
Master of Science in Electronics
July 2010
Johannes Skaar, IET

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Quantum key distribution prototype

Ole Christian Tvedt

Problem Description
The candidate will continue implementing the prototype of a quantum key
distribution system according to the plan presented in his project
report from the previous semester. The goal is to demonstrate quantum
key distribution in the laboratory setting. The sub-goals are: a) build
digital-to-anolog converters + amplifiers and, together with master
student Eivind Sjøtun Simonsen, demonstrate controlled interference in
the fiber-optic interferometer at the rate of 200 mbit/s; b) implement
the Bennett-Brassard 1984 (BB84) quantum key distribution protocol with
decoy states between Alice and Bob, to the largest extent possible under
the readiness of hardware. Through this work, attention should be paid
to avoid known security loopholes.

Assignment given: 22. February 2010
Supervisor: Johannes Skaar, IET

Quantum key distribution prototype

Master’s thesis by

Ole Christian Tvedt

26. July 2010

Supervisors:

Postdoc. Vadim Makarov

Prof. Johannes Skaar

Norwegian University of Science and Technology

Department of Electronics and Telecommunications

Problem description

The candidate will continue implementing the prototype of a quantum key distribution
system according to the plan presented in his project report from the previous semester.
The goal is to demonstrate quantum key distribution in the laboratory setting. The sub-
goals are:

a) build digital-to-anolog converters + amplifiers and, together with master student
Eivind Sjøtun Simonsen, demonstrate controlled interference in the fiber-optic interferometer
at the rate of 200 mbit/s;

b) implement the Bennett-Brassard 1984 (BB84) quantum key distribution protocol with
decoy states between Alice and Bob, to the largest extent possible under the readiness of
hardware.

Through this work, attention should be paid to avoid known security loopholes.

* * *

Assignment given: 19. February, 2010
Supervisors: Vadim Makarov, IET & Johannes Skaar, IET

Abstract

This thesis covers the basics of cryptography, both classical and the newer quantum-based
approches. Further, it details an implementation of a BB84-based quantum key distribution
system currently under construction, focusing on the controlling hardware and FPGA-based
software. The overarching goal is to create a system impervious to currently known attacks
on such systems.

The system is currently running at 100 Mbit/s, though the goal is to double this as
the design nears its completion. The system currently chooses encoding base, bit value and
whether a state is a socalled decoy state. However, the modulator for bit encoding is not
yet operational. Output for decoy state generation, however, is fully functional.

Finally, the thesis describes what steps are necessary to reach a complete BB84-based
quantum key distribution system implementing decoy states.

Contents

1 About this thesis 3

2 Introduction to cryptography 4
2.1 The classical approach . 4
2.2 The quantum approach . 5
2.3 A brief history of quantum encryption . 5

3 Theory 7
3.1 Types of quantum key distribution . 7
3.2 BB84 . 7

3.2.1 Eavesdropping on BB84 . 8
3.3 Decoy states . 9
3.4 True random number generators . 9

4 Implementation 11
4.1 Overview . 11
4.2 Communication . 13
4.3 Controlling hardware . 15

4.3.1 Alice . 15
4.3.2 Bob . 16

4.4 FPGA software design, Alice . 18
4.4.1 Errors and test mode . 18
4.4.2 Timing calibration . 18
4.4.3 State encoder . 20
4.4.4 Memory handler . 20
4.4.5 Output balancer . 20
4.4.6 DAC output gating . 20
4.4.7 Main state machine . 20
4.4.8 PC communication module . 20
4.4.9 Synchroniser . 21

4.5 FPGA software design, Bob . 21
4.6 Digital to Analog Converters . 21

1

4.7 Amplifiers . 22
4.7.1 ZPUL-30P input . 22

4.8 Random number generators . 22
4.8.1 RNG requirements . 26
4.8.2 Internal PRNG . 28
4.8.3 Physical RNG . 28

5 Final output 29

6 Conclusion 31
6.1 Further work . 31
References . 32

A HSMC prototyping board pin mappings 34

B 19-bit linear feedback shift register 36

C RNG subsystem output register 37

D Mini-Circuits ZPUL-30P data sheet 39

2

Chapter 1

About this thesis

First, chapters 2 and 3 will discuss the background for this thesis; cryptography in general
and the how and why of quantum cryptography.

Chapter 4 contains the implementation-specific details, both hardware and software.
So far, only the sender module Alice has been built. All hardware components except a
true random number generator are in place, though there are some unimplemented software
modules.

Finally, chapter 5 shows a sample of the finished intensity modulator input and explains
the result.

Chapters 2 and 3, and section 4.2 have been copied from the previous semester’s project
report (with minor adjustments), in order to make the thesis self contained. Section 3.4 is
an exception, which has been added for completeness.

3

Chapter 2

Introduction to cryptography

2.1 The classical approach

Cryptography deals with the process of turning data (i.e. plaintext) into a format a third
party cannot read (ciphertext) without the use of some other secret (a key). Up until modern
times data has usually referred to pure text, but the principles can just as easily be applied
to any encoding of information.

The need for passing messages between parties in a confidential manner may seem ob-
vious. At least enough so that simple encryptions can be found in comic books and other
children’s magazines to be cracked by people with no special skills in the field. The how of
it may not be as obvious as the why, however.

The encryption variant usually found in puzzles is a form of substitution cipher, in which
the original message can be retrieved by substituting each character in the ciphertext with
another one. The secret the sender and the receiver shares is which character to replace with
which. One could say that the key is a jumbled alphabet.

This form of encryption has its weaknesses. For example, it is known that in English the
most frequent character is E. By looking at the ciphertext, one can then assume that one of
the most frequent characters are to be replaced by Es. Follow this method to its conclusion,
and you have found the plaintext without knowing the key. One could make this process
harder by removing spaces and punctuation in the plaintext before encoding, but it would
still be possible break the encryption. Trying to decrypt other types of signal (such as linear
pulse code modulated audio) in this manner would certainly require a computer, but the
principle remains the same. If you know something about what the decoded message should
look like, you can use statistical methods to find out what it is.

There are many forms of encryption, but until quantum cryptography came along, they
all had one thing in common: They were based on problems that were computationally
hard to solve, but not impossible. For example, to find out what data is being transmitted
when the https-protocol is in use (often used in on-line shopping and personal bank account
management), you would need extremely powerful hardware and many years of computing.
In other words, you would have to record the data and analyse it afterwards.

