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ABSTRACT

This thesis is concerned with the evaluation of the dynamic behaviour of a
generic pontoon-separated floating bridge from wave action, with emphasis on
the vertical response. The dynamic analyses are performed in the frequency-
domain, which allows for convenient inclusion of the frequency dependent
hydrodynamic effects. The structural model of the generic floating bridge is
inspired by the outer geometry of the Bergsgysund floating bridge, located on
the west coast of Norway. This is to ensure reasonable dimensions and structural
properties of the generic bridge model.

An evaluation of the concept of floating bridges and the applicability of such
structures initiate the thesis. Followed by a discussion of the environmental
effects that are considered relevant in the design of a floating bridge.

The environmental loads and fluid-structure interaction effects are introduced,
and procedures for the determination of the hydrostatic and hydrodynamic
forces on a floating body are proposed. The determination of the hydrostatic and
hydrodynamic coefficients forms the basis for the hydrodynamic model
developed to describe the properties of the dynamic fluid-structure system.

The floating bridge is further modelled in a finite element format. Hydro-elastic
elements are developed for the parts of the model being in contact with the
surrounding fluid, incorporating the hydrostatic and hydrodynamic effects. As a
result, the properties of the fluid-structure system are completely included in the
finite element formulation of the floating bridge model.

The dynamic evaluation of the floating bridge model is performed through
various methods of analysis. Eigenvalue analyses of both the fluid-structure
properties and the purely structural parts of the model are conducted in order to
assess the effects of the hydrostatic and hydrodynamic restoring forces on the
free response of the system. A frequency response function method of analysis is
further proposed to include the hydrodynamic damping of the system. A
probabilistic response analysis concludes the dynamic evaluation of the floating
bridge structure. In the analyses, different idealizations are introduced for the
description of the sea surface, and the resulting loading situation on the floating
bridge. The validity of the computed responses from the various methods of
approach is evaluated in light of the assumptions and restrictions within the
theories applied in establishing the wave-loading situation.

The hydrostatic and hydrodynamic restoring forces are found to dictate the
response characteristics at low frequencies of motion, whereas the structural
properties governs to a larger extent the response of the bridge at higher
frequencies. A wave load situation on a floating bridge is assumed to mainly
excite the structure at low frequencies of motion. This is supported by the



computed responses, and the hydro-effects are considered to be of great
significance to the actual response of the floating bridge.

Additionally, the discretization of the wave field is found to be of great
significance to the computed responses of the floating bridge. The responses
computed for a wave loading consistent with long-crested waves, exciting every
point on the structure simultaneously, is found to be unrealistically large. As the
wave field model is refined to express an irregular, short-crested sea state,
corresponding better with sea states experienced in nature, the computed
results are dramatically reduced. The proper modelling of an actual sea state is
thus considered vital in the safe and economic design of a floating bridge.
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SAMMENDRAG

Denne oppgaven tar for seg evalueringen av den dynamiske oppfgrselen til en
generisk pontoon-separert flytende bru fra bglgelast, hvor det legges vekt pa
vertikale svingninger. De dynamiske analysene er utfgrt i frekvens-planet, som
er gunstig for praktisk inkludering av de frekvensavhengige hydrodynamiske
effektene. Den strukturelle modellen for den generiske flytebrua er inspirert av
den ytre geometrien til Bergsgysund flytebru, som bygget pa vestkysten av
Norge. Dette er for a sikre rimelige dimensjoner og egenskaper for den generisk
brumodellen. Oppgaven er innlededet med en konseptevaluering av flytenbruer
og deres anvendelsesomrdder. En pafglgende diskusjon tar for seg aktuelle
miljglaster som vurderes i utformingen av en flytende bru. Miljglaster og
interaksjonseffekter mellom fluid og konstruksjon er innfgrt, og prosedyrer for
bestemmelse av de hydrostatiske og hydrodynamiske krefter pa et flytende
legeme blir introdusert. Bestemmelsen av de hydrostatiske og hydrodynamiske
koeffisientene danner grunnlaget for den hydrodynamiske modellen utviklet for
a beskrive egenskapene til den dynamiske systemet. Den flytende brua er videre
modellert i et elementmetoden format. Hydro-elastiske elementer er utviklet for
de deler av modellen som er i kontakt med vannet. De hydrostatiske og
hydrodynamiske effecter er inkludert i elementformuleringen. Som et resultat, er
egenskapene til det kombinerte system fullstendig inkludert i utformingen av
modellen av flytebrua, i henhold til elementmetodeteori.

Den dynamiske evaluering av flytebrumodellen utfgres gjennom ulike
analysemetoder. Egenverdiproblemer er etablert for analyser av bade de “vate”
egenskapene og de “tgrre”, rent strukturelle egenskapene for a vurdere effekten
av de hydrostatiske og hydrodynamiske tilbakefgringskreftene for frie
responsen av systemet. En analysemetode ved etablering av frekvens-respons-
funksjoner er videre foreslatt for d inkludere den hydrodynamiske dempingen av
systemet. En probabilistisk responsanalyse avslutter den dynamisk evalueringen
av flytebrumodellen. I analysene er forskjellige idealisering introdusert for
beskrivelse av havoverflaten, og den resulterende lastsituasjonen pa flytebrua.
Gyldigheten av de kalkulerte responsene, fra de ulike tilneermingsmatene, blir
vurdert i lys av de forutsetninger og begrensninger forutsatt av teoriene som
benyttes i etableringen av bglgelast situasjonen. De hydrostatiske og
hydrodynamiske tilbakefgringskreftene er funnet a i stor grad diktere flutebrua
sine egenskaper ved lavfrekvent response, mens de strukturelle egenskapene i
stgrre grad bestemmer responsen av brua ved hgyere frekvenser. En virkelig
lastsituasjon pa en flytende bru antas a hovedsakelig pavirke konstruksjonen for
lave frekvenser. Dette stgttes av resultatene funnet i denne oppgaven, og de
hydrostatiske og hydrodynamiske effekter vurderes d veere av stor betydning for
den faktiske responsen av flytebrua. [ tillegg er tilneermingsmetoden for
modellering av bglgefeltet funnet d vaere av stor betydning for responsen til en
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flytende bru. Responsen som ble beregnet for en bglgelast forbundet med
langkammede bglger er vurdert som urealistiske. Dette er begrunnet med at en
langkammet bglge vil vise en stor grad av korrelasjon over bruspennet og
pavirke alle punkter over konstruksjonen med en samtidig og likt rettet last.
Ettersom bglgefeltet er modellert mer i trad med en virkelig havoverflate, som
uregelmessig og kortkammete, blir responsen til flytebrua dramatisk redusert.
En tilstrekkelig ngyaktig modelleringen av havoverflaten betraktes sdledes som

serdeles viktig for & oppnd en sikker og gkonomisk gunstig
flytebrukonstruksjon.
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1. INTRODUCTION

1.1 MOTIVATION AND PURPOSE

The dynamic modelling and analysis of slender bridge structures are important
aspects within the field of structural dynamics. Long, slender bridge structures
are generally exposed to environmental loadings of various kinds, and the
interaction effects are regarded as integral parts of the dynamic modelling.
Generally, the dynamic analysis of a structure may be performed in either time-
or frequency-domain, depending on the purpose of the analysis. This report is
concerned with the dynamic behaviour of a generic floating bridge. The dynamic
analyses are performed in frequency-domain consistent with a finite element
format, and with emphasis on the vertical modes of motion.

The main source of environmental loading on a floating bridge is considered to
arise from the surrounding water mass, with the wave load exerted on the bridge
regarded as the governing dynamic load situation. Hydrostatic and
hydrodynamic restoring forces arise as to oppose the motion of the floating
body, and the hydrodynamic damping is considered significant. These are effects
of the fluid-structure interaction that is considered necessary to address
properly to ensure a realistic dynamic behaviour of the floating bridge.
Traditionally, the description of a wave field has been to consider the waves as
random and unidirectional when approaching a marine structure. The waves are
assumed as long-crested and to show a high degree of spatial correlation. For
dynamic analyses of structures and floating bodies that are considered of small
dimensions relative to the wavelengths of the incident waves, this application
has been regarded acceptable. The dynamic analysis of larger structure does
however result in overly conservative estimates of the response. The reason
being, that a long-crested wave is modelled to excite the structure equally and
simultaneously en every point. In order to properly evaluate the dynamic
response of large floating structures, it is necessary to assess the sea state more
similar to what is encountered in nature. A true sea state is not seen to display a
particularly long-crested behaviour. A wave field consists of various waves of
different frequencies, amplitudes and directions of approach, superposed to
form the sea state we normally see with finite, random crest lengths.
Consequently, a proper modelling of the sea state is considered vital in order to
obtain a reasonable dynamic response of a floating bridge, and to allow for a
secure and economic design, which in turn adds to the feasibility of construction.

The main goals of the report is to gain an increased understanding of the
environmental effects and their importance in the dynamic modelling of marine
structures, and to evaluate the dynamic vertical response of the generic bridge
model from different load situations. The hydrostatic and hydrodynamic effects



of the fluid-structure interactions are considered in the development of a
hydrodynamic model to properly describe the dynamic behaviour. Different
idealizations of the external wave loading are proposed, and the validity of the
response calculations are viewed in light of the assumptions and restraints
associated with the theories applied. The argumentation for the validity will
mainly be concerned with the modelling of the sea state, as the structural
properties and the hydrodynamic coefficients are introduced similarly in the
dynamic analyses performed throughout the report.

1.2 THE STRUCTURE OF THE REPORT

The report sets out to investigate the concept and application of floating bridges,
and the environmental effects that are regarded necessary for a proper
evaluation of the dynamic behaviour. Research within the fields of coastal and
naval engineering is considered for their applicability to a floating bridge
construction. The design of the generic floating bridge model is inspired by the
Bergsgysund pontoon-separated floating bridge, located near Kristiansund on
the west coast of Norway. The structural model employed is a simplified version
of this bridge, with similar dimensions and geometry to ensure realistic
structural properties.

The theories employed for wave modelling are presented together with
procedures for determination of sea state parameters and the fluid-structure
interaction, and their validity to real life situations is considered. The wave
theories presented form the basis for the development of the hydrodynamic
model of the fluid-structure system, and the various wave loading situations
applied to the model.

The generic floating bridge model is discretized within a finite element format.
The hydrostatic and hydrodynamic restoring forces are conveniently
incorporated in the finite element formulation by the development of hydro-
elastic elements. Resulting in a finite element bridge model that effectively
includes the fluid-structure interaction effects for the submerged parts of the
bridge structure.

The dynamic analyses are performed in frequency-domain, which allows for
convenient inclusion of the frequency dependent hydrodynamic effects. The
methods employed for the dynamic analyses of the floating bridge structure are
outlined, with emphasis on the description of the sea surface. The wave load
situation on the floating bridge arises due to the spatial structure of the
surrounding wave field, and is considered of outmost importance in dictating the
dynamic response of the bridge. An Eigenvalue analysis is initially performed to
evaluate the natural frequencies and corresponding mode shapes of both the



fluid-structure model, and a purely structural model for comparison. The
analysis continues by employing frequency response functions for evaluation of
the vertical response of the floating bridge model as function of frequency. A
probabilistic response analysis concludes the dynamic modelling and
incorporates the wave spectral density of a given sea state and extreme value
statistics are employed for response estimations.






2. THE CONCEPT OF FLOATING BRIDGES

The concept of floating bridges is not new to mankind. The use of such structures
has been applied for both military and civil purposes; the earlier attempts dating
centuries back in time. The earliest registered approaches to construct floating
bridges dates back to the 11t century China and these were believed to address
the need for temporary crossings for military personnel during times of war [1].
The early floating bridge structures were constructed by means of available
equipment at the time and typically consisted of moored boats or rafts tied
together, with planks across to provide a walkway.

The floating bridge structures have evolved throughout the years, and are today
seen to serve as more permanent installations of a country’s infrastructure. At
present, there are about twenty permanent floating bridges in use throughout
the world. Two of which are located along the west coast of Norway. The
applicability of a floating bridge construction depends to a great extent on the
local environment at the site of construction as well as human activities and
interests in the area.

Different designs have been applied for the pontoons and the superstructures of
recent permanent floating bridge structures. The first types of modern floating
bridges were constructed by use of continuous pontoons moored to the seabed
for lateral support. This type of construction is prevailing for the floating bridges
located in the pacific north part of North America. This is an area were floating
bridges were included as permanent features of the infrastructure rather early.
The Washington Lake Bridge opened as early as in 1940 to become the largest
floating structure ever built at the time. The continuous pontoon construction
provides vertical hydrostatic buoyancy support along the entire span of the
structure. The early attempts to scientifically assess the dynamic behaviour of
continuous floating bridges were by experiments on horizontal floating cylinders
[2]. The continuous pontoon floating bridge design is attractive by its simplicity.
The hydrostatic and hydrodynamic contributions may readily be included over
the continuous bridge span. And it allows for a favourable assembly of the bridge
as the individual bridge sections are provided with sufficient buoyancy to be self-
supported. The continuous-pontoon floating bridge structure will, however,
interfere greatly with the local wave climate at the site. Attracting wave forces
along the entire bridge span, and possibly changing the marine environment due
to alteration of the original water circulation at the site. The Nordhordaland
floating bridge located in Norway is designed by use of continuous pontoons for
the floating bridge part of the structure. This bridge has an additional high-span
part, which is constructed as a traditional suspension bridge.



An alternative type of design was introduced by the pontoon-separated floating
bridge. The vertical loads are in this case supported by individual pontoons,
which are located some distance apart along the bridge span. A pontoon-
separated floating bridge construction interferes to a lesser extent with the local
wave climate at the site and may allow for the marine environment to remain
rather unaffected. Certain structures of this type may also allow for the passage
of smaller recreational boats between the pontoons. The pontoon-separated
bridge construction will put greater demands on the superstructure supported
by the pontoons, as well as complicating the hydrodynamic interaction of the
fluid-structure system, as compared to a continuous-pontoon floating bridge.
The second floating bridge located in Norway, the Bergsgysund floating bridge,
applies a pontoon-separated bridge design.

Both of the floating bridges built in Norway are designed with a horizontal arch
to provide lateral support through a geometric stiffness contribution. The
horizontal forces are thus transferred to the end supports through arch action.
The horizontal arch design replaces the need for mooring cables anchored to the
seabed, which is a great advantage when constructing floating bridges across
deep waters. However, the application of such an arch design puts demands on
the landside foundation conditions as greater forces are supported at these
connections.

Another aspect of the floating bridge design to consider is the need for waterway
passage of larger ships. Some floating bridge designs provide a solution to this
problem by introducing a draw-span or a swing-span. A drawback of such a
solution is the obvious outcome that the vehicles on the bridge need to pause as
the ship traffic passes. To avoid this, other floating bridges have been designed
with a high span. Such a design leaves the vehicles crossing the bridge unaffected
by the passage of ship traffic. A high span is seen to be most favourably located
near one of the landsides. This allows for the high span part of the bridge to be
supported as a more traditional bridge structure in shallower water conditions,
with the possibility of installing piers that are supported by the seabed. In
certain cases a floating bridge may be designed with both a high span and a
draw-span, which is seen for the Governor Albert D. Rosellini Bridge crossing
Lake Washington in Seattle, USA. The high span is then expected to cope with the
regular waterway traffic, while the draw-span is to be used for the occasional
passage of very large ships or as to relieve the floating bridge of wave forces
during extreme storm events.

A floating bridge structure utilizes the buoyancy of water to provide support for
the vertical loads. This concept seems both simple and ingenious. Poor
geotechnical conditions of the seabed or great water depths may provide the
installation of bridge piers uneconomical or even impossible to conduct. A
floating bridge, on the other hand, may be designed to be independent of the



bottom characteristics of the water basin. Furthermore, Zhang [3] has
investigated the dynamic behaviour of both the continuous-pontoon design and
the pontoon-separated design for floating bridges at different water depths. The
report states that the water depth has little influence on the dynamic responses
of both types of floating bridges, so that the effect of water depth may be
neglected during the course of design. Thus, a floating bridge design may prove
as a favourable choice at many locations. In addition, a floating bridge design
may in many cases prove as a comparatively low cost project compared to more
traditional bridge constructions.

The abovementioned advantages may lead to expectations of floating bridge
constructions to be highly represented in many countries’ infrastructure. This is
clearly not the case as traditional bridge designs are seen to prevail over floating
bridge alternatives, even at sites where a floating bridge may prove as a more
functional and economical choice of construction. It seems likely that the
traditional bridge designs are preferred by the industry due to a high level of
experience and competence in modelling, analysing and construction of such
structures. This effect may be further fuelled by the lack of experience and
knowledge of floating structures within departments of bridge analysis
throughout the industry. Further research on the hydrodynamic fluid-structure
interaction and the environmental loading on floating structures, along with an
increasing will to invest in and execute ambitious projects of this character, will
hopefully contribute to increased understanding and competence in the field.
Knowledge obtained through such projects and relevant research may also
contribute greatly to the development of other types of marine constructions.
The rapid growing interest in the field of submerged floating tunnels may be
viewed as an example. The research and understanding developed in this field
may be improved by, as well as contribute to, the knowledge and competence in
the design of floating bridges.






3. THE FLOATING BRIDGE AND ITS ENVIRONMENT

The external effects on a floating bridge may be assigned to various sources
within the surrounding environment of the construction. The floating bridge will
be subject to dead loads from self-weight, and wind and traffic actions similarly
as for a regular bridge construction. In addition, the hydro-effects from the
surrounding water are considered of great significance. At some locations, a
floating bridge may also be subject to ice action. A discussion of the effects from
the surrounding water and wind field, and their significance to the dynamic
response evaluation of a floating bridge is presented in this section. Dead loads
from self-weight are not discussed further herein as these are assumed included
satisfactorily in the development of the floating bridge model. Neither is the
traffic loading, which is assumed governed by appropriate design codes and not
regarded within the scope of this thesis. The effect of ice action is merely
mentioned for the sake of completeness and not pursued further.

3.1. HYDRO LOADING

The loading situation on a floating bridge resulting from hydro-effects is
considered to be significant, and to a large extent govern the total loading
situation on the bridge. The hydro loading may be attributed to different
characteristics of the fluid domain. The discussion herein is limited to loading
from tidal effects and from the local wave climate at the site of construction.

It is necessary to address the tidal variations at a construction site of interest to
evaluate the feasibility of a floating bridge structure. On a local scale, tides are
associated with the rise and fall of the sea level. Tides are regular and predictable
as they are created mainly by the attraction from the moon and the sun, along
with the rotation of the earth around the common centre of gravity of the moon-
earth system. Most areas around the world experience a semi-diurnal tidal
range, which means that high tide and low tide occur twice for a period of
approximately 24 hours. However, some places experience a diurnal tide, which
is associated with a single high and a single low water level during the same
period. The magnitude of the tidal fluctuations will depend on the location and
local bathymetry at the site. The relative magnitude between the highest high,
and lowest low tidal levels will determine whether a floating bridge is a possible
alternative for the bridge design. The possibility of additional raised sea levels
due to storm surge should be included in the evaluation. A floating bridge is
vertically supported by the fluid, and will attempt to follow the sea surface
elevation. If the bridge span is restrained from following the tidal fluctuations,
large forces will occur over the bridge span and at the end-connections.
Consequently, for a floating bridge design to be considered feasible, the local
tidal variations will have to be within a reasonable range so that the end



supports may be designed as hinged and allow for vertical displacement of the
bridge span within the range of the tidal variation. A second effect of the tidal
variation is tidal currents. As the water mass is deformed over the earth’s
surface, the fluid is set in motion as to travel from high levels to lower levels. The
tidal current may be significant at narrow estuaries and in fjords and will
generally act in the transverse-horizontal direction of the bridge span.

The hydrodynamic loading from oncoming waves is a more intuitive loading
situation. A wave passing the floating bridge will generally excite the bridge span
in multiple modes of motion. The raised surface elevation will exert vertical

forces along the bridge, the propagating waves will contribute with horizontal loading
in the transverse direction, and moment loading about the length-axis of the bridge span occurs
from combined effects of the vertical and horizontal loadings. It is considered crucial to address
the local wave climate at the site of construction in order to evaluate the dynamic response of a
floating bridge structure properly.

Within a relatively short time window, from half an hour to a couple of hours,
some of the wave loading components may be considered as quasi-static [4]. The
tidal variations are slowly varying effects, and with a proper end-connection-
design the sea level alterations from tidal effects may be disregarded in the
loading situation. The tidal currents are nevertheless present and can be
considered quasi-static throughout the course of a dynamic analysis. Waves are
continuously fluctuating of nature, but may be separated into a quasi-static
slowly varying drift component and an unsteady fluctuating component.
Consequently, within a relatively short time-window, the hydro loading on a
floating bridge may be expressed by two quasi-static terms and one time-
dependent term.

W(t) = Wtidal current + Wdrift force + Wwaves(t)

3.2. WIND LOADING

Forces from wind actions will undoubtedly be present on a floating bridge. How
much the wind action comes in to play depends on the location of the bridge and
the local wind characteristics, as well as the length and shape of the bridge span.

A wind field is acting in a three-dimensional space and varies with time. This
makes the wind properties at a single point in space dependent on four
parameters. The fluctuating wind induced loading may be idealized as a
stationary process, and the loading on the structure may be split into a time-
invariant part, Us, and a fluctuating time-dependent part, Uy, for the relatively
short time-window of the dynamic analysis [5].

