cnt==4) begin //set output
180 vcdh_hv=vlo;

181 vcd4l_hv=vlo;

182 vc2h_hv=vlo;

183 vc2l_hv=vlo;

184 vclah_hv=vlo;

185 vclal_hv=vlo;

186 vclbh_hv=vlo;

187 vclbl_hv=vlo;

188

189 vcdh_lv=vlo;

190 vcdl_lv=vlo;

191 vc2h_lv=vlo;

192 vc2l_lv=vlo;

193 vclah_lv=vlo;

194 vclal_lv=vlo;

195 vclbh_lv=vlo;

196 velbl_lv=vlo;

197

198 vcesamplev=vlo;

199 vecemv=vhi;

200

201

202 // CBSC controll signals
203 cbsc_sampv=vhi;

204 cbsc_rstv=vhi;

205 cbsc_feedbackv=vlo;
206 cbsc_currentv=vlo;
207

208 end

209

210 else if (cnt==5)begin
211 vcdh_hv=vhi;

212 vc4l_hv=vlo;

213 vc2h_hv=vlo;

214 vc2l_hv=vhi;

215 vclah_hv=vhi;

216 vclal_hv=vlo;

217 vclbh_hv=vlo;

218 vclbl_hv=vhij;

219

220 vcdh_lv=vlo;

221 vc4l_lv=vhi;

222 vc2h_lv=vhi;

223 ve2l_lv=vlo;

224 vclah_lv=vhi;

225 vclal_lv=vlo;

226 vclbh_lv=vlo;
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227 vclbl_lv=vhi;

228
229 vcesamplev=vhi;

230 vecemv=vlo ;

231

232 // CBSC controll signals
233 cbsc_sampv=vlo;

234 cbsc_rstv=vlo;

235 cbsc_feedbackv=vhi;
236 cbsc_currentv=vhij;
237

238 end

239 else if (cnt==6)begin
240 vcdh_hv=vhi;

241 vcd4l_hv=vlo;

242 vc2h_hv=vlo;

243 vc2l_hv=vhi;

244 vclah_hv=vhi;

245 vclal_hv=vlo;

246 vclbh_hv=vlo;

247 vclbl_hv=vhi;

248

249 vcdh_lv=vlo;

250 vec4l_lv=vhi;

251 vc2h_lv=vhi;

252 ve2l_lv=vlo;

253 vclah_lv=vhij;

254 vclal_lv=vlo;

255 vclbh_lv=vlo;

256 velbl_lv=vhi;

257

258 vecsamplev=vhi;

259 veemv=vlo;

260

261 // CBSC controll signals
262 cbsc_sampv=vlo;

263 cbsc_rstv=vlo; //hi?
264 cbsc_feedbackv=vhi;
265 cbsc_currentv=vlo;
266

267 end

268 else if (cnt==7)begin
269 vcdh_hv=vhi;

270 vcdl_hv=vlo;

271 vc2h_hv=vlo;

272 vc2l_hv=vhi;

273 vclah_hv=vhi;

274 vclal_hv=vlo;

275 vclbh_hv=vlo;
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276 vclbl_hv=vhi;

277
278 vcdh_lv=vlo;

279 vc4l_lv=vhi;

280 vc2h_lv=vhi;

281 vc2l_lv=vlo;

282 vclah_lv=vhi;

283 vclal_lv=vlo;

284 vclbh_lv=vlo;

285 vclbl_lv=vhi;

286

287 vcsamplev=vhi;

288 vecemv=vlo ;

289 // CBSC controll signals
290 cbsc_sampv=vlo;

201 cbsc_rstv=vhi;

292 cbsc_feedbackv=vhi;
293 cbsc_currentv=vlo;
294

295 end

296 else if(cnt==8)begin
297 vcdh_hv=vhi;

208 vc4l_hv=vlo;

299 vc2h_hv=vlo;

300 vc2l_hv=vhij;

301 vclah_hv=vhi;

302 vclal_hv=vlo;

303 vclbh_hv=vlo;

304 vclbl_hv=vhij;

305

306 vcdh_lv=vlo;

307 vc4l_lv=vhi;

308 vc2h_lv=vhi;

309 vc2l_lv=vlo;

310 vclah_lv=vhi;

311 vclal_lv=vlo;

312 vclbh_lv=vlo;

313 vclbl_lv=vhi;

314

315 vesamplev=vhi;

316 veemv=vlo ;

317

318 // CBSC controll signals
319 cbsc_sampv=vlo;

320 cbsc_rstv=vlo;

321 cbsc_feedbackv=vhi;
322 cbsc_currentv=vhi;
323

324 end
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363

else if(cnt==9)begin
vcdh_hv=vhi;
vcd4l_hv=vlo;
vc2h_hv=vlo;
vc2l_hv=vhi;
vclah_hv=vhi;
vclal_hv=vlo;
vclbh_hv=vlo;
vclbl_hv=vhi;

vcdh_lv=vlo;
vcdl_lv=vhi;
vc2h_lv=vhi;
ve2l_lv=vlo;
vclah_lv=vhi;
vclal_lv=vlo;
vclbh_lv=vlo;
vclbl_lv=vhi;

vcsamplev=vhi;
veemv=vlo ;

