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Summary

ZnO nanostructures have received great attention during the past decade due to numerous

potential applications. In order to enable the fabrication of functional devices, repro-

ducible preparation of such nanostructures is necessary. Therefore, a good understanding

of the fundamental processes involved in the formation of ZnO nanostructures is indis-

pensable for improving the controllability of nanostructure growth. This work elucidates

various aspects of the essential nucleation and growth mechanisms at work during the

growth of ZnO nanostructures by catalyst-assisted pulsed laser deposition (PLD).

ZnO nanowires and triangular nanosheets have been grown on sapphire substrates by Au-

assisted PLD. In a first study, the influence of thermal substrate pretreatments on the size

and density of the ZnO nanostructures is investigated. It has been found that the presence

of surface nucleation sites can compete with nucleation at the Au catalyst and lead to re-

duced nanostructure sizes and densities. Furthermore, it has been observed that the ZnO

morphology switches from nanowires to triangular nanosheets upon increasing oxygen

partial pressure in the growth chamber. Electron microscopy results indicates that the

catalyst-nanowire growth interface plays an important role in this morphology change.

Formation mechanisms of the two different nanostructure types are presented and pos-

sible links between oxygen pressure and morphology via growth kinetics and supersat-

uration considerations are discussed. Additionally, the epitaxial relationships between

the two ZnO nanostructure types and sapphire substrates have been investigated in de-

tail by combining x-ray pole figure measurements with both transmission and scanning

electron microscope observations. ZnO nanowires growing tilted on c-plane sapphire

showed an epitaxial alignment with a buried and inclined substrate plane. Two degen-

erate configurations have been identified for these tilted wires, promoted by equally low

lattice mismatches. On a-plane sapphire, ZnO nanosheets and -wires show distinct dif-

ferences in the epitaxial relationships with the substrate, indicating a direct correlation to

the morphology.

The findings about ZnO nanostructures presented in this thesis help to improve control

over catalyst-assisted nanostructure growth techniques and provide a further step towards

reproducible nanostructure fabrication.

In a second part of the thesis, the electrical and optical properties of Al-doped ZnO (AZO)

thin films grown on GaAs substrates by PLD have been investigated. AZO is a promis-

ing candidate for substituting indium tin oxide as transparent electrodes in optoelectronic

applications. The aim of the study is to assess the suitability of AZO as a transparent

electrode shell around GaAs nanowire solar cells for direct charge carrier pathways. Fur-

thermore, the portability of previously reported results obtained on transparent substrates

such as glass or sapphire to the opaque GaAs substrate is discussed.
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Chapter 1

Introduction

Nanostructures have received great attention during the past decades. The number of

research publications on some of the most widely studied types of nanostructures, i.e.

nanowires and nanorods, has increased from few hundreds in 2001 to more than five

thousand in 2011 as shown in Fig. 1.1. One of the reasons for the growing attention

are the novel and interesting properties that nanostructures can offer due to the reduc-

tion in size, including high surface-to-volume ratios or phenomena based on quantum

mechanical effects. Furthermore, nanostructuring can improve the performances of al-

ready existing device applications, e.g. by increasing the surface or interface areas while

maintaining the same volume [1]. Nanostructures can be fabricated by ”top-down” and

”bottom-up” approaches, referring to the structuring of bulk material by means of litho-

graphic techniques and self-organized material growth of the desired shape, respectively

(cf. section 2.2).

With the critical dimensions and half pitches of todays integrated circuit components, e.g.

in central processing units (CPUs), reaching deep into the nanometer-regime, the ”top-

down” nanostructuring approach is routinely applied in state-of-the-art semiconductor

industry [2]. In the ”bottom-up” approach, however, novel nanostructure types of both

simple and complex morphologies are feasible due to the self-organized growth of the

material [3–5]. In order to fabricate these morphologies, a variety of growth techniques

can be used, including physical and chemical vapour deposition as well as wet chemi-

cal synthesis methods [5–9]. Some of the morphologies made available by ”bottom-up”

approaches are already used in device applications today, e.g. carbon nanotubes as trans-

parent electrode films on displays, or Ag nanoparticles as antibacterial agents for odor-

reduction in clothes [10]. Since its foundation in 2005, the ”Project on emerging nan-

otechnologies” (PEN) registered a significant increase in the number of nanostructure-

based consumer products available (cf. Fig. 1.2).
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Figure 1.1: Number of scientific papers published on nanowires and nanorods during

the last decade. Source: www.scopus.com, title search with the keywords: ”nanowire*”
OR ”nanorod*”.

Among these are also products based on the light scattering and catalytic effects by

ZnO nanoparticles, resulting in products such as sunscreens and self-cleaning coatings,

respectively [10]. In fact, white ZnO powder has been used in skin lotions, ointments

and other cosmetics products for quite a long time, dating back even beyond the Roman

empire [11]. Today, ZnO is not only used in cosmetics, but also paints, tyres, ceramics,

plastics and food supplements to name just a few [11, 12]. In its crystalline state, ZnO

has a large direct band gap of 3.37eV and a high exciton binding energy of 60 meV at

room temperature [13]. ZnO is therefore transparent in the visible wavelength range

and a promising candidate for optoelectronic applications such as light emitting diodes

(LEDs), transparent electrodes and ultraviolet (UV) lasers [12–14].

While nanostructuring can improve the performances of existing device concepts as

mentioned above, the broad spectrum of ZnO nanostructure morphologies that can be

fabricated by todays synthesis methods (”bottom-up”) offers great potential for novel

and unique applications of ZnO, e.g. nanosprings, field emitters, nanocantilevers or

nanogenerators that utilize the piezoelectricity of ZnO [5, 15–17]. In section 2.3 of

this thesis, a more detailed review on applications, properties and synthesis methods of

various ZnO nanostructure morphologies is given. For transferring such novel device

concepts based on ”bottom-up” nanostructures into market-ready products, reproducible

fabrication of the main ingredient, i.e. ZnO nanostructures is vital. In order to achieve

2



Figure 1.2: Chronical evolution of the number of products based on nanotechnology

registered in the consumer products inventory of the ”Project on Emerging Nanotech-

nologies” (founded in 2005) [10].

this goal and gain control over morphology, density and orientation of the grown nano-

structures, the essential processes of ZnO nanostructure formation need to be understood.

The work presented in this thesis provides insight into the fundamental processes of

nanostructures prepared by the ”bottom-up” approach. Nucleation and growth pro-

cesses are investigated for ZnO nanostructures grown by catalyst-assisted pulsed laser

deposition (PLD). The influence of substrate surface properties on the catalyst-assisted

nucleation of ZnO nanostructures is revealed and a method to improve control over the

nanostructure density via substrate pretreatment is presented. Moreover, the growth

mechanisms of ZnO nanowires and nanosheets are explained in detail and the role of

oxygen for determining the final nanostructure morphology is discussed on the basis of

growth kinetics. Additionally, the epitaxial relationships of ZnO nanowires and nano-

sheets with widely-used sapphire substrates are revealed by x-ray diffractometry (XRD)

and the driving forces for the observed nanostructure growth orientations are examined.

As a second aspect, the electrical and optical properties of Al-doped ZnO (AZO) thin

films on opaque GaAs substrates have been investigated in this thesis. When doped with

Al or Ga, ZnO is highly conductive while retaining its transparency in the visible wave-

length range [18]. This renders doped ZnO a potential alternative to indium tin oxide

(ITO) in device applications requiring a transparent electrode such as thin film solar cells

or flat-panel displays [18, 19]. For future devices based on nanowires such as GaAs

nanowire solar cells, transparent electrodes could even be applied directly as a doped

ZnO shell around the GaAs nanowire core. This might lead to reduced path lengths of

free charge carriers created within the active GaAs nanowire core and therewith improve

3



Figure 1.3: Scanning electron microscopy (SEM) images of GaAs nanowires grown by

Au-assisted molecular beam epitaxy (a) and the same GaAs nanowires with a PLD-grown

Al-doped ZnO shell. Samples grown in Prof. Helge Weman’s group at NTNU.

collection efficiencies. The study presented in this thesis serves as preliminary work to

assess the suitability of AZO shells as transparent electrodes on GaAs nanowire solar

cell devices. First AZO shells have already been prepared around GaAs nanowires as

shown in Fig. 1.3 and electrical contacts to single GaAs/AZO core-shell structures have

been successfully realized. However, this topic is not included in the present thesis due

to the incompleteness of the available experimental data at this preliminary stage of the

project.

The present thesis is structured in the following manner: In the first part, a brief introduc-

tion to the material system ZnO and its doping mechanisms is given. Subsequently, some

fundamental aspects of nucleation and growth are presented, followed by an overview

over the most commonly employed ”bottom-up” growth mechanisms of nanostructures.

Chapter 2 concludes by reviewing the properties, synthesis techniques and applications

of selected ZnO nanostructures. In chapter 3, the experimental methods used to synthe-

size and characterize the ZnO nanostructures and thin films presented here are briefly

explained. The published papers and manuscripts prepared in the course of this thesis are

reprinted in Chapter 4, followed by a summary and future outlook of the work in Chapter

5.
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Chapter 2

Material system

In this section, the fundamental physical properties of the ZnO material system employed

in this work are introduced. It provides some theoretical background on the micro-

scopic processes involved during nanostructure and thin film growth. Furthermore, a

brief overview is presented over different growth mechanisms utilized for the fabrica-

tion of ZnO nanostructures. In the last part of this section, selected ZnO nanostructure

morphologies and various approaches to their synthesis are discussed in detail.

2.1 ZnO crystal structure

ZnO can adapt three different types of crystal structures, i.e. rocksalt, zinc blende and

wurtzite-type phases. The rocksalt and zinc blende structures can only be stabilized

at high pressures or by growth on appropriate cubic substrates, respectively [12, 20].

Therefore, the wurtzite crystal structure represents the most commonly observed phase in

ZnO thin films and nanostructures. A schematic illustration of the ZnO wurtzite crystal

structure is given in Fig. 2.1a. It can be described by a hexagonal Bravais lattice with

constants a = b = 3.2494 Å and c = 5.2038 Å [21]. While the lattice vector c is

perpendicular to both a and b, the latter two vectors include an angle of γ = 120◦. Each
atom of the element A (zinc or oxygen) in the crystal is surrounded by four tetrahedrally

coordinated atoms of the other element B (oxygen or zinc, respectively).

It should be noted that in hexagonal systems, the crystallographic planes and directions

are often given as four-digit miller indices (h k i l). Examples of the most common

low-index lattice planes and vectors are illustrated in Fig. 2.1b. This four-digit system

is over-determined and for the description of lattice planes, the index i can be calculated

5
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Figure 2.1: Schematic illustration of (a) the ZnO wurtzite crystal structure (created using

the VESTA software [22]) and (b) the most common low-index lattice planes and vectors.

Table 2.1: Surface energy values calculated by first principles methods using the local-

density approximation [26]
Crystal planes Surface energy (J/m2)

(101̄0) 2.3

(112̄0) 2.5

(0001)/(0001̄) 4.3

from the common three-digit system (h k l) via i = −(h+ k) [23].

Due to the positions of the zinc and oxygen ions in the ZnO unit cell and the asym-

metry of the hexagonal lattice around the unit cell center, the wurtzite phase of ZnO

exhibits a finite dipole moment along the hexagonal c-axis. ZnO is thus a piezoelectric

material with potential device applications as actuators, sensors, piezotronics or nano-

generators [16, 24]. Due to this dipole moment the ZnO {0001} surfaces become ”polar

surfaces” and according to Tasker’s rule [25] should be unstable. Nevertheless, the ob-

servation of ZnO {0001} surfaces is nothing unusual in ZnO thin film and nanostructure

growth. In general, the stabilization of such polar surfaces can occur via various mech-

anisms, e.g. surface reconstruction, adsorption of charged atoms/molecules or internal

charge transfer [26–29]. The exact mechanisms involved for the stabilization of ZnO

{0001} faces are still controversial and combinations of different mechanisms such as

surface reconstruction and hydrogen adsorption have been suggested [30].
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Furthermore, caused by this dipole moment, the ZnO{0001} planes have the highest sur-

face energy of all low-index planes of the wurtzite ZnO crystal as shown by ab-initio

calculations [26]. The corresponding values are summarized in Table 2.1. Surface ener-

gies play an important role in the nucleation and growth processes as will be discussed

later in this chapter. They have key influence on the diffusion and adsorption rates of ma-

terial on a crystal facet. As the facet with the highest surface energy, the ZnO(0001) plane

is typically the surface with the highest growth rate during ZnO deposition [31]. How-

ever, Wang et al. observed distinct differences in the chemical activity and growth rates

of the different terminations of the ZnO{0001} surfaces. While the Zn-terminated (0001)

surface showed high growth rates, the O-terminated (0001̄) facet was nearly chemically

inert [15].

2.1.1 Doped ZnO

In this subsection, a brief introduction is given to the most common ways of doping in

ZnO, providing fundamental background for the understanding of paper IV. For a more

comprehensive discussion of this topic, the reader is referred to corresponding reviews in

the literature [18,19]. Even without any type of doping, ZnO shows intrinsic n-type con-

ductivity, i.e. excess electrons act as majority charge carriers, transporting electric cur-

rents through the crystal lattice. This phenomenon is attributed to the presence of native

defects such as oxygen vacancies and Zn interstitials in the ZnO crystal lattice [18,32,33].

However, the exact origin of this n-type conductivity, i.e. the exact species of electron

donors, are yet to be identified. Ab-initio calculations as well as electron paramagnetic

resonance experiments indicate that oxygen vacancies are deep level rather than shallow

donors and have high formation energies [33–35]. Furthermore, first-principles investi-

gations deduce instability of Zn interstitials from the high formation energies calculated

and the low migration barriers enabling fast diffusion [36]. Even though other possible

explanations have been advanced, including intrinsic impurity-doping by hydrogen, the

exact donor species responsible for n-type conductivity in intrinsic ZnO is still contro-

versial [18].

Due its large band gap, ZnO is a potential candidate for use as transparent electrodes

in optoelectronic applications [18, 19]. The resistivity of intrinsic ZnO thin films, how-

ever, is typically on the order of 10−2 Ωcm and are therefore too high for the use as

transparent electrodes [37, 38]. In order to increase its n-type conductivity, ZnO can

be doped with various group V elements acting as electron donors, e.g. B [39, 40],

Al [41–43], Ga [40, 44] and In [45, 46] as well as elements from other groups, including

F [47]. Among these, the most frequently employed dopants are In, Al and Ga. Resis-

tivities on the order of 10−4 Ωcm have been achieved with Al- or Ga-doped ZnO thin

films [40, 48, 49], which are comparable to the electrical properties of indium tin oxide

7



(ITO) layers - the standard material used for transparent electrodes in device applications

today [19]. Alternatives to ITO - such as ZnO - are highly desirable due to the scarceness

and high costs of indium [19].

In general, the resistivity ρ of a material with electrons as majority charge carriers is

given by the relation ρ = 1/(neμ). Here, n is the carrier concentration, e the elemental

charge and μ the mobility of electrons in the solid. Hence, the resistivity can be reduced

by increasing the carrier concentration and/or electron mobility in the material. Thereby,

the concentration n of charge carriers is mainly determined by the concentration of

active electron donors (dopants), whereas the mobility μ of electrons is constrained by

scattering events during charge transport. Such scattering can occur at different sites in a

crystal lattice, for example at grain boundaries, impurities or phonons [50,51]. Typically,

scattering at grain boundaries as well as ionized impurities are considered as the domi-

nant mechanisms in transparent conducting ZnO thin films [52–54]. However, scattering

at intragrain clusters or additional phases present in the films have also been discussed

as important scattering mechanisms limiting the electron mobility in doped ZnO thin

films [51, 55].

For the case of the most commonly employed n-type dopants Al and Ga, doping is gen-

erally believed to occur via the incorporation of dopant atoms at substitutional Zn sites,

i.e. a Zn atom is replaced by a Ga or Al atom [56–58]. Thereby, the dopant atom releases

one of its electrons into the conduction band, essentially increasing the concentration

of charge carriers. Those dopant atoms located elsewhere in the crystal lattice, e.g. at

interstitial sites, are considered inactive and do not contribute to increased conductivity.

Besides this doping mechanism, it is often believed that native defects such as oxygen

vacancies and Zn interstitials contribute to the electrical conductivity also in doped ZnO

films [48–50]. The introductory arguments on the role of native defects for intrinsic

n-type conductivity, however, are also valid for the case of doped ZnO.

As described above, n-type conductivity in ZnO is easily achieved - even without any

intentional, extrinsic doping. The reproducible preparation of p-type conductivity in

ZnO, however, is not straight-forward [18, 59]. In the past decade, various approaches

have been pursued utilizing group V elements such as P [60, 61], As [62, 63] and nitro-

gen [64–66] as well as group I elements including Li [67] and Na [68]. The issues with

achieving p-type doping in ZnO can be manyfold, including high activation energies of

many potential dopants as well as precipitate formation and low solubilities [59, 69–71].

One of the major problems is the compensation of p-type dopants by defects such as

oxygen vacancies or impurities [18, 33, 72], which can result in conductivity inversion

back to n-type behaviour after some days [66]. Long-term stability of the p-type conduc-

tivity is therefore a major issue which needs to be overcome before commercial use of

8



ZnO homojunctions in optoelectronic device applications such as LEDs can be realized.

2.2 Synthesis of nanostructures

The prefix ”nano” describes structures with at least one dimension on the order of 10−9

m, i.e. in the nanoscale. These structures can be classified by the number of dimensions

exceeding the nanoscale. One-dimensional nanostructures, for example, are elongated

in a single direction, i.e. exceed the nanoscale only along one axis, whereas two-

dimensional nanostructures exhibit only one dimension in the nanoscale, thus exceeding

it along the two other dimensions. The term zero-dimensional nanostructures refers to

quantum dots with all dimensions on the order of 10−9 m.

In this section, the basic concepts for the fabrication of nanostructures are presented. In

general, all nanostructure fabrication methods can be classified in two main categories,

namely the ”top-down” and ”bottom-up” approaches. The ”top-down” method describes

all fabrication processes in which a layer of the desired nanostructure material already

exists either as bulk or as a thin film deposited on a substrate. During the fabrication

process, the layer material is ”machined” into the desired shape via various techniques

including photo- and electron beam lithography in conjunction with wet chemical or

reactive ion etching processes. These techniques are similar to the methods employed in

the semiconductor industry for patterning thin material layers into market-ready devices.

Nanostructures fabricated by the ”top-down” approach can be deliberately positioned

on the substrate with high accuracy, limited mainly by the resolution of the patterning

lithography technique. However, the preparation of nanostructures by lithography can

be time-consuming, especially if high resolution morphologies are required and electron

beam lithography techniques need to be utilized which only allow for serial pattern

writing compared to the parallel processing of entire wafers with lower-resolution pho-

tolithography methods. Additionally, top-down fabricated nanostructures may suffer

from crystal defects, impurities and/or contamination due to the chemistries or ion inter-

actions of the processes involved.

The second category ”bottom-up” includes all methods in which the nanostructure grows

or self-assembles on a suitable substrate by utilizing thermodynamic processes and/or

properties of the involved materials. The employed techniques often consist of one or

several different material sources (e.g. one for each element of the desired compound, or

precursors that need to undergo a chemical reaction in order to ”free” the desired nano-

structure material), a container that allows for the intermixing of the different sources

9



(e.g. vacuum chamber, beaker with chemical solution) and a heat supply (e.g. heated

substrate mount or a hot plate). In general, the formation of nanostructures hereby pro-

ceeds in gaseous or liquid media with source materials supplied in solid, liquid or gaseous

phases. If processed under optimum conditions, the ”bottom-up” techniques typically al-

low for very high crystal qualities of the grown nanostructures since it nucleates and

grows as a single crystal from the substrate. Accurate positioning of the nanostructures

on a substrate, however, is often feasible only via additional efforts such as patterning of

a nucleation or catalyst layer prior to the actual nanostructure fabrication or the use of

suitable templates [73–76].

