
Quality of Experience for Digital 
Cinema Presentation

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2011

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and 
Electrical Engineering
Department of Electronics and Telecommunications

Fitri N. Rahayu



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Electronics and Telecommunications

© Fitri N. Rahayu

ISBN 978-82-471-3123-7 (printed ver.)
ISBN 978-82-471-3124-4 (electronic ver.)
ISSN 1503-8181 

Doctoral theses at NTNU, 2011:277

Printed by NTNU-trykk



 

Abstract 
Multimedia presentations of digital media services and devices are meant for human 
consumption and interaction. Before consumption by the user, the multimedia signal 
usually goes through several processing stages. Depending on the technologies, 
including the applied signal processing algorithms, some stages can introduce artefacts 
that reduce the quality of the multimedia presentation. Quality is a fundamental aspect 
for the design of any end-to-end multimedia signal processing architecture. A 
sufficiently high quality level of any multimedia presentations must be provided to the 
user to ensure her optimal experience. More recently, we have seen a shift of paradigm 
towards incorporating the user as the most important factor in the quality assessment of 
multimedia presentations. This shift of paradigm drives the creation of the Quality of 
Experience (QoE) concept. QoE depends on the user perception making it a qualitative 
assessment as opposed to a purely quantitative one. The definite way of assessing 
perception of user is by conducting a perception experiment involving human 
participants in a controlled environment, and this experiment must be carefully 
designed. Subjective quality assessment is one example of such experiment. There is 
another, more practical way of assessing quality from user standpoint; this utilizes 
perceptual-based metrics that model the human perception as closely as possible.  Due 
to the array of current applications, it is unlikely to have a universal quality metric for 
assessing QoE of multimedia applications. This thesis will only focus on QoE for 
Digital Cinema presentations.  

The thesis is composed of a paper collection; were we have classified the work in 
this thesis based on research questions within three main themes: QoE of still images 
for Digital Cinema presentation1, QoE of motion pictures for Digital Cinema 
presentation, and QoE of audiovisual presentation for Digital Cinema. 

In the field of QoE of images for Digital Cinema presentations, we conducted 
subjective image quality assessments for Digital Cinema using a methodology derived 
from standardized recommendations. During the assessment we collected subjective 
scores of the perceived image quality in a real Digital Cinema environment. We also 
conducted another perceptual experiment in a Digital Cinema to obtain the parameters 
of Multi Scale Structural Similarity (MS-SSIM) objective metric for Digital Cinema 
presentation. Moreover, we analysed the performance of several objective metrics 
including MS-SSIM with original parameters and parameters obtained from our 
experiment in the Digital Cinema. The results show that in the case of Digital Cinema, 
MS-SSIM does not exhibit the same type of performance that has been reported in the 
literature, when compared to PSNR metric. 

 In the field of QoE of motion pictures for Digital Cinema presentations, we 
conducted subjective motion pictures quality assessment for Digital Cinema using a 
careful designed experiment, which is also derived from standardized recommendations. 
The collected subjective data is used to analyse the performance of two compression 
algorithms (JPEG 2000 and AVC/H.264) for a Digital Cinema environment; the results 
showed that temporal compression schemes like H.264/AVC have high coding 
                                                 
 

1 This is referred to Digital Cinema applications in Papers A-E  

 i



 

efficiency not only at SD resolutions, but also at high resolutions for Digital Cinema 
presentation. Furthermore, we performed an analysis on factors that affect visual 
perceived quality in a Digital Cinema using collected scores from the subjective still 
images and motion pictures quality assessment.  

In the field of QoE of audiovisual presentation for Digital Cinema, we performed 
subjective experiments of audiovisual contents for Digital Cinema using also 
methodology derived from standardized recommendations. In addition, we investigated 
the multimodal effect on perceived quality in a Digital Cinema environment. A major 
result of our subjective visual quality assessment showed that the presence of audio 
(low or high quality) does not influence the visual quality judgment. 
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1 Introduction 

1.1 Motivation 

As our world is becoming more and more digitized and connected every day, 
multimedia presentations are becoming ubiquitous. Multimedia in essence is a 
presentation of multiple information that may consist of images, video, graphics, audio, 
speech, sound, text, and even tactile content (content relating to the sense of touch)  or 
olfactory content (content concerned with the sense of smell). These presentations are 
meant for human consumption and interaction. Before consumption by the user, the 
multimedia signal usually goes through several processing stages. Figure 1 illustrates 
the chain of multimedia signal processing from real world to the user. Depending on the 
technologies utilized in the processing stages, such as multimedia signal processing 
techniques, some stages can introduce artefacts and errors that reduce the quality. In 
light of this, optimizing the performance of each stage with the respect of what the users 
perceive in the signal is one of the most important challenges in this domain. 
Consequently, quality is a fundamental aspect for the design of any end-to-end 
multimedia signal processing architecture. This, as illustrated on Figure 1, requires 
quality assessment, which is important in each stage of multimedia signal processing.  
Ultimately, a sufficiently high quality level of any multimedia presentations must be 
provided to the users.  

 

Figure 1: Chain of multimedia signal processing. 
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Traditionally multimedia content and service providers have addressed that issue 
by the notion of Quality of Service (QoS) that objectively measures and guarantees 
service-related characteristics from the providers perspective. Additionally, there are 
well-established performance standards that rely on special test signals and 
measurement procedures to determine signal parameters that can be related to the 
quality. 

More recently, we have seen a shift of paradigm towards incorporating the user as 
the most important factor in the quality measurement; this drives the creation of the 
Quality of Experience (QoE) concept [1]. The International Telecommunication Union 
defines QoE as [2]:  

 
“The  overall  acceptability  of  an application  or  service,  as  perceived  

subjectively  by  the  end-user.”  
 
The framework to assess the user’s behaviour and the necessary technology is 

based on assessing the user experience in a consistent way, and rewarding the user’s 
loyalty through innovative packages and new, engaging services and content delivered 
through their device of choice whenever and wherever they want it. These assessments 
are crucial for the industry and drive their innovations and investments in future new 
media and services. In this light, QoE can also be defined as [3]: 

 
“The characteristis of the sensations, perceptions, and expectations of the 
people as they interact with multimedia applications through their 
different perceptual sensors (restricted to vision and hearing in an 
audiovisual context)” 

Since QoE is something that depends on the user perception, it is also a qualitative 
measure in addition to a quantitative one. Measuring QoE poses many challenges 
because QoE involves complex and numerous factors including human factors. Some 
studies have explored the requirements for achieving a good QoE. Developing QoE 
assessment methods requires also a comprehensive study on experimental design related 
to user experience and quality involving human participants because, intuitively, the 
best judge of quality are the users themselves. So far the largest body of research on 
QoE in multimedia presentations has focused on the perceptual visual or audio quality. 
It is reasonable because in multimedia presentations, regardless of the application, QoE 
is dominated by the quality of content which require high bandwidth and considerable 
processing power. From this point of view, video, image, and audio are most critical in 
the modelling of QoE, and the need for better understanding of the impact of audio-
visual information on perceived quality is critical. 

The evaluation of perceived quality is divided into two categories, subjective and 
objective methods. Subjective methods require human participants in a quality 
experiment scenario. Accordingly, the subjective methods, which are more known as 
the subjective quality assessments, are said to be the fundamental way of measuring 
perceptual quality and so far the only widely recognized method of judging perceived 
quality [4]. These experiments must be carefully designed in order to create significant 
and reliable results. In addition, performing subjective quality experiments requires 
significant knowledge of a number of different disciplines. For that reason subjective 
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evaluations are complex and time consuming. Even though the result from these 
methods is considered as the ground truth, faster alternative approaches are needed; 
subjective quality assessment cannot be utilized in real time scenario such as quality 
monitoring of several online video channels. 

 For that reason, more practical approaches to assess perceived quality are 
desirable. These approaches, which are called objective methods, utilize quality 
measurement models or metrics that take into account the human perception. Objective 
methods must be able to reliably measure the perceived quality as closely as possible. 
At the moment, we have standardised perceptual objective metrics in the field of audio 
[5-7]. The present-day models typically comprise of a model of the human auditory 
system followed by a cognitive model to estimate the human participants scoring during 
subjective assessment test. In the field of audio, two categories of predictive models 
exist: those that aim to predict a particular perceptual attribute, such as loudness, and 
those that aim to quantify overall performance, such as speech listening quality. With 
the development of speech and audio codecs, there has been a desire to evaluate the 
performance of codecs and associated devices. This has led to development and 
standardisation of various predictive models associated with speech and audio quality 
[8]. It is important to note, though, as with all tools, there are both correct and incorrect 
modes of usage. Perceptual-based audio quality objective methods normally have a 
particular domain of application beyond which their prediction accuracy is not known. 
Usage beyond the scope of application is risky and may provide misleading results. For 
example, one standardised model, PESQ (Perceptual Evaluation of Speech Quality) [7], 
is developed primarily for the assessment of narrowband speech. This model has been 
trained extensively with different kinds of speech stimuli, codecs, and other relevant 
stimuli. Applying such models to audio codecs with music is not automatically accurate 
and may lead to the misleading prediction of the perceived audio quality. Currently, 
objective methods beyond audio applications are still evolving, and there are no widely 
used and standardised objective models for predicting perceived visual quality yet. 
Additionally, predictive models for audio quality have not yet been developed for all 
aspects of audio perceptual evaluation, such as metric to measure the quality of spatial 
sound [8]. 

Due to the array of current applications, it is less feasible to develop a universal 
quality model or metric for evaluating QoE of multimedia applications. Different 
applications can provide different variables due to their situational context. 
Consequently, the scope of variables that need to be considered during the development 
of a universal QoE model is too large and too complex. Even in the field of audio only, 
so far, there exists no unified perceptual-based model for assessing audio quality that 
can cover all aspects of audio perception. This thesis will only focus on QoE issue for 
Digital Cinema presentation.  

Digital Cinema is a distinct application; it is the latest and final analogue media to 
go digital. The motion picture industry is one of many in the media sector consisting of 
mature players which have an entertainment focus in common. Both broadcasting and 
mobile media are digital services, while the motion picture industry is currently in the 
process of forming standards for digitization of its complete value chain. The speed of 
digitization of the entire chain of cinema in the whole world is quite different with 
others media; it is quite slow. This is particularly evident compare to the field of 
television. In broadcasting, digital satellite and cable services have been available for 
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quite some time, and terrestrial digital TV broadcast has been introduces in a number of 
location around the world. Production studios, broadcasters and network providers have 
been installing digital video equipment at an ever increasing rate. The speedy 
development of digitization is also observed in photography, where digital cameras 
have become hugely popular worldwide within a short amount of time. Going to the 
movies is the end product of a long process involving a complex value chain. This value 
chain has developed and operated in the same manner for over 100 years. Innovations 
have evolved and refined the process. This includes a few major revolutions such as 
going from silent movies to sound and more recently the last of entertainment industries 
to go digital [9]. Digital Cinema requires a complete change of infrastructure in all 
screens worldwide. The traditional 35mm films projector needs to be replaced with a 
Digital Cinema server and a digital projector. The process of change is referred to as the 
Digital Cinema roll out which results in exhibitors (the theatres) adopting and starting to 
use the new technology.  

So far quality has not been used explicitly to drive the Digital Cinema roll out, but 
it is an important factor nonetheless. The motivations for the change are complex and 
not solely based on quality, and not all benefits are seen by the user. But the open 
question still remain is whether quality plays a role in the innovation of cinema 
technology and adoption of Digital Cinema. It is a commonsense assumption to say that 
all content providers have one goal in common, the satisfied and loyal customer, buying 
and consuming their services and applications regardless of the technology. Being able 
to quantify QoE as perceived by end-users can play a major role in the success of future 
media services, both for companies deploying and with respect to the satisfaction of 
end-user that use and pay for the services [10]. Accordingly, in the context of Digital 
Cinema applications, QoE is a noteworthy issue to study. There are at least three main 
reasons to adopt Digital Cinema [3]: 

- To reduce distribution costs (benefit for studios) 

- To reduce piracy (benefits for studios) 

- To enhance Quality of Experience (benefits for cinema goers – the users) 

Digital Cinema is also a distinct application, in a sense that, it needs a special 
venue—a large auditorium—and very expensive equipments to screen multimedia 
content. Moreover, Digital Cinema is based on 4K or 2K imagery 2, a significantly 
higher quality not only in terms of larger pixel counts per image when compared to 
standard and high definition content, but also offer a higher dynamic range on the 
values of each pixel. These add additional distinctive factors influencing QoE 
assessment for Digital Cinema presentation.  

This thesis presents the study of QoE issue in Digital Cinema. The main part of 
this thesis, Part II is a collection of five papers, Paper A-E. All the papers included are 
modified to fit the format of the dissertation. For the already published articles, any 
changes (aside from spelling errors) made are noted in the summary of the papers. Part I 
give an introduction to the areas of research covered in these papers.  

                                                 
 

2 4K is 4096x2160 resolution; 2K is 2048x1080 resolution 
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1.2 Research Questions  

The focus of this thesis was intended to be a QoE research, specifically within formal 
test of subjective quality assessment for digital cinema presentation. The thesis is based 
on research questions within three main themes:   

RQ1. QoE of still images for Digital Cinema presentation.  
RQ2. QoE of motion pictures for Digital Cinema presentation. 
RQ3. QoE of audiovisual presentation for Digital Cinema presentation. 

 
 During our research, the scope of the research has been narrowed down to these 

following issues:  
- We put emphasize on alternative content beyond feature films screening in 

digital cinema. 
- We did not consider the processing algorithm used in the digital cinema 

projector and media block. 
- We did not consider the issue of intellectual property of the compression 

technology used in digital cinema, and accordingly, we take also into account 
the compression technology beyond JPEG 2000. 

 
The main research works are presented in five publications, which are illustrated 

in Figure 2. These publications are:   
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Figure 2: Connection of the written papers. 

 
- PAPER A: SS-SSIM and MS-SSIM for Digital Cinema Applications [11] 

 
This paper is based on RQ1 and presents our finding of RQ1. The goal of the research 
behind this publication is to design SS-SSIM and MS-SSIM metrics with input 
parameters that take into account the Digital Cinema source material characteristics and 
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viewing conditions. These metrics will then be utilized to measure the perceived quality 
of high quality digital imagery. To validate and to confirm the results, these will be 
compared with the PSNR metric and with a subjective evaluation/assessment carried out 
by human participants in a DCI specified Digital Cinema. The subjective evaluation is 
performed to find the correlation of the proposed metrics with how humans perceive the 
quality. I was the leading author of this paper, and I performed all experiments during 
the data gathering and was responsible for performing the analysis of the data. 

The research questions covered in this paper are as follow: 
RQ1.1: Protocol of subjective image quality assessment in the Digital Cinema. 
RQ1.2: Parameterization of Multi Scale Structural Similarity objective metric.  
RQ1.3: Performance assessment of the objective metrics. 
 

- PAPER B: Comparison of JPEG 2000 and H.264/AVC by Subjective 
Assessment in the Digital Cinema [12] 

This paper is based on RQ2. The goal of the research behind this publication is to study 
the compression technologies by subjective quality assessment. Two video coding 
schemes with variable bit rates — JPEG 2000 and H.264/AVC — were compared in 
terms of perceived quality performance in a Digital Cinema environment. 
Consequently, the protocol to conduct a subjective motion pictures quality assessment 
in the Digital Cinema must be designed as well. I performed all experiments during the 
data gathering and was responsible for performing the analysis of the data, and I was 
also the leading author of this paper. 

 The research questions covered in this paper are as follow: 
RQ2.1: Protocol of subjective motion pictures quality assessment in the Digital Cinema. 
RQ2.2: Assessment of the compression algorithms based on collected subjective data  

 
- PAPER C: Exploring Alternative Content in Digital Cinema [13] 

 
This paper is supporting the selected methods in the experiments which are conducted 
in Paper A, Paper B, and Paper C. The paper puts emphasize on the alternative content 
screening in Digital Cinema and presents the discussion about Digital Cinema business 
related to experimentations outside feature films. Due to our interest in screening 
beyond traditional feature films, the perceptual experiments conducted in Paper A and 
Paper B are tailored for these types of presentation. I was the leading author of this 
paper. 

 The research question covered in this paper is as follow: 
RQ3: The importance of human factors represented by QoE in developing alternative 
content. 

- PAPER D: Subjective Visual Quality Assessment in the Presence of Audio for 
Digital Cinema [14] 

 
This paper is based on RQ3. The goal of the research behind this publication is to 
investigate whether the presence of audio with different quality levels can influence the 
outcome of subjective visual quality assessment in a Digital Cinema setting. We 
conducted subjective visual quality assessment of AV presentation for D-Cinema and 
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used the collected data to analyse the influence of audio to visual perceived quality. I 
performed all experiments during the data gathering and was responsible for performing 
the analysis of the data. I was the leading author of this paper. 

 The research questions covered in this paper are as follow: 
RQ4.1: Protocol of the perceptual experiments. 
RQ4.2: The multimodal effect on the visual perceived quality for Digital Cinema 
presentation. 

 
- PAPER E: A Study of Quality of Experience in D-Cinema [15] 

 
This paper is based on RQ1 and RQ2. The goal of this publication is to analyze in more 
detail the collected subjective data obtained from the subjective visual quality 
assessments mentioned in Paper A and Paper B. The publication also present arguments 
on the importance of carefully designed subjective quality assessment. I was responsible 
for performing the analysis of the data and the leading author of this paper. 

 The research questions covered in this paper are as follow: 
RQ5.1: Factors that affect the subjective visual quality assessment result in Digital 
Cinema.  
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2 Background 
This section gives a short background for the work presented in this thesis. First, 

Digital Cinema is presented in Section 2.1 Then, subjective quality assessment is 
presented in Section 2.2. Section 2.3 gives a short overview of perceptual-based quality 
objective metrics. 

2.1 Digital Cinema 

The motion picture industry is one of many in the media sector consisting of 
mature players which have an entertainment focus in common. Currently, both 
broadcasting and mobile media are digital services. On the other hand, the motion 
picture industry is now in the process of forming standards for digitization of its 
complete value chain. These specifications and standards are the basis for a large scale 
implementation of Digital Cinema as the latest and final analogue media to go digital.  

The typical, basic complete chain of digital broadcasting and mobile media is 
illustrated in Figure 3. The data mentioned in Figure 3 includes image, video, and audio 
information. Historically, the movie theatre experience has always exceeded what could 
be achieved by home entertainment systems. Technical improvements in the 
broadcasting historically influence the motion pictures industry. When the National 
Television System Committee (NTSC) television became widely adopted in the 1950s, 
it was greatly feared that this would affect the cinema negatively. The same concerns 
resurfaced again with the advent of colour television in the 1960s and again with 
advances in audio technology in the 1980s and 90s. However, the cinema was never 
reaching its end. Reinvention of cinema technology happened instead. There were 
underlying trends that the technical improvements in the broadcasting also affect the 
advances of cinema technology. In the recent years, the same trend happened again with 
the popularizing of High-definition Television (HDTV). High-definition (HD) broadcast 
and corresponding receiving sets have been widely available worldwide and are now 
mainstream for the past few years. This shows the successful rollout of HDTV. 
Accordingly, the advent of HDTV and technical improvements in home theatre 
equipments stimulates the motion picture industry to think further ahead into the future. 

 

Figure 3: Data processing for transmission and storage. 

Following the legacy of television and video cassettes, the cinema makes the transition 
from analogue to digital. Using film in motion picture industry is a robust, standardised, 
century-old technology, and replacing it is a complex process. With the transition, 
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cinema professionals, distributers, exhibitors, and cinemagoers expect a quality level 
and efficiency that surpass what currently exists. 

2.1.1 Digital Cinema System 

The digitization of the complete chain is specified by the Digital Cinema Initiative 
(DCI) [16] and is currently under standardization by Society of Motion Picture and 
Television Engineers (SMPTE). DCI was created in March 2002, as a joint venture of 
seven major Hollywood studios: Disney, Fox, MGM, Paramount, Sony Pictures 
Entertainment, Universal, and Warner Bros, and its primary purpose was to establish a 
voluntary specification for an open architecture for digital cinema that would ensure a 
high level of technical performance, reliability and quality control. DCI would also 
facilitate the development of business strategies to help spur deployment of digital 
cinema systems in movie theatres. 

Figure 4 illustrates the general workflow of the digital process for digital cinema. 
The digital cinema system is built upon data stored in files. These files are organized 
around the image frames. The file is the most basic component of the system.   
Mastering is the stage before distribution which is represented in transport stage, and 
the result of mastering stage is a concept called Digital Cinema Distribution Master 
(DCDM). DCDM consists of image structure, audio structure, and subtitle structure. 
Once DCDM is compressed, encrypted, and package for distribution, it is considered to 
be the Digital Cinema Package (DCP). This term is used to distinguish the package 
from the raw collection of files known as the DCDM. Transport stage is the stage where 
DCP is distributed via Network, Satellite, or Physical Media. Then the exhibitor or 
theatre stores the obtained DCP file in the digital cinema server, which is generally part 
of the 2K or 4K digital cinema projector equipments; this is represented by storage 
stage. The projection stage includes the decrypt, extraction, and decompressed of image 
structure, audio structure, and subtitle structure from the DCP before screening the 
complete structures to the cinemagoers [17].  

 

Figure 4: Digital cinema system workflow. 

 
 Figure 5 shows the elements of digital cinema system [18] that clarify further the 

workflow stated earlier. Content creation and then post production are processes to 
create DCDM  (the output of post production is DCDM [17]). Acquisition, capturing the 
real world through camera and microphone, is part of the content creation process. The 
resulting content can be digital origination or need to be digitized through A-D transfer. 
These include the stage at which imagery must be brought into the appropriate digital 
environment from its original state. This stage, which is also called digital ingest, 
illustrated in the Figure 6. Most often today, theatrically distributed movies originate on 
film, but standard or high-definition video is also sometimes used; in the case of 
animation or visual effects films, digitally originated files are the source [18]. 
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Figure 5: Digital cinema system elements [18]. 

 

Figure 6: Digital ingest options and the DSM [18]. 

 Post production traditionally covers the process of preparing, editing, and 
finishing the picture and sound; creating Digital Source Master (DSM) is part of this 
process. DSM can be used to convert into DCDM, and it also be used to convert to a 
film duplication master, a home video master, and/or a master for archival purposes. 
The content could come from a wide range of sources with a wide range of technical 
levels [17]. Figure 6 shows the processes of creating DSM.    
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When capturing the source material of content, one relevant factor to consider is 
the data size of the content. From a quality standpoint, the ideal solution is to capture 
the maximum that can be mathematically described. However, this also means data that 
bandwidth and storage are strained beyond realistic and practical limits. The practical 
solution remains in the required end result. 

The more pixels in the picture, the finer the detail will be. This becomes 
particularly significant when the presentation is for large screens, particularly those 
from 3 to 24 meters in width. Discriminating the difference among various spatial 
resolutions on a CRT display can require some very close viewing; when the pixels are 
spread onto the large screen, the difference is magnified without having to stand so 
close against the screen. Most of the high-definition television production and post 
production equipment in place today supports resolutions up to 1920 pixels horizontally 
by 1080 vertically (1080p).  Current Digital Cinema projectors are capable of displaying 
up to 2048 pixels horizontally (2K). The leap to presentation of 4096 pixels horizontally 
(4K) is a still larger barrier: not only is there no standardized method for recording and 
displaying such images, but even custom systems created to handle such data strain 
today’s networks, disk speeds, and disk array sizes [18]. The relative comparison of 
spatial resolution format is illustrated in Figure 7; this figure shows approximately 1/8 
of actual pixel dimensions.  Trade-offs of speed and flexibility in the creative 
production process will often be favoured at the expense of maximum resolution. 

 

Figure 7: Comparison of spatial resolution.  

Four different spatial resolutions shown in Figure 7 are common formats in digital 
cinema. The relative pixel comparison shown there is at 2.39:1 aspect ratio, and it is 
illustrated that 4K contains a huge amount of data compare to HD resolution. 4K 
projection contains 8.847.360 pixels for each frame, while HD projection contains 
2.073.600 pixels. 720p format which is also called Standard Definition (SD) contains 
(only) 345.600 pixels. Nevertheless, the formats used in entertainment industry for the 
screening of a feature film—film production made for initial distribution in theatres—
are 2K and 4K; these formats are the ones that are recommended by DCI [17]. The most 
common practice today is a workflow in which creative expression and image 
manipulation during post production including cleanup, editing, and visual effects is 
done at 2K from files that may have been scanned at 2K, 4K, or even 6K, and then 
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down-converted to 2K resolution. Computer processing power, digital storage, and 
network capacity need to undergo significant improvement in capability and cost 
effectiveness in order for the movie industry to move in 4K workflow direction [19].   

 Figure 8 shows the mastering processes (the creation of DCDM from DSM) and 
the distribution process (represented by DCP creation from DCDM) [18]. The digital 
cinema system uses a store-and-forward method for distribution. This allows the files to 
be managed, processed and transported in non-real time. After being transported to the 
theatre, the files are stored on file server until playback. However, during playback and 
projection, the digital cinema content plays out in real time. A set of DCDM files 
(image, audio, subtitles, etc.) contains all of the content required to provide a digital 
cinema feature film screening. The DCDM provides two functions, an interchange file 
format, and a playback format that is directly sent from the Media Block to the projector 
(this is referred to as DCDM*). Media Block and along with Storage are components of 
the theatre playback system. The Media Block is the hardware device that converts the 
packaged content into the streaming data that ultimately turns into the images and sound 
in the theatre, and whereas Storage is the file server that holds the packaged content for 
eventual playback. The DCDM requirements for image specified by DCI are as follows: 
DCDM image file format is required to be an MXF-conformant file, DCDM audio file 
format is required to be based on Broadcast Wave, DCDM image structure is required 
to support a frame rate of 24.000 Hz and a frame rate of 48.000 Hz for 2K image 
content only, and color encoding of DCDM is 12 bits X’Y’Z’. Furthermore, the audio 
requirements specified by DCI are as follow: the bit depth is 24 bits per sample, the 
sample rate is 48.000 or 96.000 kHz and DCP supports a channel count of 16 full-
bandwidth channels [17]. 

 

Figure 8: Digital cinema mastering and distribution process [18]. 

Compression for Digital Cinema uses data reduction techniques to decrease the 
size of the data for economical, practical delivery and storage. The 4K DCI-specified 
frame with an aspect ratio 1.85:1 contains 8.631.360 pixels per frame. A total bit per 
frame in DCDM almost reaches 40 megabytes. Consequently, 2-hour movie at 24 fps is 
represented for a total of nearly 7 terabytes. Such storage or transmission is physically 
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possible but impractical [20]. It is important to note that compression is typically used 
to ensure meeting transmission bandwidth or media storage limitations. This results in 
quality being dependent on scene content and delivered bit rate. Digital cinema image 
compression is much less dependent upon bandwidth or storage requirements, thus 
making bit rate dependent on desired visual quality rather than reverse. The 
compression technology chosen by DCI is JPEG 2000 [17]. 

Early experimental deployments have used a number of techniques, mainly 
proprietary. Examples include a variable bloc-sized DCT-based system from 
QUALCOMM and wavelet-based system from QuVis. This latter system demonstrated 
in early 2004 playout of a 2K presentation from a 4K compressed file. One popular 
standardised compression technology is MPEG-2 system, which is widely used in 
television. Some early experimental Digital Cinema systems were based on proprietary 
extension of MPEG-2. MPEG with the experts group of the ITU formed the Joint Video 
Team (JVT), and this team developed a new coded known as H.264 or MPEG-4 Part 
10, or the MPEG Advanced Video Codec (AVC), which offers about the twice the 
coding efficiency of MPEG-2. The other most well-known compression standards have 
been developed within the Joint Technical Committee (JTC) of the International 
Organziation for Standardization (ISO) and the International Electrotechnical 
Commission (IEC). One working group within the JTC—Joint Photographic Experts 
Group (JPEG)—has developed standards for the compression of static images. The 
original JPEG was a DCT-based system designed for static images. This standard was 
subsequently extended in a number of proprietary systems to provide coding for motion 
images. JPEG 2000 also started life as compression for static images, using wavelet 
technology, but this time the committee also standardized the extensions necessary for 
motion imaging. Motion JPEG 2000 does not use temporal compression; each frame is 
wavelet-compressed individually as illustrated in Figure 9. However, the tools in the 
Motion JPEG 2000 extensions will not be used since the DCI has chosen constant-
quality coding [20] 

 

Figure 9: Intra-frame compression [20]. 