U(t) = Us + Uy
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The time-invariant part is thus applied as a quasi-static loading situation while
the fluctuating part of the wind load contributes to the dynamic response of the
floating bridge.

Wind loading can result in different response patterns of a bridge span,
depending on the geometry of the structure and the intensity of the wind. The
static response of a line-like structure from the time-invariant wind component,
acting normal to the bridge span, is regarded proportional to the square of the
mean wind velocity within the theory of bridge aerodynamics.

The dynamic response of a line-like bridge structure is more complicated. At
relatively low and steady wind velocities a phenomenon called vortex shedding
may occur. This is due to separation of the wind field as it passes the structure.
The separation will induce pressure differences above and below the cross-
section, resulting in a vertical and rotational motion of the bridge cross-section.
This type of wind-induced motion may become quite large for a long slender
structure, and in some cases be fatal, as the increased motion of the structure is
further amplified by a reduction in the wind-structure system damping
properties. This effect is referred to as lock-in. Vortex shedding response is
heavily dependent on the damping of the system, and is normally self-
destructive. Resulting in narrow banded response peaks located in the vicinity of
the natural frequencies associated with vortex shedding modes of motion. As the
wind velocity increases, a bridge span is seen to be less prone to vortex shedding
response. At intermediate wind velocities, the motion of the structure is
dominated by the fluctuating wind component. This response is referred to as
buffeting response. The buffeting response is mainly in the horizontal direction
as this is assumed as the governing design wind direction for a bridge structure.
At relatively high wind velocities the dominating dynamic response of a slender
bridge span is seen to be due to motion-induced forces. These forces arise due to
the relative motion of the structure and the wind field. The effect of motion-
induced forces is to reduce the wind-structure damping and stiffness properties.
Hence, a stability limit is approached as the wind velocity increases towards very
high velocities.

Throughout the remainder of the thesis, the wind-induced dynamic response is
considered negligible to the hydro-induced response of the floating bridge. The
motivation for this is the large hydrodynamic influence on the system. The
critical dynamic responses arising from the oncoming wind field, as discussed
above, are mainly due to a reduction in the system damping. This may be the
governing design criterion for a long slender bridge span of a traditional bridge
structure, as the structural damping is considered low. The bridge span of a
floating bridge is however subject to hydrodynamic effects transferred from the
pontoons, which are interacting with the surrounding fluid. The fluid-structure
interaction is considered to result in a significant hydrodynamic damping of the
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system, as to oppose the motion of the pontoons. Consequently, the fluctuating
part of the wind field is not considered to exert sufficient loading on the bridge
span to produce any major dynamic response, and any contributions from the
wind field to the dynamic response of the floating bridge will be disregarded.
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4. STRUCTURAL MODEL

The aim of the report is to investigate the dynamic behaviour of a generic
floating bridge structure. It is nevertheless considered necessary to evaluate a
bridge model with dimensions that may apply to a real floating bridge
construction. This is to avoid unrealistic results in the dynamic analyses. As a
result, the dimensions of an already-built floating bridge have formed the basis
in the development of the generic model. The geometry of the generic floating
bridge model is inspired by the Bergsgysund floating bridge situated near
Kristiansund on the west coast of Norway. The bridge is constructed as a
horizontally curved truss girder steel superstructure supported on seven
floating high-strength-concrete pontoons. The radius of the horizontal arch is
R = 1300m. There is no vertical curvature of the bridge. The roadway is placed
on top of a steel box-section, which constitutes the top flange of the
superstructure. A top view of the bridge is illustrated below [6].

FIGURE 1 TOP VIEW OF THE BERGS@YSUND FLOATING BRIDGE [6]

The oval pontoons are idealized as rectangular, and the truss girder is idealized
as an equivalent box cross-section. The connection between the pontoons and
the superstructure is idealized as a single circular hollow steel rod. The end-
connections are assumed simply supported in the vertical plane, and fixed with
respect to the to transverse horizontal displacement, rotation in the horizontal
plane and torsional rotation. The properties applied to the different parts of the
floating bridge model are tabulated below.

13



Superstructure box-cross section

Width, Bs 11.20 [m]
Height, hs 7.00 [m]
Thickness top deck, t, 0.08 [m]
Thickness bottom deck, ty, 0.04 [m]
Thickness walls, tw 0.01 [m]
Cross-section area, As 1.4816 [m2]
Moment of inertia, Iy 15.0981 [m*4]
Moment of inertia, I 16.2030 [m*?]
Torsional moment of inertia, Ix 13.5089 [m*4]
Mass density, ps 7500 [kg/m3]
Modulus of elasticity, E 200x109 [N/m?2]
Shear modulus, G 76.9%x109 [N/m?2]
Poisson’s ratio, v 0.3
TABLE 1 PROPERTIES OF SUPERSTRUCTURE BOX CROSS SECTION
Rectangular pOHtOOIlS
Length, L, 30.00 [m]
Width, B, 20.00 [m]
Thickness top deck, t, 0.35 [m]
Thickness bottom deck, ty, 0.35 [m]
Thickness walls, tw 0.55 [m]
Cross-section area, Ap 20.93 [m2]
Width/draft ratio, By/d 4.48 [m]
Moment of inertia, I,y 177.84 [m*]
Moment of inertia, I, 1122.30 [m*4]
Torsional moment of inertia, Ix 561.04 [m*4]
Mass density, pc 2500 [kg/m3]
Modulus of elasticity, E 30%10° [N/m2]
Shear modulus, G 12.5%X109 [N/mZ2]

Poisson’s ratio, v

0.2

TABLE 2 PROPERTIES OF RECTANGULAR PONTOONS
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Circular hollow connector rod

Length, L. 1.20 [m]
Radius, r. 1.00 [m]
Wall thickness, t. 0.05 [m]
Cross-section area, Ac 1.2252 [m2]
Moment of inertia, Icy 0.5827 [m*]
Moment of inertia, I 0.5827 [m*]

Torsional moment of inertia, Ix

190.8265 [m*]

Mass density, ps

7500 [kg/m3]

Modulus of elasticity, E

200x10° [N/m2]

Shear modulus, G

76.9x10° [N/m?]

Poisson’s ratio, v

0.3

TABLE 3 PROPERTIES OF CONNECTOR ROD
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5. MOTION OF A FLOATING BRIDGE

The response of a general bridge span section may be considered as a three-
degrees-of-freedom (3-DOF) response in every point along the bridge. The DOF’s
are referred to as displacements in the vertical direction, horizontal direction
and in a rotational direction about the shear-centre axis of the bridge cross-
section. The environmental loading on a bridge section is effectively divided into
components corresponding to these degrees-of-freedom.

FIGURE 2 MOTION OF A BRIDGE SPAN [5]

The response of the bridge section may be viewed in terms of a quasi-static part
and a dynamic part due to the corresponding assumptions of the environmental
loading situation [5]. The quasi-static response is considered constant
throughout the duration of the analysis. This response is determined through
traditional static response analysis by applying the environmental loading that
may be regarded as static within the time interval of the analysis. In the above
figure the quasi-static response at a point along the bridge span is denoted by the

response vector r = [fy Ty fg]T. The static deflection is considered to represent
the position of the bridge span at which the dynamic response takes place. The
dynamic response of the bridge section is thus considered to oscillate about the
quasi-static position. The dynamic response of the bridge span arises from the
time-dependent parts of the environmental loading. In the above figure, the
oscillating dynamic response is expressed in terms of the time-dependent load
components.

r(t) = [, (O 1 (©)]
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q(t) = [a,(®) 4,() ge(®)]

The total response of the bridge span within the time domain of the dynamic
analysis is thus expressed by a summation of the quasi-static and the time-
dependent responses over the entire span of the bridge.

Tt (£) = T+ 1(t)

It is the time-dependent part of the response that is of concern in the dynamic
analysis of the structure.

As the bridge structure to be evaluated is a floating bridge, some naval
terminologies are adapted to denote the motion of the bridge components. The
motivation for this is the extensive research and literature provided within the
field of naval engineering, which in turn applies to the description of the fluid-
structure interaction encountered when evaluating a floating bridge structure.
These terminologies are illustrated below, and are applied throughout the report
when describing the different modes of motions of both the pontoons and the
bridge superstructure.

Heave

Pitch +

+ Surge KJ

FIGURE 3 MOTION OF A NAVAL STRUCTURE [7]

For a continuous-pontoon floating bridge design, the motion of the bridge may
be viewed in terms of a 3DOF response in every point over the bridge span. The
considered responses are thus, according to the naval terminology, the heave,
sway and roll responses of the bridge section. When considering a pontoon-
separated floating bridge design, the motion of the bridge span is considered
similarly. However, the underlying pontoons may not be restricted to the three-
abovementioned modes of motion. Depending on the orientation of the pontoons
relative to the surrounding wave climate, these may, and probably will, be
excited in all modes of motion presented on the above figure. The forces and
moments transferred to the above lying bridge span are in turn dependent on
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the orientation of the pontoons relative to the bridge span at the points of
connection, and the rigidity of the connections. The relative pontoon orientations
will thus dictate which modes of the bridge span being excited from the modes of
motion of the pontoons, which are subjected to wave loading.
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6. HYDRODYNAMIC MODEL

The properties of the wave climate at the site of construction form the basis for
the external wave loading on the floating body. A true sea state is seen as
confused and irregular due to the adding and cancelling of waves of different
properties, and is associated with uncertainties normally tackled by statistical
means. To obtain a realistic loading situation on a floating bridge, the spatial
distribution and local irregularities of the sea state are to be incorporated
properly in the modelling.

A floating body is considered greatly affected by its surrounding fluid. The fluid-
structure interaction results in a system that needs to be regarded as a whole
when evaluating the dynamic behaviour. The floating bridge construction will
have different system properties and effectively a different dynamic behaviour
when considered separate from the surrounding fluid. Thus, a “dry” response
analysis of the purely structural bridge provides limited information of the true
behaviour of the fluid-structure system. The effect of the fluid-structure
interaction is investigated by comparing the “wet” and “dry” natural frequencies
of the floating bridge model. The findings are included in the appendices A.3 and
A.4, respectively, and discussed in later sections of the thesis. The hydrodynamic
interaction effects are seen to be frequency dependent and will as a result
contribute differently to the dynamic properties of the system at different
frequencies of motion. The proper determination of the hydrostatic and
hydrodynamic restoring forces on the floating bridge is considered vital in order
to obtain a realistic behaviour of the dynamic system.

This section proposes descriptions for an irregular sea state as well as outlining
methods for determination of the hydrostatic and hydrodynamic forces on a
floating body.

6.2. MODELLING OF THE SEA SURFACE

The oncoming wave field is considered to constitute the primary source of
dynamic loading on the floating bridge. The spatial distribution of the waves at
the site of construction is regarded a function of both time and space and
representing a confused and irregular sea state. Resulting in expectations of low
correlation of the surface elevation between points in space. A proper simulation
of a representative sea state is considered vital to obtain reasonable results in
the dynamic analysis of the fluid-structure system.

6.2.1. AN INTRODUCTION TO LINEAR WAVE THEORY

The simplest wave theory applicable to coastal processes is known as linear
wave theory, or Airy wave theory. This theory is based on the assumption that
the water is incompressible, inviscid, that the flow is irrotational and that there
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exists a velocity potential within the water volume. The velocity potential is
evaluated as to satisfy the Laplace equation through boundary conditions [8].

Vo =0

The velocity potential forms the basis for determination of other properties of
the waves. Being particle velocities or accelerations at specific depths or the
dynamic pressure fluctuations from passing waves. The equations are modified
somewhat to apply in shallow, intermediate and deep water, classified by the
depth-wavelength ratio. The physical interpretation of the linear wave theory is
that the water particles move in elliptical orbits with decreasing orbital
dimension when moving down the water column. The net motion of a water
particle is assumed to be zero. An illustration of the basic concepts of linear wave
theory is presented in figure 4.

y Direction of Propagation

W ave Length |

Still Water Level

Wave Height depth
% Particle Orbital Motion

FIGURE 4 ILLUSTRATION OF LINEAR WAVE THEORY [9]

The assumptions of linear wave theory are considered to apply quite well with
real behaviour of waves at large water depths. As the waves move into shallower
waters there will be a net forward movement as waves break and the water is
flushed onshore. Hence, for shallow water, other wave theories, such as Cnoidal
wave theory and Solitary wave theory, express the behaviour of the water
particles better than do linear wave theory. At intermediate water depths, higher
order wave theories may be applied to better describe the configuration of the
surface elevation. Thus, expanding the description from the linearized
expressions of the linear Airy theory. Figure ? illustrates the applicability of a
selection of wave theories according to water depth.
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FIGURE 5 APPLICABILITY OF WAVE THEORIES [9]

On the basis of the linear wave theory and the bathymetry of the coastline, wave
characteristics such as shoaling, diffraction and refraction may be determined
for waves approaching the coastline. These features indicate the wave energy
distribution along the coastline as the waves bend perpendicular to the seabed
contours. The wave energy in a unit length wave crest transmitted to the
coastline is quantified according to linear wave theory as.

HZ
E=pwg~

A time scale for the impact forces may be introduced by establishing an energy
velocity, also called the group velocity of a wave train or set. The wave energy
travels with a different velocity than do the waves. This can be seen as waves
“disappear” in front of a set and “reappear” at the rear and seem to “move
through” the set as it is propagating. The group velocity is given by the
expression.

Cc=n-C
1 " (4nd/L)
"= [ (sinh4nd/L)

C = wave celerity according to linear wave theory.
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By combining the above equations, an expression for the wave power
transmitted to the coastline per unit width of the wave crest may be established.

P=ECq

The three-dimensional surface elevation is expressed as function of space and
time for a single long-crested wave with wave angle of approach 6.

n(x, y, t) =10 e{—i(k(xsin 6+y cos 6)—wt)}

In order to include waves approaching from any direction, incorporating the
adding and cancelling effect of surface waves, an integration over the wave-
angle-of-approach domain, {—7/2 < 6 < r/2}, is performed. In addition, a
spreading function is included to express the degree of multi-directionality of the
sea state. The effect of the spreading function is determined by the value of the
spreading index, s, which dictates the degree of multi-directionality. The
directional spreading function also incorporate a mean wave angle of approach,
6, around which the wave spectrum is spread out. The spreading function is
further scaled by the Ng;-parameter such that the total wave energy within the
wave field remains unchanged. A random phase angle, ¢, is introduced, which is
considered uniformly distributed in the range 0 < ¢ < 2m.

n(3D) (x’ y, t) — f G(Q) noe—ik(xmsin (80-0)+ymcos(6-0)-wt+) de

G(6) = {Nscoszs(g -6  —forle-6|<m/,
0 —otherwise

1
N, = _
$ [cos?(6—6)de

The spreading function is seen to approach the Direc-Delta function for high
values of the spreading index, s, and is considered to model ultra-narrow banded
sea states corresponding to long-crested sinusoidal waves as a limiting case.

An illustration of spreading functions for different values of the spreading index,
s, is presented on the following page.

24



Directional Spreading Functions for Different Values of the Spreading Index ([s]

Spreading function for s = 3

Spreading function for s = 10
Spreading function for s = 15
25 Spreading function for s = 25 |

051 b

L

L : e S " .
-2 -15 -1 -05 0 0.5 1 15 2
Wave angle of approach [radians]

FIGURE 6 DIRECTIONAL SPREADING FUNCTIONS

The mean wave angle of approach, 8, and the spreading index, s, are set to
represent different sea states. The effect of the mean angle of approach is to
produce a skewed wave field for values 0 # 0, as the wave distribution becomes
asymmetrically distributed with respect to the global axes of the model. The
effect of the spreading index is to scale the contributions of the waves over the
wave-angle-of-approach domain. A plot of the surface elevation at an instant in
time, n©®2)(x,y), is presented on the following page to illustrate the spatial
distribution for a sea state at frequency w = 0.9 rad/s. For deep-water wave
conditions, this corresponds to a wavelength of A =~ 76m. The sea state is
modelled for unit amplitude waves, n, =1, with a low degree of multi-
directionality, s = 15, and with a mean wave angle of wave approach § = 7/8.
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Surface Distribution

Length L =840 m

FIGURE 7 ILLUSTRATION OF A SURFACE ELEVATION

The sea state modelled represents a scaled summation of long-crested waves
approaching within the wave-angle-of-approach domain. A true sea state is,
however, more commonly expressed through spectral densities. Such a wave
spectrum represents the statistical properties of the wave field in the frequency
domain. To incorporate the spatial distribution of the surface waves, an
expression for a directional wave spectrum is developed in the following section.

6.2.2. DIRECTIONAL WAVE SPECTRUM

A directional wave spectrum is sought through the application of a JONSWAP
spectrum. The JONSWAP spectrum was originally developed during a joint
research project as a one-dimensional wave spectrum for north-sea conditions
[8]. It is mathematically expressed as a peak-enhanced Pierson-Moskowitz
spectrum. The JONSWAP wave spectrum is considered applicable to simulate the
wave conditions at most sites along the Norwegian western coastline.

W)
Spm(f) = 1_6H52 f—’; exp “\f - Pierson-Moskowitz wave spectrum.

H; is the significant wave height, and f,, is the peak frequency of the sea state.
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_<(f_fp)2 ? 2)
204f
Sp(f) = Spu (f) y&*P b - JONSWAP wave spectrum.

The y-term is thus considered the additional peak enhancement factor, where y
assumes values in the range 1 <y < 7, and o denotes the relative measure of the
width of the peak with recommended values given below.

_ 0.07 f < fp (low frequency side)
g { 0.09 f > fp (high frequency side)

A plot of a Pierson-Moskowitz wave spectrum together with the peak enhanced
JONSWAP wave spectrum, as functions of dimensionless frequency, is presented
below to illustrate the effect of the peak enhancement factor.
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FIGURE 8 PIERSON-MOSKOWITZ AND JONSWAP WAVE SPECTRA

The JONSWAP spectrum describes the spectral density of a single sea state
specified by the significant wave height, H;, and peak period, T,. Long-crested
swell waves generally approach the shoreline with periods in the range
T 1ong = 8 — 12 seconds, while the local wind generated surface waves are
considered to have periods in the range Tsp,+ = 3 — 5 seconds. The JONSWAP
spectrums for describing these sea states will consequently have different
spectral density distributions. The irregular sea state generated by the local wind
field superpose on the swell waves to form the confused state of the sea surface.
Realizing that both sea states are present simultaneously, a combined JONSWAP
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spectrum is developed, representing the added spectral densities of the two sea
states. The wave spectrum parameters applied to form the combined JONSWAP
spectrum are peak period values of T, ;ong = 10 sec and T}, sporr = 3 Sec, and a
significant wave height of H; = 1m for both sea states.
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FIGURE 9 JONSWAP SPECTRUM FOR COMBINED SEA STATES

The JONSWAP spectrum representing the long-crested swell waves is seen to
have a narrow banded spectral density with its peak corresponding to the peak
frequency of the sea state. This represents a rather homogenous sea state and a
low degree of multi-directionality is expected for the long-crested swell waves.
The spectral density of the short-period waves is seen to be a more wide-banded
process, illustrating a larger variety of the wave periods. These low-period waves
are assumed to represent a more irregular sea state with a high degree of multi-
directionality.

An extension to a two-dimensional wave spectrum is obtained by combining the
one-dimensional wave spectrum with the directional spreading function. The
spreading index, s, dictates the degree of multi-directionality. The wave
spectrum is spread out over the mean wave angle of approach, 8, and the scaling
parameter, N, now ensures the total wave energy within the directional wave
spectrum to equal the wave energy within the one-dimensional spectrum.

Sy(f,0) = $,(f) G(6)

The two-dimensional directional wave spectrums are computed for constant
values of the spreading index, and are functions of both frequency and direction
of the waves. The long-crested swell waves were assumed to have little
directional spread, while the short-crested waves were considered to have more
random directions of approach. The JONSWAP spectrums representing the
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different sea states are consequently applied to spreading functions of different
spreading index values, corresponding to the desired degree of multi-
directionality of the two. An illustration of one realization for the spectral
density of the combined sea states as function of both frequency and wave angle
is presented below.
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FIGURE 10 DIRECTIONAL WAVE SPECTRUM COMBINED SEA STATES

A spreading function with spreading index s;,,, = 151is applied to the long-
crested JONSWAP spectrum, while a spreading index, ss;,,+ = 3, is introduced in
the spreading function applied to the short-crested JONSWAP spectrum. Both sea
states are modelled with a mean angle of approach 8 = 0 in the above plot of
combined directional sea states. Generally, the approach angles of the swell
waves and the short-crested waves may not be considered to coincide for an
actual sea state. Different mean wave angles of approach are readily introduced
in the expressions for the sea states and the effects of various relative angles
between the more unidirectional swell waves and the multi-directional short-
crested waves may be assessed.

A wave spectrum has been considered to describe the sea state at a site of
interest from wave field characteristics of significant wave height, H,, and peak
period, T,,. For the modelled wave spectrum to be applicable, the sea state
parameters employed need to reflect the physical wave field at the site. The
statistical determination of some sea state parameters is discussed in the
following section.
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6.2.3. DETERMINATION OF THE WAVE SPECTRUM PARAMETERS

The expressions for the sea state parameters presented in the following are
assumed to apply within the concept of short-term wave statistics. This implies
that the sea state is evaluated over a satisfactorily short time-window, of half an
hour to a couple of hours so that the sea state may be evaluated as a stochastic
stationary process.

