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i

Project description

Based on the class library developed in a project for functional simulation of

non-deterministic state machines, the following tasks will be performed:

• to investigate principles for using regular expressions in system descrip-

tions, and develop a grammar for including such expressions in SystemC,

• and to define a method for generating functionally equivalent nondeter-

ministic finite state machine descriptions from regular expressions in Sys-

temC.



ii

Abstract

With Moore’s law exponentially increasing the number of transistors on inte-

grated circuits, developers fail to keep up. This makes chip area an increasingly

cheap resource. At the same time, researchers and developers are trying to find

ways to dynamically reconfigure FPGAs, preferably at run time, so as to in-

crease the flexibility of hardware solutions, and close the gap between the speed

of hardware and flexibility of software. A proposed way of solving both of these

issues at once is by using nondeterministic finite-state machines as a fundamen-

tal unit of design. This could provide great flexibility and dynamic hardware

solutions, but before this can be known for sure, a system like this would need

to be simulated. This paper documents the planning and development of a Sys-

temC library that creates nondeterministic finite-state machines from regular

expressions, and a special regular expression syntax designed for this specific

application. The paper can also be used as a reference for the inner workings

of, and how to use, the library.
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Chapter 1

Introduction

Since the dawn of electronics, and the integrated circuit particularly, we have

witnessed an incredible development in information processing. The circuits are

getting faster, more dense and more complex, and use less power, at a rate that

exceeds any other area in technology. Moore’s law predicts that the number

of transistors that can be inexpensively placed on an integrated circuit will

roughly double every two years. This idea was originally presented in a paper

by Gordon Moore in 1965 where it was calculated to double every year[1], but

he later refined the calculations to show a doubling every two years.[2] Designers

are struggling to keep up, and this results in what is commonly known as the

’productivity gap’. The designers are simply not able to create systems that

utilize all the available area, and the number of transistors a design team can

make use of is increasing at a slower rate than Moore’s law. This means that

chip area is becoming an increasingly cheap resource.

Simultaneously, some designers are trying to get around a related issue. Tra-

1
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ditionally, custom tailored hardware solutions on FPGAs and ASICs are used

when there is a need for very efficient processing of the same task many times

over. Examples are coders/decoders, information encryption, and hardware ac-

celeration of computer graphics. And when there is a need for a general purpose

system that can do practically all kinds of different tasks, serial processing of

changeable program instructions are often used. Examples are microcontrollers

and personal computers. In other words, custom tailored hardware solutions

give efficiency where serial processing gives flexibility. But what if it would be

possible to make a custom tailored hardware solution that would change accord-

ing to the task that needed to be performed? Enter dynamically reconfigurable

systems.

These systems, to my knowledge, do not currently exist outside of research

labs, but as the name suggests, these are hardware solutions that can be changed

dynamically. For instance, an OpenGL hardware accelerator could be redefined

into a Deep Blue chess computer in a matter of moments. This would introduce

a great deal of flexibility without necessarily loosing a lot of efficiency. Many

of these proposed systems need to be reconfigured from outside of the system

itself, but not all. And some even aim for a dynamically reconfigurable system

that can reconfigure parts of the circuit while running. These are called runtime

reconfigurable systems.

Recently, my supervisor, professor Kjetil Svarstad at the Norwegian Uni-

versity of Science and Technology, proposed using self cloning nondeterministic

finite-state machines (NDFSM) as a fundamental unit of design for such run-

time reconfigurable systems.[3] However, to prove that this can be done it is

necessary to simulate such systems, and earlier this year I completed a project

that made this possible. It was a nondeterministic finite-state machine library
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in SystemC which was able to perform tasks assigned to states in the form of

callback functions.[4] This master’s thesis is about using that concept as a ba-

sis for designing a more complex system that allows for hardware description

through the use of regular expressions.

1.1 Motivation

The concept of runtime reconfigurable systems is an attempt at closing the gap

between software and hardware, by fusing the flexibility of software with the

speed and efficiency of hardware. One way to go about this is to use dynamic

elements as fundamental building blocks in hardware, where these change or du-

plicate according to some input. Nondeterministic finite-state machines are such

dynamic elements, and by making such state machines that clone themselves

when facing several state transitions from the same state, one could possibly

achieve a great increase in flexibility and processing speed at the cost of chip

area. In principle, one would implement solutions that contain descriptions of

potential hardware blocks that would be realized on chip in real time as they

are needed.