 
Digital cinema transformed the traditional methods of distributing filmed 

entertainment that have been employed for decades. With the advent of digital cinema, 
the fundamentals of distribution to theatres may introduce a profound new paradigm 
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shift in filmed entertainment. Distribution of digital cinema feature files can be 
accomplished via three main methods: through the use of optical media (typically 
DVD), digital storage media (tape or HDD technology), and digital distribution (both 
via satellite or terrestrial). Even though using optical media or digital storage media still 
requires physical distribution as the mechanism to transport the feature from distribute 
to exhibitor, those two methods are today most widely used to distribute digitally 
prepared features to exhibitors. Digital distribution is widely viewed as the logical 
platform of the future to support Digital Cinema from a mass market perspective. The 
use of both unicast and multicast systems via satellite, terrestrial broadband, or a 
combination of both, which have been used for decades for television, provides an ideal 
platform for digital cinema distribution. There are several options currently available 
and more are anticipated as bandwidth access, compression improvements, and 
intelligent switching networks make moving large files more reliable [21]. 

Projection is part of the presentation system of digital cinema. Figure 10 shows 
the overview of the digital form presentation in digital cinema [21]. Local ingest 
(loading the data manually) is still required to upload the feature onto the the display’s 
server system. The presentation system in the Digital Cinema system includes both 
projector and media block. Media block is the term coined to avoid confusion of the 
concept of server among engineers in digital cinema community. (To a broadcaster, a 
server outputs a synchronous stream of content. To an information technologist, the 
server outputs either asynchronous or isochronous data.) The media block functional 
diagram for Digital Cinema is illustrated in Figure 11 [22]. 

 

Figure 10: Overview of presenting the digital form [21]. 
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Figure 11: Media block functional diagram for Digital Cinema [22]. 

 
The media block provides essential signal processing functions of the system. 

Signal processing that would be performed in the media block for both image and audio 
might include decryption, decompression, and fingerprinting. The input to the 
conceptual media block is independent of transmission type, accepting synchronous or 
isochronous data, or possibly files. The output of a media block characteristically is a 
synchronous stream [22]. 

 

2.1.2 Relevant Characteristics of the Digital Cinema Projector and 
Theatres 

The projector is one of the key elements in presenting content to the screen, and its 
performance depends on the effect of the viewing environment. Consequently, viewing 
environment and projector influences how cinemagoers perceive the content.  There is 
no standard design for a cinema auditorium (theatre). Newer cinemas are designed with 
the projection booth behind the back wall of auditorium. The distance from the 
projector to the screen is approximately twice the width of the projection screen. The 
seating location of the cinemagoers is critical to how much resolution is required to 
satisfy them. The closer they are, the more resolution they will require [23].  

For Digital Cinema projection, luminance is the measure of how bright the screen 
is. It is important to note that the Human Visual System (HVS) see color relationships 
differently depending on the brightness of the image; perception of color changes with 
varying image brightness. Accordingly, the screen brightness, which is the image 
brightness or luminance as seen by the cinemagoers, is very important for cinema. An 
image displayed at 6 ftL will look flat and desaturated compared to the same image at 
12 ftL [23]. (Screen brightness is measured in candelas per square meter (cd/m2) in the 
SI system, or foot Lamberts (ftL) in the American measurement system. The ftL is used 
in the motion picture industry for measuring the luminance or brightness of images on a 
projection screen. To convert one to another: 1 ftL = 3.426 cd/m2.) SMPTE 
recommended, in SMPTE 196M, a screen luminance of 16 ftL (open gate, with no film 
in the 35 mm projector) in the centre of the screeen for commercial movie theatres [24]. 
Current practice in Digital Cinema uses 12 ftL for peak projected white, which provides 
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an approximate visual match to a film print running through a 35 mm projector set at 16 
ftL open gate [23]. 

Illuminance is the light that comes from a light source that is used to illuminate an 
object, and for digital cinema projection, illuminance is the measure of how much light 
is coming form the projector and falling on the screen. The screen luminance, or 
brightness, is determined by the amount of light falling on the screen (illuminance) and 
the reflectivity of the screen. Illuminance influenced by factors associated with lamp 
source (lamp age, lamp type, power), how the projector is set up to correlate the aspect 
ratio of the screen, and other light losses. Projector light output is measure in lumens. 
Lumens are determined by integrating the luminous flux, or light coming out of the 
projections lens (measured in lux) over the total illuminated area (1 lux = 1 
lumen/meter2).  American National Standard Institute (ANSI) defines a specification to 
calculate the useful lumens output of the projector by measuring 9 areas of the screen 
and integrating these measurements over the screen area which is illustrated in Figure 
12 [23]. 

 

Figure 12: Measurement location for determining lumens from a projector [23]. 

 
The screen reflectivity is in theatrical situation called screen gain. Unity gain 

(gain=1) is compared to a Lambertian reflector, as illustrated in Figure 13. A 
Lambertian reflector reflects incident light equally in all directions. A higher gain than 
unity gain will reflect the light preferentially on axis, giving a higher on-axis reflectivity 
than a Lambertian reflector. This is at the cost of reflecting less light off axis. A high-
gain screen will provide less brightness to observers who are off axis than to those on 
axis, causing non-uniform image brightness throughout the auditorium. In order to 
maximize the reflection from the screen, while maintaining coverage over a wide angle, 
the cinema theatre also must take into account the seating array factor [23]. 
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Figure 13: Lambertian reflector [23]. 

 

 
Conditions within the auditorium affect the look of a projected image on the 

screen. The theatre contributes stray lighting from aisle and exit lights that illuminate 
the screen. Light is also scattered back to the screen from the walls and seats. These 
stray sources of screen illumination compete with the projected image, resulting in 
degraded image. Because cinemagoers are the ones who consumed the presentation, the 
most important is the image quality that the cinemagoers see. Consequently, brightness 
is ideally measured from several positions in the theatre and averaged. In designing a 
projection system, the on-axis screen brightness may be calculated approximately by the 
following [23]: 

 

areaScreen
LumensgainScreenBrighnessScreen

_
)_(_    (1) 

 
Contrast has an effect on the presentation seen by the cinemagoers. Consequently, 

determining contrast performance of the projector influence the visual perception of the 
cinemagoers. A low-contrast system in effect adds some light to the dark areas of the 
image, making the image appear milky and one-dimensional, and the detail is 
diminished. There are four ways to specify contrast, resulting from four methods to 
measure contrast: Off-to-On, ANSI, Local Area, and In Situ. Off-to-On contrast states 
the projectors’ ability to achieve absolute black; it is measured by comparing the 
maximum brightness white field with minimum brightness black field. ANSI contrast 
compares the contrast between black and white squares in a 16-square checkerboard 
pattern; this useful for determining the optical system quality in terms of flare. A system 
with low ANSI contrast will scatter more light from the white squares to the dark 
squares. Local area contrast expresses the ability to maintain adequate contrast between 
small objects in the projected image; this is important for maintaining detail in an 
image. In situ contrast is determined by measuring the actual contrast achieved in a 
theatre; this accounts for the back scatter in the auditorium and source of stray light 
[23].  

Digital projectors build each frame in a memory buffer and then display it for the 
entire frame time. There is no black time between frames. Consequently, an object in 
motion will appear softer, and juddering will not exist. Juddering is a visual artifact that 
exists in 35 mm film projection technology, in which an object in motion will appear to 
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judder back and forth as it moves across the screen. When 35mm film is projected at the 
standard speed of 24 fps using a two-bladed shutter, the projector flashes each frame 
twice within 1/24th second before the next frame is moved into position, with equal time 
given to the black screen produced when the shutter closes. This black time between 
frames is the factor that causes juddering [23].  

There are a number of candidate projection technologies for digital cinema. 
Relevant projection technologies in this thesis are Digital Light Processing (DLP) 
Cinema, which is developed by Texas Instruments [25], and Liquid Crystal on Silicon 
(LCOS), specifically SXRD, which is a liquid-crystal-based modulator technology 
developed by SONY [26]. DLP cinema is illustrated in Figure 14 whilst SXRD is 
illustrated in Figure 15.  Both technologies utilize reflective modulator to manipulate 
the light to create color on the screen. More detail of both technologies is shown in 
Table 1. 

 

Figure 14: DLP Cinema from Texas Instruments [25].  

 

Figure 15: SXRD from Sony [26]. 
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Table 1: DLP and LCOS Digital Cinema Technologies 

Technology Description Advantages [23] 
DLP Cinema The modulation is done using 

microscopically small mirrors 
(DMDs) to switch the light on 
and off, to control the 
absolute amount of light that 
arrives at the screen. 

It is very stable and uniform 
across the screen. 
 
Light levels do not depend on 
temperature or bias level 
differences on the modulator.  

SXRD 
(LCOS) 

The modulation is done by 
activating the liquid crystal 
(applying an electric field to 
the crystal gap) to control the 
absolute amount of light that 
arrives at the screen. 

It is relatively cheaper to 
manufacture. 
 
It is inexpensive to scale up to 
accommodate large arrays. 

 

 There are two types presentation format in Digital Cinema; they are flat and 
CinemaScope (Scope). Flat is sometimes referred to as academy wide screen and has an 
aspect ration of 1.851:1; on the other hand, Scope has an aspect ratio of 2.39:1 [18, 23]. 
Projection technology can respond in three fundamentally different ways to achieve the 
correct aspect ratio: electronic masking, anamorphic lens, or electronic scaling in the 
projector. Electronic masking creates the correct aspect ratio of the image by masking 
the area of the modulator that is outside the desired aspect. This technique is also used 
to correct trapezoidal distortion caused by projecting down toward the screen. There is 
one unwanted effect of Scope projection using electronic masking technology; Scope 
reduces the usable pixels by 21%. The other alternative is using anamorphic lens which 
stretches the image horizontally to make it Scope by elongating the pixels as projected 
on the screen. Digital projectors have also the ability to scale the image electronically to 
make the source material fill the native imager array [23].    

2.1.3 Nova Kinosenter 

Nova Kinosenter is a DCI specified cinema, which is located in Trondheim, Norway 
and is operated by Trondheim Kino AS [27]. The perceptual experiments which will be 
described in the later sections were conducted in this cinema, specifically at Ullman-
salen, the auditorium 1 of Nova Kinosenter. 
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Figure 16: Nova kinosenter, a cinema in Trondheim, Norway [27]. 

There are two digital cinema projectors that are relevant and utilized in the 
research covered in this thesis. They are: 4K Digital Cinema Projectors Sony SRX-
R210 [26] (it is illustrated in Figure 17) and 2K Digital Cinema Projector Christie 
CP2230 [28] (it is illustrated in Figure 18). Their specifications are shown on Table 2. 

 

Figure 17: 4K Digital Cinema projector SRX-R210 [26]. 

 

Figure 18: 2K Digital Cinema Projector CP2230 [28]. 
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Table 2: Digital Cinema projectors specifications 

 
 

 
SRX-R210 [26] 

 
CP2230 [28] 

Brightness 14 ftL on 17 or 14 M wide 
screen with screen gain of 
1.8 using a single Xenon 
lamp. 

30.000 lumens for screen with 
up to 30.48 meters wide 
measured at screen centre. 
 

Contrast 
Ratio 
 

2000:1 (measured from a 
screen offering a gain of 
1.0) 

2100:1 Full Frame On/OFF 
450:1 ANSI 
 

Resolution 4K (4096 x 2160) 2K (2048 x 1080) 

 
The projectors have variety of interfaces, and they support a wide variety of signal 

formats. SRX-210 supports images using the 12-bit X’Y’Z’ signals that are stipulated in 
the DCI specification, and it also supports for playback from other alternative sources, 
such as 4:2:2 YCbCr and 4:2:0 YCbCr signal formats. The interfaces types are as follow 
(more details can be found in Appendix A) [26]: 

- Two channels of SRLV which are used for connection to the Media Block (for 
4K exhibition). 

- A dual-link HD/DC-SDI input that accepts any of the following signals: SMPTE 
372M dual-link HD-SDI (4:4:4), SMPTE 292M HD-SDI (4:2:2), or 12-bit 
(X’Y’Z’ 4:4:4) signals (for 2K projection or HD projection). 

- A DVI interface that accepts DVI signals for up to 2048 x 1080 at 60 Hz. 
CP2230 supports two inputs of SMPTE 292M bit-serial standard and two DVI inputs 
(VESA DVI-D standard). All formats, which are supported by CP2230, are: at 10 bit 
4:2:2 Y CbCr or lower, and DCI formats (SMPTE 428-9) at 12 bit 4:4:4 XYZ (more 
supported input formats can be found in Appendix A) [28]. The variety of CP2230 
interfaces are illustrated in Figure 19. 

 

Figure 19: Variety of CP2230 interfaces [28]. 
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Research scope 

Visual distortions can happen due to digital cinema projector. The factors that 
cause them can be classified as internal—inherently due to limitations within the 
projection technology—or external—due to improper use and installation of the digital 
cinema projector itself. To prevent such internal factors acting up, the digital projectors 
often offer internal processing mechanism to the image. Examples of this are electronic 
masking to achieve correct presentation format (such as scope format) and to prevent 
trapezoidal distortion or keystone distortion. Digital projectors have the ability to scale 
the image electronically to make the source material fill the imager array. This allows 
the projector to resize to accommodate the anamorphic lens. Trapezoidal distortion to 
the image is caused by the projection downward from the booth to the screen. This is 
shown in Figure 20. In 35 mm projector, this can be corrected using a trapezoidal mask 
in the aperture of the projector. Digital projectors apply this mask electronically; this 
technique is also applied by SRX-R210, which is illustrated in Figure 21. Alignment 
allows exhibitors or theatres to set a two screen points as well as four corner points, 
which provides compensation for both flat and curved screen.  

 

Figure 20: Projection downward from the booth introduces trapezoidal distortion. 

 

Figure 21: Image masking function to compensate for trapezoidal distortion [26]. 
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Proper set up and calibration of the digital cinema projector installation prevents 

the visual distortions caused by improper use of the digital cinema projector. Digital 
projectors are designed to have a form factor similar to that of film projectors. The setup 
issues are as follow: 

- Mechanical and optical. The projector is located behind the port window and 
optically aligned to the screen. This requires the correct lens, usually a zoom lens. 
To achieve the correct image size, the magnification of the lens must be designed 
to accommodate the screen width and throw distance. In 35 mm projectors, this 
has been accommodated by creating a catalogue of fixed focal lenses that vary 
over a wide range of magnifications ensuring that a correct lens will be available. 
Digital Cinema systems are providing zoom lenses to ensure that the image size is 
correct on the screen. The projector is unlikely to be directly on axis with the 
screen. This will cause some keystone distortion. Some of this may be removed 
through offsetting the lens. The balance will be removed by setting electronic 
masking to make the projected image square. The ideal position of the projector is 
illustrated in Figure 22. 

 

Figure 22: Ideal position of the projector. 

- Color. Color calibration is required to ensure that the projector is performing to 
its required specification. In the case of DLP Cinema technology, the projector’s 
primary color are measured and input back to the projector, which then 
calculates the required corrections automatically. 

- Light level. The lamp should be adjusted to output 48 cd/m2 on a full white 
image. 

 
It is important to remember that projection is about the image, not the hardware. 

Optimal image quality is achieved by optimized interaction of all the factors discussed 
up to now. Some of these factors are particularly important to the overall image [23]. 

 Contrast is the most important driver of image quality. The ability to achieve 
good solid black affects the ability to build punch or impact into a picture 

 Gamma, or transfer function, carries the dynamic information in the image. 
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 Color management ensures that the best color possible is presented to the screen. 
 Pixel count, or resolution, ensures that the information the information in the 

source image can be viewed on the projector. 
Auditorium 1 of Novakinosenter is DCI-specified cinema, which is used everyday 

as a commercial cinema in Trondheim, Norway besides as a laboratory environment for 
our perceptual experiments. Trondheim Kino AS, the company who run the cinema, has 
performed installation and regular maintenance for the operation of the cinema, 
including the equipments and the environment setting to meet the standard of 
commercial DCI-spesified cinema. Consequently, we consider the factors mentioned 
earlier that can affect the perception of cinemagoers have been controlled. 

The projector should be considered as part of a total visual system, starting with 
the source material and ending at Human Visual System (HVS). The overall 
performance is dependent on each contributor of the system. It is possible to identify 
and isolate most of the factors that contribute to overall picture performance. However, 
in this thesis, we do not consider the processing algorithms of the digital cinema 
projector, such as the signal processing used to get rid of the trapezoidal distortion due 
to proprietary issue of processing algorithm of the digital cinema projectors. We have 
mentioned this in Section 1.2. 

As described in Section 2.1.1, the media block is part of the digital cinema 
system, specifically the presentation system. Media block is the term coined to avoid 
confusion of the concept of server among engineers in digital cinema community. The 
media block functional diagram for Digital Cinema is illustrated in Figure 11. The 
Novakinosenter, as a DCI-specified cinema in Trondheim, utilizes media block for its 
feature film screening. One media block that is part of the 4K SRX-210 projector 
system, is  LMT-100. The LMT-100 server handles DCP (Digital Cinema Packages) 
files that consists of image, audio, and subtitle data files, and that are wrapped into an 
MXF (Material eXchange Format) file. It can play back the DCP file by using advanced 
processing to decrypt and decode the image data, and then send it to the projector over a 
secure multi-pin connection system, and it can decode JPEG 2000 image data in real 
time for playback, regardless of whether the file was encoded at 2K or 4K resolution. In 
addition, it transcodes audio DCP files into AES/EBU digital audio signals, and then 
outputs them to the external audio processors. Up to 16 channels can be output from D-
sub 25 pin or BNC connectors. The timing of the audio output can be adjusted for 
complete synchronization with the image, and any channel can be routed to any output 
to simplify installation. The LMT-100 server is controlled with the SMS (Screen 
Management Software). In spite of this, we do not use the media block in our 
experiment due to our research scope and the rigidity of the media block. We are 
interested in exploring the alternative content outside feature film specified by DCI. The 
media block can play back the file in DCP format only, which is restricted for our 
experiment purpose, in a sense that the media block cannot play back the uncompressed 
original files or other format such as images files that are not compressed by JPEG 
2000. Thus, we develop off-the-shelf customized server as part of the digital cinema 
presentation system for our experiments by making use of the interface types offered by 
the projectors (both SRX-R210 and CP2230). The illustration is below. 
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Figure 23: Presentation system being used in the experiments. 

As we mentioned in section 1.2, we did not consider the issue of intellectual 
property of the compression technology used in digital cinema. Issue of intellectual 
property and licensing of the compression technologies significantly influenced the 
chosen technology used in the industry. In 2004 Digital Cinema Initiatives (DCI) 
selected JPEG 2000 as the compression technology of choice for digital cinema [17] 
because JPEG 2000 offers all the technical attributes desired and is also royalty free. 
The history of MPEG-4 licensing has left many in Hollywood opposed to adopting any 
MPEG standards [20]. Our approach regarding compression techniques used in digital 
cinema presentation is predominantly from academic standpoint. Consequently, we 
discuss also the compression technologies other than JPEG 2000 and the specifications 
described by DCI.  
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2.2 Subjective Quality Assessment 

The definitive way of measuring perceptual quality is using human participants in 
controlled experiments. These methods are often called subjective quality assessments. 
In the field of subjective quality assessment, there are many different methodologies 
and rules for designing tests. A number of standards or recommendations exists that 
cover a wide range of topics from measurement devices through to perceptual 
evaluation methods for telecommunications systems. Generally, standards are 
developed when there is a large-scale need to address a problem within a field in an 
industry. The need is usually driven by several stakeholders when there are advantages 
from establishing a commonly agreed upon approach addressing the problem. Standards 
give the benefit of an agreed upon approach, developed by experts in the field from both 
industry and academia. In terms of perceptual assessment such as subjective quality 
assessment, this means that a methodology has been developed and verified as being 
applicable to the domain defined for that standard. Nevertheless, standards and 
recommendations require considerable time for being developed and also require the 
consent of all stakeholders involved. Besides, not all issues are standardised due to 
several factors. To begin with, the process is very costly and time consuming. 
Additionally, as not all methods are commonly needed within an industry, only the key 
methods that require an agreement are studied and standardised. As a result, 
standardised methods are not always representative of the state-of-the-art methods in the 
field even though there are a number of key standards that define certain aspects of 
perceptual assessment [8].  

Test methods described in ITU have been internationally accepted for conducting 
subjective quality assessment [29-36]. An overview of recommendations for perceptual 
evaluation are illustrated in Figure 24, Figure 25, Figure 26, and Figure 27. 
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Figure 24: Summary overview of key ITU-R recommendations relating to perceptual 
audio and visual evaluation [8]. 
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Figure 25. Summary overview of key ITU-R recommendations relating to perceptual 
audiovisual evaluation [8]. 

 29



 

 

Figure 26. Summary overview of key ITU-T recommendations relating to perceptual 
evaluation [8]. 
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Figure 27. Summary overview of key ITU-T recommendations relating to perceptual 
evaluation [8]. 

Relevant recommendations for subjective visual quality assessment are 
Recommendation BT.500-11 [29] and Recommendation P.910 [35]. Recommendation 
BT.500 describes extensive details on methodologies for evaluation of television picture 
quality. The recommendation provides important information regarding influential 
factors related to the experiment design, such as illuminations levels, screen sizes for 
different resolutions and aspect ratio displays, viewing distances, and so on. 

Recommendation P.910 describes non-interactive subjective assessment methods 
for evaluating the one-way overall video quality for multimedia applications such as 
videoconferencing, tele-medical applications, etc. The recommendation illustrates the 
characteristic of the source sequences, duration of the test sequence, content types, 
number of sequences, and so on. These methods can be utilized for a number of 
functions including algorithm selection, ranking of audio-visual system performance 
and evaluation of the quality level during an audio-visual connection. 

Noteworthy issues in the guidelines for visual subjective quality assessment are 
stimulus (i.e., characteristics of viewing sequence) and types of scale used by 
participant to rate stimulus’ quality. 

The test methods can be classified into two categories based on the stimulus used 
in the experiment; they are double stimulus and single stimulus. In double stimulus 
method, the experiment’s participants are presented with unimpaired reference and 
impaired stimulus before participants give quality rating of each (impaired) stimulus. 
The structure of Double Stimulus is illustrated in Figure 28. Figure 28 shows test 
sequence of A and B. Ar and Br are the sequences in the reference sources format while 
Ai is the A sequence under test condition i and Bj is the B sequence under test condition 
j.  The participants are instructed to compare the sequence under specific test condition 
to its reference sequence and judge the quality of the sequence under that test condition. 
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It is important to note that there is a variation of this double stimulus experiment 
structure in which the participants do not have any idea during the experiment the order 
of reference sequence and the impaired/processed sequence before voting, i.e., the 
reference does not always in the first order. 

 

Figure 28: Double Stimulus experiment structure [30]. 

In single stimulus method, the participants are only presented with a single 
stimulus before the participants give the quality judgment of that particular stimulus. 
There are some variations of single stimulus method; they are structure of Single 
Stimulus (SS) or Absolute Category Rating (ACR) which is illustrated in Figure 29 and 
structure of Single Stimulus Continuous Quality Evaluation (SSCQE). Figure 29 shows 
test sequence A, B, and C with their respective test conditions. In this experiment 
structure reference is hidden among the impaired sequences. In SSCQE structure, set of 
test sequences is measured continuously, with the participants viewing the material only 
once. Then during the viewing session in the experiment, participants can also give 
rating throughout the entire duration. The ratings are recorded by sampling ratings at 
determined rate (e.g., every 0.5 seconds). This structure was developed on the idea that 
within the digitally coded video, the impairments may be very short-lived and the 
quality can fluctuate quite widely.  

 

 

Figure 29: SS/ACR experiment structure [30]. 

 

There is another test method that is similar with SSCQE structure but involving 
reference sequence. This method is called Simultaneous Double Stimulus Continuous 
Evaluation (SDSCE) experiment structure. In SDSCE, participants view two sequences 
at the same time: the reference sequence and the sequence under test condition. 
Participants give the rating by comparing the sequence under particular test condition to 
the reference at the same time before judging quality the sequence under that test 
condition. Display format of SDSCE structure is shown in Figure 30. 
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Figure 30: Display format in Simultaneous Double Stimulus Continuous Evaluation 
(SDSCE) [29]. 

Relevant recommendations for subjective audio quality assessment are 
Recommendation BS.1679 [36]. Recommendation BS.1679 offers a summary of the 
specifications when conducting subjective assessment of audio quality or audio 
impairment for Large Screen Digital Imagery (LSDI) applications designed for 
programme presentation in a theatrical environment. The recommendation is derived 
from ITU-R Recommendation BS.775-1 [33], ITU-R Recommendation BS.1116-1 [37], 
ITU-R Recommendation BS.1284 [34] and ITU-R Recommendation BS.1286 [38]. 
Recommendation BS.775-1 illustrates the basic physical loudspeaker configurations to 
be employed in domestic 5.1 multichannel sound reproduction in the form of 3/2 (3 
frontal, 2 surround channels) and 3/4 (3 frontal, 4 surround channels) systems. 
Recommendation BS.1116-1 is a recommendation for assessing systems that introduce 
impairments so small as to be undetectable without rigorous control of the experimental 
conditions and appropriate statistical analysis. However, if the recommendation is 
applied for systems that introduce relatively large and easily detectable impairments, it 
leads to excessive use of time and may lead to less reliable results than a simpler test. 
This recommendation forms the base reference for the other recommendations, which 
may contain additional special conditions or relaxations of the requirements included in 
BS.1116-1. Recommendation BS.1284 offers a short guide to general requirements for 
performing listening tests (subjective assessment of sound quality); it outlines the 
experimental design including participants’ selection, test methods, and statistical 
analysis. Recommendation BS.1286 gives information on how to conduct testing of 
audio systems in the presence of accompanying image, including the recommendation 
for different image sizes, aspect ratios, and image definitions. The use of this 
recommendation should be used in combination with one of the audio-only 
recommendations i.e., [34, 37, 39]. Relevant recommendations for subjective 
audiovisual quality assessment are Recommendation P.911 [30], Recommendation 
P.911 illustrates non-interactive subjective assessment methods for evaluating the one-
way overall audiovisual for multimedia applications such as videoconferencing, tele-
medical applications, etc. These methods can be utilized for a number of functions 
including algorithm selection, ranking of audio-visual system performance and 
evaluation of the quality level during an audio-visual connection. The recommendation 
also describes the characteristics of the source sequences, duration of the sequence, 
content types, number of sequences, etc. In addition it describes indications about the 
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relation between audio, video and audiovisual quality, as they are derived from results 
of tests carried out independently in different laboratories. 

Our Experiment Design 

The design of our perceptual experiments in Digital Cinema is derived from 
methodologies standardized by ITU, which have been described above. We selected the 
methodologies recommended by ITU as our foundation because they are well-
established, widely-known methodologies in spite of the fact that they were developed 
based on telecommunication and broadcasting issue, such as television quality issues. 
Despite this, we will still use the same approach, as the starting point for the design of 
our own subjective quality assessment in digital cinema, but apply the necessary 
modifications to adapt to the D-Cinema environment. The main objective of the 
methodologies of subjective quality assessment recommended by ITU is to collect 
scores from participants representing the quality level of stimuli experienced by the 
participants in the experiments. The most common approaches produce a Mean Opinion 
Score (MOS) to determine the quality by averaging the quality scores. Our experiments 
are based on Recommendation ITU-R BT.500-11 [29] and ITU-T P.910 [35].  

