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Abstract

To �nd the solution to large dense systems have always been a very time con-
suming problem, this thesis tries to accelerate this problem by implementing an
highly pipelined conjugate gradient method on an FPGA, it has been used to
solve dense systems of linear equations and has been tested and compared to a
software version of the algorithm. The FPGA where capable of utilizing 90 %
of the available memory bandwidth, in addition it is shown that the FPGA im-
plemented Conjugate Gradient Method can be 30x faster compared to a custom
made Conjugate Gradient method in software.
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Part I

Introduction

Field programmable gate arrays have traditionally been used to accelerate dig-
ital signal processing(DSP) applications and other applications where �oating
point arithmetic where not needed. However the logic density on FPGAs have
now become very high, in addition, FPGA vendors like Altera and Xilinx have
started to incorporate hard multipliers and memory-blocks directly into the logic
fabric of their FPGAs. This has made it possible for researchers to study the
possibility of making and implementing �oating point arithmetic modules in
FPGAs, many di�erent attempts to do this can be read about in [2, 4, 3, 8, 13].
Moreover, FPGA vendors have also made �oating point arithmetic IPs that are
optimized for their FPGA architectures. As a consequence applications that tra-
ditionally have been implemented in software, for instance scienti�c computing
that require �oating point arithmetic have become available for implementation
on FPGAs. A problem that can be found in many di�erent areas of scienti�c
computing is to �nd the solution to systems of linear equations.

Conjugate Gradient Method is one of the most used iterative methods to
solve systems of linear equations. It is very e�ective on sparse systems of lin-
ear equations where direct methods are not applicable. However it can also be
very e�ective on large dense systems of linear equations. Dense systems of lin-
ear equations can come from many di�erent algorithms for instance, boundary
element method [12], semi-de�nite programming and support vector machines
[9], these like most other scienti�c problems demands high precision �oating
point arithmetic to be able to be solved. Because of this they have traditionally
been implemented in software and solved by CPUs because of the high preci-
sion numbers they have supported for many years and because they are very
easy to program compared to FPGAs. However operations that the Conjugate
Gradient Method are using, like matrix-vector multiplication and dot-product
calculations have been showed by Underwood [15] to be much more e�ciently
implemented in FPGAs, he also predict that they will be able to be one order
of magnitude more e�cient in BLAS operation than CPUs in 2010.

In [10] they have implemented a highly pipelined version of Conjugate Gra-
dient Method used to solve dense systems of linear equations. They were able to
get a very high performance because they stored the matrix in the logic fabric
of the FPGA instead of storing it in external memory, as a consequence of this
they were only able to solve small matrices. A Gaussian implementation have
been studied in [16], this is however also only capable of solving small matrices.

This thesis will continue on the work done in [5], in that study the Conjugate
Gradient Method where implemented in SystemC to test if it would be e�ective
to implement the Conjugate Gradient method on an FPGA, it was found that
as long as the matrix-vector multiplication was solved e�ciently and the exter-
nal memory where read large chunks at a time it was possible to accelerate the
Conjugate Gradient Method using an FPGA. In this thesis the Conjugate Gra-
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dient Method will be implemented on an FPGA and tested on larger matrices
that was not possible to do in the preliminary study. The possibility of using
Preconditioning to accelerate the algorithm even more will also be studied.
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Part II

Theory

1 Algorithms that �nds the solutions to systems

of linear equations

Finding the solution to systems of linear equations have always been an im-
portant problem in mathematics, hence many di�erent methods have been de-
veloped. These will be mentioned in this section. There are two categories of
algorithms that can be used to �nd the solution to systems of linear equations,
the older direct methods and the newer iterative methods that are more suitable
to be implemented on a computer.

Direct methods are methods that �nds the solution to systems of linear
equations by decomposing the matrix into a canonical form which can then be
solved easier compared to solving the system with the original matrix. They are
able to �nd the solution in a �nite number of steps, but the speed of decomposing
the matrix is very dependent on the size of the matrix, hence they are very
ine�cient on large matrices.

Examples of direct methods can be seen in table 1. A Gaussian elimination
algorithm have been implemented on FPGA and can be seen in [16].

Direct methods

Gaussian Elimination
LU Decomposition

Cholesky decomposition
QR-decomposition

Table 1: Direct Methods

The iterative methods can further be divided into two categories the sta-
tionary iterative methods and the non-stationary iterative methods.

The stationary iterative methods can be expressed as x(i) = Ax(i−1) + c,
where neither A nor c depends on the iteration i. These methods usually con-
verge much slower than the non-stationary methods, but can be used as precon-
ditioners to the more advanced non-stationary methods. Di�erent stationary
iterative methods can be seen in table 2. The Jacobi method have been imple-
mented in an FPGA and can be seen in [11].
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Stationary iterative methods

Jacobi method
The Gauss-Seidel method

The successive over-relaxation method (SOR)
The symmetric Successive Over-relaxation method (SSOR)

Table 2: Stationary iterative methods

The non-stationary iterative methods di�er from the stationary iterative
method in that they use information that changes in every iterations to compute
the result. Most of these are based on �nding and using sequences of orthogonal
vectors to �nd the solution to the system of linear equations. These methods
start by guessing the solution, this will be the �rst approximation, it then builds
on this approximation in each iteration to make it closer and closer to the
real solution. The e�ciency of iterative solvers usually depends more on the
condition number of the coe�cient matrix than on the size of the matrix, this
makes them very attractive to use on large matrices which will be to large for
the direct method to solve e�ciently.

Some example of non-stationary iterative methods can be seen in table 3:

Non-stationary Iterative Methods

Conjugate Gradient Method (CG)
Minimum Residual (MINRES)

Conjugate Gradient Squared (CGS)
BiConjugate Gradient (BiCG)

Table 3: Non-stationary iterative methods

More information about the di�erent algorithms can be seen in [1]. The
Conjugate Gradient method is an iterative non-stationary method as can be
seen in table 3. This algorithm will be explained in more detail in the next
section.

2 Conjugate Gradient Method

Conjugate Gradient method was �rst proposed by Hestenes and Stiefel in [6].
It has become one of the most popular and well known iterative methods for
solving systems of linear equations. It is mostly used for very large sparse ma-
trices where it is not possible to use a direct methods like for instance Gaussian
elimination, but it can also be very e�ective for large dense systems.

The system of linear equations can be written in the matrix form: Ax = b,
where x is the unknown vector, b is the known vector and A is the coe�cient
matrix . The algorithm works by constructing a set of mutually conjugate
search directions, hence the name Conjugate Gradient method. To be certain
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that the Conjugate Gradient Method will work, the matrix A need to be square,
symmetric and positive de�nite as de�ned under.

• A = AT ,

• xTAx > 0 for all nonzero vectors x.

Dense systems comes into play in many important settings, for instance, struc-
tural analysis, semi-de�nite programming , support vector machines and bound-
ary element formulations typically give rise to fully populated matrices. In the
Conjugate Gradient method the start point x(0) can be chosen arbitrarily, but in
the solution presented here it will always start in the origin, this means that all
elements in the x vector starts at zero. The Conjugate Gradient Method have
some big advantages compared to other methods, for instance, it only needs to
store 5 vectors that can be updated and replaced in every iteration. Another
big advantage is that it only needs to perform one matrix-vector multiplication
every iteration, this will save alot of time since this is the most time consum-
ing operation in the algorithm. The Conjugate Gradient Method will in theory
�nd the solution x in less than N iterations, where N is the number of rows in
A. However, accumulated �oating point round o� error causes the residual to
gradually lose accuracy, and cancellation error causes the search direction to
lose A-orthogonality, hence, this does not always happen in practice.

2.1 Conjugate Gradient functionality

The Conjugate Gradient Method starts by setting r(0) = b − Ax(0), if x starts
in the origin this will simplify to r(0) = b, the algorithm then proceeds to �nd
the approximate solution to the problem in an iterative way by constructing
iterates of the form x(i+1) = x(i)+αd(i), where d(0)...d(n) is the search direction
vectors. The search directions are constructed to be mutually conjugate to each
other to satisfy the conjugacy property dT(i)Ad(j) = 0, where i 6= j. α can
be thought of as the step-length taken in the current search direction d(i). α

is calculated by α =
rTi+1)r(i)

dT
(i)
Ad(i)

. The residual is updated by subtracting αAd

from the last residual, this will make it orthogonal to the last residual. The
residual can be updated by either using the simple recurrence r = r − αq or a
matrix-vector multiplication r = b − Ax, because of this choice the Conjugate
Gradient Method became very popular since it only needs one matrix-vector
multiplication in each iteration. The disadvantage of using the recurrence is
that the residual is generated without any feedback from x, this can cause the
algorithm to converge to a point near x because of accumulated round o� error.
By using the matrix-vector multiplication instead of the recurrence once in a
while it is possible to get rid o� the accumulated round o� error. In [14] it is
recommended to use it every

√
N iteration. The residual indicates how far we

are from the correct value of b, the smaller the residual is the closer we are to
the correct solution. This can easily be seen by looking on the formula for the
residual r = b−Ax, if r is zero then Ax = b , hence the solution has been found.
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β is the Gram-Schmidt constants that are used to make the search direction
A-orthogonal to all the past search directions. β is constructed by the ratio of

the current and last residual, β =
rT(i+1)r(i+1)

rT
(i)
r(i)

.

