
JPEG 2000 Quality Scalability in an IP
Networking Scenario

Magnus Jeffs Tovslid

Master of Science in Electronics

Supervisor: Andrew Perkis, IET

Department of Electronics and Telecommunications

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

JPEG2000 is the dominant coding system for transporting video over IP net-
works due to its high quality compression capabilities and advanced functionali-
ties. JPEG2000 inherent scalability [1] functionalities may be exploited to adapt
the video bitrate to the conditions in the network. The rate control in such a
system adjusts the bitrate by extracting a certain number of quality layers from
the video stream. In ”Adaptive Rate Control of Motion-JPEG2000 Video over
IP Networks” by Rong-Yu Qiao and Michael H. Lee, a system using JPEG 2000
quality scalability is used for such a purpose. This thesis should investigate fur-
ther into the use of JPEG 2000 quality scalability for a proposed scenario using
IP networks. Questions to be answered are the number of quality layers to be
embedded in the video stream. Is there a preferred number? It should also look
into the subjective perception in such a system by performing subjective test and
suggest future design of a smart rate control.

[1] ”ITU-T T.800 JPEG 2000 Part 1: Core Coding System” will be the main source
of information on JPEG 2000 quality scalability.

Abstract

In this thesis, the JPEG 2000 quality scalability feature was investigated in the
context of transporting video over IP networks. The goals of the investigation was
two-fold. First, it was desired to find a way of choosing the number of quality layers
to embed in a JPEG 2000 codestream. In previous work, this choice has been more
or less arbitrary. Second, it was desired to find how low the video bitrate could be
dropped before it became perceptible to a viewer. This information can be used
in an IP networking scenario to e.g. adapt the video bitrate blindly according to
the measured channel capacity as long as the drop in bitrate is expected to be
imperceptible. When the drop in bitrate is expected to be perceptible, a switch
could be made to a smoother bitrate adaptation.

A way of choosing the total number of quality layers to embed in a codestream
was found by minimizing the difference in predicted quality between direct and
scaled compression. Scaled compression is the compression which is achieved by
extracting quality layers. The minimization procedure was bound by the speed of
the encoder, as it takes longer for an encoder to embed more quality layers. It was
found that the procedure was highly dependent on the desired bitrate range.

A subjective test was run in order to measure how large a drop in video bitrate had
to be for it to become perceptible. A newly developed JPEG 2000 quality layer
scaler was used to produce the different bitrates in the test. The number of quality
layers to embed in codestream was found by using the minimization procedure
mentioned above. It was found that, for the bitrate range used in the test, 2 - 30
Mbits/s for a resolution of 1280x720 at 25 frames per second, the magnitude of
the drop in bitrate had to be at least 10 Mbits/s before the participants in the test
noticed it. A comparison with objective quality metrics, SSIM and PSNR, revealed
that it was very difficult to predict the visibility of the drops in bitrate by using
these metrics. Designing the type of rate control mentioned in the first paragraph
will therefore have to wait until a parameter with good predictive properties can
be found.

Sammendrag

I dette prosjektet har kvalitetsskalerbarhet i JPEG 2000 blitt undersøkt innenfor
rammene av IP nettverk. Målet med prosjektet har vært todelt. Først var det
ønsket å finne en fremgangsmåte for å velge hvor mange kvalitetslag som bør
bygges inn i en JPEG 2000 kodestrøm. I tidligere arbeid synes dette valget å være
vilk̊arlig. I tillegg til dette var det ønsket å undersøke hvor lavt en videobitrate
kunne falle før det ble observerbart. Denne informasjonen var tiltenkt bruk i et
IP nettverks-scenario, hvor man kan tilpasse videobitraten blindt etter kanalens
kapasitet s̊a lenge fallet i bitrate forventes å være umerkbart. N̊ar fallet i bitrate
forventes å være merkbart kan man bytte til en jevnere form for tilpasning av
bitraten.

En fremgangsmåte for å velge antall kvalitetslag som skulle bygges inn i kode-
strømmen ble funnet ved å minimere forskjellen mellom forventet kvalitet i direkte
og skalert kompresjon. Skalert kompresjon er herved navnet p̊a kompresjonen som
oppn̊as ved å ekstrahere kvalitetslag. Minimeringsprosedyren var begrenset av
hastigheten til enkoderen. Dette var fordi det tar lengre tid å enkode en kodestrøm
med mange kvalitetslag. Det ble ogs̊a funnet at prosedyren var høyst avhengig av
den ønskede størrelsen p̊a bitrateomr̊adet.

For å måle hvor lavt et fall i bitrate kunne være før det ble merkbart ble det
kjørt en subjektiv test. En JPEG 2000 kvalitetsskalerer utviklet under prosjek-
tet ble brukt til å generere de forskjellige bitratene som ble brukt i testen. Antall
kvalitetslag som skulle bygges inn i kodestrømmen ble funnet ved hjelp av minimer-
ingsprosedyren beskrevet ovenfor. Fra testen ble det funnet at, for bitrateomr̊adet
som ble brukt i testen, 2-30 Mbits/s ved en oppløsning p̊a 1280x720 ved 25 bilder
i sekundet, krevdes det et fall p̊a minst 10 Mbits/s før det ble merkbart. En sam-
menligning med objektive kvalitetsmål, SSIM og PSNR, viste at det var vanskelig
å forutse synligheten til fallene i bitrate ved bruk av disse målene. Å utvikle en
type ratekontroll som beskrevet i første avsnitt blir dermed satt p̊a vent inntil en
bedre måleparameter finnes.

Contents

1 Introduction 1

2 Theory 4
2.1 Objective image quality . 4

2.1.1 PSNR . 4
2.1.2 SSIM . 5

2.2 About bitrates . 6
2.3 A summary of the JPEG 2000 coding system 6
2.4 Scalability in JPEG 2000 . 7

2.4.1 Different types of scalability in JPEG 2000 7
2.4.2 Progression orders . 8
2.4.3 How scalability is implemented in JPEG 2000 9

2.5 Differences between direct and scaled compression 12

3 Previous Work 13

4 Problem Statement 15

5 Methodology 17
5.1 JPEG 2000 Scaler . 17

5.1.1 JPEG 2000 Scaler Design Goals 18
5.1.2 JPEG 2000 Scaler Algorithm 19

5.2 Experiments conducted with the JPEG 2000 scaler 21
5.2.1 Choosing the number of quality layers 21
5.2.2 Realtime concerns . 25
5.2.3 A special case: Lossless . 26

5.3 Subjective test . 26
5.3.1 Summary of the test . 27
5.3.2 Test set-up . 28
5.3.3 Description of the software used to generate the test 33
5.3.4 Analysis of the test results 35

5.3.5 Sources for error . 36

6 Results And Discussion 38
6.1 Number of layers . 38
6.2 Speed test . 42
6.3 Results from subjective test . 44

7 Conclusion 53
7.1 Future work . 54

Bibliography 55

A Subjective test 57
A.1 Results from subjective test . 57
A.2 Research protocol . 65
A.3 Pictures from the testing room . 68
A.4 Instructions given to the participants 70
A.5 Voting paper . 71

Chapter 1

Introduction

In broadcasting, efficient methods for transporting video are of utmost importance.
A typical scenario might be the transportation of video from a sports event to a
studio. A relatively new way of accomplishing this is via IP networks, which
is a naturally flexible solution. Such a network can be dedicated to the task
of transporting video, or it can be a more general purpose network such as the
Internet. The latter has not been extensively used, mainly because it is not as
reliable as a dedicated network. It is, however, a much cheaper solution than
having to set up a dedicated network. If the Internet proved a reliable medium for
video transport, it would result in enormous savings in both time and money for the
broadcaster. In the master thesis ”Reliable broadcast contribution over the public
internet” [2] currently being written by M. Markman and S. Tokheim, the viability
of video transportation over the Internet is investigated. The evidence suggests
that the Internet may provide a reliable medium for video transportation.

Should one decide to use the internet for video transportation, there are some
practical questions that need to be answered. For example, when the network gets
congested, how should it be handled? This is one of the questions that motivates
this thesis. One solution is to use the JPEG 2000 [1] quality scalability feature
to adapt the video bitrate to the conditions on the channel. Scalability avoids
transcoding the video, and is much less complicated to implement than a full
encoder and decoder. This makes the adaptation process cheap both in terms
of implementation and in terms of processing. To use scalability, the video must
already be encoded, and later, decoded. Solutions in this regard already exist.
An example is the TVG450 produced by T-VIPS, which handles encoding and
decoding of JPEG 2000 images, and is designed for use in IP networks. JPEG
2000 is a good solution in a broadcasting scenario because it only uses intra-
frames (JPEG 2000 is just an image codec [1]. When it is spoken of as a video

1

codec, it just means a concatenation of still images). By using only I-frames, it
is ensured that errors won’t propagate to future frames. In addition to this, the
delay produced by an intra-frame codec is only the processing time required to
process the frame itself. In this project, JPEG 2000 is further suitable because of
the inherent scalability properties of the codec.

In this thesis, the quality scalability feature of JPEG 2000 is investigated. Quality
scalability is a method for embedding several different video qualities (or bitrates)
in the same image bitstream. Ultimately, the goal is to use this feature in video
transport to adapt to the current conditions on the transportation channel. By
doing this, one can adapt the video bitrate, without transcoding, to situations
where the channel is partly blocked (e.g. packet drops in the internet). Similarly,
the video bitrate could be scaled down at transmission path nodes connecting
to other transmission paths of unequal expected capacities. Some research on
this subject has already been done. In a paper by R. Qiao and M. Lee [3], the
JPEG 2000 quality scalability feature was used to adapt to a network bitrate, by
measuring the TCP friendly rate, and by using the video transportation protocol
(VTP) [4]. However, some questions remain unanswered. The first question is
”How many quality layers should be embedded in the image bitstream?”. It seems
that, without loss, one would like an infinite number of quality layers, thereby
achieving infinite granularity. A second question is ”Should the bitrate be directly
adapted to the conditions on the channel, or is it a better idea to have a smoother
variation in bitrate?” One solution might be to switch between these two ideas
based on how they affect the perceived quality.

In order to answer the questions mentioned, a JPEG 2000 quality layer scaler will
be implemented. This is a software program which takes a JPEG 2000 codestream,
and extracts a number of quality layers in order to achieve a certain image bitrate.
This tool will be used in the development of a procedure for choosing the total
number of quality layers to embed in a JPEG 2000 codestream. Using the results
from this procedure, and the JPEG 2000 scaler, a subjective test will be carried
out in order to investigate how low the video bitrate can be dropped before it
becomes perceptible. These subjective evaluations will be compared to objective
quality metrics. It is desired that the knowledge gained from these experiments
will be useful on the way to creating a fully functional channel-adaptive video
scaler, using JPEG 2000.

Organization of the thesis

The thesis will first cover some theory needed to understand the rest of the report.
First it will explain the use of objective quality metrics. Second, it will provide a

2

quick overview of the JPEG 2000 image coding system, and a more thorough look
into the scalability feature. Following the theory section, an overview of previous
work will be provided. This chapter will look into what has been done in the field
before, and more importantly, what has not been done. This will motivate the
next chapter, the problem statement. Here the question that the thesis aims to
answer will be defined. The methodology chapter will explain how the JPEG 2000
scaler was made, how it was used to find the preferred number of quality layers to
embedd in the image bitstream, and lastly, how a subjective test was run in order
to investigate the effect of drops in bitrate. The results and discussion will present
the results, and compare them to objective quality metrics. In the conclusion, the
discussion is summarized, and the problem statement is answered. Future work is
suggested.

The report will also contain a list of references, and an appendix. The appendix
will contain images, figures, tables, and other details that was left out of the rest
of the report. The source code used throughout the project will be provided in
a zip file. In this zip file, readme.txt files are provided in the different folders for
explanation of the content.