2.2.1 Fundamental aspects of crystal growth

In general, the deposition and growth of thin films and nanostructures proceeds by several

consecutive steps. In the first step, the growth species adsorb on the substrate surface via

forming weak bonds due to oscillating (van-der-Waals) or permanent dipole moments.

This weak bonding state is referred to as physisorption [77]. Due to the weak interaction

forces, the potential well, in which the physisorbed molecules are trapped, is shallow and

the low energy barriers at the walls of the well can allow growth species with sufficient

energy to escape and ”hop” to adjacent sites (wells). The physisorbed molecule at the

surface therefore retains some mobility and can move finite distances on the substrate

via surface diffusion (step two). The mobile molecule can now either desorb (e.g. re-

evaporate) from the surface or - and this is the third step - form chemical bonds with the

substrate or the growing film/nanostructure, a process referred to as chemisorption. In

step four, adsorbed growth species accumulate and initiate film/nanostructure growth by

nucleation. Subsequently, the formed nucleus grows in size and in the case of thin film

deposition coalesces with nearby nuclei to form a layer. For nanostructure growth, how-

ever, the nucleus expands by uni-directional growth which can be imposed by different

mechanisms as discussed in section 2.2.2.

The fundamental nucleation and growth processes described in the following subsections

are based on the discussions in the book by Smith [77]. For a more detailed discussion,

the reader is referred to this or other books on thin film deposition such as the works by

Adams or Markov [78, 79].

Surface diffusion

The mobility of growth species adsorbed on the substrate surface is very important in thin

film and nanostructure growth [77]. Via surface diffusion, adsorbed molecules can reach
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Figure 2.2: Qualitative Arrhenius plot of the diffusion length Λ vs. temperature (energy)

of the growth species. When the temperature is above the energy threshold for desorption

Edesorption, Λ is limited by re-evaporation (desorption regime). In the burial regime, the

diffusion length is constrained by the impinging material flux burying the diffusing atoms

during growth. Ediff.barrier denotes the energy barrier for surface diffusion and R is the

universal gas constant. Adapted from [77].

the nanostructure growth fronts/interfaces and find low-energy active sites that facilitate

chemisorption. Surface diffusion can therefore significantly influence the crystallinity

and morphology of the grown thin films and nanostructures. The distance an adsorbed

molecule can travel on the substrate surface is the ”diffusion length Λ”. Its value is sig-
nificantly different (up to several orders of magnitude) for chemisorbed and physisorbed

molecules due to the different strengths in attractive forces and the corresponding depths

of the potential wells. Furthermore, the energy barriers Ediff.barrier the diffusing ad-

sorbate needs to overcome also depend on the surface energy of the crystal facet the

species travels along. In general, the diffusion length increases with rising growth tem-

perature or, more precisely, with the energy of the adsorbate, since energy barriers for

diffusion are more easily overcome. If the diffusion length becomes sufficiently high,

the majority of adsorbates can find a low-energy site and chemisorb, thus resulting in

crystalline nanostructure or thin film growth. However, as the energy of the adsorbate

increases further, more and more diffusing growth species will be lost by desorption

from the substrate surface before incorporation in the growing structure. Thus, the diffu-

sion length shortens with increasing growth temperature as soon as the adsorbate energy

increases above the activation level of desorption Edesorption. This corresponds to the

desorption-limited regime of the diffusion length Λ as illustrated qualitatively in Fig. 2.2.

Hence, the optimum growth conditions allowing for maximum surface diffusion there-
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Figure 2.3: Schematic illustration of the three different growth modes Frank-van-der-

Merwe or layer-by-layer growth (a), Volmer-Weber or island growth (b) and Stranski-

Krastanov (c).

fore involve substrate temperatures just below the critical value for desorption. On the

other hand, the diffusion length can also be limited by high fluxes of impinging growth

species, essentially burying diffusing adsorbates by the next layer of deposited material.

In Fig. 2.2, this is denoted as the burial regime. The buried molecules still contribute to

the growth of the structure, but are likely to be incorporated as defects, thus resulting in

reduced crystallinity of the final product. A more detailed discussion with derivations of

the mentioned dependences of surface diffusion can be found in chapter 5 of the book by

Smith [77].

Nucleation

After the adsorption of growth species on the substrate surface, crystal growth can pro-

ceed in different ways depending on the surface energies of the substrate γsub and the

growing crystal γc as well as the interface energy between the two, γi. In general, three

growth modes are identified [80] which are shown schematically in Fig. 2.3. In the first

case, the sum of surface and interface energies of the growing crystal is lower than the

substrate surface energy γc + γi ≤ γsub. Correspondingly, minimization of surface en-

ergy drives the deposited material to cover or ”wet” the substrate surface completely, thus
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resulting in layer-by-layer or Frank-van der Merwe growth illustrated in Fig. 2.3a. In the

opposite case, i.e. the surface energy of the substrate is the lowest with γc + γi ≥ γsub,
the total energy of the system is minimized by agglomeration of deposited species and

subsequent nucleation of three-dimensional islands as schematically shown in Fig. 2.3b.

This is the Volmer-Weber growth mode. In the third case, island formation begins not

before one or few monolayers of deposited material cover the substrate surface (cf.

Fig. 2.3c). This growth mode is induced by stress due to lattice mismatch between

substrate and growth material and is referred to as Stranski-Krastanov growth.

The surface energies involved in the growth process therefore play an important role

in determining, whether growth occurs in a two-dimensional layer mode or by the

formation of three-dimensional islands. Nanostructure growth often proceeds by the

three-dimensional growth mode [81–83]. In the following paragraph, the discussion

therefore focuses primarily on this type of nucleation.

In the three-dimensional growth mode, impinging and diffusing atoms accumulate and

initiate crystal growth by the formation of a nucleus. The driving force for such nu-

cleation and growth of a crystal is the so-called supersaturation. This term refers to the

chemical potential difference between the supply phase and the condensed phase μs−μc.

For growth from a vapour phase source, it can also be written as the ratio of the total pres-

sure p to the equilibrium vapour pressure pv [77]:

Δμ = μv − μc = RT ln
p

pv
(2.1)

When a nucleus forms, it gains in volume V and simultaneously in surface area Ac of

surface energy γc. Since such creation of surface area requires energy, there is another

driving force counteracting the supersaturation and, hence, nucleus formation. The cor-

responding change in Gibbs free energy per nucleus is therefore a balance between su-

persaturation and surface energy. Under the simplifying assumptions of a homogeneous

substrate surface (i.e. the absence of active nucleation sites), negligible wetting of the

substrate (three-dimensional island growth mode) and sufficient surface diffusion to en-

sure equilibrium, this free energy change can be written as

ΔG = −(μv − μc)V/Vmc + γcAc (2.2)

where Vmc is the molar volume of the condensate. If a spherical shape of the nucleus is

considered, equation 2.2 becomes
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ΔG = −RT ln

(
p

pv

)
(4/3)πr3

Vmc
+ γc4πr

2 (2.3)

If ΔG for a given radius r of the nucleus is positive, nucleation is suppressed since the

spontaneous dissociation of the nucleus is energetically more favourable than its growth.

For negative values ofΔG, on the other hand, the nucleus is stable and continues to grow

due to the reduction in Gibbs free energy with increasing size. Following equation 2.3

ΔG(r) reaches its maximum at a critical nucleus size r∗ above which the nucleus be-

comes stable:

r∗ = r(d(ΔG)/dr = 0) =
2γf

RT

Vmc
ln

(
p

pv

) (2.4)

The corresponding change in Gibbs free energy at r∗ is then given as

ΔG∗ =
(16/3)πγ3f[

RT

Vmc
ln

(
p

pv

)]2 (2.5)

and is often referred to as the energy barrier for nucleation. It can be seen from equa-

tions 2.4 and 2.5 that the critical nucleus size and the energy barrier for nucleation

depend on the supersaturation ratio ln(p/pv) and the substrate temperature. While for

high ratios p/pv, stable nuclei of small radii can be readily formed because of a low

energy barrier, many growth species need to agglomerate in order to stabilize a nucleus

at low supersaturation ratios. Furthermore, both the critical radius and the energy barrier

for nucleation decrease with rising substrate temperature.

It should be noted that in the previous discussion of nucleation, the effect of active

nucleation sites has been neglected. In reality, however, such active sites are present on

the substrate in most cases and will facilitate nucleation by lowering the corresponding

energy barrier. Furthermore, it has been assumed that there is no interaction between the

substrate and the growing crystal, i.e. γi = γc. For deposition on a substrate, however,

such interaction cannot be neglected and in many cases γi < γc, essentially reducing

the surface energy term in equation 2.2 and lowering the energy barrier for nucleation.

Moreover, γc has been considered constant for all nucleus sizes. Due to increased cur-

vature, however, the number of dangling bonds at the surface of small nuclei is higher

than at surfaces of large ones. Accordingly, γc for small nuclei will be larger than the

surface energy of a bulk single crystal and will approach the latter value as the nucleus

size increases.
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In the case of two-dimensional nucleation (layer-by-layer growth), the wetting of the

substrate is complete, i.e. the energy sum of the growing crystal surface and the interface

between the substrate and the nucleus γc + γi are lower than the surface energy of the

substrate γsub. The system therefore gains in energy as the coverage of the substrate

surface increases. However, edges with high numbers of dangling bonds and, thus, high

energy are created during the formation of a two-dimensional nucleus on a homogeneous

substrate. Therefore, an energy barrier for nucleation and a critical nucleus size exist

also in the case of two-dimensional film growth and both parameters depend on super-

saturation [77]. Once a stable nucleus is formed, it grows until it coalesces with other

2D nuclei and a full monolayer is completed. Also in this case, the presence of active

nucleation sites on the substrate, such as steps of atomic terraces or surface defects,

will aid the nucleation and growth of the thin film due to a reduced energy barrier for

nucleation. For a more detailed description of 2D nucleation the reader is referred to the

book by Smith [77].

To conclude this section, it should be noted that for the above discussion of nucleation, it

has been assumed that the system is in equilibrium, i.e. surface diffusion is sufficiently

high and adatom desorption is low, therewith the ”reaction time” for finding and forming

a nucleus is ensured. In some cases, however, the nucleation or growth processes might

be limited by the speed of the reactions or processes involved rather than the balance of

free energies. Such growth is often referred to as ”kinetically inhibited” and occurs, for

example, when surface diffusion is suppressed by high deposition fluxes or low growth

temperatures with growth species chemisorbing instantly upon impinging on the sub-

strate. Whether or not a growth process is dominated by kinetics strongly depends on the

chosen growth conditions during deposition.

2.2.2 Nanostructure growth mechanisms

In this section, various mechanisms for the growth of nanostructures with and without the

use of catalysts are presented for precursor and material sources of different phases. The

first subsections deal with catalyst-assisted growth mechanisms including the vapour-

liquid-solid (VLS) and vapour-solid-solid (VSS) mechanisms. The major difference be-

tween these two mechanisms is the phase of the catalyst particle during growth (i.e.

liquid or solid). Subsequently, the preferential interface nucleation mechanism is de-

scribed, which attempts to give a more generalized description of all catalyst-assisted

growth mechanisms, including VLS and VSS. In the last part of the section, catalyst-

free approaches to the formation of nanostructures are discussed, mainly focusing on the

vapour-solid (VS) mechanism since the growth technique employed in this work em-

ploys a vapour phase source. Finally, solution- and template-based growth mechanisms
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Figure 2.4: Schematic illustration of the vapour-liquid-solid (VLS) mechanism for a

Au-assisted Si nanowire. Adapted from [92].

are briefly presented.

The Vapour-Liquid-Solid (VLS) mechanism

This mechanism was first described by Wagner and Ellis in 1964 for the fabrication of

Si whiskers with diameters of several hundred nanometers to a few micrometers and

with a Au catalyst guiding the whisker growth [84]. Since then it has been applied to

various material systems with diameters as thin as a few nanometers [85–88]. Especially

during the last decade, this mechanism has received great attention and is one of the most

widely employed mechanisms for semiconductor nanostructure growth. Its relevance

has been expanded from growth of elemental whiskers by a Au catalyst to the fabrication

of compound and oxide semiconductor nanostructures using a wide variety of catalyst

metals [89–91].

A schematic illustration of the basic VLS mechanism for growth of an elemental Si

whisker or nanowire is shown in Fig. 2.4 with Au as a catalyst metal. In the initial stage

of VLS growth, catalyst metal is deposited on the substrate in the form of a thin layer

or colloidal particles. It is then heated to sufficiently high temperatures and the metal

layer or particles begin to alloy with the substrate material and form droplets. When the

temperature reaches a value above the metal-substrate eutectic point, the particles be-

come liquid due to a significant reduction in melting point at the eutectic composition.

The vapour phase source material (VLS) is then streamed into the reactor and the cata-
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lyst droplet acts like a ”sink”, collecting the growth species impinging on the substrate.

These enter the metal-substrate alloy droplet and adapt the liquid phase (VLS). With

time, the concentration of source material in the droplet rises beyond its solubility limit

and the catalyst particle becomes supersaturated. As a consequence, the material starts

to precipitate beneath the metal catalyst particle, nucleating the whisker or nanowire in

the solid phase (VLS). With continuous supply of source vapour, the metal catalyst par-

ticle is raised as the growing structure underneath it gains in length. Under ideal VLS

growth conditions, the diameter of the grown structure corresponds to the size of the

metal catalyst droplets and the structures’ length is directly proportional to the deposi-

tion duration. Non-ideal conditions, however, might lead to, for example, diffusion of

the catalyst metal away from the nanostructure tip or additional material deposition on

the whisker sidewalls, resulting in short nanostructures due to early growth termination

or tapered, needle-like morphologies, respectively [93, 94].

The Vapour-Solid-Solid (VSS) mechanism

In the VLS mechanism, the catalyst droplet is assumed to be in the liquid state due to

its reduced melting point at the eutectic composition. However, it has been reported

for different material systems - including ZnO - that nanostructures can also be grown

by the same method, even if the growth temperature is below the critical eutectic value

[87,95–98]. In this case, the phase of the alloy droplet is solid and the growth mechanism

is therefore termed VSS. Kodambaka et al. have been able to show by in-situ transmission

electron microscopy (TEM) imaging of Ge nanowire formation that growth by the VSS

mechanism proceeds significantly slower (by about 10 - 100 times) than growth from a

liquid catalyst droplet (VLS) [99]. Furthermore, due to the solid phase of the catalyst,

growth species now reach the growth front via diffusion along the catalyst surface rather

than the bulk particle [100].

Preferential interface nucleation (PIN)

Inspired by the idea to find a single growth mechanism that is able to explain all catalyst-

assisted nanostructure growth, regardless of the phases of material source and catalyst

involved, Wacaser et al. proposed a more general scheme for the formation of nano-

structures from a catalyst particle [101]. Therein, the formation of a nanostructure is

considered independent of the phase diagram or the eutectic temperatures of the in-

volved materials and proceeds only by nucleation at one of the interfaces between the

catalyst droplet and the growing nanostructure, i.e. the catalyst-nanostructure interface

or the triple-phase boundary (cf. Fig. 2.5). Once a nucleus is formed, it grows in the
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Figure 2.5: Schematic illustration of the nuclei initiated by preferred nucleation at the

catalyst(Au)-nanostructure(ZnO) interface and triple-phase-boundary as described in the

PIN mechanism [101].

lateral directions via step propagation until a full monolayer is completed at the catalyst-

nanostructure interface. When the next nucleus forms at the interface, the growth cycle

is repeated until the deposition flux is terminated. The step propagation mechanism is

also referred to as ”ledge-flow” mechanism and has been observed experimentally by

in-situ TEM imaging of Ge and Si nanowire growths from solid Pd and Au catalyst

particles [98, 102]. Even though the same mechanism is assumed also for liquid catalyst

droplets, it proceeds too fast to be detectable by in-situ TEM [103]. Contrary to the

classic VLS mechanism, the PIN approach takes into account both the supersaturation

inside and outside (i.e. the supply phase) the liquid catalyst droplet

The benefits from catalyst-assisted growth mechanisms include good control over the

nanostructure dimensions, since the diameter of a grown nanowire is directly correlated

with the size of the metal catalyst particle. Furthermore, if additional processes such as

lithography steps are employed, the position and densities of the catalyst - and therewith

the nanostructures - can be controlled, allowing for the preparation of ordered nano-

structure arrays [74, 104]. However, if not removed by additional processing steps, the

metal catalyst particle resides at the nanostructure tips also after the growth. Moreover,

diffusion and incorporation of the catalyst metal atoms into the growing nanostructure

have been reported [105], possibly impose impurity and therewith performance issues in

potential device applications. In order to avoid these problems, recent research efforts

have been directed towards self-catalyzed nanostructure growth in which one element

of the compound semiconductor nanostructure is utilized as a catalyst particle instead

of a foreign metal [106, 107]. The reported dimensions and crystal properties of the

self-catalyzed nanostructures are comparable to the ones fabricated from a metal cata-

lyst, rendering self-catalysis a promising candidate for well-controlled and impurity-free
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(a) (b)

Figure 2.6: Schematic illustration of the preferential growth at a screw dislocation (a)

resulting in the formation of a uni-axial nanowire stem for a hierarchical nanostructure

(b). Adapted with permission from [108]. Copyright 2008 American Association for the
Advancement of Science.

nanostructure growth.

The Vapour-Solid (VS) mechanism

In the catalyst-assisted mechanisms described above, the one-dimensionality of the nano-

structure was introduced via the preferential precipitation/nucleation beneath a catalyst

particle, which guided the growth in a single direction. If the growth was carried out

under identical growth conditions but without the use of a catalyst (VS growth), in

many cases the deposited species would agglomerate into two-dimensional islands and

subsequently coalesce to form a thin film rather than a nanostructure. However, under

optimized growth conditions, many materials exhibit intrinsic differences in the growth

rates of the crystal planes, i.e. the crystal grows the fastest along a single crystal direc-

tion compared to other directions. In these cases, uni-directional growth can indeed be

achieved by direct condensation of the vapour phase source material (VS) on a substrate.

The (0001) plane of the ZnO wurtzite crystal, for example, is the facet with the highest

surface energy and therefore the highest growth rate of all low-index planes as mentioned

above. Thus, the fabrication of one-dimensional nanostructures of wurtzite ZnO is pos-

sible at conditions that allow for fast growth along [0001] and negligible growth on all

other ZnO facets.

Another approach to the growth of one-dimensional whisker structures is the utilization

of screw dislocations. If an axial screw dislocation is present in a growing crystal, im-
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pinging growth species are preferrably incorporated at the steps of the defect as schemat-

ically illustrated in Fig. 2.6a. As the crystal grows, the dislocation steps propagate in

spiral-like motion resulting in uni-directional whisker growth along the dislocation axis

(cf. Fig. 2.6b) [109, 110]. Originally invoked to explain the formation of whiskers with

diameters in the micrometer range, the validity of this mechanism for the formation of

nanoscale whiskers has also been demonstrated [108,111,112].

Besides achieving uni-directional growth, poor nucleation of nanostructures can also be

an issue in catalyst-free VS growth resulting in low yields, e.g. for growth on atomically

flat surfaces as seen in Paper I. It was explained in section 2.2.1 that nucleation occurs

preferentially at low-energy sites on the surface. This can be exploited in different ap-

proaches for facilitating the nucleation of nanostructures. Dedicated seed or ”nucleation”

layers of the desired nanostructure material or buffer layers with high surface roughness

can be deposited prior to growth in order to promote nucleation via homoepitaxy or

surface nucleation sites, respectively [113–117]. Furthermore, surface defects such as

impurities or etch pits can be utilized as nucleation centers on the substrate [118, 119].

Even the metal catalyst particles employed in VLS and VSS growth mechanisms can aid

the nucleation of VS-grown nanostructures: at suitable growth conditions, the catalyst

particle acts only as nucleation site for the nanostructure and remains at the bottom

during growth [118, 120]. In PLD, nanostructure growth via the VS mechanism can

also be initiated by the gas-phase formation of nanoparticles at high pressures within the

ablation plume. Once deposited on the substrate, these nanoparticles act as nucleation

centers and promote subsequent nanostructure growth [121].