4

There is one form of conventional encryption that is provably unbreakable: one time
pads [1] (and derivatives). It is a variant of the substitution cipher where each character in
the message is modified according to the character at the same position in the key. It has
not seen much use, for practical reasons. The key has to be at least as long as the message,
can only be used once (hence the name) and has to be completely random. This means that
the sender has to share a very long key with the receiver, possibly even before knowing how
long the message will be. If a person were to use this for his outgoing e-mail, he would first
have to give all his recipients a unique key (one each) in a guaranteed eavesdropper-proof
way, for example in person on a CD or a sheet of paper.

The one time pad is however very useful in quantum-based encryption schemes, as we
shall see.

2.2 The quantum approach

Quantum encryption systems base themselves on fundamental physical quantum-level prin-
ciples that ensures data can not be duplicated. The data sent by the transmitter cannot be
read by an eavesdropper and simply passed on to the intended recipient. Any such attempt
will be easily detected.

The most common implementation is known as quantum key distribution (or QKD). In
such a system, the message itself is not passed over the secure channel. Instead, one part
generates a completely random key that is encoded in some form of quanta (or qubits) that
cannot be copied (such as the polarisation of a photon), and sends that across the secure
channel to the recipient. This key can then be used for a one time pad encryption over a
classical channel, such as an ethernet link.

QKD is the principle used in this project, and the details will be discussed in the next
chapter.

2.3 A brief history of quantum encryption

Stephen Wiesner published a proposal for a mechanism that could be used for quantum
encryption in 1983 [2]. He proposed that bit values could be encoded in “conjugate observ-
ables”, which are possible properties for a bit carrier (such as a photon) were either one can
be measured, but not both. This means that if you measure the wrong property, you have
effectively destroyed the information. An eavesdropper would need to know what property
to measure to be able to decode the information.

In 1984, Charles H. Bennett and Thomas J. Watson proposed a protocol based on Wies-
ner’s work that would allow one legitimate user to generate and send a key to another [3].
Their protocol, often referred to as BB84, ensures that an eavesdropper will be detected
with an arbitrarily high probability, assuming an ideal system.

In 1991, Artur Ekert proposed a mechanism based on quantum entanglement [4]. The
principle is to generate pairs of entangled photons, and pass one to each legitimate user. If

5

they both measure one property of the photon, they will always get the same answer. Thus
they can use it for key generation. This method is often referred to as E91.

Other relevant research include G. Brassard and L. Salvail’s cascade protocol [5], which is
a method of ensuring that the two legitimate users’ keys are identical over a public channel
(known as information reconciliation), and several different methods of privacy amplification
[6][7][8][9] (also known as the leftover hash-lemma), in which the key is hashed and slightly
shortened to generate a new unique key.

6

Chapter 3

Theory

3.1 Types of quantum key distribution

There are several ways of transmitting qubits from a sender (typically referred to as Alice)
to a receiver (Bob), while at the same time measuring the interference from a potential
eavesdropper (Eve). They can be separated into two classes (as described in section 2.3):

Entanglement based systems relies on how two separate particles can share a quantum
state. If Eve tries to intercept and measure one particle, she will also alter the state
of the other, and thus reveal her presence. E91 is an example of such a system.

Prepare-measure systems are based on transmitting data by several conjugate encodings,
and afterwards comparing how the receiver measured the incoming bits with how they
were encoded. Using this method, one can also calculate how much of the transmitted
data has been intercepted. The BB84 protocol is an example of such a system, and is
what the design in this project is based on.

3.2 BB84

In the BB84 protocol, each bit in a random key generated by Alice is encoded in one of two
possible orthogonal bases. In the first base (+) the bit value 0 is encoded as a vertically
polarised photon, and 1 is encoded as a horizontally polarised photon. In the second base
(x) 0 is encoded as a 45◦ polarised photon, and 1 as a −45◦ polarised photon. Since these
bases are orthogonal, measuring in the wrong base will give you a completely random result.

Alice chooses which base to transmit in randomly. At this stage Bob doesn’t know which
base to measure in, so he simply chooses one randomly too. If he chooses the correct base
(the same one Alice used), he will receive the bit intended by Alice. If he chooses the wrong
base, there is still a 50 % chance he chose the right one. In other words, the amount of
incorrectly received bits approaches 25 % as the key length grows.

After Alice and Bob are done transmitting the raw key data, they use a classical unen-
crypted channel to compare which bases they chose. The bits where Bob guessed the wrong

7

base are discarded, and the rest are kept and used as a key. They will be identical in an
ideal system where no one attempted to intercept any of the bits. This process is known as
sifting.

A short example of such a transfer is shown in table 3.1. In this case we see that Bob
chooses the wrong base in 4 out of the 8 bits. In two of those cases he still got the correct
result, but neither him nor Alice has a way of knowing that, since the actual key is not
compared. Therefore, they are discarded along with the cases he chose the wrong bases on.

Alice
Generated key: 0 0 1 0 1 1 1 0

Chosen base: x + x + + x x +

Bob
Chosen base: + x x + + + x x
Received key: 0 1 1 0 1 0 1 0

After sifting: 1 0 1 1

Table 3.1: Example of an uninterrupted key distribution

It is worth noting that even though the BB84 protocol uses two bases of linearly polarised
photons, there are other possibilities. The protocol only requires bases where the result of
choosing the wrong base is random (the bases are conjugate). It is for example possible to
use linearly polarised light for one base and circularly polarised light for the other.

3.2.1 Eavesdropping on BB84

Since the encoding bases are only known by Alice, the only way Eve can intercept photons is
by guessing a base the same way Bob does. She must also make sure Bob receives something,
and her best possibility is to resend what she received (which may be incorrect). This is
known as an intercept and resend attack.

For her attack to succeed, it is not necessary for her to choose the correct base. What is
important is that she chooses the same bases Bob does. Presume that she is listening in on
the classical channel as well. The possibilities are listed in table 3.2.

Bob’s and Eve’s choices Action during sifting Bob’s bit value

Both chose the correct base: Kept Correct
Both chose the incorrect base: Discarded -

Only Bob chose the correct base: Kept Correct 50 %, incorrect 50 %.
Only Eve chose the correct base: Discarded -

Table 3.2: Possibilities for an intercepted bit

In the event that Bob chooses the correct base, the bit will be kept during sifting. In
half of those cases, Eve will also have chosen the right base, so the bit value is correct. In
the other half of the cases, there is a 50 % chance that she received the wrong bit value. In
total, this will introduce a 25 % qubit error rate (or QBER).