Because our experiments are for digital cinema, we do not literally adopt all the 
guidelines as there are inherent major differences between applications mentioned in the 
recommendations and digital cinema, such as in the following issues: viewing 
conditions, resolution and contrast, the source signals and test materials. A number of 
adaptations were made in our assessment experiments. Subjective quality assessments 
were conducted in a DCI-specified digital cinema theatre that is regularly maintained. 
Thus, we believe the viewing condition, contrast and illuminance conditions of the test 
environment provide realistic and representative viewing conditions. More detail of the 
methodologies are described in the papers included in this thesis. 

 
 

2.3 Perceptual-based Quality Objective Methods 

Subjective quality assessment is not practical in an application scenario which requires 
real time processing because it is complex and time consuming. Hence, we need 
automated methods that can predict the quality as it would be perceived by a 
user/human observer. This method is referred to as objective methods or objective 
perceptual quality metrics. Perceptual metrics may build a bridge between QoE and 
QoS parameters. The metric outcomes can be connected to human perception by 
relating them to MOS obtained in subjective experiments. 

2.3.1 Visual Quality Metrics  

Digital Cinema is an application in which the visual factor is very dominant. Hence, 
evaluating the perceptual visual quality is very relevant in QoE study for Digital 
Cinema. Currently, there is no widely used perceptual objective model to assess visual 
quality.  The signal-to-noise ratio (SNR) is still a popular metric to assess quality 
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objectively. Consider Figure 31, where f(x,y) is the input image to a processing system 
such as compression system. It can also represent a process in which additive white 
Gaussian noise corrupts the input image. The g(x,y) is the output of the system. Error 
function e(x,y) is defined as the difference between the input and the output, i.e., Eq (2); 
it is used to measure the quality of g(x,y). 

 

Figure 31: An image processing system. 

),(),(),( yxgyxfyxe   (2) 

 
 The mean square error (MSE) is defines as: 

11

00

2),(1 NM

yx
yxe

MN
MSE   (3) 

where M and N are the dimensions of the image in the horizontal and vertical directions.  
SNR is defines as:  
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In image and video data compression, another closely related term, PSNR (peak 
signal-to-noise ratio), which is essentially a modified version of SNR, is widely used. It 
is defined as follows. 

MSE
PSNR
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10
255log10     (5) 

The interpretation of the this is that the larger the SNR or PSNR the better the 
quality of the processed image, g(x,y); that is, the closer the processed image g(x,y) is to 
the original image f(x,y) [40].   However, the HVS does not respond to visual stimuli in 
a straightforward way. Consequently, SNR or PSNR does not always provide us with 
reliable assessment of visual (image and moving images) quality.  
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The Radiocommunication sector (ITU-R) and the telecommunication sector (ITU-
T) of ITU has been cooperating in an effort to find appropriate image and video quality 
measures suitable for standardisation. A group of experts known as the Video Quality 
Experts Groups (VQEG) [41] was formed. These experts came from both of ITU 
sections. VQEG performed some studies on video perceptual metrics which are reported 
in [42, 43] 

Two general approaches have been followed in the design of objective quality 
metrics; they are psychophysical approach and engineering approach [44]. Metric 
design using psychophysical approach is basically based on incorporation of various 
factors of the HVS which are essential for visual perception. This can consist of 
modelling of frequency selectivity, contrast and orientation sensitivity, spatial and 
temporal masking effects, and colour perception. HVS is complex; consequently, 
models and metrics based on HVS can become very complex and computationally 
expensive too. Yet, they usually correlate very well with human perception and are 
usable in a wide range of applications. Fundamental work in developing visual metrics 
using the psychophysical approach has been performed in [45-51]. 
 Design using the engineering approach is mainly based on image analysis and 
feature extraction. The extracted features and artifacts can be of different kinds such as 
codec parameters, content classifier, and spatial and temporal information.  This does 
not exclude some HVS factors that are also considered in the design. While some 
developed metrics are derived from simple, numerical measures of single feature such 
as [52],  some metrics can be more complex, which are based on more complex 
extraction and analysis algorithms, combining various measures in a meaningful way 
such as [53]. 

The HVS is extremely complex, and the current knowledge is limited mainly to 
low-level processes that can be divided into two major parts: the eyes and visual 
pathways in the brain. The eyes are the parts that capture light and convert it into signals 
that can be understood by the nervous system, they operate like camera device and 
follows similar physical principles such as applying optical focusing and a sensor (the 
retina) for transforming light into the information. Furthermore, the brain is the part that 
transmitted and processed the information [4]. One HVS characteristic that is often used 
in the psychophysical approach of metric development are the response of the human 
vision to the contrast pattern.  

The HVS is very adaptive. Brightness of an object, which is also called 
luminance, is a reflective measurement determined by looking directly at the object. In a 
theatre, the filmmaker is able to present convincing images of bright sunlight using a 
brightness level that is less than 1% of the brightness in the actual scene. This done by 
creating brightness and color relationships on the screen that convinces the cinemagoers 
that it is bright sun. Tied to image brightness is the brightness distribution. Over time, it 
has become accepted that the most pleasing cinema images are brightest in the center 
and have a slight luminance fall off toward the edges. The optimal variance is between 
15% and 25%, which is not noticeable visually but subtly draws the attention toward the 
center of the screen and reduces the effects of flicker in peripheral vision [23].  

The function of the eyes within HVS indicates that the perceived visual quality 
depends on light. HVS possess a sensitivity to light characteristic, such as luminance 
and contrast. Luminance L is the amount of visible light leaving a point in a surface in a 
given direction. The standard unit to quantify the luminance is candela per square meter 
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(cd/m2). The HVS is capable of adapting to an enormous range of light intensities. Light 
adaptation allows us to better discriminate relative luminance variations at every light 
level. It is important to note that human eye is more sensitive to dark gray than light 
gray. The response of HVS depends much less on the absolute luminance than on the 
relation of its local variations to the surround luminance. A typical experiment to 
determine this characteristic of HVS is illustrated in Figure 32. Participants of the 
experiments are asked to adjust Lb, the luminance of the middle circle, to its 
surrounding Ls so that they perceived a change in luminance intensity. This method is 
repeated for different surrounding which produces characteristic of human sensitivity to 
contrast. Contrast sensitivity is a measure of the ability to discriminate between 
different levels of luminance in static image [54].   

 

Figure 32: Experiment to determine luminance variation response. 

 By defining L=Lb-Ls, it was found that L/Lb remains constant (c=0.02) for a 
variety of different luminance surrounding. This is known as the Weber-Fechner law, 
which can be expressed as: 

Lb
LC  (6) 

The threshold contrast, which is the minimum contrast necessary for an 
experiment’s participant to detect a change in intensity, is a function of background 
luminance, and it remains constant over an important range of intensities (from faint 
lighting to daylight) due to the adaption capabilities of the HVS which is illustrated in 
Figure 33 [4].  
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Figure 33: Weber-Fechner law [4]. 

The threshold contrast also depends considerably on the stimulus characteristics, 
i.e., color, spatial frequency and temporal frequency. Contrast sensitivity is defined as 
the inverse of the contrast threshold, and contrast sensitivity functions (CSF) are usually 
utilized to quantify the dependencies of threshold contrast C. Figure 34 illustrates the 
shape of the spatial contrast sensitivity function in an intuitive way [55].  

 

 

Figure 34: Campbell-Robson contrast sensitivity chart. 

The information on the chart is as follow: the luminance of pixels is modulated 
sinusoidally along the horizontal dimension. The frequency of modulation increases 
exponentially from left to right; on the other hand the contrast decreases exponentially 
from 100% to about 0.5% from bottom to top. The minimum and maximum luminance 
remains constant along any given horizontal line through the image. The spatial CSF 
appears as the envelope of visibility of the modulated patterns.  This chart show that the 
bars look taller in the middle of image that at the sides. Consequently, it can be 
concluded that the detection of contrast were not dictated by image contrast only  since 
the alternating bright and dark bars pattern does not appear to have equal height 
everywhere in the image.  

Visual information is processed in different pathways and channels in the visual 
system depending on its characteristic such as color, spatial and temporal frequency, 
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orientation, phase, direction of motion, and so on. These channels play an important role 
in explaining interactions between stimuli [4]. 

Color perception is based on the different spectral sensitivities of photoreceptors 
and the decorrelation of their absorption rates into opponent colors [4]. Generally, 
spectral power distribution is used to depict light. HVS perceives only lights with 
wavelength between 400 nm that corresponds to color of violet and 700 nm that 
corresponds to red. The sensitivity level depends on the angle of the incidence, and the 
maximum level of sensitivity is at 555 nm. Spectral sensitivity is the relative efficiency 
of detection of light as a function of the wavelength of the signal. This characteristic is 
shown in Figure 35. 

 

Figure 35: Spectral sensitivity of HVS. 

Generic block diagram of a HVS based metric is illustrated in Figure 36 [4]. The 
input image or video typically undergoes color processing, which may include color 
space conversion and lightness transformations, a decomposition into a number of 
visual channels (for multi-channel models), application of the contrast sensitivity 
function, a model of patter masking, and pooling of the data from the different channels 
and locations. 

 

Figure 36: Generic block diagram of a vision-based quality metric [4]. 

One example of perceptual-based objective metric developed using engineering 
approach is Structural Similarity Based image quality assessment [53, 56], which is 
described more detail in the papers included in this thesis. 
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2.3.2 Audio Quality Metrics  

It appears that the standardisation process for audio and speech have proceeded far 
ahead compare to any other applications. Unlike perceptual quality metrics for image 
and video, there are already standardised perceptual quality metrics for audio [6] and 
speech [5, 7] nowadays. The Radiocommunication Sector of the ITU focuses upon 
applications relating to audio for radiocommunication. Consequently, the sector 
considers these following features: basic audio quality and full-band audio (from 20 Hz 
to 20 kHz). Moreover, the ITU Telecommunications Standardisation Sector focuses 
upon applications relating to telecommunication, and consequently this sector has 
focused on these following features: speech, listening, and conversational quality and 
telephony bandwidth. Telephony bandwidth is classified into two bands, i.e., wideband 
(150-7000 Hz) and narrowband (300-3400 Hz).  

With regard to speech and telecommunication applications, there have been 
perceptual metrics that have been developed to predict the result of speech listening 
quality test as performed using an ITU-T recommendation P.800 [57] absolute category 
rating (ACR) test method. The perceptual evaluation of speech quality (PESQ) model 
has been developed for narrowband telephony speech and provides high prediction 
accuracy in this application. In PESQ, the original and degraded signals are mapped 
onto an internal representation using a perceptual model. The internal representations 
that are used by the PESQ cognitive model to predict the perceived speech quality are 
calculated on the basis signal representations that use the psychophysical equivalents of 
frequency and intensity. The difference in this representation is used by a cognitive 
model to predict the perceived speech quality of the degraded signal. This perceived 
listening quality is expressed in terms of Mean Opinion Score (MOS). Most of the 
subjective experiments for developing PESQ used the ACR (Absolute Category Rating) 
and 5 discrete level quality scale. Figure 37 illustrates the overview of the basic 
philosophy used in PESQ. A computer model of the subject, consisting of a perceptual 
and a cognitive model, is used to compare the output of the device under test with the 
input, using alignment information as derived from the time signals in the alignment 
module [58]. 

In the first step of PESQ a series of delays between original input and degraded 
output are computed, one for each time interval for which the delay is significantly 
different from the previous time interval. For each of these intervals a corresponding 
start and stop point is calculated. The alignment algorithm is based on the principle of 
comparing the confidence of having two delays in a certain time interval with the 
confidence of having a single delay for that interval. The algorithm can handle delay 
changes both during silences and during active speech parts. Based on the set of delays 
that are found, PESQ compares the original (input) signal with the aligned degraded 
output of the device under test using a perceptual model. The key to this process is 
transformation of both the original and degraded signals to an internal representation 
that is analogous to the psychophysical representation of audio signals in the Human 
Auditory System (HAS), taking account of perceptual frequency (Bark) and loudness 
(Sone). This is achieved in several stages: time alignment, level alignment to a 
calibrated listening test, time-frequency mapping, frequency warping, and compressive 
loudness scaling. In PESQ, two error parameters are computed in the cognitive model, 
which are then combined to give an objective listening MOS [7]. The range of the 
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PESQ score is -0.5 to 4.5, although for most cases the output range will be a listening 
quality MOS-like score between 1.0 and 4.5, the normal range of MOS values found in 
an ACR experiment. 

Recently, a wideband telephony speech version of PESQ has been standardised 
too in ITU-T recommendation P.862.2 [59]. The wideband extension to this includes a 
mapping function that allows linear comparison with MOS values produced from 
subjective experiments that include wideband speech conditions with an audio 
bandwidth of 50-7000 Hz.  

  

 

Figure 37: Overview of the basic philosophy used in PESQ [59]. 

  
There is also a model that requires no reference signal. This so-called non-

intrusive model for predicting the subjective quality of narrowband telephony 
applications  is standardised in ITU-T recommendation P.563 [60]. This model is called 
single-ended method for objective speech quality assessment in narrow-band telephony 
application and is of great interest in the monitoring of speech quality in live telephony 
network. The difference between non-intrusive model and the intrusive model is 
illustrated in Figure 38. MOS-LQO shown in the figure is MOS scores that are 
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applicable to a listening-only situation and are calculated by means of objective model 
which aims at predicting the quality for a listening-only test situation [61].  

The P.563 approach is illustrated in Figure 39.  
 

 

Figure 38: Non-intrusive versus Intrusive models [60]. 
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Figure 39: Block scheme of P.563. 

 
For applications in low bit-rate audio codecs, the perceptual evaluation of audio 

quality (PEAQ) model has been standardised in ITU-R recommendation BS.1387 [62].  
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Figure 40: Generic block diagram of the measurement scheme [62]. 

The proposed PEAQ, as illustrated in the Figure 40, consists of peripheral ear 
model, several intermediate steps which is referred as pre-processing of excitation 
patterns, the calculation of pycho-acoustically based outputs and a mapping from a set 
of outputs to a single value representing basic audio quality [6]. 

As time passes, the frequency bandwidth of communication audio widens. 
Accordingly, it can be expected that there will be an increasing overlap between the 
application domains covered by the Telecommunications and Radiocommunication 
Standardisation Sector in future [8]. 
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2.3.3 Audiovisual Quality Metrics  

We rarely watch the moving picture in all its incarnations (video, television, 
cinema, etc) without sound. For that reason, quality models or metrics that measure 
entirely audiovisual quality of multimedia presentation are needed. The audiovisual 
quality metrics take into account both audio and visual factors in a comprehensive way; 
multimodal effects on the perceived quality are considered as the significant factors of 
the models [63]. Developing perceptual based audiovisual quality metric is started by 
understanding how human participants perceive audio-visual quality. This is achieved 
fundamentally by studying how human perceive the quality of auditory and visual 
stimuli, and at what stage in human perceptual process they are fused to form a single 
overall quality experience. The influence of video quality on perceived audio quality 
and the influence of audio quality on video quality of contents from broadcast audio and 
video and videophone (telephone) has been studied in [64]. There is a significant mutual 
influence between audio and video quality. The result showed that when participants are 
asked to judge the audio quality of audiovisual stimulus, the video quality contributed 
significantly to the perceived audio quality. On the other hand when participant were 
asked to judge the video quality of audiovisual stimulus, the audio quality has less 
impact on overall quality. In addition, a simple mapping from the audio and video 
quality to the overall audiovisual quality showed that video quality dominates the 
overall perceived quality in non-conversional experiments. The research also offered a 
metric that overall audiovisual quality can predicted from the perceived audio quality in 
an audio only experiment and the perceived video quality in a video only experiment.  

This study [65] described a multimedia opinion model based on an objective 
quality assessment for audio-visual communications intended for videophone, PDA, and 
mobile videophone services, taking into account the mutual interaction of audio and 
video information. The research showed that it is important to take into account the 
mutual interaction of audio and video information when audiovisual quality of the 
multimedia opinion model/metric. 

Approaches described in two previous studies are the common approaches used to 
develop metrics to measure perceived audiovisual quality. They started from perceptual 
experiments which were conducted to study perceptual audiovisual quality; these 
perceptual experiments consist of subjective audio quality assessment, subjective visual 
quality, and subjective audiovisual quality. The collected subjective data of audio 
quality, visual quality, and overall audiovisual quality are then utilized to develop 
audiovisual quality metrics. Thus, most of the study derives the metrics by determining 
audiovisual quality from audio quality and video quality. The most common model is 
[66]: 

    

AudiovisualQuality       
= ao+a1AudioQuality+a2VisualQuality+a3(AudioQuality·VideoQuality)   (1)  

where the parameters {a1,a2,a3} denote different weights of audio and video quality, and 
the multiplication factor for the overall quality. The parameter ao is used to improve the 
fit. The overall audiovisual quality is influenced by several factors, but the audio quality 
and visual quality are the most important ones.  
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Another key element that contributes to the overall perceived audiovisual quality 
is synchronization between audio and video stimuli. Study of synchronization between 
audio and visual factors in a multimedia presentation has been conducted in [67]. The 
presentation of ‘in sync’ data streams of audio and video is essential to achieve a natural 
impression, data that is ‘out of sync’ is perceived as annoying, strange, and artificial. 
Several experiments were conducted. These includes the lip-synch issue—the temporal 
connection between audio and video stream for the particular case of human speaking is 
investigated. The test sequences used for the stimuli were news clip. This experiment 
showed that out of sync area spanned a skew of 80 ms between audio and video were 
still deemed acceptable by most casual observers. The synchronization of audio-video 
was taken into account in the model described here [68]. Again the model is intended 
for videophone applications because such applications are expected to become popular 
on the next-generation network (NGN). Before the model was developed, subjective 
quality assessment tests were conducted using PC-based point-to-point interactive 
videophone application to study how overall quality of the multimedia presentation 
characteristic depend on individual audiovisual quality, the absolute audiovisual delay 
and media synchronization. The framework of the model for this videophone 
application is illustrated in Figure 41.   

 

Figure 41: Framework of the model proposed by Hayashi et al [68]. 

The resulted model is: 

MOSMM=c1MOSAV+c2MOSD+c3MOSAVMOSD+c4,   (2) 

 
where c1, c2, c3, and c4 are constants. This function assumes that overall multimedia 
quality MOSMM can be estimated from audiovisual quality MOSAV, degradation delay 
quality MOSD, and their interaction term, and this function is also similar with the 
model presented with Eq (7). 
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3  Outline and Comments of Paper 
In this section an outline of the papers included in this thesis is given. There are four 
published conference papers and one submitted journal paper. The first paper mainly 
looks into the usage of one of the available perceptual-based objective metrics—a 
structural similarity metric—in Digital Cinema. The second paper compares two 
compression algorithm—JPEG 2000 and H.264/AVC—using a subjective visual quality 
assessment. The third paper studies the importance of the Quality of Experience concept 
for developing Digital Cinemas into multi-arts venues. The fourth paper presents a 
study on the impact of audio content on visual perceived quality scores collected from 
an perceptual experiment—subjective visual quality assessment—in Digital Cinema. 
The last paper examines more closely the result of subjective visual quality assessments 
discussed in the first and the second paper. The author had a major role in research and 
writing in all these papers, and the author’s contribution in every particular paper is 
specified at the end of each summary.  
 

3.1  Paper A – SS-SSIM and MS-SSIM for Digital Cinema 
Applications [11]  

 
One of the key issues for a successful roll out of digital cinema is in the quality it offers. 
The most practical and least expensive way of measuring quality of multimedia content 
is through the use of objective metrics. In addition to the widely used objective quality 
metric peak signal-to-noise ratio (PSNR), recently perceptual-based quality metrics such 
as single scale structural similarity (SS-SSIM) and multi scale structural similarity (MS-
SSIM) have been asserted as good alternatives for estimation of perceived quality by 
taking into account the Human Visual System (HVS) characteristic. This paper studied 
the suitability of SS-SSIM and MS-SSIM to measure the perceived quality of images. In 
addition to application of these metrics using their original parameters, new parameters 
for MS-SSIM were obtained by taking into account the digital cinema viewing 
conditions, and used in this study. New parameters of MS-SSIM were obtained by 
performing a subjective parameterization test based on image synthesis approach for 
cross-scale calibration. Such tests were conducted in the same DCI-specified cinema 
theatre using a 12 x 5 m screen. To validate the results of these metrics, the correlation 
between the objective metrics and the ground truth, was investigated. The ground truth 
was how human participants perceive the same content in terms of quality. In the case 
of digital cinema content and environment, it seems that both SS-SSIM and MS-SSIM 
do not exhibit the same type of performance that has been reported in the literature, 
when compared to PSNR metric. The author wrote all of the paper. Dr. Ulrich Reiter 
provided an extensive support during the subjective quality assessment and in writing of 
the paper. Professor Touradj Ebrahimi, Professor Andrew Perkis, and Professor Peter 
Svensson supervised the work. 
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Further analyses were then conducted to the subset of collected subjective score 
from the experiment described in Paper A. This study was published in another 
conference paper titled “Analysis of SSIM Performance for Digital Cinema 
Applications”[69]. The basis of this study is due to digital cinema practice; feature film 
screening practice in Digital Cinema only utilized high quality imagery. Consequently, 
we only use high score of MOS collected from subjective quality assessment as the 
ground truth--we disregard the votes below fair. Based on calculated correlation 
coefficient values, the PSNR had the highest correlation with subjective data. However, 
there are no significant differences between correlation coefficients of objective metrics 
investigated in this paper. Hence, based on this result, there is no objective model that 
comes out as best performer from a statistical point of view, if we take into account only 
higher quality data. 

As an extension of study described in Paper A, we also proposed an approach to 
improve the performance of peak signal-to-noise ratio (PSNR) and structural similarity 
(SSIM) for image quality assessment in digital cinema applications. We published this 
study in a conference paper titled “HVS-based Image Quality Assessment for Digital 
Cinema“ [70]. Based on the particularities of quality assessment in digital cinema, some 
attributes of the human visual system (HVS) are taken into consideration, including the 
fovea acuity angle and contrast sensitivity, and combined with viewing conditions in 
digital cinema to select appropriate image blocks for calculating the perceived quality 
by PSNR and SSIM. Furthermore, as the HVS is not able to perceive all the distortions 
because of selective sensitivities to different contrasts, and masking always exists, we 
adopt a modified PSNR by considering the contrast sensitivity function and masking 
effects. The experimental results demonstrated that the proposed approach can evidently 
improve the performance of image quality metrics in digital cinema applications.  Based 
on an intensive analysis on the mechanism of image quality assessment in a digital 
cinema setup, we proposed an approach for improving the performance of three image 
quality metrics. The images were divided into different blocks with a given size, and 
metrics were performed in certain blocks with high contrast levels. The mean of quality 
values over these blocks was taken as the image quality. The experimental results with 
respect to the subjective quality results in the digital cinema setup and LIVE data set 
demonstrated the promising performance of the proposed approach in improving the 
image quality metrics for digital cinema applications. 

3.2  Paper B – Comparison of JPEG 2000 and H.264/AVC by 
Subjective Assessment in the Digital Cinema [12] 

This paper studies two existing compression algorithms, JPEG 2000 and H.264/AVC in 
the context of Digital Cinema applications. In Digital Cinema, the use of compression is 
a matter of practicality; the quantity of data needed to represent high-quality imagery in 
its native forms is staggering. In 2005 the Digital Cinema Initiative (DCI), an 
organization that is a joint venture of seven major Hollywood studios, concluded on 
using JPEG 2000 for compression of Hollywood feature films for the large screen.  By 
this decision DCI initiated a large roll out of digital equipment to cinemas all over the 
world. After digital equipment is installed, the theatre owners have the possibility to 
utilize this infrastructure to screen content outside of ordinary feature film screening. 
This produces a concept of alternative content, which also create alternative 
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compression algorithms used for Digital Cinema applications. We focus on such 
alternative content displayed using DCI specified equipment and showed on the large 
screen in a real theatre. Consequently, it influenced the compression techniques and 
parameters that were chosen and applied in this study. Subjective visual quality 
assessment in Digital Cinema was utilized as a mean to examine JPEG 2000 and 
H.264/AVC compression algorithm. The subjective score collected in a carefully 
designed experiment is still considered the benchmark of quality evaluation. 
Accordingly, we also looked into the appropriate experimental test design of conducting 
such assessment. We proposed a protocol to conduct subjective visual quality 
assessment in Digital Cinema. This includes the processing of the collected result from 
the test. We demonstrated that the algorithm that includes the temporal compression 
schemes like H.264/AVC for presentation on a large screen was very possible; the gain 
in bit rate that a temporal compression scheme provides, can very well be used to 
further increase the quality of the encoded stream. The author is responsible for the 
entire writing of the publication. Dr. Ulrich Reiter supervised the work and made 
observation in writing the publication. Marlon Nielsen assisted the author during the 
experiments. Professor Touradj Ebrahimi and Professor Andrew Perkis supervised the 
work. 

3.3  Paper C – Exploring Alternative Content in Digital 
Cinema [13] 

This paper presents the concept of alternative content. We showed that Digital Cinema 
business is much more that feature films. We also gave an overview on this alternative 
content. One of the main problems that hold back the successful roll out of D-Cinema in 
the market is that the theatre owners or exhibitors are those in value chain with the least 
benefit of the digitization. We offered an insight on how experimentation beyond 
traditional features films in Digital Cinema can benefit the theatre owners who 
embraced the digital technology.  In addition, the alternative content is likely to offer 
new experience to the cinemagoers, it enables the cinema to become a multi-arts venue, 
attracting new and existing users by offering a range of products. Alternative content 
screening can transform the whole business of cinema exhibition into something 
different from what we know of today. Accordingly, we consider the Quality of 
Experience is a significant factor that is closely associated with further adoption of 
alternative content screening in Digital Cinema and is crucial for driving the innovation 
in Digital Cinema practice. In additions, we consider it is advantageous to use and set 
up a DCI-specified commercial cinema into a realistic test environment for conducting 
perception experiments. The author is responsible for writing the entire paper. Professor 
Andrew Perkis supervised the work and made many observations in the research work. 
Professor Touradj Ebrahimi supervised the research. 

3.4  Paper D – Subjective Visual Quality Assessment in the 
Presence of Audio for Digital Cinema [14] 

This paper investigated whether the presence of audio with different quality levels can 
influence the outcome of subjective visual quality assessment in a Digital Cinema 
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setting. We also emphasize alternative content displayed using DCI specified equipment 
and showed on the large screen in a real theatre. Hence, it influences the chosen stimuli 
used in subjective quality assessment in Digital Cinema. The stimuli used were 10 
seconds long colour sequences accompanied by orchestral music at 2K resolution, 24 
fps, and YCbCr 4:4:4 played on DCI certified equipment.  We offered a protocol for a 
perceptual test by asking the experiment’s participants to judge the visual quality when 
watching an audiovisual content in a Digital Cinema environment and examined 
whether the participants can neglect the presence and the quality of audio. In order to 
create stimuli with various visual quality levels, we encoded our data set with JPEG 
2000 at different coding bit rates. We selected the bit rates of 20 Mbps, 40 Mbps, 60 
Mbps, and 160 Mbps.  We also incorporated four audio conditions (no audio, 
uncompressed audio, and two compressed conditions) for each selected bit rates of 
JPEG 2000. The result show that in visual only subjective quality assessment, the 
presence of audio (low or high quality) does not significantly influence on the visual 
quality judgment. The author wrote the entire paper. Both Dr. Ulrich Reiter and Dr. 
Junyong You made many observations in the research work and in the writing of 
publication. Professor Andrew Perkis and Professor Touradj Ebrahimi supervised the 
research work. 
 