It is normal to stop when the norm of the residual, δNew , falls below a
speci�ed value often this value is some small fraction of the initial norm of the
residual, || r(i) ||< ε2 || r(0) ||.

The di�erent variables that the Conjugate Gradient Method use has been
summarized in table 4.

Variable Type Description

A Matrix The coe�cient matrix
b Vector The known vector
x Vector The unknown vector
r Vector The residual
d Vector The search direction
q Vector The result of the Matrix-vector multiply
α Scalar Step-length
β Scalar Gram-Schmidt constants that is

used to �nd the next
A-orthogonal search direction

ε Scalar The error tolerance

Table 4: The variables used in the Conjugate Gradient Method

The complete algorithm for the conjugate gradient method can be seen in
algorithm 1.
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Algorithm 1 Conjugate Gradient Method

x(0) = 0

r(0) = b

d(0) = r(0)

δNew = rT(0)r(0)

δFirst = δNew

While(δNew > ε2δFirst) do

q(i) = Ad(i)

α = δNew

dT
(i)
q(i)

x(i+1) = x(i) + αd(i)

r(i+1) = r(i) − αq(i)

δOld = δNew

δNew = rT(i+1)r(i+1)

β = δNew

δOld

d(i+1) = r(i+1) + βd(i)

2.2 The Conjugate Gradient Method example

A simple example of the algorithm is provided to help the reader get a good
understanding of how the di�erent variables in the Conjugate Gradient Method
develop over the iterations, the results can be seen in table 5. The simple

example system of linear equation used is:

[
3 2
2 4

][
x1
x2

]
=

[
3
4

]
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Variable Initialization Iteration 1 Iteration 2

q [0, 0]
T

[17, 22]
T [

−8.3× 10−2, 6.2× 10−2
]T

dT q 0 139 7.4× 10−3

α 0 0.18 0.7

δOld 0 25 5.2× 10−3

δNew 25 5.2× 10−3 10−31

r [3, 4]
T [

−5.8× 10−2, 4.3× 10−2
]T [

10−16, 10−16
]T

x [0, 0]
T

[0.54, 0.72]
T

[0.5, 0.75]
T

β 0 2.1× 10−4 10−28

d [3, 4]
T [

−5.7× 10−2, 4.4× 10−2
]T [

10−16, 10−16
]T

Table 5: Conjugate Gradient Method Example

As can be seen in the example, the answer x is approximately correct in the
�rst iteration and then in the second iteration it is correct, this is one of the big
advantages of Conjugate Gradient method, it can be stopped before the exact
answer is found if an approximate answer is good enough. Another important
thing that can be seen in the example is that the variables becomes very small
when the algorithm is close to the solution, hence it is important to stop the
algorithm in time before the variables start to under�ow, or before any variable
becomes zero, if a variable becomes zero it is possible that a divide by zero
happens. A very good explanation of the Conjugate Gradient Method can be
found here [14].

3 Convergence and Preconditioning

The convergence factor of the conjugate gradient method, meaning its ability
and e�ciency to converge to the real value of x depends to a large extent on
the condition number of the coe�cient matrix A. If the matrix is symmetric
the condition number will be the ratio of the largest and smallest eigenvalue of
the coe�cient matrix, κ = λMax

λMin
, furthermore, for symmetric positive de�nite

matrices all the eigenvalues will be positive. If the condition number is small
the matrix is said to be well-conditioned and will most likely converge to an
approximate value of x very quickly, on the other hand, if the condition number
is large the matrix is said to be ill-conditioned and will most likely converge
very slowly, in fact, sometimes it will even fail to converge. Furthermore, the
Conjugate Gradient Method will converge faster if the eigenvalues of the co-
e�cient matrix are clustered together instead of being irregularly distributed
between λMax and λMin. The condition number can be though of as a number
that re�ect how sensitive the result will be to small perturbation in either b or
A. If the condition number is large small round o� errors can result in a large
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Preconditioners

Quasi-Newton
Incomplete LU factorization

Incomplete Chomsky Factorization
Jacobi

Symmetric Successive Over Relaxation(SS OR)

Table 6: List of preconditions

error in x.
If the matrix is ill-conditioned it can be preconditioned to reduce the con-

dition number. If we found a matrix M that approximated A, but was easier
to invert. Then we could solve the system Ax = b indirectly by solving the
system M−1Ax = M−1b, if the condition number of M−1A were smaller than
the condition number of A or if the eigenvalues of M−1A were clustered to-
gether more than those of A, then we could solve the system M−1Ax = M−1b
in a fewer number of iterations compared to the system Ax = b. The e�ciency
of the di�erent preconditions available depends very much on the structure of
the coe�cient matrix, hence, the structure of the matrix needs to be very well
known to be able to make an e�cient preconditioner matrix, in addition, if the
matrix A is changed the precondition matrix needs to be recalculated as well.
The preconditioned Conjugate Gradient Method can be seen in algorithm 2.

In addition to the preconditioners ability to improve the convergence rate,
some other factors needs to be taken into consideration when choosing the pre-
conditioner to be used on the matrix, for instance the extra storage needed to
implement the preconditioner, the time it takes to construct the preconditioner
matrix and the extra time it takes to apply the preconditioner in every iteration.
Di�erent types of preconditioners can be seen in table 6.

The Jacobi and Incomplete Chomsky decomposition preconditioner will be
discussed in more detail.

3.1 Jacobi Preconditioner ( diagonal preconditioner )

The Jacobi Preconditioner is the simplest preconditioner that can be used. It
consist of the diagonal element of A on its diagonal and zeros everywhere else.

Mij =

{
Aii i = j
0 otherwise

To invert a diagonal matrix is very simple, this is done by inverting the
element on the diagonal, for instance if the matrix have a 2 on its diagonal it
will be 1

2 in the inverted matrix, all the other elements will be zero.

M−1
ij =

{
1
aij

i = j

0 otherwise

The Jacobi preconditioner is very e�ective on diagonal dominant matrices.
Because all except the diagonal element is zero, it only needs 64N number
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Algorithm 2 Conjugate Gradient Method with a preconditioner

x(0) = 0

r(0) = b

s(0) =M−1r(0)

d(0) = s(0)

δNew = sT(0)r(0)

δFirst = δNew

While(δNew > ε2δFirst) do

q(i) = Ad(i)

α = δNew

dT
(i)
q(i)

x(i+1) = x(i) + αd(i)

r(i+1) = r(i) − αq(i)

s(i+1) =M−1r(i+1)

δOld = δNew

δNew = sT(i+1)r(i+1)

β = δNew

δOld

d(i+1) = s(i) + βd(i)
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of bits to store the preconditioner and M−1r can be calculated by doing N
multiplications. This makes the Jacobi preconditioner a very memory e�cient
and a computationally e�cient method that will use up very little extra time
on each iteration, only N clock cycles extra. Of course since it is so simple it
has some downsides. It is only a mediocre preconditioner compared to more
advanced methods, like for instance Cholesky factorization.

The Jacobi preconditioner do not need much extra resources to be imple-
mented, it needs to be able to store the reciprocals of the diagonal of the matrix
A in a memory calledM−1, since all other elements are zero they do not need to
be stored and the preconditioner will e�ectively use the same memory-space as
a vector, it also needs extra memory for the s vector, extra memory bits needed
will be: 64× 2N = 1048576 bits, this will easily �t on the Arria II FPGA.

The preconditioned Conjugate Gradient Method will need to use some extra
time in the initialization stage, it need to divide all the elements on the diagonal
in A, this will use N+24 clock cycles, it can use the same divider that are
already implemented in the circuit. In addition, it need to calculate the product
s =M−1r, since a diagonally matrix is basically a vector only a simple multiplier
is needed to do this, clock cycles needed is N+11, this operation can start when
the �rst element of r has been calculated and work in parallel with it for the
rest of the elements. Hence, the Conjugate Gradient Method preconditioned
with Jacobi only needs ALat+MLat+2 extra clock cycles extra every iteration
compared to normal Conjugate Gradient Method.