In general, VS-grown nanostructures are catalyst-free and therefore - except for the cases

of impurity-enhanced nucleation - usually also impurity-free. Additionally, no additional

steps for the removal of catalyst particles at the tips of nanostructures are necessary in

order to fabricate full devices. The dimensions of the grown nanostructures, however,

depend only on the growth conditions and - if employed - the properties of the buffer

or nucleation layer. Therefore, the growth of nanostructures by the VS mechanism as

well as their positions and densities are often more difficult to control than nanostructure

formation guided by a catalyst.

The Liquid-Solid (LS) mechanism

The VS growth mechanism can be adapted to material sources/precursors in the liquid

phase (LS), i.e. solution-based growth methods. The above considerations for achieving

one-dimensionality and nucleation of nanostructures can be directly transferred to the liq-

uid phase. For overcoming the problem of nucleation, the utilization of seed layers is the
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Figure 2.7: Schematic illustration of a template-assiste approach for the growth of nano-

rods and nanotubes. Reprinted with permission from [92]. Copyright 2003 John Wiley
and Sons.

most commonly used approach for promoting nanostructure nucleation from the liquid

phase [122–124]. In many cases, uni-directional growth can be achieved without further

efforts due to intrinsic differences in surface energies of the facets present during crystal

growth. However, due to the liquid medium, solution-based methods allow for additional

ways of guiding the growth into only a single direction. If the chemical reaction is carried

out in a suitable solvent or if appropriate capping reagents are added, distinct surfaces of

the growing crystal can be selectively passivated essentially inhibiting further attachment

of atoms on these facets and reducing their growth rates [92, 125]. This effect is utilized

in the fabrication of planar ZnO nanodisks as will be discussed in section 2.3.7.

Solution-based growth techniques are especially attractive for industrial fabrication of

nanostructures. Since no vacuum chambers are required and no high temperatures are

necessary for the growth of nanostructures, they provide low-cost alternatives to the

vapour-phase deposition techniques described in the previous subsections. Furthermore,

the isotropy of the liquid media offers high potential for industrial scale-up compared to

the often directed and spacially confined material fluxes in vapour-phase techniques.

Template-based nanostructure growth

In another approach for overcoming the issue of uni-directional growth discussed above

or for creating nanostructures with unusual, ”unnatural” morphologies, a sacrificial tem-

plate can be utilized to force a material into a desired shape. Thin films with cylindrical

hollow pores such as anodic alumina membranes can be exploited as a template layer

for the growth of nanorods or nanotubes [92]. During deposition, the rod-like voids

are filled with the desired nanostructure material and, subsequently, the template is re-

moved by thermal or chemical treatments as illustrated in Fig. 2.7 [126]. In another

example, nanotube-like morphologies are achieved by the overgrowth of nanowire arrays

with the material of choice. Subsequently, the core nanowires are removed by a ther-

mally activated reduction process resulting in free-standing nanotubes on the substrate
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surface [127]. In a different approach, nanotubes can be fabricated from compound

semiconductur nanorods by simple oxidation of the outer nanorod shell and subsequent

removal of the core nanorods by thermal treatments [128]. Since the shape of the result-

ing nanostructure is not governed by the properties of the grown material or the exact

growth conditions in the template-based growth mechanism, nanostructures of virtually

any morphology can be fabricated by this technique, only limited by the availability of

suitable templates.

One of the drawbacks of template-assisted nanostructure growth is that full template

removal is not always an easy task. Template or process chemical residues might impede

the performance of devices based on this synthesis technique. Furthermore, the grown

nanostructures are not necessarily of high crystal quality since the template can transfer

its shape also to materials deposited in the amorphous or polycrystalline phase. If high

crystal qualities are desired, additional post-deposition annealing treatments are often

required [129–131].

For a more detailed discussion of these and additional template-based approaches to

nanostructure growth, the reader is referred to reviews on this topic available in the liter-

ature (cf. Xia et al. or Cao and Liu [92, 132]).

2.3 ZnO nanostructures

In this section, various ZnO nanostructure morphologies are presented which have been

demonstrated by a wide variety of growth techniques. Additionally, their individual

growth mechanisms are discussed together with applications of the individual morpholo-

gies. Due to the immense number of publications on ZnO nanostructures, a compre-

hensive overview of all reported morphology types and fabrication techniques is beyond

the scope of this chapter. The following subsections therefore focus on selected nano-

structure types and growth techniques including the ones commonly encountered in the

literature as well as those most relevant to this work.

2.3.1 Nanowires and Nanorods

The group of ZnO nanowires and nanorods - sometimes also referred to as nanofibres,

-pillars or -whiskers - is the most widely studied type of ZnO nanostructure morphol-

ogy [88, 89, 133, 134]. They commonly grow along the hexagonal c-axis, i.e. the

ZnO[0001] direction of the ZnO crystal. The term ”nanowires” describes high aspect-

ratio morphologies with diameters in the range of several nanometers and lengths of up
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Figure 2.8: SEM images of ZnO nanowires (a) and nanorods (b) grown by pulsed

laser deposition in the course of this work with and without the use of a metal catalyst,

respectively.

to several tens of microns as shown in Fig. 2.8a. On the other hand, the word ”nanorods”

refers to straight, thicker structures with often lower aspect ratios and diameters of up to

several hundreds of nanometers (cf. Fig. 2.8b). It should be noted, however, that both

terms are often used interchangeably in the literature [135].

A common route to fabricating ZnO nanorods is the vapour phase transport (VPT)

method, in which pure Zn or ZnO powders as well as ZnO:graphite mixtures are ther-

mally evaporated from an alumina boat or a small quartz tube in a horizontal tube furnace.

A schematic illustration of a basic VPT setup is given in Fig. 2.9. The evaporation boats

are placed in the maximum temperature zone within the center of the furnace. Ar or N2

gases are streamed into the furnace to help transporting the evaporated source material to

a substrate (often placed downstream). The distance of the substrate to the evaporation

source as well as the throughput and direction of the gas flows are directly related to the

vapour supersaturation at the growth surface. Furthermore, since the evaporation source

is located in the maximum temperature zone of the furnace, the distance between source

and substrate also determines the growth temperature. By mixing small amounts of O2

in the gas flow, additional oxygen can be provided to aid the ZnO nanostructure growth.

The absolute pressures in the VPT tube furnace range from one to several tens of mbar

during nanostructure growth.

The VPT method can be employed for the growth of ZnO nanorods and nanowires with

and without the use of a metal catalyst particle [106,136–140]. Huang et al. showed that

the fabrication of ZnO nanowire arrays with diameters of 40-70 nm, up to 10 μm long

is feasible with this method by growth from liquid Au droplets [141]. Furthermore, the

authors demonstrated room-temperature lasing in the ultraviolet wavelength range from

these wires [142]. Nikoobakht et al. observed a transition from standing to horizontal
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Figure 2.9: Schematic illustration of a typical setup for vapour phase transport growth

of ZnO nanostructures. Adapted from [5].

nanowires on a-plane sapphire substrates upon reduction of the Au droplet size and at-

tribute these findings to the different relaxation mechanisms of strain at the ZnO/sapphire

interface. Below a critical Au droplet size of∼25 nm, the wires grow horizontally on the

substrate along the ZnO[112̄0] direction [143]. Even though the catalyst particles are of-
ten considered to be in the liquid phase during VPT growth, successful formation of ZnO

nanowires has also been reported from solid Au droplets by this growth technique [97].

The presence of a catalyst is, however, not necessary for nanowires or nanorods to form

in a VPT tube furnace reactor. In order to facilitate ZnO nanostructure growth, ZnO

seed or nucleation layers are often deposited on the substrate prior to VPT growth as

mentioned earlier [113, 116, 144]. Li et al. reported that the structural properties of the

ZnO seed layer as well as the employed deposition technique play important roles for

the characteristics of the resulting ZnO nanostructures, i.e. diameter, length, growth ori-

entation and yield [116]. However, ZnO nanorod growth directly on a silicon substrate

without the use of a nucleation layer has also been demonstrated. In these cases, the

growth proceeds by a self-catalytic mechanism in which metallic zinc or zinc suboxides

act as catalyst particles during growth [106,145].

ZnO nanowires and nanorods can also be fabricated via the utilization of a pulsed laser to

ablate material from a solid Zn or ZnO target (PLD). The basic principles and setup for

this reactor type will be described in more detail in section 3.1. Liu et al. demonstrated

ZnO nanowire fabrication from a Au catalyst by PLD with diameters of about 20 nm

and lengths of up to 10 μm [146]. Rahm et al. fabricated ordered arrays of vertical

ZnO nanorods by controlling the position and density of Au particles on the substrate
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Process steps involved:

1. Diffusion in of reactants
    through boundary layer

2. Adsorption of reactants
    on substrate

3. Chemical reaction
    takes place

4. Desorption of adsorbed
    species

5. Diffusion out of by-
    products

Main flow of reactant gases

Substrate3

2

1 5

4

Gaseous
by-products

Boundary
layer

Interface (negligible
thickness)

Figure 2.10: Schematic illustration of the processes involved during chemical vapour

deposition. Adapted with permission from [156].

surface [74]. ZnO nanorod growth with the metal catalyst particle residing at the bottom

of the nanowire has also been demonstrated in PLD. Depending on the Zn supersatu-

ration in the chamber, the growth mode switched from VLS to VS growth with the Au

particle only promoting the initial nucleation of the nanowire [118]. Moreover, ZnO

nanorod and nanowire growth by PLD has been demonstrated in the absence of a metal

catalyst particle [147–151]. Thereby, a ZnO seed layer can be employed to facilitate

the nucleation of the ZnO nanowires and -rods [147, 152]. In an alternative approach,

ZnO nanostructures are nucleated on a substrate by ZnO nanoparticles formed already

in the ablation plume at high background pressures [121, 153, 154]. However, growth

directly on a suitable substrate is also feasible as demonstrated by Park and co-workers

who directly compared the growth of ZnO nanorods with and without the use of Au as

catalyst on the substrate [155]. While ZnO nanorods grown directly on the Si substrate

showed diameters of several hundred nanometers, the ZnO wires grown from the Au

catalyst were only 30-100 nm thin and could be achieved in a wider window of growth

conditions as the catalyst-free grown rods.

Besides the afore-mentioned physical vapour deposition techniques, ZnO nanowires and

nanorods have been successfully fabricated using chemical vapour deposition (CVD)

with metal-organic precursors (MOCVD). In CVD techniques, the desired growth mate-

rials are usually bound to a more complex precursor molecule, which must be cracked at

the substrate surface in order to release the enclosed Zn atoms and enable ZnO growth.

A schematic illustration of the processes involved during chemical vapour deposition

is shown in Fig. 2.10. The precursors are usually supplied to the reaction chamber as
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a vapour or elemental gas. For the growth of ZnO nanostructures by MOCVD, suit-

able precursor molecules include diethyl zinc (DEZn), dimethyl zinc (DMZn) and other

Zn-containing metal-organic compounds [6, 114, 157, 158]. Since these molecules are

typically in the liquid state under standard conditions, a precursor vapour needs to be

generated first by streaming a carrier gas (usually hydrogen or nitrogen) through a heat-

able reservoir - a so-called ”bubbler” - of the liquid precursors. The carrier gas transports

the vapour through gas inlets into the reaction chamber, where it meets with a flow of

molecular oxygen. The precursor molecules adsorb on the substrate surface and undergo

a chemical reaction in which the metallic Zn is released. As ZnO begins to grow on the

substrate, the organic waste products generated by the precursor cracking desorb from

the surface and are pumped out of the chamber through appropriate exhaust lines. In

cases, where the reactants or the resulting waste products are toxic, the exhaust lines

need to be modified for proper waste treatment and disposal.

MOCVD growth of ZnO nanowires and -rods is typically carried out at relatively

low substrate temperatures of about 500◦C to 600◦C without the use of a metal cat-

alyst [114, 115, 159–161]. Although ZnO nanostructure fabrication has been demon-

strated for MOCVD growth directly on silicon or sapphire substrates [158, 159, 162],

a thin ZnO buffer or seed layer is often employed to facilitate the nucleation of ZnO

nanowires [114,115,160,161]. Park et al. reported direct influence of this buffer layer on

the growth direction and orientation of ZnO nanowires [115]. While ZnO buffer layers

grown above 200◦C led to vertical nanowires along the common ZnO[0001] direction,

tilted wires with a [101̄0] growth direction were observed when the substrate temperature

for buffer deposition was kept below 200◦C. Similarly, Kim et al. reported changes in

ZnO nanowire growth orientations for different thicknesses of the ZnO buffer layer [160].

Liu et al. reported that control over the growth orientation of ZnO nanowires could also

be achieved by the application of an electric field [163]. When a plasma is generated in

the reaction chamber, the resulting bias between plasma and substrate guides the charged

adatoms to the growth front at the polar ZnO(0001) surface and forces the wires to grow

vertically from the substrate.

Even though ZnO nanostructure growth by MOCVD is usually carried out without a

metal catalyst, few reports exist that demonstrate the feasibility of catalyst-assisted nano-

wire growth. Thereby, the metal can act either as an active site on the surface initiating

the nanowire growth [164,165] or as a particle guiding the growth at the nanostructure tip

as in the VLS mechanism [157]. Substrate temperatures of 900◦C and higher seem to be

necessary for ZnO nanostructure synthesis to occur by the latter growth mode [157,165].

All of the fabrication routes for ZnO nanostructures discussed above involve the use
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of high temperatures and/or high vacuum systems. For MOCVD, the proper treatment

of waste products from the precursor cracking imposes additional technical efforts and

costs. As a low-cost and scalable alternative to these techniques, solution-based pro-

cesses have received great attention for the synthesis of ZnO nanostructures in the past

decade [166]. In hydro- and solvothermal1 synthesis routes, zinc salts such as zinc

nitrate are mixed with hexamethylenetetramine, ammonium carbonate or other cap-

ping agents and stirred vigorously for several hours at temperatures between 40◦C and

200◦C [8, 168, 169]. The diameters of the fabricated nanowires range from few tens of

nanometers to micron-sized rods and can be controlled by different parameters such as

reactant concentrations (i.e. supersaturation) and growth temperature [123,168,170,171].

While in the first reports on solution-based synthesis of ZnO microrods the growth was

carried out directly on a substrate [172], Greene and co-workers showed that the use

of a textured ZnO seed layer facilitates control over the orientation of the grown ZnO

nanorods with respect to the substrate surface [123]. In the same year, Greene, Law

and co-workers demonstrated a functional dye-sensitized solar cell on the basis of ZnO

nanowires grown by this method [173]. Textured ZnO layers for use as seeds in ZnO

nanowire growth can be easily prepared by virtually any high-vacuum thin film deposi-

tion technique [158, 170], but also by low-cost methods such as repeated spin-coating or

dripping of a diluted zinc salt solution and subsequent annealing at temperatures above

300◦C [123,133,174]. The structural properties of this seed layer (e.g. degree of texture,

thickness and surface roughness) have great influence on the orientation, diameter and

density of the hydrothermally grown ZnO nanorods [122,124,150,174–176].

ZnO nanorods can also be fabricated in liquid media by electrochemical processes re-

ferred to as electrodeposition. This technique employs an electric bias to direct the

growth of ZnO from dissolved zinc salts on the cathode (substrate) of the electrochem-

ical cell. Two different approaches have been utilized in literature for the electrochem-

ical growth of ZnO nanorods: in the template-based approach, porous alumina anode

membranes are utilized to deposit Zn or ZnO into nanosize channels of the alumina tem-

plate [75,177]. The filled pores are subsequently annealed at temperatures of up to 400◦C
to oxidize the Zn in the channels and improve the crystallinity of the rods. In the second

approach, growth is performed directly on the cathode substrate without the use of a seed

layer or template membrane [178, 179]. Various zinc-containing salts can be employed

and an additional capping agent can also be added to aid the formation of uni-directional

ZnO nanostructures [179–182].

Various potential applications have been presented for ZnO nanorods and -wires during

1Strictly speaking, the term ”hydrothermal” (or ”solvothermal”) refers to reactions of aqueous (or sol-

vent) mixtures in sealed autoclaves involving elevated temperatures and pressures. In literature, however,

this terms is often used also for aqueous solution growth of nanowires in open beakers and is thus not

differentiated in the present discussion [167].
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the past decades. By growth of ZnO nanowires on a conductive bottom layer and the

subsequent application of an organic dye or active polymer, excitonic solar cells can be

fabricated as denoted earlier [133, 167, 173, 183–186]. The integration of nanostructures

in such solar cells offers increased interface areas important for charge carrier collection

and direct electron pathways to the electrode [187]. Furthermore, single ZnO nanowire

transistors have been fabricated from ZnO nanowires in surround- or top-gated configu-

rations utilizing different working principles such as field-effect or piezopotential-gated

transistors [188–191]. Such nanowire transistor configurations can be employed as sen-

sors for gases such as H2, O2, NO2 or ethanol, for biomolecular interactions, vacuum

pressures or strain [191–197].

Furthermore, ZnO nanowires can be applied in optoelectronic devices. As already men-

tioned earlier, lasing in the ultraviolet wavelength range has been demonstrated for ZnO

nanowires even at room-temperature [142, 198, 199]. Moreover, ZnO nanowires can be

utilized as LEDs [200–202]. Due to the persisting difficulties of reproducible p-type

ZnO preparation [203], these devices are usually prepared as hybrids with n-type ZnO

nanowires grown on a p-type substrate such as p-GaN [14]. However, first reports exist

on all ZnO nanowire LEDs and lasers, involving the growth of p-type ZnO nanowires on

n-type ZnO films [14, 204].

Other interesting applications of ZnO nanowires are based on the piezoelectricity of ZnO.

Wang et al. demonstrated that polar ZnO nanobelts could be used as nanogenerators,

providing a novel approach to mobile power supplies [16]. Upon mechanical shocks or

vibrations, the piezoelectric effect generates an electrical current in the nanowire. Due to

the small size of the wires, the power supply could be activated by the mechanical strain

induced by a walking human. Furthermore, The piezoelectric effect of ZnO nanowires

opens up several other potential applications such as piezotronics and piezo-phototronics

[16].

2.3.2 Nanobelts

Another common type of ZnO nanostructures is the so-called nanobelt. As the term

already indicates, this structure is described by a belt-like morphology with several tens

to few hundreds of nanometers in width and only 10 - 50 nm thin [205]. The widths

and thicknesses are maintained throughout the entire length of the structure, which can

be in the millimeter range [206]. The first nanobelts have been demonstrated by the

VPT method in Wang’s group during the early years of the new millennium [207]. TEM

images of these nanobelts are shown in Fig. 2.11. The authors achieved the nanobelt

morphology by evaporating the ZnO source material in a horizontal tube furnace at

extremely high temperatures of 1400◦C without employing any metal catalyst.
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Figure 2.11: TEM images of various ZnO nanobelts showing their characteristic shapes.

Reprinted with permission from [207]. Copyright 2001 American Association for the
Advancement of Science.

Z.L. Wang defines three different types of ZnO nanobelts that can be fabricated by the

VPT method [5]. Type I grows along the ZnO[0001] direction and is enclosed by the

(21̄1̄0) plane as main facet and the (011̄0) surface (cf. Fig.2.12a). In type II, the (011̄0)
facet acts as growth front with the ZnO(0001) and ZnO(21̄1̄0) planes constituting the

small and wide side facets, respectively (Fig. 2.12b). A characteristic feature of this

nanobelt type is the planar stacking fault in the ZnO(0001) plane which can be observed

along the entire length of the belt [207]. The last type of ZnO nanobelts is depicted in

Fig. 2.12c. It has either a (21̄1̄0) or (011̄0) plane as growth front with the ZnO(0001)

plane being exposed at the large-area flat surface, while the (011̄0) or (21̄1̄0) facets,
respectively, are found at the small-area side facets. Due to the large surface area of the

polar ZnO(0001) plane, this type is also referred to as a ”polar” nanobelt [5].