3.5  Paper E – A Study of Quality of Experience in D-Cinema 
[15] 

QoE always puts the end-user at the centre of attention and it is a multidimensional 
concept, which consists of several objective and subjective parameters. This contributes 
to the difficulty of quantifying QoE. We focus on the subjective quality assessment for 
D-Cinema application because we believe it is an important aspect in studying QoE for 
D-Cinema; it is the basis to understand the perceived quality and is useful for 
developing a mature QoE model for D-Cinema. For this reason, subjective quality 
assessment for D-Cinema applications must be carefully designed. This paper offers a 
study of visual quality of multimedia presentations in D-Cinema applications. The study 
presented in this paper is an extension of Paper A and Paper B. Paper A and Paper B 
described the subjective visual quality assessment of images and motion pictures in a 
DCI-specified commercial Digital Cinema in Trondheim, Norway. Our interest is in 
exploring screening of alternative content using the D-Cinema equipment and 
environment affect the designs of the assessment. Using analysis of variance, we 
detected the significant differences of subjective scores among participants. 
Consequently, the obtained subjective scores were normalized first before MOS were 
computed. Our study showed that due to the different and unique digital image content 
and viewing conditions of D-Cinema, quality research of D-Cinema especially in the 
context of QoE is not really in the same category as other applications. Initial 
impression of our study showed that the stimulus presentation method influenced how 
participants used the quality scale when judging the perceived visual quality. 
Participants seem confident using the highest end of quality scale when judging the 
transparent stimuli when simultaneous double stimulus method was employed during 
subjective visual quality assessment of images, on the other hand participants showed 
hesitancy using the highest end of quality scale when judging the transparent stimuli 
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when single stimulus method was employed during subjective visual quality assessment 
of motion pictures. The results also showed that the content types influenced the 
subjective scores. In the assessment of motion pictures, we also showed the result of the 
differences between two compression algorithms. The author is responsible for writing 
the entire paper. Dr. Ulrich Reiter, Professor Touradj Ebrahimi and Professor Andrew 
Perkis supervised the research work and provided extensive support in writing the 
paper. 
  

4 Conclusion 
The major contributions of this thesis are: 
 

- Protocols of subjective quality assessment for images and motion pictures in  
Digital Cinema. The protocols are based on the methodologies described in ITU 
recommendations ITU-R BT.500 [29]and ITU P.910 [35]. We also provided an 
analysis of the protocols that we utilized. 

- New parameters for MS-SSIM objective metrics were obtained by conducting 
subjective test that takes into account the digital cinema environment. 

- Analysis of the performance of three popular perceptual objective metrics 
(structural similarity based metric). 

- Assessment of compression technologies for alternative contents screening in 
digital cinema. We analysed JPEG 2000 and H.264/AVC compression algorithm 
based on the collected data from subjective quality assessment conducted in the 
digital cinema using protocols described above. 

- An overview of alternative contents screening which can influence the business 
model of digital cinema. 

- Protocol of subjective quality assessment to investigate whether the presence of 
audio influenced the outcome of subjective visual quality assessment in digital 
cinema. We also provided the analysis whether the audio influence the visual 
quality based on the collected subjective data from the experiments using the 
proposed methodology. 
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Abstract 

One of the key issues for a successful roll out of digital cinema is in the 
quality it offers. The most practical and least expensive way of measuring 
quality of multimedia content is through the use of objective metrics. In 
addition to the widely used objective quality metric peak signal-to-noise 
ratio (PSNR), recently other metrics such as single scale structural similarity 
(SS-SSIM) and multi scale structural similarity (MS-SSIM) have been 
claimed as good alternatives for estimation of perceived quality by human 
subjects. The goal of this paper is to verify by means of subjective tests the 
validity of such claims for digital cinema content and environment. 
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1 Introduction 
The motion picture industry is one of the many players in the media industry. Both 
broadcasting and mobile media have successfully completed their transition to fully 
digital services, while the motion picture industry is currently in the process of forming 
standards for digitization of its complete value chain. These specifications and standards 
are the basis for a large scale implementation of digital cinema as the latest and final 
analogue media to go digital. The digitization is specified by the Digital Cinema 
Initiative (DCI) and is currently under standardization by SMPTE [1]. One of the key 
issues for a successful roll out of digital cinema in the market is in the service assurance 
of the quality it offers. The ultimate measure of a service is how an end-user perceives 
its performance. Hence, the best way of measuring perceived quality is to rely on human 
subject assessment, in a controlled environment. This is referred to as subjective quality 
assessment. 

Performing subjective assessments is time consuming, expensive, and complex. 
Furthermore, it does not lend itself to real-time environments. As an alternative, 
objective measurement methods (objective metrics) have been developed to predict the 
perceived quality of human subjects. Among objective metrics proposed to estimate 
perceived quality, Wang and Bovik introduced the structural similarity quality paradigm 
(SSIM) based on the assumption that the human visual system is highly adapted for 
extraction of structural information from a scene [2]. They argue that a measure of 
structural similarity can provide a good approximation of perceived quality. In their 
experiments, SSIM has shown a good correlation with perceived quality, outperforming 
traditional metrics such as peak-signal-to-noise ratio (PSNR). Multi-scale structural 
similarity (MS-SSIM) is proposed to supply more flexibility when compared to the 
single-scale method (SS-SSIM), by taking into account variations in viewing conditions 
[3]. These metrics have been used to measure perceived image quality in digital cinema.  

In this paper, we report the results of a study to assess the suitability of SS-SSIM 
and MS-SSIM to measure the perceived quality of images from DCI Standard 
Evaluation Material (StEM) [4]. In addition to application of these metrics using their 
original parameters, new parameters for MS-SSIM were obtained by taking into account 
the digital cinema viewing conditions, and used in this study. To validate the results of 
these metrics, we investigated the correlation between the objective metrics and the 
ground truth, i.e. how human subjects perceive the same content in terms of quality. To 
this end, a subjective quality assessment was carried out in a DCI-specified movie 
theatre in Trondheim, Norway. 

The paper is structured as follows. First, an overview of single scale structural 
similarity (SS-SSIM) and multi scale structural similarity (MS-SSIM) is given in 
Section 2. The subjective quality assessment in the DCI-specified movie theater 
environment and its results are provided in Section 3. The parameterization of MS-
SSIM for digital cinema content and environment is presented in Section 4. Next, the 
test results are discussed in Section 5. Finally, we draw some conclusions in Section 6.  
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2 Overview of Structural Similarity Measures 
Natural image signals are highly structured. Their pixels exhibit strong dependencies, 
which carry important information about the structure of the objects in the visual scene 
[2]. The human visual system is highly adapted to extract structural information. It is 
therefore assumed that the measurement of structural information changes provides a 
good estimation of the perceived image distortion [2]. Suppose x and y were two image 
signals; if one of the signals had perfect quality, then the similarity measure could be 
utilized to measure quantitatively the quality of the second signal.   

Structural information in an image is defined as attributes that represent the 
structure of objects in the scene, which are independent of the illumination. 
Accordingly, the information of structure is independent of the average luminance and 
contrast. The quality assessment uses local luminance and contrast because luminance 
and contrast can vary across a scene. The similarity measurement system is based on 
three comparisons: luminance, contrast, and structure. The luminance comparison 
function l(x,y) is estimated as a comparison of the mean intensity of two discrete 
signals, �x and �y, which is defined by 
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where the constant C1= 6.50 [2] is included to avoid instability when x2+ y2 is very 
close to zero. The contrast comparison function c(x,y) takes a similar form, based on the 
standard deviation of the two signals, �x and �y,  
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Here again, the constant C2= 58.52 [2] is included to avoid instability when 
x2+ y2 is very close to zero. The third comparison — the structure comparison 

function s(x,y) — is defined as follows: 
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To avoid instability when x y is very close to zero, a constant C3= 29.26 [2] is 
incorporated. The general form of the Structural SIMilarity (SSIM) index between 
signals x and y becomes:  

SS SSIM(x,y) l(x,y) c(x,y) s(x,y)                                     (A.4) 
where  > 0,  > 0,  > 0 are parameters used to adjust the relative importance of the 
three components. In the Single-Scale Structural SIMilarity (SS-SSIM) approach, the 
parameter values are set to  =  =  = 1.     

The perceivability of image details depends on the sampling density of the image 
signal and the distance of the image plane from the observer. When these factors vary, 
the subjective evaluation of a given image varies too. The single scale method does not 
incorporate such factors. For this reason, a multi scale variant of structural similarity has 
been developed to incorporate image details at different resolutions [3]. Taking the 
reference and the distorted image signals as input, the method iteratively applies a low-
pass filter and down-samples the filtered image by a factor of 2. For example, at the j-th 
scale, the reference and the distorted image signals are low-pass filtered and down-
sampled 2 j-1 times.  
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The overall computation is acquired by combining the measurement at different 
scales using 

MS SSIM(x,y) lM (x,y) M c j (x,y) j s j (x,y) j

j 1

M

  (A.5) 

in which the original image is indexed as scale 1. This definition also comprises the 
single scale measurement as the special case M = 1. 

The exponents M, j, and j are used to adjust the relative importance of the 
three components, and M is set to 5. Based on a subjective parameterization test [3], the 
resulting parameters are 1 = 1 = 0.0448, 2 = 2 = 0.2856, 3 = 3 = 0.3001, 4 = 4 
= 0.2363, and 5 = 5 = 5 = 0.1333, respectively. 

The SS-SSIM metric was originally tested by Wang et al. [2] by measuring the 
quality of 29 images from the LIVE database [5]. These consisted of 24-bits/pixel RGB 
color images (typically 768 x 512 or similar size), compressed using JPEG or JPEG 
2000. Then, to provide a quantitative evaluation of the performance of SS-SSIM, PSNR 
and SS-SSIM were compared to results obtained by subjective quality evaluation of the 
same data by human observers. The result was that SS-SSIM performs better than 
PSNR [2]. To test the MS-SSIM, the metric was also used to measure the quality of 
images from the LIVE database, and its performance was compared to subjective 
evaluation data by human observers, concluding that it outperforms both SS-SSIM and 
PSNR [3]. 

Digital cinema applications are based on motion pictures with significantly higher 
quality when compared to standard and high definition content. Furthermore, this 
content is only watched in a specific environment — a movie theatre. SS-SSIM and 
MS-SSIM metrics were not originally intended for high quality images such as those in 
digital cinema imagery. They take into account only the luminance component leaving 
out the color components of the pictures, and these metrics also overlook the 
motion/frame rate, which is a significant characteristic of digital cinema source 
materials. In addition, the original MS-SSIM parameters had been obtained from 
subjective parameterization tests conducted in a certain viewing environment, which 
was significantly different from the viewing environment in a movie theatre. Despite 
these constraints, SS-SSIM and MS-SSIM have a potential to be utilized as objective 
metrics for measuring the perceived visual quality of digital cinema applications.  Thus, 
in this paper we study the suitability of these objective metrics for use in digital cinema 
applications. However, in this initial study, we also limit ourselves to the luminance 
component, and neglect the motion aspect. 

In this paper, we do not use test images from the LIVE database as in the original 
study, because those images are not suitable for the digital cinema applications. Due to 
the specific digital cinema viewing environment, it was necessary to obtain subjective 
scores data from a group of human observers with a subjective quality assessment 
conducted in a real movie theatre.          

3 Subjective Quality Assessment in Movie Theatre 
and Its Protocol 

In the field of subjective evaluation, there are many different methodologies and rules to 
design a test. The test recommendations described by the ITU have been internationally 
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accepted as guidelines for conducting subjective assessments. Recommendation ITU-R 
BT500-11 [6] provides a thorough guideline for the test methods and the test conditions 
of subjective visual quality assessments. Important issues include characteristics of the 
laboratory set up, stimulus viewing sequence, and rating scale. Another important 
guideline relevant to this work is recommendation ITU-R BT.1686 [7]; it provides 
recommendations on how to perform on-screen measurements of the main projection 
parameters of large screen digital imagery applications, based on presentation of 
programs in a theatrical environment.  

3.1 Laboratory Set Up  

The evaluation described in this paper has been conducted at a commercial movie 
theatre in Trondheim, Norway. The DCI-specified cinema set up is considered to 
provide ideal viewing conditions. Figure A.1 shows a view of the auditorium. Table A.1 
gives the specifications of the movie theatre. 

The digital cinema projector used is a Sony CineAlta SRX-R220 4K projector, 
one of the most advanced projectors in digital cinema installations around the world (for 
more details on this projector see [8, 9]). Projector installation, calibration, and 
maintenance have been performed by Sony Corporation. Therefore, it did not seem 
necessary to perform any additional measurement of contrast, screen illumination 
intensity and uniformity, or any other measurements recommended in [7]. 

In order to reproduce a movie theatre experience, the assessment was conducted in 
the same conditions as when watching a feature film, i.e. in complete darkness. To 
illuminate the subject’s scoring sheets during the subjective assessment without 
affecting the projected images perception, small low-intensity lights were attached to 
the clipboard used by each subject for voting. 

 

Figure A.1: Ullman auditorium of Nova Kinosenter. 
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Table A.1 Ullman auditorium specifications. 
DISPLAY HALL PROJECTOR 
Screen (H x 
W) 5 x 12 m Number of 

Seats 440 

Projection 
Distance 19 m 

Number of 
Wheelchair 
Seats 

3 

Type Sony SRX-
R220 

WS 1:1.66 Width 18.3 m Image Format 
348 m2 WS 1:1.85 Floor area 

CS 1:2.35 Built Year 1994 
 
 

The physical dimensions of the screen are 5 meters by 12 meters (H x W); as a 
result the observation at 1H is equal to observation at 5 meters from the screen. To get a 
viewing distance of 1H, subjects must be seated in the front rows of the theatre. 
However, this location is not optimal because the point of observation is too close to the 
lower border of the screen, and is uncomfortable for the subjects. For this reason, a 
viewing distance of 2H was selected [10]. Consequently, the test subjects’ seats were 
located in the 6th row from the screen as illustrated by the cross mark in Figure A.2. In 
order to ensure a centralized viewing position, only five seats located in the 6th row 
from the screen were used by subjects during the evaluation. The location of these seats 
is illustrated by the cross mark in the Figure A.3 . 

 

Figure A.2: Ullman auditorium of Nova Kinosenter (side view). 
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Figure A.3: Ullman auditorium of Nova Kinosenter (top view). 

3.2 Test Materials 

The digital cinema specification [11] provides guidance for selecting test materials for 
the subjective assessments’ stimuli. Digital cinema is based on 2K or 4K imagery, 
which is a significantly higher quality in terms of larger pixel counts per image when 
compared to standard and high definition content, respectively. In order to comply with 
the DCI specifications, the stimuli used in the assessment were images taken from the 
DCI Standard Evaluation Material (StEM) [4]. From these, six 2K images were 
selected. Because we only take into account the luminance component of images in this 
study, the luminance component was extracted from each image resulting in six gray 
scale 2K images.  

The subjective assessment was performed by examining a range of JPEG 2000 
compression errors introduced by varying bit rates. In the design of a formal subjective 
test, it is recommended to maintain a low number of compression conditions in order to 
allow human subjects an easier completion of their evaluation task. Accordingly, 8 
different conditions were applied to create 8 processed images from each source image. 
The selected conditions covered the whole range of quality levels, and the subjects were 
able to note the variation in quality from each quality level to the next. This was verified 
prior to the subjective quality assessment with a pilot test that involved expert viewers 
in order to conclude the selection of the final 8 bit rates. As a result of the pilot test, the 
selected bit rates were in the range of 0.01 to 0.6 bits/pixel. To create 48 processed gray 
scale images, 6 source images were compressed using the KAKADU software version 
6.0, with the following settings [12]: codeblock size of 64x64 (default), 5 
decomposition levels (default), and switched-off visual frequency weighting.  

3.3 Test Methods and Conditions 

There are several stimulus viewing sequences methods described in Recommendation 
ITU-R BT.500-11 [6]. They can be classified into two categories: single stimulus (the 
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subjects are presented with a sequence of test images and are asked to judge the quality 
of each test image) and double stimulus (the subjects are presented with the reference 
image and the test image before they are asked to judge the quality of the test image). 
The presentation method of single stimulus is sequential, whereas the presentation 
method of double stimulus can be sequential and simultaneous (side by side). The 
decision on which test method to use in a subjective assessment is crucial, because it has 
a high impact on the difficulty of the test subjects’ task. The pilot test prior to the main 
subjective assessment was also conducted to compare sequential presentation and 
simultaneous presentation. Differentiating between levels of high quality images 
requires a test method that possesses a higher discriminative characteristic. Our pilot 
test indicated that the simultaneous (side by side) presentation had a higher 
discriminative characteristic than the sequential presentation order. Therefore, the 
subjective quality assessment uses the Simultaneous Double Stimulus test method, in 
which the subjects are presented with the reference image and the distorted test image 
displayed side by side on the screen. Figure A.4 illustrates the display format in this 
method. 

 

Figure A.4: Display format of Simultaneous Double Stimulus. 

 
The reference image is always shown on the left side of the image and the 

distorted image is shown on the right side. Test subjects grade the quality of the 
distorted image on the right hand side by comparing it to the reference image on the left. 

The quality scale is the tool that the human subjects utilize to judge and to report 
on the quality of the tested images. One of the most popular quality scales in the 
subjective quality assessment research field is the 5 point quality level. Here, a 10 point 
quality scale was chosen, because the pilot test had shown that eight different quality 
levels could be clearly differentiated. Also, selecting a finer scale seemed to be 
advantageous due to the higher quality of test images used, in which a finer 
differentiating quality is suitable [10].   The test used a discrete quality grading scale, 
which implies that the subjects are forced to choose one of the ten values and nothing in 
between. The quality grading scale, which is illustrated in Figure A.5, refers to “how 
good the picture is”.  
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Figure A.5: Ten point quality scale and presentation structure of the test. 

 
The test was conducted as a single session. Each of the 48 processed images and 

the 6 reference images were presented for a period of 10 seconds; subjects evaluate each 
presented image once.  Subjects then needed to vote on their questionnaire sheet before 
the next image was presented, and they were given 5 seconds to cast their vote. The 
presentation structure of the test is illustrated in Figure A.5. The total session length was 
15 minutes. Prior to the main session, a training session was conducted. Subjects were 
informed about the procedure of the test, how to use the quality grading scale, and the 
meaning of the designated English term related to the distortion scale of the image. 
During the training session, a short pre-session was run in which 19 images were shown 
to illustrate the range of distortions to be expected. The order of the main session was 
randomized, meaning that the six images and eight processing levels were randomized 
completely. Four to five subjects participated at the same time, and six such rounds 
were needed to include all subjects (see next section). The images presentation orders 
for each six rounds were different. 

3.4 Subjects 

A proper evaluation of visual quality requires human subjects with good visual acuity 
and high concentration, e.g. young persons such as university students. 29 subjects (10 
female, 19 male) participated in the evaluation tests performed in this work. 27 of them 
were university students. Some of the subjects were familiar with image processing. 
Their age ranged from 21 to 32 years old. All subjects reported that they had normal or 
corrected to normal vision. 

3.5 Subjective data analysis 

In this section, the Mean Opinion Score (MOS) result from the subjective image quality 
assessment is analyzed and will be used in the next section to evaluate the performance 
of the objective metrics. Before processing the resulting data, post-experiment subject 
screening was conducted to exclude outliers using the method described by VQEG [13]. 
In addition to using this method, the scores of each subject on reference images were 
also examined. As a result, one subject was excluded because this subject showed 
randomness due to scoring low for the quality of reference images. Then the consistency 
level for each of the remaining 28 subjects was verified by comparing his/her scores for 
each of the 48 processed images to the corresponding mean scores of those images over 
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all subjects. The consistency level was quantified using Pearson’s correlation coefficient 
r, and if the r value for one subject was below 0.75, this subject would be excluded [13]. 
Here, the value of r for each subject was  0.9. Hence, data from all remaining 28 
subjects was considered.  

All data was then processed to obtain the Mean Opinion Score (MOS) by 
averaging the votes for all subjects. Figure A.6 illustrates the MOS results. In addition, 
the Standard Deviation and the 95% Confidence Intervals (CI) were computed (based 
on a normal distribution assumption). From a statistical point of view, no overlap with 
the 95% CI provides a strong indication of the existence of differences between adjacent 
MOS values. MOS values of every tested image shown with its 95% Confidence 
Interval are illustrated in Figure A.7.  

 

Figure A.6: MOS score vs. bit rate. 
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Figure A.7: MOS score of each image vs. bit rate. 

 

The behavior of a codec is generally content dependent, and this can be observed 
in Figure A.6. As an example, for the lowest bit rate subjects score higher for Images 1 
and 5 when compared to other images; these two images show a close up face, which 
typically has low spatial complexity characteristics. Furthermore, Image 2, which 
depicts a crowd and has high spatial complexity, tends to have the lowest score of all 
the images except for the highest bit rate.    

 

4 Parameterization of MS-SSIM for Digital Cinema 
Applications 

In this work, the test methodology based on an image synthesis approach for cross-scale 
calibration was also used to estimate better parameters for MS-SSIM evaluation metric 
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[3].  Such tests were conducted in the same DCI-specified movie theatre mentioned in 
the previous section, using a 12 x 5 m screen.  For this purpose, a table of distorted 
images was synthesized as illustrated in Figure A.8. Each image in the table is 
associated with a specific distortion level defined by MSE and a specific scale. Each 
distorted image is created by randomly adding a white Gaussian noise to the original 
image, while constraining MSE to be fixed and restricting the distortions to occur only 
in the specified scale. Similar to the original method, 5 scales and 12 distortion levels 
were used, resulting in 60 images, as depicted in Figure A.8. Even though the images in 
each column have the same MSE, the visual qualities of images located in different 
rows (scales) are different. This provides an indication that the distortions at different 
scales have different significance in terms of perceived visual quality. Ten original 
128x128 images with different type of content were used to create ten sets of distorted 
image tables. 

 

Figure A.8: Demonstration of the table of distorted images. Images in the same column 
have the same MSE. Images in the same row have distortions only in one specific scale. 
Each subject was asked to select a set of images, one from each scale, exhibiting similar 

visual qualities. As an example, one subject chose the marked images. 

 

As in the original method [3], subjective tests were conducted with 8 subjects. 
Each subject was shown the ten sets of test images, one set at a time. The viewing 
distance was fixed at 2H (10 m) similar to the subjective quality assessment. The 
subject was asked to compare the quality of the images across scales and select a set of 
images, one from each of the five scales (shown as rows in Figure A.8) exhibiting 
similar qualities. Marked images in Figure A.8 are one of the selected set of images 
perceived as having similar qualities by one subject. The positions of the selected 
images in each scale were recorded and averaged over all test images and all subjects. 
The results were then normalized and used in the calculation of exponents in Equation 
A.5.  

The obtained parameters are 1 = 1 = 0.1587, 2 = 2 = 0.2329, 3 = 3 = 
0.2298, 4 = 4 = 0.2008, and 5 = 5 = 5 = 0.1778, respectively. 
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5 Results 
In this section, performances of objective models (PSNR, SS-SSIM, MS-SSIM using 
original parameters, and MS-SSIM using the new parameters) are evaluated. This is 
achieved by statistically comparing the objective measurement data from each model 
with the subjective data.  The scatter plots of raw MOS versus model predictions are 
illustrated in Figure A.9. A predicted MOS score resulting from the non-linear mapping 
function—using cubic polynomial as suggested by VQEG [14]—is also shown in each 
plot.  

 

Figure A.9: Scatter plots of MOS vs. model predictions. 

 
The linear Pearson’s correlation coefficient for each metric according to the 

corresponding raw MOS scores is computed. The respective correlation coefficients are 
reported in Table A.2. Figure A.10 shows the Pearson’s correlations and their associated 
95% confidence intervals for each metric. 
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Figure A.10: Pearson’s correlation coefficient. 

 
The subjective rating data are often compressed at the ends of the rating scale. 

Applying a non-linear mapping step using cubic polynomial mapping function is 
recommended in [13, 14] before proceeding with any performance evaluation. The 
computed Pearson’s correlation coefficient between objective measurement data and the 
fitted MOS value is also reported in Table A.2, and the correlations and their associated 
95% confidence intervals are illustrated in Figure A.10. 

To check the significance of the difference between the correlation coefficients, 
the statistical significance test is conducted. No significant difference between 
coefficients is used as H0 hypothesis. The test uses the Fisher-z transformation. The 
normally distributed statistics ZN is determined for each comparison and compared 
against the 95% t-Student value for the two-tail test — t(0.05)=1.96. The calculated ZN 
for each correlation coefficient comparison is shown in  

Table A.3. If ZN is higher than 1.96, there is a statistically significant difference 
with 0.05 significance level between correlation coefficients. All calculated ZN values 
based on raw MOS are lower than 1.96, which means statistically, there are no 
significant differences between correlation coefficients of all models.  However, 
calculation based on fitted MOS yields values higher than 1.96, except for correlation 
comparison between MS-SSIM (using original parameters) and MS-SSIM (using new 
parameters). It means that there are statistical differences between correlation 
coefficient results of PSNR versus the other models, and SS-SSIM versus the other 
models. 

Table A.2: Correlation coefficients. 
Objective Model Pearson Pearson 

(based on fitted MOS) (based on raw MOS)
PSNR 0.91 0.99 
SS-SSIM 0.87 0.96 
MS-SSIM  0.84 0.88 (original parameter) 
MS-SSIM (new parameters) 0.85 0.90 
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Table A.3: Significance of the difference between correlation coefficients. 
Models Comparison ZN ZN 

(based on fitted MOS) (based on raw 
MOS) 

PSNR vs. SS-SSIM 1.03 10.66 
PSNR vs. MS-SSIM 1.45 13.03 

PSNR vs. MS-SSIM (new 
parameters) 1.32 12.74 

SS-SSIM vs. MS-SSIM 1.92 2.37 
SS-SSIM vs. MS-SSIM (new 

parameters) 1.68 2.07 

MS-SSIM vs. MS-SSIM (new 
parameters) 0.13 0.29 

 

6 Conclusion 
Based on raw MOS data, there are no significant differences between correlation 
coefficients of objective metrics investigated in this paper. Hence, based on this result, 
there is no objective model that comes out as best performer from a statistical point of 
view.  

However, based on fitted MOS data, the differences between PSNR and other 
objective metrics are significant. Hence, if the non-linear mapping function using cubic 
polynomial is applied first, the PSNR has the best performance because it correlates best 
with the subjective data. The differences between correlation of SS-SSIM with 
correlation of two versions of MS-SSIM (using original and new parameters) are also 
statistically significant. Thus, SS-SSIM performs second. 

These results show that in the case of digital cinema content and environment, it 
seems that both SS-SSIM and MS-SSIM do not exhibit the same type of performance 
that has been reported in the literature, when compared to PSNR metric.  

7 Acknowledgement 
The authors would like to acknowledge various help, fruitful inputs, and valuable 
discussions from the following individuals: Vittorio Baroncini (FUB), Francesca de 
Simone (EPFL), Marlon Thomas M. Nielsen (NTNU), and Zhou Wang (University of 
Waterloo). Subjective tests carried out in this work were possible thanks to Trondheim 
Kino AS by putting at disposition the movie theatre Nova Kinosenter. 

 76



 

 77

8 Reference 
[1] SMPTE. (2008). Society of Motion Picture and Television Engineers. Available: 

http://www.smpte.org/home/ 

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image Quality 
Assessment: From Error Visibility to Structural Similarity," IEEE Transactions on 
Image Processing, vol. 13, p. 13, April 2004. 

[3] Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multi-scale Structural Similarity for 
Image Quality Assessment," in IEEE Asilomar Conference on Signals, Systems and 
Computers, Asilomar, 2003. 

[4] DCI. (2008). DCI Digital Cinema Initiatives. Available: http://www.dcimovies.com 

[5] H. R. Sheiks, Z. Wang, A. C. Bovik, and L. K. Cormack. Image and video quality 
assessment research at LIVE. Available: http://live.ece.utexas.edu/research/quality/ 

[6] ITU-R, "Methodology for the subjective assessment of the quality of television 
pictures," ITU, Geneva2002. 