In order to prove that this would in fact work, and to more clearly define the

boundaries of what a system like this can and cannot do, the ability to simulate

this is an absolute necessity. I have already made a simplistic solution for this, as

already mentioned, but this had some limitations as well as being quite tedious

to define—especially for more complex systems. It could only take one input,

could not handle ”NOT-transitions” or ranges in input, the state machine had

to be described in detail with all states and transitions explicitly defined, and

it used function pointers to class methods as a callback system for performing
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tasks associated with states—all in all a limited and verbose solution, but a

solution nonetheless.

Therefore, we decided to improve and expand on this concept to make some-

thing similar, but without the verbosity and with fewer limitations. It has been

proven that if something can be described with nondeterministic finite-state ma-

chines, it can also be described with regular expressions—as well as the other

way around. In other words, for every nondeterministic (and deterministic)

finite-state machine there is a functionally equivalent regular expression, and

this means that we can use regular expressions to define the state machines

that in turn defines a dynamic hardware description. Defining dynamic hard-

ware solutions with regular expressions could prove to be both powerful and

quick, but to prove this we need a working model for simulation purposes. A

limitation of SystemC is that modules can not be created or destroyed while in

simulation[5, p. 11], so the model can not be self cloning, but instead needs to be

able to contain several active states at once—however, this should be sufficient

as a proof of concept.

The system should also accept several inputs, and the input type should not

be restricted more than absolutely necessary. Consequently, a custom tailored

adaptation of regular expression syntax and semantics will need to be defined.

1.2 Report structure

The literature surrounding the concept that is explored and developed through-

out this task is sparse. There are a few articles about how nondeterministic

finite-state machines can be used to solve timing issues on FPGAs and other

integrated circuits, or how regular expressions can be compiled into PLUs, and
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similar topics. But, generally speaking, they are either outdated, only superfi-

cially touching the same areas as this, or both. Because of this, I cannot write

much more about the history of this concept or bring about pages of references

and citations.

This is more or less a new idea, and the work has been consisting of a large

amount of thinking, and much less doing. This is not a report chuck full of

simulations, tests and empirical data, but a documentation of the process of

developing the programmatic foundation of something that will be simulated,

tested and producing empirical data. Throughout the report I have tried to

explain why I have made the decisions I have made and what alternatives were

considered wherever this is not self evident.

My contributions to this project are this report, the development of a spe-

cific adaptation of regular expression into a syntax suitable for this specific

application, an algorithm for translating a regular expression of this kind and

syntax into a nondeterministic finite-state machine of equivalent functionality,

the development of the complete SystemC library described in this report, and

designing and coding the examples of practical use of the library.

The project was given to me and started on the 12th of May 2011, and

finished and handed in 13 weeks later on the 12th of August 2011.

I decided to split this report into five main chapters in addition to the ab-

stract, introduction, discussion and conclusion, and I have also tried to structure

the report in a way that makes it usable as a reference for the actual SystemC

library that has been developed. After this introduction, you will find a chapter

about nondeterministic finite-state machines. This chapter describes what they

are, what separates them from deterministic finite-state machines, how they are

defined formally, and a part about a special type of transitions, before ending
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the chapter with a short part about state machine actions.

Then follows a chapter about regular expressions. First I explain a bit

about regular expressions in general, and especially the parts relevant to this

task, and then I explain in detail the whats, hows and whys about the specific

adaptation of regular expression syntaxes that was developed and defined for

this application. The chapter ends with a few examples of regular expressions

using this adapted regular expression syntax.

The next chapter goes on to explain how one can translate a regular expres-

sion to a nondeterministic finite-state machine. A fairly well known algorithm

for doing this, known as Thompson’s algorithm, is described, and I continue

with explaining why I did not use that as it is, and describe a somewhat similar

algorithm that I developed as part of this project that is a little more fitting

with the specifications and limitations this application demands.