3

Chapter 2

Theory

2.1 Objective image quality

Ultimately, subjective image quality is the only thing that matters. However,
measuring subjective quality is time consuming and difficult, therefore objective
measures are often necessary. For example, whenever an image or video codec
performs rate-distortion optimization, it has to calculate the image distortion using
an objective metric. The optimality of such a procedure is therefore only optimal
in the context of the metric it uses. Here, two different objective metrics will
be discussed: the PSNR and the SSIM index [5]. Both of these are so-called
full reference metrics, as they work by comparing one image against another. In
contrast, no reference metrics tries to measure the image quality by only looking
at the one image. Full reference metrics are much more tried and tested, and are
often the natural choice.

2.1.1 PSNR

PSNR (Peak signal-to-noise ratio) can be used as a measure of the difference
between images. It is defined by equation 2.1.

PSNR = 10 log10

I2max

MSE
(2.1)

Where Imax is the dynamic range of the image (for an 8-bit image, the dynamic
range is 255). Relating it to the dynamic range means that the metric can be
compared when used on images of different dynamic ranges. Taking the logarithm

4

compresses the range of values down to a more readable range. However, the
information contained in the PSNR is actually no more than that of the MSE
(mean squared error).

The problem with PSNR is that MSE is not a good measure of how much distor-
tion there is in an image when passed through the human visual system (HVS)
[6]. The MSE does not account for the fact that the human brain is very good
at extracting the useful information in an image, and filling in the blanks. For
example, the HVS detects noise more easily in smooth regions than regions with a
lot of textures (frequency masking). The HVS is not very sensitive to small con-
trast changes, relative luminance, spatial shifting or rotation. The MSE is thus a
pure mathematical measure of how similar two signals are, and it is used primarily
because it is easy to calculate and implement.

Of course, there exist methods for improving the PSNR. For example by weight-
ing the MSE according to how sensitive the HVS is to errors in different spatial
frequencies [6]. This is described by the contrast sensitivity function. Another
common improvement is to only evaluate the PSNR on the luminance component
of an image, as the HVS is much more sensitive to errors here than in the color
components.

2.1.2 SSIM

The SSIM (Structural SIMilarity) index uses a different approach from the PSNR
and its siblings [5]. The SSIM index tries to mimic the HVS, in that it tries to
compare the difference in structural information between two images. In contrast,
the PSNR-type methods measure the accumulated errors between the two images.
SSIM is therefore not as sensitive to things like contrast and relative luminance,
as long as the structural information is still present. SSIM is still sensitive when
it comes to spatial shifting and rotations, but in the context of image and video
coding, this is rarely a problem. Even so, methods have been developed that
accounts for this as well [6]. An SSIM index value always lie between 0 and
1, where 1 only happens when the images are equal. The SSIM index is also
symmetric, so that it doesn’t matter which one is the reference image and which
one is the degraded one. If the SSIM index has been calculated on two images, and
one wishes to compare the two values, it is tempting to assume that the values are
linear, e.g. such that a value of 0.99 is 1% better than 0.98. This is not necessarily
the case, as can be verified by experimentation. It is difficult to find information
about this in the literature, but by experimentation it seems that the DSSIM
(structural dissimilarity) makes for a better comparison (see equation 2.2). In this
equation, the SSIM values are read as ”how far is this value from the reference”.

5

For example, the value 0.98 is twice as good as 0.96, since it is twice as close to 1.
For comparisons, equation 2.3 may therefore be used.

DSSIM =
1

1− SSIM
(2.2)

compare12 =
1− SSIM(reference2, image2)

1− SSIM(reference1, image1)
(2.3)

Equation 2.3 gives the ratio of the distance between the reference and the impaired
version of image 1 compared to image 2. Regardless of the actual values produced
by equation 2.3, the fact that one SSIM value is higher or lower than the other is
preserved through the equation.

2.2 About bitrates

By bitrate, it is meant how many bits that are handled per second: bits
second

. In
video, the bitrates are often in the order of millions, so the short form Mbits/s
is used. This simply means 1000000bits

second
. It is easy to forget that a bitrate is not

a compression factor. As an example, a video clip at 1920x1080@25fps, with
three color components (e.g. RGB), and 8 bits precision, requires a bitrate of
1920∗1080∗3∗8∗25bits=1244Mbits

second
. Often, the bitrate available is much lower, so the video

has to be compressed. For 30 Mbits/s, for example, the video has to be compressed
with a factor of 30 / 1244 = 0.024. If the video to be compressed had a lower
resolution, for example, 1280x720, the compression factor would be 1920∗1080

1280∗720 = 2.25
times smaller than this. This is important to keep in mind later in the report, as
different resolutions are used. The bitrates discussed are always related to the
resolution and number of frames per second (fps).

2.3 A summary of the JPEG 2000 coding sys-

tem

A JPEG 2000 [1] image is coded in several steps. First the image is preprocessed.
Here the image is converted to YCbCr or YUV color space. This can be done either
reversibly or non-reversibly. The image may also be divided into tiles (a spatial
subdivision of the image), which can be handy if memory is limited. After prepro-
cessing, the different color components are transformed by a wavelet transform,

6

dividing the image into spatial frequency subbands. This process is compara-
ble to filtering the image with a filterbank. The transform may be reversible or
non-reversible. The wavelet coefficients resulting from the transformation may be
quantized, which is a non-reversible operation. The final coding step is EBCOT
(embedded block coding with optimal truncation). It is here that compression
is achieved. This is done by using an arithmetic entropy coder. EBCOT is also
responsible for generating the highly flexible and scalable JPEG 2000 bitstream.
In such a bitstream, several versions of the same image may be embedded. The
next chapter discusses this feature in detail.

In order to convey information about the coding choices, a JPEG 2000 image is
wrapped in what is called a codestream [1]. The codestream consists of a main
header, and tile headers preceding the bitstream contained in each tile. Informa-
tion in a tile header always overrides information in the main header. Information
in the headers are contained in marker segments, which are signalled by differ-
ent types of markers. Some markers also exist inside the bitstream, such as the
start-of-packet marker.

The JPEG 2000 codestream syntax can be quite complicated, and the reader is
referred to [1] for more information.

2.4 Scalability in JPEG 2000

In the context of image coding, scalability is a way of packaging several versions
of an image within the same codestream. In JPEG 2000, a single codestream
can contain different numbers of resolutions, qualities, components, and positions,
which can all be extracted without decoding the image. This chapter contains a
detailed description of the scalability feature in JPEG 2000. More information can
be found in [1].

2.4.1 Different types of scalability in JPEG 2000

There are four types of scalability in JPEG 2000; quality, resolution, component,
and spatial scalability. Quality scalability is achieved by encoding the image data
as a bitstream consisting of several layers. By extracting such layers from the
bitstream, the quality of the decoded image is enhanced progressively. The other
types of scalability works in a similar way. For instance, the resolution of an image
may be increased progressively by extracting more resolution levels. Component
scalability usually refers to the ability to progressively add color to an image. In

7

the YUV color space, for instance, the luminance component may be extracted
in order to obtain a black and white image. The chroma components may then
be progressively added in order to put color in the image. In spatial scalability,
the different physical parts of an image is obtained progressively. For instance, it
is possible to extract the top half of an image only, and obtain the lower half by
extracting the relevant part of the bitstream.

2.4.2 Progression orders

Scalability can be achieved by means of five different progression orders:

• LRCP (layer - resolution level, component, position)

• RLCP (resolution level, layer, component, position)

• RPCL (resolution level, position, component, layer)

• PCRL (position, component, resolution level, layer)

• CPRL (component, position, resolution level, layer)

A progression order describes how the compressed image data is ordered in the
bitstream. As an example, in order to read a bitstream with the LRCP progression
order, one could use the pseudo code shown below. See also figure 2.1 for further
illustration.

Algorithm 1 Pseudocode for reading packets in bitstream

for all layers do
for all resolution levels do

for all components do
for all positions do

read packet containing information about the current layer, reso-
lution level, component, and position

end for
end for

end for
end for

These for-loops can be inter-changed to match the different progression orders. In
principle though, any type of scalability can be achieved regardless of the progres-
sion order, but it is easier to implement e.g. quality scalability, with the LRCP
progression order, since the packets in the bitstream contain all the lower layers
first. A closer look at the bitstream packets is given in section 2.4.3.

8

Figure 2.1: Illustration of a JPEG 2000 bitstream using the LRCP progression
order. Each vertical group of blocks illustrates a packet. In this example, there
are two layers, 3 resolution levels, 1 component, and 2 positions. To extract the
first layer, one need only extract the first 6 packets.

2.4.3 How scalability is implemented in JPEG 2000

In this section, some details of the implementation of the scalability features of
JPEG 2000 will be provided.

EBCOT

JPEG 2000 uses the EBCOT (embedded block coding with optimal truncation)
scheme in order to perform entropy coding and organize the bitstream. This tech-
nique is applied after the wavelet subband decomposition and quantization, and
works by dividing the subbands into equally sized codeblocks, which are coded in-
dependently. Each codeblock is coded by a bitplane encoder, coding the most sig-
nificant bits first. The entropy coding is done by an MQ arithmetic encoder.

To perform rate allocation, the encoder decides how much each codeblock should
contribute to a subband according to how much distortion it would remove. This
is done until the specified total bitrate is achieved. Put differently, the encoder is
deciding on ”truncation points”. When this is done optimally in a mean-square-
error sense, it is said that ”optimal truncation” is reached. If more than one layer
is used, the encoder has to decide on optimal truncation points for each of the

9

layers.

After the optimal truncation points has been found, the encoder has information
on how much each codeblock should contribute to the total bitstream, along with
how each codeblock relates to the different combinations of progression types. The
encoder can then assemble packets in the bitstream by accepting the most con-
tributing codeblocks first, and by grouping them according to which combination
of layer, resolution level, component, and position they belong.

Implementation of the progression types

How is it that layers can yield higher and higher quality when more of them are
included, and how are they related to the codeblocks generated by the EBCOT
scheme? Below is a more detailed description of the different progression types.

• Quality layers

For a given tile, a layer contains a certain number of consecutive bitplane
coding passes from each codeblock within that tile. The bitplane coding
is what makes layers represent different qualities, as each layer receives a
varying degree of pixel accuracy (i.e. significant bits).

The exact number of coding passes included for a given codeblock in the
layer depends on the rate allocation method, but in general, the information
contained in a layer is rate-distortion optimal in a PSNR sense. This means
that extracting a whole number of layers from a codestream yields an image
with the best possible PSNR for the resulting image size (not counting meta
informational overhead, such as headers).

• Resolution levels

A resolution level consists of a number of subbands generated by the wavelet
transform. The lowest resolution level consists of the LL band, while the
higher levels adds the contribution from the HH, LH, and HL bands as well.
The LL band represents the version of the image which is low pass filtered in
both the horizontal and vertical direction, while HH represents the high pass
version. The LH band is first low pass filtered in the horizontal direction,
and then high pass filtered in the vertical direction. The HL band is the
opposite. These subbands are split into codeblocks, creating the link between
codeblocks and resolution levels.

• Components

10

Each color component contains its own set of resolution levels. This means
that, since a codeblock is a subsection of a subband (and therefore a resolu-
tion level), the codeblock also has information specific to the given compo-
nent.

• Positions

A position is directly translatable to a precinct. A precinct is a spatial
subsection of a resolution level. This means that a precinct is actually a
collection of codeblocks within a resolution level.

Bitstream packets

The codeblocks are arranged in the codestream according to the given progression
order. This is done by grouping the compressed image data into packets. Each
packet contains codeblocks which contain compressed image data for the current
layer, resolution level, component, and position. See figure 2.1 for an illustration
of the packets.