[7] ITU-R, "Methods of measurement of image presentation parameters for LSDI 
programme presentation in a theatrical environment," Geneva2004. 

[8] SONY, "4K Digital Cinema Projectors SRX-R220/SRX-R210 Media Blok LMT-
100 Screen Management System LSM-100," 2007. 

[9] SONY. (2008). SRX-R220. Available: http://www.sony.co.uk/biz/product/4k-
digital-cinema/srx-r220/overview 

[10] V. Baroncini, "Title," unpublished|. 

[11] D. C. Initiatives, "Digital Cinema System Specification version 1.2," March 2008. 

[12] D. Taubman, "Kakadu Software," 6.0 ed, 2008. 

[13] VQEG, "Multimedia Group Test Plan Version 1.21," March 2008 2008. 

[14] VQEG, "Final Report from the Video Quality Experts Group on the Validation of 
Objective Models of Multimedia Quality Assessment, Phase 1," September 2008 
2008. 

 



 

Errata 
Page 72; Figure A.7. 
 

 

Figure A.7: MOS of each image vs. bit rate 

 
Figure A.7 illustrates the obtained Mean Opinion Score (MOS) by averaging the votes 
of all subjects along with its 95% Confidence Interval. However, the former figure 
shows an incorrect range of 95% Confidence Interval. The range illustrated half of the 
intended 95% Confidence Interval. The model illustrated by Equation A.6 represented 
95% Confidence Interval shown in the Figure A.7. 
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The corrected illustration of the calculated 95% Confidence Interval is shown in figure 
A2.1. The 95% Confidence Interval is based on the Equation A.7. 
 

)(
n

Ax ,     (A.7) 

 
with A is the critical point based on two sided t-distribution with 27 degrees of freedom. 
The value of A is 05.227,05.0tA . 
 

The correction is illustrated in the figure below. 
 

 

Figure A.7: MOS of each image vs. bit rate. 
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Page 74; Figure A.9 
  

 
Figure A.9: Scatter plots of MOS vs. model prediction 

 
Figure A.9 that demonstrates scatter plots of MOS vs. model prediction have erroneous 
representation of fitting with cubic polynomial function due to erroneous calculation 
during subjective data processing. The incorrect calculation of non linear mapping 
especially yielded the extreme value of correlation of one objective model (PSNR). 
Based on VQEG recommendation, non linear mapping that has been found to perform 
well empirically is cubic polynomial function as shown in Equation A.8. The 
weightings a, b and c and the constant d are obtained by fitting the function to the data 

dcxbxaxMOSp 23     (A.8) 
 
The correction is illustrated in the figure below. 
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Figure A.9: Scatter plots of MOS vs. model prediction. 

 

Page 75; Table A.2. 
 
 

Table A.2: Correlation coefficients. 
Objective Model Pearson Pearson 

(based on fitted MOS) (based on raw MOS)
PSNR 0.91 0.99 
SS-SSIM 0.87 0.96 
MS-SSIM (original parameter) 0.84 0.88 
MS-SSIM (new parameters) 0.85 0.90 

 
Table A.2 shows the Pearson’s correlation coefficient calculated from the erroneous 
scores. Using the corrected scores, the new correlation coefficient of each model is 
recalculated. The calculation of the Pearson’s correlation coefficient is based on 
Equation A.9. 
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The accurate calculated correlation coefficients are shown Table below. 
 

Table A.2: Correlation coefficients. 
Objective Model Pearson Pearson 

(based on fitted data) (based on raw data) 
PSNR 0.91 0.92 
SS-SSIM 0.87 0.9 
MS-SSIM (original parameter) 0.84 0.95 
MS-SSIM (new parameters) 0.85 0.94 

 
 
Page 75; Figure A.10. 
   
  Original figure: 

 
Figure A.10: Pearson’s correlation coefficient 

 
Figure A.10 illustrated the correlation coefficient based on the calculated values 

from the Table A.2. The correlation coefficients are shown with the 95% Confidence 
Interval. The new illustration of accurate Pearson’s correlation coefficients with the 95 
% Confidence Interval is shown on Figure below  

 

Figure A.10: Pearson’s correlation coefficient. 
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Page 76; Table A.3. 
 

Table A.3: Significance of differences between correlation coefficients 
Models Comparison ZN ZN 

(based on fitted MOS) (based on raw 
MOS) 

PSNR vs. SS-SSIM 1.03 10.66 

PSNR vs. MS-SSIM 1.45 13.03 

PSNR vs. MS-SSIM (new 
parameters) 1.32 12.74 

SS-SSIM vs. MS-SSIM 1.92 2.37 

SS-SSIM vs. MS-SSIM (new 
parameters) 1.68 2.07 

MS-SSIM vs. MS-SSIM (new 
parameters) 0.13 0.29 

 
 

Table A.3 shows the significant differences between correlation coefficients illustrated 
by Figure A.10. Based on the recalculated correlation coefficients, we then also need to 
recalculate the significant differences between new correlation coefficients. The new 
values are shown in the table below.  
 

Table A.3: Significance of differences between correlation coefficients 
Models Comparison ZN ZN 

(based on fitted MOS) (based on raw 
MOS) 

PSNR vs. SS-SSIM 1.03 0.5 

PSNR vs. MS-SSIM 1.45 0.95 

PSNR vs. MS-SSIM (new 
parameters) 1.32 0.7 

SS-SSIM vs. MS-SSIM 0.43 1.5 

SS-SSIM vs. MS-SSIM (new 
parameters) 0.3 1.25 

MS-SSIM vs. MS-SSIM (new 
parameters) 0.13 0.24 

 
Page 75; 5. Result 
 
Original text: 
“All calculated ZN values based on raw MOS are lower than 1.96, which means 
statistically, there are no significant differences between correlation coefficients of all 
models.  However, calculation based on fitted MOS yields values higher than 1.96, 
except for correlation comparison between MS-SSIM (using original parameters) and 
MS-SSIM (using new parameters). It means that there are statistical differences between 
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correlation coefficient results of PSNR versus the other models, and SS-SSIM versus 
the other models.” 
 
Correction: 
“All calculated ZN values are lower than 1.96, which means statistically, there are no 
significant differences between correlation coefficients of all models.” 
 
Page 76; 6. Conclusion 
 
Original text: 
“Based on raw MOS data, there are no significant differences between correlation 
coefficients of objective metrics investigated in this paper. Hence, based on this result, 
there is no objective model that comes out as best performer from a statistical point of 
view.  
However, based on fitted MOS data, the differences between PSNR and other objective 
metrics are significant. Hence, if the non-linear mapping function using cubic 
polynomial is applied first, the PSNR has the best performance because it correlates best 
with the subjective data. The differences between correlation of SS-SSIM with 
correlation of two versions of MS-SSIM (using original and new parameters) are also 
statistically significant. Thus, SS-SSIM performs second. 
These results show that in the case of digital cinema content and environment, it seems 
that both SS-SSIM and MS-SSIM do not exhibit the same type of performance that has 
been reported in the literature, when compared to PSNR metric.”  
 
Correction: 
 “Based on collected MOS data, there are no significant differences between correlation 
coefficients of objective metrics investigated in this paper. Hence, based on this result, 
there is no objective model that comes out as best performer from a statistical point of 
view.  
These results show that in the case of digital cinema content and environment, it seems 
that both SS-SSIM and MS-SSIM do not exhibit the same type of performance that has 
been reported in the literature, when compared to PSNR metric. 



 

1 Introduction 
The motion picture industry is one of the many players in the media industry. Both 
broadcasting and mobile media have successfully completed their transition to fully 
digital services, while the motion picture industry is currently in the process of forming 
standards for digitization of its complete value chain. These specifications and standards 
are the basis for a large scale implementation of digital cinema as the latest and final 
analogue media to go digital. The digitization is specified by the Digital Cinema 
Initiative (DCI) and is currently under standardization by SMPTE [1]. One of the key 
issues for a successful roll out of digital cinema in the market is in the service assurance 
of the quality it offers. The ultimate measure of a service is how an end-user perceives 
its performance. Hence, the best way of measuring perceived quality is to rely on human 
subjects assessment, in a controlled environment. This is referred to as subjective 
quality assessment. 

Performing subjective assessments is time consuming, expensive, and complex. 
Furthermore, it does not lend itself to real-time environments. As an alternative, 
objective measurement methods (objective metrics) have been developed to predict the 
perceived quality of human subjects. Among objective metrics proposed to estimate 
perceived quality, Wang and Bovik introduced the structural similarity quality paradigm 
(SSIM) based on the assumption that the human visual system is highly adapted for 
extraction of structural information from a scene [2]. They argue that a measure of 
structural similarity can provide a good approximation of perceived quality. In their 
experiments, SSIM has shown a good correlation with perceived quality, outperforming 
traditional metrics such as peak-signal-to-noise ratio (PSNR). Multi-scale structural 
similarity (MS-SSIM) is proposed to supply more flexibility when compared to the 
single-scale method (SS-SSIM), by taking into account variations in viewing conditions 
[3]. These metrics have been used to measure perceived image quality in digital cinema.  

In this paper, we report the results of a study to assess the suitability of SS-SSIM 
and MS-SSIM to measure the perceived quality of images from DCI Standard 
Evaluation Material (StEM) [4]. In addition to application of these metrics using their 
original parameters, new parameters for MS-SSIM were obtained by taking into account 
the digital cinema viewing conditions, and used in this study. To validate the results of 
these metrics, we investigated the correlation between the objective metrics and the 
ground truth, i.e. how human subjects perceive the same content in terms of quality. To 
this end, a subjective quality assessment was carried out in a DCI-specified cinema in 
Trondheim, Norway. 

The paper is structured as follows. First, an overview of single scale structural 
similarity (SS-SSIM) and multi scale structural similarity (MS-SSIM) is given in 
Section 2. The subjective quality assessment in the DCI-specified cinema environment 
and its results are provided in Section 3. The parameterization of MS-SSIM for digital 
cinema content and environment is presented in Section 4. Next, the test results are 
discussed in Section 5. Finally, we draw some conclusions in Section 6.  
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2 Overview of Structural Similarity Measures 
Natural image signals are highly structured. Their pixels exhibit strong dependencies, 
which carry important information about the structure of the objects in the visual scene 
[2]. The human visual system is highly adapted to extract structural information. It is 
therefore assumed that the measurement of structural information changes provides a 
good estimation of the perceived image distortion [2]. Suppose x and y were two image 
signals; if one of the signals had perfect quality, then the similarity measure could be 
utilized to measure quantitatively the quality of the second signal.   

Structural information in an image is defined as attributes that represent the 
structure of objects in the scene, which are independent of the illumination. 
Accordingly, the information of structure is independent of the average luminance and 
contrast. The quality assessment uses local luminance and contrast because luminance 
and contrast can vary across a scene. The similarity measurement system is based on 
three comparisons: luminance, contrast, and structure. The luminance comparison 
function l(x,y) is estimated as a comparison of the mean intensity of two discrete 
signals, x and y, which is defined by 
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where the constant C1= 6.50 [2] is included to avoid instability when x2+ y2 is very 
close to zero. The contrast comparison function c(x,y) takes a similar form, based on the 
standard deviation of the two signals, x and y,  
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Here again, the constant C2= 58.52 [2] is included to avoid instability when 
x

2+ y
2 is very close to zero. The third comparison — the structure comparison function 

s(x,y) — is defined as follows: 
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To avoid instability when x y is very close to zero, a constant C3= 29.26 [2] is 
incorporated. The general form of the Structural SIMilarity (SSIM) index between 
signals x and y becomes:  

SS SSIM(x,y) l(x,y) c(x,y) s(x,y)   (A.4) 
where  > 0,  > 0,  > 0 are parameters used to adjust the relative importance of the 
three components. In the Single-Scale Structural SIMilarity (SS-SSIM) approach, the 
parameter values are set to  =  =  = 1.     

The perceivability of image details depends on the sampling density of the image 
signal and the distance of the image plane from the observer. When these factors vary, 
the subjective evaluation of a given image varies too. The single scale method does not 
incorporate such factors. For this reason, a multi scale variant of structural similarity has 
been developed to incorporate image details at different resolutions [3]. Taking the 
reference and the distorted image signals as input, the method iteratively applies a low-
pass filter and down-samples the filtered image by a factor of 2. For example, at the j-th 
scale, the reference and the distorted image signals are low-pass filtered and down-
sampled by a factor of 2 j-1 times.  
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The overall computation is acquired by combining the measurement at different 
scales using 

MS SSIM(x,y) lM (x,y) M c j (x,y) j s j (x,y) j

j 1

M

  (A.5) 

in which the original image is indexed as scale 1. This definition also comprises the 
single scale measurement as the special case M = 1. 

The exponents M, j, and j are used to adjust the relative importance of the three 
components, and M is set to 5. Based on a subjective parameterization test [3], the 
resulting parameters are 1 = 1 = 0.0448, 2 = 2 = 0.2856, 3 = 3 = 0.3001, 4 = 4 = 
0.2363, and 5 = 5 = 5 = 0.1333, respectively. 

The SS-SSIM metric was originally tested by Wang et al. [2] by measuring the 
quality of 29 images from the LIVE database [5]. These consisted of 24-bits/pixel RGB 
color images (typically 768 x 512 or similar size), compressed using JPEG or JPEG 
2000. Then, to provide a quantitative evaluation of the performance of SS-SSIM, PSNR 
and MS-SSIM were compared to results obtained by subjective quality evaluation of the 
same data by human observers. The result was that SS-SSIM performs better than 
PSNR [2]. To test the MS-SSIM, the metric was also used to measure the quality of 
images from the LIVE database, and its performance was compared to subjective 
evaluation data by human observers, concluding that it outperforms both SS-SSIM and 
PSNR. 

Digital cinema applications are based on motion pictures with significantly higher 
quality when compared to standard and high definition content. Furthermore, this 
content is only watched in a specific environment — a movie theatre. SS-SSIM and 
MS-SSIM metrics were not originally intended for high quality images such as those in 
digital cinema imagery. They take into account only the luminance component leaving 
out the color components of the pictures, and these metrics also overlook the 
motion/frame rate, which is a significant characteristic of digital cinema source 
materials. In addition, the original MS-SSIM parameters had been obtained from 
subjective parameterization tests conducted in a certain viewing environment, which 
was significantly different from the viewing environment in a movie theatre. Despite 
these constraints, SS-SSIM and MS-SSIM have a potential to be utilized as objective 
metrics for measuring the perceived visual quality of digital cinema applications.  Thus, 
in this paper we study the suitability of these objective metrics for use in digital cinema 
applications. However, in this initial study, we also limit ourselves to the luminance 
component, and neglect the motion aspect. 

In this paper, we do not use test images from the LIVE database as in the original 
study, because those images are not suitable for the digital cinema applications. Due to 
the specific digital cinema viewing environment, it was necessary to obtain subjective 
scores data from a group of human observers with a subjective quality assessment 
conducted in a real movie theatre.          

3 Subjective Quality Assessment in Movie Theatre 
and Its Protocol 

In the field of subjective evaluation, there are many different methodologies and rules to 
design a test. The test recommendations described by the ITU have been internationally 
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accepted as guidelines for conducting subjective assessments. Recommendation ITU-R 
BT 500-11 [6] provides a thorough guideline for the test methods and the test conditions 
of subjective visual quality assessments. Important issues include characteristics of the 
laboratory set up, stimulus viewing sequence, and rating scale. Another important 
guideline relevant to this work is recommendation ITU-R BT.1686 [7]; it provides 
recommendations on how to perform on-screen measurements of the main projection 
parameters of large screen digital imagery applications, based on presentation of 
programs in a theatrical environment.  

3.1 Laboratory Set Up  

The evaluation described in this paper has been conducted at a commercial digital 
cinema Nova Kinosenter in Trondheim, Norway. The DCI-specified cinema set up is 
considered to provide ideal viewing conditions. (Figure A.1) shows a view of the 
auditorium. Table A.4 gives the specifications of the movie theatre. 

 

Figure A.1: Ullman auditorium of Nova Kinosenter. 

 
The digital cinema projector used is a Sony CineAlta SRX-R220 4K projector, 

one of the most advanced projectors in digital cinema installations around the world (for 
more details on this projector see [8, 9]). Projector installation, calibration, and 
maintenance have been performed by Trondheim Kino AS. Therefore, it did not seem 
necessary to perform any additional measurement of contrast, screen illumination 
intensity and uniformity, or any other measurements recommended in [7]. 

In order to reproduce a movie theatre experience, the assessment was conducted in 
the same conditions as when watching a feature film, i.e. in complete darkness. To 
illuminate the subject’s scoring sheets during the subjective assessment without 
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affecting the projected images perception, small low-intensity lights were attached to 
the clipboard used by each subject for voting. 

 

Table A.4: Ullman auditorium specifications. 
DISPLAY HALL PROJECTOR 
Screen (H x 
W) 5 x 12 m Number of 

Seats 440 

Projection 
Distance 19 m 

Number of 
Wheelchair 
Seats 

3 

Type Sony SRX-
R220 

WS 1:1.66 Width 18.3 m Image Format 
348 m2 WS 1:1.85 Floor area 

CS 1:2.35 Built Year 1994 
 

The physical dimensions of the screen are 5 meters by 12 meters (H x W); as a 
result the observation at 1H is equal to observation at 5 meters from the screen. To get a 
viewing distance of 1H, subjects must be seated in the front rows of the theatre. 
However, this location is not optimal because the point of observation is too close to the 
lower border of the screen, and is uncomfortable for the subjects. For this reason, a 
viewing distance of 2H was selected [10]. Consequently, the test subjects’ seats were 
located in the 6th row from the screen as illustrated by the cross mark in Figure A.2. In 
order to ensure a centralized viewing position, only five seats located in the 6th row 
from the screen were used by subjects during the evaluation. The location of these seats 
is illustrated by the cross mark in the Figure A.3. 

 

Figure A.2: Ullman auditorium of Nova Kinosenter (side view). 
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Figure A.3: Ullman auditorium of Nova Kinosenter (top view). 

3.2 Test Materials 

The digital cinema specification [11] provides guidance for selecting test materials for 
the subjective assessments’ stimuli. Digital cinema is based on 2K or 4K imagery, 
which is a significantly higher quality in terms of larger pixel counts per image when 
compared to standard and high definition content, respectively. In order to comply with 
the DCI specifications, the stimuli used in the assessment were images taken from the 
DCI Standard Evaluation Material (StEM) [4]. From these, six 2K images were 
selected. Because we only take into account the luminance component of images in this 
study, the luminance component was extracted from each image resulting in six gray 
scale 2K images.  

The subjective assessment was performed by examining a range of JPEG 2000 
compression errors introduced by varying bit rates. In the design of a formal subjective 
test, it is recommended to maintain a low number of compression conditions in order to 
allow human subjects an easier completion of their evaluation task. Accordingly, 8 
different conditions were applied to create 8 processed images from each source image. 
The selected conditions covered the whole range of quality levels, and the subjects were 
able to note the variation in quality from each quality level to the next. This was verified 
prior to the subjective quality assessment with a pilot test that involved expert viewers 
in order to conclude the selection of the final 8 bit rates. As a result of the pilot test, the 
selected bit rates were in the range of 0.01 to 0.6 bits/pixel. To create 48 processed gray 
scale images, 6 source images were compressed using the KAKADU software version 
6.0, with the following settings [12]: codeblock size of 64x64 (default), 5 
decomposition levels (default), and switched-off visual frequency weighting.  
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3.3 Test Methods and Conditions 

There are several stimuli viewing sequence methods described in Recommendation 
ITU-R BT.500-11 [6]. They can be classified into two categories: single stimulus (the 
subjects are presented with a sequence of test images and are asked to judge the quality 
of each test image) and double stimulus (the subjects are presented with the reference 
image and the test image before they are asked to judge the quality of the test image). 
The presentation method of single stimulus is sequential, whereas the presentation 
method of double stimulus can be sequential and simultaneous (side by side). The 
decision on which test method to use in a subjective assessment is crucial, because it has 
a high impact on the difficulty of the test subjects’ task. The pilot test prior to the main 
subjective assessment was also conducted to compare sequential presentation and 
simultaneous presentation. Differentiating between levels of high quality images 
requires a test method that possesses a higher discriminative characteristic. Our pilot 
test indicated that the simultaneous (side by side) presentation had a higher 
discriminative characteristic than the sequential presentation order. Therefore, the 
subjective quality assessment uses the Simultaneous Double Stimulus test method, in 
which the subjects are presented with the reference image and the distorted test image 
displayed side by side on the screen. Figure A.4 illustrates the display format in this 
method. 

 

Figure A.4: Display format of Simultaneous Double Stimulus. 

The reference image is always shown on the left side of the image and the 
distorted image is shown on the right side. Test subjects grade the quality of the 
distorted image on the right hand side by comparing it to the reference image on the left. 

The quality scale is the tool that the human subjects utilize to judge and to report 
on the quality of the tested images. One of the most popular quality scales in the 
subjective quality assessment research field is the 5 point quality level. Here, a 10 point 
quality scale was chosen, because the pilot test had shown that eight different quality 
levels could be clearly differentiated. Also, selecting a finer scale seemed to be 
advantageous due to the higher quality of test images used, in which a finer 
differentiating quality is suitable [10].   The test used a discrete quality grading scale, 
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which implies that the subjects are forced to choose one of the ten values and nothing in 
between. The quality grading scale, which is illustrated in Figure A.5, refers to “how 
good the picture is”.  

 

Figure A.5: Ten point quality scale and presentation structure of the test. 

 
The test was conducted as a single session. Each of the 48 processed images and 

the 6 reference images were presented for a period of 10 seconds; subjects evaluated 
each presented image once.  Subjects then needed to vote on their questionnaire sheet 
before the next image was presented, and they were given 5 seconds to cast their vote. 
The presentation structure of the test is illustrated in Figure A.5. The total session length 
was 15 minutes. Prior to the main session, a training session was conducted. Subjects 
were informed about the procedure of the test, how to use the quality grading scale, and 
the meaning of the designated English term related to the distortion scale of the image. 
During the training session, a short pre-session was run in which 19 images were shown 
to illustrate the range of distortions to be expected. The order of the main session was 
randomized, meaning that the six images and eight processing levels were randomized 
completely. Four to five subjects participated at the same time, and six such rounds 
were needed to include all subjects (see next section). The images presentation orders 
for each six rounds were different. 

3.4 Subjects 

A proper evaluation of visual quality requires human subjects with good visual acuity 
and high concentration, e.g. young persons such as university students. 29 subjects (10 
female, 19 male) participated in the evaluation tests performed in this work. 27 of them 
were university students. Some of the subjects were familiar with image processing. 
Their age ranged from 21 to 32 years old. All subjects reported that they had normal or 
corrected to normal vision. 

3.5 Subjective data analysis 

In this section, the Mean Opinion Score (MOS) result from the subjective image quality 
assessment is analyzed and will be used in the next section to evaluate the performance 
of the objective metrics. Before processing the resulting data, post-experiment subject 
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screening was conducted to exclude outliers using the method described by VQEG [13]. 
In addition to using this method, the scores of each subject on reference images were 
also examined. As a result, one subject was excluded because this subject showed 
randomness due to scoring low for the quality of reference images. Then the consistency 
level for each of the remaining 28 subjects was verified by comparing his/her scores for 
each of the 48 processed images to the corresponding mean scores of those images over 
all subjects. The consistency level was quantified using Pearson’s correlation coefficient 
r, and if the r value for one subject was below 0.75, this subject would be excluded [13]. 
Here, the value of r for each subject was  0.9. Hence, data from all remaining 28 
subjects was considered.  

All data was then processed to obtain the Mean Opinion Score (MOS) by 
averaging the votes for all subjects. Figure A.6 illustrates the MOS results. In addition, 
the Standard Deviation and the 95% Confidence Intervals (CI) were computed (based 
on a normal distribution assumption). From a statistical point of view, no overlap with 
the 95% CI provides a strong indication of the existence of differences between adjacent 
MOS values. MOS values of every tested image shown with its 95% Confidence 
Interval are illustrated in Figure A.7.    

 

Figure A.6: MOS score vs. bit rate. 
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Figure A.7: MOS score of each image vs. bit rate. 

 

 

The behavior of a codec is generally content dependent, and this can be observed 
in Figure A.6. As an example, for the lowest bit rate subjects score higher for Images 1 
and 5 when compared to other images; these two images show a close up face, which 
typically has low spatial complexity characteristics. Furthermore, Image 2, which 
depicts a crowd and has high spatial complexity, tends to have the lowest score of all 
the images except for the highest bit rate.    
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4 Parameterization of MS-SSIM for Digital Cinema 
Application 

In this work, the test methodology based on an image synthesis approach for cross-scale 
calibration was also used to estimate better parameters for MS-SSIM evaluation metric 
[3].  Such tests were conducted in the same DCI-specified movie theatre mentioned in 
the previous section, using a 12 x 5 m screen.  For this purpose, a table of distorted 
images was synthesized as illustrated in Figure A.8. Each image in the table is 
associated with a specific distortion level defined by MSE and a specific scale. Each 
distorted image is created by randomly adding a white Gaussian noise to the original 
image, while constraining MSE to be fixed and restricting the distortions to occur only 
in the specified scale. Similar to the original method, 5 scales and 12 distortion levels 
were used, resulting in 60 images, as depicted in Figure A.8. Even though the images in 
each column have the same MSE, the visual qualities of images located in different 
rows (scales) are different. This provides an indication that the distortions at different 
scales have different significance in terms of perceived visual quality. Ten original 
128x128 images with different type of content were used to create ten sets of distorted 
image tables. 

 

Figure A.8: Demonstration of the table of distorted images. Images in the same column 
have the same MSE. Images in the same row have distortions only in one specific scale. 
Each subject was asked to select a set of images, one from each scale, exhibiting similar 

visual qualities. As an example, one subject chose the marked images. 

As in the original method [3], subjective tests were conducted with 8 subjects. 
Each subject was shown the ten sets of test images, one set at a time. The viewing 
distance was fixed at 2H (10 m) similar to the subjective quality assessment. The 
subject was asked to compare the quality of the images across scales and select a set of 
images, one from each of the five scales (shown as rows in Figure A.8) exhibiting 
similar qualities. Marked images in Figure A.8 are one of the selected set of images 
perceived as having similar qualities by one subject. The positions of the selected 
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images in each scale were recorded and averaged over all test images and all subjects. 
The results were then normalized and used in the calculation of exponents in Equation 
A.5.  

The obtained parameters are 1 = 1 = 0.1587, 2 = 2 = 0.2329, 3 = 3 = 0.2298, 
4 = 4 = 0.2008, and 5 = 5 = 5 = 0.1778, respectively. 

5 Results 
In this section, performances of objective models (PSNR, SS-SSIM, MS-SSIM using 
original parameters, and MS-SSIM using the new parameters) are evaluated. This is 
achieved by statistically comparing the objective measurement data from each model 
with the subjective data.  The scatter plots of raw MOS versus model predictions are 
illustrated in Figure A.9. A predicted MOS score resulting from the non-linear mapping 
function—using cubic polynomial as suggested by VQEG  [14]—is also shown in each 
plot.  

 

Figure A.9: Scatter plots of MOS vs. model predictions. 

 

The linear Pearson’s correlation coefficient for each metric according to the 
corresponding MOS scores is computed. The respective correlation coefficients are 
reported in Table A.5. Figure A.10 shows the Pearson’s correlations and their associated 
95% confidence intervals for each metric. 
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Figure A.10: Pearson’s correlation coefficient. 

The subjective rating data are often compressed at the ends of the rating scale. 
Applying a non-linear mapping step using cubic polynomial mapping function is 
recommended in [13, 14] before proceeding with any performance evaluation. The 
computed Pearson’s correlation coefficient between objective measurement data and the 
fitted MOS value is also reported in Table A.5, and the correlations and their associated 
95% confidence intervals are illustrated in Figure A.10. 