8

By choosing to use a subset of the key for comparison, Bob and Alice can easily detect
such a high QBER and abort their attempt to communicate. As you can see, QKD does
not ensure communication (as Alice can prevent it). It does ensure that the communication
is kept private.

3.3 Decoy states

The BB84 discussion assumed an ideal system. Unfortunately, quantum key distribution
systems suffer from implementation difficulties. One of these are the difficulty of sending
single photons for each bit. A typical implementation uses attenuated laser pulses which
sends out groups of photons. The average number of photons can be adjusted by adjusting
the attenuation, but keeping the variance at 0 is not trivial.

This enables Eve to perform a photon number splitting attack [10], where she simply
intercepts some (but not all) of the photons in each pulse and allows the others to pass
undisturbed. If there is only one photon in a pulse, she can block it to ensure that the bit
will not be used by Alice and Bob.

Decoy states has been proposed as a way of preventing such attacks [11]. If Alice inten-
tionally replaces some of the signal pulses with a decoy pulse of more than one photon, she
and Bob will be able to compare the loss in such pulses with the loss of legitimate pulses.
Eve has no way of knowing which pulses are decoy pulses (hence the name), and must there-
fore treat them the same as signal pulses. However, since decoy pulses has a higher average
photon count, more decoy states are likely to get through to Bob than regular signal pulses.
The losses should be comparable. If the losses are significantly lower for decoy states, the
communication can be aborted.

The implementation under construction in this project uses such decoy states to increase
security.

3.4 True random number generators

Since quantum key distribution relies on having random data available, a source is needed
that is not subject to the same weaknesses found in classical cryptography. Thus, there is
not much use in pseudo-random number generators, which generate deterministic but hard
to predict sequences.

Hardware RNGs can generally be sorted into two categories:

1. Generators based on impossible to predict quantum effects.

2. Generators based on noise, typically thermal noise.

The first category contains systems such as those based on a radiation source and a
geiger counter (where the time between clicks is random), and systems based on a partially
opaque window (where photon transmission is random).

9

The second category is based on the caotic nature of certain phenomena, such as thermal
noise in a resistor or avalanche noise in a reverse biased p-n semiconductor junction. Some
of this noise is caused by true quantum unpredictability, as with the processes in category
one.

10

Chapter 4

Implementation

4.1 Overview

A diagram of the complete implementation can be seen in figure 4.1. Note that the bus
width of the DACs should be at least 8, not 2 as shown. Also, the field programmable gate
array (FPGA) to PC communication will most likely be implemented as an ethernet link
instead of USB 2.0, though the decision is not final.

Also note that the system is currently running on 100 MHz, half of the intended rate.
This was done to lower the requirements of the digital to analog converter and the amplifiers.
It should be possible to increase the rate once the system in functional, assuming that a very
fast true random number generator is added (or the internal pseudo-RNG is duplicated).

The interferometer has been detailed and demonstrated in Security of quantum key dis-
tribution source [12], and this chapter will focus on the controlling circuits.

One can follow the information path through the optical system. For each bit sent from
Alice, the controlling hardware does the following:

• Sets the intensity modulator to a determined level, depending on whether this is a
decoy pulse or not.

• Sets the phase modulator to a determined level, based on the chosen quantum state
to send.

• Pulses the main 1.55 µm laser when the modulators are stabilised.

The synchronisation laser is pulsed at regular intervals to maintain synchronisation be-
tween Alice and Bob. The two lasers are multiplexed together in a wavelength division
multiplexer (WDM) and sent out on the transmission line to Bob.

In Bob’s end, the received laser is demultiplexed and the synchronisation pulse redirected
to a separate detector and input (see section 4.5). For each received bit, Bob’s FPGA does
the following:

• Sets the phase modulator to a determined level, based on which of the orthogonal
bases the attempted measurement should be done in.

11

Figure 4.1: Initial hardware plan, by M. Ulianov [13]

12

• Gates the APDs with a sinusoidal pulse. The APDs will only detect incoming photons
when there is a gate voltage.

• Listens for pulses on the APD inputs.

4.2 Communication

The BB84 protocol described in section 3.2 requires several steps of communication between
Alice and Bob. Both sides have a PC communicating two-way with the FPGA on their side,
and the PCs are communicating with each other through an ethernet link. The FPGAs only
communicate directly through the optical one way link from Alice to Bob. The steps (shown
in figure 4.2) are:

1. The software driver in the PCs are in communication with the FPGAs, monitoring
the hardware while waiting for the user to initiate the sequence.

2. Either Bob or Alice initiates the communication, and lets the other part know via
ethernet.

3. Alice’s PC signals the FPGA on her side to initiate the key distribution.

4. The hardware is synchronised via timed pulses from Alice’s side on the optical link.

5. Alice’s FPGA generates and transmits the key, storing the time stamps, the bits and
the randomly chosen bases to RAM. She also stores which pulses are decoy states.
Bob’s FPGA guesses bases randomly and stores the time stamps, the measured bits
and the guessed bases to RAM.

6. Bob’s guessed bases are uploaded to the PC, transmitted through ethernet to Alice’s
PC and downloaded to Alice’s FPGA.

7. As Alice’s FPGA is receiving Bob’s guesses, it compares them to the actual bases used
during encoding. The entries in memory where the incorrect bases were used by Bob
are marked as junk. At the same time, the fraction of received bits for each intensity
(decoy or not) is calculated (as Bob doesn’t send the chosen base for bits he didn’t
receive). If the losses are significantly higher for the lower intensities, it indicates an
eavesdropper is stopping all single photon signals. If so, the FPGA will signal an
abortion to the PC.

8. If there is no significant discrepancy in the losses, Alice’s FPGA uploads the bits and
bases of the entries not marked as junk to the PC.

9. The timestamps of the bits to use are passed back to Bob. At this point, other
techniques can be used to improve security, such as the information reconciliation and
privacy amplification described in section 2.3.

These steps have not been finalised, and the process may change slightly in the future.

13

Figure 4.2: Communication overview

14

RAM

True RNG

PM

Laser

Start/Sync

PC

IM

8

8

Pulsed, 200 MHz

To Bob (conventional open channel)

p2p ethernet

FPGA
800 MHz

2

DAC A

DAC B

Figure 4.3: Simplified Alice side controller overview

4.3 Controlling hardware

The controlling part of the hardware in Alice and Bob will be very similar. Even though
Bob only needs one DAC channel, the DAC chosen for this project (see 4.6) is a dual channel
variant. The only differences are thus in the optical path, and not in the controller (though
obviously the FPGA software will be unique to each part).