Compared to the growth of ZnO nanowires by the VPT method, the nanobelt morphol-

ogy can be achieved by the same technique, if the substrate is located closer to the source

material in the tube furnace [208]. This corresponds to an increase in ZnO supersatu-

ration and substrate temperature, which are important parameters for determining the

morphology of the ZnO nanostructure [136]. Although a metal catalyst is generally

not necessary for the fabrication of belt-like morphologies [209], catalyst-assisted ZnO

nanobelt growth has been demonstrated with the VPT method using Au, Ag or Sn as a

catalyst [210–212]. Ding et al. observed the growth of polar as well as type II nanobelts

with the Sn catalyst [211]. Contrary to the catalyst-free fabrication, the type II nanobelts

were single-crystalline without any stacking fault along the length of the belt. Further-
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(a) Nanobelt type I (b) Nanobelt type II (c) Polar nanobelt

Figure 2.12: Three different types of ZnO nanobelts with their characteristic growth

fronts and side facets. Adapted from [5].

more, a close correlation between the nanostructure morphology and the catalyst/ZnO

epitaxial relationships were found. Xing et al. reported the growth of single-crystalline

ZnO nanobelts by the VPT method utilizing Ag as catalyst metal [212]. The belts were

ultra-thin with thicknesses as small as few monolayers of ZnO (∼ 2 nm). In most of the

above reports, the formation of ZnO nanobelts from a catalyst is attributed to the VLS

mechanism, i.e. the catalyst resides at the growth front of the belt. However, Sun et

al. report on the formation of ZnO nanobelt arrays from nano-sized Sn/SnO2 catalysts

acting only as seed particles [213].

In order to fabricate the third ZnO nanobelt type - the ”polar nanobelt” - the introduction

of In as a dopant has been identified as a key ingredient [24,214,215]. Fan et al. observed

a switching in nanostructure morphology from c-axis oriented ZnO nanowires to polar

nanobelts growing along the ZnO a-axis upon inserting an additional In2O3 source in the

tube furnace [215]. Wang et al. confirmed that the introduction of In- or Li-dopants plays

a key role for the fabrication of polar ZnO nanobelts at high yields [24]. The dopants

introduce planar defects (inversion domain boundaries) which seem to be responsible for

the stabilization of the polar ZnO nanobelt configuration.

Besides the widely used VPT method, other growth techniques have been successfully

employed for the growth of ZnO nanobelts. Via a simple oxidation of Zn metal plates

in a tube furnace at relatively low temperatures (400-500◦C) ZnO nanobelts of type I

have been fabricated [216–218]. Zhang et al. reported on the hydrothermal synthesis

of single-crystalline ZnO nanobelts with thicknesses of 10-20 nm and 20-200 nm in
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width [219]. Zinc sulfate, urea and ethanol were mixed in an alkaline solution (pH = 14)

and heated to 160◦C in a sealed autoclave for 16 hours. As reaction products, the authors

observed not only the nanobelt type depicted in Fig. 2.12a, but also an alternative type I

of ZnO nanobelts with the ZnO(011̄0) plane forming the flat surface and the ZnO(21̄1̄0)
plane at the side facets. Hattori et al. combined nanoimprint lithography with grazing

incidence PLD to fabricate ordered arrays of ZnO nanobelts standing on a substrate

with the thin side facet aligned parallel to the substrate surface [220]. Furthermore, RF

sputtering and electrochemical synthesis as well as less common approaches such as

microwave-assisted techniques or electron beam irradiation of polyhedral Zn nanoparti-

cles have been employed [221–224].

ZnO nanobelts offer a wide range of potential applications partly overlapping with those

of ZnO nanowires, e.g. field effect transistors, field emitters, Schottky diodes, dye-

sensitized solar cells as well as stimulated emission and lasing [212, 225–230]. Gas

sensing properties of ZnO nanobelts have been demonstrated for various organic as

well as inorganic substances including H2, O2, NO2, NH3, hydrocarbons and ethanol

[218, 222, 231–233]. Due to their flat morphology, ZnO nanobelts show potential as

nanocantilevers for use in scanning probe microscopes and other techniques involving

the use of cantilevers [234]. Furthermore, photosensors and UV detectors consisting

of single ZnO nanobelts have been demonstrated [235, 236]. Upon illumination with

UV light, the electrical conductance through the nanobelt is drastically increased, which

can be exploited for photosensitive switches in integrated circuits [235]. When the belt

surface is functionalized by a polymer, UV photodetection can be further enhanced by

several orders of magnitude [236]. The optical properties of ZnO nanobelts can also

be utilized for photocatalytic reduction of toxic organic pollutants in wastewater to less

harmless species such as CO2 and water [213]. Furthermore, Ahmad et al. proposed

that Al-doped ZnO nanobelts could be used for hydrogen storage [237]. They report on

an H2 storage capacity of 2.94wt % in a nanobelt. About 80 % of the stored hydrogen

was released again upon heating the nanobelts to 370K. Other promising applications

of ZnO nanobelts are offered by the piezoelectric properties of the polar type of nano-

belts. Zhao et al. could show that the piezoelectric coefficient of polar ZnO nanobelts

exceeds the value of bulk ZnO [238]. Similar to ZnO nanowires, it is proposed that ZnO

nanobelts could be utilized as nanogenerators or as building blocks in piezotronics or

piezo-phototronics [16].

2.3.3 Nanorings, -springs and -helices

When the growth conditions in the tube furnace of the VPT reactor are optimized for

high yields of polar ZnO nanobelts (cf. Fig. 2.12c), for example by doping with In or
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Li [24], novel uncommon ZnO nanostructure morphologies can be fabricated as reported

by Kong et al. [239]. Closed ZnO nanoring shapes as well as spring-like morphologies

(cf. Fig. 2.13b and d) have been observed under these conditions [24, 239, 240]. The

nanosprings have radii of about 500-800 nm and reach several microns in length. For

the closed ZnO nanorings, two different types with diameters of up to several microns

have been found by Kong and co-workers [240]. In type I, the ZnO[0001] direction is

the nanoring axis and ZnO[12̄10] is the radial direction. For type II, ZnO(12̄12) is the
plane of the nanoring and ZnO[12̄13] constitutes the radial direction. A third type of

ZnO nanorings has been observed by Wu et al. using thermal evaporation of ZnS and

carbon powders [241]. The radial direction of the rings is ZnO[0001] and the ring plane

is formed by ZnO(21̄1̄0) face. Both ZnO nanorings as well as the nanosprings are made

up of ZnO nanobelts that are ”rolled over” to form the described shapes as depicted in

Fig. 2.13. The belts are about 5 - 20 nm thick and have polarization charges located on

the polar ZnO{0001} surfaces, thus creating electrostatic energy. The structures there-

fore attempt to neutralize these electrostatic charges by rolling over into an enclosed

ring structure or spiral shapes. However, the bending of the nanobelt creates elastic

energy. The total structure is therefore determined by balancing electrostatic and elastic

energies [24].

Besides the spring- and ring-like structures, a nanohelix shape depicted in Fig. 2.14b

has also been observed under these conditions. These helices are considerably smaller

than the nanosprings (∼ 50 nm radius) [24, 206] and their growth mechanism is based

upon periodic changes in the structures’ growth direction rather than the curling of ZnO

nanobelts. Even though the overall axis of the nanohelix is the ZnO[0001] direction,

the microscopic growth occurs along the 〈011̄1〉 directions. Thereby, the growth direc-

tion cycles periodically through the six equivalent ZnO 〈011̄1〉 directions as depicted

in Fig. 2.14c [24, 206]. These ZnO nanohelices showed high elastic properties with a

”shape memory” effect [206]. After stretching the helix to a straight wire, it returned to

its original shape upon relaxation of the pulling force.

2.3.4 Nanotetrapods

It is known for a long time that ZnO crystals can adapt tetrapod-like shapes. Already in

1944, M. L. Fuller observed ZnO ”fourlings” through a stereoscopic microscope [243].

When the research community began to focus on the fabrication of ZnO nanostruc-

tures during the past decade, such tetrapod structures have also been observed on the

nanoscale. Dai et al. reported on the growth of ZnO nanotetrapods by oxidation of Zn

powder using the VPT method [244]. The legs of the tetrapods were about 2-3 μm long
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Figure 2.13: Schematic illustration of the formation of ZnO nanorings and -springs.

Electrostatic forces cause a polar ZnO nanobelt (a) to ”rolled over” and form a nano-

ring (b), a nanospiral (c) or a nanospring (d). Reprinted with permission from [242].
Copyright 2004 Elsevier Ltd.
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Figure 2.14: Structure model of a ZnO nanohelix. (a) Schematic illustration of a building

block for the ZnO nanohelix. (b) A model of a ZnO nanohelix structure. (c) Bottom-up

and top-down views of the nanohelix model indicating the stacking of building blocks

resulting in the final structure. Reprinted with permission from [24]. Copyright 2004
John Wiley and Sons.
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Figure 2.15: SEM image of a ZnO nanotetrapod (a) and schematic illustration of the

tetrahedral building blocks (b) that are joined to an octa-twin nucleus initiating the nano-

tetrapod formation. Reprinted (a) and adapted (b and c) with permission from [245].
Copyright 2007 Elsevier Ltd.

and the central nucleus had diameters of about 70-150 nm.

A typical tetrapod morphology is shown in Fig. 2.15a. It is believed that the basis for the

formation of tetrapod ZnO crystals is a so-called octa-twin nucleus formed in the gas-

phase during growth in oxygen-rich environments [24, 245, 246]. This nucleus consists

of eight tetrahedral crystals with {112̄2} pyramid facets and {0001} basal planes as de-

picted in Fig. 2.15b. These eight crystals are joined together at the {112̄2} pyramid facets

to form an octahedron so that all facets of the resulting nucleus are {0001} basal planes

(cf. 2.15c) [247]. Four of the octahedron facets consist of O-terminated ZnO(0001̄),
while the other four are Zn-terminated (0001) planes [24, 245]. As mentioned earlier,

the ZnO(0001) surface is chemically more active than the ZnO(0001̄) plane. Therefore,
wurtzite ZnO grows along the ZnO[0001] direction only on the four active Zn-terminated

ZnO(0001) basal planes of the octa-twin, leading to the four legs of the tetrapod.

The VPT technique is probably the most frequently used method for the fabrication of

ZnO nanotetrapods [24, 245, 248, 249]. By controlling the growth conditions such as

the oxygen partial pressure in the reactor, the morphologies of the ZnO tetrapods can

be slightly varied [246]. Pearl-necklace-shaped legs of the tetrapod, for example, can

be achieved by mixing Zn, ZnO and carbon powder as a source material [250]. Besides

VPT, other methods have been successfully employed to fabricate ZnO nanotetrapods.

Lin et al. utilized a DC plasma reactor to form ZnO nanotetrapods at high yields of up

to half a kg per hour [251]. In their setup, metal Zn powder is oxidized in a flame of

DC plasma generated with input powers of up to 90kW and the resulting nanopowder is

subsequently collected in a filter bag. In a similar approach, a Zn melt is sent through a
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Figure 2.16: SEM images of ZnO tetrapod-like shapes grown by PLD in the course of

this work.

nozzle and ignited by a welding torch using oxygen and acetylene gas [252]. The synthe-

sized ZnO nanotetrapods are then collected on a cooling plate. Solution-based synthesis

methods have also been successfully employed for the fabrication of tetrapod-like ZnO

nanostructures [253, 254]. Lupan et al. mixed a solution of zinc sulfate and ammonia

in a hydrothermal reactor heated to 90-98◦C for 15 minutes and collected the resulting

ZnO nanotetrapods on a glass substrate [253]. During the preliminary work for this

thesis, tetrapod-like shapes have also been observed by pulsed laser deposition of ZnO

nanostructures as shown in Fig. 2.16.

Similar to the other ZnO nanostructures described above, nanotetrapods have a wide

variety of potential applications, such as dye-sensitized solar cells or gas sensors [228,

255, 256]. It has also been shown that ZnO nanotetrapods have excellent field emission

properties [257, 258] and a field emission display with a 72 x 72 pixel array based on

ZnO nanotetrapods has been demonstrated [259].

2.3.5 Nanotubes

Since the discovery of carbon nanotubes in the early 1990’s [260], tubular structures have

received increased attention by the research community. As of today, the fabrication of

ZnO nanotubes has been demonstrated using a variety of approaches. A typical ZnO

nanotube structure is shown in Fig. 2.17. The cross-section of the tubes usually resem-

bles the hexagonal shape of the ZnO lattice with ZnO[0001] as the growth direction of

the tubes.

One method for achieving tubular structures on the nanoscale is the employment of suit-

able template structures. For this purpose, ZnO is often deposited into the pores of anodic
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500 nm

Figure 2.17: SEM image of an as-synthesized ZnO nanotube array. Reprinted with
permission from [261]. Copyright 2009 Elsevier Ltd.

alumina membranes, which have diameters on the order of several tens to few hundreds

of nanometers. In order for nanotubes to grow inside these pores, the ZnO material must

be deposited preferrably at the walls of the membrane before the pores are filled up,

otherwise ZnO nanowires would be formed [129]. This preferential deposition can be

achieved by isotropic ZnO growth facilitated by, for example, sol-gel methods or atomic

layer deposition [129, 130]. Electrodeposition can also be used, if a thin Au layer is

deposited on the back surface of the membrane, reaching only slightly over the pore

edges and guiding the subsequent ZnO growth onto the overlapping Au film [131]. The

as-deposited ZnO nanotubes are amorphous or polycrystalline and are often annealed at

elevated temperatures to achieve crystallinity [129–131]. In another template-assisted

approach, Zn nanowires are fabricated first and subsequently oxidized in a suitable at-

mosphere/chemical environment [195,262]. During this oxidation process, a ZnO sheath

is formed around the Zn nanowire core. In the final step, the template is removed via

the sublimation/evaporation of the Zn core by thermal treatments. The diameter of the

resulting ZnO nanotubes is determined by the corresponding diameter of the initial Zn

nanowires. As an alternative to nanowire templates, Zn-ZnO core-shell nanobelts can

also be utilized for the fabrication of ZnO nanotubes [263].

A further variation of template-based preparation is the etching of ZnO nanorods

by potassium or sodium hydroxide or hydrochloric acid [261, 264, 265]. Since the

ZnO(0001) has the highest surface energy, its etching rate is the fastest, leaving behind

only the sidewalls consisting of the more stable and low-energy (101̄0) facets. This pro-
cess has been observed experimentally by recording SEM images at different etch times

(cf. Fig. 2.18). Sufficiently high defect densities in the ZnO nanorod crystal are required

for successful etching of the nanotube structure [265]. Besides these techniques, ZnO

nanotubes can also be fabricated by hydrothermal growth of ZnO on PLD-grown buffer
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Figure 2.18: The different stages of ZnO nanotube formation by the etching of hexag-

onal ZnO nanorods visualized by SEM images. Reprinted with permission from [264].
Copyright 2008 American Institute of Physics.

layers [266, 267], direct electrodeposition on ITO [268], VPT growth directly onto the

substrate (catalyst-free as well as catalyst-assisted) [269–271] as well as MOCVD [272].

Potential applications of ZnO nanotubes include ethanol or hydrogen sensors [195,273],

photocatalysis [265], dye-sensitized solar cells [130, 274], white light emitting diodes

[275] as well as field emitters [276]. Kong et al. reported superior sensitivity of ZnO

nanotubes as glucose biodetectors over ZnO nanorod or planar devices [261].

2.3.6 Nanocombs

The morphologies of typical comb-like nanostructures are shown in Fig. 2.19. The basis

of a ZnO nanocomb is a nanobelt or nanowire structure as backbone with ZnO nanowires

growing as dendritic sidebranches or teeth from the sides of the stem. The structure is

single-crystalline and, typically, the backbone grows along the [011̄0] or [21̄1̄0] direction
of the ZnO crystal. While the growth of the stem can be achieved with and without the

use of a metal catalyst [15,278–280], the branched nanowires grow in the ZnO[0001] via

a VS or self-catalyzed growth mechanism [15,281]. Thereby, the branches can be evenly

spaced with distances ranging from 0.3 μm to 2 μm [277,282].

The most commonly observed nanocomb structure is a single-sided comb with teeth

growing only from one edge of the backbone, namely the Zn-terminated (0001) face.

This can be explained by the differences in chemical activity of the ±(0001) planes as
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Figure 2.19: SEM images of ZnO nanocomb structures at different magnifications (a-c).

The higher magnification images show nanocombs with various dimensions and spacings

of the periodic nanowire branches. Reprinted with permission from [277]. Copyright
2005 American Chemical Society.
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already mentioned in section 2.1. Furthermore, Wang et al. identified tiny Zn clusters

at the nanowire tips suggesting a self-catalyzed growth mechanism of the branches [15].

However, double-sided as well as three-sided ZnO nanocombs have also been reported

in literature with a ZnO 〈0001〉 and a 〈21̄1̄0〉 direction as the second and third branching
directions, respectively [280, 281, 283, 284]. Different origins have been identified for

the formation of double-sided combs. While Lao et al. observed symmetric combs with

both sides of the branches growing along the Zn-terminated [0001] direction due to an

inversion domain boundary [283], Zhang et al. also reported the growth of nanowire

branches from the O-terminated (0001̄) plane [281].

The most common growth technique for the fabrication of ZnO nanocomb structures

is the VPT method. Pure Zn, ZnS and ZnO powders can be used as source materi-

als [282, 284, 285], often mixed with carbon powders such as graphite, black carbon

powder or single-wall carbon nanotubes [278, 286, 287]. The growth conditions for

successful fabrication of ZnO nanocombs vary significantly and seem to depend largely

on the individual instrumental setup employed. For instance, nanocombs have been

observed for evaporation at temperatures between 440◦C and 1400◦C in flows of typi-

cally Ar or Ar/O2 gas mixtures [281, 283]. Furthermore, depending on the setup, ZnO

nanocombs grow on substrates kept in temperature zones of the tube furnace ranging

from 440◦C to above 900◦C [281, 286]. The fabrication of In-doped nanocombs by

introduction of a In/In2S3 source into the tube furnace has also been demonstrated [4].

Besides the VPT method, ZnO nanocomb structures can be fabricated from and on a

brass (Cu0.66 Zn0.34) foil by oxidizing the material in a tube furnace [288]. Chen et al.

demonstrated the fabrication of ZnO nanocombs by a two-step process [289]. First, ZnO

nanowires are hydrothermally grown on one half of the substrate. In a second step, ZnO

growth is carried out by the VPT method on the same substrate, leading to the formation

of ZnO nanowires on the uncoated half of the substrate as well as ZnO nanocombs at the

interface between the hydrothermally and VPT-grown wires.

The potential applications of comb-like ZnO nanostructures include many of those previ-

ously mentioned for the other ZnO nanostructure types, e.g. field emitters, dye-sensitized

solar cells, ethanol and biosensors [290–293]. However, nanocombs may offer unique

possibilities due to the ordered array and periodicity of the nanowire branches. Pan et

al. realized a diffraction grating for integrated optics from a ZnO nanocomb structure,

showing distinct diffraction maxima upon monochromatic laser illumination [277]. ZnO

nanocombs are also suitable candidates for UV nanowire laser arrays due to the pres-

ence of Fabry-Perot optical cavities induced by the ZnO/air interfaces on both ends of

the nanowire branches [282, 289]. Furthermore, nanocantilever arrays based upon nano-
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83 nm

Figure 2.20: Schematic illustration (a) of a hexagonal nanodisk denoting the different

facets. Corresponding TEM image (b) and selected-area diffraction pattern of a hexag-

onal nanodisk. (b) is reprinted with permission from [294]. Copyright 2006 Springer
Science and Business Media.

combs have been proposed for utilization in scanning probe techniques [15].

2.3.7 Nanosheets

ZnO can crystallize in a flat and two-dimensional morphology which we refer to here

as ”nanosheets”. Even though these structures are often expanded in two dimensions

up to several tens of micrometers in width and length, the prefix "nano" is justified by

the small thickness of these sheet-like shapes which is typically in the range of sev-

eral tens to few hundreds of nanometers. Nanosheets are therefore often characterized

by high aspect ratios with respect to the relation between thickness and width/length

of the structures. Besides ”nanosheets”, alternative terms such as ”nanodisks” or

”nanoplatelets” are frequently used to describe these morphologies [136, 294–296]. Dif-

ferent profiles of ZnO nanosheets have been reported, including rectangular sheets [297],

round [298, 299] or hexagonal disks [294, 300–302] as well as triangular [303–305] and

disordered [136,306,307] structures.