Since it is possible for a packet to contain the same codeblocks as a previous
packet, a packet header specifies whether a codeblock is included in this particular
packet or not. In addition, whenever a packet includes no codeblocks at all, this is
signalled by a single bit in the packet header [1]. However, it is important to note
that packets are always byte-aligned, so the minimum size of a packet is always
one byte. For more information about packet headers, the reader is referred to [1].
In addition to the packet header, it is possible to specify the usage of a start-of-
packet (SOP) marker. A SOP marker is placed just before each new packet in the
bitstream. It was originally intended to be used for error correction, but it can
also be used to bypass the decoding of packet headers entirely. Each SOP marker
requires 6 bytes of space [1], so a certain cost is unavoidable.

Extracting a layer

With a codestream as described, it is possible to extract different amounts of qual-
ity layers, resolutions, components, and positions, without decoding. For example,
extracting a layer from a codestream amounts to reading the main and tile-part
headers for information, and, for the bitstream in each tile-part, discarding all the
packets belonging to a higher layer than what is specified. The main and tile-part
headers are then updated to reflect the changes in the bitstream. In principal,
this is a simple task, but is complicated by other features which purpose is to

11

obtain codestream flexibility. An example of a complicating feature is the ability
to change the progression order in a JPEG 2000 codestream.

2.5 Differences between direct and scaled com-

pression

In this section the goal is to examine some of the differences between direct and
scaled compression. Scaled compression is the compression achieved by extracting
a number of quality layers from a codestream, while direct compression is regular
compression without the use of scalability.

When comparing direct compression with scaled compression there are essentially
two parameters affecting the result: the bitrate range, and the number of quality
layers used. In creating a quality-scalable JPEG 2000 codestream, it is necessary
to specify both these parameters. In practice, this is done by specifying a number
of rates which the bitstreams will include as layers. For example, specifying the
rates 0.2 and 0.3 will yield two layers, where the first layer contains the image
compressed with a compression factor of 20%, and the second layer contains enough
information to get a compression factor of 30% when combined with the first layer.
This process adds some overhead, since more packets, and therefore packet headers
(and possibly start-of-packet markers), must be produced. (see chapter 2.4.3 for a
description of JPEG 2000 packets).

This brings up a number of limitations. First of all, one cannot extract a quality
layer with a lower bitrate than what was specified. The same goes for higher
bitrates. Second, since it is only possible to extract an integer number of quality
layers from the bitstream, it is therefore not possible to extract a rate which lies
in between two layers. Third, there is a limitation on the number of layers one can
use, since more layers means more overhead and longer encoding times.

12

Chapter 3

Previous Work

In this chapter, the aim is to give a quick overview over what has been done with
JPEG 2000 quality scalability in video transport applications.

Rong-Yu Qiao and Michael H. Lee have contributed several papers in the area
[3][7]. In ”Adaptive Rate Control of Motion-JPEG2000 Video over IP Networks”
[3] they use Motion JPEG 2000 to transport video in an IP network. A self-made
JPEG 2000 stream scaler [7] is used to adapt the video bitrate to the current
conditions on the channel, i.e. quality layers are extracted from the Motion JPEG
2000 codestream such that the bitrate is lower than the capacity of the channel.
A maximum of 8 different bitrates can be extracted with their stream scaler [7].
The current capacity of the transport channel is estimated by the TRCP (TCP-
Friendly Rate Control) and VTP (Video Transport Protocol). The conclusion of
the study is that by adapting the video bitrate with the stream scaler, they obtain
perceptually good results, and the ability to gracefully degrade the video.

There are a number of issues with the study. First of all, the number of layers
used, eight, seems rather arbitrary. In principle, one would want as many quality
layers as possible in order to have finer granularity. Second, although they report
perceptually good results, they have only measured the PSNR of the video. As
discussed in the theory section of this report, PSNR is not necessarily a good
measure of subjective quality.

Lastly, the use of the TRCP protocol is based solely on measuring the IP net-
work conditions, and although that might give a good indication of the situation
on the channel, it says nothing about the subjective quality of the video. The
VTP protocol [4] is similar in that it is calculated only based on the conditions on
the channel. VTP is designed to work with wireless networks, and tries to adapt
more smoothly than TRCP. This is possible because it discriminates between er-

13

rors in transmission and errors because of congestion (TRCP treats everything as
congestion).

However, neither VTP, nor TRCP, uses information about how visible their bitrate
adaption is to the viewer of the video.

14

Chapter 4

Problem Statement

In this thesis, the aim is to investigate some practical aspects of the JPEG 2000
scalability feature in video over IP applications. This is interesting mainly because
the literature in the area is scarce, and not very in-depth. After all, JPEG 2000
is mainly an image codec, not a video codec. As described in the ”Previous
Work” chapter, some studies have been done using JPEG 2000 scalability in video
transport over IP, but several questions remain unanswered, and subjective results
are hard to come by. This thesis will try to provide answers that are missing from
previous work.

To put the thesis into context, a scenario is used where the goal is to transport
video over IP networks, with a JPEG 2000 scaler sitting at a node in the network,
adapting the video bitrate to the conditions on the channel(s) following the node.
In figure 4.1, such a scenario is illustrated. Here, the video is encoded once, sent
over a network with high capacity, such as a dedicated network, and then adapted
to three other smaller networks according to their measured capacities. Since the
JPEG 2000 scalability feature is responsible for the bitrate adaption, transcoding
is not necessary. This can be a huge time saver, and less costly to implement, since
a JPEG 2000 scaler is much less complex than a full encoder and decoder.

The thesis will seek to answer two questions that is of interest in the scenario
described above.

1. How should the number of quality layers in a scalable JPEG 2000 codestream
be chosen? This is an interesting question because, if there were no penalties,
one would like to have as many quality layers as possible in order to get a fine
granularity.

2. How much can the video bitrate drop before it becomes perceptible? If a metric

15

Figure 4.1: Networking scenario using JPEG 2000 scalability.

could be produced that said something about the visibility of sudden drops in
bitrate, that metric could be used in the scenario described above to make a smart
rate control at the node containing the JPEG 2000 scaler. It would, for example,
be possible to let the bitrate follow the sudden drops in capacity experienced in an
IP network, as long as the drop in capacity was lower than what was perceptible to
a viewer. When the capacity dropped below the point of perceptibility, a smoother
rate control solution could take over, or even buffering if the application allowed
for it. This would ensure maximal quality in both cases, since it would smooth
out sudden drops in bitrate whenever they were visible, but allow them when they
were not, therefore making the quality stay at the highest possible level. The
thesis will not aim to design such a rate control, however, only provide grounds
for further work in that area. This is partly because a newly designed rate control
should also be put through a subjective testing procedure. A subjective test must
first be run in order to investigate the effects of drops in bitrate, and running two
subjective tests is too time-consuming for a project like this.

16

Chapter 5

Methodology

The methodology chapter describes how results relevant to the problem statement
were found. It starts by looking at the implementation of a JPEG 2000 scaler.
Then it is shown how the scaler was used to perform certain experiments, leading
to a method for finding an optimal number of quality layers to use in a JPEG 2000
image. The last part of this chapter deals with the creation of a subjective test,
were the aim was to measure the effects of sudden reductions in video bitrate.

5.1 JPEG 2000 Scaler

In order to investigate the scalability feature in JPEG 2000, it was necessary to
find a software program that would make it possible to extract quality layers from
a JPEG 2000 codestream. This program should make it possible to specify a total
output image size, which would be obtained by extracting a certain number of
layers. In addition to this, the output image should be of the same format as the
input, namely the JPEG 2000 codestream format. There currently exist two open
source implementations of the JPEG 2000 codec in the programming language C.
These are called OpenJpeg [9] and JasPer [8]. JasPer is also part of the JPEG
2000 standard as the reference implementation. Both of these codecs allows for the
generation of quality layers, but only OpenJpeg provides a way of extracting the
layers during decoding. However, only the number of layers can be specified, not
the target image size. Since neither of the codecs had the necessary functionality,
combined with the fact that a modification almost certainly would yield a program
with lots of unnecessary bloat, it was decided to make a JPEG 2000 scaler from
scratch.

17

A description of how the scaler was used in practice is provided in chapter 5.2.
That chapter will, among other things, present a way of selecting an optimal
number of quality layers. In the current chapter, the making of the scaler itself
will be described.

5.1.1 JPEG 2000 Scaler Design Goals

The JPEG 2000 scaler was implemented with a few design criteria in mind. It
needed to be fast in order to make it usable in a realtime scenario. It needed to
be flexible, such that it could be extended with features needed in a real world
scenario. Last, it had to be possible to write the program by one person in a fairly
short period of time. By upholding these criteria, the resulting program would
represent a prototype that could be used in the real world, and at the same time
be completed in a short period of time.

To fulfil the last two criteria, it was decided to implement the most basic features
first, and to make the code extendible by leaving certain functions declared, but
without implementation. As an example, the scaler only works with the LRCP
progression order, but by filling in content in an existing function, any other pro-
gression order can be supported. Equally, every marker segment in the JPEG
2000 codestream has predefined classes for storing information, and functions for
reading in the information from the codestream. All that is needed is to fill in the
read functions.

The criteria that the scaler should be fast was fulfilled by mainly two decisions.
First, it was decided to write the scaler in the C++ programming language. C++
is a fairly low level language, and the compiled executables are often very efficient.
Second, it was decided to add the start-of-packet marker to the JPEG 2000 bit-
stream, such that packet headers didn’t need to be decoded. This decision was
inspired by the implementation of the JPEG 2000 scaler described in chapter 3,
where the authors state that ”deep parsing” may be too slow for a realtime appli-
cation [7]. This is of course highly dependent on the type of hardware used, so it
is not a valid argument in all cases. More importantly, though, the usage of SOP
markers made the implementation simpler, and quicker to implement. In future
work, it could be interesting to do an implementation without SOP markers, and
see if better results could be achieved. This might be possible due to the 6 bytes
of space a SOP marker require.

18

5.1.2 JPEG 2000 Scaler Algorithm

In this section, the algorithm employed by the scaler will be described. The JPEG
2000 scaler works by discarding quality layers from an already encoded JPEG 2000
codestream (e.g. a .jpc image file encoded by the JasPer codec). It is important
to note that the scaler does not encode or decode the image in any way, it exists
purely as a middleman between the encoder and the decoder.

Figure 5.1: Flowchart describing the JPEG 2000 scaler.

An overview of the algorithm can be seen in figure 5.1. The algorithm works as
follows:

Start

The program starts off by reading the entire image into a buffer. For all later
processing, it is this buffer that is accessed. In a streaming application, such a
procedure would introduce a delay of one frame plus the time it takes to process
the image. It is still the favoured method when dealing with files on a hard

19

drive, though, since reading in bytes one at a time from a file is a very slow
procedure.

Before moving on to parsing the main header, the image is scanned for the start-of-
codestream (SOC) marker. All JPEG 2000 codestreams starts with this marker.

Parse main header

The main header is parsed for information about the image, such as image size,
number of components (colors), number of tiles, number of quality layers, and
much more. The information is stored for later use.

Parse tile header

The tile header for the current tile is parsed. The tile header contains informa-
tion about the bitstream, such as its size. It may also contain the same type of
information as the main header. In such a case it overrides the information from
the main header. This makes it possible for a tile to be encoded with separate
parameter sets. The main header acts as the default in case the tile header does
not contain any new information. Any new information in the tile header is stored
for later used.