3.2 Incomplete Cholesky Factorization

Jacobi preconditioner sometimes improve the convergence rate only marginally
compared to other methods. To get a better convergence rate it is possible
to use a more advanced type of preconditioning, for instance the incomplete
Cholesky factorization, this method decompose the matrix A into LLT where
L is a lower triangular matrix and LT is the transpose of the lower triangular
matrix. This will however produce a dense preconditioner matrix instead of
the diagonal matrix the Jacobi preconditioner introduced. This means that a
new matrix-vector multiplication needs to be performed every iteration. Since
this operation is responsible for most of the time consumed in one iteration
the time required to do one iteration would practically double. Hence, if the
Incomplete Cholesky Factorization is going to reduce the total run time of the
algorithm compared to the un-preconditioned Conjugate Gradient Method it
will need to converge in less than half the number of iterations compared to
the un-preconditioned Conjugate Gradient Method. Since the preconditioner-
matrix will be to large to store internally in the FPGA it needs to be read
from the external memory. This means that the amount of external memory
needs to be double that of the basic conjugate gradient. In [9] the e�ect of
applying the Incomplete Cholesky Factorization on dense symmetric positive
matrices have been studied, it was concluded that that the e�ect it had on the
convergence rate was not large compared to diagonal preconditioning. It can
be concluded that the e�ect di�erent preconditioning technique have on the
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convergence rate of the conjugate gradient method depends heavily on how the
coe�cient matrix look like, and it is impossible to �nd a preconditioner that
are generally better than another for all types of coe�cient matrices. It can
however also be concluded that the preconditioner that will cause the smallest
increase in iteration time and at the same time improve the convergence rate
will be the Jacobi preconditioner.

4 Problems and advantages with FPGAs com-

pared to CPUs

FPGAs have some advantages over traditional CPUs, they can for instance
use parallelism and pipelining much easier, they are also good at specialized
work for example as hardware accelerators for specialized algorithms. CPUs
on the other hand has a much higher clock frequency, they are more general
and can be used for almost anything. They are however not programmable, the
hardware resources are �xed and its operation can only be changed by giving
it instructions trough software on how to use those resources. FPGAs on the
other hand can be re-programed as many times as needed when a fault or a way
to make it more e�cient is found it is easy to reprogram it.

When solving the Conjugate Gradient Method for dense systems it may not
be an advantage to have a the high clock frequency because the memory are
usually much slower and in most of the clock cycles it have to wait on data from
the memory. An FPGA with a smaller clock frequency can still be faster than
the CPU because in every clock cycle it will get data to work with and if it gets
more than one element it can easily work on those in parallel. Because of the
higher Clock frequency in CPUs they will use much more power than FPGAs
but still be very ine�cient because of all the idle cycles were it have to wait on
data from memory.

The FPGA also have the advantaged that it can store much more in internal
memory than CPUs. CPUs have cache but this is not very e�cient if the data is
not reused. The FPGAs have the advantage that it can be easily connected to
more memory modules as long as the required I/O pins are there. The problems
that FPGAs have to deal with is the low clock frequency and it usually have to
be specialized for one assignment. In today's competitive marked FPGAs have
the advantage of low time to marked time. There is FPGAs on the marked
today that will be able to connect up to six ddr3 memory module, hence they
will be able to get a memory bandwidth of up to 70GB/s.

5 Precision

Many scienti�c applications needs high dynamic range on the �oating point cal-
culations to maintain numerical stability. For instance in the Conjugate Gra-
dient Method the residual needs to be orthogonal to each other and the search
directions need to be conjugate to each other. Because of round o� error it is
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impossible to calculate these numbers exact, however, by using number systems
with both high range and precision it is possible to minimize these problems.
The use of recon�gurable hardware to perform high precision operation such
as IEEE �oating point operations has been limited in the past by FPGA re-
sources. Recon�gurable logic has the potential to yield signi�cant speedup for
many of these algorithms, though traditionally it has been unable to handle
IEEE �oating-point formats. Fixed point can only be used if the dynamic range
of the numbers are small. The IEEE standard for �oating point numbers is the
same standard that are implemented in most of the CPUs today.

6 Representing numbers on computers

Squeezing in�nitely many real numbers into a �nite number of bits requires
an approximate representation. There are several ways of approximating real
numbers on computers. For instance �xed point where a radix point is put
somewhere in the middle of the digits, where the digits on the left of the radix
point represent the fraction and the digits to the left represent the integer part of
the number is one way of doing it. Examples of other ways to represent numbers
on computers is binary-coded decimal and logarithmic number system. However
it is very di�cult to represent numbers that have a high dynamic range and at
the same time a good precision with these number representations and this is
usually needed when doing scienti�c calculations. This is why �oating point
numbers are usually used for these types of computations.

Floating point numbers are represented in scienti�c notation, it consist of a
sign, a base number and an exponent, for instance the number −240, 45 can be
represented as −2, 4045× 102, this makes it much easier to represent very high
and very low numbers. However the high range comes at the expense of the
precision, the �oating point numbers are not able to get the same precision as
�xed point numbers since some of the bits in the �oating point format needs to
be used to represent the exponent of the number. In numerical methods like for
instance the Conjugate Gradient method both the range and the precision is of
great importance and therefore the �oating point format have to be used. The
�oating point standard that have become a de-facto standard is the IEEE-754
standard for �oating point arithmetic.

6.1 The IEEE-754 standard for �oating point arithmetic

The IEEE-754 standard de�nes the format of �oating point numbers and how
they should be stored in a computer, how the arithmetic operations on �oating
point numbers should be done, rounding modes, how to handle exceptions and
conversion between di�erent formats. This enables all machines following the
standard to exchange data and to calculate the exact same result when doing
�oating point operations. Thus, when a program is moved from one machine
to another, the results of the basic operations will be the same in every bit if
both machines support the IEEE standard. This greatly simpli�es the porting
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Figure 1: Single Precision format

Figure 2: Double precision format

of programs.
The standard de�nes two di�erent formats to store �oating point numbers on

computers : Single Precision as can be seen in �gure 1, and double precision as
can be seen in �gure 2. Floating-point representations consist of a sign s, a base
b, a mantissa m and an exponent e and can be represented as (−1)s ×m× be.

The IEEE Standard for �oating point arithmetic is the most common rep-
resentation for real numbers on computers.

The �oating point formats is a bit-string that consist of three section, the
most signi�cant bit is the sign 0=+, 1=-, the next section is the exponent. The
exponent is the number that decides the range of the �oating point number
speci�ed in the format. This number is biased to be able to represent both
positive and negative exponents without needing to store negative exponents.
The remaining bits is the mantissa of the �oating point number, this number
decides the precision of the number.

The bias is used to be able to represent negative exponent without the need
to store negative exponent. For instance a number with a true exponent of 2
will be stored as a number with an exponent of Bias + 2. The most negative
exponent -1022 will be stored as Bias+(-1022) = 0.

In double precision the exponent occupy 11 bits, which means that it is
able to represent numbers in the range 2−1022 to (2 − 2−52) × 21023, this is
approximately 10−323,3 to 10308,3 in the decimal system. Of course the big range
of �oating point numbers comes at the expense of the precision, the precision
of the number will not be as high as with �xed point format numbers. The
double precision have 52 bits to represent the mantissa. All the arithmetic
operations is not necessarily valid for �oating point numbers. For instance the
addition operation is not Associative nor commutative. Meaning that the order
the values are added in can can e�ect the result.
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6.1.1 Rounding modes

Given any �xed number of bits, most calculations with real numbers will produce
quantities that cannot be exactly represented using that many bits. Therefore
the result of a �oating-point calculation must often be rounded to the closest
representable number in order to �t back into its �nite representation. The
most common situation is illustrated by the decimal number 0.1. Although
it has a �nite decimal representation, in binary it has an in�nite repeating
representation. Thus when a base of 2 is used, the number 0.1 lies strictly
between two �oating-point numbers and is exactly representable by neither of
them.

The IEEE-754 de�nes four rounding modes.

• Round to nearest, if ties it round to get a result with a LSB of 0.

• Round toward zero

• Round toward positive in�nity

• Round to negative in�nity

6.1.2 Exceptions

The IEEE-754 de�nes the following exceptions:

• Over�ow: Happens when the exponent of the number is to large to be
represented

• Under�ow: Happens when the exponent of the number is to small to be
represented

• Divide by zero

• Invalid operation

• Inexact

6.1.3 Floating Point Summation/Subtraction

This is the most complex arithmetic operation to be implemented. Floating
point summation consist of several distinct steps: First the two numbers are
compared to �nd the number that have the smallest exponent of the two. This
number is then shifted to the rigth until the two numbers have the same expo-
nent. The two numbers are then summed together to produce the un normalized
result. The un normalized result is then normalized by shifting the result to the
left until the most signi�cant bit is equal to one. In the Altera �oating Point
IPs these operations are pipelined to achieve a high clock frequency and hence
a high throughput is possible. These IPs are usually capable of handling a clock
frequency of 150-250 MHz. Since �oating point operation demand so much logic
to be performed it will be impossible to do it in one clock cycle without getting
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Figure 3: Floating Point Addition

a very low maximum clock-frequency. The research have focused on doing these
operations in multiple steps in a pipeline. To be able to divide the logic into
di�erent clock cycles. This is done by inserting register between the di�erent
logical operation that the �oating point operation consist of. Pipelining will be
able to get a mush higher clock frequency and so will be able to achieve higher
throughput if the number of operations to be performed is high. There will
however be an obvious trade-o� between the maximum-frequency and the area
needed to implement the module.