Contrary to the previously described ZnO nanostructures, the most frequently employed

methods for the synthesis of ZnO nanosheets are solution-based growth techniques

such as hydrothermal synthesis and electrodeposition [180, 181, 300, 301, 308–310].

The nanosheets prepared by these methods often (but not exclusively) exhibit disk-

like shapes with a hexagonal perimeter resembling the basal plane of the ZnO crystal

structure [180, 295, 300, 301, 308, 311]. Such a hexagonal ZnO nanodisk is shown

schematically in Fig. 2.20a. It has been shown by TEM investigations that the large-area
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surfaces of these hexagonal nanodisks consist of ZnO{0001} facets while the hexagonal

perimeter is formed by {011̄0} surfaces form (cf. Fig. 2.20b) [294,300]. Since the thick-

ness of the sheets is typically orders of magnitude smaller than their two-dimensional

expansion, this implies that the low-energy {011̄0} facets must have higher growth

rates than the high-energy ZnO{0001} surfaces during the synthesis process. This is in

conflict with the relative growth rates commonly observed for the growth of wurtzite

ZnO, where the ZnO{0001} facets have the highest surface energy of all low-index ZnO

planes and thus grow the fastest in order to minimize the areas of high energy [31]. The

formation of hexagonal ZnO nanodisks is therefore often explained by the suppression

of ZnO growth on the (0001) surface. This can be achieved by adding suitable sur-

factants or capping agents to the growth mixture, for example, negatively charged ions

such as chlorides and phosphates which adsorb on the Zn-terminated (0001) growth facet

and inhibit the adsorption of ZnO growth species on this surface [181,299,310,312,313].

In the solvothermal and electrochemical growth techniques, ZnCl2 [295,314], Zn(NO3)2
[300, 306], zinc sulfate [315] or zinc acetate [299, 316] are typically employed as Zn

source. Reagants such as hydroxides [314–316] as well as suitable capping agents, e.g.

citric acid, chlorides or phosphates [299, 312, 313], are then added in order to guide

the growth of the nanostructure into the sheet-like shapes. The electrolyte or growth

mixture can be kept at room temperature or may be heated to temperatures of up to

200◦C. Depending on the individual setup (e.g. utilization of a sealed autoclave), various
growth parameters such as temperature, growth duration, pH as well as molar concen-

trations (supersaturation) can have key influence on the morphology of the synthesized

nanosheets [180, 294, 309]. Furthermore, ZnO nanoparticles or thin films can be utilized

as seeds to facilitate nucleation and initiate the nanostructure growth [295, 310, 316].

Besides the mentioned growth parameters, the current density can play an important

role for the final nanostructure morphology during electrodeposition [308]. While in

solvothermal methods ZnO nanosheets can form - in principle - on virtually any sub-

strate material, electrodeposition is only feasible on conductive substrates, e.g. indium

tin oxide (ITO) on glass [295, 302, 306].

In an alternative solution-based approach, pure Zn substrates or foils are directly oxi-

dized in solution to form ZnO nanosheets [294, 301, 311]. In this case, all Zn atoms are

supplied by the substrate and oxidized via dedicated oxidation agents such as ethanol

or direct bubbling of oxygen gas through the growth solution. Similar to the previous

growth techniques, nanosheet formation is often guided by the presence of surfactants as

described above [294].

Besides these wet chemical growth methods, ZnO nanosheets have also been fabri-
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Figure 2.21: Schematic illustration (a) of a triangular ZnO nanosheet denoting its di-

mensions. SEM image of ZnO nanosheets grown by PLD in the course of this work.

cated by physical vapour deposition (PVD) techniques, including VPT [136, 137, 303,

304, 317–319], PLD [118, 305] and molecular beam epitaxy [320] with and without

the use of a metal catalyst. Although hexagonal nanodisk shapes have been demon-

strated [321], the PVD-grown nanosheets usually show different morphologies, e.g.

triangular shapes [303, 304, 317, 318]. In contrast to the hexagonal nanodisks, the large

exposed surface of these structures is not the ZnO(0001) facet, but a low-energy plane

such as {21̄1̄0} or {011̄0}. The ZnO[0001] direction is often perpendicular to the sheet

edges and growth proceeds via an initial formation of ZnO nanocombs with dendritic

sidebranches (cf. the previous subsection). When ZnO growth is then continued be-

yond the formation of nanocombs, the spaces between the branches are filled up with

impinging material and the comb side of the structure is smoothened out to form a nano-

sheet [317]. Zhang et al. could directly observe this type of nanosheet formation by

an in-situ environmental SEM growth technique [319]. However, the formation of ZnO

nanosheets has also been observed without the presence of nanocombs during the initial

stage of ZnO growth as is the case in this work [118,318,320].

ZnO nanosheets can also be fabricated by a combination of the growth techniques men-

tioned above. In a first step, precursor nanosheets of pure Zn or Zn-containing mate-

rial are synthesized in the desired shapes by, for example, VPT or hydrothermal meth-

ods [297,322–324]. Subsequently, the nanostructures are oxidized via thermal annealing

in oxygen or air, thus transforming the precursor structures to ZnO nanosheets of nearly

identical shapes. Moreover, porous ZnO nanosheets have been fabricated using this ap-

proach [307, 323]. In a template-assisted method, nanosheets of zinc hydroxide nitrate

hydrate (ZHNH) have been first prepared by electrodepositing the precursor material in
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the spaces between polystyrene colloids [325]. Then, the polystyrene template has been

removed under calcination at 600◦C, simultaneously transforming the ZHNH to porous

ZnO nanosheets via oxidation.

Potential applications of ZnO nanosheets include the common areas of ZnO nanostruc-

tures such as field emitters [303, 309], biosensors (e.g. for the detection of superox-

ides) [302, 326, 327] and dye-sensitized solar cells [314, 328, 329]. For the latter type of

application, the average conversion efficiency of dye-sensitized solar cells prepared with

ZnO nanosheets has been reported superior to devices based on ZnO nanowires [167].

ZnO nanosheets can also be utilized as anodes in lithium ion batteries showing im-

proved performances compared to commercial ZnO powders [307]. Moreover, enhanced

photocatalytic properties have been demonstrated for ZnO nanosheets, accelerating the

degradation of organic dyes such as Rhodamine B or methyl orange [296,298,307,330].

Thereby, the performance of ZnO nanosheets has been found superior to the photocat-

alytic degradation properties of ZnO nanorods [331]. Furthermore, ZnO nanosheets have

been shown to emit light in the UV wavelength range, similar to the previously described

ZnO nanostructure morphologies [300]. However, due to the ordered hexagonal perime-

ter of disk-like ZnO nanosheets, whispering gallery modes can be excited in the structure,

leading to increased emission of UV light at the edges of the nanodisks [303,321].

2.3.8 Other nanostructures

In the previous subsections a selection of ZnO nanostructures including the most common

morphologies has been discussed in detail. However, additional, less common and hier-

archical nanostructures have been reported in the literature, including ”nano-aeroplanes”

[249], ’nano-sleeve fishes” [290],”nano-propellers” [24],”nano-bowling pins” [4] and

others. A detailed discussion of all these different types of ZnO nanostructures is be-

yond the scope of this work. For further information on less common or as well as

hierarchical types of ZnO nanostructures, the reader is referred to various reviews and

articles available in the literature [3–5,278].
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Chapter 3

Experimental techniques

In this chapter, the experimental techniques employed for the fabrication and charac-

terization of the ZnO nanostructures and thin films discussed in this work are briefly

described.

3.1 Pulsed laser deposition

This energy-enhanced growth technique belongs to the group of PVD methods and is

widely used for the deposition of thin films. A pulsed laser beam evaporates the de-

sired growth material from a target which then condenses on a substrate placed opposite

of the target. Due to the high energy of the focused laser beam, material ablation is

nearly congruent, i.e. the evaporated species exhibit almost the same stoichiometry as

the bulk target material [332]. This renders PLD a versatile growth technique which

can be used to deposit films of various materials including metals, semiconductors and

polymers [332, 333]. Due to possibility for controlled streaming of oxygen gas into

the growth chamber, PLD is especially suitable for the deposition of high-quality oxide

films [334,335]. For further reading on the fundamental principles as well as applications

of PLD, the reader is referred to the books by Chrisey or Eason [335,336].

Besides thin film growth, the fabrication of various nanostructures has been demon-

strated by PLD [337–341]. For these applications, the setup of the PLD system is often

slightly modified, for example, by enabling higher pressures within the 1 - 100 mbar

range [337, 342] or by utilizing indirect heating via a hot-wall deposition chamber sim-

ilar to a tube furnace [155, 341]. However, when appropriate growth conditions are

chosen, nanostructure fabrication is also feasible in conventional PLD systems designed
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Figure 3.1: Schematic diagram of the PLD setup used in this work.

for thin film deposition [343].

The PLD setup used for the growth of ZnO nanostructures and AZO thin films in this

work is a conventional thin film deposition system shown schematically in Fig. 3.1. A

pulsed laser beam is generated in a KrF excimer laser (Lamda Physik 210i) operating

at a wavelength of 248 nm. In this type of lasers, stimulated emission is achieved by

the formation of temporary bonds between inert krypton and fluorine in an excited state

via electrical discharge at voltages between 16 kV and 24 kV. Within nanoseconds, the

molecule dissociates again into its elemental atoms under the emission of a photon. The

generated laser beam is guided by a set of mirrors through a rectangular aperture which

controls the size and shape of the laser spot on the target. Further down the path, the beam

passes through an attenuator enabling the adjustment of the laser energy at a constant

discharge voltage. Thereby, the energy of the beam can be controlled without changing

the spot size of the laser beam on the target as has been observed for voltage-controlled

laser energy adjustments [344]. Subsequently, the beam is focussed by a lens through

a set of viewport windows onto a target situated in an ultra-high vacuum chamber. The

viewport window system (”Intelligent window”, PVD Products Inc.) consists of an outer

fixed window coated with an anti-reflection layer and an inner rotatable fused silica disc.

The latter part is denoted schematically in Fig. 3.1. During extensive material ablation,

the inner disc is coated unintentionally with evaporated target material, essentially atten-

uating the laser energy inside the chamber. When the energy reduction reaches a critical

value, the inner disc can be rotated to a clean spot, allowing for longer maintenance

intervals of the viewport. In order to minimize deviations in the laser energy between

deposition runs, energy readings both before and after entrance of the beam into the

growth chamber have been recorded, serving as an energy reference.

As the laser hits the target, material is rapidly evaporated with a net motion normal to the
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Figure 3.2: Plasma plume during laser ablation of a ZnO target in the PLD system

employed in this work.

target surface. Subsequently, the ablated atoms are ionized by the incident laser beam,

generating a bright blue plasma plume as shown in Fig. 3.2. For the case of ablation

from a ZnO target, this plume consists of neutral ZnO, Zn and O atoms as well as ions,

ZnO clusters and zinc suboxides [345–348]. At a given distance opposite to the target

- the so-called target-to-substrate distance - a substrate is mounted on a heater block in

an on-axis configuration, i.e. facing the target surface. As the ablated species impinge

on the heated substrate surface, condensation occurs and ZnO crystal growth is nucle-

ated. In order to avoid instabilities in the material flux due to the formation of ablation

cones on the target surface [349], the target is raster-scanned in a circular area of 15

mm diameter during deposition. Furthermore, the target is pre-ablated extensively prior

to deposition for contamination removal imposed by the polishing of the target surface

usually performed before every other deposition run.

The deposition chamber is equipped with two independent gas inlets and mass flow

controllers, allowing for controlled gas flows into the chamber at distinct ratios of argon

and oxygen. A stable absolute pressure in the range of 0.001 mbar to 0.5 mbar inside the

reaction chamber is then reached by adjusting the valve opening to the vacuum pumps.

For the growth of ZnO nanostructures, a pure ZnO target was used and the energy of the

laser was adjusted to 1-2 J/cm2 at discharge voltages between 16-24 kV. The substrates
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were heated to temperatures between 700◦C and 800◦C with ramp rates of 10-15◦C/min

in 0.5 mbar of 95% Ar: 5% O2 or pure oxygen ambient gas.

For the deposition of AZO thin films, a ZnO target containing 2 wt% Al was ablated with

laser energies of 1-1.6 J/cm2. Pure Ar and oxygen ambients at pressures between 0.001

and 0.5 mbar are maintained in the chamber during deposition. Substrate temperatures

are varied from room temperature up to 500◦C. The target-to-substrate distance was kept
at 45 mm for all depositions.

3.2 Electron Microscopy

For the structural characterization of nanostructures, electron microscopy is one of the

most important tools as it provides direct imaging of the nanostructures’ morphology.

The resolution of electron microscopy techniques reaches far beyond the resolution limit

of optical microscopes due to the shorter (de-Broglie) wavelengths of electrons com-

pared to those of photons [350]. In an electron microscope, a beam of electrons is di-

rected towards a specimen, where it interacts with the sample material in multiple ways

as illustrated in Fig. 3.4. In scanning electron microscopy (SEM), secondary electrons are

mainly exploited to create an image of the specimens’ surface topography, while in trans-

mission electron microscopy (TEM), primary electrons transmitted through a thin sample

slice are responsible for image contrast. For further reading on electron microscopy tech-

niques, various comprehensive textbooks are available [350–352]

3.2.1 Scanning Electron Microscopy

In a typical SEM setup shown schematically in Fig. 3.3, electrons are first generated

within an appropriate electron source such as a tungsten filament or a field emission

gun. The electrons are accelerated towards the sample by large electric fields (in SEM

typically about 10 kV). It governs the momentum of the electrons and is therefore di-

rectly related to their de-Broglie wavelength λ = h/p which is an important factor for

determining the resolution of the microscope. The accelerated electrons pass through

a set of electromagnetic lenses and scan coils which focus and deflect the beam across

the surface of the specimen. The impinging electrons are scattered by the atoms and

molecules in the sample, resulting in several interaction ”products” as mentioned above

(cf. Fig. 3.4). The secondary electrons (SE) produced via inelastic scattering at the

sample surface are the main signal source in SEM. By scanning the electron beam across

the specimen, the number of secondary electrons collected in a detector is recorded at
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Figure 3.3: Schematic illustration showing the main components of a basic SEM setup.

Adapted from [350].

each position (pixel) and, subsequently, assembled into a full image of the sample sur-

face. Thereby, the emission and detection efficiencies of secondary electrons are directly

correlated with the surface morphology of the sample.

Besides secondary electrons, characteristic x-rays and Auger electrons are generated by

interaction between electron beam and sample as illustrated in Fig. 3.4. The incident

electrons can transfer some of their energy to an atom in the specimen and knock out an

electron from an inner shell. Subsequently, an electron from an outer shell can relax into

the empty low-energy state and release the energy difference via the emission of an x-ray

or Auger electron. Since the energies of these x-rays or Auger electrons are characteristic

for the atomic species and electron transitions involved, additional information about the

chemical composition of the specimen can be gathered by energy-resolved detection of

these x-rays or Auger electrons. These characterization techniques are called energy-

or wavelength-dispersed x-ray spectrometry (EDS or WDS) and Auger Electron spec-

troscopy (AES), respectively.

In addition to the processes described above, electrons can also be ”backscattered” from

the sample surface (cf. 3.4). Thereby, the number of back-scattered electrons (BSE)

depends on the scattering cross-section and the atomic number Z of the species in the
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Figure 3.4: Various interaction mechanisms of an electron beam with a specimen.

Adapted from [352].

sample. When collected in a detector and overlaid with secondary electron images, back-

scattered electrons can give additional Z contrast to the images, revealing the positions

of heavy and light atoms in the sample surface.

Specimen under SEM investigation are subject to heavy electron bombardment. If not

dissipated properly, e.g. on insulating samples, electrons may therefore accumulate and

cause charging at the surface. The resulting electric field interferes with the incident

and secondary electrons and distorts the recorded image. In order to avoid this issue,

samples are generally mounted to a grounded sample stage with conductive carbon or

copper tape. As an additional measure, the charge dissipation of insulating samples can

be enhanced by coating the surface with thin Au or carbon films on the order of a few

nanometers. These coatings allow for sufficient charge dissipation while the surface

features of interest are retained.

The SEM work during this study was carried out at a Zeiss Ultra 55 Limited Edition, a

Zeiss Supra 55 VP and a Hitachi S-5500 in-lens system, operating at acceleration volt-

ages of 5 - 15 kV.

3.2.2 Transmission Electron Microscopy

While SEM is a widely used method for relatively fast and easy assessment of a spec-

imens’ surface morphology, TEM allows for a more detailed characterization with res-

olutions down to the atomic level. Information on the local crystal structure, crystal
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Figure 3.5: Schematic illustration showing the main components of a basic TEM setup.

Adapted from [350–352].

orientation as well as lattice defects can be gathered.

As mentioned above, a beam of primary electrons transmitted through the specimen is

utilized for image formation in TEM rather than the secondary electrons used in SEM.

Nevertheless, the basic setup of a TEM shows similarities to SEM (cf. Fig. 3.5). At the

top of the columns, electrons are generated within a suitable source and guided towards

the specimen by electromagnetic condenser lenses. Contrary to SEM, the electrons are

not focussed on the sample, but penetrate the specimen as a parallel beam. Sets of aper-

tures and electromagnetic objective and projector lenses guide the transmitted electrons

onto a fluorescent screen or a CCD detector for image recording. In order to ensure

the transmission of electrons through the specimen, acceleration voltages on the order

of few hundred kV and sample thicknesses of typically less than 100 nm are necessary.

Therefore, sample preparation for TEM studies can be a difficult task with numerous pro-

cessing steps including focused ion beam processing or sputter etching. Nanostructure

specimen, however, can be easier to prepare since nanoscale dimensions are - by defini-

tion - immanent to nanostructures. Therefore, a simple dispersion of the nanostructures

on a conductive carbon or copper mesh may often be sufficient for basic TEM studies.

Transmission electron microscopes can be operated in different modes, revealing distinct

properties of the specimen. A typical image recorded in bright-field mode is shown in

Fig. 3.6a. The image contrast is formed by absorption and scattering of electrons in

the sample and is therefore sensitive to local variations in specimen thickness and/or

atomic number Z. Furthermore, the ”Bragg” scattering of electrons caused by atoms in

a periodic crystal lattice can be exploited for image formation. As will be described in
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Figure 3.6: Example images of a ZnO nanowire recorded in the course of this work with

different imaging modes of TEM. (a) Bright-field image, (b) selected-area diffraction

pattern and (c) HRTEM image.

more detail for the case of x-rays in section 3.4, an incident electromagnetic wave with

wavelength λ is diffracted at crystal lattice planes if the so-called ”Bragg condition”

(cf. equation 3.1) is satisfied. By spatially-resolved detection of the diffraction maxima,

i.e. by recording a diffraction pattern (cf. Fig. 3.6b), information on the specimens’

crystal lattice and phase as well as growth directions (of nanostructures) can be revealed.

By inserting an aperture in the transmitted beam path, such diffraction patterns can be

recorded only from a selected area of the specimen (selected-area electron diffraction,

SAED).

The resolution of TEM can be improved even down to the atomic level when operated

in high-resolution mode (HRTEM). In this mode, image contrast is created through

the phase shift between an electron wave transmitted directly through the specimen

(”forward-scattered” wave) and a diffracted electron wave [351]. While the former serves

as a reference phase, the diffracted wave contains information about the atom arrange-

ment in the specimen. A HRTEM image can therefore be considered as an interfer-

ence pattern of diffracted and incident electron waves. In the resulting image individual

atomic columns within the specimen can be visualized as shown in Fig. 3.6c, enabling

detailed studies of local variations in the crystal structure, revealing lattice defects such

as stacking faults and allowing for investigations of nanostructure growth directions and

interfaces.

In this work, a JEOL 2010F TEM operating at 200kV was used to study the structural

details of individual ZnO nanostructures. Corresponding specimen were prepared by

scraping the nanostructures off the as-grown substrate and dispersing them on a conduc-

tive carbon mesh by dripping ethanol over the scalpel tip.
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Figure 3.7: Schematic illustration of a basic AFM setup. Adapted from [353].