Wave recordings are essential to obtain knowledge of the wave properties at a
specific site. Such recordings may be done by means of a wave rider buoy. This is
a floating instrument that follows the surface elevation under wave action,
recording the changes in elevation by an accelerometer. Some of these buoys
also have instruments to detect the angle of the propagating waves. A time-
domain recording from such a buoy is random, but when evaluating different
recordings from a single wave rider buoy, one may see that the results are of the
same appearance. We may say that the general properties of the time-series are
the same; hence the process is considered stochastic stationary. This implies that
certain statistical measures may be applied to the record. However, recordings
have to be carried out over a reasonable amount of time, say a year or two, to be
able to do any meaningful statistics on the recorded data.

An example of a time-series recording of the surface elevation is presented in
figure 11.

A

Surface elevation (n(t))

JUL T [\M /
VV U \} UV \N ane(t)

FIGURE 11 SURFACE ELEVATION TIME RECORD [9]

In modelling of a sea surface wave spectrum the most commonly used
parameters are the significant wave height, H;, and the zero crossing wave
period, T, [9]. These wave parameters may be determined by applying statistics
on the recorded surface elevation time-series. When considering the time-series
record of the surface elevation we determine a time interval, t;, at which the
surface elevation is within a small increment, dn. Then summing up the total
time for which the surface elevation is within this small increment. The
probability density function for the surface elevation may then be determined by
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evaluating the total time within each surface increment, dn, over the total time-
domain of the wave record.
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FIGURE 12 PROBABILITY DENSITY FUNCTION DETERMINED FROM A TIME RECORD [9]
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p(n;) = lim =——

The surface waves are assumed independent and random for the phase shift,
0 < ¢ < 2m. For variables resulting from a large number of independent causes,
the central limit theorem states that the probability density function is normal
distributed. Hence, for a simplified modelling of the surface elevation the
probability density function of the surface elevation may be approximated as a
zero-mean Gaussian distribution.

p(n) = #e{%’%}

Zﬂan

With g, being the standard deviation of the surface elevation time-record.

The assumption of a Gaussian probability density distribution for the surface
waves is an approximation to the stochastic process of the wave structure. The
approximation is employed with reasonable accuracy for ocean waves, but for
the wave conditions in coastal regions, major deviations can be experienced.
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FIGURE 13 GAUSSION IDEALIZATION OF A TIME-DOMAIN PROCESS [5]

Based on the joint probability distribution of the surface elevation, 7, and its time
derivatives, the probability density function of the wave height may be
established. The wave height density is seen to follow a Rayleigh distribution.
This is illustrated in figure 14.

p(H) = %‘26{_%}

n
H = 2510, - Mean wave height
H1 /y = 40, - Significant wave height (Hy)

Increasing Number of Waves eei»

Statistical Wave Distribution

Most Probable H

/ Mean H (H)

Significant H (Hg)

Highest one-tenth

/ of waves (Hq;10)

s 1|3 Of WAVES -

f.

Increasing Wave Height >

FIGURE 14 RAYLEIGH DISTRIBUTION OF WAVE HEIGHTS [9]
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The maximum expected wave height within N waves is further estimated by the
following expression [8].

InN 05772
Eleaxl = HS 2 + m

For a sea state of a duration T [sec] the number of waves within the time-
window may be estimated by means of the average wave period considered for
the wave spectrum.

. [ %5, df ]1/2
" s af

The wave characteristics of a sea state may conveniently be expressed in terms
of angular frequency, w [rad/s], by employing the relationship.

w = 2nf

As the wave recordings often are limited in time and space, an evaluation of the
wave record relative to the normally more thoroughly recorded wind field at the
site may reveal some information on the validity of the extreme value
estimations.

6.3. FLUID-STRUCTURE INTERACTION AND HYDRODYNAMIC LOADS

As a body moves relative to a surrounding fluid, both hydrostatic and
hydrodynamic effects are present along the interface of the body and fluid. The
motion of the body will interact with the fluid, resulting in the fluid becoming an
integral part of the dynamic system. The dynamic forces exerted on the floating
body may be evaluated by considering two types of loading situations. The first
loading situation arises from the forced oscillatory motion of a body in still
water. The second loading situation is evaluated as the external loading on a
fixed body from an oscillating wave field. The sum of these loading situations
makes up the total hydrodynamic loading on the floating body. This is
disregarding viscous effects at the fluid-structure boundary.

Fol (8) = F{V(0) + Fghe (D)
The dynamic parts of the loading are thus considered functions of time.

The hydrodynamic effects arise due to oscillating fluid pressure over the wetted
surface of the floating body, and are often evaluated as steady-state
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hydrodynamic forces and moments exerted on the body due to rigid body
motions. These forces and moments are obtained by integrating the fluid
pressure over the surface of the body [10].

The hydrodynamic restoring forces and moments are associated with the forces
and moments acting on an oscillating body, as to oppose the motion. The most
intuitive restoring force on a floating body is the one associated with buoyancy.
A relative vertical displacement between the fluid and the body will alter the
fluid pressure distribution underneath the body, and ultimately change the
buoyancy force. The change in the buoyance force is directly related to the
change in the displaced water volume and is only considered in the vertical
direction. Thus, generally for the heave, roll and pitch modes of motion. Due to
the linear relation between the restoring buoyancy force and the displacements
of the above mention modes, the restoring force is often expressed by an
additional hydrostatic stiffness contribution. The hydrostatic stiffness for a
floating body is expressed below in terms of the associated mode of motion [11].

k;h) = pwIAwp - Heave displacement

kM = p,, gAvVGM; - Roll displacement

kgl) = pwIlwpyy - Pitch displacement

kg;) = —pwIMyp 5y - Combined heave-pitch displacement
kég) = pwIMyp 22 - Combined heave-roll displacement

F{ e = k1)

In these expressions 4,,, is the water plane area, AV is the displaced water

volume due to roll motion, GMy is the transverse metacentric height, [, is

D.yy

the moment of inertia of the water plane about the y-y-axis, and M,,,, ;; is the area

P.jJ
moments of the water plane. The additional expression for the combined heave-
roll displacement is normally not included in ship engineering. It is, however,
considered necessary to include this term here, due to the nearly rectangular
shape of the pontoons, so that both heave and sway motion are regarded as

coupled with roll motion.

The remaining restoring forces acting at the boundary of the floating body are
termed as dynamic forces. These forces arise due to the relative oscillating
motion of the fluid-body and may be assessed in terms of the three-dimensional
velocity potential of the fluid according to linear wave theory [8].
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The dynamic forces on a floating body may be expressed by establishing a
diffraction-radiation problem. The diffraction problem employs the incident and
scattered velocity potential and is a representation of the wave field on the
stationary body. The radiation problem represents the velocity potential of the
refracted waves generated at the boundary of the body oscillating in still water.
A boundary value problem is established and solved for the velocity potentials.
The wave-exciting force on the stationary structure is determined by evaluating
the fluid pressure from the incident and scattered velocity potentials over the
wetted surface of the body. The hydrodynamic coefficients in terms of the added
mass and hydrodynamic damping are determined by integration of the dynamic
pressure from the radiated potential. The added mass, m™, and hydrodynamic
damping, ¢ (w), constitute a pair of harmonic conjugates and are thus seen to
be functions of the acceleration and velocity of the oscillating body, respectively.
These are in turn determined from the real and imaginary parts of the complex
radiation potential. The dynamic wave loading may then be expressed in terms
of an exciting wave force and the hydrodynamic restoring forces from the
incident, scattered and radiated velocity potentials at the boundary of the body
[12].

Gl
pa(x,y,2,t) = —py 5= lwpy,®

F(h) ) = iwp,, f(q)i + q)s) n; dS, = Re [qj(a)) f e{—i(k(xsin@+y cos 9)—wt)}d9]

wave,j
Py (© = ity [ @, 1;d5, = ~{m(@) 550} - {¢ @)}
m}h) (w) = py Re U ®, n; dSW]

Cj(h) (w) = py,w Im [f d,.n; dSW]

The pressure integrations are performed over the wetted surface, S, of the
floating body with n; being a unit inward normal on the body surface associated
with the j'th mode of motion. ®@;, ®; and @, represents the incident, scattered
and radiated potentials, respectively. q;(w) is the frequency dependent complex
load amplitude associated with the j'th mode.

The added mass and hydrodynamic damping coefficients are seen to be
dependent on both the frequency and mode of motion of the body. Consequently,
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the hydrodynamic coefficients associated with a mode of motion will assume
different values corresponding to the frequency of oscillation. The added mass
may even assume negative values at certain frequencies. Furthermore, the
geometric shape of the floating body plays a significant part in the determination
of the hydrodynamic coefficients. The width-draft ratio and the presence of
sharp corners on the body affect the hydrodynamic coefficient values greatly
[10]. As a result, the hydrodynamic coefficients should be determined
specifically for the floating structure at hand.

The complex load amplitudes, g;(w), associated with the different modes of
motion, show the same dependencies as the hydrodynamic coefficients for added
mass and hydrodynamic damping. At low frequencies the wave loading in heave
is assumed to correspond to the displaced water volume, resulting in the floating
body following the surface elevation of the oncoming wave field. For the sway
and roll load transfer, no load is assumed to be transferred to the floating body
as w = 0. The motivation for these assumptions is the fact that as w — 0 the
wavelengths of the oncoming waves approach infinity and the wave field is
represented by a surface elevation increase in every point in space, associated
with water particle motion purely in the vertical direction. The loads transferred
to a floating body are seen to generally decrease at higher frequencies. The
complex load transfer functions express this frequency dependence and are
included to evaluate the proper wave loading as function of the frequency of
motion. The frequency dependent loads per unit length are expressed below in
terms of the dimensionless hydrodynamic load transfer functions.

qj(w) = anve,j QO,j(a))
QWave,y = ngdekTIo

QWave,z = ngBpflo

Bp
QWave,H = pPwd E dk’lo

In the above expressions p,, is the mass density of the fluid, g is the gravitational
constant, B, is the width of a rectangular floating cylinder, d is the draft, k is the
wavenumber and 7, is the wave amplitude.

Fluid-structure interaction is dealt with in various manners throughout the
literature. The classical strip theory has been a commonly applied strategy in
naval architecture to determine the hydrodynamic restoring forces on ships [10].
The underwater part of the floating body is considered in a piecewise fashion,
divided into strips of a small finite length in the longitudinal direction. The two-
dimensional hydrodynamic coefficients are determined for each of the cross-
sections and eventually combined over the full length of the floating body.
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Additional end-effects are to be considered as the strip theory implies that the
variation of the flow in the cross-sectional plane is much larger than in the
longitudinal direction. This will, however, not be the case at the ends of the
floating body.

The hydrodynamic coefficients in this report are taken from Langen [13], which
in turn has derived these from results given by Vugts [2]. The values of the
hydrodynamic coefficients have been computed for a rectangular floating
cylinder in two-dimensional flow for a width-draft-ratio B/d = 4. The pontoons
applied in this report are rectangular with a width-draft-ratio of B,/d =~ 4.48.
The hydrodynamic coefficients are thus considered to have good relevance the
model developed in this report. The hydrodynamic coefficients are further
expressed per unit length and are regarded constant over the length of the
pontoons. The non-dimensional hydrodynamic added mass, hydrodynamic
damping and load transfer functions associated with heave, sway and roll modes
of motion are presented graphically in the appendix A.1.

The total hydrodynamic loading on a floating body in the jth mode may then be
expressed as.

FOO) = Fi O+ F{0y (O + il O

This expression may be further developed to express the load per unit length on
a floating body in the j'th mode in terms of the hydrodynamic restoring
coefficients.

4" (@,1) = 0,0 (©) = m® @)F5 () = ¢ (@i (©) = k™7 (©)

wave,j
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7. FORMULATION OF THE EQUATIONS OF MOTION AND SOLUTIONS
METHODS

7.1. THE EQUATIONS OF MOTION OF A FLUID-STRUCTURE SYSTEM

The dynamic response of a general structural system is evaluated through its
equation of motion. This equation states the dynamic equilibrium condition and
predicts the time-dependent response, r(t), from an external time-dependent
loading, R(t), by incorporation of the mass, damping and stiffness properties of
the dynamic system.

MO#(t) + CO7(t) + KOr(t) = R(t)

The structural properties of the bridge construction are expressed by the
structural mass, M), damping, C*® and stiffness, K). These properties reflect
the floating bridge construction when the surrounding environment is
disregarded. A dynamic analysis using only these properties as input, with no
external loading R(t) = 0, will render the free response of the construction as if
being placed in still air or vacuum.

A fluid-structure system has a more complicated dynamic behaviour due to
strong interaction effects. All relevant properties of the system are to be included
to obtain an accurate estimation of the physical response. Thus, the structural
properties, the fluid-structure interaction effects and the environmental loading,
all need to be evaluated in the equation of motion.

M©O#(E) + CO3(t) + KOr(t) = e (t) + F2 () + Floionstar (E)

motion,dyn

The hydrodynamic and hydrostatic forces are expressed in terms of added mass,
hydrodynamic damping and a hydrostatic stiffness contribution. Recognizing
their respective association with the acceleration, velocity and relative
displacement of the structure, the hydrodynamic and hydrostatic contributions
are effectively included in the system properties. Resulting in a complete
representation of the fluid-structure system. A dynamic evaluation of the fluid-
structure system properties, disregarding any environmental loading, results in
the free response of the bridge construction in its proper environment. Such an
analysis may be used to determine the natural frequencies and mode shapes of
the fluid-structure system, and to develop general frequency response functions
for desired response parameters.

MO#() + COF(E) + KOr(t) = —M® (0)#(t) — CW ()7 (t) — KDr(t)

(M(s) + M(h)(a)))f(t) + (C(s) + C(h)(w))f-(t) + (K(s) + K(h)(w)) r(t) =0
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To obtain the true behaviour of the floating bridge structure the proper external
environmental loadings are to be determined. The loading is introduced on the
right hand side of the above equation of motion, resulting in a forced response of
the system.

7.2. SOLUTION METHODS TO THE EQUATIONS OF MOTION

For classically damped systems the dynamic properties are solely determined by
the mass and stiffness properties of the system. Such systems may be obtained
by use of proportional damping. Then, the equations of motion may be
decoupled by a modal analysis. Assumed mode shapes of the system form the
basis for the analysis, and the total response of the system is determined by a
summation of scaled mode shapes as functions of the frequency of motion. Mode
shapes associated with natural frequencies in the vicinity of the response
frequency will dominate the total response of the bridge structure. Though, for
systems with closely spaced Eigen frequencies, the total response may be
difficult to ascribe to specific mode shapes.

For systems with non-classical damping, the damping matrix is not readily
diagonalized, and the dynamic properties are dependent of the damping, as well
as of the mass and stiffness properties of the system. The solution to such a
system involves transformation of the second order differential equations, i.e.
the dynamic equilibrium conditions, to first order differential equations. The
response of the system is assumed to decay as a function of time, and a complex
notation is adopted. The solution to the non-classically damped dynamic system
renders complex Eigen values and complex Eigen modes, containing both real
and imaginary parts [14].

Due to rapid improvements in computational power over recent decades,
numerical solutions to dynamic analyses have become an attractive approach.

7.2.1. SOLUTION METHODS IN TIME DOMAIN

The response of the system may be evaluated as a function of time. This implies
that the equations of motion are functions of space and time only. However, the
hydrodynamic coefficients of added mass and hydrodynamic damping have been
found to be functions of the frequency of motion. These frequency dependent
variables, which constitute part of the fluid-structure system properties, may be
evaluated at constant-frequency intervals or by use of a convolution integral
[15]. Thus, allowing only for time as the field variable at given points in space,
with the frequency dependence of the dynamic response being accounted for in
the time domain analysis for the latter approach. The external loadings on the
system are modelled as functions of time and position in space. Time-series for
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modelling of the wave load on the floating bridge may be developed by a an
extension of the multi-directional, three-dimensional wave field discretized in
terms of summations of the wave loading in every degree of freedom of the
system [4]. The time-series representing the wave load is considered a random
time-domain stochastic process.

n om
Qw(x,y,t) =A Z Z Mo./qij Rij G(9) e—i(kix sin (8j—0)+k;y cos(6;—-0)-wit+@;j+&;;)

i=1 j=1

The wave loading in a degree of freedom is allocated from an appropriate
segment length, A, determined by the discretization of the model. The g;;-term
denotes the complex load amplitude associated with the frequency and mode of
motion. g;; expresses the frequency dependent force phase. The R;;-terms is
introduced as a force-reduction factor for the oblique wave-angle-of-approach
relative to the orientation of the bridge segment, éj

(" rcos@))
(s costa)

Based on the statistical properties of the environmental loading, one possible
load situation is simulated. Time-series of the load process are generated
randomly and applied to the system. At an instant in time, the total load situation
is evaluated over the structure to obtain an instantaneous response. The possible
realizations of the external loading, and the subsequent response situations of
the system, are evaluated in time steps to constitute a collection of possible
outcomes. This procedure may be accomplished by a Monte Carlo simulation
[16], or an appropriate numerical integration technique can be implemented in
the evaluation of each time step. Further statistics may be performed on this
collection to determine mean and extreme values of response parameters of
interest, as well as their corresponding standard deviations.

Rij(kilAl 9_) =

7.2.2. SOLUTION METHODS IN FREQUENCY DOMAIN

The response of the system may be sought through an analysis performed in the
frequency domain. The dynamic equations of motion are transferred to the
frequency-domain by considering both the loading on, and the response of the
fluid-structure system as spectral processes associated with the corresponding
stochastic time-domain processes. Such a transformation between time-domain
and frequency-domain is generally governed by Fourier Transforms. For a zero-
mean time variable, a Fourier Transformation expresses the process as a
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summation of harmonic components with the Fourier constants a;, and b, as
amplitudes of the harmonicas [5].

x(t) = fooax(a)) e @tdw

1
ay(w) = E(ak — iby)

The response quantities obtained in the frequency domain are thus regarded as
the complex Fourier amplitudes, a,(w), of the corresponding time-domain
representation.

Expressing the time-domain response, x,.(t), and loading, xz(t), as summation of
harmonic components results in the response and load components of the
equation of motion being expressed in terms of frequency. The response and
loading terms on the right hand side of the expressions, r(w) and R(w) are thus
the complex Fourier amplitudes of the time-domain process.

x,(t) = fr(a)) el®t de
x,(t) = f iwr(w)e“tdow
¥ (t) = f—wzr e ®tdw

xp(t) = fR(a)) el®t de

Inserting for the response and loading in the expression of the fluid-structure
system equation of motion in time-domain, and cancelling the harmonic
integration terms, renders the equation of motion for the frequency-domain
dynamic analysis.

[w?(M® + M®) +iw(C® + ™) + (KO + K®)|r(w) = R(w)

The frequency domain response, r(w), may then be evaluated by the following
expression.

r(w) = Hw) R(w)
H(w) = [-0?(M® + M®) 4 io(CS + ™) 4+ (KO + kW)™

By the direct application of the system properties, the H(w)-matrix in frequency-
domain, a general frequency response function can be determined to evaluate
the response sensitivities of the system. Such a function may be considered a
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frequency-domain equivalent to the time-domain free vibration response;
providing the dynamic behaviour of the system disregarded any external forcing.
This frequency response function may be viewed as an initial response spectrum.
Expressing a mapping of the frequency-dependence, or frequency-sensitivity, of
the response. Combined with a loading situation, representing the characteristics
of the external load, the frequency response function is scaled and corresponding
response amplitudes are obtained for the dynamic system. Large responses will
thus occur if the evaluated response parameter of the system is sensitive to
loading in the frequency range of the external oscillating load.

The frequency domain response solution may also be pursued by probabilistic
means by evaluating the spectral densities of the load and response processes.
Such an approach provides the population statistics of the dynamic response
from the statistical parameters of the loading situation. The response of the
system is expressed by a response spectrum, which may be statistically
evaluated to determine extreme values and corresponding standard deviations
of the responses. If the oscillating part of the external load is approximated as a
zero-mean Gaussian process, oscillating over the quasi-static load configuration,
the dynamic response of the bridge may be considered correspondingly. And the
dynamic response of the floating bridge model is expressed through the spectral
density of the response process.

The spectral density of the response contains the frequency domain properties
of the response process and may be viewed as the frequency domain counterpart
of the concept of variance. The definition of the single sided auto-spectrum of a
time-dependent process, x(t), is given by.

1

Sx(w) = lim —[a,(w) - a;(w) | = Elay(w) - ax(w) ]
T-oo TTT

Where T denotes the time interval of the process and a,(w) represents the
complex Fourier amplitude of the time-domain process. The asterix on the
Fourier constant, a; (w), denotes the complex conjugate.

The response spectrum for the frequency-domain response is established
correspondingly.

Sr(w) = El[r(w) r*T(w)]
Sr(w) = H(w) Sg(w) M (w)
Here, S (w) is the load spectrum determined for the external loading process.

The load spectrum may be considered as a transfer function, relating the
external loading process to the response process of the dynamic system. Other
transfer functions may be developed to suit the purpose of the analysis, and can
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represent the transfer from an external loading situation to virtually any
response parameter of the system. Consequently, response spectrums may be
developed to represent the displacements, velocities and accelerations in nodes,
just as much as they may represent internal forces and moments in structural
members.