However, it may be prudent (for economic reasons) to choose different physical random
number generators on each end, as Alice’s requirements are higher than Bob’s. Both run at
100 MHz, and both must choose one out of two bases for every bit. However, Alice must also
control the intensity modulator in a similar fashion (depending on the ratio of decoy states)
and choose a bit to encode. Naïvely, this means 200 Mbit/s for Alice (no decoy states) and
100 Mbit/s for Bob (though see section 4.8.1).

4.3.1 Alice

The main logic blocks of Alice is shown in figure 4.3. The modules and their connections
are as follows:

FPGA : Altera Stratix III 3SL150. This is the main hardware controller, handling the
coordination of all other units. The main code is running on 100 MHz, though faster

15

clocks are used internally for some tasks.

PC : The PC initiates the procedure, and acts as an intermediary between the two FPGAs
during sifting. Even though the FPGA and the PC are connected through an ethernet
link, this should not be a network but a direct connection.

RAM : The random access memory stores entries in the form [base] (1 bit), [decoy state] (1
bit), [bit value] (1 bit) for each bit sent. The memory address will act as a timestamp.
The FPGA board is equipped with one 1 GiB DDR2 module. The communication
with this cannot be implemented until the main final state machine (see section 4.4.7)
is finished.

RNG : A random number generator. This simply generates a stream of random bits ac-
cording to the requirements noted above. This is not a critical part of the system
during development, as the FPGA can run in test mode and generate its own (crypto-
graphically weak) pseudo-random bits.

Start/Sync : A 2 bit output signal triggered at regular intervals from the start of the key
transmission. This controls a separate laser that is mixed onto the transmission line
in a WDM, and heps Alice’s and Bob’s FPGAs to remain synchronised.

Laser : The laser needs to be driven by stable 200 ps pulses. To achieve the short pulses
and the required stability, a hardware driver was created. The driver is controlled
through a duty-cycle adjustable 100 MHz output from the FPGA that can be tuned
to within 8 % (at worst).

DAC : Analog Devices AD9746 dual channel 14 bit digital to analog converter. The output
is attenuated to fit the amplifiers used by the modulators.

PM : The phase modulator is used to encode each bit value in one of the two possible
bases.

IM : The intensity modulator is used to produce the decoy states explained in section 3.3.
Is is biased so that the maximum dampening is at 0 V input.

4.3.2 Bob

The main logic blocks of Bob is shown in figure 4.4. The modules and their connections are
as follows:

FPGA : Hardware-wise identical to Alice, but with different software loaded.

PC : The PC initiates the procedure and downloads the guessed bases and received bit
values. The communication is identical to Alice.

RAM : Identical to Alice, except with no decoy bit and with an extra bit to store double
clicks (photon detected in both detectors).

16

RAM

True RNG DAC PM

PC

8

To Alice (conventional open channel)

p2p ethernet

FPGA
800 MHz

LPF
APD

APD

Photo detector gating

Detector array

Start/Sync

2

2

Figure 4.4: Simplified Bob side controller overview

RNG : Identical to Alice, though the requirements are lower (as noted above).

LPF : A low pass filter, to turn the digital square signal from the FPGA into a sinusoidal
pulse. The input from the FPGA will be a low jitter 100 MHz signal, and the phase
will be adjustable to synchronise them with incoming photons.1

APD : The gate of the avalanche photo diodes, which detects the incoming photons. Gating
the APDs prevents them from triggering between pulses when no light should be
arriving.

Start/Sync : The input corresponding to the same output in Alice. As synchronisation
pulses come in, the FPGA must keep its clock in phase with them. This ensures there
is no drift between the clock in Alice and Bob, so that the APDs will be gated at the
correct time and the time stamps will match up during sifting. The frequency range
in which the clock is allowed to synchronise is narrow, to prevent Eve from tampering
with the multiplexed synchronisation signal.

Detector array : The incoming pulses amplified by the APDs.

DAC : Identical to Alice, though only one channel is needed.

PM : The phase modulator is used to choose one of the two possible bases to measure in.

1The 3SL150 FPGA does not support on-the-fly phase adjustment. An external solution may be necessary.

17

4.4 FPGA software design, Alice

4.4.1 Errors and test mode

Any part of the design where detectable errors may occur have error output flags. All these
errors are passed to a dedicated error handling module (error handler in figure 4.5). This
module has two purposes:

1. Signal the user. The LEDs on the FPGA board are by default all lit. When an error
occurs, some LEDs are turned off. The pattern of lights signals what error occured.
There is also a character display on the board, and the code may be extended to
display error messages.

2. Abort the current key distribution on fatal errors. For example, when the RNG signals
an error, its output can no longer be trusted, and the key is unusable.

All signals in the schematics prefixed with status are high under normal operation. If
such a signal goes low, it signifies an error. Signals prefixed statusF are the same, but are
also considered fatal. If such a signal goes low, the main state machine should abort any
running communication.

Additionaly, it may be a good idea to add a module for analysing the raw data from the
random number generator. There is a danger that a RNG should break silently. Running
some statistical analysis will enable the system to abort should this happen. Many true
RNGs already have this functionality built in, so this may not be necessary.

4.4.2 Timing calibration

Several subsystems need to be temporally adjusted in relation to each other. Due to differ-
ences in synthetisation, these adjustments may need to be redone between software revisions.
To simplify this, several phase locked loops (PLLs) are used to generate separate clocks for
each subsystem.

Most of the logic is clocked by one PLL (named simply pll in figure 4.5), including the
clock output driving the DAC. This PLL also outputs a phase delayed copy dedicated to
gating the DAC outputs, ensuring that the setup and hold requirements of the DAC has
been met. The phase delay of this clock may be adjusted to delay the data compared to the
DAC clock.

The DAC setup time is given as tdbs = 400 ps, and the hold time as tdbh = 1200 ps

[14]. At 100 MHz, we have a period tp = 10 ns. Thus, the clock-to-data delay is given by
ϕ = 1200 ps + 10000−1200−400

2
ps = 5400 ps.

The laser is driven by a dedicated pll (laser driver pll in the figure), enabling adjustment
of a laser pulse’s position compared to the modulator inputs.