3.3 Atomic Force Microscopy

As a member of the family of scanning probe microscopes, the atomic force microscope

(AFM) is used to reveal information about the surface of a specimen. In the typical

application of AFM, the topography of a specimen surface is imaged. However, various

other characteristics such as magnetic, frictional or electrical forces can also be probed

if the AFM setup is modified appropriately and suitable probe tips are used [353]. In

this work, the acquisition of surface topography images was the primary use of AFM.

Detailed information on AFM can be found in various reviews and textbooks [353–355]

In Fig. 3.7 a typical AFM setup is illustrated schematically. The operation principle of

an AFM is based on the raster scanning of a sample surface with an atomically sharp

probe tip, which is mounted to the end of a flexible cantilever. As the tip approaches

the specimen, the sample surface interacts with the probe tip via attractive or repulsive

forces, leading to a deflection of the cantilever from its rest position. This deflection

is monitored by the displacement of a laser beam reflected off the cantilever using a

photodiode. From the recorded data, the forces acting on the tip can be determined

and converted to the parameters of interest (e.g. topography). Typically, the probe tip

is scanned across the sample surface by moving the sample stage with a piezoelectric

scanner. In principle, an AFM can operate in two feedback modes: the constant height

and the constant force mode. In the former, the distance between tip and sample is kept

constant and information about the forces exerted on the tip and the surface topography
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is contained in the measured deflection of the cantilever. In contrast, a feedback loop

is used in the constant force mode to adjust the height of the sample by the piezoelec-

tric stage, thereby maintaining the forces acting on the tip. Information on the surface

topography is then directly given by the vertical positions of the piezoelement at each

measurement point (pixel).

Images of the sample surface topography can be recorded in different AFM operation

modes. In the non-contact mode, the tip and cantilever are driven in a vertical oscillatory

motion close to the resonance frequency of the cantilever. As the probe tip approaches

the sample surface, the phase and amplitude of the cantilever oscillation are slightly

changed due to the tip-sample interaction forces and these shifts can then be converted

into a force value. In this operation mode almost no damage is inflicted to the sample

surface as it is nearly contact-free. In the second operation mode - the contact mode -

the probe tip is continuously in contact with the sample surface during image scanning

and the interaction forces are directly measured by the deflection of the cantilever. The

sample surface might therefore be damaged as the tip is ”dragged” across the sample.

Additionally, the increased wear of the probe tip reduces its lifetime and requires fre-

quent replacement intervals.

The AFM images presented in this work have been acquired using a Veeco Multimode

AFM operating in non-contact mode and controlled by a Nanoscope V unit.

3.4 X-Ray Diffractometry

The distances between atoms periodically arranged in a solid crystal are typically on the

order of few Ångström. In order to probe such a crystal by electromagnetic radiation,

wavelengths on the same order of magnitude or lower are necessary. In 1913, W.H.

Bragg and his son discovered that x-rays reflected off a crystalline solid showed distinct

intensity maxima at particular angles and attributed their observations to the constructive

interference of x-rays diffracted by sets of parallel crystal lattice planes separated by a

distance d [356]. For radiation to interfere constructively, the difference in path lengths

of the individual rays reflected off the lattice planes must be an integer multiple of the

wavelength λ as shown in Fig. 3.8. In the case of two adjacent lattice planes, this differ-

ence is equal to 2dsinθ with θ being the incidence angle of the x-rays. Merging these

considerations, the condition for the observation of intensity maxima in x-ray diffraction

can be written as

nλ = 2dsinθ (3.1)
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Figure 3.8: Schematic illustration of the Bragg condition. Adapted from [357].

which is known as Bragg’s law. X-ray diffraction techniques can therefore be used to

reveal information about various different properties of crystalline samples, e.g. chemi-

cal composition, crystal structure, lattice parameters as well as lattice stress and crystal

grain sizes. A detailed and thorough discussion of x-ray diffraction can be found in the

book by Birkholz [357].

In this work, a Bruker AXS D8 Discover high-resolution XRD system was used for

all x-ray diffraction measurements. It consists of a fixed Cu Kα x-ray source with a

monochromator, a goniometer and sample stage with in total six degrees of freedom as

well as a movable x-ray scintillation detector arm with a set of collimating and anti-

scattering slits. The goniometer is free to move by an azimuthal rotation around its axis

corresponding to the angle θ, and by a vertical tilt of angle ψ (cf. Fig. 3.9a). The height

and lateral positions of the specimen are controlled by electrical drives on the sample

stage, which can also be rotated azimuthally around its center axis by an angle φ.

The specimen is mounted directly to the sample stage of the goniometer and held in

position using either a vacuum chuck or double-sided tape. In both cases, the sample is

unlikely to lie flat on the stage and a corresponding θ offset correction is necessary during
the alignment steps of the measurement procedure.

In an XRD measurement, the angle θ of the incident x-ray beam is controlled by the

azimuthal rotation of the goniometer. In order to detect x-rays reflected off a lattice plane,

the detector arm is rotated around the goniometer axis to the angle 2θ. In general, an x-

ray diffraction measurement can be set up in various ways, revealing various properties

of the crystalline sample. The two measurement modes employed in this work are briefly

introduced in the following sections.
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Figure 3.9: (a) Schematic illustration of the available rotational degrees of freedom for

the goniometer/sample stage in a XRD measurement setup. (b) XRD pole figure of a

sample with tilted ZnO nanowires growing along the ZnO[0001] direction. During the

pole figure measurement, the sample is azimuthally rotated by 360◦φ for each step in

the vertical tilt ψ. The angle θ is fixed at the position corresponding to reflections at

the ZnO(0002) planes. The intensity at each measurement position is given by the color

index below the figure (the peaks in the plot are denoted by yellow circles). For clarity,

the font colors of the corresponding angles are matched in parts (a) and (b).
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θ - 2θ measurements

This mode is one of the basic and most common measurement types in x-ray diffraction.

After initial alignment and positioning of the sample for optimized collection efficiencies,

the stage drives remain fixed. Intensities of reflected x-radiation are recorded for a desired

range of θ and 2θ angles while the relationship between θ and 2θ is maintained. Each

observed peak corresponds to the reflection of x-rays at a set of planes perpendicular to

the sample surface. The resulting spectra therefore reveal information about the crystal

structure, thin film texture and grain size as well as the lattice constant/interplanar spacing

d.

Pole figure measurements

The aim of this measurement mode is to study the orientations of a single set of lattice

planes within the specimen. Thus, fixed values for θ and 2θ are chosen that satisfy the

Bragg condition for the desired crystal planes, e.g. the ZnO(0002) planes. After the

initial alignment procedures, the reflected intensity is recorded for changes in the vertical

tilt ψ and the azimuthal rotation of the sample stage φ. In a typical experiment, one of the

two parameters, e.g. ψ, is fixed as the other one (φ) is cycled through its full range. The

process is then repeated for the next step in ψ until the full range of desired ψ data points

is reached. The acquired intensity data can then be plotted as a ”pole figure” vs. the tilt

and rotation angles ψ and φ as illustrated in Fig. 3.9b. Applying this measurement mode

to thin films, information about the degree of texture, the distribution of crystal phases

and - if appropriate film and substrate lattice planes are studied - the epitaxial relationship

between the substrate and the thin film can be obtained from the recorded data. When

combined with imaging techniques such as SEM, pole figures are a powerful tool for

revealing the orientation and epitaxial relationships of nanostructures with a substrate as

will be demonstrated in Paper III.

3.5 Electrical characterization of thin films

The potential of a thin film for use as a transparent electrode clearly depends on its electri-

cal properties, i.e. its resistivity, mobility and carrier concentration. For semiconductors,

these properties can be measured by utilizing the Hall effect, i.e. the generation of a

transverse voltage due to the Lorentz force

�F = q( �E + �v × �B) (3.2)
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Figure 3.10: Schematic illustration of the Hall effect. The shown square-shaped van der

Pauw geometry has been used for Hall effect and sheet resistivity measurements in this

work. Adapted from [358].

exerted on moving electrons by a magnetic field �B. Here, q is the electric charge, �E is

the electric field strength and �v is the velocity of the charge carriers. Fig. 3.10 illustrates

the fundamental aspects of the Hall effect, if electrons are the majority charge carriers in

the semiconductor. When an electric field Ex is applied along the x-axis, electrons drift
through the material and cause an electric current Ix. With the magnetic field Bz in the

z-direction, the Lorentz force induces an additional charge drift along the y-axis. The

resulting current Iy leads to charge accumulation at the edges of the conductor, building

up a transverse electric field Ey that counteracts Iy and cancels the Lorentz force [358].

Upon reaching equilibrium conditions, Iy vanishes and a potential difference

VH = −BzIy
ned

(3.3)

can be measured across the semiconductor known as the Hall voltage. Here, n is the

carrier concentration, e the elemental charge and d the thickness of the conductor slab as

denoted in Fig. 3.10. This leads to the Hall coefficient defined as

RH =
Ey

jxBz
=

VHd

IxBz
= − 1

ne
(3.4)

Therefore, by measuring the Hall voltage at constant magnetic field Bz and forward

current Ix, the carrier concentration n as well as the type of majority charge carriers

(given by the sign of equation 3.4) can be determined. Additionally, if the resistivity ρ of

the thin film is known, the electron mobility μe in the sample can be calculated using the

relation
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μe =
σ

ne
=

1

neρ
. (3.5)

A commonly employed method for determining the resistivity ρ of a thin film with

arbitrary geometry is the van der Pauw method [358, 359]. The thin film is contacted

at four points at the edges of the sample and ρ is evaluated by a series of I − V curve

measurements with appropriate contact configurations for current-injection and voltage-

measurement. Simultaneously, the Hall coefficient RH can be measured using the same

geometry by applying a magnetic field Bz .

In this work, van der Pauw measurements have been carried out on AZO thin films using

a Lakeshore 7504 system. A square-shaped sample geometry with contacts in the four

corners has been utilized as depicted schematically in Fig. 3.10. For the Hall voltage

measurements, the forward current has been fixed at Ix = 1 mA with the magnetic field

sweeping from -0.5 T to 0.5 T in steps of 0.1 T. Prior to the actual measurement, the

ohmic behaviour of the contacts has been confirmed by I − V curve measurements over

various contact configurations.

3.6 Optical characterization

Besides low resistivity, the transmission of light within the desired wavelength range is

a key feature of transparent electrodes. For thin films on a transparent substrate such as

glass or sapphire, the optical transmittance of the electrode layer can be measured di-

rectly using appropriate light sources, monochromators and spectrometers (e.g. UV-Vis

spectrometers). However, this approach cannot be employed with transparent conducting

films grown directly on opaque substrates or functional layers, e.g. for use as top elec-

trodes. In these cases, spectroscopic ellipsometry can disclose the properties of interest.

In ellipsometry, changes in the polarization of light after interaction with and reflection

from a specimen are measured. In a typical setup (cf. 3.11), a beam of light with a defined

polarization is incident on the sample surface at a distinct angle (typically 70◦) [361].
The reflected light passes through a polarization filter and its intensity is measured in a

detector.

The experimental data obtained from a spectroscopic ellipsometry measurement contains

information from all layers and interfaces the light interacts with, including the substrate,

the thin film as well as the substrate-film and film-air interfaces. Therefore, meaningful

interpretation of ellipsometry measurements is not straight-forward and typically requires
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Figure 3.11: Schematic illustration of a typical ellipsometry setup. Adapted from [360].

modelling of the acquired data, taking into account the different layers and interfaces

on the sample. Furthermore, structural and electrical properties of the films such as

crystallinity and the concentration of free charge carriers can influence the selection of

a suitable model [361]. Once a model is fitted to the data, the complex refractive index

N = n + iκ can be calculated for the layer of interest. Here, the real part n is the

real refractive index and the imaginary part κ is the extinction coefficient. The optical

transmittance of the thin film can then be determined from the relation [362,363]

T =
I

I0
= e−αd (3.6)

where I and I0 are the transmitted and incident intensities, d is the film thickness and α
is the absorption coefficient which is related to the extinction coefficient κ via

α =
4πκ

λ
(3.7)

with λ as the wavelength of the transmitted light [362].

The layer stack used to model the AZO thin films grown on GaAs substrates by PLD is

shown schematically in Fig. 3.12. It consists of a top roughness layer (effective media

approximation with 50% ZnO, 50% void material), a general oscillator layer represent-

ing the AZO thin film, and the GaAs substrate with a thin native oxide layer. The AZO

layer was fitted using a combination of a Tauc-Lorentz oscillator and a Drude model.

The former oscillator works well with amorphous crystal structures which are to be ex-

pected in this work due to the room temperature growth of AZO films [361]. The Drude

oscillator model accounts for the absorption of light caused by the high charge carrier

concentrations observed in the AZO films (∼ 1020 cm−3) [361].
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Figure 3.12: Schematic illustration of the AZO/GaAs layer stack used for the modelling

of the ellipsometry data.
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Paper I

Effects of substrate annealing on the gold-catalyzed growth of ZnO nano-
structures

Abstract. The effects of thermal substrate pretreatment on the growth of Au-catalyzed

ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire sub-

strates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on

substrates annealed above 1200 ◦C resulted in a high density of nanosheets and nano-

wires, whereas lower temperatures led to low nanostructure densities. Separate Au film

annealing experiments at 700 ◦C showed little variation in the size and density of the

Au catalyst droplets with substrate annealing temperature. The observed variation in the

density of nanostructures is attributed to the number of surface nucleation sites on the

substrate, leading to a competition between nucleation promoted by the Au catalyst and

surface nucleation sites on the rougher surfaces annealed below 1200 ◦C.

Status: Published in Nanoscale Research Letters 6:566 (2011)
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Abstract

The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser
deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer.
Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and
nanowires, whereas lower temperatures led to low nanostructure densities. Separate Au film annealing experiments
at 700°C showed little variation in the size and density of the Au catalyst droplets with substrate annealing
temperature. The observed variation in the density of nanostructures is attributed to the number of surface
nucleation sites on the substrate, leading to a competition between nucleation promoted by the Au catalyst and
surface nucleation sites on the rougher surfaces annealed below 1,200°C.

Keywords: zinc oxide, laser ablation, atomic force microscopy, thermal annealing, vapourliquid-solid growth,
nanostructures; surface roughness, surface defects

Introduction
Semiconductor nanostructures have attracted great inter-
est in the past decade due to a wide range of potential
applications, e.g., in solar cells, lasers and sensors, and as
building blocks of integrated systems [1-3]. Fabrication of
different types of nanostructures, such as nanowires,
nanorods, nanobelts and nanosheets can be achieved from
a variety of methods, including solution-based, chemical
and physical vapor deposition techniques, with and with-
out the use of a metal catalyst [1,4-7]. The morphology
and orientation of nanostructures can be controlled by
tuning growth parameters such as the substrate tempera-
ture, background pressure and precursor flux, as well as
the substrate material. Furthermore, substrate treatments
like chemical etching and thermal annealing have been
shown to have significant impact on nanostructure growth
for solution-based and catalyst-free vapor deposition tech-
niques [8-11]. For catalyst-assisted nanostructure growth,
however, little information exists on the effects of sub-
strate pretreatment prior to catalyst metal deposition [12].
Moreover, reports on pretreatment by thermal annealing
often refer to substrates coated with a thin layer of the

catalyst metal, resulting in alloying and formation of cata-
lyst droplets, which serve to guide the subsequent nanos-
tructure growth [13-16]. Thermal annealing of clean
substrates, however, is often reported to cause smooth and
well-defined step-and-terrace substrate surfaces [17,18].

In this report, we show how thermal annealing of the
substrate prior to catalyst metalization can significantly
impact catalyst-assisted nanostructure growth. This is
demonstrated for ZnO nanostructures grown on c-plane
sapphire substrates by pulsed laser deposition (PLD) using
gold as a catalyst.

Experimental work
The nanostructures were grown by ablation from a raster-
scanned ZnO target using a 248-nm KrF excimer laser at
10 Hz repetition rate and a fluency of ~1.33 J/cm2. The
substrates were heated to 700°C in a 0.5 mbar ambient of
5% oxygen/95% argon and ZnO was deposited for 30 min.
Prior to growth, the “epi-ready” c-plane sapphire sub-
strates (Valley Design Corp., 0° ± 0.25° miscut) were
annealed in oxygen at 1,000, 1,200 and 1,400°C for 1 h, fol-
lowed by deposition of a 1-nm-thin layer of Au using
e-beam evaporation. No further annealing of the Au layer
took place before introduction into the PLD chamber.

In order to investigate the effects of substrate anneal-
ing on the formation of Au catalyst droplets, separate

* Correspondence: helge.weman@iet.ntnu.no
1Department of Electronics and Telecommunications, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
Full list of author information is available at the end of the article

Weigand et al. Nanoscale Research Letters 2011, 6:566
http://www.nanoscalereslett.com/content/6/1/566

© 2011 Weigand et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.



experiments were carried out in the PLD chamber with
a Au layer only. C-plane sapphire substrates coated with
a 1-nm-thin film of Au were annealed for 5 min at the
same growth temperature and ambient as for the growth
of ZnO nanostructures.

The clean and Au-coated substrates were examined
using atomic force microscopy (AFM), and the PLD-
grown ZnO nanostructures were studied with scanning
electron microscopy (SEM).

The size and density of the catalyst droplets resulting
from the Au layer annealing experiments were deter-
mined using the image processing software “ImageJ”
[19]. The analysis procedure adopting image contrast
enhancement, noise removal and particle separation by
threshold and “watershed” methods was applied to 2μm
× 2μm AFM images of the Au droplets. From subse-
quent automated particle measurements, the area, circu-
larity, diameter and number density of the Au droplets
were calculated.

Results and discussion
The topography of the as-received and annealed c-plane
sapphire substrates and their characteristic parameters
are shown in Figure 1 andTable 1 respectively. Both as-
received substrates and those annealed at 1,000°C exhi-
bit a rough surface morphology with scratches from the
surface polishing provided by the manufacturer (Figure
1a, b). While the as-received substrates show no sign of
a step-and-terrace structure, the onset of terrace forma-
tion is observed upon substrate annealing at 1,000°C
with distinct steps of varying height (cf. inset in Figure
1b). By increasing the annealing temperature to 1,200°C
(Figure 1c), the substrate surface becomes atomically
flat, displaying an irregular step-and-terrace morphology
with constant step heights of about 0.24 nm, corre-
sponding to atomic bilayers [17]. After substrate anneal-
ing at 1,400°C, the step-and-terrace morphology shows a
distinct anisotropy with terraces of comparable widths
and nearly parallel edges (Figure 1d).

Figure 2 shows SEM images of the ZnO nanostructures
grown on sapphire substrates annealed at these different
temperatures. Under the growth conditions adopted
here, tilted ZnO nanowires and nanosheets form with the
latter being the predominant type and Au particles could
be clearly identified at the tip of these structures, indicat-
ing catalyst-assisted growth [20]. The size and density of
the ZnO nanostructures grown on as-received sapphire
substrates (Figure 2a) and on those annealed at 1,000°C
(Figure 2b) were noticeably inferior to those grown on
substrates annealed at 1,200°C and above (Figure 2c, d),
i.e., on substrates with a step-and-terrace surface mor-
phology (cf. Table 1). The latter exhibit a high density of
nanosheets and nanowires with significantly increased
sizes. We note that the annealing temperature seems to

have no appreciable effect on the specific type of nanos-
tructure grown. The observed differences in size and
density could derive from two different parameters: (a)
the size and density of the Au catalyst droplets and/or (b)
the density of surface nucleation sites.