6.1.4 Floating point multiplication

Floating point multiplication of two numbers that are represented in the IEEE
754 format are usually done in the following way. If the two input numbers
are X and Y, then the sign of the result will be (the sign of X XOR the sign
of Y), the mantissa of the result will be Y.man ×X.man and the exponent of
the result will be the exponent of X plus the exponent of Y. If the result is not
normalized it need to be normalized before it is stored, and rounded if necessary.
The multiplication operation are simpler than the addition because of the way
the �oating point numbers are represented.

7 Round o� error

Round o� error, how they come into play and how they can e�ect the �nal result
of an arithmetic operation is something everyone that works with numerical
methods need to be aware of, hence it will be presented here. Round o� errors
is created because of the fact that computers are only able to store numbers
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with �nite precision because of �nite memory. Floating point numbers are
�nite-precision numbers that represent in�nitely precise numbers, the smallest
precision possible is known as the machine-accuracy, ε, this is the number that
when added to one will produce a number di�erent from one. This quantity
depends on the size of the mantissa, in double precision the machine accuracy
is 2−53 ≈ 1.1× 10−16 and for single precision it is 2−24 ≈ 6× 10−8.

Every arithmetic operation introduces an error into the result that are at
least equal to the machine-accuracy. The round o� error are cumulative meaning
that the error will grow with the number of operations performed. Depending
on the algorithm used it will grow between

√
nε and nε, where n is the number

of operations and ε is the machine precision. However, the round of error can
sometimes become much larger, for instance, because of the way addition works
in the �oating point format, the mantissa to the smallest number are shifted to
the Right as many times as the di�erence between the two numbers exponents.
In extreme cases, if one of the numbers are much larger than the other the result
of the addition will be equal to the largest number. How the digits are lost can
be seen in �gure 4, the values are presented in the decimal system for ease of
understanding. It can be seen that the lower four digits are e�ectively lost and
hence does not contribute to the result.

Figure 4: Addition of two numbers

This can become a large source of error in operations where many �oating
point numbers are added together, for instance in matrix-vector multiplica-
tions and dot-products because the numbers already accumulated will usually
be much larger than the individual numbers coming in. There are however
methods that can be used to solve this if it turns out to be a problem. One way
is to ensure that the two numbers in the addition are relatively similar in size.
This can be ensured by sorting the numbers from smallest to largest before the
addition and then add the numbers in increasing order. Another way to solve
the problem is to use the Kahan summation algorithm, how this algorithm work
can be seen in algorithm 3.
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Algorithm 3 Kahan Summation Algorithm

sum = 0
c = 0
loop
y = input− c
t = sum+ y
c = (t− sum)− y
sum = t
end loop

By using this method the round o� error would become independent on the
number of operations done. Because it compensates for the error found in the
last operation by subtracting it from the next number to be added.

However, both of these methods are relatively di�cult to implement on
an FPGA. The �rst method because of the sorting process needed and the
Kahan Summation because the variables are dependent on each other in the
algorithm which would make the operation very hard to pipeline. An easier
way to reduce the round o� error is to use a �oating point format with a small
machine precision, this is way the double precision number format will be used
in all calculations.

The Conjugate Gradient Method can be e�ected by round o� error in two
ways, it can either make the search directions not exactly conjugate or it can
make the residual not exactly orthogonal to the last residual.The conjugate
gradient method needs the highest possible precision to make the algorithm
converge. Even though in theory the algorithm will converge in less than the
matrix order number of iterations it will not do this in practice because of the
round of error in the calculations. It have to be seen if the round o� error is
accumulated in the algorithm, if so ways of improve the round o� error needs
to be looked in to. When using the Conjugate Gradient Method it is possible
to calculate the exact residual by using an extra matrix-vector multiplication
and storing the b vector in on-chip memory it is possible to calculate the exact
value of the residual in every 100 or so iterations. By doing this the round o�
error that might have been accumulated in the residual will go away. This is
done to not be completely depended on the recurrence that is usually done to
calculate the residual. Because of the �nite resolution the residual will never be
exact orthogonal to each other, round o� error is bound to accumulate. More
about round o� error can be seen in [7].

The �oating point modules that is going to be used have been developed by
altera and optimized for the Altera FPGAs.

8 Introducing the Altera Floating Point Modules

It has been very problematic in the past to implement a high precision �oating
point module on FPGA this has mainly bin because of little resource in logic
and low clock frequency. However, there has recently been done much research
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lately on this problem in for instance [2, 4, 3, 8, 13] . Here they have pipelined
the typical stages of a �oating point operation to be able to get a very impressive
clock frequency. This has enabled designers in high performance computing to
use FPGAs in scienti�c computing and solving problems that demand a high
accuracy on the computations.

Altera has made �oating point IP modules that incorporates most of the
IEEE 754 standard. It incorporates single-precision, double-precision and sin-
gle extended precision, in addition, special values like zero, in�nity, denormal
numbers, and NaN bit are also supported. How the bit-string will look like for
special values can be seen in table 7.

Meaning Sign exponent Mantissa

Zero X All '0' All '0'
Positive Denormalized 0 All '0' Non-zero
Negative Denormalized 1 All '0' Non-zero

Positive In�nity 0 All '1' All '0'
Negative In�nity 1 All '1' All '0'

Not-a-Number(NaN) X All '1' Non-zero

Table 7: Floating point Special Numbers

The �oating point arithmetic modules have been speci�cally designed and
optimized for the altera FPGAs. The IEEE-754 de�nes many di�erent rounding
modes, but the Altera modules only support the most commonly used rounding
mode, which is the round-to-nearest-even mode. This rounding mode function
like this, it rounds the result to the nearest �oating point number, if it is exactly
in the middle between two representable numbers it rounds the result so that
the least signi�cant bit becomes a zero, which is even, hence the name round-
to-nearest-even-mode.

In Quartus the megawizard can be used to generate the arithmetic �oating
point modules, they are highly modi�able, for instance, it is possible to choose
how many stages the �oating point module is going to have in its pipeline,
this will introduce an obvious trade-o� between area and max frequency this
have been illustrated in table 8, 9 and 10. These �oating point modules from
Altera makes it possible for designers to easily do �oating point arithmetic's on
FPGAs, since they have been optimized for Altera devices it is possible to get
very impressive performance from them.

8.0.5 The Adder/Subtractor

The Adder/Subtractor is able to handle �oating point summation and/or sub-
traction. It has two inputs for the addends and an output port for the result,
the bus width depends on the format used, single precision gives 32 bit and
double precision gives 64 bits. Furthermore, it have optional ports to handle
exceptions, for example, over�ow, under�ow, zero and not a number(NaN). It
have an optional clock enable and asynchronous clear port. If the clock enable
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is high the data in the pipeline will move one pipeline-step forward every clock
cycle, else it will stand still in the pipeline. If the asynchronous clear port is
high all the pipeline stages and the result will be set to zero. The module also
have an optional add_sub port, this port will make the module able to do both
addition and subtraction depending on the value on the port, if it is one it
will subtract and if it is 0 it will add. The module can be optimized for both
speed and area. The options for the output latency are the same for both single
and double precision. The choices of latency and the resource usage and max
frequency for the addition module can be seen in table 8.

Latency fmax[MHz] LUTs Registers Memory bits

14 282 1467 1611 84
13 267 1551 1498 78
12 258 1542 1336 78
11 211 1393 1252 81
10 229 1343 1229 0
9 221 1400 1118 0
8 208 1387 977 0
7 198 1410 836 0

Table 8: Floating Point Addition module

8.0.6 Floating point multiplication

Floating point multiplication is a much simpler arithmetic operation to be im-
plemented on an FPGA compared to �oating point addition. This is mostly
because of the way the �oating point format is build up. The �oating point
format is divided into an exponent part, a mantissa part and a sign part. To
do a multiplication the sign of the multiplicands is XOR-ed together to get the
sign of the result. The exponents is added to each other to get the exponent of
the result, and the mantissas is multiplied together with the help of the hard
multipliers on the FPGA. As can be seen all these operations can be done in
parallel, hence the pipeline for the multiplication module can be shorter than
the pipeline in the addition module. Floating point multiplication usually de-
mands very low area compared to other operations because of the dedicated
multiplication circuits that most modern FPGAs have built in. The choices of
latency and the resource usage and max frequency for the multiplication module
can be seen in table 9.

Latency fmax[MHz] LUTs Registers Memory bits Multipliers

11 251 466 603 108 10
10 231 435 581 75 10
6 175 429 476 0 10
5 173 408 371 0 10

Table 9: Floating point multiplication module
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8.0.7 Floating Point Division

The �oating point division module is the �oating point module that have the
lowest fMax, in addition it is the most resource demanding module and is prob-
ably the module that will constrain the fMax of the circuit . The module have
been implemented on the Arria II to see how it performed, the result can be
seen in table 10.