Parse bitstream

For each tile header, there is a corresponding bitstream. To parse the bitstream,
information taken from the main and tile header is used. An example is the pro-
gression order used. In the scaler, only the LRCP progression order is supported.
With this progression order, the lower layers come first in the bitstream. By using
four for-loops, each value of L (layers), R (resolutions), C (components), and P
(positions) may be looped through. For all such combinations of L, R, C, and
P, a JPEG 2000 packet header must be decoded. However, in the current imple-
mentation, the decoding of the packet headers is bypassed by using the start-of-
packet (SOP) marker. The bitstream is scanned until the next SOP marker occurs,
thereby traversing the entire contents of a packet without decoding it. The bit-
stream position of each layer is found by recording the start and end positions of
each layer loop. Pseudocode for this parsing procedure is provided below.

Write new file

When all tiles have been parsed, the output file is written. The positions of each
layer in the bitstream is scanned (as recorded by the bitstream parsing), and by
subtracting the start position from the end position, the size of the layer in bytes is
acquired. The maximum number of layers possible without going over the target
image size is then calculated, taking into account the size of the main and tile
headers. The main and tile headers in the image buffer is updated with the new

20

Algorithm 2 Pseudocode describing the parsing of the bitstream

for all layers do
record start of layer position
for all resolution levels do

for all components do
for all positions do

scan bitstream for the next SOP marker
end for

end for
end for
record end of layer position

end for

information, such as the new number of layers, and the new sizes of the bitstreams.
Finally the buffer is modified such that layers higher than specified is discarded.
The buffer is then written to the output file.

5.2 Experiments conducted with the JPEG 2000

scaler

Making the JPEG 2000 scaler made it possible to learn more about the limitations
of the scalability feature, and to make sure that it is used to its fullest potential.
The following sections describes the experiments that was conducted with the
JPEG 2000 scaler, and what could be learned from them. In the results (chapter
6) later in this report, the results from these experiments will be presented.

5.2.1 Choosing the number of quality layers

In order to choose the right number of quality layers, it is first necessary to un-
derstand the limitations of scaled compression. After all, why isn’t it possible to
specify a huge number of quality layers, and therefore make it possible to extract
an almost arbitrary bitrate from an image? Doing this without any sort of cost
would be ideal, since it would achieve the exact same quality as compressing the
image directly down to the desired bitrate. Scalability doesn’t come without a
cost, however, which will be explained below.

21

Comparison of direct and scaled compression

Using scaled compression to compress down to any point in between two layers
will always yield an image with the bitrate defined by the lowest of the two layers.
Direct compression will therefore outperform scaled compression more and more
the farther from a layer boundary the desired bitrate lies. This effect is illustrated
on the left side of figure 5.2. When the bitrate becomes high enough to cross a
layer boundary, the whole layer will be included in the resulting image, and the
gain from direct compression will rapidly decrease.

As this process continues to higher and higher bitrates (and therefore including
more and more layers), the overhead associated with the increased number of layers
will increase. This overhead consists of an increased number of packet headers and
start-of-packet (SOP) markers. Due to this overhead, direct compression will get
a higher and higher gain over scaled compression as the number of layers increase.
However, as a counter-effect, the higher bitrates will also make the perceptual gain
from direct compression smaller and smaller (this is because it is more difficult to
spot quality differences at low compression).

To further complicate things, a higher total number of layers makes the distance
from layer to layer smaller (see right side of figure 5.2). The gain from direct
compression will therefore not have the space to grow as large between two layers
as it did with a smaller total number of layers.

It is important to note that, so far, it is assumed that that the quality layers are
equally spaced in terms of bitrate. This will also be the assumption during the rest
of the report. However, it is possible that an unequal spacing is a better option,
such that all the peaks shown in figure 5.2 would be of equal magnitude. Doing
it this way corresponds to an equal spacing in terms of quality. The reason why
this is not done is because the equal spacing in terms of quality would be different
depending on the content of the image. An approximation could be made, but
it is uncertain if it would work, and it would most certainly be very difficult to
implement.

Procedure for finding the optimal number of layers

Taking the previous considerations into account, there are at least two ways to
choose an appropriate number of layers. Both are based on the fact that direct
compression yields by default the best achievable quality. The first method is
to look at different total numbers of layers inside the desired bitrate range, and
choose the one where the average gains from direct compression is the smallest.

22

Figure 5.2: To the left: Few layers means that the distance between each layer is
large, and that the direct compression reaches a large gain over scaled compression
before the scaled compression can keep up. When the bitrate increases, the gains
fast become less noticeable since the overhead is not great compared to the bitrate.
To the right: The distance between two layers is small, and the gains from direct
compression does not become very large in between two layers. As the bitrate
increases, the overhead associated with the number of layers increase quickly, and
direct compression gains more and more on the scaled compression.

Similarly, it is also possible to choose the one where the maximum gains from
direct compression is the smallest. The latter is considered the safest choice, since
it will make the direct compression gains differ less across the desired bitrate range.
In this project, it was therefore decided to minimize the maximum gain from direct
compression. The maximum gain can be observed in figure 5.2, just before each
layer boundary.

The reason why it is possible to minimize the maximum gain from direct compres-
sion is because of the crossing point between increased overhead, and decreased
distance between layers, as the number of layers increases. This point is illustrated
in figure 5.3. The total gain from direct compression is the sum of these two con-
tributions, and since they move in opposite directions, a minima is produced at a
certain number of layers.

There is also another subtle point which has not been discussed yet, but has to
be taken into account when looking for the optimal number of layers, and that is
the increased encoding time required when producing more layers. The available
software and hardware that is used for encoding, along with the requirements of
the application, therefore defines an upper limit to the number of layers that can
be used. This limitation is further discussed in chapter about realtime concerns
5.2.2.

23

Figure 5.3: The crossing point between increased overhead, and decreased dis-
tance between layers, as the number of layers increases. The sum of these effects
contribute to the gain in direct compression compared to scaled compression.

Practical implementation of the optimization procedure

In practice, the optimization procedure was done by comparing the SSIM values of
direct and scaled compression on a representative set of images. Equation 2.3 was
used for the comparison. SSIM was chosen over PSNR in order to better mimic
the subjective quality difference. For more information about SSIM and PSNR,
the reader is referred to the theory section of this report. The SSIM index was
calculated by using a MATLAB script made by the author of the original SSIM
paper [5]. Only default settings were used.

The minimization was done with a MATLAB script. The script generated different
numbers of equally spaced quality layers for a set of 30 test images. From these
images, the JPEG 2000 scaler was used to extract different bitrates. These bitrates
were selected such that they were always one byte less than each of the layer
boundaries, thereby forcing the scaler to throw away an entire layer each time.
The resulting gain from direct compression over scaled compression, measured
by equation 2.3, was recorded at the bitrate which generated the largest gain
(averaged over the 30 test images). Put differently, the script found the largest
peak in figure 5.2. This procedure produced a numerical value for each number of
layers, describing the largest possible gain from direct compression for the bitrate
range used. The number of layers to be used for this bitrate range could then be

24

chosen according to which of them produced the lowest maximal gain from direct
compression.

The test images used for the procedure were taken from the ”Urban” section of
the CSIQ database [10]. The reason why these images were chosen for the test was
because they have successfully been used to test subjective image quality before
[10]. In addition to this, the content in the images are quite varied, which makes
the test applicable in more situations. Furthermore the images came in a relatively
small resolution (512x512), which shortens processing times.

The optimization procedure was used to decide on the number of quality layers
to use in the subjective test described in chapter 5.3. In that test, the resolution
of the video was 1280x720 @ 25fps. To be able to use the previously described
test images, the bitrate range used in the minimization procedure were modified
so that they corresponded to the same amount of compression as the bitrates used
for the subjective test. This was done very easily by modifying the bitrate by the
following factor: 512x512

1280x720
.

5.2.2 Realtime concerns

When using the scalability feature in JPEG 2000 for video, there are two places
where speed might be an issue. The first is at the encoder itself, and second at
the extraction of quality layers. The extraction of quality layers is a relatively
lightweight task, consisting of a one pass parse of the bitstream, and an update
of the main and tile-part headers. In the case where one uses the start-of-packet
marker for identifying the packets, the packet headers need not even be decoded.
More concerning is the speed of the encoder itself. To achieve scalability, the
encoder needs to decide on optimal truncation points for each quality layer. More-
over, for each new layer, a number of extra packets has to be assembled, and
therefore extra packet headers needs to be encoded as well. The number of ex-
tra packets needed depends on the number of resolution levels, components, and
precincts (see equation 5.1).

nPackets = nLayers ∗ nResolutions ∗ nComponents ∗ nPrecincts (5.1)

As mentioned in section 5.2.1, the number of quality layers will be bounded above
by the encoding speed. For a given application, one therefore has to look at
the expected number of resolution levels, components, and precincts, and at the
available hardware/software, and of course the material that shall be compressed,
to be able to find the upper limit to the number of quality layers.

25

To investigate the relationship between encoding speed and number of layers in
practice, the image database described in section 5.2.1 was used. The average
time it took to encode these images was recorded for different numbers of layers.
A second test was also run, where four precincts were included. This made it
possible to investigate the effect of equation 5.1. The results of this test can be
found in chapter 6.2.

5.2.3 A special case: Lossless

For completeness, it is necessary to discuss one particular case where the proce-
dures in this chapter falls short. Consider an image compressed with a rate of
0.9 (i.e. compressing down to 90 % of the size of the original). Depending on
the complexity of the image, the JPEG 2000 codec is likely to compress the im-
age even more efficiently than this, thereby reaching a near lossless compression
(depending on the type of transform and quantization used). Another example
is a one-color image, where the codec is likely to compress more efficiently than
the specified rate. However, independently of the efficiency of the compression,
the specified number of quality layers still has to be generated. In this case, the
layers above the ”lossless rate” consist of empty packets, signalled by a single bit
in the packet header. Since the packet information is byte-aligned, a whole byte
is still produced. In addition, the implementation used in this project uses the
start-of-packet markers, consisting of 6 bytes each. The size of such an ”empty”
layer is therefore described in equation 5.2, given in bytes. A typical example
with 5 resolutions, 3 components and 1 precinct gives 105 bytes for each empty
layer.

szEmptyLayer = nResolutions ∗ nComponents ∗ nPrecincts ∗ 7 (5.2)

In most cases, this extra overhead is not important since the codec is already
compressing way more efficiently than was what assumed when specifying the
number and size of the layers. However, it does illustrate that one should not
uncritically fill a JPEG 2000 codestream with quality layers, without considering
the actual needs first.

5.3 Subjective test

The following chapters will describe how and why a subjective test was run.

26

As mentioned in the problem statement, one of the goals of this project was to
examine in closer detail how sudden reductions in video bitrate affects the viewer.
This information could in turn be useful when designing rate control systems for
use in networks. The effects of such drops in bitrate may or may not be difficult
to capture with objective quality metrics such as PSNR and SSIM. Therefore, it
was decided to run a subjective test. The results from this test will be compared
to the objective metrics in chapter 6.3.

When viewing a video clip containing a sudden reduction in bitrate, the reduction
is naturally evaluated as causing a certain level of annoyance to the viewer. The
overall quality of the clip is of less interest since it will depend on more factors
than just the drop in bitrate, such as the overall bitrate used. The aim of the
subjective test was therefore to find the point where the viewer would find the
reduction in bitrate noticeable or annoying.

Before working on the test, a research protocol was written, explaining the back-
ground for the test, the testing procedure, and the test parameters. This protocol
was approved by my supervisor before the test was run. The final version of this
protocol can be found in the appendix A.2.

5.3.1 Summary of the test

This chapter will summarize the subjective testing procedure. A more elaborate
explanation can be found in the subsequent chapters.

The subjective test consisted of 45 blocks (the five first were for stabilization
only), each consisting of a reference clip and a test clip in succession. The test
clip contained the same bitrate as the reference, except for the middle of the clip,
where it went through a sudden reduction. This was immediately followed by a
linear increase, lasting two seconds, back up to the reference bitrate. Altogether
seven different reductions in bitrate were tested, along with the reference itself.
The participants in the test were asked to rate the reductions in bitrate on the
impairment scale shown in table 5.1.