It has been reported that substrate pretreatment and
morphology may significantly influence the size and den-
sity of Au catalyst droplets promoting nanostructure
growth [12,21]. In order to investigate the effects of sub-
strate annealing on catalyst droplet formation, Au-coated
sapphire substrates were annealed in the PLD chamber at
the 700°C growth temperature for 5 min, mimicking the
adopted growth procedure prior to ZnO deposition. Before
annealing of the Au layer, the step-and-terrace morphology
of the substrate is still visible in AFM (Figure 3a). After
annealing, the AFM images reveal a homogeneous distribu-
tion of Au droplets on the substrate surface regardless of
the underlying step-and-terrace structure (Figure 3b). The
size distribution and number density of the Au catalyst
droplets are summarized in Table 1 and do not appear
appreciably affected by thermal annealing of the substrate.
Only for an annealing temperature of 1,400°C, we observe
a slightly decreased average value and standard deviation of
the droplet diameter as well as a higher number density of
the Au droplets, presumably caused by the flat and smooth
substrate topography [21]. We therefore conclude that the
Au catalyst particle size is unlikely to bring about the
observed differences in nanostructure size and density with
substrate annealing temperature.

In the ideal scenario of catalyst-assisted nanostructure
growth, the growth species are all incorporated into the
nanostructure lattice via the catalyst-nanostructure inter-
face. These species can reach the catalyst droplet either by
direct impingement from the vapor or by surface diffusion
from the substrate. In reality, however, the catalyst-nanos-
tructure interface competes with nucleation at low-energy
surface sites such as pits, craters and grain boundaries, as
well as other surface defects abundant in rough surfaces
[22-24]. At these surface sites, catalyst-free growth of ZnO
is promoted, leading to reduced incorporation of growth
species at the catalyst-nanostructure interface. Simulta-
neously, these surface sites also provide increased energy
barriers for surface diffusion and thus imply reduced diffu-
sion lengths of the adsorbed growth species [22].

From Figure 1, it is apparent that the number of sur-
face nucleation sites promoting catalyst-free growth is
large for substrates annealed at 1,000°C and below. For
the step-and-terrace structures formed at higher anneal-
ing temperatures, however, the density of surface nuclea-
tion sites is significantly reduced. This is also indicated
by the decrease in the measured surface roughnesses
with annealing temperature listed in Table 1. In order to
investigate the effect of surface nucleation sites, we have
also deposited ZnO without the metal catalyst layer, but
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otherwise identical growth conditions and procedures.
The SEM images displayed in Figure 4a and 4b, respec-
tively, show that a high density of catalyst-free ZnO
nanorods grows on the as-received c-plane sapphire,
whereas only few rods nucleate on the substrate annealed
at 1,200°C. This implies a higher density of nucleation
sites on as-received c-plane sapphire substrates compared
to those annealed at 1,200°C, thus promoting enhanced
catalyst-free growth of ZnO nanorods. For substrates

annealed at 1,000°C and below, catalyst-assisted growth
of ZnO nanostructures may therefore be obstructed by
the increased competition for growth species with cata-
lyst-free ZnO growth nucleated at these surface sites,
leading to the observed low density and reduced size of
ZnO nanostructures. Conversely, the small number of
surface nucleation sites on the atomically flat surfaces of
substrates annealed at 1,200°C and above allows for the
growth species to reach the Au droplets without being

Figure 1 Topography of c-plane sapphire substrates after thermal annealing. 2μm × 2μm AFM images of c-plane sapphire substrate (a) as-
received and after annealing at (b) 1,000°C, (c) 1,200°C and (d) 1,400°C. Insets in (b-d) show height profiles of the white lines. All AFM images
use the same height scale (bottom).

Table 1 Characteristic features of substrates annealed at different temperatures and nanostructures grown on these
substrates

Substrate anneal T (°
C)

RMS roughness
(nm)

Terrace width
(nm)

Gold droplet size
(nm)

Gold droplet density
(cm-2)

Nanostructure density
(cm-2)

As-received 0.46 N/A 24.5 ± 10.8 7.3 · 1010 2.53 · 108

1,000 0.36 30-150 22.3 ± 10.2 7.0 · 1010 4.21 · 108

1,200 0.24 100-700 24.0 ± 9.3 6.8 · 1010 1.19 · 109

1,400 0.16 100-350 19.4 ± 6.5 1.4 · 1011 9.87 · 108
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Figure 2 ZnO nanostructures grown on annealed c-plane sapphire substrates. Top-view SEM images of ZnO nanostructures grown on c-
plane sapphire substrates (a) as-received and annealed at (b) 1,000°C, (c) 1,200°C and (d) 1,400°C.

Figure 3 Morphology of annealed c-plane sapphire substrates before and after annealing of the Au catalyst layer. 2μm × 2μm AFM
images of a 1-nm-thin Au layer on 1,200°C-annealed c-plane sapphire substrate before (a) and after annealing in the PLD chamber at 700°C for
5 min (b).
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incorporated at surface nucleation sites, thus promoting
the increased density and larger sizes of ZnO
nanostructures.

Furthermore, it is obvious from Figure 4 that the rate
of catalyst-free ZnO growth is significantly higher on
the as-received substrate than on sapphire annealed at
1,200°C. It has been previously reported that high rates
of catalyst-free, vapor-solid (VS) growth can obstruct
the catalyst-assisted growth of oxide nanostructures due
to competition between the two growth modes [25].
This provides further support for the scenario proposed
in the present work.

Conclusion
In this study, we have shown that thermal annealing of
the substrate prior to the Au catalyst deposition affects
the density of ZnO nanostructures grown on c-plane
sapphire. However, this substrate annealing does not
seem to have a significant impact on the nanostructure
morphology or the size and location of the Au catalyst
droplets. The observed difference in nanostructure size
and density can be explained by the competition
between nucleation at the Au-ZnO interface and nuclea-
tion at low-energy surface sites associated with defects
on rough substrate surfaces. The atomically flat surfaces
obtained by high-temperature annealing promote forma-
tion of high densities of ZnO nanostructures through a
significant reduction in surface nucleation sites, thus
demonstrating the importance of smooth surfaces for
catalyst-assisted nanostructure growth. We believe these
findings will help improve control and understanding of
catalyst-assisted nanostructure growth, also beyond the
ZnO material system.
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Paper II

Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser depo-
sition

Abstract. We report on the growth of single-crystal ZnO nanosheets without stacking

faults by Au-seeded pulsed laser deposition in a 0.5 mbar pure oxygen ambient, with

their growth direction inclined to the ZnO[0001] crystalline axis. Changing the deposi-

tion ambient to 5% oxygen and 95% argon at the same total pressure led to formation

of [0001]-oriented single-crystalline nanowires. We propose a formation mechanism

for ZnO nanosheets based on superposition of catalyst-assisted growth beneath the Au

droplet and asymmetric radial growth due to enhanced growth rates on exposed ZnO0001

sidewall facets. The crystalline facets present at the Au-ZnO interface were found to be

affected by the VI/II-ratio and seem to play an important role in determining the growth

mode of the ZnO nanostructures. A possible mechanism for the formation of a rough

Au-ZnO interface with facets different from ZnO(0001) is proposed, on the basis of con-

vergence of the nucleation and step propagation rates at the growth front upon increasing

the oxygen partial pressure.
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’ INTRODUCTION

A lot of research during the past decade has been devoted to
the growth and characterization of ZnO nanostructures.1,2 Due
to their wide band gap (3.37 eV) and high exciton binding energy
(60 meV), they are of interest for numerous applications, e.g.,
field emitters, light-emitting diodes, piezoactuators, and
biosensors.2�4 Each application places special requirements on
the material with respect to electronic and optical, as well as
mechanical and structural, properties. Since these characteristics
often depend on the nanostructure morphology, the type of
structure most suitable for a particular application will differ.
Many different ZnO nanostructures have been reported in the
literature, e.g., nanowires, nanorods, nanobelts, nanorings, nano-
tetrapods, and triangular nanosheets.4�6 Among these, ZnO
nanowires and nanorods are the types most frequently consid-
ered for device applications. Controlled growth of such ZnO
nanostructures has been demonstrated using a variety of growth
techniques, including solution-based and vapor deposition tech-
niques, with or without a catalyst.2,7�10 In contrast, little
information exists on the fabrication and properties of triangular
ZnO nanosheets. Even though these structures were observed in
conjunction with catalyst-assisted growth of ZnO nanowires,11�13

not much has been published on their characterization and little
is known about their formation.6,14,15

In a preliminary study,16 we explored catalyst-assisted growth
of ZnO nanostructures by pulsed laser deposition (PLD) for a
range of absolute pressures (0.005�0.5 mbar) and two different
gas compositions, i.e., pure oxygen and 5% O2�95% Ar, respec-
tively. Independent of the gas composition, higher ambient
pressures were found to promote the growth of ZnO nano-
structures. In the present work, we focus on the fabrication of
triangular ZnO nanosheets at high ambient pressures by catalyst-
assisted PLD and investigate their structural properties using
scanning (SEM) and transmission electron microscopy (TEM).
Furthermore, we propose a growth mechanism for the forma-
tion of nanosheets by PLD growth at elevated oxygen partial
pressures.

’EXPERIMENTAL SECTION

ZnO nanostructures were grown on sapphire substrates by laser abla-
tion from a 99.999% pure ZnO target (American Elements, Inc.) in an
on-axis configuration, using a 248 nm pulsed KrF excimer laser (Lambda
Physik LPX Pro 210i) with a fluency of∼1 J/cm2 and a pulse repetition
rate of 10 Hz. Au-coated c-plane sapphire substrates were placed on a
heater at 45 mm distance from the target, which was raster-scanned in a

Received: July 4, 2011

ABSTRACT: We report on the growth of single-crystal ZnO
nanosheets without stacking faults by Au-seeded pulsed laser
deposition in a 0.5mbar pure oxygen ambient, with their growth
direction inclined to the ZnO[0001] crystalline axis. Changing
the deposition ambient to 5% oxygen and 95% argon at the
same total pressure led to formation of [0001]-oriented single-
crystalline nanowires. We propose a formation mechanism for
ZnO nanosheets based on superposition of catalyst-assisted
growth beneath the Au droplet and asymmetric radial growth
due to enhanced growth rates on exposed ZnO{0001} sidewall
facets. The crystalline facets present at the Au�ZnO interface
were found to be affected by the VI/II-ratio and seem to play an
important role in determining the growth mode of the ZnO nanostructures. A possible mechanism for the formation of a rough
Au�ZnO interface with facets different from those of ZnO(0001) is proposed, on the basis of convergence of the nucleation and
step propagation rates at the growth front upon increasing the oxygen partial pressure.
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circular area of 15 mm in diameter with the laser beam fixed. During
deposition, the substrates were kept at 800 �C, as measured with a
thermocouple in contact with the heater block. The chamber base
pressure was ∼1 � 10�7 mbar. Following extensive preablation, ZnO
deposition was carried out at an absolute pressure of 0.5 mbar of pure
oxygen and 5% O2�95% Ar ambients.
The substrates were cleaned in ultrasonic baths of acetone and

ethanol for 5 min each and blown dry with pure nitrogen prior to
introduction in an electron beam evaporator, where a 2.5 nm thick Au
layer was deposited onto the substrate surface. The substrates were then
mounted on the PLD substrate holder using thermally conductive silver
paste. After introduction into the PLD chamber, the substrates were
heated to the desired growth temperature at a rate of 15 �C/min,
followed by ZnO deposition for 15 min up to 1 h. After ablation, the
samples were left to cool at a rate of 15 �C/min while maintaining the
ambient conditions in the chamber.
As-grown samples were characterized using a Zeiss Supra VP55 SEM,

and individual nanostructures which were separated from the substrate
and dispersed on a carbonmeshwere studiedwith aHitachi S-5500 SEM
and a JEOL 2010F TEM, operating at 200 kV.

’RESULTS AND DISCUSSION

An SEM image of ZnO grown by PLD at a substrate
temperature of Tsub = 800 �C in a pure oxygen atmosphere
(parameter set 1) is displayed in Figure 1a and shows a dense
array of ZnO nanosheets with average lengths of 4.5( 1 μm. As
can be seen from SEMmicrographs recorded at two different tilt
angles of the same nanosheet dispersed on a TEM mesh
(Figure 1b and c), the nanosheets exhibit a flat and triangular
morphology. The average thickness of a nanosheet (cf. Figure 1d) is
51 ( 10 nm near the base and 30 ( 9 nm at the tip, while the
average width is 508( 130 nm near the base and 34( 6 nm at
the tip.
TEM images of single nanosheets, cf. Figure 2a and b, reveal a

gold particle at the tip of each sheet, indicating a catalyst-assisted
growth mechanism. Figure 2a also shows that the nanosheets are
single-crystalline and free from stacking faults, but significantly
bent, as is evident in the numerous bending contours. Their
growth axis, as indicated by the white dashed arrow in Figure 2a,
is not confined to a single direction, but always inclined to the
ZnO[0001] axis by an angle α, as depicted in Figure 2a. This
angle was found to vary from sheet to sheet between values of 11�
and 48�. Minor shifts in the growth direction along the length of a
nanosheet were frequently observed. Most nanosheets were

found to exhibit a kink at the very tip, as shown in Figure 2b.
The ZnO[0001] axis was found to lie in the plane of the
nanosheet for all samples examined, as depicted schematically
in Figure 1d. Besides the predominant nanosheet morphology, a
small number of ZnO nanowires were observed for these growth
conditions.
In comparison, formation of ZnO nanowires was found to

predominate (Figure 3a) upon reduction of the oxygen partial
pressure in the growth chamber ambient, cf. parameter set 2 in
Table 1. The average diameter of the nanowires varied from 55( 15
nmnear the base to 28( 7 nm at the tip, for a total average length
of 2.1 ( 0.7 μm. Small Au particles were observed at the tip of
the nanowires, suggesting catalyst-assisted growth. The TEM
image and SAED pattern in Figure 3b show that the nanowires
are single-crystalline, are free from stacking faults, and grow along
the ZnO hexagonal c-axis.
The growth of nanostructures using a catalyst and a vapor

phase source is often described in terms of the vapor�liquid�
solid (VLS) mechanism. It involves the dissolution of growth
species in a liquid catalyst droplet at the tip of the nanostructure,
followed by precipitation and growth at the catalyst�nanowire
interface.17 However, nanowire growth is also possible from solid
catalyst particles, and it has been argued that not only bulk

Figure 1. (a) 45� tilted view SEM image of a sample grown at 800 �C in a 0.5 mbar pure oxygen ambient (parameter set 1). (b and c) SEM images of the
same nanosheet dispersed on a TEM mesh, recorded at two different tilt angles. (d) Schematic of a ZnO nanosheet with definition of its length, width,
and thickness dimensions, also depicting the orientation of the ZnO hexagonal c-axis in the plane of the nanosheet.

Figure 2. (a) Bright-field TEM image with corresponding selected-area
electron diffraction (SAED) pattern of a single ZnO nanosheet, showing
the inclination angle α of the growth direction with the ZnO hexagonal
c-axis. (b) Bright-field image of a nanosheet tip showing a kink below the
Au catalyst droplet.
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diffusion through the particle but also surface diffusionmight play an
important role in such catalyst-assisted growth.18�20 We thus adopt
themore general term “preferential interface nucleation” to describe
nanowire growth from a catalyst droplet, as suggested by Wacaser
et al.21 In this case, nanowire formation occurs by preferential
nucleation at the catalyst�nanowire interface and subsequent rapid
growth underneath the catalyst particle, allowing for both solid and
liquid catalysts as well as surface and bulk diffusion.
The formation of a ZnO nanowire is mainly governed by

preferential interface nucleation, as shown schematically in
Figure 4a�c. Upon heating of the substrate, the thin Au layer
self-organizes into small droplets.22,23 Then, nucleation takes
place at the catalyst�nanowire interface, and nanowire growth
proceeds by step propagation beneath the catalyst droplet.24,25

Even though growth underneath the catalyst dominates, the
specific growth conditions can still allow for significant catalyst-
free radial growth on the nanowire sidewalls via the vapor�solid
(VS) mechanism, with growth rates determined by the surface
energy and stability of the sidewalls.26,27 ZnO nanowire growth is
often reported to proceed in the ZnO[0001] direction,4,10,28�31

which is also observed for the nanowires grown in this work
(parameter set 2). All side facets are therefore composed of
identical ZnO crystal planes with equal surface energies and VS
growth rates. Radial growth will thus be “isotropic” (VSB =VSA in
Figure 4b), and the ratio of axial to radial growth rates will
determine the tapering of the nanowire. For simplicity, we
assume here a hexagonal cross section for the nanowires. This
assumption is, however, not essential for the discussed growth
mechanism, and near “isotropic” radial growth can be expected
also for circular cross sections due to the small differences in
surface energy of other low-index ZnO crystal planes perpendi-
cular to the ZnO(0001) plane.32

It has been previously proposed that tapered ZnO nanostruc-
tures could evolve from instability, i.e. the decrease in size, of the

catalyst droplet at the nanostructure tip during growth.33 For
ZnO nanosheet formation, however, this would imply that the
size of the catalyst alloy droplet would have to be comparable to
the dimensions of the nanosheet base at the initial stage of the
ZnO growth. Catalyst droplets of up to 700 nm in diameter
would thus be required at the tip of a growing nanosheet. The
thickness of the initial Au catalyst layer, however, is only 2.5 nm
and ZnO depositions carried out in our group under various
growth conditions and durations showed similar catalyst droplet
sizes of 20�40 nm in diameter at the tips of nanowires and
nanosheets alike. Furthermore, it has been shown that diffusion
of catalyst material away from the tips of oxide nanostructures is
negligible in the pressure regime adopted in this work.34 We

Table 1. Growth Conditions for the Discussed PLD-Grown
Samples

parameter set 1 parameter set 2

temperature 800 �C 800 �C
gas composition 100% O2 5% O2�95% Ar
deposition time 60 min 60 min

total pressure 0.5 mbar 0.5 mbar

structures observed nanosheets nanowires

Figure 4. Schematic illustration of the growth mechanism for a nanowire
(a�c) and a nanosheet (d�f). ZnO nanowire growth is nucleated by a Au
catalyst particle (a) and proceeds at a fast growth rate in the ZnO[0001]
direction underneath theAudroplet, denoted byVLS (b).Here, all side facets
have equal VS growth rates (VSB = VSA). (c) Final nanowire morphology.
(d) ZnO nanosheet growth is also nucleated from a Au particle, and catalytic
growthpredominates. (e) For the nanosheets, the growthdirection is inclined
to the ZnO[0001] axis. Sidewalls A have a lower VS growth rate than
sidewalls B (VSB . VSA) due to exposed ZnO{0001} facets. Inset: the
nanosheet morphology is already present at the early growth stage (15 min
deposition). (f) Final flat, triangular nanosheet morphology with the
hexagonal ZnO c-axis lying in the plane of the nanosheet.