Latency fmax[MHz] LUTs Registers Memory bits Multipliers

24 171 871 1306 6158 44
10 104 707 1099 4608 44

Table 10: Floating point division module

9 DDR-Memory

There are several memory types that can be interfaced by the Arria II FPGA,
QDR II, RLDRAM, SRAM and DDR-SDRAM. Of all these options only the
DDR-SDRAM is applicable to the needs of this design, because of the high
storage requirements of the matrix A. DDR-DRAM is a type of memory that
stores each bit in a separate capacitor, if the capacitor is charged it represent a
1 if it is discharged it will represent a 0. Because the capacitors gradually leak
charge, the charge have to be refreshed periodically, this is done automatically
by the controller every 7.4 micro second and takes about 18 clock cycles to do,
this will make the maximum bandwidth lose about 2 %.

The main advantage the DDR-SDRAM have over other memory-types is
its simplicity, it only need one transistor and one capacitor to store each bit,
this makes it possible to reach high densities at a low cost. DDR memories
use both the rising and falling clock edge to send data, this means that it
can send 2*number of data bits on the memory-module/per clock cycle. The
memory controller can both be run in half-rate mode and full-rate mode. In
full-rate mode the memory-module will transfer 2*Data_bits every clock cycle
with a clock frequency the same as the memory-module. The Altera Memory
controller will be used in the design, this will take care of all the timing of the
memory module, the controller can be run in either Half-rate mode where it
sends 4*Data_bits in half the frequency of the memory-module and it can be
run in full-rate mode where the controller will send 2*data_bits in the same
frequency as the memory module.

There are two major methods of storing a dense matrix in memory, the �rst

is row-major order where the matrix

[
a11 a12
a21 a22

]
would be stored in memory

row by row. a11 on address 0, a12 on address 1, a21 on address 2, a22 on address
3.

The other method of storing the matrix is column-major order where the
matrix would be stored in memory column by column. a11 on address 0, a21 on
address 1, a12 on address 2, a22 on address 3. To read the memory e�ectively
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the best way of storing it is to store it so that the values that are needed after
each other lies in a row-major way.

Access to the same row is fast, back to back read/write the read and write
operations are pipelined, hence the CAS latency will be hidden. It costs time
to change rows because they needs to be PRECHARGED and ACTIVATED.
When the memory is accessed sequentially it will be most e�cient since the
PRECHARGE/ACTIVATE commands needs to only be performed every time
the row is changed. It is also possible to have a row open in each bank. Hence
if the data that are needed is known far ahead of time the row can be activated
in the next bank while the last part of the current row is read.

Examples of overhead on the DDR-SDRAM data bus are:

• Activate time for new banks/rows

• Precharge time for changing rows within the same bank

• Write recovery time to change to read accesses

• Bus turnaround time to change from read to write

• Refresh time

Factors that e�ect the e�ciency of the controller negatively includes:

• Individual reads

• Low burst-size

• Reading or writing to a closed row

• Refresh cycles

• Switching between read and writes

9.1 DDR1

Bandwidth between 1600 and 3200
Prefetch bu�er depth is 2n bits
Voltage Supply : 2.5

9.2 DDR2

Bandwidth between 3200 and 8500
Prefetch bu�er depth is 4n bits
Voltage Supply : 1.8 V

9.3 DDR3

Bandwidth between 6400 and 17000
Prefetch bu�er depth is 8n bits
Voltage Supply : 1.5 V
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Part III

Tools and programs used

Quartus II 10.0sp1

Quartus have been used to develop the VHDL code and test the ddr3 module
and memory-controller. The TimeQuest analyser have been used to ensure that
timing have been met. The signalTap Logic analyzer have been used to check if
the right answer was found and the Virtual-JTAG was used to send data from
the PC to the FPGA to be able to test the hardware. And program the FPGA
through the JTAG cable.

Microsoft Visual Studios 10

Have been used to make random test matrices and write them to �le so that
they could be read by the VHDL-testbench. A program have been developed to
convert the content in text �les from hexadecimal to decimal and from decimal
to hexadecimal. A software version of the Conjugate Gradient Method have
been developed to verify the result that the FPGA came up with. This software
version are also able to use Jacobi preconditioner.

Multisim-Altera 6.5e Starter Edition

Multisim have been used to simulate every module that was designed.

Arria II GX Development Kit

Has been used to download the design to the FPGA name? This have a ddr2
module, a ddr3 module and some leds and buttons. The Arria II GX was
introduced in 2009. It was made for cost sensitive applications. It's logic fabric
consist of adaptive look-up tables(ALUTs), registers, DSP blocks and embedded
memory blocks. The Arria II development card from Altera is a midrange card,
in performance it is between the low range card series Cyclone and the high
range card series Stratix. It is a low-power and low cost card but is still able to
support external memory with high bandwidths. DDR 3 with up to 400 MHz
clock frequency and DDR 2 with up to 267 MHz.
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Type Quantity

Adaptive look-up-tables(ALUT) 99,280
Registers 99,280

Memory - bits 6,727,680
18 bit DSP blocks 576

Delay locked loops(DLL) 2
Phase Locked loops(PLL) 6

Table 11: Arria II Resources

Part IV

Architecture

The architecture of the design will be explained in this section.

10 Design goals

The main goal when doing the design has been to the fMax as high as possible
because to make the design e�cient it is very important to get a high through-
put. To be certain that the highest possible frequency will be reached, all the
arithmetic modules have used the longest latency possible, 14 clock cycles for
the addition and subtraction module, 11 clock cycles for the multiplier module
and 24 clock cycles for the divider module. Another goal has been to keep as
much of the variables in the Conjugate Gradient Method algorithm stored in
internal memories to reduce the reading from external memory to the minimum.
The only variable that can not be stored in the FPGA is the coe�cient matrix
A. To have a good control over the resources and fMax of the di�erent modules,
the circuit has therefore been designed to be very modular. The control uses
handshaking signals to communicate with the modules, matrix_vector multi-
plier and dot product, the control sends a start signal to the module when it
needs that module to start its operation, and the modules sends a done signal
back to the control when they are �nished with the operation. The top module
consist of the matrix-vector multiplier, the dot-product module, di�erent arith-
metic modules, on-chip memories to store the vectors in , register to store the
scalars in and multiplexers to control the �ow of data. The letter N will from
now on mean the number of rows in the coe�cient matrix A.

11 The memory module

All the vectors in the Conjugate Gradient Method will be stored in two-port
RAMs in the FPGA logic fabric, this module have two di�erent addresses, one
for read and one for write, in addition, it have a read_enable and write_enable
pin. The �rst element in the vector will be stored in address 0 and the last in

31



address N-1, the vector-elements will always be processed starting with the �rst
element and ending with the last, hence it will be possible to simplify the control
of the internal memories. A counter can be used on both the read_address and
write_address port to generate the address, the read_address_counter and
write_address_counter will be incremented by one by the read_enable and
write_enable signal respectively. This has been done to simplify the reading and
writing to the internal-memories, by doing it this way the address generation is
performed automatically, hence the only operation that needs to be done to read
and write to the memories is to put the read_enable port high for reading and
write_enable_port high for writing. If any of the two counters reaches the last
element that is stored in the memory it will roll around and start on address 0
again. This means that the memory module needs to know how many elements
it is supposed to store, this is why the N signal is needed by the memory.The
number of elements that are stored in the memory is N-1. The module can be
seen in �gure 5 .

Figure 5: Memory Block

12 The Dot-Product Module

The dot-product module is responsible of performing the mathematical opera-
tion: a•b =

∑N−1
i=0 aibi = a1b1+a2b2 . . . aN−1bN−1 where a = [a0, a1 . . . aN−1]

T

and b = [b0, b1 . . . bN−1]
T

In the conjugate Gradient algorithm it can be seen that the dot product
operation is needed in two places. First it is needed to calculate the δNew scalar
by solving rT r, secondly it is needed in the equation where α is solved to solve
the inner product dT q.

It is impossible that these two operations will need to be done at the same
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time, hence, only one dot product module is needed to be implemented into the
circuit.

The circuit have two data inputs where the elements of the inputs vectors
will come in and one data output, where the result of the dot product will be
presented.

In addition, it have three control inputs, the N input is the number of ele-
ments in the vectors. To be able to di�erentiate between the two dot-products
rT r and dT q a control bit input called mode is used. When the module is going
to perform rT r the mode will be set to one, else it will be set to zero, this is
controlled by the top control module in �gure 16.

The module have two output signals called done_dq and done_rr. Done_dq
is used as the select bit on the input multiplexer to the dT q register. And
Done_rr is used as the select bit on the input multiplexers to the δNew register,
this can be seen if �gure 15. When the mode is one and the result is ready, the
done_rr port will become high and hence store the result in the δNew register.
When the mode is zero and the result is ready, the done_dq will become high
and hence, the result will be stored in the dT q register. This can be seen more
clearly in �gure 15.