The spectral densities of the response process may further be employed to
estimate extreme value response parameters of the dynamic system. The
standard deviation of the response process is determined by integration over the
response spectrum of the response.

o, = (f_oooo S (w) da))l/z

The largest expected maximum response within a time interval, T, may be
estimated by applying extreme value statistics.

05772
E[rpmae] = ’Zln /Tz
’Zln T/T

With the corresponding extreme value standard deviation determined from the
expression.

1

2ln (T/TZ)

The zero crossing period, T, is determined from the spectral moments of the
process.

o [rmax] = Oy

5=

my
T, = 21 |—
m,

With the k'th spectral moment given from the response spectrum by the
following expression.

my = f w* S, (w) dw

7.3. TIME DOMAIN ANALYSIS VS. FREQUENCY DOMAIN ANALYSIS

A time domain analysis is an intuitive approach to a dynamic response problem.
Environmental effects, such as wind and waves, are often recorded as functions
of time and the desired response parameters may be expressed likewise.
Furthermore, second order terms may be included conveniently in the time step
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analysis to account for non-linear effects of the system. A drawback of the time-
domain analysis when evaluating a fluid-structure system is, however, the
frequency dependent hydrodynamic coefficients. Another, more general,
challenge to the time domain dynamic analysis arise due to the random
realizations of the environmental load time-series. The time-dependent loading
applied to the system at an instant is merely one possible realization based on
the statistical properties of the load. The resulting load situation is not
necessarily representative for the true load situation on the structure. However,
the validity of the response can be evaluated by computing several realizations,
based on the same statistical properties, for comparison. Producing the desired
amount of data to obtain confident response results may nevertheless prove as a
demanding numerical task.

During a frequency domain analysis the frequency content of the external
loading forms the basis for the response estimation. The frequency domain
approach encompasses the population statistics of the external loadings. A load
spectrum will as a result not be one possible realization, moreover a
representation of the entire loading situation presented as a function of
frequency. The resulting response spectrum is thus a representation of the
variance of the process as function of frequency. For a study in the field of
hydrodynamics, the frequency domain approach may be considered preferable,
due to the frequency dependence of the hydrodynamic coefficients. However, a
main drawback of the frequency domain approach is the lack of simultaneous
response parameter analysis. This affects the possibility to determine several
response parameters for a specific loading situation. Consequently, the effect of
simultaneously occurring internal forces and moments in a structural member
may not be assessed easily in the frequency domain. Also, second order effects of
a non-linear system are generally more troublesome to include in the frequency-
domain analysis.

There are strengths and weaknesses to both approaches. One should employ the
approach that best suits the purpose of the dynamic analysis. For hydrodynamic
systems of assumed small excitations for which the analysis may be regarded
linear, a frequency-domain analysis is likely to be favourable. Such an analysis
will serve to provide information on the overall response of the system. For
instance, revealing the natural frequencies and modes of motion, or expected
accelerations and displacements at critical points. Thus, being a desired
approach for an estimate of the behaviour of the structure for a typical
serviceability limit state.

The time-domain analysis may be employed to determine the dynamic
properties of the system for the same purposes as the abovementioned
frequency-domain analysis. Though, a time-domain approach will generally be
somewhat more computationally demanding for a hydrodynamic system. The
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obvious advantage of the time-domain analysis is for an ultimate limit state
evaluation of the structure. This becomes evident as non-linearity and the
simultaneous occurrence of forces and moments in structural members may be
readily assessed.
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8. FINITE ELEMENT APPROACH TO DYNAMIC ANALYSIS

8.1. FINITE ELEMENT ANALYSIS OF A FLOATING BRIDGE

The dynamic analysis of the floating bridge model is performed through a finite
element approach. The model is discretised by the use of three-dimensional
finite beam elements with six degrees of freedom in each node. The mass and
damping properties are considered constant over the length of each element in
the analysis, but are presented herein to allow for variable properties over an
element. The stiffness properties are determined from traditional Euler-
Bernoulli beam theory, with shear strain excluded, and St. Venant theory is
applied to determine the torsional stiffness of the elements. Loading on the fluid-
structure system is evaluated over the exposed elements of the model, and
included as nodal forces consistent with the element formulation of the floating
bridge model. The area centre and the shear centre of the beam element cross-
section are assumed to coincide. Thus, the axial and torsional displacements, as
well as the bending degrees of freedom about the horizontal and vertical plane,
may be considered uncoupled. This assumption is valid for double-symmetric
cross-sections. Thus, the assumption is not completely valid for the adopted
generic floating bridge model due to the superstructure cross-section not being
perfectly axisymmetric. It is nevertheless considered as a good approximation
and the assumption is kept to ease further computations.
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FIGURE 15 12DOF BEAM ELEMENT

As the outer dimensions of the floating bridge model are kept constant, an
increase in the number of finite elements in use will lead to a more accurate
solution to the dynamic problem. The response solutions obtained by the finite
element method are considered to approach the correct values from below.
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Meaning that the system will normally render response displacements smaller
than the correct values. This is due to the assumed element deformations, which
are interpolated by element shape functions. The essence of the finite element
method is the piecewise polynomial interpolation over each element. Thus, a
finite element can only describe a field variable to the same degree as the
interpolation included in its formulation. These are either correct, or the
elements are forced to deform different from the physical response, which result
in an increased stiffness of the system [17]. For a dynamic system, an increase in
stiffness is associated with an increase in the natural frequencies of motion.

A set of interpolation functions is employed as field variables to describe the
field response of the beam element in terms of the nodal displacements,
velocities and accelerations. The mass, damping and stiffness properties of the
element are all described consistent with these interpolation functions. Thus,
mass-, damping- and stiffness matrices are initially developed at the element
level by integration over the element length. Structural parts with varying cross-
sections or varying material properties over the element may be accounted for
by introducing these parameters as field variables in the integration. Similarly,
the same interpolation functions are utilized to allocate the distributed loading
over the element to a corresponding nodal force vector. The property matrices of
the element and the load vector are established in compliance with a column
vector representing the degrees of freedom of the element.

The following expressions are employed for determination of the structural
mass, damping and stiffness properties, and the load vector, for the elements
employed in the floating bridge model. In these expressions, the cross-sectional
area, A.(x),the damping per unit length, c(x), stiffness per unit length, k(x),
and the external loading per unit length, q(x), may vary over the element.

m(esl) = pg [ NT(x) Acs(x) N(x) dx - Element structural mass matrix
cgsl) = [NT(x) c(x) N(x) dx - Element structural damping matrix
kgsl) = [ NT(x) k(x) N(x) dx - Element structural stiffness matrix
R, = [NT(x)q(x) dx - Element consistent load vector.

The interpolation functions employed for the integration over the element, N(x),
depend on which of the DOF’s of the element the mass, damping and stiffness
properties and external loading are associated with. The deformations over the
element in the axial and torsional directions are interpolated by linear shape
functions, as there are two DOF’s in the element formulation describing each of
these deformation modes.

Nlinear = [1 - x/Le x/Le]
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Hermitian interpolation functions are employed for the determination of the
field displacement over the element associated with transverse deformations in
the horizontal and vertical directions. This is a consequence of there being 4
DOF’s at the element level governing each of the transverse responses.

2 3 -
-3 /LeZ+2x /Le3
2 3
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The finite element model is constructed by connecting the element nodes to form
the desired geometry of the physical structure. Elements with different
geometry, material properties and loading are introduced to represent different
parts of the structure. The degrees of freedom at a node shared by two, or more,
elements are linked to ensure compatibility of the final model. Such a
compatibility requirement is necessary for the model to represent the
propagation of effects from one element to another. A common way to properly
link the element DOF’s to the DOF’s of the finite element model is by the use of
connectivity matrices. These matrices are developed for each of the elements
included in the model and establish the following connection between the
element DOF’s and the global DOF’s.

i i
Vo = Q" Vgop

Where, v., is a vector representing the DOF’s of element i, v, is a vector
containing the global DOF’s and a’ is the connectivity matrix linking the DOF’s of
element i to the global DOF’s. If the element DOF’s are oriented according to the
global system axes, the connectivity matrices will contain simple one-to-one
relations between the DOF’s. As the connectivity matrices establish the relation
between an elements DOF’s and the global system, these may also be employed
to obtain the element mass and stiffness properties, and element loading, in
terms of the global DOF’s. The global property matrices and the global load
vector are obtained by summing over all elements, N, of the finite element model.

MY = §V=1(ai)T m& a! - Global structural mass matrix

cY = N (a ) ¥ al - Global structural damping matrix
K = y¥ (a ) kS al - Global structural stiffness matrix
R; = §V=1(a")TRel - Global loading vector
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The global property matrices and the global load vector are consistent with a
column vector representing the global degrees of freedom of the finite element
model.

The hydrostatic and hydrodynamic contributions to the system stiffness,
damping and mass properties are obtained similarly as for the structural
properties. The difference being that as every element in the model has
structural properties, only the elements used in modelling parts of the structure
in contact with the surrounding fluid will contribute with hydrostatic and
hydrodynamic properties. The resulting hydrostatic stiffness and hydrodynamic
mass and damping global matrices are consequently sparser matrices with more
terms equal to zero.

m(e’ll) (@) = Mpyaro(w) [ NT(x) N(x) dx - Element structural mass matrix
cgll) (@) = Chyaro(w) [NT(x) N(x) dx - Element structural damping matrix
kg;) = knyaro | NT(x) N(x) dx - Element structural stiffness matrix

Here, Mpyqro (@), Chyaro(w) and kpy4r, are the two-dimensional frequency
dependent hydrodynamic added mass and damping coefficients per unit length
and the hydrostatic stiffness per unit length, respectively. The development of
the hydro-elastic elements employed in the finite element model is outlined in
the subsequent section.

The global hydrodynamic property matrices are added to the structural property
matrices to form the matrix formulation of the fluid-structure system in terms of
finite element notation. The structural damping is considered to be negligible
compared to the hydrodynamic damping contribution.

M (w) = ME + M (w)
Co(@) =€ + P (w) = (W)
K; =K + K

The equations of motion are established in a matrix format for evaluation
according to the finite element approach. The matrix formulation is a set of
coupled differential equations. The number of equations equals the number of
DOF’s of the discretized finite element model. In the general equation of motion
of a fluid-structure system, the mass and damping properties are assumed being
frequency dependent due to the addition of hydrodynamic added mass and
damping. The external loading on the system, and the resulting response of the
system, are considered functions of time at a given node. The load vector on the
right hand side may include load effects from several types of loading.
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Mg (@)7*(t) + C(w)T(t) + Ker(t) = Rg(8)

The elements that make up the finite element model will generally not have their
local coordinate system oriented according to the global coordinate axes. The
loading on the system and the resulting response of the complete model are,
however, most favourably described in terms of the global DOF’s.
Transformation matrices are developed to describe the orientation in space of
the local element coordinate system relative to the global axes. These are further
employed to express the element properties in terms of global DOF’s. The
transformation matrices employed for linking the three-dimensional
translational and rotational DOF’s at a node is expressed as follows [18].

i _
Verto = tr Vglop

cos(x,x) cos(x,y) cos(x,2)

t, = [cos(y,x) cos(y,y) cos(y,2)
cos(z,x) cos(z,¥) cos(z 2)

In the above transformation matrix, t,, the angles applied to the cosine terms are
defined as the angles between the local element axes, {x,y, z}, and the global
axes, {X,y,Z}.

The complete transformation matrix for the 12DOF element is thus expressed as
a [4x4]-matrix with the t,-matrices on the diagonal.

T, = diag|t,]

A transformation matrix is developed for each of the elements having their local
axes rotated from the global axes. The element property matrices, and the
element load vector, are transformed to apply to the global coordinate axes by
the following relations for element, i.

mi, = (1) mi, T
ek = (1,7 ¢, T
kG = (1) K, T
R, = (T1) R,

The terms within the transformed element property matrices and the
transformed element load vector may then be allocated to properly apply to the
global DOF’s by the connectivity matrices incorporating the simple one-to-one
relation between the element DOF’s and the global DOF’s.
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8.2. DEVELOPMENT OF A HYDRO-ELASTIC BEAM ELEMENT

The hydrostatic and hydrodynamic restoring forces on a floating body are
conveniently included as an integral part of the fluid-structure system
properties. To include these effects efficiently in the dynamic analyses
performed by a finite element approach, it is of interest to express them in a
finite element format. As a result, the hydro-effects are introduced in the element
formulation as functions of the nodal displacements and the element
interpolation functions. From this, hydro-elastic matrices are obtained;
containing the effects of the hydrostatic restoring stiffness and the
hydrodynamic added mass and damping contributions related to the proper
nodal DOF’s. The hydro-effects are added properly into the purely structural
property matrices of an element to form the complete hydro-elastic element
formulation. The hydro-elastic elements are introduced for the parts of the
floating bridge in contact with the surrounding fluid. A preliminary analysis of a
single, freely floating hydro-elastic element is conducted to verify the hydrostatic
stiffness contribution from rigid body displacements in the fluid. The procedure
is included in the appendix A.2.

The basis for the development is the three-dimensional beam element with
twelve degrees of freedom (3D-12DOF). Hermitian interpolation functions are
employed for the transverse horizontal and vertical field displacement
interpolation. While linear interpolation functions are in use for interpolation of
the axial and torsional displacements over the element.

8.2.1. HYDROSTATIC ADDITIONAL STIFFNESS CONTRIBUTION

The hydrostatic additional stiffness contribution is exerted on a floating body as
a function of its vertical displacement in the fluid, and is commonly referred to as
the buoyancy. As the buoyancy force is proportional to displacement, it may be
regarded as an additional stiffness contribution to the structural stiffness of the
element. The hydrostatic stiffness is derived as the change in vertical force, AF,,
on a floating body as function of its change of position in the vertical plane, Aw.
The hydrostatic stiffness contributions associated with different modes of
motion were presented in section 6.3 of the thesis. The general expression for
the hydrostatic restoring loading per unit length in mode j is reproduced below.

a;” () = k{r; (©)

The hydrostatic stiffness coefficients, k}h), are assumed in the following to be

expressed in terms of stiffness per unit length over the elements.

The heave displacement of a beam element is described in terms of its nodal
translational DOF’s in the vertical z-direction and by the nodal rotational DOF’s
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in the x-z-plane. The vertical displacement at an arbitrary point on the element is
determined by the nodal displacements in the vertical direction, v,, of the
element and the proper interpolation functions, N,(x), as field variables.

w(x) = N,(x) v,

The hydrostatic load on a beam element in the vertical z-direction may be
derived by integration of the buoyancy force per unit length over the length of
the element.

R = [ NT(x) ¢ (x) dx

The buoyancy force per unit length over the element is a function of the
displacement of the element, and may be expressed by the hydrostatic stiffness
and the field displacement along the element.

aP () = kP w(x)

Inserting the above equations in the expression for the restoring force on a beam

element results in the vertical hydrostatic stiffness contribution, kgll)z, consistent

with the finite element formulation of the floating bridge model.

Le
R = k™ f NT () N, (x) dx v,
0

K™

Le

W = kM fo NT(x) N,(x) dx

The interpolation functions in use for the vertical field variable, N,(x), are
identical to the Hermitian interpolation functions in use for a two-dimensional,
four degrees of freedom beam element with only vertical and rotational degrees
of freedom at the nodes. The vertical hydrostatic stiffness contribution is thus
stored in a [4x4]-matrix corresponding to the four vertical DOF’s of an element.
The additional stiffness contribution for pitch displacement of a pontoon is
considered to be included in the formulation of the hydrostatic stiffness
contribution in heave. The motivation for this assumption is the ability of the
elements that model the pontoons to display vertical displacements over their
length corresponding to pitch displacement.

For a structural part in the fluid with its length being of much greater size than
its width, the developed vertical hydrostatic stiffness contribution may be
considered sufficient to describe the hydrostatic restoring force on an element.
The proposed model for the pontoon-separated floating bridge does however
include pontoons that are close to quadratic in the water plane. As a result, it is
considered necessary to also include the restoring moments arising from roll
motion of the pontoons.
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The roll displacement of an element is expressed by the rotational DOF’s about
the local element x-axis. As a pontoon is rotationally displaced about the
longitudinal axis, vertical displacement over the width of the pontoon is
determined as a function of the distance from the axis of rotation. Hydrostatic
restoring moments will thus arise from a purely rotational displacement. The
hydrostatic restoring moments on a hydro-elastic pontoon element is developed
similarly as for the vertical restoring force.

Le
R = kM f NT(x) No(x) dx vy
0

Le
K3y = kY f N (x) Ng (x) dx
0

As there are two DOF’s of an element expressing the rotational displacement, the
rotations over the element is interpolated linearly. The hydrostatic stiffness
contribution from roll displacement is consequently stored in a [2x2]-matrix
corresponding to the rotational DOF’s at each node, vy.

The hydrostatic stiffness contributions are allocated properly in a[12x12]-
element stiffness matrix to apply to the vertical and rotational nodal DOF’s.
Terms in the hydrostatic element stiffness matrix corresponding to other DOF’s
than the wvertical and torsional remain zero. The hydrostatic stiffness
contributions are added into the structural stiffness matrix of the element to
form the complete hydro-elastic element stiffness matrix.

kgll) — k(h) + k(h)

el,z el,0

O NA()
k. = k; + k,

8.2.2. HYDRODYNAMIC ADDED MASS

The hydrodynamic added mass is considered proportional to the acceleration of
motion of the floating body. The added mass depends strongly on the geometry
of the body and will generally differ for the different modes of motion. The
hydrodynamic added mass is therefore evaluated separately for the different
directions of motion. The DOF’s representing the vertical, horizontal and
rotational motions are extracted to obtain systems describing single modes of
motion for an element. The hydrodynamic loading on the element is evaluated by
integrating the distributed loading over the element interpolation functions
corresponding to each of the separate modes of motion.

mass,j ~— mass,j

(h) _ (h)
F f N/ (%) q (x) dx
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(h) (x) = (h) (x) — (h) N (x) v

Qmass J

The load per unit length on the element is determined by applying the two-

dimensional added mass per unit length associated with motion in the j'th mode,

Q)
m;;
7j(x). The field acceleration is expressed by the nodal accelerations according to

multiplied with the acceleration at an arbitrary point on the beam element,

the finite element discretization. The hydrodynamic added mass matrix for the
jth mode of motion is extracted from the rewritten expression for the
hydrodynamic loading associated with the acceleration of the body.

FO o= m®P [ NT(x) N;(x) dx b
m{P = m | NT(x) N;(x) dx

The interpolation functions employed, N;(x), are consistent with the element
formulation of the j'th mode of motion and v; is the nodal accelerations in the
DOF’s describing the j’th mode.

The common terms of the translational displacement in the y-direction and the
torsional displacement of the element establish the coupled sway-roll motion for
inclusion of the corresponding hydrodynamic added mass.

m® o = m{) [ N5 (x) No(x) dx

The resulting added mass matrix contains off-diagonal terms in the positions
linking the horizontal transverse displacement and the torsional displacement of
the element. In addition, the heave motion due to rotation of the pontoon about
the longitudinal axis is evaluated. This is done as a result of the nearly quadratic
shape of the pontoons. Heave acceleration terms are developed as functions of
the roll accelerations and the distance, y, from the rotational axis. The
hydrodynamic moment due to roll is integrated over the width of the pontoons
to represent a hydrodynamic loading in the heave direction as function of the roll
acceleration.

v,(y) =y vy - Heave acceleration as function of roll acceleration

Fgllc)lsse = m;g) ff Ng(x) Nz(x) yvg dydx

B. m(h)
®) = Nz(x) N, (x) dx ¥

mass,z0 4
0
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Where B, is the width of the pontoon. The added mass terms are added into the

added mass matrix developed for heave motion at positions associated with roll
motion.

The added mass contribution from the N considered modes of motion are
allocated properly into [12x12]-matrices associated with each mode of motion,
(h) . The complete hydrodynamic added mass matrix for a 3D-12DOF element

is obtalned by summation of all the contributions.

=3 w

The mass matrix of a hydro-elastic element is finalized by adding the
hydrodynamic added mass contributions to the structural mass matrix of the 3D-
12DOF element. The hydro-elastic mass matrices are allocated properly in the
global mass matrix by use of the connectivity matrices developed for the
elements in contact with the surrounding fluid.

mlellydro — (s) + m(h)
T ,
M = 5 (@) m e a

8.2.3. HYDRODYNAMIC DAMPING

The dissipation of energy associated with the radiation potential of a forced
harmonic motion of a body in still water is proportional to the velocity of motion,
and is as a result regarded as the hydrodynamic damping of the motion. This
effect is included in a finite element format by considering the velocity at an
arbitrary point along a beam element. The hydrodynamic damping coefficients
are also strongly dependent on the geometry of the body, and generally differ for
the different modes of motion. By employing the interpolation functions of the
beam element for the different modes of motion, the field velocity is predicted
through the velocity of the nodal degrees of freedom. As a result, a damping
matrix for a beam element associated with the j'th mode is obtained by
integrating the hydrodynamic loading associated with the velocity of the beam
element over the interpolation functions in a similar fashion as was done for the
added mass matrix.

W,
Fdamp j

e f NT(x) N;(x) dx v;

e = f NT(x) N;(x) dx
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The coupled effects of sway and roll motion, as well as the additional heave
motion arising from roll motion, are included similarly as for the hydrodynamic
added mass. The complete hydro-elastic damping properties are obtained by
summing the damping matrices corresponding to all the N modes of motion
associated with hydrodynamic damping and the proper connectivity matrices
are employed to allocate the damping terms in the global damping matrix of the
finite element model.