Figure 3. (a) 45� tilted view and cross-sectional (inset) SEM images of a sample grown at 800 �C in a 0.5 mbar mixed ambient of 5% oxygen and 95%
argon (parameter set 2). (b) Bright-field TEM image with its corresponding SAED pattern of a single nanowire.
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therefore discard the possibility that growth mediated by the
catalyst droplet alone is responsible for the evolution of the
nanosheet morphology.
Increased tapering in oxide nanostructures has been reported

upon reduction in substrate temperature due to reduced diffu-
sion lengths of the growth species.23 However, since the substrate
temperature is kept constant during nanowire and nanosheet
growth alike, the corresponding diffusion lengths in the present
study should not be significantly different.
Instead, we picture the nanosheet growth starting with the

formation of a nanowire nucleus due to preferential nucleation at
the catalyst interface (Figure 4d�f), similar to the mechanism
leading to the nanowire morphology, where growth underneath
the catalyst predominates and the axial growth rate is the highest.
However, the nanostructure grows in a direction inclined to the
ZnO hexagonal c-axis. This implies that two opposite nanostruc-
ture sidewalls include a small fraction of ZnO{0001} facets.
These facets have the largest surface energy and, consequently,
the highest VS growth rate of all the ZnO low-index planes.26,27,32

With different planes growing at different speeds, faceting of
these two sidewalls might be expected. However, due to high
substrate temperature and supersaturation, the surfaces are
flattened by interspace filling of concave corner sites, leading to
smooth surfaces of these sidewalls, as observed in Figure 2a.6

Practically, the presence of the ZnO{0001} facets therefore
enhances the overall growth rate of these two sidewalls without
introducing faceting (VSB . VSA in Figure 4e). The radial
growth is thus anisotropic. Furthermore, the sidewalls estab-
lished early in the growth process, i.e. near the substrate, are
available to VS growth for a longer period of time than those
created shortly before growth termination, i.e. at the nanosheet
tip. This leads to the final flat and triangular nanosheet morphol-
ogy, with a large width at the base and a small width near the tip.
We note that depicting the initial nanosheet growth stage by the
nanowire morphology in Figure 4e is for purposes of clarity only.
In reality, the nanostructure resembles the final nanosheet
morphology also at the early stage, since axial catalyst-assisted
and radial VS sidewall growth occur simultaneously (cf. inset in
Figure 4e).
The proposed growth mechanism implies that the nanosheet

morphology can only be observed under growth conditions
allowing for sufficient VS growth. It has been previously reported
for oxide nanowire growth by PLD that an increasing oxygen
partial pressure enhances the degree of VS sidewall growth.35,36

As mentioned above, the formation of a nanosheet can be
envisaged as the formation of an initial nanowire with a growth
direction that deviates from the ZnO c-axis. Only the preferential
VS growth on two opposite sidewalls with a small fraction of
ZnO(0001) and ZnO(0001) facets, respectively, leads to the
evolution of the final nanosheet morphology. It is difficult,
however, to determine the exact growth direction of the initial
nanowire from the recordedTEM images due to the expansion of
the sidewalls. In principle, two scenarios are possible: in the first,
the VS growth rates of the (0001) and (0001) facets are identical,
and the initial nanowire grows along the center of the nanosheet,
as illustrated by the dashed arrow in Figure 2a. The second (more
likely) scenario derives from different growth rates of the ZnO-
(0001) and (0001) facets. In the extreme case, VS growth on one
of the two facets could be fully suppressed, suggesting that the
initial nanowire grows along one of the two nanosheet edges. In
fact, a significant difference in the VS growth rates for the two
polar ZnO surfaces was reported.37 Although VS growth on the

oxygen terminated (0001) facet was not fully suppressed, pre-
ferential deposition on the Zn-terminated (0001) surface was
observed. The ratio of VS growth rates for ZnO nanosheet
sidewalls with (0001) and (0001) facets, respectively, will be
sensitive to the growth conditions in the PLD chamber and is
difficult to determine. Therefore, the precise growth direction of
the initial nanowire of the ZnO nanosheets could not be
unambiguously defined. Moreover, the minor bends and kinks
found in some of the nanosheets indicate that their growth
direction can shift during deposition.
In the growth mechanism proposed above, the inclination of

the growth direction with respect to the ZnO[0001] axis is
crucial for the formation of nanosheets. Whereas catalyst-
induced growth of ZnO nanostructures is commonly reported
to proceed in the [0001] direction,2,4,31 deviations from the most
stable growth axes have been observed in numerous materials
systems and various possible reasons have been advanced to
explain these alternative growth directions. In the following
section we will discuss the applicability of these mechanisms
to the evolution of the ZnO nanosheets observed in our
experiments.
Several authors attribute such deviations in nanowire growth

direction to the size of the catalyst droplet.38,39 Below a critical
droplet size, minimization of Gibbs free energy favors a different
crystal facet at the catalyst�nanowire interface and thus a
different growth direction. We have measured the size of the
catalyst droplet at the tips of nanosheets and nanowires in our
samples, using TEM, without finding any correlation between Au
droplet size and the growth morphology. The droplet diameters
were found to be nearly identical for nanosheets and nanowires,
with measured average values of 30 ( 7 nm and 31 ( 8 nm,
respectively.
It has been shown that the catalyst metal species has a

significant impact on the growth morphology and orientation
of the nanostructures.40,41 The chemical composition of the
catalyst droplets in this experiment was analyzed by energy
dispersive X-ray spectroscopy (EDS) in TEM. Besides gold,
the spectra from the droplets of both nanowires and nanosheets
showed minor traces of silver, which may originate from sub-
limated silver paste used to mount the substrates in the PLD
chamber. However, no difference in the Ag signal was observed
for spectra taken from the catalyst droplets of several nanosheets
and a few nanowires found on a sample grown by parameter set 1.
This indicates that both nanosheets and nanowires can grow
from catalyst droplets with the same chemical composition
(within the accuracy of EDS).
Catalyst-assisted growth proceeds perpendicular to the cata-

lyst-nanowire interface, and the growth direction of a nanowire is
thus determined by the crystal facets present at this interface.21

Under equilibrium conditions, minimization of the total interface
and surface energies will govern the formation of those facets. In
most cases, the catalyst�nanowire interface is a single facet, i.e.
the most stable growth surface of the nanowire crystal, e.g.
(111)B for GaAs and (0001) for ZnO, leading to nanowire
growth in the well-known directions ([111]B for GaAs and
[0001] for ZnO, respectively).42 However, certain growth con-
ditions can allow for nonflat catalyst�nanowire interfaces with
different single or multiple facets and the growth direction can
therefore deviate from the commonly observed orientations.39,43

In Figure 5a, the Au�ZnO interface of a nanowire growing in the
ZnO[0001] direction (parameter set 2) is examined in detail by
TEM. The interface is a single ZnO(0001) facet covered entirely
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by the Au droplet. This observation is consistent with formation
of the most stable growth facet at the catalyst�nanowire inter-
face, as discussed above.
In contrast, the Au�ZnO interface of nanosheets grown at

high oxygen partial pressure (parameter set 1) is found to be a
single ZnO(1011) facet for all samples examined (Figure 5b).
This suggests that the Au�ZnO interface can take on facets other
than ZnO(0001) under certain growth conditions and growth
directions other than ZnO[0001] are possible. We note, how-
ever, that the Au�ZnO interface at the tips of the nanosheets
may differ from the facets present during the actual growth. As
described above, a small kink was observed for all the examined
nanosheets only a few tens of nanometers below the tip. We
attribute this kink to postgrowth formation caused by the
persistent flow of oxygen during sample cooling. ZnO nucleation
can then occur at the catalyst�nanowire interface even after the
laser has been switched off, fed by purging of the Zn reservoir in
the gold droplet (no Zn was measured in the EDS spectra from
the Au droplets) or possibly by residual Zn vapor in the PLD
chamber.44 Under these conditions, the supersaturation, i.e. the
chemical potential difference of growth species in the supply
phase (catalyst droplet or vapor source) and the solid phase
(ZnO nanostructure), is reduced and the VI/II-ratio is increased.
Since the formation of a kink essentially implies a shift in growth
direction, this finding provides further evidence that the VI/II-
ratio can be used to control the growth direction of ZnO
nanostructures.
The question remains, however, why facets other than ZnO-

(0001) form at the catalyst�nanowire interface, even though
they are less favorable energetically, and what role the oxygen
partial pressure plays in the formation of these facets. Increasing
the oxygen partial pressure may affect the growth mechanisms of
catalyst-assisted PLD in several ways. First, the increase in VI/II-
ratio imposed by an increased oxygen partial pressure may affect
the surface energy of the catalyst droplet and the nanowire side
facets and, thus, influence the energy balance of the growth
interface.45 Second, an increased oxygen partial pressure will also
affect the supersaturation, i.e. the driving force for nucleation and
growth of ZnO. While the original VLS model and numerous
studies of catalyst-assisted nanowire growth take into account the
supersaturation inside the catalyst particle only,17,46,47 nucleation
in catalyst-assisted nanowire growth can also be affected by
supersaturation in the vapor, and corresponding Gibbs free

energies can be formulated for different nucleation sites.21 In
the following, the two most important cases relevant to the
present study will be discussed. The first case considers nuclea-
tion beneath the catalyst�nanowire interface, as depicted by the
nucleus (c�k) in Figure 6. The corresponding energy barrier for
nucleation is given by

ΔGck ¼ � nΔμck þ Phσck ð1Þ
where Δμck is the supersaturation in the catalyst droplet and n is
the number of atoms or buildings blocks of the nucleus with
height h and perimeter length P.σck denotes the surface energy of
the catalyst (c)�crystal (k) interface. As can be seen from eq 1,
nucleation at the interface is governed entirely by the super-
saturation inside the catalyst. In the second case, nucleation
occurs at the three-phase boundary (TPB), denoted by nucleus
(TPB) in Figure 6. The corresponding Gibbs free energy can be
written as

ΔGTPB ¼ � nΔμsk þ Pckhσck þ Pskhσsk ð2Þ
where Δμsk is the supersaturation in the vapor and Psk, σsk and
Pck, σck denote the perimeter lengths and surface energies of
nucleus segments in contact with vapor (supply s) and catalyst
(c), respectively. In this case, the nucleation is governed by the
vapor supersaturation.
The nucleation event is the very first stage of catalyst-assisted

nanowire growth and can occur at either of the two nucleation

Figure 5. (a) High-resolution TEM image and its Fourier transform of a nanowire, grown in a 0.5 mbar mixed ambient of 5% O2�95% Ar (parameter
set 2). (b) High-resolution TEM image and its Fourier transform of a nanosheet grown in a 0.5 mbar pure oxygen ambient (parameter set 1).

Figure 6. Schematic illustration of different nucleation sites in catalyst-
assisted nanowire growth. Nucleation at the catalyst�nanowire interface
nucleus labeled (c�k); nucleation at the three-phase boundary is
abbreviated (TPB). The dimensions h and P denote the height and
perimeter length of the nuclei.
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sites discussed above. In both cases, the nanowire growth sub-
sequently proceeds by step propagation beneath the catalyst�
nanowire interface to complete a full monolayer before another
nucleus is formed.48

In PLD, the Zn concentration in the vapor is governed mainly
by the laser energy density on the target and the substrate
temperature (desorption) and is therefore thought to be un-
affected by the oxygen partial pressure. However, the oxygen
concentration in the vapor increases with oxygen partial pressure
and leads to an increased vapor supersaturation. Moreover, ZnO
may already form in the vapor by a gas phase reaction of zinc and
oxygen

2ZnðvÞ þ O2ðvÞ h 2ZnOðsÞ ð3Þ
where (v) and (s) denote the vapor and solid phases, respec-
tively. Similarly, ZnO can also be formed at the vapor�catalyst
interface via oxidation of Zn dissolved in the liquid catalyst
droplet,

2ZnðlÞ þ O2ðvÞ h 2ZnOðsÞ ð4Þ
where (l) denotes the liquid phase. According to Le Chatelier’s
principle, an increase in oxygen concentration in the vapor shifts
the chemical equilibrium toward the right-hand side of reactions
3 and 4, leading to increased consumption of both liquid- and
vapor-phase Zn reactants to form ZnO.49 Inside the catalyst
droplet, the Zn concentration is therefore diminished, whereas
the oxygen concentration most likely remains unchanged due to
the low solubility of oxygen in gold.50 Thus, the supersaturation
Δμck inside the catalyst droplet decreases with increasing oxygen
partial pressure.
On the basis of this analysis, we propose a mechanism for the

formation of ZnO nanosheets or, more generally, nanowires with
a growth direction that differs from the most stable one under the
influence of increased VI/II-ratios. We consider the growth of a
nanowire first under the growth conditions used in parameter set
2 and subsequently under increased oxygen partial pressure. Two
scenarios are possible for nanowire formation with parameter set
2: nucleation occurs (a) at the catalyst�nanowire interface and
(b) at the TPB.
For nucleation at the catalyst�nanowire interface, the nuclea-

tion and growth rates are governed by the supersaturation Δμck
inside the catalyst. When the oxygen partial pressure is raised
(moving toward the conditions of parameter set 1), the reduction
in Δμck results in a higher energy barrier for nucleation at the
catalyst�nanowire interface in eq 1. Simultaneously, the vapor
supersaturation increases and the corresponding Gibbs free
energy for nucleation at the TPB is lowered. This results in a
lower barrier for nucleation at the TPB while the supersaturation
in the catalyst may fall below the threshold for activation of
nucleation at the catalyst�nanowire interface. Thus, the nuclea-
tion site shifts from the center of the catalyst�nanowire interface
to the TPB upon oxygen partial pressure increase.
Furthermore, the vapor supersaturationΔμsk governs the rate

of nucleation at the TPB, RTPB, whereas the step propagation
rate, Rstep, is controlled by the supersaturation Δμck in the
catalyst. For the growth of nanowires by parameter set 2, Rstep
largely exceeds RTPB, and a full monolayer is completed before a
second nucleus is formed.48 When the oxygen partial pressure is
raised, the step propagation rate, Rstep, is reduced (since Δμck
decreases), while RTPB will be enhanced due to the increase in
vapor supersaturation Δμsk. If the change in rates is sufficiently

large, i.e. they become comparable, additional nucleation will
occur at the TPB before a full monolayer is completed, essentially
adding a new facet at the catalyst�nanostructure interface. As a
result, the interface roughness and thus also the interface area are
increased, resulting in a higher energy of the catalyst�nanostruc-
ture interface. Consequently, the combined surface and interface
energy of the catalyst�nanostructure system is increased, which
may cause less stable nanostructure growth, i.e. single or multiple
growth facets other than ZnO(0001). The growth direction of
the nanostructure changes accordingly and deviates from that of
ZnO[0001], leading to the observed morphology of the nano-
sheets, promoted by preferential growth on the {0001}-contain-
ing sidewalls.

’CONCLUSION

In conclusion, we have demonstrated catalyst-assisted growth
of ZnO nanosheets with a flat and triangular morphology using
pulsed laser deposition. For high oxygen partial pressures,
formation of single-crystalline nanosheets with a growth direc-
tion inclined to the hexagonal c-axis was dominant, whereas a low
oxygen partial pressure led to the formation of nanowires
growing in the ZnO[0001] direction. A growth mechanism for
the formation of nanosheets is proposed, in which the growth
direction of the initial nanowire explains the final nanostructure
morphology. TEM data strongly indicate that the crystalline
facets present at the Au�ZnO interface play an important role in
determining the nanowire growth direction and, thus, the final
morphology of the nanostructure. An explanation for the forma-
tion of facets other than the most stable ZnO(0001) may be
found in convergence of the nucleation rate at the three-phase
boundary and the step propagation rate caused by changes in the
supersaturation in the vapor and in the catalyst droplet due to an
increased VI/II-ratio.
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Paper III

Epitaxial relationships of ZnO nanostructures grown by Au-assisted pulsed
laser deposition on c- and a-plane sapphire

Abstract. We report on the epitaxial growth of ZnO nanosheets and nanowires on a-

and c-plane sapphire substrates by Au-assisted pulsed laser deposition. The epitaxial

relationship of the nanostructures was determined by x-ray diffraction (XRD) pole figure

measurements. On c-plane sapphire, the ZnO nanowires grew along the ZnO c-axis and

were inclined to the substrate surface normal with an angle of about 37◦. The ZnO(0001)
plane of the wires aligned with Al2O3(101̄4) of the sapphire substrate via two degenerate
in-plane configurations, promoted by low lattice mismatch (0.05 %). ZnO nanosheets

grown on c-plane sapphire exhibited no preferential orientation on the substrate and no

epitaxial relationship could be unambiguously identified. On a-plane sapphire, ZnO

nanowires grew vertically along the ZnO c-axis with a single epitaxial configuration,

whereas ZnO nanosheets seemed to grow along ZnO[101̄0] in two preferred in-plane

orientations, 72◦ - 74◦ apart. These configurations could be explained by two distinct

alignments of the ZnO(101̄1) plane on the a-plane sapphire substrate surface, promoted

by low lattice mismatches.

Status: Published in Journal of Crystal Growth, 355, 52-58 (2012)
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Paper IV

Electrical, optical and structural properties of Al-doped ZnO thin films
grown on GaAs(111)B substrates by pulsed laser deposition

Abstract. We report on the characteristics of Al-doped ZnO thin films (AZO) grown

on GaAs(111)B substrates using pulsed laser deposition. The influence of ambient gas

composition, overall pressure, and growth temperature on the electrical, structural and

optical properties of 100 nm-thin films grown from a ZnO target with 2 wt% Al were

investigated. Growth in a 0.01 mbar pure O2 ambient was found to be superior to films

grown in Ar ambient or vacuum with respect to their electrical properties. As-grown

AZO films showed a low resistivity on the order of 10−4 Ωcm. Post-deposition anneal-

ing in-situ showed no improvement of the transport properties, irrespective of annealing

temperature and ambient gas. At high substrate temperatures, the interaction with the

GaAs(111)B substrate seemed to affect the growth and conductivity of the AZO films.

Status: Manuscript in preparation. To be submitted to Thin Solid Films.
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Chapter 5

Conclusion and outlook

In this work, some fundamental aspects of ZnO nanostructure growth by catalyst-assisted

pulsed laser deposition have been investigated. It has been shown in Paper I that the pres-

ence of surface nucleation sites has a significant influence on the size and number density

of ZnO nanostructures on the substrate. Despite the ”sink”-like action of the catalyst

on impinging growth species, nucleation at the Au droplets competes with surface nu-

cleation sites for available growth atoms, leading to reduced sizes and number densities

of ZnO nanostructures. The paper also shows that suitable thermal pretreatments of the

substrate can successfully suppress surface nucleation sites by forming a well-defined

surface state.

In Paper II, some insight is given into the effects of ambient oxygen on the morphology

of ZnO nanostructures. By changing the oxygen partial pressure in the chamber, the

ZnO nanostructure morphology can be switched between nanowires and triangular nano-

sheets. Simultaneously, distinct differences in the facets present at the catalyst-nanowire

interface of the two nanostructure types have been observed. This phenomenon is at-

tributed to relative changes of the supersaturation in the catalyst droplet and in the vapour

phase induced by a rise in oxygen partial pressure. It is believed that the excess oxygen

thereby leads to altered growth kinetics resulting in alternative facets at the growth front.

Furthermore, the epitaxial relationships of both nanowires and triangular nanosheets

grown on c- and a-plane sapphire substrates have been studied in detail (Paper III). On

c-plane sapphire, tilted ZnO nanowires align with a buried and inclined substrate plane.

Contrary to previous reports, it has been revealed that the wires can adapt two degenerate

epitaxial configurations with the substrate. Calculations indicate that this degeneracy is

caused by equally low lattice mismatches of the two configurations and that tilted nano-
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wire growth on c-plane sapphire is energetically preferred over vertical wires. The study

has also revealed the epitaxial relationship of triangular ZnO nanosheets with a-plane

sapphire substrates. Interestingly, a direct correlation between the nanostructure mor-

phology (i.e. nanowire or nanosheet) and the epitaxial configuration with the substrate

has been observed.

The results on ZnO nanostructures presented in this work demonstrate the influence of

substrate properties such as crystal orientation and surface morphology on the formation

of ZnO nanostructures. The substrate can have significant impact on the nanostructure

size, density, orientation and morphology. Moreover, further light has been shed on

the role of ambient oxygen during the growth of ZnO nanostructures and its impact

on nanostructure morphology. The findings presented in this thesis demonstrate that

a fundamental understanding of the essential processes of nanostructure formation is

necessary in order to gain control over ZnO nanostructure growth. It forms the basis

for reproducible fabrication of ordered ZnO nanostructure arrays with controlled mor-

phologies and growth orientations. In order to complete the picture, further studies

addressing the influence of other growth parameters such as absolute pressure or the

energy of adatoms (supplied by substrate temperature as well as kinetic energy of im-

pinging growth species) will be of interest.

As a second aspect of this thesis, AZO thin films have been grown by PLD on GaAs

substrates. The films grown at room temperature under optimized conditions have shown

resistivities competitive to ITO on the order of 10−4 Ωcm while retaining high optical

transmission in the visible wavelength range. The results for AZO thin films on GaAs

substrates have been compared with previous reports on transparent substrates such as

glass or sapphire. At growth temperatures reaching 500◦C, the GaAs substrate seems to

have significant influence on the electrical properties of AZO thin films. However, the

good electrical and optical properties indicate that AZO thin films grown at low tempera-

tures are promising candidates for use as transparent electrodes on GaAs nanowire solar

cells. This potential of AZO for this type of application should be confirmed directly by

investigating the GaAs/AZO-core/shell system. Electron-beam lithographic techniques

and a Ti/Au metal layer system could be used to prepare ohmic contacts to single AZO

shells on insulating GaAs nanowires and directly establish the electrical properties of

the AZO shells as has been initiated already in preliminary experiments during the final

phase of this thesis work.
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