The dot product module assumes that the elements in the input-vectors will
come to the inputs with no idle cycles between them. Since these vectors are
stored in on-chip memory this will not become a problem since the on-chip
memories are able to give one output every clock cycle, after an initial read
latency of one to the �rst element. Number of �oating operations needed in
this operation is N multiplications and N addition. The resources used by this
module can be seen in �gure 12.

Type Quantity

fMax 180MHz
LUTs 2265

Registers 2730
Memory bits 216
Multipliers 10

Table 12: Resources used by the dot-product module
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12.1 The dot product control module

Figure 7: Dot-Product, State-machine

The control module of the dot product module consist of a state machine and
a counter. When start goes high the state machine will go to the wait state.
This state is needed because the start signal to the dot product module and the
read signal to the memory block where the input vectors are stored is sent on
the same clock cycle, and since the internal memory have a latency of one from
the read_en signal goes high and to the data are presented at the output, the
value will not be ready on the input port of the dot product before one clock
cycles later, hence, the state machine needs to wait one clock cycle before it can
start receiving vector elements. From the wait state it goes directly into the
next state, which is the calculation state.

In the calculation state a pulse is sent to the shift register every clock cycle.
When N pulses have been sent the state machine goes to the next state. The
shift register is used to control the multiplexer that let values into the adder.
Since the multiplier have a latency of 11 clock cycles the shift register needs to
have a length of 11.

The state machine machine goes into a wait state to wait for all the data
values to pass trough the multiplier and into the adder.

At this time 14 part sums of the total sum are stored in the adder pipeline.
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All these sums needs to be added together to produce the �nal result. Hence
a reduction circuit is needed. The reduction circuit is responsible of summing
up all the values that are in the accumulators pipeline into one value. This
can be best explained with an example. Imagine a four-stage adder-pipeline
that are �lled with the values depicted in �gure 8. These values needs to
be reduced to one value, hence the 1, 2, 3,4 needs to be added together to
get 10. This is done by using another adder where one of the inputs is de-
layed by one clock cycle. This will result in the second pipeline shown in
the �gure after 4 clock cycles. In the next stage one of the inputs of the
adder-pipeline is delayed by two clock cycles, after 4 clock cycles this will re-
sult in the values in the last adder-pipeline. The answer will then be ready
on the end of the last adder after 3 more clock cycles, hence the total time
the reduction will take is number_of_reduction_stages*pipeline_of_adder +
pipeline_of_adder-1. The number of stages needed depends on the latency of
the adder module used. If we called the latency of the adder module ALat, the
number of reduction stages RStage, needed to reduce the values in the pipeline
into one value could be calculated as RStage = ceil(lg2(ALat)), Where the n-th
reduction stage would have a delay of RStageDelay = 2N−1 .

Figure 8: Reduction circuit example

Since the adder used in the dot-product have a latency of 14 clock cycles
the number of reduction stages needed will be RStage = ceil(lg2(14) = 4. Even
though a new adder was used in every reduction stage in the example, it is
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possible to use the same adder for all the stages and hence save resources. The
delay is controlled by multiplexer 3 in �gure 6. The multiplexer is controlled
by the state-machine in �gure 7. The state acc1_state is responsible of doing
the �rst reduction, state_acc2 does the second reduction, state_acc3 does the
third reduction and the acc4_state does the fourth reduction. In the wait_two
state it waits until the �nal result is ready on the output. The control then sets
either the rr_done or the dq_done high depending on the mode signal. If mode
is one then rr_done goes high, else dq_done goes high.

13 The vector-update pipeline

In the Conjugate Gradient algorithm it can be seen that three of the operations
that needs to be performed in every iteration are very similar, these can be seen
in table ,

Similar operations

x = x+ αd
r = r − αq
d = r + βd

Table 13: Similar operations

All of these operations can be done in a very similar way, how the circuit that
does this operation look like can be seen in �gure 9. To perform for instance the
operation x = x+αd, the multiplexer numbered 1, 2, 7, 9, 11, 12 and 14 needs to
be on, all the multiplexers is controlled by the top_control module. Afterward,
the control module puts the control_in signal high for N clock cycles, where N is
the size of the vectors. Everything else will happen by itself as seen in �gure 10.
The signal will �rst give memory_d a read_enable signal and the �rst element
of d will go into the multiplier and be multiplied with α, the control_in signal
will then go into the shift register and give memory_x a read_enable signal
after 11 clock cycles, this is exactly at the same time as the product αd is ready
on the output of the multiplier module. Subsequently, this will make the �rst
element in x go into the adder module and be added with the product αd who
now comes out of the multiplier. Finally, After 27 clock cycles the control_in
signal comes out of the shift register and gives a write_enable signal to the
x_memory at exactly the same time as the sum x+ αd is ready on the output
of the adder module. The operation of the other two operations will happen in
the same way, except that other multiplexers need to be on to be able to perform
them. The alfa and beta signals comes from the divider circuit in �gure 15.
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Figure 9: How the update of the vectors have been done

The pipeline of the memory module can be seen in �gure 10.
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Figure 10: The Add Multiply Pipeline

14 Matrix-vector calculation

It can be seen in the Conjugate Gradient algorithm that a matrix-vector multi-
plication needs to be done in every iteration, hence a module is needed that are
capable of doing the mathematical operation: q(j) =

∑N−1
i=0 Ajidi , where A is

an N ×N matrix and d and q are vectors of size N. The module basically takes
one row of A and takes the dot product of this row and d to produce the �rst
value in q, it then continue with the next row in A and do the same N times.
The number of operations required to do this operation is n2 multiplications
and n2 additions. By using pipelining the additions and multiplications can be
done at the same time after the pipeline has been �lled up. By using parallelism
it is possible to do more than one multiplication every clock cycle, hence this
operation is very well suited for acceleration using an FPGA. One downside is
that the matrix A will be to big to be able to be stored in the FPGA. Hence, it
need to be stored in an external memory. The external memory is not as fast as
the internal memory because of the bottleneck in the bus between the memory
and the FPGA. This means that the speed of the matrix-vector multiplication
will most probable be constrained by the external memory bandwidth.

By overlapping the supply of data with the processing of data a high through-
put is possible. To make this possible the data needed by the matrix-vector
multiplier, hence, the vector d and the elements in A that are next needed have
to be readily available on the input pins. This have been made possible by
storing every even numbered element in d on the input to the �rst multiplier
and every odd numbered element on the input to the second multiplier. FIFOs
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that act as temporary storage for the elements of the matrix that are read from
the external memory have been put on the other input pin to the multiplier.
Elements should always be bu�ered into the temporarily storage from the ex-
ternal memory, to ensure that the values will always be ready at the input of
the matrix-vector multiplier module. By increasing the number of multipliers in
the matrix-vector multiply unit it will be able to get a much higher throughput
as long as the external memory bandwidth is able to supply the data needed.
One multiplier is able to process one double precision �oating point unit every
clock cycle, which is a 64bit value. This means that the external memory need
to have a bandwidth of at least 64M ∗CGfreqbit/s to be able to supply all the
multipliers, where M is the numbers of multipliers and CGfreq is the clock fre-
quency of the module. If M is 2 the required bandwidth is 2.24GB/s assuming
a clock frequency of 150MHz.

The memory usually have a long latency but when this is over it is able to
give out one value every clock cycle. It is very important to utilize the memory
throughput with maximum e�ciency.The external memory bandwidth to the
FPGA will usually be ... by the number of pins on the device. There are
FPGAs on the market today that are capable to interface with seven external
ddr3 memory modules and hence get a bandwidth of 70 GB/s. The number of
bits the matrix-vector multiplier needs every clock cycle depends on the amount
of parallelism used, for every multiplier it needs 64 bits. The external memory
usually runs on a higher clock frequency and is therefore able to give more than
one for every value the multiplier processes. It is therefore important to use
FIFOs as bu�ers between the external memory controller and the matrix-vector
multiplier. The way the matrix vector multiplier needs the values that are stored
in ram is very important, because the extremal memory have a longer latency
changing bank and row and it is therefore important to read all the values in
the column before going to the next row. It is very e�cient to read the memory
from the top left to the bottom right. Therefore the values needs to be stored in
the memory in the order that they are needed by the matrix-vector multiplier
to be able to take full advantages of the available external memory bandwidth.

The matrix-vector multiplier consist of four main parts.
The adder-tree, if both of the inputs have a value these will be added to

each other, if only one of the inputs have a value and the other have a zero,
the value be added to zero, hence the values that are ready on the inputs will
always come trough, it does not need to wait until all of the inputs have a value
ready to do the operation. All the values will only be added to the �nal result
once. The adder tree can be seen in �gure 11.
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Figure 11: The adder tree

The accumulator accumulates all the results. This is needed because the
multipliers will not be able to multiply all the inputs in one row of the matrix
in one clock cycle if the matrix is big, because of too few resource on the FPGA
and because the matrix is stored in external memory and the external-memory-
bandwidth will not be able to supply all the values from one row in one clock
cycle. The accumulator sums all the values in one row when the row has been
sent trough, the accumulator will have part-values of the row spread in its
pipeline these needs to be reduced to one value before it is stored in q_memory.
The accumulator can be seen in �gure 12.