Finally, the random number subsystem (randomiser) is driven by a pll running at 800
MHz (fastpll). This enables the subsystem to generate 8 bits per clock cycle when running
in test mode.

18

intensity[14..0]

phase[14..0]

intensity[14..0]

phase[14..0]

SCLK

VCC
clkin_50 INPUT

VCC
user_dipsw[0] INPUT

laser_driverOUTPUT

scope_triggerOUTPUT

dac_a[15..0]OUTPUT

dac_b[15..0]OUTPUT

clock

reset

data[N-2..0]

result[N-1..0]

balancer

dac_a_balancer

clock

reset

data[N-2..0]

result[N-1..0]

balancer

dac_b_balancer

rclock
read

clock
rbg_data

rbg_clk
testmode

reset
rbg_status

ready
base

bitvalue
decoy

statusF_empty
status_ext

randomiser

inst

Stratix III

inclk0 frequency: 50.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 16/1 0.00 50.00

inclk0 c0

fastpll

inst4

DFF
data[15..0]

clock q[15..0]

dac_output_ff

dac_a_output

DFF
data[15..0]

clock q[15..0]

dac_output_ff

dac_b_output

Stratix III

inclk0 frequency: 50.000 MHz

Operation Mode: Normal

Clk Ratio Ph (dg) DC (%)

c0 2/1 0.00 50.00

c1 2/1 158.40 50.00

inclk0 c0
c1

pll

inst1

Stratix III

inclk0 frequency: 50.000 MHz

Operation Mode: No Compensation

Clk Ratio Ph (dg) DC (%)

c0 2/1 0.00 50.00

inclk0 c0

laser_driver_pll

inst6

clock
base

bitvalue
decoy

intensity[14..0]
phase[14..0]

state_encoder

inst2

clock
statusF_error

rng_ready

run
reset

state_machine

inst7

clock
reset

run
base

bitvalue
decoy

statusF_error

memory_handler

inst3

clock
testmode

status_external_rng
statusF_pool_empty

statusF_ram

statusF_error
led[7..0]

error_handler

inst5

clkout_smaOUTPUT

user_led[7..0]OUTPUT

F
igu

re
4.5:

F
P

G
A

softw
are

overv
iew

4.4.3 State encoder

The state encoder module takes the chosen base and bit value, and converts this in to a 15 bit
unsigned value intended for the phase modulator. This part has not yet been implemented.
The four different polarisations of light will correspond to four values that can be calibrated
in this module.

It also sets one of two values intended for the intensity modulator, based on whether this
is a decoy state or not. For decoy states, a high value (corresponding to the modulator’s
Vπ) is chosen, thus maximising the laser pulse intensity. Otherwise, a low value is chosen,
to let a low number of photons through.

4.4.4 Memory handler

The memory handler module receives the same input the state encoder does, in addition to a
run and a reset signal. When the run signal is high, each output state is stored consecutively
in RAM for later comparison with Bob.

4.4.5 Output balancer

The chosen output value so far for both modulators is a 15 bit unsigned integer. The
value is then converted in the balancer module to a 16 bit signed integer. The balancer
integrates its output values so far, flipping the input to negative if the current integrated
value is positive. By balancing the values around zero like this, bias drift is prevented in
the amplifiers connected to the modulators.

4.4.6 DAC output gating

The values piped to the digital to analog converter are signed 16 bit integers, encoded in 2’s
complement, and are gated out through a pair of flip flops (dac output ff, see 4.4.2).

4.4.7 Main state machine

The main FSM (finite state machine) will govern the process of key exchange by iterating
through the steps. The states will be close to or identical to the ones listed in figure 4.2,
most likely with some substeps.

This module will most likely not be written until the entire key exchange process has
been decided upon, including communication steps with PC on each end, but has been
inserted as a dummy module in the diagram.

4.4.8 PC communication module

This module is not in the diagram, but will need to be added when a detailed communication
protocol has been agreed upon.

20

4.4.9 Synchroniser

Finally, the design will need a synchroniser module (also not shown) to pulse the synchroni-
sation laser, though it is logical to deside upon Bob’s synchronisation method first, as this
will affect what pattern and period is needed.

4.5 FPGA software design, Bob

The software design in Bob has not yet been studied, though it will for the most part be a
subset of Alice’s. All the same modules will be used, and the main differences will be:

• Addition of photon detector gating.

• Receiving instead of sending synchronisation signals.

• Slightly modified main state machine.

• Only one balancer and output flip flop (as there is no intensity modulator in Bob).

• Modified PC communication.

• Slightly modified memory layout.

One way of synchronising based on received pulses is to run the synchronisation detector
circuit at a higher frequency (e.g. 800 MHz), and generate the lower 100 MHz system clock
from this. This allows adjustment of the system clock in 8 steps per period, and eliminates
the need for an external clock generator.

A higher resolution solution for the APD gates will still need to be found, due to 3SL150’s
lack of live phase adjustments.

4.6 Digital to Analog Converters

The AD9746 is clocked by a 100 MHz 1.2 V toggling output of the FPGA, connected via
coaxial cable on SMA connectors. The data itself is transmitted on a multi-wire planar
cable via the HSMC interface of the FPGA development board (see appendix A). Every
second wire is grounded, making the cable a waveguide and thus minimising noise errors in
the transmission.

The input width of AD9647 is 14 bits. The development board however has a 16 bit input,
where the 2 least significant bits are left unused. This makes the board compatible with the
other DACs in the same family. To take full advantage of this, the output from the FPGA
is a 16 bit value, and any of the boards in the family (AD974x, where x ∈ {1, 3, 5, 6, 7})
may be used with the current setup.

The transformers on the development board outputs have been removed to improve
response times, resulting in two single ended outputs per channel [15]. At first, the positive
output was used, but this resulted in non-symetric output with a DC bias (figure 4.6). This

21

problem is not present on the negative output. The cause for this is unknown, but must be
a feature of the DAC.

Note that as the output is pseudo-random, and only one output per channel can be
captured at a time, the to graphs do not show the same data.

The longitudinal grid lines in the negative output graph has been placed where the
variance from intended level is at its smallest, and shows where the laser will be pulsed.

Also visible in figure 4.6 are transients which occur in the middle of each clock cycle,
causing the levels to take twice as long to settle. This is one of the main reasons the system
is set to 100 MHz during development. The effect is caused by an internal mechanism in the
AD9647 intended to make the DAC better suited for frequency synthesis. This mechanism
cannot be disabled, and causes the transients as a side effect.