For the practical purposes of the test, the standardized testing procedures de-
scribed in ITU-R BT.500 ”Methodology for the subjective assessment of the qual-
ity of television pictures” [11] was used. More specifically, the DSIS (The double-
stimulus impairment scale) method was used. An extension to this standardized
method, ITU-R BT.710 ”Subjective Assessment Methods for Image Quality in
High-definition Television” [12], was also used were applicable.

27

Table 5.1: The impairment scale used in the DSIS method [11].

5 Imperceptible
4 Perceptible, but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

5.3.2 Test set-up

The following sections will explain how the test was set up. The actual software
used to generate the test is described in chapter 5.3.3.

The test room and equipment

The following settings were chosen in order to match the laboratory environment
described in ITU-R BT.500 [11] and BT.710 [12] as close as possible.

The test room used was ”Café Media” at NTNU. Inside this room, a testing area
was set up, surrounded by thick blue curtains, such that almost no light entered.
The TV used for the test was a 50 inch plasma screen (Samsung PS50C687). All
signal processing in the TV was turned off during the test. The brightness and
contrast of the TV was set up using PLUGE for HDTV [13]. This resulted in a
screen luminance of 70 cd/m2 when displaying peak white (measured with a Konica
Minolta LS-100 Luminance meter). A light bulb was set up behind the TV with
a luminance of approximately 0.15 of the peak screen luminance. This could not
be accurately measured, however, due to lack of equipment. The chromaticity of
the light was not measured. To display the testing sequence, the TV was hooked
up to a computer outside the testing area via HDMI. The screen resolution set in
the computer matched the resolution of the test sequence. The videolan media
player [17] was used for playback. Three chairs were placed 180 cm from the TV
screen, corresponding to a viewing distance of three times the height of the screen,
as recommended in ITU-R BT.710 [12]. Viewers sitting in any of the three chairs
were within +/-30 degrees horizontally from the center of the display. See figure
5.4 for a picture of the testing area. More pictures of the testing area can be found
in the appendix A.3.

Participants

A total of 21 people participated in the subjective test, well over the recommended
minimum of 15 participants [11]. Of these, six were women. All of the participants
were university students in their twenties. Six wore glasses or lenses, but none
of them had any other particular problems with vision (although this was not

28

Figure 5.4: Picture taken inside the test room from behind the chairs. The curtains
on the left side was closed during the test.

measured). All participants received both written and oral instructions about
the testing procedure, and any questions the participants had was answered prior
to the test. The written instructions can be found in the appendix A.4. The
participants gave their votes by filling out a voting paper during the test. This
paper can also be found in the appendix A.5.

Source material

The SVT high definition multi format test set was chosen as source material for
the subjective test [14]. This is a set of five video clips, CrowdRun, ParkJoy,
DucksTakeOff, IntoTree, OldTownCross, all 10 seconds long. They are described
as demanding, but not unduly so. CrowdRun, ParkJoy, and DucksTakeOff are
described as having a difficult coding difficulty. IntoTree and OldTownCross are
described as having an easy coding difficulty. The set was chosen because the
material has been assembled for the purpose of video quality testing (and therefore
is of high quality), and because the content represents a relatively large range of
test situations for such a small duration. The ParkJoy sequence, for example, is a
sequence with fast movement, the CrowdRun is a sequence with a lot of movement
and a lot of detail, while the OldTownCross and DucksTakeOff sequences are slower
and less detailed. The fact that the sequences are so different will reflect in the
subjective test results.

29

A snapshot of the parkjoy sequence (both reference and impaired) can be seen in
figure 5.5.

Figure 5.5: Snapshots from the parkjoy sequence. On the top is the reference clip,
and on the bottom the lowest drop in bitrate is shown.

Preprocessing of the source material

For the test, it was chosen to use a resolution of 1280x720, with a framerate of
25 frames per second. This choice was made in order to have the largest possible
quality, while still being able to play back the raw video without stuttering. The
source material was acquired as 500 still frames per clip (corresponding to a fram-
erate of 50 frames per second), each in 16 bit sgi image format. Every other frame
was dropped such that the framerate equalled 25 frames per second. The images
were to be encoded by the JasPer JPEG 2000 encoder [8], which does not handle

30

sgi images. All the frames were therefore converted to the bitmap image format
(bmp), using the ImageMagick image coding software [16]. This means that the
images went from a 16 bit precision to 8 bit precision.

Test bitrates

It is recommended in ITU-R BT.500 [11] that the test itself doesn’t last for more
than 30 minutes, including any explanations and preliminaries. To stay within
this limit, it was decided to use seven different bitrates for the test, along with
the reference bitrate itself. The bitrates chosen were 2, 4, 6, 10, 15, 20, 25, and
30 Mbits per second, the last one being the reference itself. In a test clip, the
bitrate would drop from the reference bitrate to one of these bitrates, and then
increase linearly back up to the reference bitrate over a time period of two seconds.
This procedure always happened in the middle of the test clip (from frame 100 to
149, where there were 251 frames in total). These drops in bitrate were chosen in
order to span out the five point impairment scale as much as possible (see table
5.1), though this decision was only based on the subjective opinion of the author
himself.

The duration of the linear increase back up to the reference bitrate was set to two
seconds because of results presented in the master thesis currently being written
by S. Tokheim and M. Markman [2], where it is found that most capacity drops in
the public internet doesn’t last for longer than about 200 ms. The time interval
of two seconds used in this project is a good amount longer than this. However,
because the bitrate is increasing linearly immediately after the drop, the time spent
at the lowest bitrate is significantly less than two seconds (see figure 5.6). The two
second interval allows for a worse behaviour than in [2], and at the same time a
smooth increase back up to the reference rate. This will ensure that it is the drop
itself that will be deemed annoying, not the increase.

The reference bitrate of 30 Mbits per second was chosen mainly because it rep-
resents the minimum quality needed for acceptable viewing with the particular
resolution and bitrate used (this is the opinion of the author). It also represents a
bitrate that is low enough to be streamed over e.g. the Internet (more information
about using the public Internet for broadcasting can be found in [2]).

The lowest drop in bitrate can be observed in the snapshot of the parkjoy sequence
in figure 5.5. This is a scaled down version of the snapshot, so the actual quality
will of course seem better than it actually is.

31

Figure 5.6: The actual bitrates produced when increasing the bitrates over two
seconds (corresponding to 50 frames at 25 fps). This example shows the increase
from 15 to 30 Mbits/s. The bitrate is increased in discrete steps defined by the
quality layers. The bitrate is at its lowest for the duration of only 3 frames, which
correspond to 120 ms.

32

Test timing

As recommended in the DSIS method [11], each testing condition was preceded
by the unimpaired clip (reference) for 10 seconds, plus a mid-gray-level image
for 3 seconds. The test condition (a clip containing a drop in bitrate), was then
displayed for 10 seconds, followed by 7 seconds of a mid-grey-level image containing
a number describing the number of the test condition. This number could then be
compared to the number on the voting paper.

Overview of the test timing:

• 10s reference clip

• 3s mid-grey-level image

• 10s test condition (the video clip containing the drop in bitrate)

• 7s mid-grey-level image containing the test condition number

Test duration

Using the 8 different bitrates on the 5 different source clips gave a total of 40 clips
to be shown in the test. The order of these were randomized. Furthermore, it was
ensured that no two pairs of clips used the same source clip. This is in accordance
with ITU-R BT.500 [11]. In addition to the 40 clips in the test, five more clips
were added in the start of the test as a stabilizer. The result from these five clips
were discarded. All together, the test had a duration of 22 minutes and 33 seconds
(45 test blocks of 30 seconds each gives a total duration of 22 minutes and 30
seconds. The 3 extra seconds was because each source clip had 251 frames instead
of 250, so the duration of a source clip was actually 10.04 seconds instead of 10
seconds).

It should be noted that only one test sequence was made, and so each participant
viewed the same test. Ideally, the order should have been randomized for each
participant. This was not possible due to the amount of time it took to generate
the test.

5.3.3 Description of the software used to generate the test

The program used for generating the subjective test was implemented in MATLAB.
To call the JPEG 2000 scaler implemented in this project, and the JasPer JPEG
2000 codec [8], the MATLAB function ”system” was used.

First of all, the source sequences were encoded into the JPEG 2000 codestream
format (jpc) [1]. The JasPer codec [8] was used for this purpose, using the following

33

command line (simplified):

jasper --input i.bmp --output o.jpc -O rate=m -O sop -O prg=lrcp

-O numrlvls=5 -O ilyrrates=r

This command line specifies an input and output image, a max rate (m), the
usage of the start of packet marker (sop), the usage of the lrcp progression order,
the number of resolution levels (5), and intermediate rates less than the max rate
(r). The max rate, m, was set to correspond to 30 Mbits per second, while the
intermediate rates, r, was a comma-separated list of 39 rates equally spaced from 2
Mbits per second up to, but not including, 30 Mbits per second. This means that,
in total, there were 40 quality layers embedded into the bitstream. This command
was performed on each of the images in the source clips.

After encoding, the resulting images were passed through the JPEG 2000 scaler
with the following command line (simplified):

Jp2parser -i i.jpc -o o.jpc -b r

This command line specifies an input and output image, and a target size in bytes.
The output image is as close to the target size as possible without going over. This
command was performed on all encoded images with different target sizes in order
to achieve the test bitrates discussed earlier. Here it must be noted that the test
bitrates could not be achieved exactly, since only an integer number of quality
layers may be used. The same goes for the linear increase in bitrate back up to
the reference bitrate, which happens in steps defined by the quality layers (see also
figure 5.6).

In addition to this, mid-grey-level images was also generated. Some of these images
required numbering as well. This was done with the following command line
(simplified):

convert i.bmp -font Arial -pointsize 150 -gravity Center

-fill white -annotate 0 n o.jpc

This command line puts a white coloured number, n, in the middle of the input
picture. In this case, the input picture was a mid-level grey image. The convert
program is included in the free ImageMagick image software [16].

All the generated images were then numbered from 1 and up, and put in a separate
folder. This made it possible to assemble the entire sequence of images using ffmpeg
[15]. The following command line was used to achieve this:

ffmpeg -f image2 -r 25 -i Temp/%%05d.jpc -pix_fmt yuv420p

-vcodec rawvideo -an out.avi

34

Figure 5.7: Grey screen with number on it, as shown at the end of each test
sequence.

This command line specifies that images from the folder Temp numbered from
1 and up, with up to 5 preceding zeros, having a framerate of 25 frames per
second, should be raw-encoded with the yuv420p pixel format, and that no sound
is included. The yuv420p pixel format means that the chroma components of the
color space have been subsampled by a factor of two. This choice was made in
order to get correct colors during playback in the Videolan media player [17].

5.3.4 Analysis of the test results

In order to analyse the results from the test, the method described in ITU-R
BT.500 [11] was used. First, the mean scores over all the observers was calculated,
yielding altogether 40 numbers, one for each combination of test bitrate and source
clip. The 95 % confidence interval was calculated for each of the values, using
equation 5.3.

δsb = 1.96
Ssb√
N

(5.3)

Where N was the total number of observers, s is the subscript for source clip, and
b is the subscript for bitrate. Ssb is the standard deviation, and can be calculated
by equation 5.4.

Ssb =

√√√√ N∑
i=1

(meansb − votesbi)2
N − 1

(5.4)

The calculated confidence intervals are valid as long as the distribution of votes
are normal. The β2 test was run to check for this.

35

β2sb =
m4

m2
2

(5.5)

where

mx =

∑N
i=1(votesbi −meansb)

x

N
(5.6)

If β was between 2 and 4, the distribution was assumed to be normal.

ITU-R BT.500 also recommends the removal of outliers, but only if the number of
observers are less than 20. In the test described here, 21 observers participated,
and so no outliers were removed.