N
() _ n)
Cel - z Cel,j
j=1

hydro _ _(s) h) o v
Cel - Cel + Cel - cel

(h) _ ym i\ hydro i
c;’ =" (a) ¢;)"a

For the modelling of the pontoons, additional hydrodynamic effects are included
to incorporate the longitudinal surge motion of the pontoons. The longitudinal
effects are considered necessary to include due to the nearly quadratic shape of
the pontoons. The pontoons are modelled with four beam elements, but for the
longitudinal direction the pontoons are considered as one element. Letting the
axial degree of freedom of the first node of the first element, and the axial degree
of freedom of the second node of the fourth element, represent the nodal
displacements regarding the horizontal longitudinal motion. The hydrodynamic
added mass and damping terms for surge motion is added into the mass and
damping matrices of the pontoon sub-system at positions common to the two
above-mentioned axial displacements. The added mass and hydrodynamic
damping associated with pitch motion of the pontoons are regarded as included
by the heave mode as the finite element formulation allows for pitch-type motion
over the length of the pontoons.

The property matrices of the hydro-elastic elements are modified somewhat to
represent the pontoon shape introduced to the finite element model of this
report. The motivation for these alterations is, as previously stated, the nearly
quadratic shape of the pontoons. Thus, modelling the pontoons by the original
beam element formulation is considered as an overly rough estimate of their
hydrodynamic behaviour. Disregarding the modifications, the hydro-elastic
element formulation is however considered general, and may be employed to
represent any floating structure.

8.3. ASSEMBLY OF THE GLOBAL FINITE ELEMENT MODEL

The structural and hydro-elastic elements for the modelling of the floating bridge
have been developed and transformed properly to apply to the global coordinate
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system. Pure structural beam elements are introduced in the model for the parts
that are not in contact with the surrounding fluid. These elements apply to the
modelling of the entire superstructure bridge span as well as to the connector
rod elements. The hydro-elastic elements incorporate the hydrostatic and
hydrodynamic effects associated with the relative fluid-structure motion and are
developed specifically for the modelling of the pontoons. All element property
matrices have dimensions of [12 x 12] due to the twelve DOF’s of each element.

The three-dimensional floating bridge model is initially divided into separate
sub-systems. The bridge superstructure is considered as one sub-system and
modelled as an arched beam in the x-y-plane. A pontoon-connector sub-system is
developed to represent a floating pontoon with a stiff rod to represent the
connection to the bridge superstructure. Pontoon-connector sub-systems are
introduced to the superstructure sub-system at the positions of the pontoons to
complete the model. The individual pontoon-connector sub-systems are oriented
normal to the bridge span at the location of assembly.

The bridge superstructure sub-system is assembled by use of 24 purely
structural beam elements. The DOF’s of each element making up the bridge
superstructure are related to the global coordinate system by the individual
element transformation matrices. The transformed element property matrices
are further assembled to form the property matrices of the superstructure sub-
system by means of sub-system connectivity matrices, developed to link the
element DOF’s to DOF’s of the sub-system. The element property matrices are
referred to the global axes prior to the assembly of the superstructure sub-
system. The coordinate system of the superstructure sub-system is chosen
consistent with the global coordinate system of the model, resulting in the
property matrices of the sub-system automatically being referred to the global
axes. The total number of DOF’s of the superstructure sub-system adds up to 150
due to 25 nodes along the bridge span.

— " TN~

R = 1300m

L =840m

FIGURE 16 ARCH SHAPED FINITE ELEMENT MODEL OF BRIDGE SUPERSTRUCTURE
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The pontoon-connector sub-system is developed by first assembling the
elements of the sub-system in a local coordinate system. The assembly is
performed by use of connectivity matrices developed to link the DOF’s of the
elements to the DOF’s of the pontoon-connector sub-system. Four hydro-elastic
elements are used for the pontoon-part of the sub-system, while a single, purely
structural element is employed for the connector rod. Resultantly, the pontoon-
connector sub-system property matrices include the hydrostatic and
hydrodynamic effects expressed through the hydro-elastic elements. The
property matrices of the pontoon-connector sub-system are of dimension
[36%36] as there are a total of 36 DOF’s describing the motion of the sub-system.
The pontoon-connector sub-system is to be introduced multiple times along the
bridge superstructure in the final model, each time with different orientation in
space. Consequently, it is regarded favourable to develop the sub-system in the
local element coordinate system at first. Then, transforming the property
matrices of each sub-system to the global coordinate system according to the
individual sub-system orientations. The transformation of each pontoon-
connector sub-system is carried out similarly as was done for the transformation
of the individual superstructure elements. A transformation matrix is developed
for each of the pontoon-connector sub-systems, corresponding to the orientation
of the local sub-system axes relative to the global coordinate axes. Throughout
the model, the orientation of the pontoons is taken as the mean of the above
superstructure elements that are connected in the common node as the pontoon-
connector sub-system is introduced to.

Structural connector rod element

Hydro-elastic elements

A
Y

Pontoon length, 30m

FIGURE 17 FINITE ELEMENT MODEL OF PONTOON-CONNECTOR SUB-SYSTEM

The final three-dimensional floating bridge model is achieved through assembly
of the superstructure sub-system and the desired number of pontoon-connector
sub-systems. This assembly is carried out by means of connectivity matrices.
Individual connectivity matrices are developed for each of the sub-systems
introduced in the final model and a single one for the superstructure sub-system,
linking the DOF’s of the sub-systems to the global DOF’s. The property matrices
of the sub-systems are transformed to apply to the global coordinate system in
previous steps, resulting in a one-to-one relation between the sub-system DOF’s
and the DOF’s of the floating bridge model. The global property matrices are of
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dimensions [360x360] due to a total of 360 DOF’s in the global model. The
global property matrices are developed consistent with the numbering of the
global DOF’s.

A configuration that is considered to describe the physical landside-connections
satisfactorily is introduced. The bridge span is assumed as a pinned simply
supported beam with respect to the vertical plane. The translational and
rotational DOF’s associated with horizontal displacement in the global y-
direction are set as fixed. Fixed connections are also introduced to restrain the
torsional displacement at the landside points. No additional boundary conditions
are introduced to the bridge span. The boundary conditions for the fluid-
structure interaction at the pontoons are assumed described by the element
formulation of the hydro-elastic elements.
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9. METHODS OF ANALYSIS

A frequency-domain solution is applied for the response analysis of the floating
bridge model. The dynamic equations of motion are transferred to the
frequency-domain by considering both the loading on, and the response of the
fluid-structure system as spectral processes of the time-domain processes. The
dynamic analyses are assumed carried out over a sufficiently short time period
for which the statistical properties of the sea state remain constant. Thus, the
wave loading process may be regarded stochastic stationary. For all analyses
carried out in this section the three-dimensional finite element floating bridge
model has formed the basis for the structural properties. The structural damping
is regarded negligible compared to the hydrodynamic damping contribution and
is disregarded throughout the analyses. The boundary conditions are as
described in the previous section. Where applicable, the dynamic analyses have
been performed for different sea states.

The methods for the dynamic analyses are presented and discussed herein, while
the findings are discussed in later sections and presented as appendices.

9.1. EIGENVALUE PROBLEM - UN-DAMPED MOTION

The initial study of the floating bridge model is performed as an Eigenvalue
problem of the un-damped dynamic system. The damping is neglected and the
natural frequencies and the corresponding natural modes of motion are
determined from constant values of the mass and stiffness properties of the
system. An Eigenvalue analysis is performed for the fluid-structure system,
including the hydrostatic stiffness contribution and constant values of the
hydrodynamic added mass. A second analysis is performed for the purely
structural properties of the bridge model, excluding hydrostatic and
hydrodynamic effects. The latter analysis may be termed as a “dry” analysis of
the fluid-structure system, as the surrounding fluid is disregarded. The natural
frequencies and corresponding mode shapes determined from the Eigenvalue
analyses of the floating bridge model are presented in the appendices A.3 and
A4.

The equations of motion of the un-damped fluid-structure system are expressed
time-domain as.

MX,(t) + Kx,.(t) = x(t)
Assuming harmonic response and loading of the system.

x(t) = [r(w)e*tdw
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¥ (t) = f—wzr e®tdw

xp(t) = fR(a)) el®t de

Where r and R on the right hand side represents the frequency-domain complex
response amplitudes and load amplitudes of the harmonic time-domain
response and loading, respectively. For the free response of the dynamic system,
that is for no external loading (R = 0), the un-damped equations of motion may
be rewritten and expressed as.

[K — w*M(w,)]lr= 0

Which has the non-trivial solution that forms the Eigen-value problem. The
Eigen-value problem is in turn solved to obtain the natural frequencies, w,, and
the corresponding mode shape vectors, ®(n), of the un-damped dynamic system.

[K — w?M(w,)] = 0

The frequency dependence of the hydrodynamic added mass is illustrated in the
above formulation, as an added mass value corresponding to the frequency w,, is
included.

The Eigenvalue analysis of the fluid-structure system will generally not include
the frequency dependence of the hydrodynamic added mass. To allow for this
frequency dependence, the proper hydrodynamic added mass is determined by
iteration at each natural frequency. The hydrostatic buoyancy stiffness
contribution from the surrounding fluid is included in the element formulation of
the hydro-elastic elements. The stiffness contribution is regarded independent of
the frequency of motion.

The number of natural frequencies and corresponding mode shapes that may be
obtained through an Eigen-value analysis equals the number of DOF’s of the
dynamic system. As not all of these natural frequencies are considered of
relevance to the dynamic response of the floating bridge, the natural frequencies
are evaluated over a frequency range of 0 < w <5 [rad/s] for the fluid-
structure Eigenvalue analysis.

The second Eigenvalue analysis is evaluated by the non-trivial solution of the
free response of the purely structural system. Thus, the stiffness contribution
and mass of the system remains constant throughout the analysis.

) — w2M©®] =
[K®) — w?M®] = 0

The same number of natural frequencies and corresponding mode shapes are
evaluated from the “dry” Eigenvalue analysis as was found within the prescribed
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frequency range of the “wet” Eigenvalue analysis. This is motivated by the “dry”
natural frequencies and mode shapes being considered merely of trivial
significance to the true response of the fluid-structure system, and developed
mainly for comparison to the “wet” response of the fluid-structure system. The
comparison is nevertheless considered interesting as the effects of the
hydrostatic stiffness contribution and hydrodynamic added mass may be
assessed.

9.2. FREQUENCY RESPONSE FUNCTIONS (FRF’S)

The next solution method employed to estimate the dynamic response of the
floating bridge model is by development of frequency response functions
(FRF’s). The properties of the fluid-structure system are frequency dependent in
both that the frequency of motion is included in the formulation and in that the
hydrodynamic coefficients are frequency dependent. The frequency response
function approach solves the response in each degree of freedom (DOF) from the
fluid-structure properties at individual frequency steps. This allows for proper
inclusion of the frequency dependent properties of the system. The results
obtained from the frequency response function analyses are presented in the
appendices A.5, A.6 and A.7.

The basis for the frequency response function approach is the damped equations
of motion of the system, presented here in time-domain.

M(w)X,(t) + C(w)x,(t) + Kx,.(t) = xz(0)

The fluid-structure mass and damping matrices are regarded frequency
dependent due to the inclusion of the hydrodynamic added mass and damping
contribution. The response and loading of the fluid-structure system are
considered harmonic, and the equations of motion may be expressed in
frequency-domain as.

[K — w*’M(w) + iwC(w)]r(w) = R(w)

This leads to the direct frequency response solution method by solving for the
invers matrix of the fluid-structure properties.

r(w) = Hw) R(w)
Where, H(w) = [K — w?*M(w) + iwC(w)] ™!

The H(w)-matrix represents the frequency dependent properties of the fluid-
structure system. These are stored in a matrix array of length equal to the
number of frequency steps of the analysis. At each frequency step, the response
values at DOF’s of interest may be extracted. As this is continued at each
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frequency step, the responses as functions of frequency are obtained and
evaluated over the frequency domain. The response of DOF j, for the k’th
frequency step, 7 , is thus obtained as the summation over the j'th row vector of

the H(w(k))-matrix developed at frequency step w (k).
rix = HG,LERD) + H(,2,k)R(2) + H(j,3,k)R(3) +--- + H(j,N,k)R(N)

Where j is the number of the DOF that the response is to be determined for, k
represents the number of the frequency step, and N is the total number of DOF’s
of the system.

9.2.1. GENERAL FRF ANALYSIS

By introducing the load vector, R,,,;;, as a frequency independent unit vector,
each of the DOF’s of the fluid-structure system is scaled with unit loading. That is,
at every DOF throughout the system a unit force or moment is applied,
depending on the DOF being translational or rotational. The frequency response
functions (FRF’s) developed may be regarded as general as they include all the
response contributions scaled equally. Representing the system response
sensitivity in every DOF regardless of the load situation. Though, a general FRF
includes no information of the external loading situation and will consequently
not depict the true response of the floating bridge exposed to an environmental
loading. A general FRF will nevertheless reveal interesting characteristics of the
fluid-structure system. A plot over the frequency domain of the response in a
DOF will contain distinct peaks at the natural frequencies of motion associated
with that DOF. Plotting the FRF’s of the damped fluid-structure system together
with the FRF’s of the un-damped system will give an idea of the influence of the
system damping on the response related to frequency and mode of motion. This
damping may further be quantified at each frequency step to evaluate the
frequency dependence of the hydrodynamic damping contribution.

9.2.2. LoAD-SCALED FRF ANALYSIS

In the development of the general FRF’s of the system, a constant unit load
vector was employed to illustrate the dynamic properties of the fluid-structure
system. Such a loading situation will hardly be an alternative to consider as the
environmental loading on a floating bridge. The wave force transferred to a
floating object is seen to generally be dependent on the frequency of motion. A
frequency dependent load vector may thus be included in the equations of
motion of the dynamic fluid-structure system to incorporate this effect. The
response in every DOF of the system is calculated at individual frequency steps
as discussed above, but now also including a frequency dependent load vector
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which is to be determined at every frequency step. The total response of the
dynamic system may then be expressed by the following expression.

r(®) = H(w) R(®)

The frequency dependent load vector is built up by terms corresponding to the
wave loading on the floating bridge. The wave loading on a floating object may
be expressed by the surface elevation of a wave profile according to linear wave
theory, combined with a frequency dependent complex load amplitude transfer
function.

q((lJ, t) = q(w) Nunit ((‘)' t)

With 1,,i:(w,t) being the expression for the spatial distribution of unit
amplitude surface waves, and q(w) being a vector of frequency dependent
complex load amplitude transfer functions, corresponding to the modes of
motion.

The approaching waves are assumed harmonic within the theory of linear waves.
The harmonic term of the wave loading is thus cancelled towards the harmonic
term of the response in the development of the response equations of the
dynamic system in frequency-domain. As a result, the frequency dependent load
amplitudes, q(w), remain as the external loading of the system. The load
amplitudes express load and moment per unit length of the exposed parts of the
floating bridge for translational and rotational modes of motion, respectively.
The frequency dependent wave loading is further expressed as a fraction of the
maximum wave loading per unit length of a pontoon element by introducing the
dimensionless load amplitude transfer functions.

ﬁ(w) = qwave ﬁo(w)

anve = diag [anve,x anve,y anve,z anve,G]

_ R,
qo(w) = [qO,x o,y 9o,z qo,e]

The qy 4ve-matrix contains the maximum wave loading per unit length for the
different modes of motion on the diagonal and the q,(w)-vector represents the
corresponding dimensionless load transfer functions. Due to the nearly
rectangular shape of the pontoons in the water plane, the wave load in surge
motion is assumed expressed analogously to the wave loading in sway.

Only some of the DOF’s of the floating bridge model will be exposed to loading
from the oncoming wave field. These are the DOF’s of the hydro-elastic elements
utilized to model the pontoons of the floating bridge. The wave loading in the
DOF’s of the pontoon elements is determined by integrating the load amplitudes
per unit length over the shape functions of the hydro-elastic pontoon elements.

65



Employing the Hermitian cubic interpolation functions for the heave and sway
nodal loading, and linear interpolation functions for the surge and roll loading.
The load vector of a 3D-12DOF hydro-elastic beam element, m, may then be
developed consistent with the element formulation of the floating bridge model.

Le

Rl (w) = f N () dx
0

with NT representing the interpolation functions of the element.

The element load vector terms are further allocated into the global load vector
by use of the corresponding element connectivity matrices.

RO(@) = ) al Ri(w)

Nei

Resultantly, the load vector is modified to only contain terms at positions
associated with the DOF’s of surge, sway, heave and roll excitation of the
pontoons. The response calculated in a DOF at frequency step, w(k), is thus the
response due to a single long-crested wave of unit amplitude at frequency w (k).
The oncoming waves are further assumed to excite every point of contact on the
floating bridge equally at the same instant. This type of long-crested response
analysis models the behaviour of the fluid-structure system with complete load
correlation between the points of excitation.

9.2.3. SPATIALLY SCALED FRF ANALYSIS

The idealized long-crested response analysis is seen to generally overestimate
the response of floating objects. This is easily understood by considering the real
state of a wave field. Waves may approach from different angles, with different
frequencies, and the wave crests are generally not seen to correlate well along
the span of a floating bridge. Especially for larger floating structures, such as a
floating bridge, the sea surface elevation is considered to show little degree of
correlation between various points on the structure. This is due to the
continuous process of adding and cancelling of wave components, which in turn
make up the true sea state.

A procedure is proposed to distinguish the sea surface elevation at the positions
of the pontoon elements for various angles of wave approach. From the arch
shape of the floating bridge model, it becomes evident that a long-crested wave
will not excite every point along the bridge span equally. As the wave crest
passes the location of one pontoon, other pontoons may experience being in a
trough, or more likely, in a position in between the crest and trough of the wave
profile. Realizing that the local wave climate at each pontoon is likely to differ,
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this needs to be taken into consideration in the response evaluation.
Furthermore, as the frequency associated with the sea state increases, the
wavelengths, A, of the oncoming waves decrease. For angular frequencies in the
vicinity of w = 1.5 rad/s the wavelengths are of the same magnitude as the
pontoon dimensions. Consequently, it is in addition considered necessary to
evaluate the wave load distribution over each pontoon, as the wave loading on a
single pontoon may only be considered uniform for a small part of the lower
frequency interval.

To incorporate the spatial variation of the sea surface elevation along a linear
wave, the three-dimensional spatial distribution term is included in the
expression for the wave loading. The surface elevations at the hydro-elastic
elements are determined as functions of their positions along the wave profile of
the oncoming wave. Thus, the expression for the surface elevation is dependent
on both the frequency and angle of approach of the long-crested wave. The load
per unit length on a hydro-elastic element, m, may then be expressed as.

G (0,0) = G, (w) e~ *Gmsin(@)+ymcos(6)

Where k = w?/g is the deep water wave number determined at each frequency
step, x,, and y,,, denotes the position of the centre of buoyancy of the hydro-
elastic element, m, in the x-y-plane, and 6 is the angle of approach of the long-
crested wave. Thus, the wave loading at the centre of buoyancy of each hydro-
elastic element constitutes the average wave loading over the element.

To include the possibility of long-crested waves approaching from any direction
within the wave-angle-of-approach domain, {— /2 < 6 < w/2}, an integration
over the wave angle domain is performed. Thus, allowing for the adding and
cancelling effect of the interfering waves. The spreading function is introduced to
properly scale the interference effect according to the degree of multi-
directionality of the sea state. The wave loading per unit length over an element,
m, is then expressed as the maximum potential loading over the element, scaled
by the frequency dependent dimensionless load transfer function and a spatial
amplification coefficient, qgmp m-

qm((‘)) = anve,m qo(a’) Qamp,m

= fNSCOSZS(H —0) o~ ik(xmsin(6-6)+ymcos(6-9)) 4g

Qamp,m

The spatial amplification coefficient at element m, qgmp m, is consistent with the
expression for the three-dimensional surface distribution.

The forces and moments applied to the DOF’s of the hydro-elastic elements that
models the pontoons are resultantly determined individually at each element.
These are incorporated consistent with the finite element formulation by the
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interpolation functions of the element, and allocated properly into the frequency
dependent global load vector by application of the corresponding connectivity
matrices.

The response analysis is carried out similarly as for the previous load scaled
frequency response analysis, but now with the spatial distribution coefficient
included correspondingly to the element positions in space. The mean wave
angle of approach is included to evaluate the response sensitivity to the direction
of wave approach.

9.3. PROBABILISTIC RESPONSE ANALYSIS

A method of analysis for inclusion of the statistical properties of the actual sea
state is proposed in this section. The oscillating part of the external load has been
idealized as a zero-mean Gaussian process, oscillating over the quasi-static load
configuration. Consequently, the dynamic response of the bridge may be
considered correspondingly, and the dynamic response of the floating bridge
model is expressed through the spectral density of the response process. The
variances and standard deviations for response parameters of interest may be
derived from the corresponding response spectrums. These are in turn
employed to estimate the largest expected maximum responses and the
associated extreme value standard deviations by employing extreme value
statistics. The assumptions and procedures employed in the spectral dynamic
response analysis are presented in the following. The results of the analysis are
collected in the appendix A.8.

The complex Fourier amplitudes of the time-dependent response process are
expressed by the wave loading process and the H(w)-matrix, containing the
fluid-structure properties, as presented earlier.

r(w) = H(w) R(w)

The response spectrum of the fluid-structure system is expressed as.