4.7 Amplifiers

5 amplifiers were tested for usage with the modulators, by generating a high frequency (100
MHz) triangle wave and finding the input levels where the output became visibly distorted.
Two of the amplifiers (EIN 503L and HP 8447E, figures 4.10 and 4.11) did not distort at
levels available from the triangle wave generator, and a lower frequency sine wave had to be
used.

Ideally, we would like 4.5 V input on the intensity modulator. As we can see from figures
4.7 to 4.11, the Mini-Circuits amplifiers and EIN 503L are powerful enough. However, only
ZPUL-30P (figure 4.9) produced good square wave output, due to its frequency range’s very
low lower limit of 2.5 kHz (appendix D).

The phase modulator will need a higher input voltage, and it seems the Mini-Circuits
ZHL-32A may be suitable for this.

4.7.1 ZPUL-30P input

The chosen amplifier for the intensity modulator has a gain of 29 dB. To get the desired
output of 4.5 V, the input has to be 160 mV (20 log 4.5

0.16
≈ 29).

The single ended output from AD9746 is 1 V, so this will have to be attenuated by
20 log 1

0.160
≈ 16 dB. Experiments show that we got a value closer to 4.5 V on the desired

part of the amplifier output by using 17 dB attentuation on the DAC output, possibly
because of the transient oscillation.

4.8 Random number generators

A random number generator (RNG), also called a deterministic random bitstream generator
(DRBG), generates the bit values and chooses an encoding base. The user may swith between
an externally connected RNG and an internal pseudo-RNG (PRNG), generating a random
looking stream of bits. The internal PRNG is not cryptographically safe, and should only

22

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180

[m
V

]

[ns]

Positive output

Balanced pseudo-random Zero level

-200

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180

[m
V

]

[ns]

Negative output

Balanced pseudo-random Zero level

Figure 4.6: AD9746 single ended output at 100 MHz

23

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

0 5 10 15 20

[m
V

]

[µs]

50 mV pp
100 mV pp

150 mV pp
200 mV pp

Figure 4.7: Sonoma Instrument 330

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 5 10 15 20

[m
V

]

[µs]

600 mV pp 700 mV pp 800 mV pp

Figure 4.8: Mini-Circuits ZHL-32A (attenuated 10 dB)

24

-2000

-1500

-1000

-500

0

500

1000

1500

0 5 10 15 20

[m
V

]

[µs]

140 mV pp 160 mV pp 180 mV pp

Figure 4.9: Mini-Circuits ZPUL-30P (attenuated 10 dB)

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 67 134

[m
V

]

[ns]

100 mV pp
120 mV pp

140 mV pp
160 mV pp

Figure 4.10: EIN 503L, clipped

25

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 67 134

[m
V

]

[ns]

250 mV pp
300 mV pp

350 mV pp
400 mV pp

Figure 4.11: HP 8447E

be used for testing purposes. When the internal PRNG is enabled, the onboard LEDs will
show an error pattern (see section 4.4.1).

All random data is gathered in a pool (bitbucket in figure 4.12). The internal or extrenal
data line and clock is gated in based on whether the internal RNG is enabled or not. Since
both the PRNG and any external RNG have a clock independent from the system clock,
the pool is implemented with separate read and write clocks. The pool size is 131072 bits.

When data is available, it will be shifted into a holding buffer (rbg output shift in figure
4.12, code in appendix C) that is refilled every time it is read from outside the module.
When the holding buffer is ready, a ready flag is set high for other modules to read.

Since the holding buffer runs on 800 MHz, and the outside system much slower, it has
also been implemented with a separate read and write clock.

The flank detector (negedge shifter, inst11 and inst12) detects when the module has been
switched out of test mode. This will empty the pool, ensuring that test data will not be
used further.

The system has not yet been tested with a true RNG.

4.8.1 RNG requirements

The completed system will have a customisable distribution for some of the random values,
which will increase the random data requirements considerably. The number of bits needed
depends on the lowest common demoninator of the probabilities.

For instance, if decoy states should occur for half of the pulses, you obviously need two

26

modechange[1]

modechange[0]
modechange[1..0]

VCC
testmode INPUT

GND
rbg_status INPUT

GND
reset INPUT

GND
rbg_clk INPUT

GND
rbg_data INPUT

GND
clock INPUT

GND
rclock INPUT

GND
read INPUT

bitvalueOUTPUT

decoyOUTPUT

status_extOUTPUT

statusF_emptyOUTPUT

baseOUTPUT

readyOUTPUT

clock data_out

drbg

inst

NOT

inst4

data1

data0

sel

result

rbg_selector

inclock

data1

data0

sel

result

rbg_selector

indata

AND2

inst11

NOT

inst12

BNAND2

inst17

right shift
sclr

clock

shiftin

q[1..0]

negedge_shifter

inst10

NOT

inst13

AND2

inst14

AND2

inst18
1 bit x 131072 words

data[0]

wrreq
wrclk

rdreq
rdclk

aclr

wrfull

q[0]

rdempty

bitbucket

inst3

OR2

inst1

rdclock

read

wrclock

reset

shiftin

ready

base

bitvalue

decoy

rbg_output_shift

inst2

NOT

inst5

AND2

inst15

F
igu

re
4.12:

R
an

d
om

n
u
m

b
er

gen
erator

su
b
sy

stem

0 13 16 17 18... ...

1 0 0 1 1
1

1

Figure 4.13: 19-bit linear feedback shift register

states (encoded in 1 bit). If however the two states should have a distribution such as 1

7
and

6

7
, the lowest common demoninator is 7 (encodable in 3 bits). It will thus be necessary to

generate at least 3 bits to get the desired distribution.
For the FPGA software, this means that the required number of generated bits depends

on the resolution of the customisation. The smaller the probability adjustments can be, the
higher the common demoninator will need to be.

This means that Alice’s required bit rate will be significantly higher than Bob’s, and will
be further exacerbated if the distribution should be adjustable by the end user (as opposed
to hard coded).

4.8.2 Internal PRNG

The internal random number generator is a simple 19-bit linear feedback shift register
(LFSR). In such a generator, certain bits are tapped and a bitwise operation are performed
on them (typically an exclusive or, xor). The resulting bit is shifted on to the end of the
register. The bit that is shifted out is used as random data (see figure 4.13).

The PRNG is running on 800 MHz, the maximum the Stratix III FPGA is capable of.
This is not enough to simulate distribution adjustments, but the PRNG can be duplicated
if necessary.