To check the significance of the difference between the correlation coefficients, 
the statistical significance test is conducted. No significant difference between 
coefficients is used as H0 hypothesis. The test uses the Fisher-z transformation. The 
normally distributed statistics ZN is determined for each comparison and compared 
against the 95% t-Student value for the two-tail test — t(0.05)=1.96. The calculated ZN 
for each correlation coefficient comparison is shown in Table A.3. If ZN is higher than 
1.96, there is a statistically significant difference with 0.05 significance level between 
correlation coefficients. All calculated ZN values are lower than 1.96, which means 
statistically, there are no significant differences between correlation coefficients of all 
models.   
 

Table A.5: Correlation coefficients. 
Objective Model Pearson Pearson 

(based on fitted MOS) (based on raw MOS)
PSNR 0.91 0.92 
SS-SSIM 0.87 0.9 
MS-SSIM (original 
parameter) 0.84 0.95 

MS-SSIM (new parameters) 0.85 0.94 
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Table A.6: Significance of the difference between correlation coefficients. 
Models Comparison ZN ZN 

(based on fitted MOS) (based on raw MOS) 
PSNR vs. SS-SSIM 1.03 0.5 
PSNR vs. MS-SSIM 1.45 0.95 
PSNR vs. MS-SSIM  1.32 0.7 (new parameters) 
SS-SSIM vs. MS-SSIM 0.43 1.5 
SS-SSIM vs. MS-SSIM  
(new parameters) 0.3 1.25 

MS-SSIM vs. MS-SSIM  0.13 0.24 (new parameters) 
 

6 Conclusion 
Based on collected MOS data, there are no significant differences between correlation 
coefficients of objective metrics investigated in this paper. Hence, based on this result, 
there is no objective model that comes out as best performer from a statistical point of 
view.  

These results show that in the case of digital cinema content and environment, it 
seems that both SS-SSIM and MS-SSIM do not exhibit the same type of performance 
that has been reported in the literature, when compared to PSNR metric.  
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Abstract 

Two video coding schemes with variable bit rates — JPEG 2000 and 
H.264/AVC — were compared in terms of perceived quality performance in 
a Digital Cinema environment. In this paper we describe in detail the 
procedure for a subjective quality assessment. The stimuli used were 10 
seconds long color sequences at HD resolution (1920x1080 progressive), 30 
fps, and YCbCr 4:2:0. We do not consider DCI-specified content, but rather 
exploring the quality of rates suitable for alternative content. The results 
show that temporal compression schemes like H.264/AVC can play out their 
high coding efficiency not only at SD resolutions, but also at high 
resolutions and at high bit rates around 31 Mbps.
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1 Introduction 
 
In Digital Cinema, the use of compression is a matter of practicality. The quantity of 
data needed to represent high-quality imagery in its native uncompressed form is 
prohibitive [1]. The Digital Cinema Initiative (DCI) has released a specification for 
Digital Cinema format files [2]. Based on this specification, the size of one frame of a 
Digital Cinema Distribution Master (DCDM) can be up to almost 40 megabytes (4K, 12 
bit per component), such that two hours of a 24 fps movie can amount to a total of close 
to 7 terabytes. This is a very huge amount of data that makes storage and transmission 
of such data physically possible, but rather impractical with today’s storage and 
transmission technology. Hence, Digital Cinema cannot become a practical form of 
business without significantly reducing the quantity of data. In this paper, we study two 
existing compression algorithms, JPEG 2000 and H.264/AVC, in the context of Digital 
Cinema applications. 

Evaluation of compression technology for digital still image or moving pictures is 
part of the acceptance process in the international standardization community [3]. The 
evaluation generally consists of comparative studies to test the compression efficiency 
attained by the coding algorithm, computational complexity, and additional features and 
functionality. Performing subjective quality assessments is one of the means to study 
the compression technology. Subjective quality assessments are needed to evaluate the 
visual quality of compressed images or moving images at a certain number of bits used 
to represent the compressed items, along with computational complexity. Motivated by 
the fact that conducting a subjective quality assessment is time consuming and not 
necessarily straightforward, the research community has developed several objective 
metrics to model how humans perceive the quality of images or moving pictures. 
However, the existing objective metrics for predicting the perceived quality are limited. 
The subjective score collected in a carefully designed experiment is still considered the 
benchmark of quality evaluation. 

In subjective quality assessments, a group of human participants is asked to watch 
a set of moving pictures with varying quality, and to rate the perceived quality on a pre-
defined scale. From these ratings, a MOS (Mean Opinion Score) can be obtained by 
averaging the collected ratings, assuming that they follow a Gaussian distribution. In 
order to obtain a meaningful MOS, a proper and systematic procedure must be applied 
to the experiment and the collected subjective ratings. Currently, there are some 
recommendations issued by international standardization bodies concerning the 
procedure of conducting subjective visual quality assessments. However, at present 
there are no existing recommendations specifically directed towards subjective visual 
quality assessments in the Digital Cinema environment.  

In this paper, we present a detailed procedure for subjective visual quality 
assessment of high quality moving images in the Digital Cinema. The stimuli are 
moving images compressed with two different algorithms, JPEG 2000 and H.264/AVC. 
The collected subjective data is then used to analyze and study the performance of JPEG 
2000 and H.264/AVC in the Digital Cinema. 

The test conditions of our experiment, including a description of test environment, 
dataset and configuration of coding algorithms, is described in detail in section 2. The 
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test methodology employed in the subjective assessment, including test design and 
analysis of subjective data, is presented in section 3. The results, including a discussion, 
are presented in section 4. Finally, section 5 summarizes the conclusions. 

 

2 Test Conditions 

2.1 Test Environment 

The subjective quality assessment of JPEG 2000 and H.264/AVC described here was 
conducted at Nova 1, a DCI-specified cinema in Trondheim, Norway. As the cinema is 
in daily commercial use, it is considered a meaningful test environment for subjective 
quality assessments. A DCI-specified cinema is also considered to provide ideal 
viewing conditions. Table B.1 summarizes the specifications of the test environment. 
 

Table B.1: Test environment specifications. 
DISPLAY 
Screen (H x W) 5 x 12 m 

Projection Distance 19 m 

WS 1:1.66 

WS 1:1.85 

Image Format 

CS 1:2.35 
HALL 

Number of Seats 440 

Width 18.3 m 

Floor area 348 m2 

Built Year 1994 

 
The digital cinema projector used in the experiment was a Sony CineAlta SRX-

R220 4K projector [4]. Calibration and maintenance of the projector are regularly 
performed by Trondheim Kino.  For that reason, measurement of contrast, screen 
illumination intensity and uniformity, or any other measurement were not considered 
necessary. 

Although the cinema could obviously accommodate all 20 subjects at once, we 
designed the experiment to allocate only five subjects per session. The main reason was 
to avoid influence of two additional factors: the distance of subjects to the cinema 
screen, and the viewing angle. We chose the viewing distance (10 meters) to be 2 times 
the height of the screen. This resulted in subjects being placed in the 6th row. In order to 
maintain a centralized viewing condition for all subjects, only 5 seats were allocated for 
subjects in this row. The subjects’ exact position during the experiment is illustrated in 
Figure B.1and Figure B.2. 
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Figure B.1: Subject located at the 6th row from the screen.  

 

Figure B.2: Subjects’ position at the 6th row. 

 
In order to reproduce the cinema viewing experience, the assessment was 

conducted under the same conditions as when moviegoers watch a feature film, i.e. in 
complete darkness. To illuminate the subject’s scoring sheets during the subjective 
assessment without affecting the projected images’ perception, small low-intensity 
lights were attached to the clipboard used by each subject for voting. 
 

2.2 Data Set 

The data set was taken from the SVT High Definition Multi Format Test Set [5], EBU 
database [6], NRK [7], and NTIA/ITS database [8]. The dataset format was HD 
1920x1080 progressive and converted into 30 fps, YCbCr 4:2:0 format using 
VirtualDub [9]. The whole set of test sequences was split into a training set of two 
sequences from the NTIA/ITS database (Aspen and RedKayak), a testing set of six 
sequences from SVT (CrowdRun, DucksTakeOff, OldTownCross, IntoTree, and 
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ParkJoy) and EBU database (Dancer), and a dummy set of one sequence from NRK 
used for the stabilization stage. The dataset used for training and the dummy sequence 
are illustrated in Figure B.3. The set of test sequences is shown in Figure B.4.  

 

Figure B.3: Training and dummy set. 

 

Figure B.4: Test set. From top left to bottom right: CrowdRun, Dancer, DucksTakeOff, 
OldTownCross, IntoTree, and ParkJoy. 

2.3 Codecs 

For the lossy compression of high resolution (HD 1920 x 1080 progressive at 30 fps) 
videos, two different codecs were considered. These were JPEG 2000 and H.264/AVC. 
Different coding bit rates were selected for the test. 
 

 2.3.1 JPEG 2000 

JPEG 2000 is a wavelet-based compression scheme for still images and image 
sequences such as those in Digital Cinema [10]. For JPEG 2000 coding, the Kakadu 
version 6.0 [11] was used for the implementation. One configuration of encoding with 
the following parameters was used: codeblock size 64x64 (default), one tile per frame 
(default), 5 decomposition level (default), and visual frequency weighting factor as 
recommended for Digital Cinema environment in [12]. 
 

2.3.2 H.264/AVC 
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Table B.2: H.264/AVC encoding parameters 
Reference software 
Profile 
Number of frames 
Chroma format 
GOP structure 
Number of reference frames 
Slice mode 
Rate control 
Macroblock partitioning for 
motion estimation 
Motion estimation algorithm 
Early skip detection 
Selective intra mode decision 

JM 16.1 
High (FREXT Profile) 
300 
4:2:0 
IBPBPBPBPBPBP 
2 
off 
Enabled (initial QP=30) 
Enabled 
 
Fast full search (default) 
Disabled 
Disabled 

 

H.264/AVC is the latest motion-compensation-based compression scheme for video 
[13]. For H.264/AVC coding, the JM version 16.1 [14] was used for the 

implementation. One configuration of encoding with parameters depicted in  

 
Table B.2 was utilized. 

2.4 Description of hardware 

A PC-based server was used to play back the stimulus. All the compressed stimuli are 
decoded first before the experiment was carried out. The output interface of the server 
was a DVI connector, whereas the input interface of the projector is HD-SDI. Therefore, 
a DVI to HD-SDI scaler was used to bridge the two different types of interface. We 
carefully set the DVI to HD-SDI scaler so that it didn’t do any further unnecessary 
processing (such as resolution transformation) to the stimulus.  

3 Test Methodologies 
In the field of subjective evaluation, there are many different methodologies and rules to 
design a test. The test recommendations described by the ITU have been internationally 
accepted as guidelines for conducting subjective assessments.  
 

3.1 Presentation Method and Scale 

We adopted the single stimulus method described in recommendation ITU-R BT.500-11 
[15]. 

3.2 Training  

In the beginning of each test session, an instruction sheet was provided to each subject 
to give a brief introduction to the task. This was followed by an extended oral 
explanation. This included a definition of the English scale terms (see Figure B.5), 
which were related to the quality range of stimuli presented on the screen. Subjects were 
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also given the opportunity to ask questions regarding their task. Then a training session 
was conducted in order to familiarize the subjects with the assessment procedure. The 
training session lasted around five minutes. 

 

Figure B.5: Presentation method and scale. 

3.3 Test and Test Subjects 

The test was conducted as a single session. The six test sequences shown in Figure 4 
were compressed at various bitrates, resulting in 62 different test conditions which were 
presented in randomized order. Additionally, five dummy conditions were included at 
the beginning of the test session to stabilize the subjects’ ratings. Thus, there were a 
total of 67 test conditions for a single session, which lasted around 17 minutes. 

20 subjects (8 females, 12 males), who reported to have normal or corrected to 
normal vision, participated in the experiment. Prior to the experiment, all subjects were 
screened for color blindness. Half of the subjects were familiar with image processing 
and compression artifacts. Subjects’ age ranged from 21 to 47 years. Two outliers were 
detected and discarded. 

3.4 Statistical Analysis of the Collected Data 

The statistical analysis of the assessment data is based on the following model: 
 mij = + i + j + ij     (B.1) 

Here, mij is a score obtained from subject i after scoring stimulus j;  is the overall 
mean score computed across all subjects and stimuli; i is the subject effect; j is the 
effect of specific stimulus j; ij is an experimental error caused by uncontrollable 
variables [16]. 

3.4.1 Distribution of data 

Distribution of the collected score can be analyzed for each subject, across different test 
conditions, or for each test condition across different subjects. We used a Shapiro-Wilk 
test to verify the normality of distributions. The result showed that, as expected, score 
distributions for each subject across different test conditions were not normally 
distributed. However, the majority (75%) of the score distributions for each test 
condition across subjects were normal or close to normal (mean p-value equal to 0.073). 
The results validate the processing applied to the data which is explained in the next 
subsections. 
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3.4.2 Offset correction 

Based on the model given in Eq. (B.1), it is relevant to verify if there are significant 
differences between the ways subjects used the rating scale when scoring the stimulus. 
To verify how subjects used the rating scale, first, we have to check the distribution of 
the raw score collected in the subjective assessment. Again, we used a Shapiro-Wilk test 
to verify the normality of distribution, and the computed p-value was equal to 0, which 
indicates that the distribution was not normal. Hence, it was not suitable to use a 
parametric test like ANOVA (analysis of variance) to investigate whether variations of 
scores across the subjects were large. Instead, we used a non-parametric Kruskal-Wallis 
analysis of variance [17] . This test was performed on the raw scores across the subjects. 
The differences between subjects were significant, with H(19) = 78.354, and p<0.05. 
This indicates that indeed there were large variations in means of subjective scores 
among subjects, i.e. there were significant differences between the ways subjects used 
the rating scale to judge the quality of the stimulus. Consequently, a subject-to-subject 
correction was applied by normalizing all the scores according to an offset mean 
correction [16]. 

3.4.3 Outlier detection and removal 

An outlier detection was performed according to the guidelines described in section 
2.3.1 of annex 2 of recommendation ITU-R BT. 500-11 [15]. Two outliers were 
detected out of 20. 

3.4.4 Mean Opinion Score (MOS) 

After discarding the outliers, the MOS was then computed for each test condition, 
together with the 95% confidence interval. The confidence interval for each MOS was 
computed using the Student’s t-distribution. 

4 Results and Discussion 
Figure B.6 illustrates the results (MOS vs. bit rate) for each test sequence. It can be seen 
that for the same bit rate value for each test sequence, H.264/AVC encoded sequences 
received a higher MOS compared to the JPEG 2000 encoded ones. This is apparent for 
all selected bitrates of all contents. This result was anticipated, since only the 
H.264/AVC algorithm employs motion estimation. Motion estimation provides a 
considerable level of temporal compression that is capable of providing significant 
improvement in coding gain without loss of perceived quality. Consequently, there is a 
significant impact on the coding gain of H.264/AVC compared to the coding gain of 
JPEG 2000. The latter does not exploit at all the redundancy of temporal information of 
a motion picture sequence. Rather, it treats each frame as a separate entity, and 
compresses without any reference to other frames. 
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Figure B.6: MOS vs. bit rate for both codecs across test sequences. 

Temporal compression based on a motion estimation algorithm is at times 
criticized in the context of Digital Cinema [1]. As the motion estimation feature of 
H.264/AVC allows for very high levels of compression, it is often used in applications 
that need very low bitrates to work properly, e.g. on free video sharing websites. 
Consequently, at the low bit rates used there, major artifacts appear in the content.  Yet, 
it is important to notice that it is not the motion estimation itself that causes additional 
artifacts – rather, these are caused by the low bit rates necessary in the aforementioned 
applications. The results illustrated in Figure B.6 show that a MOS higher than 8 — a 
value that corresponds to good perceived quality — can even be attained by content 
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with bit rates lower than 100 Mbps when using the H.264/AVC codec. 100 Mbps is the 
lowest bit rate value used in commercial Digital Cinema practice.  

Interestingly, MOS for H.264/AVC encoded material seems to peak around 31 
Mpbs. A further increase in perceived quality could only be noted for one of the sample 
contents (‘CrowdRun’), and it is not statistically significant. 

 

5 Conclusions 
Making a final conclusion on which is the best codec providing the better performance 
solely based on the MOS as computed from the subjective data in this experiment is not 
possible. Such a comparison would have the nature of an apples and oranges 
comparison, because H.264/AVC-encoded content includes P and B frames besides the 
I frames, whereas JPEG 2000-encoded content only includes I frames. Furthermore, our 
study was performed using 4:2:0 format content which is not included in the DCI 
specifications. We do not consider DCI-specified content but rather exploring the 
quality of rates suitable for alternative content, such as current screening of opera from 
New York Metropolitan in Nova 1. Based on our study, we can state that the usage of 
H.264/AVC in a Digital Cinema environment, i.e. a presentation of high quality content 
on a large screen using temporal compression, is very well possible. The assumption 
stated elsewhere [1] that temporal compression introduces major artifacts, could not be 
substantiated. Instead, the gain in bit rate that a temporal compression scheme provides, 
can very well be used to further increase the quality of the encoded stream, resulting in 
higher MOS at equal bit rates when compared to JPEG 2000.  

As an extension of this work, we are planning to perform subjective visual quality 
assessments of DCI-specified content, such as the DCI Standard Evaluation Material 
(StEM) encoded with JPEG 2000 and H.264/AVC. Also, in future assessments we wish 
to take into account the multimodal factor by adding audio, i.e. conducting subjective 
audiovisual quality assessments in the Digital Cinema environment. 
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Abstract 

Digital Cinema (D-Cinema) business is much more than feature films.  
Experimentation by showing programming other than feature films has been 
carried out since the early days of D-Cinema. Alternative content in Digital 
Cinema enables the cinema to become a multi-arts venue, attracting new and 
existing users by offering a range of vary products. We give an overview on 
this alternative content. Human factors issue—Quality of Experience (QoE), 
which is closely associated with the adoption of alternative content in D-
Cinema, is also discussed. 
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1 Introduction 
The motion picture industry (cinema) is the last of entertainment industry to go digital 
[1]. Currently, the motion picture industry is in the process of forming standards for 
digitization of its complete value chain. This process of change is referred to as Digital 
Cinema (D-Cinema) roll out. The digitization is specified by Digital Cinema Initiative 
(DCI) and is currently under standardization by The Society of Motion Picture and 
Television Engineers (SMPTE). D-Cinema demands a complete change of 
infrastructure in one of the players—the exhibitors or the owners of the screens—by 
adopting the new technology. The traditional 35 mm films projector needs to be 
replaced with a D-Cinema server and a digital projector. One of the main problems that 
hold back the successful roll out of D-Cinema in the market is that the exhibitors are 
those in value chain with the least benefit of the digitization. However, there are 
optimistic prospect to embrace D-Cinema pushed by two technical reinventions: the 
rebirth of 3D and the possibility for exhibitors to screen alternative content [2]. 

Other Digital Stuff (ODS)—the reference term for alternative content in D-
Cinema application—is one of the issues that plays as one of change agents who 
contribute to the business model innovation and may transform the whole business of 
cinema exhibition into something different from what we know of today. It includes the 
creation of new services and business with high quality imagery content for the big 
screen, which maximizes business profit for exhibitors who adopt D-Cinema. 

ODS has been slow to develop, and the value of the ODS sector is relatively low 
compared to traditional exhibition, the feature films. Nevertheless, it has potential. 
Norwegian cinema in Trondheim which is operated by Trondheim Kino AS regularly 
screens ODS to public and receives regular revenue streams from it. 

Even though the alternative content has been experimented since the early days of 
D-Cinema technology, it is still a minority activity for most exhibitors, and it 
contributes to the lackluster popularity of ODS exploration and implementation. 
Exploring alternative content in D-Cinema is not a widely discussed subject at this time. 
In this paper, we present and discuss cases beyond traditional use of D-Cinema and its 
venue, including what has been done at Nova Kino, a commercial DCI-specified cinema 
in Trondheim, Norway. We also describe important human factors issue that contribute 
to the successful of ODS adoption—Quality of Experience (QoE), which is the 
perspective of the users who consume the screened content.  

The rest of this paper is organized as follow. Section 2 provides a description of 
alternative content in D-Cinema. We present the QoE as one important human factors 
issue in D-Cinema in Section 3. Finally, we give a short outlook and conclude the paper. 

2 Alternative Content in Digital Cinema 
ODS covers all content screened in the cinema that is not feature film. This includes 
advertising, live events (sport, music), educational and gaming [2]. The exploitations of 
ODS at Trondheim cinema have ranged from Laparoscopic surgery, live stream music 
concert from various genres (including heavy metal and opera), and live stream of 
World Cup 2010 matches in 3D.   
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Midgard Media Lab, NTNU and The Operation Room of the Future at St. Olavs 
hospital in Trondheim together with several industries partners successfully transmitted 
live HD surgical images from operation rooms to 4K cinema projectors at Nova Kino 1 
[3]. 200 medical doctors from around the world experienced the successful live event in 
the cinema. Nova Kino 1 also regularly screens opera transmitted from The New York 
Metropolitan Opera [4]. Other musical genre performance which had been screened live 
is heavy metal concert; live HD concert of four popular heavy metal bands was 
broadcasted from Bulgaria to several digital cinemas including Nova Kino 1.  

D-Cinema can also be exploited for gaming event. The unique atmosphere of the 
cinema auditorium, large screen display and sound reproduction in the cinema can 
provide users, especially gamers, a unique out-of-home experience. Multi-player 
gaming events using D-Cinema had been organized before [5].  It shows the potential 
possibility of integrating multi-player games genre, including serious games such as 
WON (World of NTNU) [6] with D-Cinema as a new variety of ODS.  

 

Figure C.1: From top to down: image from the OR shot with SONY HDC-X300K HD 
Camera and patient’s stomach tissue shot with Olympus EndoEye HD-TV Video . 

3 Quality of Experience 
Development of ODS will certainly revitalize the cinema experience. Digital 
multimedia presentations especially in the case of D-Cinema are meant for human 
consumption and are powerful expressions. In the case of D-Cinema, the screening 
provides a rich experience to the cinemagoers as users. However, before the content is 
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consumed by the users, it usually goes through many processing stages. Each stage may 
introduce artifacts that degrade the cinema experience. Consequently, quality 
assessments of multimedia presentations in the D-Cinema system are essential.   

The focus of quality measurement has recently shifted towards Quality of 
Experience (QoE), which is more related to how end users (or cinemagoers) 
experiences, perceives, and values multimedia presentation. Users are put at the centre 
of attention considering that the industry is there to serve the users and must understand 
their needs and perception in offered products and services. The expectations and 
technical comfort levels of the users have evolved in terms of complexity, as users are 
increasingly embracing advanced technologies which fit their lifestyle (leisure, work 
and education). The framework to assess the user’s behavior and the necessary 
technology management is based on assessing the user experience in a consistent way, 
and rewarding the user’s loyalty through innovative packages and new engaging 
services. Thus, QoE assessments are crucial for driving the innovations in D-Cinema 
industry [2]. 

To facilitate the research of QoE of digital multimedia presentation, a controlled 
environment, such as laboratory, is needed for a range of perception experiments 
involving human participants. We participate in the research of QoE in D-Cinema by 
exploiting a commercial DCI-specified cinema in Trondheim (Nova Kino 1) as a 
realistic test environment for numerous experiments, and we had made several 
contributions on visual perceptual quality of high quality imagery in D-Cinema [7], [8], 
[9].  

4 Conclusion 

In this paper, we described the issue of ODS—the alternative content in D-Cinema 
and how its innovation and exploration tightly connected to a human factors issue—
QoE. Our experience on using a commercial DCI-specified cinema as a laboratory for 
QoE experiments indicates that understanding the whole experience of cinemagoers and 
assessing its quality by subjective experiments will need novel methodologies, such as 
methodology that takes into account multi-modal factors. Setting up a DCI-specified 
commercial cinema into a test environment for perception experiments using novel 
methodologies is a challenge; but we believe the process plays a role in exploration for 
novel alternative content in D-Cinema. 
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Abstract 

In this paper, we investigate whether the presence of audio with different 
quality levels can influence the outcome of subjective visual quality 
assessment in a Digital Cinema setting. We asked the participants to judge 
the visual quality when watching an audiovisual content in a Digital Cinema 
environment and investigated whether the participants can neglect the 
presence and the quality of audio. The stimuli used were 10 seconds long 
color sequences accompany with orchestral music at 2K resolution, 24 fps, 
and YCbCr 4:4:4 played on DCI certified equipment. The result show that 
in visual only subjective quality assessment, the presence of audio (low or 
high quality) does not significantly influence on the visual quality judgment. 
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1 Introduction 
Performing subjective visual quality assessments is one of the means to study the visual 
quality as perceived by the end user. One use of this practice is to study the quality 
degradation introduced by content compression. Subjective quality assessments are 
needed to evaluate the visual quality of compressed images before or after content 
delivery over a network. The subjective score collected in a carefully designed 
experiment is still considered the ground truth of quality evaluation 

In subjective video quality assessments, a group of human participants are asked 
to watch a set of visual stimuli with varying quality, and to judge the perceived quality. 
One way of judgment is by giving a rating on a pre-defined scale. From these ratings, a 
MOS (Mean Opinion Score) can be obtained by averaging the collected ratings. In order 
to obtain a meaningful MOS, a proper and systematic procedure must be applied to the 
experiment and the collected subjective ratings. Currently, there are some 
recommendations issued by international standardization bodies concerning the 
procedure of conducting subjective visual quality assessments.  These recommendations 
include the use of various visual stimuli to determine the perceived visual quality. 

During the subjective quality assessment, many factors influence the judgment of 
stimulus quality. Figure D.1 illustrates a holistic model of participant who participates 
in a subjective audio quality experiment as proposed by Zielenski, Rumsey, and Bech 
[1].  The hearing block corresponds to the properties of a listener. Perception block 
corresponds to the cognitive processes that make the listener able to describe and 
distinguish the sound in terms of its basic characteristics and attributes. The judgment 
block, which represents judgmental processes that are responsible for the assessment of 
sound in terms of its character, is considered as the main component of the holistic 
model. The last block, mapping block, relates to the processes engaged in the 
conversion of internal judgment into the quantifiable response. 

 

Figure D.1: Holistic model of listener [1]. 
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The model in Figure D.1 can also represent a participant in a subjective visual 
quality assessment. The judgment block shows how the non-acoustical factors can have 
an influence on the judgment process. If we use this model to represent the participant‘s 
judgment during the subjective visual quality assessment, it indicates that the non-visual 
factor can have an influence on the judgment process. 

Several studies on subjective audiovisual quality assessment showed that 
multimodal context influences how participants perceived the quality of audiovisual 
content; visual quality affects the perceived audio quality and vice versa [2, 3]. 

In subjective visual quality assessment, the participants are asked to judge the 
quality of a series of visual stimulus. However, single modality stimulus (e.g., visual 
only content) is rarely presented in the commercial Digital Cinema applications. When 
watching a movie and asked to judge the quality of the picture, is it possible for the 
participants to neglect the presence and the quality of the audio?  

In this paper, we would like to investigate whether the presence of audio with 
different quality levels can influence the perceived visual quality of participants in a 
Digital Cinema setting. We present a detailed procedure for subjective visual quality 
assessment of high quality audiovisual content presented on a DCI certified D-Cinema 
screen in a commercial cinema. The stimuli are moving images compressed with JPEG 
2000. Some stimuli are audiovisual contents with the audio stimulus compressed with 
MPEG Audio Layer III. 

The test conditions of our experiment, including a description of test environment, 
dataset and configuration of coding algorithms, is described in detail in section 2. The 
test methodology employed in the subjective assessment, including test design and 
analysis of subjective data, is presented in section 3. The results, including a discussion, 
are presented in section 4. Finally, section 5 summarizes the conclusions. 