Sy (w) = E[r(w) r*"(w)]

Sy (w) = H(w) Sg(w) H (w)

Here, S (w) is the load spectrum determined for the wave loading process.

To assess and clarify the loading on the floating bridge from the complicated
behaviour of a sea state, the load spectrum is developed at intermediate steps.
The cross-spectral density of the three-dimensional sea state is initially
described as an extension of the two-dimensional wave spectrum in frequency
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domain. This modelling is considered applicable within the relatively short time-
window of the dynamic analysis [13].

Spin; (@) = 5y (w) f G(9) o~ k((xi=x)sin (6-8)+(yi=v;)cos(6-0)) 4

The extension is introduced by the letting the cross-spectral density describe the
sea surface related to any point within the spatial domain. Thus, n; and 7; is the

wave amplitudes at the positions (x;, y;) and (x~, yj) in space, respectively.

The wave load distribution over the pontoons is included consistent with the
element formulation by inclusion of the spatial variation of the sea surface in the
integration over the elements in a continuous format. The one-dimensional wave
spectrum is kept out of the formulation. General element load vectors are
consequently developed as functions of the element positions and their spatial
extension in space.

Rel = fNT (S)q (a))fG(H) e—ik((xm—ssind)m)sin (9—§)+(ym+scos¢m)cos(9—§))d9ds
m m m

In the above formulation (x,,, ¥,,) is the position in space of the first node of the
element and ¢,, is the element orientation relative to the global y-axis, measured
positive counter clockwise. q,, (w) is the frequency dependent dimensional load
transfer function and G(6) is the spreading function modelling the multi-
directionality of the sea state. Integrations are performed both over the wave-
angle-of-approach domain and over the spatial extension of the elements,
defined by the parameter s.

The motivation for excluding the one-dimensional wave spectrum, S, (w), from
the above expression is the attempt to model a general loading situation on the
fluid-structure system. The three-dimensional spatial structure of the waves is
evaluated over the geometry of the floating bridge for unit amplitude waves of all
frequencies and directions. The general loading situation may be modified within
the spectrum analysis by application of relevant wave spectrums. A wave
spectrum contains the spectral density of a sea state over the frequency content,
and will scale the general load spectrum accordingly.

A spectrum representation of the general load configuration on the floating
bridge is developed and regarded as a hydrodynamic transfer function. The
hydrodynamic transfer function incorporates the load spectral densities at the
points of load transfer as functions of frequency.

F® () = E [R5} (@) R (@)

The hydrodynamic transfer function expresses the spatial sea surface
distribution and kinematics as well as the frequency dependent load amplitudes
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and the spatial orientation of the loaded parts of the fluid-structure system.
Combination of the hydrodynamic transfer function with the dynamic properties
of the fluid-structure system results in a transfer function for the response of the
fluid-structure system.

F5) () = H(w) F™ (0) HT (w)

The fluid-structure transfer function establishes a relation between the response
spectral density of the fluid-structure system and the spectral density of the
spatial wave field distribution. The fluid-structure transfer function may be
regarded as the spectrum analysis equivalent of the general frequency response
functions. Auto-transfer functions for the unit amplitude sea state responses at
desired degrees of freedom of the model may be extracted from the fluid-
structure transfer function. Thus, revealing the general dynamic response
sensitivity of the fluid-structure system. The spectrum representation of a
loading situation representative for an actual sea state is achieved by introducing
the corresponding one-dimensional wave spectrum.

Sp(w) = F* () S, (w)

The complete response spectrum for the dynamic response of the floating bridge
is consequently expressed by the following.

Sy(@) = H(w) F* (0) H () Sy (w)

For the practical dynamic analysis in terms of the finite element method, a
response spectrum for the response in a DOF of interest is extracted from the
complete response spectrum. The standard deviation and expected maximum
value is then computed for the response in that DOF, by employing extreme
value statistics.

The spatial correlation of the wave loading over the floating bridge is considered
to be crucial in dictating the final response of the system. A quantification of the
degree of correlation may prove as a valuable asset in evaluating the expected
accuracy of the response computations. A coherence spectrum is as a result
established to evaluate the relative magnitude of the wave loading at different
points on the structure. The coherence spectrum is established from the
hydrodynamic transfer function, as the spatial variation of the sea surface at the
interface between the fluid and structure is expressed herein.

2
)
(h) (h)
FP (@) F™ (w)

COhFEh)FS.h) (w) =

If the coherence spectrum values are seen to drop rapidly as function of distance
in space, the wave loading process may be considered to show a low degree of
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correlation over the structure. As a result, the computation of the hydrodynamic
transfer function, F™ (w), may be performed more efficiently as only a narrow
band around the diagonal needs consideration in the analysis. On the other hand,
if the wave loading process exhibits a high degree of correlation, which is seen
from the coherence spectrum if a large part of the values are close to unity, the
full F™ (w)-matrix is to be employed in determining the wave loading on the
floating bridge.

In addition to quantifying the correlation of the wave loading process over the
excited points on the floating bridge, a correlation of the response of the bridge
is of great interest. A second coherence spectrum is developed for this purpose.
Thus, applying the fluid-structure transfer function that relates the response
spectral density to the wave loading spectral density. The coherence spectrum is
developed for the heave response in the nodes along the bridge span, as function
of both space and frequency.

oh, . (w) =
T Tg.l's) (W)F g.l's) (w)

The coherence spectrum of the response is conveniently accompanied by a phase
spectrum for the response over the bridge span. The phase spectrum is also
expressed as function of distance in space and the frequency of motion, and is
given by the following expression.

[T(h ) ((1))]
Re [T(h S) (a))]

1

Orr; (w) = tan~

9.4. NUMERICAL ANALYSIS IN MATLAB

The numerical analyses performed throughout the report are computed by use
of Matlab, with additional hand-calculations for verification of the computed
results. Matlab is a numerical computing environment, written in the
programming languages C and Java, and allows for convenient development of
algorithms and performance of numerical analyses. The Matlab configuration
facilitates the matrix-computations of the dynamic numerical model nicely. The
properties of the fluid-structure system are introduced by their respective
matrix-formulations and stored as functions in Matlab. The transformation and
connectivity matrices employed for the assembly of the finite element model are
introduced to the program and stored similarly. Spline interpolation functions
are developed for the hydrodynamic coefficients to allow for extraction of values
at intermediate frequency steps. The dynamic analyses are performed by
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evaluation of the system properties at frequency increments. The structure of
the analyses is constructed by storing sub-computations as independent
functions and calling these when needed. The motivation for breaking the
numerical analyses into sub-scripts is to obtain an orderly layout of the
computation procedure and to ease troubleshooting. An additional advantage of
the sub-script structure is the possibility of reuse, as a sub-script may serve
several main-scripts. Thus, avoiding rewriting of identical scripts for different
analyses.

Some of the numerical computations prove expensive with regard to computer
time. This is especially experienced when computing the hydrodynamic transfer
function, F(h)(w). However, due to the Hermitian form of the hydrodynamic
transfer function matrix, only the top right triangular of the matrix is computed
initially. The matrix is completed by transferring the upper triangle across the
diagonal. Letting the remaining terms assume values equal to the cross diagonal
terms. This reduces the computational time, but the assembly of the
hydrodynamic transfer function is still regarded a time-consuming process.

The scripts developed for the numerical dynamic analysis of the floating bridge
model are included electronically as an appendix.
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10. NUMERICAL RESULTS AND DISCUSSION

The results presented herein are considered to reflect the dynamic properties of
the floating bridge structure within the assumptions of the theories applied in
the development of each of the analyse methods. The results obtained from the
dynamic analyses differ and their validity must be evaluated in light of the
hydrodynamic model that forms the basis for each of the analyses. In the
evaluation of the responses, the structural properties of the finite element model
will be considered correct within the finite element approach and the
hydrodynamic coefficients are assumed as applicable representations the
pontoon-water interaction. Any shortcomings of the structural model, or from
the hydrodynamic interaction effects in modelling the true behaviour of the
system will be introduced similarly in all the analyses, and is thus considered as
a minor source to the deviation in the responses. The exception being in the
evaluation of the “dry” dynamic properties, where the hydro-effects is excluded.
Consequently, the deviation in the response quantities obtained throughout the
course of analyses may to a great extent be assigned to the modelling of the
external load situation on the system. Hence, the validity of the analyses is in
large part considered in line with the assumed validity of the modelled sea state.

10.1. EIGENVALUE ANALYSIS

The first evaluation of the dynamic properties of the floating bridge model was
conducted by means of Eigenvalue analyses. The “wet” Eigenvalue analysis
includes the hydrostatic stiffness contribution and hydrodynamic added mass,
iterated at each natural frequency. The results are considered to reflect the
correct dynamic properties of the fluid-structure system in terms of the natural
frequencies and dictate the corresponding mode shapes of the bridge structure.
This assumption is assumed valid within the restraints of the theory applied in
development of the finite element model and the validity of the hydrodynamic
added mass contribution. The “dry” Eigenvalue analysis reflects the purely
structural dynamic properties of the system, and is expected to resemble the
correct dynamic properties of the fluid-structure system. The deviation of the
“dry” natural frequencies from those obtained by including the hydro-effects,
reflects the contribution from the hydrostatic stiffness and hydrodynamic added
mass on the dynamic system. The natural frequencies and corresponding mode
shapes obtained from the “wet” and “dry” Eigenvalue analyses are presented in
the appendices A.3 and A.4. The natural frequencies and the governing modes of
response are reproduced in the table 4. The H, S, and R denote the mode of
motion being in heave, sway or roll, respectively.
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Natural Frequencies From Eigenvalue Analyses [rad/s]

wq W; w3 Wy Ws We w7 Wsg W9 W10 W11 W12
“Wet” | 0.335 | 0.905 | 1.338 | 1.413 | 1.712 | 1.827 | 2.340 | 2.934 | 3.209 | 3.642 | 4.198 | 4.358
Mode | S S H H H S H S H S/H/R | S/H/R | S/H/R
“Dry” | 0.143 | 0.339 | 0.581 | 0.913 | 1.306 | 1.827 | 2.320 | 2.934 | 3.583 | 3.930 | 4.359 | 5.108
Mode | H S H S H S H S H S/H/R | S/H/R | S/H/R

TABLE 4 NATURAL FREQUENCIES FROM EIGENVALUE ANALYSIS

The “dry” Eigenvalue evaluation reveals two low frequency heave responses,
which is not present among the fluid-structure natural frequencies. The
hydrodynamic added mass is considered significant at low frequencies, which
will result in an increase of the system mass and a softer dynamic behaviour.
However, the non-dimensional added mass coefficient in heave drops steeply
towards a value of 2 for w = 0.5 rad/s, and remains close to this value for the
remainder of the frequency domain. Resulting in very high added-mass values
only being apparent for very low frequencies of motion. Nevertheless, the
hydrostatic stiffness contribution is considered to exceed the added mass
contribution as the system shows a behaviour that reflects an increased stiffness,
with an increase in the first natural frequencies in heave. This trend is seen for
the first three natural frequencies for heave motion, which all is found as lower
for the “dry” Eigenvalue analysis than what is obtained from the “wet” analysis.
At the fourth natural frequency associated with heave, that is w, of the system
evaluation, the values for the two nearly coincides. Reflecting a fluid-structure
system where the additional hydrostatic stiffness contribution is balanced by the
hydrodynamic added mass. The high natural frequencies of the “dry” analysis are
seen to increase more rapidly as compared to the values obtained from the “wet”
analysis.

The increase in the natural frequencies is a result of an increased structural
stiffness contribution associated with the assumed mode shapes. As the bridge
span is “forced” to adopt mode shapes of increasing sinusoids over its length, the
structural stiffness increases as the physical length of each buckle decreases.
Though, for the “dry” system, the structural mass remains unchanged and the
systems shows an increasingly stiffer behaviour. The development of the natural
frequencies within the “wet” Eigenvalue analysis is analogous as the mode
shapes are assumed as higher degrees of sinusoids as one move through the
frequency domain. With mode shapes consisting of several sinusoids, some of
the pontoons may be located in points of little or no displacement. Pontoons
being located at a maximum displacement point is in addition displaced less than
what would be the case at lower frequencies, as the relative amplitude of each
buckle decreases with the increasing number of buckles. The hydrostatic
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stiffness contribution is directly related to the relative vertical displacement of
the bridge structure at the positions of the pontoons. Resulting in a reduced
hydrostatic stiffness contribution to the system at high frequency natural modes.
The higher value natural frequencies of the “wet” analysis are thus considered
mainly governed by the structural stiffness. Though, the non-dimensional
hydrodynamic added mass assumes a constant value of approximately 2 for the
high frequency domain. Thus, the fluid-structure system behaviour at high
frequencies shows a softer response as the added mass remains present with a
constant value, while the hydrostatic stiffness contribution becomes negligible
compared to the structural stiffness. The natural frequencies for heave motion
resulting from the fluid-structure system properties are as a result seen as more
closely spaced over the frequency domain. This is an expected characteristic for
a floating bridge due to the interaction effects.

The natural frequencies associated with sway motion is seen to be affected little
by the introduction of the hydro-effects. This is understandable from considering
that there is no hydrostatic stiffness contribution in the horizontal direction, as a
relative horizontal displacement of a pontoon in the water will not result in an
altered pressure distribution over the wetted surface. In addition, the added
mass in sway motion is generally considered low compared to what may be
experienced for heave motion. Consequently, the natural frequencies in sway
mode from the “dry” and “wet” analyses nearly coincides.

At higher frequencies, combined modes of heave, sway and roll motion are seen
to prevail.

The effect of the fluid-structure interaction is considered of greatest significance
for heave motion at low frequencies. In this frequency range, the dynamic
behaviour of the system is mostly affected by the additional hydrostatic stiffness
contribution. For heave motion at higher frequencies, and for sway motion, the
hydro-effects are regarded to be of less importance. Generally, hydrodynamic
effects are expected to decrease at higher frequencies as less energy is
transferred at the fluid-structure interface. Also, the high frequency response
properties are considered of less interest in a dynamic analysis of a large floating
bridge structure excited by the wave climate, as the low frequency response
properties are assumed to govern the response of the structure.

The effect of the hydrostatic stiffness contribution and hydrodynamic added
mass is considered to be less for a pontoon-separated floating bridge than what
would be the case for a similar continuous-pontoon design. This is due to the
hydrostatic stiffness and added mass being linearly related to the water plane
area of the floating body, which is notably less for the separated pontoons than
for a continuous pontoon.
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The natural frequencies obtained from the “wet” Eigenvalue analysis are
considered valid for the floating bridge structure and serve as a mapping of the
response sensitivity of the system. The actual response of the floating bridge
needs evaluation in accordance with a loading situation, which is not included
within the Eigenvalue analysis. Nevertheless, the system properties found are
considered a good initial procedure, and will serve as a control for the
subsequent analyses.

10.2 FREQUENCY RESPONSE FUNCTION ANALYSIS

The next solution method employed for estimation of the dynamic properties of
the fluid-structure system is in terms of frequency response functions. This
procedure allows for proper inclusion of the frequency dependent
hydrodynamic effects of added mass and hydrodynamic damping. Frequency
response functions are developed within the finite element method to reflect the
dynamic response in degrees of freedom of interest. As a FRF represents the
response sensitivity in a single node on the structure, several FRF’s should be
developed to evaluate the response over the bridge span. The motivation for the
development of several FRF’s is that some nodes may be in points of little or no
motion for a standing-wave sinusoidal mode shape, and may not reflect the
overall bridge response. The emphasis of the analysis is on the heave response of
the floating bridge.

The first approach was to develop general FRF’s to map the response sensitivity
at nodes of interest. Such an approach is expected to provide similar results as
was found for the “wet” Eigenvalue analysis. The general FRF’s developed for the
response of the floating bridge finite element model is taken as heave motion at
mid-point, L/4-point and L/8-point. The responses at these nodes are assumed
sufficient to reflect the system response sensitivity for the frequency range of
interest. Plots of the general FRF’s for heave motion show distinctive peaks at
three frequencies. The first is seen to be in the vicinity of both w; and w, from
the Eigenvalue analysis, and reports the largest relative heave displacement
sensitivity at mid-node. The second peak is seen to correspond to ws, and the last
peak with wq. Plots of the general FRF’s for heave motion at mid-point, and in the
L/4- and L/8-points are presented in figure 18 for illustrative purposes. Figure
number 19 illustrates the effect of the hydrodynamic damping as the un-damped
responses at the natural frequencies exceed the responses of the damped
system.
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FIGURE 18 GENERAL FRF'S FOR MID-, L/4- AND L/8-POINT
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FIGURE 19 GENERAL FRF FOR UN-DAMPED AND DAMPED RESPONSE AT MID-NODE

The FRF’s developed correspond well to the Eigenvalue results, with the
exception of natural frequency w, = 2.34 rad/s, which is barely present.

The next step of the FRF analysis was performed by the introduction of a
frequency dependent load vector to modify the FRF’s as to better reflect the
wave loading process. The wave load transferred to the pontoons is assumed
proportional to the displaced water volume times the wave amplitude of an
oncoming wave as w — 0. This represents an infinite wave and a rise in the
surface elevation in every point equal to the wave amplitude. Thus, for a unit
amplitude wave, the response of the bridge is expected to be in the range of
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unity. As the energy transferred at the fluid-structure interface decrease with
higher frequency, the wave loading on the floating bridge is expected to decrease
as function of increasing frequency. The complex load transfer function was
introduced to incorporate this effect into the load vector. The load-scaled
frequency response functions are presented below. These are included to
illustrate the effect of the frequency dependent load vector on the response
peaks. Figure 20 illustrates the damped heave response in the mid-, L/4- and
L/8-point, while figure 21 displays the effect of the hydrodynamic damping on
the response peaks at mid-point.
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FIGURE 20 LOAD SCALED FRF'S FOR MID-, L/4- AND L/8-POINT

40 T T
Un-Damped Response
Damped Response

35 b

n n w
=] o o
T
1

Vertical Response [m]
o

o
1

N

o m ‘ . P
0 0.5 1 15 2 2.5 3 35 4 4.5 5
Frequency [rad/s]

FIGURE 21 LOAD SCALED FRF FOR DAMPED AND UN-DAMPED RESPONSE AT MID-NODE

The load scaled FRF’s display the same characteristics as the general FRF’s.
Peaks are present at the same frequencies, but are scaled according to the load
transfer function. Thus, being greatly reduced at higher frequencies of motion.
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The mid-point response is seen to equal unity for w = 0, which reflects the
abovementioned expected heave response. The responses at the L/4-point and
L/8-point are seen to be somewhat lower, decrease towards the end-supports.
This seems reasonable as the restrained vertical displacements at the end-
supports affects nodes that are closer more significantly.

The reported resonance response quantities are however not so reasonable. A
vertical displacement of approximately 12 meters is seen as the heave maximum
response for the mid node. Maximum responses of approximately 8 meters and 4
meters are registered for the L/4-point and L/8-point respectively. The large
response quantities are considered to be of little relevance to the actual
responses at the points of evaluation. The lack of validity of the responses from
the load-scaled frequency response analysis is ascribed to the limited
applicability of the modelled wave situation to the physical sea state. The loading
situation is modified by its frequency dependence, but no description of the
spatial variation of the sea surface is included. The model will as a result provide
resonance responses for infinitely long-crested waves exciting every point on the
structure equally. Such a wave field is not considered to depict the wave-loading
situation on a floating bridge accurately.

Hence, the FRF’s are further modified to include the spatial extent of the floating
bridge relative to the wave profiles of the long-crested waves. The additional
spatial modification of the load vector incorporates the positions of the wave-
excited elements, used in the modelling of the pontoons, in the determination of
the wave loading over each element. The wave loading over an element is taken
as the extension of the value determined at the centre of buoyancy of each
element. Thus, the wave loading on the floating bridge structure does not
express the spatial surface variation over the length of an element, L,; = 7.5
meters, but includes a discretized variation over the pontoons by evaluating the
surface elevation in four points over the pontoon length, L,, = 30 meters. Such a
discretization of the surface elevation is considered to be of reasonable accuracy
for the low part of the frequency domain, w < 2.5rad/s, corresponding to
waves of wavelengths longer than the element length. For higher frequencies,
the model is regarded unable to include the surface variation over the pontoons,
and consequently the resulting total wave load over each pontoon.

The adding and cancelling effect of waves approaching from different angles is
included by integration over the wave-angle-of-approach domain,
[t/2 < 6 < m/2]. In the integration, the contribution from the oncoming waves
is scaled by a spreading function, which describes the wave distribution around
the mean wave angle of approach. The modelled sea surface is regarded as a
good approximation of a wave field within the limits of linear wave theory, and
the computed results are expected to provide more realistic response quantities.
Plots and values of the response parameters reported for different combinations
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of spreading index values and mean wave angles of approach are presented in
the appendix A.7. The following figures, 22 and 23, are reproduced herein to
illustrate the frequency response function responses obtained for spreading
index values of s =3 and s = 15, respectively, and a mean wave angle of
approach 8 = 0.
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FIGURE 22 SPATIALLY SCALED FRF'S FOR MID-, L/4- AND L/8-POINT - S=3

2 T T T T T T T

Heave at Mid-Point
Heave at L/4-Point

181 Heave at L/8-Point |

kS
T
I

)
T

08 | 1

Vertical Response [m]

o6 | A ’
0.4} Lo \

0.2

0 § WV Y8y Ny 0 A A L ]
0 0.5 1 15 2 2.5 3 35 4 45 5
Frequency (rad/s)

FIGURE 23 SPATIALLY SCALED FRF'S FOR MID-, L/4-, AND L/8-POINT - S=15

The FRF plots for the heave response at the mid-, L/4- and L/8-point of the
floating bridge reveal the same distinctive peaks at the heave natural frequencies
as seen for the previous analyses. The response peaks in the high frequency
range are filtered down to negligible sizes as seen for the load scaled response
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analysis. In addition, the FRF’s contain disturbances between the peaks. These
disturbances can be ascribed to the spatial distribution of the pontoons relative
to the waves, which now excite points along the structure differently at a given
instant. Thus, the excitation of the submerged parts of the floating bridge model
is out of phase and shows a lower degree of correlation. This is as would be
expected for a realistic sea state. The in-phase excitation at certain points along
the structure is assigned to the random spatial structure of the oncoming waves.
Defined by the frequency of the waves, the corresponding wavelengths may be in
the range so that different points over the structure is in fact excited in phase.