In the following chapter, the programmatic implementation in SystemC is

described and explained in detail. The chapter starts with a few general ob-

servations and notes, before I walk the reader through a couple of new C++

features that are parts of the new and upcoming 2011 standard for C++, and

that I have taken advantage of. Following this is a section about how the sys-

tem is structured programmatically, before I go through all the classes with

their members and methods, as well as a few global functions, and explain what

the system does, how it does it, and why.

The next chapter contains three separate and different examples of how to

use this SystemC model, and they all describe different aspects of using it.

Hopefully this will both show some of the features of the library and give the

reader some idea of how this can be used, and what it can be used for, in

addition to being used on the detailing level of fundamental design units.
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Before going on to the conclusion, there is a discussion chapter where I

discuss a few ideas of what could be improved, what could be expanded, and

what could be added to make the library better and easier to use.

After the conclusion follows an appendix containing the complete code of

the SystemC library. This is separated in five sections—one for each header file.

And at the very end of the document, the list of code listings, list of figures, list

of tables and the bibliography can be found.
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Chapter 2

Nondeterministic

finite-state machines

A master’s thesis should as far as reasonably possible be self contained. Thus,

the report would be lacking without a chapter on nondeterministic finite-state

machines. Having already written most of this in my previous project, I fail to

see the point in rewriting the entire chapter in different words, so I have chosen

to include it in an almost verbatim fashion. More specifically I can say that the

rest of this introduction to nondeterministic finite-state machines, counting from

the next paragraph, as well as Chapter 2.2, which explains epsilon-moves, and

Chapter 2.1, which explains NDFSM formalism, are included almost verbatim,

and with only minor changes. Chapter 2.3 is written specifically for this report,

and explains the essentials of actions associated with states and transitions.

A nondeterministic finite-state machine is a finite-state machine where for

each pair of state and input symbol there may be several possible next states,

9
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as opposed to a deterministic finite-state machine where the pairs of states and

input symbols are uniquely determined. This can be interpreted as a state

machine where you can’t know which of these possible next states will be active

until the input symbol has been consumed and the transition has occurred—with

or without probability weighting of the possible transitions, as is the case in the

more general concept of probabilistic automata—or as a state machine which

can have more than one active state at the same time. In this paper, and the

programming model, I will use the latter interpretation, as it opens for the

possibility of using such an NDFSM to implement parallelism in a hardware

setting.

Nondeterministic finite-state machines do not carry greater computational

power than deterministic finite-state machines (DFSM), as it is always possi-

ble to convert any NDFSM to an equivalent DFSM that recognizes the same

formal language through a method called powerset construction[6]. However,

the equivalent DFSM can often require far more transitions and states than

the original NDFSM, and this relationship can potentially be exponential; if an

NDFSM has n states, the equivalent DFSM can require up to 2n states. Be-

cause of this, NDFSMs can often be much more flexible, and often easier and

less tedious to design, than an equivalent DFSM.

Another aspect of NDFSMs is that one doesn’t have to specify every possible

input symbol as transitions from every state. A trivial example of this is shown

in Figure 2.1. If an active state has no specified transition for a given input, the

state will simply transition into nothing, leaving the state inactive—unless, of

course, a preceding state immediately reactivates it through a normal transition.
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S0 S1 S2 S3

S0 S1 S2 S3

1
1

0
1

0

0

0, 1
1 1 1

Figure 2.1 – An example of the difference between a DFSM (top) and an

NDFSM (bottom), where both are made to enter the accept state S3 after

the first occurrence of three consecutive ones in the input string.

2.1 NDFSM formalism

The NDFSM formalism do not differ much from regular DFSM formalism.

There are, however, two different kinds of NDFSMs with regards to formal

definitions—regular NDFSMs, and NDFSMs with ε-moves (or simply epsilon-

moves). The regular NDFSM is defined by the 5-tuple (Q,Σ, T, q0, F ), where:

• Q is a finite set of states,

• Σ is a finite set of input symbols called the input alphabet,

• T is a transition function, T : Q× Σ→ P (Q),

• q0 is a start state, and

• F is a set of accept states, and a subset of Q (F ⊆ Q).

Here, P (Q) denotes a power set of Q, and this is what differs from the

definition of DFSMs. In DFSM formalism, T : Q × Σ → P (Q) is replaced by
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0 1

S0 S0 S1

S1 S0 S2

S2 S0 S3

(a) δ

(DFSM)

0 1

S0 {S0} {S0, S1}

S1 { } {S2}

S2 { } {S3}

(b) T (NDFSM)

Table 2.1 – The state transition tables of the FSMs in Figure 2.1.