5.3.5 Sources for error

Because a subjective test is dependent on human observers, there are several
sources of error that could affect the results. Things such as light entering the
test area, and noise from the outside hallway, could both provide a source of dis-
traction. To remedy this, the test area was made sure to be properly closed during
the test session. The noise from the hallway could not be controlled, but during
the test sessions it was noted that the noise was minimal.

Another source of distraction was the other observers, as there were up to three
observers per test session. They were all told to be silent during the test, however,
which to the authors knowledge was uphold.

In the test set up, the background luminance and chromaticity could not be mea-
sured. It is believed that this would be of greater importance if the results were to
be compared with another laboratory with the same set up, but in this case the re-
sults stand on their own, and it is believed that they are not greatly affected.

In addition to the environmental effects discussed so far, the test itself could be
a source of errors. The most obvious things that could be improved were the
number of observers, source clips, and the number of test bitrates. Increasing
these parameters would give more fine grained and concentrated results. There is
always this compromise between time and resources required, and the size of the
test.

A less obvious thing that could affect the results was the way the bitrates were
increased after the drop. A linear increase over two seconds means that the quality
quickly returns to a higher level. A moment of not paying attention could make

36

the observer not notice the drop at all. The observers were informed about the
position of the drops in bitrate to help minimize this effect. In addition, it is highly
unlikely that more than a few of the 21 observers would let the drops in bitrate
go unnoticed per test.

The goal of the subjective test was to investigate what it takes in terms of drops in
quality or bitrate before an observer notices it or finds it annoying. It is problematic
to measure this in only 10 second tests, since a drop in bitrate might be more
annoying if it occurs often, than if it occurs, say, only every 30 minutes. It might
also be dependent on the type of content shown, and on which device it is viewed.
Another problem is that the reference bitrates were fixed at 30 Mbits/s. At this
bitrate, the test clips were already noticeable impaired. This means that the noise
induced by making the bitrate drop could be masked by the noise that was already
there. These types of effects can only be accounted for by doing more tests, and
especially by testing a longer test clip simulating a real world viewing situation.
The results from this project should therefore not be extended too far beyond the
context in which the test was run, and should be used with care.

37

Chapter 6

Results And Discussion

6.1 Number of layers

In this chapter, results from the number-of-layers optimization procedure is pre-
sented.

In figure 6.1, the results are shown for the bitrate range used in the subjective
test (2 to 30 Mbits/s). The y axis in the plot shows the maximum gain in direct
compression over scaled compression, measured with equation 2.3 (the equation
used for comparing two SSIM values). This means that, if the SSIM index was a
perfect subjective quality metric, the y axis would show the subjective gain factor
in favour of direct compression. The higher the value, the worse the scaled image
would perform in comparison to a directly compressed image.

It is seen that when using a total of 40 equally spaced quality layers, direct com-
pression performs approximately 18 percent better than the scaled compression in
the worst case. This is the best worst-case behaviour for this bitrate range.

Since 40 quality layers represents the lowest maximal gain from direct compression,
it was used in the subjective test. According to figure 6.1, though, it seems that
the loss by increasing the number of layers from 40 and up is not that great, so why
stop at 40 layers? It was decided that 40 layers already gives a fairly fine grained
control of the bitrate (a granularity of 30−2

40
= 0.7Mbits/s), and that it would be

unnecessary to accept any more losses, however small. The encoding time was
also kept shorter by staying at 40 layers. In addition to this, the equation used
to compare SSIM values (equation 2.3) is not very well tested. The actual values
produced must therefore not be given too much attention. The fact that there is
a minimum value is still valid, though, as explained in chapter 2.1.2.

38

At around 10 layers, there seems to be a spike in the gain factor. The reason why
such spikes might occur is because the layer boundaries are placed on different
bitrates depending on the number of layers used. Because of these differing po-
sitions, the gain from direct compression over scaled compression will also differ.
Regardless of the reason for the spike, though, the subjective test used a number
of layers that were far from the spiked area. The results from the subjective test
should therefore not be affected.

Figure 6.1: Maximum direct compression gains over scaled compression for differ-
ent total numbers of equally spaced layers. The bitrates (2-30 Mbits/s) are for a
resolution of 1280x720 at 25 frames per second.

As a sanity check, it is worth looking into the different number of layers, and see
what the actual gain factors are for each of the bitrates in the range, not just the
worst-case one. In figure 6.2, 6.3, and 6.4, a total of 10, 40, and 80 quality layers
are used, all inside the range of 2 to 30 Mbits/s. A total of 100 equally spaced
bitrates in the range were used in order to generate the graph. Some deviation
from the actual values will therefore occur. It is important to keep in mind that
the graphs does not have the same limits on the y-axes. This was done in order
to make it easier to examine the details of the curves.

As expected, a low total number of layers (figure 6.2) yields large distances between
layers, and the gain factor will grow large in between. As the total number of
layers increases (figure 6.3 and 6.4), the distance between layers decreases, but
the overhead associated with the increased number of layers increases. The worst-
case behaviour is therefore minimized somewhere in the middle. In this case, it is

39

minimized at 40 layers.

Figure 6.2: The direct compression gain factors (measured in SSIM) for each
bitrate in the range. 10 quality layers are used.

Figure 6.3: The direct compression gain factors (measured in SSIM) for each
bitrate in the range. 40 quality layers are used.

40

Figure 6.4: The direct compression gain factors (measured in SSIM) for each
bitrate in the range. 80 quality layers are used.

41

In figure 6.5, the results from the optimization procedure are shown for another
bitrate range. This time the bitrates correspond to 10 Mbits/s and 30 Mbits/s, at a
resolution of 1920x1080 and 24 frames per second. Here the result is quite different
from before. The best worst-case behaviour is found at around 15 layers, and here
the direct compression is only about 12 percent better than scaled compression.
This illustrates that the optimal number of layers is highly dependent on the bitrate
range (or more accurately, the compression range).

Figure 6.5: Maximum direct compression gains over scaled compression for differ-
ent total numbers of equally spaced layers. The bitrates (10-30 Mbits/s) are for a
resolution of 1920x1080 at 24 frames per second.

6.2 Speed test

The results from the speed test is shown in figure 6.6. As expected, the encoding
time increases as the numbers of layers to encode increases. This fact is magnified
by using several precincts as well. This is essentially a confirmation that it is not
only the truncation point decision-making that takes time, but also the encoding
of packet headers, and placing the packets in the bitstream (since more precincts
require more packets; see equation 5.1). The actual number of seconds taken to
encode is very dependent on the available hardware, and the implementation of
the software, so the number of seconds presented here is only relative to those
dependencies. The most important thing to take away from the curve is that

42

the number of layers to use is dependent on the application. If the application
requires a large amount of precincts or other progression types, the encoding time
will increase faster as the number of layers increase. This puts a cap on how
many layers one can use, independent of the optimization procedure described
earlier.

As for the figure itself, it is not a perfectly straight line as might have been ex-
pected. This is because the test conditions couldn’t be controlled very accurately.
For example, the JasPer JPEG 2000 encoder executable was called by the MAT-
LAB ”system” function. This function is responsible for setting up a new process
for the executable. The time this takes is dependent on the current situation of the
operating system, thereby making it difficult to get consistent time measurements.
The times presented here should therefore be taken only as a guideline to how
encoding time evolves as the number of layers increases.

Figure 6.6: Encoding speeds for different numbers of layers. A second measurement
using 4 precincts is also included.

43

6.3 Results from subjective test

In order to present the results from the subjective test in a reasonable amount of
space, figures from only two of the source clips will be presented. The clips chosen
are CrowdRun and OldTownCross. CrowdRun represents the worst subjective
results, while OldTownCross represents the average behaviour. The figures for the
three other source clips can be found in appendix A.1. Average results over all the
source clips will not be shown. This is because the number of source clips is low,
and the results would therefore deviate more as a result of the differences in the
source clips, than the differences in the subjective evaluations.

Figure 6.7 and 6.8 show the mean score given by the observers, along with a line
segment representing the 95% confidence interval. The scores are given on the
impairment scale in table 5.1 (5 representing ”imperceptible”, and 1 represent-
ing ”very annoying”). The bitrates in the figures are the target bitrates for the
sudden drop that was described in the methodology (chapter 5.3). In table 6.1,
the numerical mean values is shown for all the source clips and bitrates. For the
OldTownCross clip, it is seen that the majority of the observers found the drop
in bitrate imperceptible as long as the target bitrate was kept above 10 Mbits/s.
At 10 Mbits/s, the majority of observers found the drop in bitrate somewhere
between ”Perceptible, but not annoying”, and ”Slightly annoying”. For the Crow-
dRun clip, the point at which the drop in bitrate became ”Perceptible, but not
annoying” was approximately 15 Mbits/s.

Bitrate [Mbits/s] ParkJoy OldTownCross IntoTre DucksTakeOff CrowdRun
2 1.7143 2.0476 2.0000 2.0952 1.5238
4 2.1905 2.5238 2.0476 2.4762 1.9524
6 2.6190 2.6190 2.6190 3.4762 2.0476
10 3.4762 3.6667 3.6667 4.4762 2.9524
15 4.4762 4.7619 4.5714 4.6667 3.6667
20 4.7143 4.8095 4.8095 4.9524 4.4762
25 4.7143 4.8095 4.8571 4.9048 4.8095
30 4.8095 4.7143 4.9524 4.8571 4.8095

Table 6.1: Mean score value for each source clip and test bitrate.

44

Figure 6.7: Mean grades per bitrate for the OldTownCross clip. The line segments
marks the 95 % confidence intervals.

Figure 6.8: Mean grades per bitrate for the CrowdRun clip. The line segments
marks the 95 % confidence intervals.

45

The confidence intervals shown are quite small relative to the grading scale, mean-
ing that there is a relatively clearly marked area where the drop in bitrate becomes
”Perceptible, but not annoying”. In table 6.2 the β2 values for each combination
of bitrate and source clip is shown. A value between 2 and 4 indicates a normal
distribution. It is seen that most of the values are in this range, but some of them
deviate quite a bit. Figure 6.9 and 6.10 shows the distribution of the results for
each bitrate for the the CrowdRun and OldTownCross sequences. Here it is seen
that the results are quite concentrated at high bitrates. The fact that the results
are so concentrated at some bitrates could also explain why they are not normally
distributed.

Bitrate [Mbits/s] ParkJoy OldTownCross IntoTre DucksTakeOff CrowdRun
2 4.5332 2.9846 2.2969 2.9854 3.7508
4 2.4687 2.6693 1.9468 2.7884 3.3791
6 2.1170 2.6193 1.9111 2.4091 1.7495
10 1.8996 2.8711 2.2232 1.0091 2.6765
15 2.6478 6.6591 5.1899 4.5355 2.1694
20 5.4774 8.8815 3.4853 19.050 2.4209
25 5.4774 8.8815 5.1667 8.6053 3.4853
30 3.4853 5.2004 19.050 5.1667 8.8815

Table 6.2: β2 values for the subjective score values for the different combinations of
bitrate and source clips. A value between 2 and 4 indicates a normal distribution.

46

Figure 6.9: The distribution of votes for each bitrate for the OldTownCross clip.

Figure 6.10: The distribution of votes for each bitrate for the CrowdRun clip.

47

In figure 6.11 and 6.12, the SSIM values for the two source clips are shown. More
precisely, they are the SSIM values for the first frames that experienced a drop
in bitrate. The values are calculated with respect to the reference bitrate (the
reference, 30 Mbits/s, is therefore not shown in the graphs). The numerical values
used for these graphs, along with the corresponding PSNR (Luma) values can be
found in appendix A.1. All SSIM values are calculated with the MATLAB script
made by the author of the original SSIM paper [5]. Only default parameters are
used.