The reported resonance response quantities are reduced significantly as
compared to the foregoing FRF analysis. For w = 0 the responses are seen to
remain close to unity, as would be expected. However, the degree of multi-
directionality of the sea state, as dictated by the spreading index, is seen to affect
the responses significantly. The frequency response functions computed for a
spreading index value of s = 3, have a maximum displacement at w = 0, which is
not exceeded at any point throughout the frequency range. Whereas, the
frequency response functions computed for a spreading index value of s = 15,
show a significant resonance response in the vicinity of natural frequency
ws = 1.7112 rad/s. A spreading index value of s = 15 corresponds to a sea
state similar to that of long-crested waves approaching within a narrow-banded
approach-angle domain. Hence, the wave excitation is affected to a little extent
by the spreading function as the waves approaching from oblique angles are
effectively filtered out, and the wave-loading situation will be governed mainly
by the spatial extent of the pontoons in the mean wave angle of approach
direction. A spreading index value of s = 3, includes waves within a much larger
part of the wave angle of approach domain. Allowing for a higher degree of
interference between waves of different properties. The largest mid-point
resonance response amplitudes obtained from the numerical analysis is
Tmia = 0.430 meters and r,,;; = 1.865 meters for the spreading index values of
s = 3 and s = 15, respectively, and a mean wave angle of approach 8 = 0.

The effect of an oblique mean wave angle of approach is studied and the results
presented in the appendix A.7. The responses found for the multi-directional sea
state are seen to increase with an increase in the mean wave angle of approach,
whereas the opposite is experienced for the more unidirectional sea state. The
results are regarded in line with the linear wave theory applied in the
development of the sea state. As the multi-directional sea state shows less
symmetry, the interference of equal and opposite wave does not occur to the
same extent as is the case for the symmetric sea state around a mean wave angle
of approach of § = 0. For the unidirectional sea state, the interference
phenomenon is regarded insignificant and an oblique mean wave angle of
approach models long-crested waves propagating partly along the structure.
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Reduced response amplitudes seems reasonable due to the resulting decrease in
the wave load correlation along the bridge span.

It becomes evident that the considered degree of multi-directionality of the
actual sea state affects the resulting response quantities to a great extent. If the
sea state may be considered to have a high level of multi-directional waves, the
interference process is considered to provide a sea state that excites the
structure with a low degree of correlation, and resultantly smaller response
amplitudes are expected. The effect of the wave angle of approach is harder to
quantify as the geometry and spatial extent of the floating bridge will affect the
loading situation.

The response analyses carried out by the frequency response function approach
have all been concerned with the application and extension of linear wave theory
for determination of the wave loading on the floating bridge model. This is an
intuitive and rather simple approach for estimating the response parameters of
the dynamic fluid-structure system. The response of the system was eventually
evaluated for a loading situation developed from a summation of unit amplitude
long-crested waves of various approach angles over a prescribed frequency
domain. The sea state applied is, however, a questionable description of an
actual sea state. Further development of the wave field to better describe a
physical sea state may be done by introducing long-crested waves of different
amplitudes and frequencies corresponding to the wave spectral density at the
site of construction. Though, such a modelling may prove as a tedious task to
endeavour. A more attractive approach to include the statistical properties of a
sea state is through the probabilistic response analysis, which is considered in
the final part of the response analysis.

10.3. PROBABILISTIC RESPONSE ANALYSIS

A probabilistic method of analysis is considered as an accurate procedure for
including the statistical properties of the actual sea state. Wave spectrums for
measured sea states are readily applied in the response analysis, allowing for
analyses of the fluid-structure system subjected to multiple sea states. Two
different sea states are initially employed in the response computations. These
are chosen to represent a sea state considered close to unidirectional and a sea
state associated with a high degree of multi-directional waves.

Sea State Parameters

Sea State No. s T, [sec] Hg [m] T [sec] E|Hpael Im] | T [sec]
1 15 10 1 7200 1.9343 7.2999
2 3 3 1 7200 2.0557 2.7666

TABLE 5 SEA STATE PARAMETERS APPLIED FOR SEA STATES 1 AND 2
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The spatial structure of the wave field is expressed in every point by the cross-
spectral density of the three-dimensional sea state, which is included in the
determination of the hydrodynamic transfer function. The wave load correlation
may be studied as function of both space and frequency by evaluating the
coherence spectrum of the wave loading process. In the following, plots of the
coherence function with respect to loading in the centre pontoon of the floating
bridge model are presented. The plots are presented as functions of the spatial
distribution along the bridge span, and the frequency of the waves. The
coherence functions are developed for different values of the spreading index, s,
to evaluate the effect of multi-directionality. The coherence plots are assembled
for values extracted at the element nodes of the hydro-elastic elements
modelling the pontoons. Each narrow band of peaks displayed from the pontoon
position axis represents the frequency dependent coherence values obtained at
the corresponding pontoon nodes, with the mid-pontoon located at position 1.
The hydrodynamic transfer function, F™ (w), does not include any information
about the sea state between the pontoons, as it is assembled to model the load
transfer at the points of the floating bridge being in contact with the fluid.
Consequently, the coherence values between the narrow bands representing the
pontoons at positions 1-4 may not be given any physical consideration as to
represent the sea state between the pontoons.

Frequency [rad/s]

Pontoon Position 5

FIGURE 24 COHERENCE SPECTRUM FOR WAVE LOADING WITH RESPECT TO THE CENTRE PONTOON - S=15
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Frequency [rad/s]

Pontoon Position 5

FIGURE 25 COHERENCE PLOT FOR WAVE LOADING WITH RESPECT TO THE CENTRE PONTOON - S=3

The coherence of the wave loading process is seen to generally drop with
distance in space and for increased frequencies, as is expected. The high degree
of spatial coherence for low frequencies of wave encounter, w — 0, is an
expected result as the wavelengths approach infinity and every point on the
floating bridge structure is excited equally. As the frequency of wave encounter
increase beyond w = 0.5 [rad/s] the coherence is seen to generally be low and
show a more random character of peaks appearing at certain frequencies. The
peaks observed in the coherence spectrum illustrate an increased coherence at
the nodes of the pontoons at the given frequencies. As the wave frequency
dictates the wavelengths of the oncoming waves, it is seen that the wave loading
on the pontoons shows a larger correlation at certain wavelengths. Which is
regarded reasonable, as the wave field will have simultaneous surface elevation
at certain points in space.

The coherence spectrum for the sea state considered with a low degree of multi-
directionality, s = 15, generally displays higher values at the positions of the
pontoons than what is seen from the sea state considered with a high degree of
multi-directionality, s = 3. This is expected as a sea state associated with a low
degree of multi-directionality is assumed to express a more homogeneous wave
field. Thus, the coherence plots supports the theory employed in the
development of the wave field and emphasizes the effect of an irregular, short-
crested sea state as the wave loading over the structure is considered to show a
low degree of correlation for the multi-directional sea state. If the wave loading
from an actual sea state at a site of construction shows similar low values in the
coherence plot for a short separation in space, the loading processes at each
pontoon may be regarded uncorrelated with sufficient accuracy an simplify the
dynamic analysis. The physical interpretation of this assumption is that the wave
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loading on a pontoon contributes little to the total wave loading on other
pontoons of the structure.

The results from the probabilistic analysis are presented in the appendix A.8
accompanied by plots of auto-transfer functions of the heave response at certain
nodes and plots of the auto-spectral densities of selected responses. Large
deviations are seen for the response quantities obtained from the two evaluated
sea states, with the response from the unidirectional sea state completely
governing the combined response analysis. The response characteristics of the
bridge span subjected to the different sea states are evaluated by employing the
coherence spectrums for the heave response. A coherence spectrum for the
response describes the relative correlation between the responses in different
points on the structure as functions of the frequency of motion. The coherence
spectrums presented on the following pages are developed with respect to the
response at the mid-point of the bridge span. The mid-point response is
evaluated against the response characteristics at the nodes of the finite element
model over half the bridge span towards a landside. The coherence spectrums
for the response are followed by plots of the corresponding phase spectrums,
displaying the phase of the motion at the nodes along the bridge span relative to
the phase of motion in the mid-point. The coherence spectrums are developed
from the fluid-structure transfer function and incorporate the spectral density of
the waves and the fluid-structure properties. The spectrums are developed for
different values of the spreading index and does not incorporate the one-
dimensional wave spectrum associated with a given sea state. Consequently, the
coherence spectrums are viewed in terms of the response sensitivities of the
floating bridge subjected to a general wave field with a predetermined degree of
multi-directionality.
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Coherence and phase spectrums for sea state 1

Node Position 5 Frequency [rad/s]

FIGURE 26 COHERENCE SPECTRUM FOR HEAVE RESPONSE WITH RESPECT TO THE MID-POINT - S=15

Node Position 5

Frequency [rad/s]

FIGURE 27 PHASE SPECTRUM FOR HEAVE RESPONSE WITH RESPECT TO THE MID-POINT - S=15
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Coherence and phase spectrum for sea state 2

Node Position 5 Frequency [rad/s]

FIGURE 28 COHERENCE SPECTRUM FOR HEAVE RESPONSE WITH RESPECT TO THE MID-POINT - S=3

Node Position 5

Frequency [rad/s]

FIGURE 29 PHASE SPECTRUM FOR HEAVE RESPONSE WITH RESPECT TO THE MID-POINT - S=3
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The coherence spectrums for the heave response over the bridge span are seen
to show a significant response correlation at zero-frequency and frequencies
associated with the natural modes of motion. This supports the validity of the
numerical model and the physical assumption of resonance response. The phase
spectrums reveal significant out-of-phase motion over the bridge span for the
same frequencies. By evaluating the phase spectrums at frequencies associated
with natural modes of motion of interest, the shape of the mode shape can be
determined. At zero-frequency, the coherence spectrums display a correlated
response over the bridge span, while the phase-spectrums show no out of phase
motion. Thus, the correlated heave displacement of the entire bridge associated
with a wave of infinite wavelength is considered represented accurately.

Due to the domination of the first sea state in evaluation of the response for the
combined sea state, a second set of sea state parameters is introduced. The new
sea states are modified somewhat from the extremes of the previous sea states.
These are nevertheless still considered to model one close to unidirectional sea
state associated with swell waves, and one multi-directional sea state
representing a more confused and irregular state. The computed results for the
new set of sea states evaluated separately and combined are included in
appendix A.8, followed by plots of their respective response spectral densities.

Sea State Parameters

Sea State No. s T, [sec] Hg [m] T [sec] E|Hpael Im] | T [sec]
3 12 8 1 7200 1.9610 5.9279
4 5 4 1 7200 2.0333 3.3254

TABLE 6 SEA STATE PARAMETERS APPLIED FOR SEA STATES 3 AND 4

The response calculations performed for the second set of sea states results in
lower responses for the close to unidirectional sea state, and an increase in the
responses from the multi-directional sea state, as would be expected. However,
sea state 3 is still seen to govern the total the response of the floating bridge,
though not as completely as was seen for the previous set of sea states. Clearly,
the peak period of the sea state affect the total response of the floating bridge.
The shape of the auto-transfer functions supports this assumption, as high
function values are displayed at low frequencies. At frequencies exceeding
w = 1.5rad/s the auto-transfer function values become negligible.
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11. CONCLUSIONS AND FURTHER RECOMMENDATIONS

11.1. CONCLUSIONS

The effects of the fluid-structure interaction are found to dictate the low
frequency natural modes of the floating bridge. As the response characteristics of
large floating structures are regarded governed by corresponding low
frequencies of motion, the development of a proper hydrodynamic model for the
fluid-structure system is considered a primary task for the dynamic evaluation of
a floating bridge. The hydrodynamic model forms the basis for the subsequent
response analysis and a lack of accuracy herein is assumed to greatly affect the
validity of the computed responses.

Secondly, the procedure for describing the hydrodynamic wave load situation is
found to be of great significance to the responses of the floating bridge. The
structural properties of the generic bridge model are readily assessed and are
constant and equal for the hydrodynamic response analyses performed. The
hydrodynamic restoring forces are included in the formulation of the
hydrodynamic model, and is consequently introduced consistent for the
analyses. The methods of analysis employed for investigating the dynamic
behaviour is nevertheless seen to greatly dictate the computed results. Hence,
the large deviations in the computed responses are assigned to the assumptions
and discretization employed in the modelling of the wave fields.

The initial attempt to model the wave field in terms of long-crested,
unidirectional waves provided unrealisticc but expected, large response
amplitudes. As the wave field was modified in terms of the load transfer
coefficients, the spatial distribution of the pontoons relative to the wave field,
and the inclusion of multi-directional waves, the computed resonance responses
ware seen to decrease significantly. If the wave field is modelled with a low
degree of multi-directionality, it approaches the unidirectional long-crested sea
state as the spreading function approaches the Direc-Delta function, and it is
considered of little relevance to a realistic sea state. However, the proposed
wave field considered for the spatially scaled frequency response analysis is
regarded as a fairly good approximate for short-crested sea states when
modelled with a high degrees of multi-directionality. The major drawback of the
wave field would be the lack of inclusion of relevant sea state parameters. The
wave field is constructed from superposition of scaled unit-amplitude waves of
all frequencies, not including the probability density representing an actual sea
state variation.

The wave spectrums for an actual sea states is conveniently included in the
probabilistic response analysis. Resulting in this method being regarded as the
most accurate of the proposed analyses. The cross-spectral density of the surface
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waves are expressed with the basis in the superposition of scaled unit-amplitude
waves similar as for the final frequency response analysis. Thus, the general
procedure for describing the spatial structure of the wave field is not considered
to deviate significantly for the two. The major difference is introduced by the
inclusion of the wave spectrum for the latter procedure.

Throughout the course of analyses, it has become evident that a proper
hydrodynamic model and the introduction of a realistic short-crested sea state is
vital in order to obtain reliable dynamic responses of a floating bridge structure.
This is supported by the consistent decrease in resonance response amplitudes
for increasingly refined wave field models. Thus, allowing for a more economical
design of the floating bridge, as the resulting loading on the structure is
determined more accurately. A proper dynamic analysis is in turn considered
crucial when considering a floating bridge alternative to provide justice to the
feasibility of the design.

11.2 FURTHER RECOMMENDATIONS

The evaluation of the dynamic behaviour and feasibility of a floating bridge
design incorporates a high level of interdisciplinary tasks. Knowledge within the
fields of structural engineering, structural dynamics and naval engineering is
necessary to assess the properties of the fluid-structure system. In addition,
accurate real life recordings of the environmental effects and the corresponding
determination of critical parameters for design are important in order to
describe a representative sea state at the site of construction. As a result, the list
of aspects to consider more thoroughly for a floating bridge design may be close
to endless. However, the recommendations for further study herein are limited
to highlight two aspects, which are considered of relevance to the work and
discussions performed in throughout this thesis.

Firstly, the hydrodynamic effects between the fluid and the submerged parts of
the structure are considered to be strongly dependent on the geometry of the
floating bodies and the potential influence from nearby objects. To accurately
describe the fluid-structure interaction for a floating bridge design, a three-
dimensional potential flow model should be applied to the relevant geometries
of the pontoons, including their relative separations in space for assessing
interactional effects. A properly scaled model test of the bridge design may
further be employed to verify the computations.

Secondly, the description of the wave field that is considered to form the main
loading situation on a floating bridge is regarded a challenging task. The wave
field is continuously changing in time and space, and the mathematical models
for describing the propagation of surface waves are merely approximates. Deep-
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water waves are considered fairly accurately described within linear wave
theory, though large deviations must be considered to occur in costal regions.
From this, a study of interest is the application of higher order wave theories in
the development of the sea state. The motivation for this is an attempt to model
the surface waves more in line with the characteristics seen for real waves. With
narrower, sharper crests and longer, shallower troughs, than what is modelled
by applying first order linear wave theory.
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A.1 HYDRODYNAMIC COEFFICIENTS

The hydrodynamic coefficients applied in the report are taken from Langen
(Frequency domain analysis of a floating bridge exposed to irregular short-
crested waves). These were originally derived from results given by Vugts(The
Hydrodynamic Coefficients for Swaying, Heaving and Rolling Cylinders in a Free Surface.
International Ship-builder Program. 1968;15.). Graphical presentations of the non-
dimensional hydrodynamic coefficients are presented herein to illustrate their
frequency dependence. All values are determined per unit length of a rectangular
floating cylinder with width-draft ratio equal to four, B,/d = 4, and the

frequency of motion made non-dimensional by the following expression.

N
— 14
Wy w zg

Where B, is the width of the rectangular floating cylinder and g is the
gravitational acceleration constant.

HYDRODYNAMIC ADDED MASS COEFFICIENTS

The non-dimensional hydrodynamic added mass coefficients in heave, sway and
roll motion is presented as functions of dimensionless frequency. The
hydrodynamic added mass coefficients have been made dimensionless by the
following expressions.

(h)
m h) — m,
#0 prsub
(h)
m® = T

In these expressions p,, is the fluid density, B, is the width of the rectangular

cylinder and Ay, is the submerged cross-sectional area.
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HYDRODYNAMIC DAMPING COEFFICIENTS

The non-dimensional hydrodynamic damping coefficients for heave, sway and
roll motion is presented as functions of dimensionless frequency. The
hydrodynamic damping coefficients have been made dimensionless by the
following expressions.

(h
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HYDRODYNAMIC LOAD TRANSFER FUNCTIONS

The non-dimensional hydrodynamic load transfer functions for heave, sway and
roll motion is presented as functions of dimensionless frequency. The
hydrodynamic load transfer functions have been made dimensionless by the
following expressions.

W)

q(h) — qz
20 pwgB,Mg
)
g™ = y
Y0 pywgB,dkn,
(h
h _ 4e :
do,0 = B,
Pwd 15 Akno

The additional terms introduced in these expressions are the wavenumber, k,
and the wave amplitude, 7,.
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A.2 BEHAVIOUR OF A HYDRO ELASTIC BEAM ELEMENT

A single hydro-elastic beam element is evaluated to investigate the hydrostatic
stiffness introduced in the element formulation. The element is modelled as a
square hollow concrete pontoon floating freely. The element evaluation is
performed by matrix formulations in Matlab with additional hand calculations to
verify the results.

Hydro—-elastic Element

The material elasticity modulus is set very high to obtain high structural stiffness
relative to the hydrostatic stiffness contribution. The aim of the high structural
stiffness is to ensure rigid body motion over the element. The properties of the
element, considered necessary for the evaluation of the performance of the
hydrostatic behaviour, are tabulated below.

Properties of a single hydro-elastic pontoon element

Length, Le 2.00 [m]
Width, Be; 2.00 [m]
Wall thickness, tw 0.04 [m]
Cross-section area, Acs 0.2336 [m?]
Water-plane area, Awp 4.00 [m2]
Density, p 2500 [kg/m3]
Draft of element, dg 0.285 [m]
Transverse metacentric height, GM, 1.118 [m]

Various vertical load configurations are introduced to the element, which is
initially restricted to vertical rigid body displacement. The additional displaced
water volume due to the external loads is evaluated from the vertical
displacements at the nodes of the element. Linear interpolation of the additional
displaced water volume is employed as the element is forced into rigid
displacement.




BelLel = (LLZ'IZLZJZ)AWP
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The hydrostatic restoring force in the vertical direction is expressed as a function
of the additional displaced water volume, and the hydrostatic vertical stiffness
per unit length is extracted from this expression.

AFB,Z = pngvz

kéh) = PpwgBe

Hydro-elastic Element — Rigid Body Motion

The element behaves as expected for the vertical loading situations introduced
to the element. As the element is forces to displace solely in the vertical plane,
the change in the vertical hydrostatic restoring force equals the external vertical
loading on the element.

The element is further evaluated for rigid body roll displacement. Various
moment loadings are introduced in the torsional DOF’s of each node while all
other DOF’s are considered unloaded. The hydrostatic restoring rotational
stiffness for roll motion of a rigid body, as presented by Faltinsen (Sea Loads), is
introduced to the stiffness formulation of the hydro-elastic element.

k§Y = p,gVGM;
V= Beldel

In this expression, the displaced water volume, V, denotes the volume displaced
by the floating body at an equilibrium condition, and is thus taken as the width of
the element times the draft for displaced volume per unit length. The transverse
metacentric height, GM;, is determined as the distance between the centre of
gravity, G, of the floating pontoon element and the metacentre, M. The
metacentre defines the point around which the roll motion of a floating body acts
as a pendulum swing.