δ : Q × Σ → Q – the difference being that the former defines a transition to

a set of possible states, whereas the latter defines a transition to one uniquely

determined state.

Using the NDFSM in Figure 2.1 as an example, the values of the 5-tuple

would be: Q = {S0, S1, S2, S3}, Σ = {0, 1}, q0 = S0, F = {S3}, and T would

be defined by the state transition table shown in Table 2.1. Also shown, to

illustrate the difference between the definition of a DFSM and an NDFSM, is

the state transition table that defines δ of the DFSM in the same figure.

2.2 Epsilon-moves

NDFSMs can be defined with a kind of extension, allowing transitions to occur

regardless of input. Such a state machine is often referred to as an NFA-ε, an

NFA-λ, or simply an NFA/NDFSM with epsilon-moves. The proper definition

of an epsilon-move, or epsilon transition, is that it does not consume an input

symbol, so such a transition can occur even if the input is an empty string. This

means that the transition function T must be redefined to
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0 1 ε

S0 { } {S1} {S0}

S1 { } {S2} { }

S2 { } {S3} { }

Table 2.2 – A state transition table with ε-moves.

T : Q× (Σ ∪ {ε})→ P (Q)

Here, ε represents a zero-length string, and can as such be thought to be

anywhere in the input string. A transition table for a state machine with

epsilon-moves follows the same principles as for those without, but with ε as

an additional input symbol. An example is shown in Table 2.2.

2.3 Actions

The states of the state machine can have actions associated with them. An

action is an activity that is scheduled to be performed at a given moment. In

general there are four different types of actions:

• Entry action: performed when entering the state.

• Exit action: performed when exiting the state.

• Input action: performed dependent on present state and input condi-

tions.

• Transition action: performed when performing a certain transition.

Readers familiar with finite-state machines will know that Moore machines

use entry actions, and Mealy machines and combinatorial machines—finite-state

machines with only one state—use input actions. The implementation done as
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part of this thesis uses entry actions, but this is covered in greater detail in later

chapters.



Chapter 3

Regular expressions

I have already pointed out that regular expressions and nondeterministic finite-

state machines are functionally equivalent, and I have gone through the details

of what defines a nondeterministic finite-state machine and how they work. In

this chapter I start by going through some of the theory behind regular ex-

pressions, and continue with explaining how ordinary regular expression syntax

and semantics have been adapted to this specific project. The latter part also

contains a table that lists and explains all the metacharacters that are used in

this adaptation.

3.1 Regular expressions theory

Regular expressions sprung out of the computer sciences of automata theory

and formal language theory. Both of these fields deal with computation models,

and a precursor to regular expressions, called regular sets was a mathematical

15
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notation invented by Stephen Cole Kleen in the 1950s used to describe such

computation models.[7] This notation was later implemented in the editor QED

by the famous computer scientist Ken Thompson—who also designed a fairly

well known algorithm for translating regular expressions into nondeterministic

finite-state machines[9], which I will describe in a little more detail in a later

chapter—to enable pattern matching in text files. This was the birth of regular

expressions, and regular expressions as a means for pattern matching in strings

and text files was later included in many text editors.

Traditionally, a regular expression provides a way to match strings of text.

There are a number of different syntaxes, like POSIX Basic Regular Expressions,

POSIX Extended Regular Expressions and Perl regular expressions, where some

provide more functionality than others, but they all work by the same general

principles. A regular expression defines a set of possible strings that are com-

pared to another string—as such one could say that regular expressions provide

a means to defining a large set of alternative strings for matching purposes with-

out having to list all the elements of the set. It is considered a match if the string

to be compared is identical to one or more of the strings in the set defined by the

regular expression. Usually in practice, when doing pattern matching, a longer

string is scanned for parts that match the regular expression, so when matching

a string it suffices if only part of the string matches one or more elements in the

string set defined by the regular expression.

Most syntaxes provide the same basic operations for constructing regular

expressions. These are the boolean OR-operator, grouping or subexpressions,

and quantification.