Figure 12: The Accumulator

The reduction circuit is responsible for summing up all the values that are
in the accumulators pipeline into one value. The matrix-vector multiply module

41



will, in contrast, to the dot product get new values in after the �rst dot-product
have been produced. Naturally, this means that the accumulator can not func-
tion as the reduction circuit as it did in the dot-product, that would create a big
pipeline stall. To avoid a pipeline stall, the reduction circuit have been rolled
out as can be seen in �gure 13. This will use much more resources compared
to the solution used in the dot-product, but it is much more important to get a
high throughput than it is to get an area-e�cient design.

Figure 13: Reduction Circuit

The control module consist of one state-machine for each multiplier, this has
been done so that all of the multipliers can work independently of each other,
they do not need to wait for each other. These state-machines reads in their
part of the row and when �nished goes into a wait-state. A synchronizing state-
machine have been used to synchronize all the input-state-machines. It waits
for all the input-state-machines to go into wait state. It then sends out signals
to the accumulator to release the values it have in its pipeline and sends them
through the reduction circuit, it also sends out row_done signal and done signal
if all the rows have been processed. Since all these values are sent out on the
same time they need to be delayed by shift registers to ensure that they arrive
at the destinations at the right time as they are needed.

If the matrix is over 14 × 14 this module will be able to pipeline all the
operations without any stalls in the pipeline as long as high external bandwidth
is assumed. If it is less than 14 × 14 the pipeline needs to stall when the
accumulators pipeline is sent to the reduction circuit to ensure that the elements
from the next row is not mixed with the elements from the last row in the
reduction circuit.

Resources used by the matrix-vector module can be seen in table 14.

Type Quantity

fMax 195 MHz
LUTs 9700

Registers 9830
Memory bits 2192
Multipliers 20

Table 14: Resources used by the Matrix vector multiplier

The complete matrix-vector circuit can be seen in �gure 14.
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15 The Top module

The divider can be seen in �gure 15. In the upper part of �gure 15 the circuit
responsible for the stop condition can be seen || r(i) ||< ε2 || r(0) ||. The ε2

are stored in the register in the initialization part of the algorithm. This is
multiplied by the FirstδNew and the result is compared to the δNew. If δNew
is smaller, the algorithm will stop and the answer has been found. If not it will
continue with a new iteration. In the lower part of �gure 15 the registers in the
algorithm can be seen in addition to the divider. When the done_rr port from
the dot product module goes high the result from the dot product will be stored
in δNew. If the done_dq port from the dot product goes high the result will be
stored in the dT q register. When multiplexer 5 goes high the value in register
δNew will be transferred to register δOld. even though there are two divisions
in the Conjugate Gradient Module only one divider needs to be implemented,
because the two divisions will never happen at the same time. When a division
is needed to be performed the control module opens up multiplexer 6 to let
δNew trough and opens up one of the ports in multiplexer 7 depending on if
δOld or dT q is going to be divided by. The default value out of multiplexer 7
is 1 to avoid dividing by zero. In this circuit it can also be seen very clearly
that if the value in one of the registers δOld or dT q is zero, a divide by zero
will happen if the algorithm has not stopped. This is something that have to
be avoided. A divide operation take 24 clock cycles, hence, the control signal
needs to be delayed by a shift register until the divide operation is �nished and
a result is ready on the output, the control signal will then open up multiplexer
8 and let the result of the division into the α, β register. α and β can share a
register because the two signals will never be needed at the same time, this can
be seen in the Conjugate Gradient algorithm. When the α or β are needed the
multiplexer 9 will open and send them to the lower input of the multipliers in
�gure 9.

Top module control

The top control module is responsible for controlling the operations trough the
Conjugate Gradient method, a �gure of the state machine can be seen in 16.
It sends out start signals to the di�erent modules in the circuit and get done
signals back from the modules when they are �nished, in addition, it also control
the multiplexer in the circuit. A counter in the state machine controls the
time sequence in every state, this counter will be reset when the state-machine
changes state, and therefore can be reused in the next state. Here follows a
description of the state machine.

In IDLE it will wait for the start button to be pushed, when pushed it will
go to INIT_STATE.

In INIT_STATE the error tolerance is transferred to the error register this
can be seen in �gure 15. The known vector b is transferred to d-memory and
r-memory. x-memory is �lled with zeros. The calculation of the size of the
memory modules in front of the matrix-vector multiplier is also done in this
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state. If done_size = 1, the state machine will go to the next state, calcu-
late_rr_init_state. It will use N clock cycles in this state.

In CALCULATE_rr_INIT_STATE the dot product rT r will be calculated,
by sending a start signal and the r values to the dot product module. When the
done_rr signal goes high the result is transferred to the δNew register, this can be
seen in �gure 15, the next state it goes to is PUT_D_NEW_IN_D_NEW_FIRST_STATE.

In PUT_D_NEW_IN_D_NEW_FIRST_STATE the δNew is transferred
from δNew-register to δNewfirst-register by opening up the multiplexer between
them. The next state is FILL_MEMORY_STATE.

In FILL_MEMORY_STATE it sends a start signal to the �ll-memory-
module and sends the d-values to it. When done_�ll_memory=1 it will go
to the next state which is the MATRIX_VECTOR_STATE

When in MATRIX_VECTOR_STATE it sends a start signal to the matrix-
vector-module. Then it waits for the done signal from the matrix-vector module.
When the done_matrix_vector signal goes high it goes to the next state which
is the CALCULATE_dq_STATE, number of clock cycles used here depends on
the number of clock cycles the matrix-vector-module uses, this again depends on
how many clock cycles it take to read the matrix A from the external memory.

In the CALCULATE_dq_STATE it sends a start signal to the dot product
module and sends the d and q from their memories and to the dot product, the
mode of the dot-product is set to zero. When the signal done_dq=1 the next
state will be the CALCULATE_ALFA_STATE.

In CALCULATE_ALFA_STATE the δNew and dT q is sent to the divider,
if done_division=1 the next state will be x_AND_r_state.

In x_AND_r_state the x and r values is updated in parallel. Next state is
PUT_DELTA_NEW_IN_DELTA_OLD.

In PUT_DELTA_NEW_IN_DELTA_OLD the δNew will be transferred
to the δOld register. Next state is CALCULATE_rr_state.

In CALCULATE_rr_STATE a start signal is sent to the dot-product-module
and mode=1, and r will be transferred from memory to the dot-product-module.
Next state is STOP_OR_NOT_STATE.

In STOP_OR_NOT_STATE the operation δNew < ε2 | b | will be per-
formed, if true next state is SEND_OUT_X_STATE else next state is CAL-
CULATE_BETA_STATE.

In the SEND_OUT_x_STATE the x values will be sent from x-memory to
the result FIFO. Next state is Idle.

In CALCULATE_BETA_STATE the δNew and δOld is sent to the divider
to calculate β. If done_division=1, next state is CALCULATE_d_STATE.

In CALCULATE_d_STATE the d will be updated, and next state is FILL_MEMORY_STATE.
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Figure 16: Top module control

Table 15 describes what the di�erent variables used in table 16 means.

Variable Description

N Number of rows in A
M Number of multipliers in the matrix-vector multiplication module
ALat Latency of �oating point addition
MLat Latency of �oating point multiplication
DLat Latency of �oating point division

Table 15: Variable names

The number of clock cycles used in the di�erent states in the control module
can be seen in 16. As can be seen the matrix-vector multiplication q = Ad
is dominating the total number of clock cycles as was predicted. Hence, even
though there are some small optimizations that can still be done it will not have
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much e�ect on the total run time. The latencies can also be reduced and still
get a high clock frequency, but the improvement it will have on the total run
time will be negligible. The only improvement that can be done and have a high
e�ect on the run-time is to use more multipliers in the matrix-vector multiplier
that works in parallel. In table 16 only two multipliers have been used. However,
when the number of multipliers are increased the external memory bandwidth
needed to be able to supply the multipliers with data will also be increased.
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Part V

Testing and veri�cation

The testing and veri�cation of the Conjugate Gradient method has proved to be
very challenging because of the big size of the matrix. The matrix needed �rst
to be made and then to be transferred from the host-PC to the external memory
on the Arria II development card. Hence, a complete test environment had to
be developed. To be able to generate symmetric positive de�nite matrices a
matrix-generator program was made in Visual Studios, this program generates
a �le with a symmetric positive de�nite matrix, the b vector and the size of
the matrix. This needs to be converted from decimal to hexadecimal, hence a
program that does this have been developed in Visual Studios. The syntax of
the �le containing the size, b-vector and matrix A can be seen in �gure 17.