2 Test Conditions 

2.1 Test Environment 

The subjective visual quality assessment described here was conducted at Nova 1 – the 
Liv Ullman theater, a DCI-specified cinema in Trondheim, Norway. As the cinema is in 
daily commercial use, this is a realistic and meaningful test environment for subjective 
quality assessments.  
 
Figure D.2: Participants located at the 6th row from the screen. 

 
Table D.3 summarizes the specifications of the test environment. 

Although the cinema could obviously accommodate all participants at once, we 
designed the experiment to allocate a maximum of five participants per session. The 
main reason was to avoid influence of two additional factors: the distance of 
participants to the cinema screen, and the viewing angle. We chose the viewing distance 
(10 meters) to be 2 times the height of the screen. This resulted in participants being 
placed in the 6th row. In order to maintain a centralized viewing condition for all 
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participants, only 5 seats were allocated for participants in this row. The participants’ 
exact position during the experiment is illustrated in Figure D.2. 

 

 

Figure D.2: Participants located at the 6th row from the screen. 

 

Table D.3: Test environment specifications. 
DISPLAY 
Screen (H x W) 5 x 12 m 

Projection 
Distance 19 m 

WS 1:1.66 Image Format 

WS 1:1.85 
CS 1:2.35 

HALL 
Number of Seats 440 

Width 18.3 m 

348 m2 Floor area 

Built Year 1994 

 
In order to reproduce the cinema viewing experience, the assessment was 

conducted under the same conditions as when moviegoers watch a feature film, i.e. in 
complete darkness. To illuminate the participant’s scoring sheets during the subjective 
assessment without affecting the projected images’ perception, small low-intensity 
lights were attached to the clipboard used by each subject for voting. 
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2.2. Data Set 

The data set was 10 seconds audiovisual sequences taken from the DCI Standard 
Evaluation Material (StEM) [4]. StEM test materials include a lot of 12 minutes 
audiovisual sequences. We selected some scenes for our data set. The audio information 
in our data set is orchestral music. The data set format was 2K, 24 fps, and YCbCr 
4:4:4. The whole set of test sequences taken from StEM was split into a training set 
containing two sequences, a testing set with four sequences and a dummy set used for 
the stabilization stage. The dataset used for training and the dummy sequence are 
illustrated in Figure D.3. The set of test sequences is shown in Figure D.4. StEM test 
material is a 12 minutes audiovisual sequence.  

 

Figure D.3. Training and dummy set. 

 

Figure D.4: Test set. From top left to bottom right: Sequence 1, Sequence 2, Sequence 
3, and Sequence 4. 

2.3 Stimuli 

In order to create stimuli with various visual quality levels, we encoded our data set 
with JPEG 2000 at different coding bit rates. We selected the bit rates of 20 Mbps, 40 
Mbps, 60 Mbps, and 160 Mbps.  We also incorporated four audio conditions (no audio, 
uncompressed audio, and two compressed conditions) for each selected bit rates 
resulting in a total of 64 stimuli with different levels of quality. In commercial Digital 
Cinema applications, the audio signal is not compressed. However, in our experiment, 
we compressed the audio signal in order to degrade the audio quality by introducing the 
compression error so that we had audio stimuli with different quality levels. We used 
the MPEG Audio Layer III compression algorithm.  We chose this algorithm because it 
is a widely used compression algorithm for audio. 
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2.3.1 JPEG 2000 

JPEG 2000 is a wavelet-based compression scheme for still images and image 
sequences such as those in Digital Cinema [5]. For JPEG 2000 coding, the Kakadu 
version 6.0 software [6]was used to encode our data set. The configuration of encoder 
used in our experiment is illustrated in Table D.4. 
 
 
 
 

Table D.4: JPEG 2000 encoding parameters. 
Reference software Kakadu version 6.0 
Codeblock size 64x64 (default) 
Decomposition level 5 level (default) 
Number of tile One tile per frame (default) 
Visual frequency 
weighting factor 

As recommended for D-
Cinema environment [7] 

Bit rate selection 20 Mbps, 40 Mbps, 60 Mbps, 
160 Mbps 

 

2.3.2  MPEG Audio Layer III 

MPEG Audio Layer III is a digital audio encoding format for lossy audio compression 
that was designed by the Moving Picture Experts Group as part of its MPEG-1 standard 
and later extended in MPEG-2 standard. We used the LAME encoder software [8] 
licensed under the LGPL to encode our data set. The configuration of LAME encoder 
used for our experiment is given in Table D.5. 
 

Table D.5: MPEG Audio Layer III encoding parameters. 
Reference software LAME 3.98.4 
Encoding modes Constant Bitrate 

(CBR) 
Sample rate 12 kHz 
Total channels 2 (Stereo) 
Bit rate selection 8 kbps and 24 kbps 

 

2.4 Description of Hardware 

A PC-based server was used to play back the stimuli. All the compressed stimuli are 
decoded first before the experiment was carried out. The output interface of the server 
was a DVI connector, whereas the input interface of the projector is HD-SDI. Therefore, 
a DVI to HD-SDI conversion box was used to bridge the two different types of 
interface. We carefully set this box so that it did not do any further unnecessary 
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processing (such as resolution transformation) to the stimulus. Figure D.5 illustrates the 
hardware set up of the experiment. 

 

Figure D.5: Hardware illustration of the experiment. 

 

3 Test Methodologies 
In the field of subjective evaluation, there are many different methodologies and rules to 
design a test. The test recommendations described by the ITU have been internationally 
accepted as guidelines for conducting subjective assessments. However, at present there 
are no existing recommendations specifically directed towards subjective visual quality 
assessments in the Digital Cinema environment.  In our experiment we adopted existing 
test methodology based on ITU recommendations and modified it to suit our test 
environment. 

3.1 Presentation Method and Scale 

We adopted the double stimulus method described in recommendation ITU-T P.911 [9] 
and used a ten point discrete quality scale representing bad, poor, fair, good, and 
excellent quality. The presentation method and the scale are illustrated in Figure D.6. 

 

Figure D.6: Scale and Presentation Method (Ai is sequence A under test condition i; Ar, 
Br are sequences A and B in the reference source format; Bj is sequence B under test 

condition j). 
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3.2 Training and Test  

In the beginning of each test session, an instruction sheet was provided to each 
participant to give a brief introduction to the experiment. This was followed by an 
extended oral explanation. We asked the participants to judge only the visual quality of 
the sequences on the screen. This included a definition of the English scale terms, which 
were related to the quality range of stimuli presented on the screen. Participants were 
also given the opportunity to ask questions regarding their task. Then a training session 
was conducted in order to familiarize the participants with the assessment procedure. 
The training session lasted around ten minutes. 

3.3 Test and Test Subjects 

The test was conducted as a single session with a break of three minutes in the middle 
of the session. The break was intended so that the participants can recharge to avoid 
losing concentration during the last 15 minutes of stimuli presentation due to fatigue.  
During the break participants were presented with relaxing music and images. In 
addition to the 8 dummy sequences used for stabilization phase in the beginning of 
assessment, the four test sequences shown in Figure D.4 were compressed at various bit 
rates (4 audio conditions and 4 visual conditions), as introduced in Table D.4 and Table 
D.5, resulting in 64 test stimulus. Thus, there were a total of 72 test conditions for a 
single session, which lasted around 30 minutes. 

A total of 15 participants (4 females, 11 males) participated in the experiment. 
Prior to the experiment, all subjects were screened for visual acuity and color blindness. 

We conducted three sessions, and the test conditions are randomized for each 
session. 

3.4 Statistical Analysis of the Collected Data 

The statistical analysis of the assessment data is based on the following model: 
 mij = + i + j + ij     (1) 

Here, mij is a score obtained from participant i after scoring stimulus j;  is the 
overall mean score computed across all participants and stimuli; i is the participant 
effect; j is the effect of specific stimulus j; ij is an experimental error caused by 
uncontrollable variables [10]. 

3.4.1 Distribution of Data 

Distribution of the collected score can be analyzed for each participant, across different 
test conditions, or for each test condition across different participants. We used a 
Shapiro-Wilk test to verify the normality of distribution. Since the selection of encoding 
parameter to create all stimuli is not based on normal distribution, the subjective data 
result showed that, as expected, score distributions for each participant across different 
test conditions were not normally distributed. However, the majority (92.2%) of the 
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score distributions for each test condition across participants were normal (p>0.05). The 
results validate the processing applied to the data which will be explained in the next 
subsections. 

3.4.2 Offset Correction 

Based on the model given in Eq. (1), due to participant effect, it is relevant to verify if 
there are significant differences between the ways participants used the rating scale 
when scoring the stimulus. To verify how participants used the rating scale, first, we 
have to check the distribution of the raw score collected in the subjective assessment. 
Again, we used a Shapiro-Wilk test to verify the normality of distribution, and the 
computed p-value indicates that the distribution was not normal (p<0.05). Skewness can 
also provide an indication of the distribution. The calculated skew value (0.6) is more 
than twice the standard error (0.08); it again indicates that the distribution indeed is not 
normal. Hence, it was not suitable to use a parametric test like ANOVA (analysis of 
variance) to investigate whether variations of scores across the participants were large. 
Instead, we used a non-parametric Kruskal-Wallis analysis of variance [11]. This test 
was performed on the raw scores across the participants. The differences between 
participants were significant, with H(14) = 83.5, and p<0.05. This indicates that indeed 
there were large variations in means of subjective scores among participants, i.e. there 
were significant differences between the ways participants used the rating scale to judge 
the quality of the stimulus.  

Consequently, a participant-to-participant correction was applied by normalizing 
all the scores according to an offset mean correction as follow [10]: 

)ˆ(
ˆ
1ˆ iij

i
ij bm

g
m      (2) 

where  is the corrected gain, is the corrected offset, and is the normalized score. 
The offsets are estimated using the mean of all measurement made by each subject: 

iĝ ib̂ ijm̂

1

1ˆ
J

i ij
j

b m
J      (3) 

The corrected gains are estimated using this following model as shown in Eq. (4), 
1ˆ ( )maxi

j J
g

K ijm     (4) 

where K is equal to the upper end of the scale (10) in our experiment. 

3.4.2 Outlier Detection and Removal 

An outlier detection was performed according to the guidelines described in section 
2.3.1 of annex 2 of recommendation ITU-R BT. 500-11 [12]. We did not detect any 
outliers. Hence we included the data from all participants. 
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3.4.3 Mean Opinion Score (MOS) 

The MOS was then computed for each test condition, together with the 95% confidence 
interval. The confidence interval for each MOS was computed using the Student’s t-
distribution as shown in Eq (5). 

n
tCI 14,05.0      (5) 

4 Results and Discussion 
Figure D.7 illustrates the MOS results for each selected bit rate within its 95% 
confidence interval. We show the result for each sequence because the non-parametric 
Kruskal-Wallis analysis of variance results shows that there are significant differences 
of scores between different sequences/contents [H(3) = 49.516, and p<0.05].  

 

 

Figure D.7: MOS results for each selected JPEG 2000 coding bitrate. 

For each sequence, the figure illustrates that there are overlaps of scores within 
95% confidence interval at each bitrate for different audio condition, which indicates 
that the presence of audio did not significantly contribute to subjective visual quality 
during the test. Further analysis using non-parametric Kruskal-Wallis analysis of 
variance, as shown in Table D.6, shows that there are no significant score differences 
across different audio conditions. This result supported by a similar study in a different 
application [2] . 
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Table D.6: Result of non-parametric test 
N=208 

Sequence # H(3) Significance value
1 1.641 p=0.650 
2 1.212 p=0.750 
3 1.478 p=0.687 
4 1.805 p=0.614 

 

5 Conclusions 
During visual only subjective quality assessment in Digital Cinema using the test 
methodology based on ITU recommendations, the presence of audio (low or high 
quality) does not affect the visual quality judgment even though perceived visual quality 
can be influenced by non visual quality factors. When the participants were specifically 
asked to judge only the visual quality, their perception which corresponds to the 
cognitive processes during the experiment is able to disregard the basic characteristics 
and attributes of the audio even though the presence of the audio is prominent especially 
during low quality audio stimuli 
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Abstract 

Quality assessment is an important matter in any multimedia presentation 
situation, including Digital Cinema (D-Cinema). The fundamental way of 
assessing quality is by using the Quality of Experience (QoE) concept, 
assessing how cinemagoers perceive the quality of the multimedia 
presentation. This paper will offer a study of visual quality of multimedia 
presentations in D-Cinema applications. We performed subjective visual 
quality assessment of images and motion pictures in a DCI-specified 
commercial Digital Cinema in Trondheim, Norway, using methodologies 
from standardized recommendations. Our interest is in exploring screening 
of alternative content using the D-Cinema equipment and environment. The 
designs of our subjective quality assessment took into account contents, bit 
rates and compression techniques used for alternative content but not used 
for screening the feature film. Using analysis of variance, we detected the 
significant differences of subjective scores among participants. 
Consequently, the obtained subjective scores were normalized first before 
MOS were computed. The result indicated that stimulus presentation 
method in the experiment influenced the human participants when judging 
transparent test sequences. The results also showed that the content types 
influenced the subjective scores.  
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1 Introduction 
Multimedia in essence is a presentation of multiple information that may consist of 
image, video, graphics, audio, speech, sound, text, and even tactile content (content 
relating to the sense of touch)  or olfactory content (content concerned with the sense of 
smell). In every multimedia presentation, including those in D-Cinema, content 
consumed by users has gone through several stages that incorporate specific multimedia 
signal processing methods. Every stage also introduces specific artifacts that might 
degrade quality. For this reason, it is important to evaluate content before it is finally 
consumed, such that a sufficiently high quality level is guaranteed. The long-established 
quality assessment approaches such as those in the Quality of Service (QoS) framework 
depend on metrics that only take into account factors from multimedia signals and 
network operations. For instance, the most widely used metric to evaluate image quality 
is PSNR—a metric that is solely based on an arithmetic pixel to pixel comparison 
between an original image and a distorted or processed version of it [1]. More recently, 
we have seen a paradigm shift towards incorporating the user as the most important 
element in the quality measurement of multimedia presentations. This shift has been a 
driver behind creation of the concept of Quality of Experience (QoE) [2, 3] 

QoE is a multidimensional concept [2]. It consists of several objective and 
subjective parameters which contribute to the difficulty of quantifying it. Currently, 
there is no widely accepted metric that can measure QoE, and design of such metrics 
remains a challenging research topic. Furthermore, in addition to objective variables 
connected to a certain multimedia content, many variables that influence QoE can also 
originate from socio-cultural (e.g. age, sex, nationality) and psychological factors (e.g. 
expectation, social context). So far, the influences from subjective factors have been 
largely explored by introspection and intuition, but this approach suffers from a lack of 
validity, generality, and precision. 

The techniques of psychologically oriented, controlled experimentation with 
groups of human participants can lead to a deeper understanding of the fundamentals of 
user experience in multimedia applications. The basic steps of a controlled 
experimentation is as follows: recognition of practical problems, coherent statement of 
testable hypotheses, manipulation of few independent variables, assessment of 
particular dependent variables, careful selection of experiment’s participants, design of 
careful tasks for participants to perform, application of statistical tools, and finally, 
interpretation of results [4].  

Subjective quality assessment is one approach of controlled experimentation to 
understand the effect of particular dependent variables on the perceived quality. The 
quality judgments are obtained from groups of human participants who are presented 
with stimuli, which consist of certain multimedia presentations of varying quality by 
manipulation of independent variables, in a controlled laboratory environment. This 
approach is a principal assessment method, in such a way that it is regularly carried out 
in the industry nowadays. For example, it is important for broadcasters to utilize human 
experts to evaluate varying range of encoded contents before they are transferred to be 
viewed by customers [5]. It is also important in the acceptance process of a new 
technology—testing a novel compression algorithm will certainly include evaluations 
that incorporate subjective quality assessments that are performed in laboratory 
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environments [6]. In addition, developing any perceptual quality metric, i.e.: a metric 
that takes into account human/user factor, certainly depends on the subjective data—
data that is collected from subjective quality assessment [7]. For this reason, subjective 
quality assessment is one significant stage toward development and acceptance of any 
QoE metric, and a noteworthy stage requiring special care and attention.  

Needless to say, the scientific method based on controlled experiments in a 
laboratory environment has its limitations. Finding adequate participants is sometimes 
difficult and laboratory conditions may distort the situation so much that the 
conclusions become unrealistic for the underlying application [8].  

Different applications can provide different variables due to their situational 
context. To give an example, the ways a user experiences a multimedia presentation on 
a mobile device versus a TV set are likely to be very different. From a situational point 
of view, there are more variables in a mobile application when compared to TV 
application, due to wider scenarios such as interactivity and outdoor use. In multimedia 
presentations, regardless of the application, QoE is dominated by the quality of content 
which require high bandwidth and considerable processing power. From this point of 
view, video, image, and audio are most critical in the modeling of QoE, and the need for 
better understanding of the impact of audio-visual information on perceived quality is 
critical. In this paper, we are going to illustrate our approach to understand QoE, 
focusing on the impact of visual information in D-Cinema. 

The paper reports findings while conducting perceptual experiments to study QoE 
in D-Cinema. We believe that carefully designed experimentations, such as subjective 
quality assessment, are among important steps toward QoE model development in D-
Cinema. We present issues that need to be addressed before conducting subjective 
quality assessment in D-Cinema environment, and discuss results with more emphasis 
on the content types and seating positions of participants during experiments. This paper 
is organized as follow. Section 2 discusses the subjective quality assessment in D-
Cinema. Section 3 provides the analysis and processing of the subjective data, and 
section 4 concludes the paper. 
 

2 Subjective quality assessment in D-Cinema 
 
In 2005 the Digital Cinema Initiative [9] concluded on using JPEG 2000 for 
compression of Hollywood feature films for the large screen. By this decision DCI 
initiated a large roll out of digital equipment to cinemas all over the world. Once digital 
equipment is installed it opens a whole new world for the theater owner to utilize this 
infrastructure outside of ordinary feature film screening. This paved way for the concept 
of alternative content, defines as everything else than the feature film and also opening 
for alternative compression algorithms. Our paper focuses on such alternative content 
displayed using DCI specified equipment and showed on the large screen in a real 
theater. 

Perceptual experiment design to collect subjective data for understanding overall 
QoE can be quite complex since the variables can be difficult to identify. In addition, 
some of these variables also provide cross-contextual and cross-modal effects. For this 
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reason, it is difficult if not even impossible to design and to conduct only one 
experiment to resolve the QoE measurement problem.  

In the exploration of QoE in D-Cinema, there are many research questions to start 
from. For example, in our early investigations, some of the research questions that we 
were interested in pursuing were as follows: 
 

- Which is the best video compression algorithm from the point of view of the 
cinemagoers? 

- What are the impacts of each modality, namely, audio and visual, on the overall 
quality of D-Cinema presentations? 

- Does the perceived quality depend on the content type, and how? 

 
Based on the research question along with its developed hypotheses [4], we first 

identify  dependent and independent variables for perceptual experiments. The 
dependent variables are the answers we seek from human participants in experiments, 
while independent variables are the factors whose values are controlled and varied in 
experiments. Next, the other related variables must be identified and controlled in order 
to prevent them from becoming confounding variables that taint experimental results.  

There are standardized methodologies recommended for perceptual experiments, 
but they are only applicable in some cases. These recommended methodologies are at 
times too restrictive as they mostly rely on traditional use cases from 
telecommunications and broadcasting. The main intention of such methodologies is to 
collect scores or data, representing the quality level. The most common approaches 
produce a Mean Opinion Score (MOS) to determine the quality. The MOS value is 
obtained by averaging quality scores from participants in perceptual experiments. The 
scores are based on direct scaling techniques using interval scale, e.g., a 5-point scale 
for quantification of the perceived quality representing 5 levels of quality (poor, bad, 
fair, good, and excellent).  Currently, MOS obtained from subjective visual quality 
assessment is considered a significant way of representing the visual quality of images 
or videos. There are sets of established recommended methodologies from ITU to 
perform subjective visual quality assessment [10, 11]. These recommendations rely on 
scenarios driven from telecommunication issues in television transmission, when 
watched on a CRT monitor. Despite this, we will still use the same approach, as the 
starting point in the design of our own subjective quality assessments in D-Cinema, but 
apply the necessary modifications to adapt to D-Cinema environment. 
 

2.1 Subjective visual quality assessment  

Our experiments are based on Recommendation ITU-R BT.500-11 [10], a widely used 
standard for subjective quality assessment. The document provides a thorough guideline 
describing the methodology for the subjective assessment of the quality of television 
pictures; it includes general viewing conditions, testing environment (laboratory or 
home), monitor resolution, monitor contrast, test materials selection in terms of 
anchoring or conditions, test methods, etc. Because our experiments are for D-Cinema, 
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we cannot literally adopt all the guidelines from ITU-R BT.500 as there are inherent and 
major differences between television and D-Cinema applications, particularly in the 
following subjects: 
 

- Viewing conditions 

The recommendation provides two alternatives for viewing conditions, i.e.: laboratory 
environment and home environment. Laboratory environment is intended to provide 
critical conditions to check the systems; on the other hand home viewing environment is 
intended to provide a means to evaluate quality at the consumer side of the TV chain. 
Viewing conditions also include the distance of participants from the display, which is 
expressed as a function of the projected frame size. There are considerable differences 
between TV and D-Cinema viewing environments and the screen sizes. Hence, adopting 
the values related to the viewing conditions and participants distances exactly as stated 
in the recommendation is not suitable. 
 

- Resolution and contrast 

These are related to the required conditions of luminance operating range for subjective 
assessments. Monitor contrast is strongly influenced by the environment illuminance. 
However, important to note that conditions described in recommendation BT.500 are 
based on the use of CRT monitors which are actually far away from D-Cinema. There is 
significant and obvious differences between stimuli viewed on a CRT monitor and 
stimuli viewed on a large screen (5 meter x 10 meter) projected  by a 2K or 4K 
projector. For this reason we do not adopt BT.500 recommendations with this regard. 
However, it is important to remember that illumination, contrast, and resolution issues 
indeed have influence on the rating of perceived quality; they are considered as the 
external variables in our experiments. In D-Cinema framework, equivalents can be 
drawn as variables of screen illumination and screen uniformity. We need to control 
these external variables since we only want values of independent variables to affect 
dependent variable—the perceived visual quality. Then, the issue is to measure values 
of these external variables to confirm whether they are in the range of realistic viewing 
conditions in D-Cinema. If the measured values are not realistic for D-Cinema 
applications, we must be able to control them somehow. The installation, regular 
calibration, and regular maintenance of the 4K projector used in our experiment,  were 
performed by Trondheim Kino AS [12], which indicates that the screen illumination and 
the screen uniformity values in our experiment were within the range of D-Cinema 
practices. 
 

- The source signals and test materials. 

The reference materials are often original undistorted materials that are considered 
perfect and used as references. The absence of important distortions in the reference part 
of the presentation pair is crucial to obtain stable results. Based on the DCI (Digital 
Cinema Initiatives) specifications [9], D-Cinema is based on 2K or 4K imagery, which 
is a significantly higher quality in terms of larger pixel counts per image when 
compared to  content mentioned in the recommendation BT.500. However, it is 
important to note that DCI is a joint venture of major Hollywood studios which primary 
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purpose is to establish and document voluntary specifications for digitization of all 
chains in the motion picture industry. Hence, the specifications described in DCI 
document are tailored to one specific traditional presentation: feature film screening.  In 
our purpose, we also interested in the case beyond feature film. We take into account 
the opportunity of applying alternative contents in Digital Cinema applications. Thus, 
we also utilized source signals and test materials based on HD contents. 
 
A number of adaptations were made in our assessment experiments. Subjective quality 
assessments were conducted in a commercial, DCI-specified D-Cinema theater in 
Trondheim, Norway. Thus, we believe the viewing conditions in the auditorium of an 
actual cinema provide realistic and representative viewing conditions. In our 
experiments, we set up the test as if the participants were watching a feature movie, i.e. 
in complete darkness. One issue came up in this situation; due to darkness, participants 
had difficulties marking down their quality ratings on the score sheets provided to them. 
For this reason, we provided them with clipboards and small intensity reading lamps. 

Regarding the test materials and the source signal for our stimuli, we used DCI-
specified test images StEM (Standard Evaluation Material) [13] and HD video contents. 
StEM is a 15-minutes 2K audiovisual test material. We selected nine frames from 
different type of scene in StEM to be utilized as stimuli of test images. Because we only 
took into account the luminance component of images in our study, the luminance 
component was extracted from each image resulting in nine gray scale 2K images. The 
whole set of test images was then split into a training set of two images, a dummy set of 
one image, and a testing set of six images. The images used for training and dummy 
sequence are illustrated in Figure E.1. The set of test images is shown in Figure E.2.  

 

Figure E.1: Training and dummy set of subjective quality assessment of image. 
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Figure E.2 Test set of subjective quality assessment of image. 

HD video contents were also used as test materials in our subjective visual quality 
assessment of motion pictures because we were also interested in exploring the 
perceived quality of alternative contents, which in D-Cinema practices are known as 
ODS (Other Digital Stuff). The data set was taken from the SVT High Definition Multi 
Format Test Set [14], EBU database [15], NRK [16], and NTIA/ITS database [17]. The 
dataset format was HD 1920x1080 progressive and converted into 30 fps, YCbCr 4:2:0 
format using VirtualDub [18]. The whole set of test sequences was split into a training 
set of two sequences from the NTIA/ITS database (Aspen and RedKayak), and a testing 
set of six sequences from SVT (CrowdRun, DucksTakeOff, OldTownCross, IntoTree, 
and ParkJoy), EBU database (Dancer), as well as a dummy set of one sequence from 
NRK used for stabilization. The dataset used for training and the dummy sequence are 
illustrated in Figure E.3. The set of test sequences is shown in Figure E.4. 

 

Figure E.3: Training and dummy set of subjective quality assessment of motion 
pictures. 
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Figure E.4: Test set. From top left to bottom right: CrowdRun, Dancer, DucksTakeOff, 
OldTownCross, IntoTree, and ParkJoy. 

 The stimuli of the experiments consist of test sequences with varying degree of 
quality. We selected the compression algorithm as a source of visual degradation 
because compression is an influential issue in D-Cinema; the quantity of data needed to 
represent high-quality imagery for D-Cinema in its native uncompressed form is 
staggering so that D-Cinema cannot become a practical form of business without 
significantly reducing the quantity of data [19]. There are several standardized 
compression techniques relevant to D-Cinema. Early experimental deployments have 
used a bloc-sized DCT-based system from QUALCOMM and a wavelet-based system 
from QuVis [19].  

The most well-known compression standards for images have been developed 
within the Joint Technical Committee (JTC) of the International Organization for 
Standardization (ISO) and the International Electrotechnical Commission (IEC). Two 
working groups within the JTC are responsible for a great deal of compression 
technology. The Joint Photographic Experts Group (JPEG) is well known for 
developing standards for the compression of static images, and the Moving Pictures 
Experts Group (MPEG) is well known for its standards for compressing video. MPEG-2 
is the most widely deployed compression system, being the basis for digital television 
systems. D-Cinema is not video, but both D-Cinema and video are moving image 
sequences, and the same techniques are applicable to both, even though the parameters 
may be very different. Proprietary extensions of MPEG-2 had also been utilized in early 
deployment of D-Cinema. Currently, there is a latest codec known as H.264/MPEG 
Advanced Video Codec (AVC) that offers twice the coding efficiency of MPEG-2. This 
popular motion-compensation-based compression scheme has potential for D-Cinema 
applications; it can be employed for use beyond traditional feature film screening due to 
high coding efficiency compare to MPEG-2. JPEG 2000 was created by the Joint 
Photographic Expert Group (JPEG) committee with the intention of superseding their 
original discrete cosine transform-based JPEG standard. In 2004, DCI selected JPEG 
2000, a wavelet-based compression scheme for still images and image sequences, as the 
technology choice for digital cinema picture tracks [19].  