The whole source clips were also compressed down to each test bitrate, and the
mean SSIM and PSNR (Luma) values was calculated over the entire source clips.
Tables for these values can be found in appendix A.1. It turned out that these val-
ues were very similar to those measured only at the frame with the drop in bitrate,
so they are not shown here (they were similar enough to not affect the discussion
presented here). This was done to confirm that nothing special happened at the
frame with the drop in bitrate.

As expected, the SSIM values steadily decrease as the bitrate decreases. In figure
6.7 and 6.8 it was observed that at the higher bitrates, the observers did not
notice the drops in bitrate. This means that, when it occurs in small drops, it
takes a certain amount of quality degradation for people to be able to notice
it. In tables 6.3, 6.4, and 6.5, the bitrates, subjective scores, and SSIM and
PSNR (Luma) values, are shown for three different areas, ”invisible”, ”visible”,
and ”annoying”. ”Invisible” is the area for which the confidence interval lies
entirely above ”Perceptible, but not annoying”. ”Visible” is the area which is not
”Invisible”, and the confidence interval lies entirely above ”Slightly annoying”.
”Annoying” is the area which is not ”visible” or ”invisible”. The table shows only
the occurrence closest to ”Perceptible, but not annoying” of each of these areas.
By grouping the values in such a way, it is hoped that any differences caused by
the content in the source clips themselves won’t affect how the objective metrics
perform.

It is interesting to see how much the values are still affected by the different source
clips. In the ParkJoy sequence, the drop in bitrate is invisible all the way down to
an SSIM value of 0.9265, while for OldTownCross, it has become annoying already
at 0.9403. This is a strong indication that SSIM is not a good tool to measure how
visible a sudden drop in bitrate is. As expected, PSNR fares no better, maybe
even worse. It is seen that the PSNR value for the ”Invisible” area varies by as
much as almost 10 dB.

48

Clip name Invisible
Mbits Score SSIM PSNR

CrowdRun 20 4.4762 0.9747 31.7310
OldTownCross 15 4.7619 0.9759 36.2039

ParkJoy 15 4.4762 0.9265 28.3083
IntoTree 15 4.5714 0.9496 36.3536

DucksTakeOff 10 4.4762 0.9305 26.8412

Table 6.3: Table showing the bitrates, subjective scores, SSIM, and PSNR (Luma),
in the invisible area.

Clip name Visible
Mbits Score SSIM PSNR

CrowdRun 15 3.6667 0.9526 29.2062
OldTownCross 10 3.6667 0.9615 32.7652

ParkJoy 10 3.6667 0.8957 25.4679
IntoTree 10 3.6667 0.9150 33.7381

DucksTakeOff 6 3.4762 0.9004 24.4569

Table 6.4: Table showing the bitrates, subjective scores, SSIM, and PSNR (Luma),
in the visible area.

Clip name Annoying
Mbits Score SSIM PSNR

CrowdRun 10 2.9524 0.9159 26.2180
OldTownCross 6 2.6190 0.9403 30.1200

ParkJoy 6 2.6190 0.8362 23.2726
IntoTree 6 2.6190 0.8766 31.5183

DucksTakeOff 4 2.4762 0.8299 23.2291

Table 6.5: Table showing the bitrates, subjective scores, SSIM, and PSNR (Luma),
in the annoying area.

49

It is especially interesting to note the results from the three test clips OldTown-
Cross, ParkJoy, and IntoTree. According to the observers in the test, it took
almost the same amount of drop in bitrate for them to notice it (the same holds
for the visible and annoying areas). This is in disagreement with the objective
quality measured in those same clips, as seen in table 6.3, where the SSIM values
varies from 0.9265 to 0.9759. At the annoying area (table 6.5) the SSIM values
vary even more, from 0.8362 to 0.9403. It seems, therefore, that it is not possible
to use SSIM or PSNR (Luma) to predict when a drop in bitrate becomes notice-
able. However, it is still clear from this test that the drop in bitrate has to have a
certain magnitude for it to be visible to the viewer, in this test at least 10 Mbits/s
as in the CrowdRun clip. The exact amount of drop in bitrate that is unnoticeable
to the viewer seems more difficult to estimate, at least with SSIM or PSNR.

Figure 6.11: SSIM index with respect to the reference bitrate for the OldTownCross
clip.

50

Figure 6.12: SSIM index with respect to the reference bitrate for the CrowdRun
clip.

51

The results found from the subjective test were not as expected. It was expected
that the objective quality metrics could, to a certain degree, tell how visible a
drop in bitrate was. Since this was not the case, it is worth asking if there could
have been any errors in the calculations. There is always the possibility of such
errors, but the values presented so far behave in such a way that it is unlikely they
are very far off. Both the SSIM and PSNR (Luma) values decrease as the bitrate
decreases. The decrease is also monotonic, as it should be. The same goes for the
results from the test itself. The degree of annoyance decreased in a way that was
expected, and most of the observers agreed on the results, as evidenced by the
highly concentrated scores. It is only when the objective metrics are compared
to the subjective ones that the results differ from what was expected. A reason
for this could be that the subjective scores are given on an annoyance scale rather
than a quality scale, and that therefore the objective quality metrics measure
something different. If this is indeed the case, it is still a surprise that the quality
at the dropped bitrate has so little predictive capability with respect to the degree
of annoyance. For future work, it would be very interesting to see if there are other
parameters that are better tools for measuring the visibility of drops in bitrate.
Possible parameters that could have an impact include the duration of the drop,
the way the bitrate is increased back up again, and the quality at the reference
bitrate.

52

Chapter 7

Conclusion

In this report, a method has been described that determines the optimal total
number of quality layers to embed into a JPEG 2000 codestream. The method
assumes equally spaced quality layers in terms of bitrate, and works by minimizing
the maximal difference between direct and scaled compression. For a bitrate range
of 2 to 30 Mbits/s and a video resolution of 1280x720 at 25 frames per second,
the optimal number of layers is found to be 40. This result is found by using a
newly implemented JPEG 2000 scaler. The scaler uses the start-of-packet marker
in order to parse the codestream. It is shown that the optimal total number of
quality layers is highly dependent on the desired bitrate range, and is capped
above by the speed of the encoder. This is because a JPEG 2000 encoder spends
more time embedding more quality layers in the stream. It is also shown how
this fact is magnified when using several progression types at the same time, e.g.
precincts.

The JPEG 2000 scaler was also used in the implementation of a subjective test.
The test was observed by 21 participants, who was asked to rate sudden drops
in bitrate on an annoyance scale. The reference bitrate was 30 Mbits/s, and the
test bitrates at the drops were 2, 4, 6, 10, 15, 20, and 25 Mbits/s. After a drop,
the bitrate was linearly increased back up to the reference bitrate over a time
period of two seconds. It was found that the bitrate had to be dropped down
to at least 20 Mbits/s before the drop became perceptible to the observers. In
one case, the bitrate could be dropped all the way down to 10 Mbits/s before it
became perceptible. SSIM and PSNR (Luma) values was calculated to see if there
was any correlation between the visibility of the drop in bitrate and the predicted
quality at the level of the drop. It was found that neither SSIM nor PSNR (Luma)
could predict the visibility of the drop. As an example, in one test clip the drop
became noticeable at an SSIM value of 0.9265, while another test was perceived

53

as slightly annoying already at an SSIM value of 0.9403. It is concluded that, as
expected, the bitrate will have to drop a certain amount before the drop becomes
perceptible. However, the exact amount is difficult to estimate, at least with the
metrics used in this project.

7.1 Future work

In the future, it can be interesting to see if an equally spaced number of quality
layers in terms of quality (as opposed to bitrate) would yield an even better pro-
cedure for choosing the number of layers. This might prove challenging, since the
spacing would be different depending on the content. In addition, a JPEG 2000
scaler could be made without the use of start-of-packet markers. This would be
interesting because it would remove the extra space required by those markers (6
bytes per marker).

It would also be interesting to investigate if there exist better parameters for
predicting the perception of drops in bitrate. Possible parameters include the
duration of the drop in bitrate, the way the bitrate is increased back up to the
reference, and the level of the reference bitrate itself.

When such parameters are found, a rate control can be designed which discrim-
inates between visible and invisible drops in bitrate, and acts accordingly. This
will be of interest in a networking scenario, where sudden drops in bitrate are
common.

54

Bibliography

[1] ITU-T T.800 JPEG 2000 Part 1: Core Coding System. 2002

[2] Master thesis by Stian Tokheim and Martin Markman. At the time of writing,
the thesis is not yet finished. Reliable broadcast contribution over the public
internet Spring 2012

[3] Rong-Yu Qiao and Michael H. Lee Adaptive Rate Control of Motion-
JPEG2000 video over IP networks. 2007

[4] G. Yang, L. Chen, T. Sun, M. Gerla and M. Y. Sanadidi Smooth and Efficient
Real-time Video Transport in Presence of Wireless Errors 2006

[5] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, Eero P. Simon-
celli Image Quality Assessment: From Error Visibility to Structural Sim-
ilarity. 2004. Matlab code for calculating SSIM can be found at https:

//ece.uwaterloo.ca/~z70wang/research/ssim/.

[6] Zhou Wang, Alan Conrad Bovik Mean Squared Error: Love It or Leave It?.
IEEE Signal Processing Magazine 2009

[7] Rong-Yu Qiao, Michael H. Lee and Keith Bengston Motion-JPEG2000 Stream
Scaling for Multi-Resolution Video Transmission 2008

[8] Michael D. Adams JasPer Software Reference Manual (Version 1.900.0).
ISO/IEC 2006 (see http://www.ece.uvic.ca/ frodo/jasper)

[9] C implementation of JPEG 2000 openjpeg.org

[10] E. C. Larson and D. M. Chandler Most apparent distortion: full-reference im-
age quality assessment and the role of strategy Journal of Electronic Imaging,
19 (1), March 2010

[11] ITU-R ITU-R BT.500-13 Methodology for the subjective assessment of the
quality of television pictures. 2012

55

https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/

[12] ITU-R ITU-R BT.710-4 Subjective Assessment Methods For Image Quality
In High-Definition Television. 1998

[13] ITU-R ITU-R BT.814-2 Specifications and alignment procedures for setting
of brightness and contrast of displays. 2007

[14] Sveriges Television AB The SVT High Definition Multi Format Test Set. Ver-
sion 1.0 February 2006

[15] ffmpeg multimedia codec ffmpeg.org Version N-33308-g6638207 (built on the
5th of October 2011)

[16] Image magick image manipulation software imagemagick.org Version 6.7.5

[17] Videolan media player videolan.org

56

Appendix A

Subjective test

A.1 Results from subjective test

Bitrate [Mbits/s] 25 20 15 10 6 4 2
ParkJoy 0.98893 0.96882 0.92653 0.89572 0.83619 0.77480 0.69870

OldTownCross 0.99328 0.98298 0.97593 0.96152 0.94034 0.90986 0.86582
IntoTree 0.99189 0.97980 0.94957 0.91503 0.87656 0.83161 0.79290

DucksTakeOff 0.99032 0.98051 0.96776 0.93048 0.90036 0.82988 0.76844
CrowdRun 0.98734 0.97473 0.95258 0.91591 0.86639 0.80936 0.74651

Table A.1: SSIM values for the frame with the drop in bitrate, per bitrate. Cal-
culated with 30 Mbits/s as the reference.

Bitrate [Mbits/s] 25 20 15 10 6 4 2
ParkJoy 0.98885 0.96402 0.92601 0.89649 0.83036 0.77428 0.70125

OldTownCross 0.99315 0.98278 0.97527 0.96105 0.93908 0.90863 0.86203
IntoTree 0.98808 0.97022 0.94073 0.90352 0.85535 0.80853 0.76674

DucksTakeOff 0.99222 0.98331 0.97144 0.94498 0.91187 0.85183 0.78543
CrowdRun 0.98714 0.97652 0.95410 0.91866 0.87024 0.81611 0.75209

Table A.2: Mean SSIM values over the entire source clips per bitrate. Calculated
with 30 Mbits/s as the reference.