The boolean OR-operator takes the form of a vertical bar and is used to

separate different alternatives in the expression. For example, the expression
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ab|cd matches the strings ab and cd. Note that these two strings could be part

of a larger string, and don’t need to define the whole string to be matched in

its entirety. This fact is to be taken implicitly throughout the chapter unless

otherwise explicitly specified. Grouping, or creating subexpressions, is done

by enclosing the subexpression in parentheses, like in the expression (ab|cd)ef,

which would match the strings abef and cdef. Subexpressions can be nested.

Quantifiers succeed the character or subexpression they are associated with,

and define how many consecutive repetitions of this element are allowed to

occur. The three basic quantifiers are the question mark (?), the asterisk (*)

and the plus sign (+). These imply zero or one, zero or more and one or more,

respectively. Many syntaxes also include a different kind of quantification that

explicitly defines a minimum and maximum number of allowed repetitions—in

POSIX Extended Regular Expressions, for instance, this is written as {m,n},

where m is the minimum and n is the maximum.

Some syntaxes, like the Perl syntax and Perl-derivatives, include a few more

concepts like lazy quantification, case insensitivity, named capture groups and

recursive patterns,[8] but none of these concepts are especially relevant to this

task, so I will not go into this in more detail.

The characters in a regular expression that serve some special purpose are

called metacharacters. Quantifiers, parenthesis and the vertical bar are all

metacharacters, and the number of metacharacters vary between the differ-

ent syntaxes. However, in most syntaxes, but not all, metacharacters are es-

caped—meaning that they are interpreted as normal characters—by preceding

them with a backslash.

Most syntaxes also have a wildcard metacharacter that matches any charac-

ter that may occupy the placeholder it refers to. This metacharacter is usually
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the dot character (.). For instance, the expression a.b will match any three

character string starting with an a and ending with a b.

Square brackets are usually used as a way to list several alternatives to one

character position. An example could be [abc] which would match the characters

a, b or c, and be another way of writing a|b|c. Square brackets also allow ranges.

Ranges are defined by putting a hyphen between two characters that mark the

opposite ends of the allowed range of characters. For instance [a-z], which would

accept any lowercase character between a and z inclusive. The square brackets

can contain several ranges, as well as a mix of ranges and single values. An

example that matches any alphanumeric character and the underscore character

could be [A-Za-z0-9 ]. If the contents of the square brackets start with a caret,

the results are inverted, meaning a character matches if it is not in the values

and ranges defined—for example [∧A-Za-z0-9], which would match any non-

alphanumeric character.

Some syntaxes also have shorthands for expressing certain things like al-

phanumeric characters, word boundary characters, digits and so on—usually

referred to as escape sequences—but how this is expressed syntactically varies.

Almost all syntaxes also have metacharacters to define an association with the

very start and end of the whole string to be matched against as well, but this

is not something that will be used in this project, as the start and end of input

strings is a concept often rather diffuse, if not meaningless, in this context, and

can be solved through other means if somehow necessary.
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3.2 Adaptation of syntax and semantics

The regular expression syntax used in this model is based on POSIX Ex-

tended Regular Expressions, but contains a few modifications to enable matching

against several input signals and different input types. In ordinary regular ex-

pressions, each character is either a metacharacter dictating some functionality

or a character to match some string of characters against. For our purposes,

on the other hand, several strings of values will sometimes be evaluated in a

parallel and interdependent fashion, and the values will not necessarily be char-

acters—they can just as well be integers, floating point numbers, boolean values,

bit vectors or character strings, to mention a few possibilities.

Allowing different data types demand that all tokens, or units of evalua-

tion, need to be syntactically separated to avoid ambiguity surrounding where

one unit ends and the next begins. Allowing several inputs also sets a need

for grouping values that correspond to different inputs together with a boolean

relationship between these values. There is also a need for specifying refer-

ences to actions that will be associated with states at different positions in the

expressions. I will go through these details below.

The values to be checked against must either be written in a way that corre-

sponds to how the values are written and read through C++ streams using the

stream extraction and stream insertion operators, or the explicit template spe-

cialization of the casting functions in Chapter 5.8. Insertion to and extraction

from streams form the functionality of the general function, while strings, c-type

strings and characters have explicit template specialization to allow whitespace

characters. If this does not fit ones needs, one would either have to overload

the data type’s stream extraction and insertion operators, or define ones own
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explicit template specialization of the casting function.