The subjective image quality assessment was performed by examining a range of 
JPEG 2000 compressed contents by varying bit rates. Compression of image is 
generally implemented to ensure meeting transmission bandwidth or media storage 
limitations. In motion pictures industry practice, image compression much less 
dependent upon bandwidth or storage requirement, in that way making bit rate more 
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dependent on desired image quality. DCI system specification selected a maximum bit 
rates of 250 Mbits/sec [9]. However, since we are also interested in exploring 
alternative content for D-Cinema applications, we are interested in exploring and 
studying the perceived quality of bit rates that are significantly lower than bit rates used 
in motion pictures practice. In the design of a formal subjective test, it is recommended 
to maintain a low number of evaluation conditions in order to allow human participants 
an easier completion of their assessment task. Accordingly, 8 different conditions were 
applied to create 8 processed images from each source image. The selected conditions 
covered the entire range of quality levels, and the subjects were able to note the 
variations in perceived quality from each level to the next. This was verified prior to the 
subjective quality assessment with a pilot test that involved expert viewers in order to 
conclude the selection of the final bit rates. As a result of the pilot test, the selected bit 
rates were in the range of 0.01 to 0.6 bits/pixel. To create 48 processed gray scale 
images, 6 source images were compressed using the KAKADU software version 6.0 
[20], with the following settings: codeblock size of 64x64 (default), 5 decomposition 
levels (default), and switched-off visual frequency weighting.  

For the subjective motion pictures quality assessment, two codecs were 
considered. These were JPEG 2000 and H.264/AVC [21]. Even though H.264/AVC is 
not used in motion picture industry practice, we wanted to study the utilization of 
H.264/AVC in D-Cinema environment.   For JPEG 2000 coding, the Kakadu version 
6.0 was used. One configuration was used for encoding with parameters depicted in 
Table E.7. For H.264/AVC coding, the JM version 16.1 [22] was used. One 
configuration was used for encoding with parameters depicted in Table E.8. We also 
take into account alternative content screening practice, such as live transfer screening 
in D-Cinema, in which optimizing the bit rate of transferred content is useful factor. 
Consequently, we believe understanding perceived quality of lower-than-typical bit 
rates of compression techniques are relevant; this includes the issue how participants 
perceived the transparency of HD content. For this reason, the selected rate conditions 
were much lower than the typical bit rates used in feature film screening that reliably 
produce transparency and designed so that the participants were able to distinguish the 
differences in perceived quality from each level to the next. Due to the recommendation 
of maintaining a low number of evaluation conditions so that it is easier for participants 
to complete the assessment task, we applied four to five different bit rates for both 
compression techniques from each source of HD content. 

Table E.7: JPEG 2000 encoding parameters. 
Reference software Kakadu version 6.0 
Codeblock size 64x64 (default) 
Decomposition level 
Number of tile 
Visual frequency weighting 
factor 

5 level (default) 
One tile per frame (default) 
As recommended for D-Cinema 
environment [23] 

 
 

We adopted the simultaneous double stimulus method for presenting the stimulus 
to participants in subjective image quality assessment and the single stimulus with 
hidden reference method [10] for presenting the stimulus to participants in subjective 
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motion pictures quality assessment. Figure E.5 illustrates the presentation method and 
scale used. 

 

Table E.8: H.264/AVC encoding parameters. 

Reference software 
Profile 
Number of frames 
Chroma format 
GOP structure 
Number of reference frames 
Slice mode 
Rate control 
Macroblock partitioning for 
motion estimation 
Motion estimation algorithm 
Early skip detection 
Selective intra mode decision 

JM 16.1 
High (FREXT Profile) 
300 
4:2:0 
IBPBPBPBPBPBP 
2 
off 
Enabled (initial QP=30) 
Enabled 

 
Fast full search (default) 
Disabled 
Disabled 

 
Although the cinema could obviously accommodate all 20 participants at once, we 

designed the experiment in order to allocate only five participants per session. The main 
reason was to avoid influence of two additional factors: the distance of participants to 
the cinema screen, and the viewing angle. We chose the viewing distance (10 meters) to 
be 2 times the height of the screen. This resulted in subjects being placed in the 6th row. 
In order to maintain a centralized viewing condition for all participants, only 5 seats 
were allocated for participants in this row. The participants’ exact position during the 
experiments is illustrated in Figure E.6 and Figure E.7.  
 

 

Figure E.5: Presentation method and scale. 
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Figure E.6: Participants’ position at the 6th row. 

 

 

Figure E.7: Participants located at the 6th row from the screen. 
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3 Processing and analysis of subjective data  

3.1 Processing subjective data 

In order to have a meaningful result from the scores collected from participants in the 
experiments, they should be processed based on principle derived from statistics. The 
data collected from subjective quality assessment can be described by the Eq. (1) 
 

     (1)  

           
 
Here, mi,j is a quality score obtained from participant i after scoring stimulus j;  is 

the overall mean of collected scores across all participants and all stimuli; i is the 
participant effect;  j is the specific treatment or stimulus j effect; i,j represents the 
experimental error.  

Based on this model, it is not wise to estimate the MOS (Mean Opinion Score) by 
averaging raw scores—the exact scores obtained from all participants—of each stimulus 
because we disregard the participant effect i (e.g., how each participant uses the quality 
scale to score, etc.) and the experimental error i,j. Figure E.8 and Figure E.9 shows how 
participants' scores can vary.  Consequently, we believe that it is important to 
statistically process the scores before estimating the MOS. Figure E.10 illustrates the 
stages that were performed on our data. The first stage of subjective data analysis is a 
process called descriptive analysis [4]. The purpose of descriptive analysis is to check 
the statistical assumptions, such as the data distribution and the homogeneity of 
variance across tested combinations of independent variables. 

 

3.1.1 Processing of scores in subjective image quality assessment 

We observed the skewness value and compared it to its standard error, in which 
skewness value of the data (0.048) is not greater than twice the value of its standard 
error (0.066); it indicated the data distribution is not departing from normal distribution 
[24]. 

Based on the model given in Eq. (1), it is relevant to analyze the effect on scoring 
by each participant. In other world, checking whether there are significant differences 
between the ways participants used the quality scale when scoring stimuli. This can be 
achieved using a parametric test like ANOVA (analysis of variance). However, 
ANOVA is only suitable for data that is normally distributed and whose variance is 
homogeneous. 
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Figure E.8: Illustration of scores variations among twenty participants in subjective 
quality assessment of still images. 
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Figure E.9: Illustration of the scores variation among twenty participants in subjective 
quality assessment of motion pictures. 

 

 

Figure E.10: Process stage of data analysis. 

 
We performed Levene test to check the homogeneity of variances of the scores. 

The result [F(28,1363)=2.246, p<0.05] showed that the null hypothesis in which the 
variances are homogeneous is rejected. This indicates that the variance of scores 
collected from the experiments was not homogeneous.  

We can use the non-parametric Kruskal-Wallis analysis of variance instead. This 
test was performed on the raw scores across the participants (the participant is the 
independent variable).  The differences between participants were significant, with 
H(28) = 85.089, and p<0.05. This indicates that indeed there were significant variations 
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of subjective scores among participants which can be caused by differences in the way 
participants used the quality scale to judge the quality of the stimuli. We can also 
perform alternative parametric test Welch and Brown-Forsythe test [25] which do not 
require a homogeneous variance assumption to indicate the significant variations 
between participants scores. The result of Welch test [F(28)= 3.098, p<0.05] and 
Brown-Forsythe test [F(28) = 3.123, p<0.05) confirm the result of the non-parametric 
test. 

Consequently, a participant-to-participant correction was applied by normalizing 
all the scores according to an offset mean correction [26], which is given by Eq. (2) and 
Eq. (3). 

     (2) 

      (3) 
 

is the normalized score of participant i for stimulus j;  is the score of subject i for 

stimulus j;  is the corrected offset for participant i;  is the average score across all 
participants and all stimuli. 
 

An  outlier detection was performed according to the guidelines described in 
section 2.3.1 of annex 2 of recommendation ITU-R BT. 500-11 [10]. One outlier was 
detected out of 29 participants. 
 

3.1.2  Processing of scores in subjective quality assessment of motion 
pictures 

 
We used a Shapiro-Wilk test to verify the normality of distribution of scores obtained 
from participants. The computed p-value was equal to 0, which indicates that the 
distribution was not normal. We checked the skewness value (0.439) to verify the result 
of Shapiro-Wilk test, and it was larger than twice of its standard error value (0.070) that 
indicates indeed a non normal distribution. 

We used a non-parametric Kruskal-Wallis analysis of variance [24] instead of 
parametric test since the normality distribution assumption of the subjective scores was  
rejected.  

The differences between participants were significant, with H(19) = 78.354, and 
p<0.05. This indicates that indeed there were large variations in means of subjective 
scores among participants, i.e. there were significant differences between the ways 
participants used the rating scale to judge the quality of the stimuli. Figure E.9 
illustrates these differences. Consequently, a participant-to-participant correction was 
applied by normalizing all the scores according to offset mean correction, given by Eq. 
(2). 
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Then, an outlier detection was applied to the normalized scores according to the 
guidelines described in section 2.3.1 of annex 2 of recommendation ITU-R BT. 500-11 
[10]. Two outliers were detected out of 20. 

3.2 Procedures for estimation of mean opinion scores 
MOS was calculated by averaging the scores of each stimulus from participants who 
were not outliers. The MOS with its 95 % confidence interval for all stimuli from 
subjective image quality assessment are shown in Figure E.11. We investigated if there 
were significant differences between different stimuli (bpp values) in order to check if 
the differences between bpp values were statistically meaningful. Levene’s test results 
[F(7)=6.5, p<0.05] indicate that the variances of the data samples are not homogeneous. 
Because of the Levene’s test results, we used an alternative analysis of variance Welch 
and Brown-Forsythe test. The results of Welch test [F(7)=662.6, p<0.05] and Brown-
Forsythe test [F(7)=561.62, p<0.05] indicate that there are indeed significant 
differences, and these significant differences exist between scores for all bpp values as 
shown by post-hoc analysis using Games-Howell test. The MOS with its 95 % 
confidence interval for all stimuli for two different types of compression technologies—
JPEG 2000 and H.264/AVC— from subjective motion pictures quality assessment are 
shown in Figure E.12. Using non-parametric test (Kruskal-Wallis test), the results show 
there are significant differences on the collected subjective data between two 
compression techniques [H(1) =  406.213), p<0.05]; Figure E.13 also supports the 
results of Kruskal-Wallis test.  

There is a high expectation demanded from D-Cinema applications; they deliver 
high quality multimedia presentation to the cinemagoers. Consequently, the issue of 
transparency in the perceived quality of visual presentation is important. With regard to 
the subjective scores obtained from subjective visual quality assessment, it is reasonable 
to assert that the transparency of visual stimulus is reached when the users perceived the 
visual quality as excellent which is expressed in the score of 9 or 10. In the subjective 
image visual quality assessment, scores of all references (uncompressed contents) reach 
transparency region, which was expected. We observed that for images compressed at 
0.6 bits per pixel, the transparency region is reached consistently. As shown in Figure 
E.11, the higher the JPEG 2000 bit rates, the higher MOS value is reached, which was 
expected, even though the MOS values differed for different contents. For Image 3 and 
5, the MOS of reference image are lower than the MOS of images compressed at 0.6 
bits per pixel though the scores are still within the transparency region. However, if we 
look closely how the MOS differences between reference and 0.6 bpp rate of these two 
images, the subjective scores of these two conditions are overlap within 95% confidence 
interval, which suggested that the MOS differences are not significant. 

 157



 

 

Figure E.11: Computed MOS of each stimulus with its 95 % confidence interval from 
subjective image visual quality assessment. 
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Figure E.12. Computed MOS of each stimulus with its 95 % confidence interval from 
subjective visual quality assessment of motion pictures. 
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Figure E.13: The boxplot of scores from subjective quality assessment of motion 
pictures in D-Cinema grouped by different codecs. 

In the subjective visual quality assessment of motion pictures, the behavior of the 
collected subjective scores is rather distinctive, notably in the following issues: 
 
1. Transparency  
The transparency region of 9 or 10 score is not reached; there is no excellent quality 
representation of the obtained MOS from all compressed condition—both for JPEG 
2000 and AVC/H.264. In spite of this, it is vital to see that participants did not judge the 
quality of the reference (uncompressed) conditions, which are transparent contents, as 
excellent. It appears that the participants experienced high ambivalence utilizing the 
highest end of quality scale when judging the quality of the stimulus, which is different 
with what occurred at the subjective image quality assessment. The significant 
difference between the subjective image quality assessment and the subjective motion 
pictures quality assessment beyond the stimulus factor is the presentation test method in 
the experiments. In the subjective image quality assessment, we used simultaneous 
double stimulus in which the stimulus was always displayed alongside the 
uncompressed sequence as seen in Figure E.15. Consequently, the participants always 
had comparison of the reference when judging the quality of stimulus which made them 
use the highest end of quality scale because the participant know what to expect 
regarding the excellent quality of visual presentation. On the other hand, we used single 
stimulus with hidden reference method in the subjective quality assessment of motion 
pictures. The participants were not informed that there were some uncompressed 
(perfect) sequences during the experiments; they were only asked to judge the quality of 
short sequence of HD presentation series. Due to the absence of reference point during 
the judgment of each stimulus, the participants possibly would use their own conceptual 
reference point from their expectation and experience from watching feature films in the 
cinema which resulted in their hesitancy to give the highest score during viewing 
sequence.  MOS values of the uncompressed transparent contents which in theory 
should attain excellent quality (score of 9 or 10) only reached the good quality (score of 
8). Accordingly, we can infer that the level of transparency region obtained from our 
subjective motion pictures quality assessment is lower compared to the level obtained 
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from our subjective image quality assessment; in motion pictures case score of 8 is 
already representing the value of transparent content. 

 
2. Compression algorithm 
It can be seen that for the same bit rate value for each test sequence, H.264/AVC 
encoded sequences received a higher MOS compared to the JPEG 2000 encoded ones. 
This is apparent for all selected bitrates of all contents. This result was anticipated, since 
only the H.264/AVC algorithm employs motion estimation. Motion estimation provides 
a considerable level of temporal compression that is capable of providing significant 
improvement in coding gain without loss of perceived quality. Consequently, there is a 
significant impact on the coding gain of H.264/AVC compared to the coding gain of 
JPEG 2000. However, making a final conclusion on which is the best compression 
algorithm providing the better performance solely based on the MOS as computed from 
the subjective data in this experiment is not possible. Such a comparison would have the 
nature of an apple and orange comparison. But it is important to note that the MOS of 
H.264/AVC indicates it is possible to employ a compression algorithm that take into 
account temporal compression such as H.264/AVC for presentation in D-Cinema, i.e.: 
for ODS application, such as live transfer event screening in D-Cinema in which high 
coding gain is a more appealing feature. 

 
3. Perceived quality 
There are repeated patterns shown in the higher end spectrum of perceived visual 
quality in the contents of Dancer, IntoTree, and ParkJoy. The highest MOS of perceived 
visual quality are not obtained by the highest bit rates of H.264/AVC. In the content of 
IntoTree, the uncompressed content did not even get the highest MOS for its visual 
quality. We knew that the uncompressed content is a transparent content, and these 
results happened in the transparency region (score of 8 or above) where the MOS of 
reference contents were reached. One possible explanation is that up to certain bit rate 
(especially in the context of H.264/AVC), saturation, in which the participants could not 
differentiate any visual quality differences among test conditions, is happening due to 
transparency; the participants did not perceive any artifacts from compression error.  In 
addition, the lack of using the highest end quality scale during judgment cause the MOS 
score to not extend to the highest values. The saturation could also explain the pattern 
shown beyond Dancer, IntoTree, and ParkJoy, i.e.: in CrowdRun content, saturation is 
even reached at 10.7 Mbps. In the content of OldTownCross, in which the 
uncompressed even get MOS of lower than 8, this type of pattern even already arrived 
at 3 Mbps.  

3.4 Content types 

From Figure E.11 and Figure E.12 it can be observed that there are different MOS 
values for different stimuli (bpp or bit rate value). It is essential to further investigate 
the reasons behind these differences and understand their origins. Therefore, here, we 
investigate whether there are significant differences in subjective quality scores for 
different contents. The parametric test can be used to test these differences. First, we 
need to check whether the data distribution of the corrected score is normal. Skew value 
(0.02) of the corrected score is less than twice its standard error (0.07) which indicates 
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that we can apply a parametric test on our corrected scores since the distribution is not 
seriously departing from normal. Levene’s test on our data [F(5)=2.7, p<0.05] indicates 
the variances are heterogeneous. Because of the Levene’s test results, instead of using 
ANOVA to test the differences of scores between image types, we use alternative 
analysis of variance, Welch and Brown-Forsythe test. The results of Welch test 
[F(5)=15.9, p<0.05] and Brown-Forsythe test [F(5)=16.16, p<0.05] indicate that there 
are indeed  significant differences of scores for different contents. The post-hoc analysis 
of Games-Howell shows that scores from Image 2 and Image 4 are significantly 
different in other images.  

There are different characteristics in the selected content types in our experiments, 
and this may have influenced how subjects perceived the quality in different images. 
ITU-T Recommendation P.910 [11] which contains recommendations for subjective 
quality assessment methods for multimedia applications states that particular 
characteristics—spatial and temporal perceptual information of the scenes—are critical 
parameters.  Spatial perceptual Information (SI) is based on the Sobel filter, which is 
used for edge detection. Each luminance value of the frame is processed by Sobel filter. 
Then, standard deviation in each filtered frame is computed. The maximum value in the 
time series is the SI value. Temporal perceptual Information (TI) is based on the motion 
difference feature which is the difference between the luminance values of successive 
frames. The TI of the content is computed as the maximum standard deviation of the 
differences over time. The measured SI values of our test images are illustrated in 
Figure E.14. 

Based on the calculated SI, we can categorize our image contents into low SI (SI 
< 50), which consists of Images 1, 3, 5, and 6, and high SI (>50), which consists of 
Image 2 and 4. Hence, the spatial complexity of the content indicates the reason behind 
the significant differences of scores of Images 2 and 4, when compared to other images. 

We also performed the same spatial and temporal analysis on the motion pictures 
stimulus from our subjective quality assessment of motion pictures. The spatial 
information (SI) and temporal information (TI) of the motion pictures are also 
illustrated in Figure E.14.  

We also would like to test whether there are differences on the subjective score 
among different motion pictures. The analysis was performed on the corrected scores. 
The results of Shapiro-Wilk test (p<0.05) and distribution skew value, in which the 
skew value (0.4) is more than twice its standard error (0.16), indicate that the corrected 
scores are not normally distributed. Consequently, using parametric test is not suitable. 
The results of Kruskal Wallis test show that there are significant differences of the 
scores between different contents [H(5)=23.33 and p<0.05]. 

Based on the calculated SI and TI indexes, the test material is divided into 4 
category—Low SI and Low TI, High SI and Low TI, High SI and High TI, and Low SI 
and High TI, by dividing the area illustrated Figure E.14 into four separate regions. 
Using non parametric testing, the Kruskal Wallis test, there are significance differences 
on the collected subjective data between different categories [H(3)=8.049 and p<0.05]. 
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Figure E.14: Spatial information and temporal information of the test sequences of 
subjective visual quality assessment. 

 

Figure E.15: Presentation of the stimulus in the subjective image quality assessment.  

3.5 Participant’s position 

In our image quality assessment in D-Cinema, we used simultaneous double stimulus 
method: the reference image was always presented with the processed image as 
illustrated in Figure E.15. The participants had to judge the quality of the processed 
image on the right hand side of the screen and compared it to the reference image on the 
left hand side of the screen. In the human visual system (HVS), eye movement is 
typically divided into fixation and saccade. Fixation is the maintenance of the visual 
gaze on a single location. Saccade refers to a rapid eye movement. Humans do not look 
at a scene in fixed steadiness, instead, the human fovea sees only the central 2º of visual 
angle in the visual field and fixed on this target, then moves to another target by 
saccadic eye movements [27]. Saccades to an unexpected stimulus normally take about 
200 milliseconds to initiate, and then last about 20-200 milliseconds, depending on their 
amplitude (20-30 milliseconds is typical in language reading). In image quality 
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assessment, quality evaluation is taking place during eye fixation when the fovea can 
perceive the visual stimulus with maximum acuity [28]. Thus, when viewing a picture 
on a large screen in the D-Cinema, participants cannot see an entire image at once and 
evaluate distortions in all regions in this picture. Due to these factors (HVS 
characteristic and the stimulus presentation method) the viewing angle of the 
participants can have an impact on the quality judgment. 

The seat location of the participants during experiments is a factor that determines 
the viewing angle of participants. Hence, position of the participants can have an effect 
on the subjective scores. Figure E.16 illustrates the box plot of the subjective scores 
from our image quality assessment in the cinema grouped by the position of the 
participants.   
 

 

Figure E.16: The scores of subjective image quality assessment in D-Cinema grouped 
by 5 different positions of the participants. 

Figure E.16 indicates that the participants’ positions do not have significant 
impact on the collected quality score. The results of Welch [F(4)=0.434, p=0.789] and 
Brown-Forsythe [F(4)=0.430, p=0.787] tests support this observation. Further analysis, 
using two-way ANOVA with participant position and content type as dependent 
variables also shows that the position does not have significant impact on the subjective 
scores [F(4)=0.450, p=0.773], and so does the interaction between content type and 
position [F(20)=0.234, p=1]. 

Figure E.17 which shows the box plot of the scores from subjective quality 
assessment of motion pictures grouped by participant’s position also indicates that the 
position of the participants do not have a significant influence on the quality scores. 
Further analysis using non parametric testing, the Kruskal Wallis test, [H(4)=0.348 and 
p=987] confirms the same. 
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Figure E.17: The scores of subjective quality assessment of motion pictures in D-
Cinema grouped by 5 different positions of the participants. 

4 Conclusion 
QoE always puts the end-user at the centre of attention and it is a multidimensional 
concept, which consists of several objective and subjective parameters. This contributes 
to the difficulty of quantifying QoE. In this paper we focus on the subjective quality 
assessment for D-Cinema application because we believe it is an important aspect in 
studying QoE for D-Cinema; it is the basis to understand the perceived quality and is 
useful for developing a mature QoE model for D-Cinema.  For this reason, subjective 
quality assessment for D-Cinema applications must be carefully designed. We applied 
existing recommendations methodology for the assessment and made several proper 
adjustments. Our study showed that due to the different and unique digital image 
content and viewing conditions of D-Cinema, quality research of D-Cinema especially 
in the context of QoE is not really in the same category as other applications. In our 
study, we focus on the alternative content scenario in D-Cinema. Consequently, it 
influences the experimentation of selected parameters for stimuli.  Before MOS value is 
computed, thorough statistical processing of obtained subjective data is conducted. The 
results show that content type is a significant factor that influences the perceived visual 
quality for both image and motion pictures quality. In our assessment of motion 
pictures, we also showed the result of the differences between two compression 
algorithms. Initial impression of our study showed that the stimulus presentation 
method influenced how participants used the quality scale when judging the perceived 
visual quality. Participants seem confident using the highest end of quality scale when 
judging the transparent stimuli when simultaneous double stimulus method was 
employed during subjective visual quality assessment of images, on the other hand 
participants showed hesitancy using the highest end of quality scale when judging the 
transparent stimuli when single stimulus method was employed during subjective visual 
quality assessment of motion pictures. 
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QoE is affected by several factors including perception, sensations, and 
expectations of users as they consume digital content presented to them using their 
perceptual sensors. In D-Cinema the main perceptual sensors are sight and hearing; 
consequently, perceived audiovisual quality in D-Cinema are integral in QoE research.  
As an extension of this work we performed subjective audiovisual quality assessment to 
study the mechanisms of QoE in D-Cinema [29] 
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Appendix A: Interfaces Supported by Cinema 
Projectors 

Table I: The Interfaces Supported by SRX-R210 Projector 

Resolution Remarks 
1024 x 768 at 60 Hz (XGA) VESA 
1280 x 960 at 60 Hz (SXGA1) VESA 
1280 x 1024 at 60 Hz (SXGA2) VESA 
1400 x 1050 at 60 Hz (SXGA+) VESA 
1600 x 1200 at 60 Hz (UXGA) VESA 
2048 x 1080 at 60 Hz (DC)  
1920 x 1080 at 24 Hz (HD)  
2048 x 1080 at 24 Hz (DC)  
1920 x 1200 at 59.95 Hz Reduced Blanking 
(WUXGA) 

VESA 

1920 x 1080 at 60 Hz (HD) EIA/CEA-861B 
2048 x 1080 at 48 Hz (DC)  

 
 

Table II: The Interfaces Supported by CP2230 Projector 

Source 
Standard 

Original 
Source 
Resolution 

Vertical 
Frequency 
(Hz) 

Scan Type Display 
Frame Rate 
(Hz) 

SMPTE 296M 1280 x 720 23.98/24 Progressive 23.98/24 
SMPTE 296M 1280 x 720 25 Progressive  25 
SMPTE 296M 1280 x 720 29.97/30 Progressive 29.97/30 
SMPTE 296M 1280 x 720 48 Progressive 48 
SMPTE 296M 1280 x 720 50 Progressive 50 
SMPTE 296M 1280 x 720 59.94/60 Progressive 59.94/60 
SMPTE 296M 1280 x 720 100 Progressive 100 
SMPTE 296M 1280 x 720 120 Progressive 120 
SMPTE 274M 1920 x 1080 23.98/24 Progressive 23.98/24 
SMPTE 274M 1920 x 1080 25 Progressive 25 
SMPTE 274M 1920 x 1080 29.97/30 Progressive 29.97/30 
SMPTE 274M 1920 x 1080 48 Progressive 48 
SMPTE 295 1920 x 1080 50 Progressive 50 
SMPTE 274M 1920 x 1080 59.94/60 Progressive 59.94/60 
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Original 
Source 
Resolution 

Vertical 
Frequency 
(Hz) 

Scan Type Display 
Frame Rate 
(Hz) 

SMPTE 274M 1920 x 1080 23.98/24 Interlaced 11.99/12 
SMPTE 274M 1920 x 1080 25 Interlaced 12.5 
SMPTE 274M 1920 x 1080 29.97/30 Interlaced 14.985/15 
SMPTE 274M 1920 x 1080 48 Interlaced 24 
SMPTE 295 1920 x 1080 50 Interlaced 25 
SMPTE 274M 1920 x 1080 59.94/60 Interlaced 29.97/30 
SMPTE 274M 1920 x 1080 100 Interlaced 50 
SMPTE 274M 1920 x 1080 120 Interlaced 60 
SMPTE RP 211 1920 x 1080 23.98/24 Progressive (sF) 23.98/24 
SMPTE RP 211 1920 x 1080 25 Progressive (sF) 25 
SMPTE RP 211 1920 x 1080 29.97/30 Progressive (sF) 29.97/30 
 640 x 480 23.98/24 Progressive 23.98/24 
 640 x 480 25 Progressive 25 
 640 x 480 29.97/30 Progressive 29.97/30 
 640 x 480 48 Progressive 48 
 640 x 480 50 Progressive 50 
 640 x 480 59.94/60 Progressive 59.94/60 
 640 x 480 100 Progressive 100 
 640 x 480 120 Progressive 120 
 720 x 525 23.98/24 Interlaced 11.99/12 
 720 x 525 25 Interlaced 12.5 
 720 x 525 29.97/30 Interlaced 14.985/15 
 720 x 525 48 Interlaced 24 
 720 x 525 50 Interlaced 25 
 720 x 525 59.94/60 Interlaced 29.97/30 
 720 x 525 100 Interlaced 50 
 720 x 525 120 Interlaced 60 
DCI 2048 x 1080 24 Progressive 24 
DCI 2048 x 1080 48 Progressive 48 
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