57

Bitrate [Mbits/s] 25 20 15 10 6 4 2
ParkJoy 34.130 30.714 28.308 25.468 23.273 21.859 20.683

OldTownCross 41.669 38.718 36.204 32.765 30.120 28.294 26.518
IntoTree 43.381 38.427 36.354 33.738 31.518 29.867 28.696

DucksTakeOff 35.808 31.985 29.409 26.841 24.457 23.229 22.051
CrowdRun 34.865 31.731 29.206 26.218 23.929 22.477 21.121

Table A.3: PSNR (Luma) values for the frame with the drop in bitrate, per bitrate.
Calculated with 30 Mbits/s as the reference.

Bitrate [Mbits/s] 25 20 15 10 6 4 2
ParkJoy 34.192 30.853 28.060 25.380 23.131 21.815 20.645

OldTownCross 41.694 38.720 36.177 32.823 30.107 28.285 26.468
IntoTree 41.600 38.245 35.752 33.338 31.154 29.576 28.425

DucksTakeOff 38.024 33.847 30.722 28.064 25.323 23.719 22.137
CrowdRun 35.099 31.833 29.464 26.396 24.099 22.601 21.217

Table A.4: Mean PSNR (Luma) values over the entire source clips per bitrate.
Calculated with 30 Mbits/s as the reference.

Figure A.1: Mean grades per bitrate for the ParkJoy clip. The line segments marks
the 95 % confidence intervals.

58

Figure A.2: Mean grades per bitrate for the DucksTakeOff clip. The line segments
marks the 95 % confidence intervals.

59

Figure A.3: Mean grades per bitrate for the InToTree clip. The line segments
marks the 95 % confidence intervals.

60

Figure A.4: Distribution of votes per bitrate the ParkJoy sequence.

61

Figure A.5: Distribution of votes per bitrate the DucksTakeOff sequence.

62

Figure A.6: Distribution of votes per bitrate the InToTree sequence.

Figure A.7: SSIM index with respect to the reference bitrate for the ParkJoy clip.

63

Figure A.8: SSIM index with respect to the reference bitrate for the DucksTakeOff
clip.

Figure A.9: SSIM index with respect to the reference bitrate for the InToTree clip.

64

A.2 Research protocol

Research protocol Author: Magnus Jeffs Tovslid

Synopsis

JPEG 2000 scalability can be used at nodes in a video transmission line or network
to adapt the video bitrate for further transmission. This concept has been studied
by [1], but subjective results are sparse. In order to make a sensible rate control
algorithm at a transmission node, one needs information on how it will impact the
subjective quality. This study aims to find out more about the subjective quality
in such a system.

A subjective test will be run, where a reference will be compared to seven different
tests. Each test will consist of a 10 second video clip where the bitrate suddenly
drops to a smaller amount, and gradually increases again. The participants will
be asked to rate the test on an annoyance scale (DSIS from ITU-R BT.500 [2]).
In each of the seven test clips, the bitrate will drop by different amounts. The
highest bitrates in the tests will be 40 Mbits/s, which will also be the bitrate of the
reference clips. The lowest bitrate will be 15 Mbits/s. In between these bitrates,
there will be 20 available quality layers, equally spaced in terms of bitrate. All the
bitrates used in the test will correspond to such a quality layer. All together, five
different source sequences will be used, which yields a grand total of 40 test clips
over 20 minutes.

The outcome of this test will give insight into how a sensible rate control algorithm
using JPEG 2000 scalability should be made. As an example, at what point should
one leave the bitrate alone, and solve the problem with FEC, buffering, retransmis-
sion etc? The results of the subjective test will be analyzed using the standardized
statistical procedure described in ITU-R BT.500 [2]. The annoyance rating in the
different drops in bitrate will be compared to objective quality predictions at the
same bitrates, to see if they follow a similar (or dissimilar) curve.

Background

JPEG 2000 quality scalability makes it possible to encode a bitstream once, and
later extract several different rates/qualities from that stream. This makes it
possible to have an encoder at a base station, and a quality layer-extractor at
different nodes down the transmission line or network, which can determine the
best number of quality layers to use for further transmission. Already, a similar
scenario has been tested on a network simulator in [1]. This study utilized 8
different quality layers, and varied the number of layers for further transmission
by using the TCP-friendly rate control (TFRC) and Video Transport Protocol

65

(VTP). However, there was no detailed discussion of why 8 layers has been chosen,
nor was there any discussion on the subjective perception of varying the bitrate
blindly according to the TCP-friendly rate.

The current study investigates how JPEG2000 quality scalability can be used to
vary the transmission bitrate, and what kind of subjective results can be expected
when using this approach. In particular, in order to design a good rate control
mechanism at transmission nodes, it is necessary to investigate the subjective
quality perceived when varying the bitrate using the quality scalability technique.
In the current study, a technique for finding an optimal number of layers has
already been found, and will serve as a basis for the subjective tests.

The subjective tests will mimic situations where the bitrate suddenly drops, and
gradually goes back up again. The target bitrates will be approximated by extract-
ing the appropriate number of quality layers from given video clips. The results
will give an indication on how sensitive the human visual system is to changes in
bitrate in JPEG 2000 intraframe video coding when using scalability as the rate
control. The results from this test will be very useful when using scalability for
e.g. channel capacity adaptation, as it will give an indication on what kind of
drops in bitrate are acceptable to the viewer. Furthermore, this will give insight
into what kind of situations should be handled by other techniques, such as FEC
and buffering.

Hypothesis

- It is expected that the level of annoyance will increase with the size of drops in
bitrate, and that there is a point where the level of annoyance goes from ”percep-
tible, but not annoying” to ”slightly annoying”.

Methodology and design

Resources required
- The Café Media room at NTNU is required for approximately 5 days for testing
- Up to 25 people will participate in the test, and as a reward for participation
they will each
receive a cinema ticket. These tickets are the only needed funding for the project.

Construction of the test

In the test, the degree of annoyance experienced in drops in bitrate will be mea-
sured. The test is a subjective one only. It will employ the ITU-R BT.500 standard
for subjective testing. The double stimulus impairment scale (DSIS) method will
be used, since it is the degree of annoyance that is the interesting factor in this
study. The test itself will last 20 minutes, along with up to 10 minutes of training

66

and introduction. Since each test in the DSIS method last roughly 30 seconds,
this leaves enough time for 40 tests.

Details

- The test will consist of a 20 minute long video clip, generated by ffmpeg by
concatenating encoded JPEG 2000 frames. The clip will be the same for all par-
ticipants, since the file size makes it impractical to change for each participant.
- The participants in the test will receive written instructions for how the test shall
be done.
- The source material for the test will be from the SVT fairytale set. This set
consists of five different 10 second clips of very high quality (uncompressed).
- A total of 40 tests divided by 5 test clips gives a new total of 8 tests. Among
these, one will just be the reference clip itself, so that leaves 7 tests. This means
that 7 different amounts of bitratedrops will be tested.
- Each frame to be sent through the layer-extractor has been prepared such that
it contains 20 equally spaced layers in the range 15 to 40 Mbits/s.
- In all the clrops in bitrate, the bitrate will start at 40 Mbits/s, which is considered
of good quality for normal viewing (but not flawless). In the middle of the test
clip, the bitrate will drop a certain amount, and linearly increase back up to 40
Mbits/s over a time period of 2 seconds. By linearly, it is meant that the bitrate
fed into the quality layer extractor will increase linearly, but the actual bitrate will
increase in steps defined by the layers. The layers, however, are equally spaced in
terms of bitrate.
- The bitrate-drops to be used should ideally represent the entire range of impair-
ments inside the chosen bitrate range. However, since there is only time for 7
different drops in the test, the result will only be an approximation. The following
amounts of drops in bitrate have been chosen (in Mbit/s) (subject to change):
3.5 7 11.5 15 18.5 22 25

Results and analysis

In the ITU-R BT.500 standard, a statistical method for analyzing the results of
a DSIS test is given. In this method, mean values are calculated and checked
for statistical significance according to a 95 confidence interval. The method also
includes a check for normally distributed results. The mean values calculated will
then be used in a comparison with objective quality metric values (SSIM and
PSNR). The main question to be answered here is: Will the values fall off along
a similar curve, or are there differences? If they follow a similar curve, then it
might indicate that varying the bitrate directly according to the rate will be a
good idea. The main problem with this type of comparison is that the annoyance
scale and the quality scale produced by the metrics are not the same. Therefore

67

only the shape of the curves can be compared. The results will be used in my
master thesis.

References

[1] ”Adaptive Rate Control of Motion-JPEG2000 video over IP networks” Rong-Yu
Qiao and Michael H. Lee

[2] ”Methodology for the subjective assessment of the quality of television pictures”
ITU-R BT.500-13 (01/2012)

A.3 Pictures from the testing room

Figure A.10: Picture taken from behind the chairs.

68

Figure A.11: Picture taken from outside the testing area.

Figure A.12: Picture of the three chairs in the testing area.

69

A.4 Instructions given to the participants

Description of subjective test procedure

The test you are about to participate in will consist of all together 45 test video
clips. In some test clips, the video quality will rapidly fall by a certain amount,
and then gradually increase back up again. This will take place somewhere in the
middle of each clip. A test clip will last for 10 seconds. Your job is to rate the
quality degradation in the test clips on the following scale:

Grading scale:

1. Imperceptible (Norsk: Ikke merkbart)
2. Perceptible, but not annoying (Norsk: merkbart, men ikke irriterende)
3. Slighly annoying (Norsk: litt irriterende)
4. Annoying (Norsk: irriterende)
5. Very annoying (Norsk: veldig irriterende)

It is important that you are totally honest in your ratings. Answer based on your
overall impression of the test video clip, and not on what you think someone else
might say. Before each test clip, you will be shown the same clip without any
quality degradation. In between this reference clip and the test clip, there will
be 3 seconds of grey screen. After both the reference and the test clip have been
shown, 7 seconds of grey screen will be shown, with a number indicating which
test clip you just watched. During these 7 seconds, you should write down your
vote on the voting paper.

Test timing:

10s reference clip (the same as the test clip, but without any quality degradation)
3s grey screen
10s test clip
7s grey screen with a number indicating which test clip was just shown - give your
vote here

The test will take a little over 22 minutes to complete.
Before you start the test:
- Fill in the information on the next page.
Before you leave:
- Grab a cinema ticket
- Sign your name

70

A.5 Voting paper

Figure A.13: Picture of the voting paper used by the participants in the subjective
test.

71

	Title Page
	Introduction
	Theory
	Objective image quality
	PSNR
	SSIM

	About bitrates
	A summary of the JPEG 2000 coding system
	Scalability in JPEG 2000
	Different types of scalability in JPEG 2000
	Progression orders
	How scalability is implemented in JPEG 2000

	Differences between direct and scaled compression

	Previous Work
	Problem Statement
	Methodology
	JPEG 2000 Scaler
	JPEG 2000 Scaler Design Goals
	JPEG 2000 Scaler Algorithm

	Experiments conducted with the JPEG 2000 scaler
	Choosing the number of quality layers
	Realtime concerns
	A special case: Lossless

	Subjective test
	Summary of the test
	Test set-up
	Description of the software used to generate the test
	Analysis of the test results
	Sources for error

	Results And Discussion
	Number of layers
	Speed test
	Results from subjective test

	Conclusion
	Future work

	Bibliography
	Subjective test
	Results from subjective test
	Research protocol
	Pictures from the testing room
	Instructions given to the participants
	Voting paper