Subexpressions follow the same pattern as for ordinary regular expressions.

That involves the use of parentheses, and use of the vertical bar (|) as an OR-

operator. Subexpressions can be quantified with the use of the designated quan-

tifier metacharacters. Escaping any character with a backslash forces it to be

interpreted as a regular character.

3.2.1 Unit of evaluation

The specifications mentioned above demands the definition of some unit of eval-

uation. This unit contains the values to be evaluated and the relationship

between them within a set of angle brackets. An example of a unit for evalu-

ating one character input to ’a’ would look like this: <a>. This will simply be

referred to as a unit. The angle brackets were chosen because they are the only

easily accessible type of brackets that are not already reserved as metacharacters

serving a different function.

When evaluating several inputs, the values of these inputs are separated by

a metacharacter describing their boolean relationship—either ’&’, denoting a

boolean AND, or ’|’, denoting a boolean OR. An example of a unit for evaluating

one integer input to 10 and another integer input to 14 would look like this:

<10&14>. The parts of a unit separated by boolean operators—which hold the

values of 10 and 14 in the previous example—will be referred to as sub-units.

The number of sub-units per unit has to be consistent throughout the regular

expression, but the different sub-units within a unit do not have to be of the

same data type. The signs for boolean functions were chosen by convention.

A sub-unit can be written as nothing more than a single value to matched

against, or as several possibilities grouped in square brackets. In ordinary regu-
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lar expressions, values in square brackets are written next to each other without

whitespace or punctuation, which is fine when the input data type is limited to

single characters. This would cause problems in our case, as the input is not

limited to single characters, or single digits. Therefore, these values are sepa-

rated by commas, and their placeholders will be referred to as fields—the group

of fields will be referred to as a field set. A field can be a single value, like the

fields in the field set [3,4,5], or a range. A range is a set of two values separated

by a hyphen, and it is considered to be a match when the input is between

the two values inclusive. In other words, the field set [3,4,5] is equivalent to

the field set [3-5]. A field set can consist of both single values and ranges—for

instance [1,3-5,12], which would match the inputs 1, 3, 4, 5 and 12. It needs to

be noted, however, that ranges are only valid for data types that can actually

be compared with the C++ <= and >= operators. Also note that whitespace

characters like space, tabulator and newline are accepted and treated literally

in the regular expressions—although escape sequences might be introduced in

the future.

If the first character in the field set is a caret (∧), this implies that the field

set is inversed. That means that it is considered to be a match when the input

does not match the fields it contains. This can be thought of as inverting the

boolean value of the result of matching against a field set without the caret, but

which is otherwise identical.

Units can be quantified with the designated quantifier metacharacters. Units

can also be made with different data types as input—integers and characters,

for instance—and as usual, boolean AND has higher precedence than boolean

OR when combinations of the two are used.
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3.2.2 Actions

Since these regular expressions will be translated into a nondeterministic finite-

state machine with associated actions, there must also be a way to specify these

actions in the regular expression. Actions are specified with an @-sign succeeded

by an integer, and are placed after, and outside of, the units they apply to, and

after the unit’s quantifier, if there is one. The action is associated with the

state that will be activated when the transition whose condition is defined by

the preceding unit is performed. The integer succeeding the @-sign refers to a

zero-based index of a vector or array of functors that is passed as a separate

argument to the system. An @-sign without a succeeding integer is interpreted

as referring to index zero. This can be practical when operating with a single

functor.

The @-sign was chosen simply because, semantically, it traditionally func-

tions as the preposition at, referring to a syntactically succeeding position—in

emails it points to a domain holding the incoming email server, and here it points

to an index of functors. I did consider dropping the index and interpret the ex-

pressions with increasing index from left to right, but this both complicates the

expression parsing and can necessitate defining the same functor several times

in the vector or array of functors, as well as making it difficult to use the same

vector or array of functors for several pattern matching modules with different

regular expressions.

3.2.3 Metacharacters

The metacharacters and their functionality are listed in Table 3.2.3.
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Metacharacter Description

<> Encapsulates a unit for evaluation, as explained in

Section 3.2.1.