Illustration of the metacentric height

The hydrostatic roll stiffness is in addition evaluated from an expression
established exclusively from the geometric properties of the pontoon element.
The additionally displaced water volume due to the roll motion of the element is
linearly interpolated between the resulting rotations each node, assuming small
rotations, 6,.

0,116
vy= et Ox2) Z 2z,

The hydrostatic roll stiffness is evaluated from the expression for the restoring
roll moment as function of the roll displacement of the element.

2Bel
AMpg g = ngAV9< 3 )

The initial expression for the roll stiffness, including the draft and metacentric
height of the pontoon, is seen to provide a reduced stiffness contribution as
compared to the latter expression for the pontoon element. For pontoon
dimensions equal to the pontoons of the floating bridge modelled in this report,
the hydrostatic roll stiffness per unit length found from the two expressions are
given as.

kgjg = pwg¥,GMy,, = 5.56 - 106 [N/ ]

pPw9B;

(h) _
k9,2 - 6

~13.40 - 106 [N™m/ ]



The effect of the draft and metacentric height of a floating body is noted to be of
greater significance as the dimensions of the floating body increase. The
inclusion of the draft and metacentric height of a floating structure is regarded
necessary for the proper description of its hydrostatic behaviour. The
hydrostatic roll stiffness employed in the modelling of the pontoons of the
floating bridge in this report will thus be consistent with the initial expression.
Including the effects of metacentric height and draft of the pontoons. The validity
of this assumption may be further pursued by a study of the roll behaviour of the
pontoons. The concept of metacentric height is developed within the context of
naval engineering to describe the stability of ships. A ship with insufficient roll
stability may be subject to overturning as the roll support of a freely floating
body is provided solely from the surrounding fluid. This is however not
considered the case for the pontoons as these are attached to above
superstructure, and may be expected to behave differently.



A.3 EIGENVALUE ANALYSIS OF THE DYNAMIC PROPERTIES

An Eigenvalue analysis is employed to evaluate the un-damped dynamic
properties of the floating bridge model. The Eigenvalue problem is established
from the non-trivial solution of the un-damped dynamic equilibrium equation for
free response of the system, assuming harmonic response.

M7 + Kr =R - Un-damped equation of motion

r=Ttelt - Assumed harmonic response of the system
K — w’M(w)]¥r= 0 - Free response of the system

K — w’M(w)]= 0 - Eigenvalue problem

The Eigenvalue analysis provides the natural frequencies and the corresponding
mode shapes of the system. The number of natural frequencies obtained from
the Eigenvalue analysis equals the number of DOF’s of the discretised dynamic
model. However, considering the environmental loading on the floating bridge
structure, only natural frequencies within a certain frequency range are of
interest. Frequencies of motion higher than w,,4, = 5 rad/s, which corresponds
to a period of approximately T,,;, = 1.25 sec, are considered to be of less
significance to the dynamic behaviour of the floating bridge. Waves of periods in
the vicinity of T,,;, will generally be associated with a confused and irregular sea
state that has little ability to excite the large floating structure. As a result, the
first twelve natural frequencies, and corresponding mode shapes, are reported
herein. These are all found to be in the frequency range 0 < w < 5 [rad/s].

The boundary conditions are assumed simply supported with respect to the
vertical direction. Translational displacement in the horizontal plane, torsional
displacement and the rotation about the vertical axis are assumed restrained at
both supports.

The natural frequencies are obtained by iteration of the hydrodynamic added
mass at each frequency. The natural frequencies reported are thus associated
with an added mass value corresponding to their frequency of motion. The table
below summarizes the natural frequencies and corresponding modes of motion.
The associated hydrodynamic added masses for the observed modes of motion
are also included. These are assumed to approach constant values with increased
frequency. In the high frequency range of the analysis, combined modes of
motion are observed. This phenomenon becomes more prevailing as one moves
out of the predetermined frequency range and study modes at higher natural
frequencies.



The natural frequencies, natural periods and hydrodynamic added mass for the
twelve first modes of motion are tabulated below.

No. | Natural frequency Period Mode of Motion Added Mass
[rad/s] (sec] lkg]
1 w, = 0.3346 T, = 18.79 Sway M;’;) =5.012x 10*
2 w, = 0.9050 T, = 6.94 Sway M;’;) = 4.920x 10*
3 w; = 13381 Ty = 4.70 Heave MP = 15505 x 10*
4 w, = 1.4128 T, = 4.45 Heave MP = 15708 x 10*
5 ws = 1.7118 Ts = 3.67 Heave MP =17.338x10*
6 we = 1.8269 T, = 3.44 Sway M;’;) = 0.065 x 10*
7 w; = 2.3403 T, = 2.69 Heave MP = 18317 x 10*
8 wg = 2.9342 Ty = 2.14 Sway M;’;) = 0.0092 x 10*
9 we = 3.2087 T, = 1.96 Sway M;’;) = 0.0092 x 10*
Heave M® = 18317 x 10*
Roll M;(c’;) —0
10 w1 = 3.6420 Ty = 1.73 Sway MY = 0.0092 x 10*
Heave MP = 18317 x 10*
Roll M;(c’;) —0
11 wy; = 4.1975 Ty, = 1.50 Sway MY = 0.0092 x 10*
Heave MP =18.317 x 10*
Roll M;(c’;) —0
12 Wy, = 4.3565 Ty, = 1.44 Sway MY = 0.0092 x 10*
Heave MP = 18317 x 10*
Roll u® — o




Plots of the modes of motion associated with the twelve first natural frequencies
are presented on the following pages. The prevailing modes of motion stand out
for each natural frequency, and the relative contributions from the combined
modes are illustrated. Small contributions are seen to occur from the non-
dominant modes already at the fifth natural frequency. These contributions are
generally seen to increase with the increase of the frequency of motion. At
natural frequency number ten it is seen that the contributions from the three
modes are of the same magnitude. These are of about 6-7% of the magnitude
reported for the modes constituted by a single mode of motion. For natural
frequencies eleven and twelve the largest non-dominant mode of motion is about
5% of the dominant, with the heave and sway modes dominating the response,
respectively.


















A.4 “DRY” EIGENVALUE ANALYSIS

An Eigenvalue analysis performed for the purely structural part of the floating
bridge structure is presented herein. The hydrostatic and hydrodynamic effects
on the structure are neglected in the determination of the natural frequencies
and the associated mode shapes. The Eigenvalue problem is established from the
non-trivial solution of the un-damped dynamic equilibrium equation for free
response of the system, assuming harmonic response.

[K ) — wZM (S)] =0 - Eigenvalue problem structural system

The boundary conditions are assumed simply supported with respect to the
vertical direction. Translational displacement in the horizontal plane, torsional
displacement and the rotation about the vertical axis are assumed restrained at
both supports.

The first twelve natural frequencies and mode shapes are extracted from the
“dry” Eigenvalue analysis in accordance with the Eigenvalue analysis performed
for the fluid-structure system. The natural frequencies and natural periods for
the twelve first modes of motion are tabulated below.

No. | Natural frequency | Period Mode of Motion
[rad/s]
[sec]

1 w; = 0.1428 T, = 44.00 Heave
2 w, = 0.3392 T, = 18.52 Sway
3 w3 = 0.5814 T; =10.81 Heave
4 w, = 09125 T, = 6.89 Sway
5 ws = 1.3058 Ty = 4.81 Heave
6 we = 1.8269 Te = 3.44 Sway
7 w, = 2.3201 T, =271 Heave
8 wg = 2.9342 Tg =2.14 Sway
9 wg = 3.5832 Ty = 1.75 Heave
10 w1 = 3.9298 T, = 1.60 Sway

Heave

Roll
11 w1, = 4.3589 T,y =144 Sway
12 w1, = 5.1082 T, =1.23 Heave







A.5 GENERAL FRF ANALYSIS

General frequency response functions (FRF’'s) are developed to study the
response sensitivity of the floating bridge model. A FRF represents the frequency
dependent response of a single point on the structure. As a result, the FRF’s of
several points along the bridge span are to be evaluated. The response at the
mid-point is generally of concern when evaluating the dynamic response of a
slender structure, as the largest displacements are expected to be observed at
this point. Nevertheless, the dynamic responses at intermediate points between
the mid-point and end-points are also evaluated. The motivation for this may be
realized by studying the mode shapes from the Eigen value analysis of the
dynamic system. The mode shapes of the system are generally expressed as
standing sinusoidal waves in the low frequency range. Resulting in some points
along the structure representing nodes of no motion for certain natural
frequencies. The second mode shape associated with heave motion and natural
frequency w, exemplifies this. The mode shape is seen to be a complete sine
wave, leaving the mid-node as a node of no motion.

The FRF’s are a representation of the fluid-structure properties as expressed
inversely within the H(w)-matrix. Thus, the direct frequency response method,
for determination of the general FRF’s, is assembled by introducing the unit load
vector, Ryt

r(w) = Hw) I_zunit

Plots of the general FRF’s at different points along the structure reveal the
individual response sensitivities and indicate the expected mode shapes. Such a
plot is presented below for the heave responses at the mid-node, the L/4-point
and at the L/8-point.
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The general FRF’s are further evaluated against FRF’s computed for the un-
damped system properties. The effect of the hydrodynamic damping becomes
evident as the response peaks of the un-damped system tend towards infinity at
the natural frequencies associated with heave in the mid-node.
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A.6 LOAD SCALED FRF ANALYSIS

In this section, the frequency response functions developed for the general case
are scaled to incorporate the frequency dependent wave load transfer. The wave
loading is introduced in the DOF’s of the submerged pontoons and scaled
according to dimensionless frequency dependent wave load transfer functions.

qo(w).
7(w) = H(w) R(w) = H(w) qo((‘)) Ryave

The R, ,,.-vector represents the maximum potential wave loading in the DOF’s
of the pontoon elements consistent with the finite element approach.

The load scaled heave response in the mid-point, the L/4-point and the L/8-
point is illustrated below. The load transfer function for heave motion, g, ,(w),
has a maximum value of unity for w = 0 and decreases for higher frequencies.
This effect is seen as the response peaks at high frequencies are scaled to
negligible magnitudes compared with the response peaks at lower frequencies.
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The load scaling effect is further illustrated by a plot of the response at mid-point
for the damped and un-damped system.
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A.7 SPATIALLY SCALED FRF ANALYSIS

A dynamic response analysis of the floating bridge model is performed, taking the
spatial distribution of the surface waves into consideration. The direct frequency
response analysis is employed.

7(w) = H(w) R()

The frequency dependent fluid-structure properties are represented within the
H(w)-matrix as determined previously. The loading on the system is now
considered dependent on both frequency and the spatial location of the pontoon
elements. The wave load per unit length over a submerged hydro-elastic
element, m, is determined according to its position in the wave field. The element
nodal loads and moments are developed according to the interpolation functions
of the hydro-elastic elements.

qm((‘)) = anve,m qo(a’) Qamp,m

= fNSCOSZS(H —0) o~ ik(xmsin(6-6)+ymcos(6-9)) 4g

Qamp,m

Le

Rl (w) = f N g (@) dx
0

The analysis is performed for different combinations of the spreading index, s,
and the mean wave angle of approach, 8. Spreading index values of s = 3 and
s = 15 are chosen to represent sea states of high and low degree of multi-
directionality, respectively. The mean wave angle of approach is evaluated
within a range of 0 < < m/2, where § = 0 represent a mean wave angle
normal to the bridge span, and 8 = /2 represents the somewhat fictive mean
wave angle of direction along the global x-axis.

The responses at mid-point, in the L/4-point and L/8-point are evaluated during
the analysis. The maximum response amplitudes at these points are tabulated
below for different combinations of s and 6. Representative plots for some of
these combinations are presented on the following pages to illustrate the
sensitivity of the response to different sea states.



Mid-Point [m] =0 0 =mn/8 0=mn/4 6 =3m/8 0=m/2
s=3 0.4300 0.6645 0.9373 0.6771 0.4300
s =15 1.8651 0.9743 1.6031 0.9840 1.8651
L/4-Point [m] =0 0 =mn/8 0=mn/4 6 =31/8 0=mr/2
s=3 0.3045 0.4892 0.6695 0.4789 0.3045
s =15 1.3440 0.6826 1.1496 0.6893 1.3440
L/8-Point [m] =0 0 =mn/8 0 =n/4 6 = 3m/8 0=m/2
s=3 0.3967 0.2706 0.8732 0.2556 0.3967
s =15 1.7480 0.3639 1.4967 0.3656 1.7480




Plots of responses for different values of the spreading index, s = 3 and s = 15,
for constant mean wave angle of approach § = 0.
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Plots of responses for different values of the wave angle of approach, § = /8
and 6 = m/4, for constant value of the spreading index s = 3.
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A.8 PROBABILISTIC RESPONSE ANALYSIS

The spectral process of the dynamic response is determined by probabilistic
means from the spectral process of the wave loading according to the following
expression.

Sy(@) = H(w) F* (w0) H (o) S (w)

The dynamic analysis is initially performed for two separate sea states defined
by their spectral densities, S, ;(w). The first sea state is developed to model
relatively long-crested swell waves, while the second sea state is associated with
an irregular, short-crested sea state. Different values of the spreading index are
introduced in the spreading function to model sea states of low and high degree
of multi-directionality for the first and second sea states, respectively. Both
analyses are considered over a duration of two hours for which the statistical sea
state parameters are considered constant.

Sea State Parameters

Sea State No. s T, [sec] Hg [m] T [sec] E|Hpael Im] | T [sec]
1 15 10 1 7200 1.9343 7.2999
2 3 3 1 7200 2.0557 2.7666

The probabilistic response parameters obtained for various mean wave angles of
approach for the two sea states are tabulated below. Also, the results from an
evaluation of combined sea states are included. In the analysis of the combined
sea states, two mean wave angles of approach are included for the multi-
directional sea state. While the mean wave angle of approach for the more
unidirectional wave field is kept constant.

The parameters tabulated are the standard deviation of the response process, g,
the zero crossing period, T,, the rms bandwidth of the response process, ¢, the
expected maximum response, E |1,,,|, the standard deviation of the expected
maximum response, 7|7, |, and, finally, a maximum response estimated within
one standard deviation of the expected maximum response, 7;, -

The tables are followed by plots of the auto-transfer functions and plots of the
auto-density of the response for a selection of the responses.




Probabilistic Heave Response from Sea State No. 1 {8, = 0}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2615 8.3519 0.6588 1.0026 0.0912 1.0939
L/3-Point 0.2178 8.3910 0.6628 0.8346 0.0760 0.9106
L/4-Point 0.1262 8.3121 0.6547 0.4838 0.0440 0.5278
L/8-Point 0.2550 6.5183 0.2662 0.9937 0.0873 1.0811

Probabilistic Heave Response from Sea State No. 2 {8, = 0}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.0102 3.5758 1.4452 0.0414 0.0034 0.0448
L/3-Point 0.0065 3.7718 1.3323 0.0263 0.0021 0.0284
L/4-Point 0.0074 3.6174 1.4202 0.0300 0.0024 0.0325
L/8-Point 0.0046 3.5470 1.4621 0.0187 0.0015 0.0202

Probabilistic Heave Response from Sea State No. 1 {f, = n/8}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2620 8.3518 0.6588 1.0044 0.0914 1.0958
L/3-Point 0.2108 8.3910 0.6628 0.8361 0.0761 0.9122
L/4-Point 0.1264 8.3108 0.6545 0.4847 0.0441 0.5288
L/8-Point 0.2555 6.5181 0.2661 0.9956 0.0875 1.0831

Probabilistic Heave Response from Sea State No. 2 {8, = m/8}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.0095 3.5810 1.4417 0.0386 0.0031 0.0417
L/3-Point 0.0065 3.8015 1.3160 0.0264 0.0022 0.0286
L/4-Point 0.0073 3.6590 1.3960 0.0294 0.0024 0.0318
L/8-Point 0.0041 3.5519 1.4592 0.0168 0.0014 0.0181




Probabilistic Heave Response from Sea State No. 1 {8, = n/4}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2625 8.3518 0.6588 1.0062 0.0916 1.0978
L/3-Point 0.2186 8.3910 0.6628 0.8376 0.0763 0.9139
L/4-Point 0.1266 8.3108 0.6545 0.4857 0.0442 0.5298
L/8-Point 0.2560 6.5181 0.2661 0.9976 0.0877 1.0853

Probabilistic Heave Response from Sea State No. 2 {0, = m/4}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.0091 3.6240 1.4163 0.0367 0.0030 0.0397
L/3-Point 0.0072 3.9386 1.2429 0.0291 0.0024 0.0315
L/4-Point 0.0078 3.7855 1.3248 0.0316 0.0026 0.0342
L/8-Point 0.0038 3.5908 1.4359 0.0155 0.0013 0.0168

Probabilistic Heave Response from Combined Sea States {f; = 0,8, = 0}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2617 8.3236 0.6559 1.0036 0.0913 1.0949
L/3-Point 0.2179 8.3762 0.6613 0.8350 0.0760 09111
L/4-Point 0.1264 8.2514 0.6482 0.4849 0.0440 0.5290
L/8-Point 0.2550 6.5158 0.2648 0.9939 0.0874 1.0813

Probabilistic Heave Response from Combined Sea States {8, = 0,0, = m/4}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2617 8.3303 0.6566 1.0034 0.0913 1.0947
L/3-Point 0.2179 8.3747 0.6611 0.8351 0.0760 09112
L/4-Point 0.1264 8.2518 0.6482 0.4850 0.0441 0.5291
L/8-Point 0.2550 6.5166 0.2653 0.9939 0.0874 1.0812




Auto-transfer functions for sea state 1
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Auto-transfer functions for sea state 2
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Auto spectral density of the heave response for sea state 1 for 8, = 0

Auto Spectral Density of Heave Response at Mid—Point Sea State No. 1
0.35 T T T T T

03r- b

o o
o o o
o S a
T T T
I I I

Auto Spectral Density [m2 s]
o
T
Il

0.05 b

: Vi ‘ ‘

0 0.5 1 1.5 2 25 3
Frequency [rad/s]

Auto Spectral Density of Heave Response at L/3-Point Sea State No. 1
T T T T

0.35

025 b

02t N
0.15} B
01t B
0.05} N
0 /\\/R/\ 1 1 1
05 1 15

Frequenéy [rad/s]

Auto Spectral Density [m2 s]

Auto Spectral Density of Heave Response at L/4-Point Sea State No. 1
0.35 T T T T T

0.25 b

015 q

01f g

Auto Spectral Density [m2 s]

0.05 b

0 /#\/\/\ 1 1 1
0 05 1 1.5 2 25 3
Frequency [rad/s]




Auto spectral density of the heave response for sea state 2 for 6, = 0
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Auto spectral density of the heave response for sea state 2 for 8, = /4
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EVALUATION OF DIFFERENT SEA STATES

The first sea state is seen to complete dictate the response of the floating bridge
when evaluating the combined sea states. Thus, a new set of sea states is
introduced to evaluate the effect of combining more similar wave fields. Sea state
number 3 is regarded as modelling close to unidirectional swell waves, whereas
sea state number 4 is a short-crested, multi-directional sea state with a small
increase in the wave period from sea state 2. The sea state parameters are
tabulated below, and the results of the analysis follow tabulated. Plots of the
auto-density of the response are presented on the following pages.

Sea State Parameters

Sea State No. s T, [sec] Hg [m] T [sec] E|Hpael Im] | T [sec]
3 12 8 1 7200 1.9610 5.9279
4 5 4 1 7200 2.0333 3.3254
Probabilistic Heave Response from Sea State No. 3 {8, = 0}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.2187 7.1338 0.4735 0.8475 0.0754 0.9229
L/3-Point 0.1777 7.1389 0.4747 0.6883 0.0613 0.7496
L/4-Point 0.1050 7.1401 0.4750 0.4069 0.0362 0.4431
L/8-Point 0.3015 6.1719 0.1908 1.1793 0.1029 1.2821

Probabilistic Heave Response from Sea State No. 4 {8, = n/4}

o, [m] T, [sec] £ Eltpaxl [m] | 01zl [m] | Tingx [m]
Mid-Point 0.0594 49267 0.7915 0.2359 0.0200 0.2559
L/3-Point 0.0522 4.8997 0.8028 0.2071 0.0175 0.2246
L/4-Point 0.0363 4.6689 0.9006 0.1444 0.0121 0.1565
L/8-Point 0.0678 5.6042 0.5070 0.2670 0.0230 0.2900




Probabilistic Heave Response from Combined Sea States {8, = 0,0, = m/4}

o, [m] T, [sec] € Eltnax| [m] | 0lfinaxl [m] | Tinax [m]
Mid-Point 0.2267 6.8790 0.4071 0.8803 0.0780 0.9583
L/3-Point 0.1852 6.8406 0.3954 0.7194 0.0637 0.7831
L/4-Point 0.1111 6.6799 0.3395 0.4324 0.0381 0.4705
L/8-Point 0.3090 6.1404 0.2169 1.2091 0.1054 1.3145
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Auto spectral density of the heave response for sea state 3 for ; = 0
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Auto spectral density of the heave response for sea state 4 for 8, = /4
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Auto spectral density of the heave response for combined sea states 3 & 4

0Aaglto Spectral Density of Heave Response at Mid—Point Combined Sea States
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(ﬁlslto Spectral Density of Heave Response at L/3-Point Combined Sea States
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Ol-ggto Spectral Density of Heave Response at L/4—Point Combined Sea States
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