By carefully choosing the operator and the bits to tap, one can create a maximum length
LFSR. In such a register, all possible register values except one will occur once before the
cycle restarts. In the implemented LFSR (and all LFSRs based on xor), the illegal value
consists of all zeroes, as this would leave the register stuck. The code used can be seen in
appendix B.

4.8.3 Physical RNG

The software assumes that a connected RNG has a clock output and an error output in
addition to its data line. The clock output is used to shift the value on the data line into
the pool (assuming the external RNG is selected).

As seen in figure 4.5, these three signals need to be routed from external pins (e.g. on
the HSMC expansion board) to the randomiser sudsystem in the FPGA.

There is currently only room for one such RNG, but expanding the software to make
room for more is trivial (for example by duplicating the randomiser software module).

28

Chapter 5

Final output

The resulting output from the chosen amplifier can be seen in figure 5.1 (attenuated due
to the limited range of the oscilloscope), where output similar to the ones in figure 4.6 has
been amplified.

The longitudinal grid lines have again been placed where the variance from intended
level is at its smallest, and shows where the laser will be pulsed.

Appart from the undesired transients in the middle of each clock cycle, this is very close
to the desired output. The level for each state falls within 0.10 V of the desired level on
every clock cycle, corresponding to less than 0.32 V unattenuated.

This output is ready for use with the intensity modulator, though there was not enough
time to perform such measurements.

29

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

[V
]

[ns]

Amplifier output
4.5 V unattenuated

1.0 V unattenuated

Figure 5.1: Final amplified signal (ZPUL-30p), attenuated 10 dB

30

Chapter 6

Conclusion

The goal of this thesis was two part. The first part, to set up the digital to analog converters
and amplifiers and to demonstrate interference in the interferometer has been completed
successfully, though only at a rate half of the target rate of 200 Mbit/s.

The second part, to implement the BB84 protocol for quantum key distribution as far
as possible has not been fully achieved. The sender unit (Alice) is almost ready to generate
all the necessary signals (without a customisable decoy state probability), but there has
currently not been done any measurements on suitable amplifiers for the phase modulator.

For a full demonstration of BB84, it would also be necessary with a receiver unit (Bob).
The probability of generating a decoy state is currently locked to 12.5 %. For other

distributions it may be necessary to add more random number generators, real or software.

6.1 Further work

The next logical step is to connect the amplifier output to the intensity modulator and
calibrate the laser pulse timing. This relatively simple procedure should be enough to
demonstrate a working decoy state generator, though there was not enough time to complete
the measurements for this thesis.

The next logical step would be to finish the signal code and amplifier measurements
for the phase modulator. At this stage, Alice will be a working sender unit for the BB84
protocol.

Next, a receiver unit must be created. Much of this work will already be done, as it has
a lot in common with the sender. This will also include adding synchronisation code to both
sender and receiver.

When the PC communication is implemented, it will be necessary with a governing state
machine to guide the other software modules through each step of exchanging a complete
key.

31

Bibliography

[1] C. Shannon, “Communication theory of secrecy systems,” The Bell System Technical
Journal, vol. 28, pp. 656–715, ???? 1949. A footnote on the initial page says: “The
material in this paper appeared in a confidential report, ‘A Mathematical Theory of
Cryptography’, dated Sept. 1, 1946, which has now been declassified.”.

[2] Wiesner, “Conjugate coding,” SIGACTN: SIGACT News (ACM Special Interest Group
on Automata and Computability Theory), vol. 15, 1983.

[3] C. H. Bennett and G. Brassard, “An update on quantum cryptography,” in Advances in
Cryptology: Proceedings of CRYPTO 84 (G. R. Blakley and D. Chaum, eds.), vol. 196
of Lecture Notes in Computer Science, pp. 475–480, Springer-Verlag, 1985, 19–22 Aug.
1984.

[4] A. Ekert, “Quantum cryptography based on bell’s theorem,” Physical Review Letters,
vol. 67, pp. 661–663, Aug. 1991.

[5] Brassard and Salvail, “Secret key reconciliation by public discussion,” in EUROCRYPT:
Advances in Cryptology: Proceedings of EUROCRYPT, 1993.

[6] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplication by public discus-
sion,” SIAM Journal on Computing, vol. 17, pp. 210–229, 1988.

[7] Impagliazzo, Levin, and Luby, “Pseudo-random number generation from one-way func-
tions,” in STOC: ACM Symposium on Theory of Computing (STOC), 1989.

[8] C. H. Bennett, G. Brasard, C. Crepeau, and U. M. Maurer, “Generalized privacy am-
plification,” IEEE Transactions on Information Theory, vol. 41, pp. 1915–1923, Nov.
1995.

[9] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom generator from
any one-way function,” SIAM J. Comput., vol. 28, no. 4, pp. 1364–1396, 1999.

[10] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical
quantum cryptography,” Phys. Rev. Lett., vol. 85, no. 1330, 2000.

[11] W. Y. Hwang, “Quantum key distribution with high loss: Toward global secure com-
munication,” Phys. Rev. Lett., vol. 91, p. 057901, 2003.

32

[12] E. S. Simonsen, “Security of quantum key distribution source,” Master’s thesis, Norwe-
gian University of Science and Technology, 2010.

[13] M. Ulianov, “Quantum key distribution system,” Master’s thesis, St. Petersburg State
Polytechnical University, 2009.

[14] “Ad9741/ad9743/ad9745/ad9746/ad9747 data sheet (rev. 0).”

[15] “Ad9741/ad9743/ad9745/ad9746/ad9747 evaluation board schematic (rev. h).”

33

Appendix A

HSMC prototyping board pin

mappings

P1D00 to P1D15 corresponds to odd numbered pins 9 to 39 on connector J9 of the AD9746
evaluation board. P2D00 to P2D15 corresponds to odd numbered pins 9 to 39 on connector
J10.