Hexadecimal value Decimal value Line number in �le Variable

0000000000000002 2 1 N
4008000000000000 3 2 b(1)
4010000000000000 4 3 b(2)
4008000000000000 3 4 A(1)(1)

4000000000000000 2 5 A(1)(2)

4000000000000000 2 6 A(2)(1)

4010000000000000 4 7 A(2)(2)

Table 17: File format

Virtual JTAG is an Altera IP that uses the byteblaster download cable to
make a communication channel between the host-PC and the altera development-
board, this has been used to transfer the content of the �le to the FPGA. A
tcl-script have been made that is able to control the Virtual JTAG. The Tcl-
script contains two functions, PUSH and POP.

When PUSH is used, the content of the �le is read and converted to bits,
the bits are then sent trough the USB-cable to the FPGA serially bit by bit,
when 64-bit has been sent trough, the 64-bit value is stored in a receiver-FIFO
on the FPGA the test system can be seen in �gure 18.

The test state machine is then reading the content from the FIFO and sends
the size and b to the Conjugate Gradient module and the matrix is sent to the
ddr3 memory module on the development kit. The state diagram of this control
module can be seen in �gure 17.

A short description of what is happening in every state can be seen here:
In IDLE it waits until the external memory have been initialized, then it

goes to size_state,
In SIZE_STATE it reads �rst value in jtag_�fo, this is the size of the matrix,

as can be seen in �gure 17.
In STORE_SIZE it stores the size in the size register on the FPGA
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In READ_REQ_TO_B it reads the next values from the jtag �fo
In WRITE_TO_B it write the b values to the conjugate gradient method
InWRITE_TO_DDR it write the matrix from the JTAG-�fo to the external

memory on the development card
In RESET_STATE it reset the ddr_address
In READ_DDR it reads the DDR3 and sends the content to the �fos in the

Conjugate Gradient method, it will be in this state until the system of linear
equations is solved, it then goes to wait state.

InWAIT_STATE it wait until the solutions are transferred from the x_memory
in the Conjugate Gradient method to the result �fo.

In WRITE_RESULT_TO_JTAG it reads the content of the result �fo and
writes it to the JTAG_FIFO

When FINISHED STATE it goes to IDLE
When the result has been transferred to the FIFO, the POP function in the

Tcl-script can be used to send the solution from the FIFO to the PC, it is then
saved in a �le on the PC.

A software version of Conjugate Gradient method have been developed so
that the result coming out from the FPGA can be compared with the solution
the software version of the Conjugate Gradient Method �nds. The test system
can be seen in �gure 18.

Figure 18: Test System
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Because the JTAG can only send and receive one bit each clock cycle it
needs to send the bits into a serial in parallel out shift register before sending
the value in the shift register into a temporary storage FIFO.

Altera o�ers much veri�cation tool that has been very helpful in debugging
and testing the circuit. SignalTapII has been used to see the values on di�erent
nodes in the circuit in run-time. SignalTapII is the logic analyzer o�ered by
Altera it is connected to the JTAG connection and sends the data from the
nodes in the FPGA that is speci�ed and sends them to the PC through the
byteblaster-cable when a trigger condition happens. The trigger is speci�ed by
the designer.

SignalTapII is an embedded Logic Analyzer that can be programmed to
trigger when a signal goes to a certain state, the internal signals on the FPGA
can then be seen.

This �le can then be read and compared with the solution found using the
software version of the conjugate gradient method to see if they found the same
result.

The ArriaII have two push-buttons that can be used by the user, these
buttons have been used as reset and start buttons. PB0=reset, PB1=start.
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Part VI

Results

16 External memory bandwidth needed

Since the only module that reads from memory are the matrix-vector multi-
plier, the external memory bandwidth needed are only dependent on how many
multipliers that work in parallel in this module. Since every multiplier in the
module needs one new 64bit value from the external memory every clock cycle
the memory bandwidth needed is BandwidthMin = 64MfCGbit/s , where M is
the number of multipliers in the matrix-vector multiplier and fCG is the clock
frequency of the Conjugate Gradient Module. A �gure taken from SignalTapII
shows the memory-e�ciency of the module, this can be seen in �gure 19 . A new
value from the external memory is available every time the local_rdata_valid
signal is high, as can be seen in the �gure this signal is high almost all the time,
hence the memory e�ciency can be seen to be over 90 %.

The module have been tested with di�erent sized internal memories to see
if it e�ected the maximum frequency, the results can be seen in 18. The max
frequency where not much e�ected by routing congestion.

fMax Memory bits used N

171 2070663 2048
163 2857095 4048
166 4429959 8096

Table 18: Max size e�ect frequency

The total resources used by the module can be seen in table 19. As can
be seen there are still much resources that can be used to implement more
multipliers that can work in parallel in the Matrix-vector module. However
to get an e�ect out of the extra multipliers, an higher memory bandwidth is
needed. Most FPGA have many I/O pins that can be used to connect many
external memory modules.

Type Quantity % of total

LUTs 23506 24%
Registers 20956 21%

Memory-bits 3469127 51%
Multipliers 104 18%

PLL 1 17%
DLL 1 50%

Table 19: Total resource usage by the design
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Figure 19: Memory bandwidth e�ciency

55



The software version of the Conjugate Gradient method and the version
implemented on the FPGA have been tested and compared, the result can be
seen in table 20. It can clearly be seen that the FPGA are capable of performing
much better than the CPU, even though both the CPU and the FPGA use the
same amount of iterations the CPU use much more time per iteration. As the
matrix size grows the di�erence between the FPGA and CPU grows, this is
believed to be be because the larger the matrix the more the CPU needs to
read from main memory, since it can not �t the entire matrix in its cache when
the matrix is large. It have to be noted though that it is probably possible
to make a much more optimized software version compared to the version that
have been used in this testing. But since no other optimized software version
was available a custom version had to be made. The speci�cations on the PC
that the software version was run on can be seen in appendix A.

To test the e�ect of the Jacobi preconditioner, the software version was
implemented with the Jacobi preconditioner. The matrices used in the test
have been diagonally dominant, hence the Jacobi preconditioner should be very
e�ective. It can be seen in 20 that it where able to reduce the number of
iterations needed by 20-25%. However, the time used by the CPU to solve
the problem increased. This is believed to have happened because of the extra
matrix-vector multiplication needed in every iteration when the preconditioner
is used. The matrix-generator program used to generate the test matrices were
not able to generate positive de�nite matrices over 1600 and that is why bigger
matrices have not been tested. But if we extrapolate the result it seems that the
time the CPU use to solve the problem is doubled when the matrix is increased
by 100. The FPGA does not have enough data to be able to extrapolate it, but
the data in table 16 can be used to calculate the theoretical time that will be
used by the FPGA.
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Part VII

Conclusion

In this paper the possibility of accelerating the Conjugate Gradient Method for
dense matrices by implementing it on an FPGA have been investigated. It has
been shown that the only variable in the whole algorithm that needs to be stored
in external memory is the coe�cient matrix A, since no writing to the external
memory is needed, and since the matrix can be stored in the external memory
in the order that it is needed it will be much easier to use the available external
memory bandwidth with full e�ciency. No round o� error have been detected,
but the matrices used to test the module have been well-conditioned, hence
round o� error may have an e�ect if the matrix is ill-conditioned and therefore
more sensitive to round o� error. The largest matrix-size that can be solved by
this design will be constrained by the FPGAs internal memory, because all the
vectors are stored in internal ram. The Arria II will be able to solve matrices
up to 8192x8192. The FPGA implementation has been compared to a software
implementation, it has been shown that the Conjugate Gradient Method are
able to perform 35 times better than a CPU implementation of the Conjugate
Gradient algorithm.

A big advantage of this architecture is that the matrix can be read constantly
in the background as long as the FIFO bu�ers on the FPGA are not full. The
FPGA are able to utilize 90 % of the full memory bandwidth capacity available,
since only the matrix needs to be stored in external memory, all the memory
bandwidth can be used for data transfers. The module has been able to get
a relatively high clock frequency. It was possible to get over 160 MHz. The
module that constrained the maximum frequency was as predicted the �oating
point division module.

17 Further work

It was showed that the Jacobi preconditioner were able to decrease the number of
iterations needed to converge to the solution by 20-30% in the software version.
It was not enough time to implement this on the FPGA, hence this is something
that can be done in a later work. The exact solution to the residual r = b−Ax
can be implemented, and hence get rid o� accumulated round of error in the
residual. Larger and more ill-conditioned matrices needs to be tested to see how
the round o� error developes.
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Part VIII

Appendix A

A PC-Speci�cations

• Multicom Compal PBL21 15.6"

• OS : Windows 7 Home Premium

• CPU : Intel Core i7-2720QM four core, 2.2 GHz, 6MB SmartCache

• Memory: 8 GB DDR3 1333MHz (2×4 GB)

• SSD : Intel X25-M 120 GB
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