// CBSC controll
cbsc_sampv=vlo;
cbsc_rstv=vlo;
cbsc_feedbackv=vhi;
cbsc_currentv=vlo;

signals

end

//set aoll outputs

V(vcdh_ h) <+ transition(vcdh_hv , tdelay, trise, tfall);
V(vcd4l_-h) <+ transition (vc4l_-hv , tdelay, trise, tfall);
V(vc2h_h) <+ transition(vc2h_hv , tdelay, trise, tfall);
V(vc2l.h) <+ transition (vc2l_hv ,tdelay, trise, tfall);
V(vclah_h) <+ transition(vclah_hv , tdelay, trise, tfall);
V(vclal_h) <+ transition(vclal_-hv , tdelay, trise, tfall);
V(vclbh_h) <+ transition(vclbh_hv , tdelay, trise, tfall);
V(velbl.h) <+ transition(vclbl_hv , tdelay, trise, tfall);
V(vcdh_ 1) <+ transition(vcdh_lv , tdelay, trise, tfall);
V(vcdl_.l) <+ transition(vc4l_lv , tdelay, trise, tfall);
V(vc2h_ 1) <+ transition(vc2h_lv , tdelay, trise, tfall);
V(vc2l.1) <+ tramnsition(vc2l_lv , tdelay, trise, tfall);
V(vclah_1) <+ transition(vclah_lv , tdelay, trise, tfall);
V(velal_.l) <+ transition(veclal_lv , tdelay, trise, tfall);
V(velbh_l) <+ transition(vclbh_lv , tdelay, trise, tfall);
V(vclbl.l) <+ transition(veclbl_lv , tdelay, trise, tfall);
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384

385

389

V(vcsample) <+ transition (vcsamplev , tdelay, trise, tfall);
V(veem) <+ transition (vccmv , tdelay , trise, tfall);

V(cl_out)<+ transition(cl-outv, tdelay, trise, tfall);
V(cO_-out )<+ transition(cO_outv, tdelay, trise, tfall);
V(cnt-o)<+ transition(cnt-ov , tdelay, trise, tfall);

V(cbsc_samp) <+ transition (cbsc_sampv , tdelay , trise,
tfall);

V(cbsc_rst) <+ transition (cbsc_rstv , tdelay , trise,
tfall);

V(cbsc_feedback )<+ transition (cbsc_feedbackv , tdelay, trise,
tfall);

V(cbsc_current) <+ transition(cbsc_currentv , tdelay, trise,
tfall);

end

3900 endmodule

.
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D Matlab code for calculations of dynamic pa-
rameters

Listing 9: Matlab code for calculations of dynamic parameters

function [ENOB,SINAD]=dyn_calc(x,Fs, bit)

1

2

3

4+ L=length(x);
5 t=(0:L—1)/Fs;
6

7

8

9

figure (1)
plot (Fsxt(1:50) ,x(1:50))
title ( )
10 xlabel ( )
11 NFFT = 2" (nextpow2(L)—1); % Nexzt power of 2 from length of y
12 x=x (L-NFFT:L) ;
15 Y = fft (x,NFFT) /NFFT/2" bit ;
14 P=abs(Y.xY);
15 f = Fs/2xlinspace (0,1 ,NFFT/2+1);
16 fin =0;
17 spanh=2;
18 [devnull ,index_fin]=max(P(1+spanh :NFFT))
19 index_fin=index_fin+spanh
20 fin=f(index_fin)
21 P=abs(Y.xY);
22 Pdc=sum(P(1:1+spanh))
23 Ps=sum(P(index_fin —spanh:index_fin+spanh))
24  Pharm=zeros(1,7);
25 for i=2:7

26 if (index_fin*i —spanh< NFFT/2)

27 if (index_finx*i4+spanh<NFFT/2)

28 Pharm(i)=sum(P(index_fin*i—spanh:index_fin*i+spanh));
29 else

30 Pharm(i)=sum(P(index_fin*i—spanh:NFFT/2));

31 end

32 end

33 end

34

35 Pharm

36  Ph=sum(Pharm)

37 Pn=sum(P(1:NFFT/2+1))—Ps—Pdc—Ph

3s  SNR=10+log10 (Ps/Pn)

39 THD=10xlogl10 (Ph/Ps)

40  SNDR=10%log10 (Ps/(PntPh))

41 SINAD=10%log10 ( ( Ps+Pn+Ph) /(Pn+Ph) )
42 ENOB=(SNDR-1.76) /6.02

XX




43 SFDR=10%log10 (Ps)—10xlog10 (max(Pharm))
44 % Plot single—sided amplitude spectrum.
45

46 length (Y)
48 for i=1:length(Y)

50 if Y(i)==0 && i>1

51 Y(i)=Y(i-1);

52 elseif Y(i)==0 &&i==
53 Y(i)=le—9;

54 end

60 end

61 P=abs (Y.*Y);

62 figure (2)

63 plot (f,10xlogl10 ((2xabs(P(1:NFFT/2+1))))—10%logl0(Ps))

64 title ({ i [ ,num2str (SNR) , ,num?2str (SNDR) ,
,num2str (ENOB) | ; [ ,num2str (fin , ), ,num2str
(THD) , ,num2str (SFDR) | })
65 xlabel ( )
66 ylabel( )
67 return
68
69
70 end
L
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Schematic of the Converter stage
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Figure 17: Schematic of the Converter stage
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F Schematic of the Dual-residue stage
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Figure 18: Schematic of the Dual-residue stage
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