DAC A HSMC output HSMC input FPGA output

P1D00* D61 132 AA1
P1D01* D57 126 AB2
P1D02 D53 120 AC2
P1D03 D49 114 AE4
P1D04 D45 108 AE2
P1D05 D41 102 AF2
P1D06 D37 96 Y4
P1D07 D33 90 AG1
P1D08 D29 84 AF4
P1D09 D25 78 AH2
P1D10 D21 72 AJ2
P1D11 D17 66 AL2
P1D12 D13 60 AM2
P1D13 D9 54 AG4
P1D14 D5 48 AJ4
P1D15 D1 42 AJ9

* Not connected on the 14 bit AD9746

34

DAC B HSMC output HSMC input FPGA output

P2D00* D62 133 Y7
P2D01* D58 127 AA6
P2D02 D54 121 Y5
P2D03 D50 115 AC7
P2D04 D46 109 AB5
P2D05 D42 103 AC5
P2D06 D38 97 W9
P2D07 D34 91 AD3
P2D08 D30 85 AE5
P2D09 D26 79 AD6
P2D10 D22 73 AF5
P2D11 D18 67 AE7
P2D12 D14 61 AH4
P2D13 D10 55 AC8
P2D14 D6 49 AB10
P2D15 D2 43 AL7

* Not connected on the 14 bit AD9746

Laser driver:
CLKOUT0 39 AD28

35

Appendix B

19-bit linear feedback shift register

// DRBG: De te rmin i s t i c Random Bit Generator
// This i s in tended as a c r y p t o g r a p h i c a l l y weak
// s imu la t i on o f a p h y s i c a l random b i t generator ,
// implemented as a l i n e a r f eedback s h i f t r e g i s t e r
// (LFSR) . Unl ike a ph y s i c a l random b i t generator ,
// i t needs a c l o c k input .
module drbg (c lock , data_out) ;

input c l o ck ;
output data_out ;

reg [1 8 : 0] r ;

assign data_out = r [1 8] ;

always @ (posedge c l o ck)
begin

i f (r == 0)
// Fu l l l e n g t h LFSRs w i l l never move out o f the 0 s t a t e .
r <= 1 ;

else

r <= { r [0] ^ r [1] ^ r [2] ^ r [5] , r [1 8 : 1] } ;
end

endmodule

36

Appendix C

RNG subsystem output register

// S h i f t r e g i s t e r f o r random b i t genera tor output .
module rbg_output_shift (rdc lock , read , wrclock , r e s e t , s h i f t i n ,

ready , base , b i tva lue , decoy) ;
parameter WIDTH = 5 ;

// For wr i t i n g :
input wrclock ; // Write c l o c k .
input s h i f t i n ; // Bit va lue to s h i f t in .
reg prevrdtogg l e ; // Remember prev ious r d t o g g l e va lue .

// For read ing :
input rdc l ock ; // Read c l o c k
input read ; // S i gna l s t h a t output was read t h i s read c y c l e .
reg rd togg l e ; // I s t o g g l e d on every read .

// Other :
input r e s e t ; // Synchronous r e s e t .
output reg ready ; // Output i s ready .

// Actual s h i f t e d data .
reg [WIDTH − 1 : 0] r ;

// Randomised data , wired from r [] .
output base ; assign base = r [0] ;
output b i t va l u e ; assign b i t va l u e = r [1] ;
output decoy ; assign decoy = r [4] & r [3] & r [2] ;

always @ (posedge wrclock)
begin

// Remember current r d t o g g l e .
prevrdtogg l e <= rdtogg l e ;

37

i f (r e s e t)
begin

ready <= 0 ;
r <= 1 << (WIDTH − 1) ;

end

else

begin

// S h i f t in un l e s s a l r eady f u l l .
i f (ready == 0)
begin

r <= { s h i f t i n , r [WIDTH − 1 : 1] } ;

// Output i s ready when the f i r s t 1 i s s h i f t e d out .
i f (r [0] == 1) ready <= 1 ;

end

// Val id output has been read .
i f (ready == 1 && rdtogg l e != prevrdtogg l e)
begin

ready <= 0 ;
r <= 1 << (WIDTH − 1) ;

end

end

end

always @ (posedge rdc l ock)
begin

i f (read == 1)
begin

// Data was read . S i gna l a new s h i f t c y c l e .
rd togg l e <= ~rdtogg l e ;

end

end

endmodule

38

Appendix D

Mini-Circuits ZPUL-30P data sheet

50: Non-Inverting 0.0025 to 700 MHz

CASE STYLE: S32

Maximum Ratings

Features

Operating Temperature -20°C to 65°C

Storage Temperature -55°C to 100°C

DC Voltage +24.5V Max.

Outline Drawing

Pulse Amplifier Electrical Specifications

s�WIDE�BANDWIDTH�����K(Z�TO�����-(Z��USEABLE�TO������-(Z
s�EXCELLENT�mATNESS�������D"�TYP�
s�CAN�HANDLE�WIDE�PULSE�WIDTH�������S�TYP�	
� WITH�EXCELLENT�RISE�FALL�TIME������NS�TYP�	
s�DELAY�TIME������NS�TYP�
s�PROTECTED�BY�53�0ATENT�����������

MODEL
NO.

FREQUENCY
(MHz)

GAIN
(dB)

RISE/FALL
TIME
(ns)

PULSE
WIDTH*

(µs)

MAXIMUM
POWER
(dBm)

DYNAMIC
RANGE

VSWR
(:1)
Typ.

DC
POWER

fL fU Min.

Flatness

Max. Max. Max.

Output

(1 dB Compr.)

Input

(no damage)

NF**

(dB)

Typ.

IP3

(dBm)

Typ. In Out

Volt

(V)

Nom.

Current

(mA)

Max.

ZPUL-30P 0.0025 700 29 ���� 1.5 6 +22*** +10 7.2 +34 2.0 2.0 24 400

Applications
s�COMPUTERS
s�DIGITAL�COMMUNICATION
s�MEDICAL�TEST�SET
UPS

�� 0ULSE�WIDTH�FOR�LESS�THAN�����DROOP�

�.OISE�&IGURE�TESTED�ABOVE����-(Z�

/PEN�LOAD�IS�NOT�RECOMMENDED��POTENTIALLY�CAN�CAUSE�DAMAGE��
7ITH�NO�LOAD�DERATE�MAX�INPUT�POWER�BY����D"

�&OR����
����-(Z��������D"M

#ONNECTORS� -ODEL� 0RICE�� 1TY�
BNC� :05,
��0� ��������EA�� ��
�	

typical amplifier response to a pulse input

A B C D E F G H J K L Q S wt

5 0 0 9 5 9 5 4 0 0 0 0 0 8 0 0 0 0 ms

.0

0ERMANENT�DAMAGE�MAY�OCCUR�IF�ANY�OF�THESE�LIMITS�ARE�EXCEEDED�

39

	Title Page
	Problem Description
	Quantum key distribution prototype