& Boolean AND-operator that denotes the relationship

between two inputs, i.e. <a&b>, which matches the

case where the first input is ’a’ and the second input

is ’b’.

| This has two functions. 1) A boolean OR-operator

between sub-units; and 2) a boolean OR-operator

between the expression before it and the expression

after it, i.e. <a><b>|<c><d>, which matches the

character streams {a, b} or {c, d}.

( ) Defines a subexpression. For example,

<c>(<a><t>|<o><d>) matches the charac-

ter streams {c, a, t} or {c, o, d}.

{m, n} Matches the preceding element at least m times, and

at most n times. For example, <a>{1,3} matches

the streams {a}, {a, a} and {a, a, a}.

continued on next page...
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...continued from previous page

Metacharacter Description

+ Matches the preceding element one or more times.

* Matches the preceding element zero or more times.

? Matches the preceding element zero or one time.

[ ] Placed inside a unit, it matches one of the elements

inside. Contains a field set, which can consist of

one or more fields. The fields are separated by com-

mas, and ranges can be denoted by using hyphens for

types that support greater than or equal to and less

than or equal to checks. For example, <c&[1,10-

100]> matches the case where the first input is ’c’

and the second input is either 1 or between 10 and

100 inclusive.

continued on next page...
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...continued from previous page

Metacharacter Description

[∧ ] Exactly the same as the ’[ ]’ metacharacters, except

it starts with ’[∧’ and means anything except the

elements inside.

, Separates the fields of a field set.

- Denotes a range for types that support less-than-

or-equal and greater-than-or-equal checks. See the

description of the ’[ ]’ metacharacters for an example.

. When used alone, and not as a field value in a field

set, or a part of a character string, floating point

value or something similar, it is a wildcard that

matches anything. For example, <a&.> matches the

case where the first input is ’a’ no matter what the

second input is. If it is not used alone, it is treated

as a regular character and not a metacharacter. For

example, <a&3.14> matches the case where the first

input is ’a’ and the second input is the floating point

or string value of 3.14.

continued on next page...
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...continued from previous page

Metacharacter Description

@i Marks where an action will be performed, where i is

an integer representing a functor array or vector in-

dex. The integer can be omitted, which is equivalent

to writing @0. These are explained in more detail in

Chapters 3.2.2, 2.3 and 5.

\ Escape character used for interpreting reserved

metacharacters as regular characters. For example,

<\&> matches the character ’&’.

Table 3.1 – Metacharacters of regular expressions.

3.2.4 Some examples

At this point it is assumed that the reader is familiar with regular expressions in

general, as well as the specific adaptations mentioned in the previous chapters.

Therefore, the following examples will only have a short literal descriptions and

explanations without going into the syntactic details.

<1&1><1|1>(<0&0>|<1&1>) :

Two inputs. First, both must be 1; second, one or both must be 1; third, either

both must be 0 or both must be 1.
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<S><T><A><R><T>(<0 >@0|<1 >@1|<[2-9]>@2)@3 :

One input. The first five incoming inputs must be the characters S, T, A, R and

T. Then the input must be either 0, which would trigger the functor with index

0, or it must be 1, which would trigger the functor with index 1, or it must be

between 2 and 9 inclusive, which would trigger the functor with index 2. If the

subexpression for the last input is a match, meaning the input is between 0 and

9 inclusive, functor with index 3 would be triggered.

<0|0|0>(<1&1&1>|<1&0&0>|<0&1&0>|<0&0&1>) :

Three inputs. The first is a three input NAND, and the following subexpression

is a three input XOR.
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Chapter 4

From regular expression to

NDFSM

From the fact that regular expressions and nondeterministic finite-state ma-

chines are functionally equivalent, it follows that it is possible to translate one

into the other. The most famous algorithm for doing this is arguably Thomp-

son’s algorithm. This was first described in an article Ken Thompson wrote in

1968, where he describes how to compile regular expressions for an IBM 7094

computer using the language ALGOL-60. This algorithm is of historical impor-

tance, and is more or less the conceptual foundation of my own algorithm, so I

will start by explaining the foundations of Thompson’s algorithm before I go on

to explain my own, and why I chose not to use Thompson’s algorithm instead.

29
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4.1 Thompson’s algorithm

Thompson’s algorithm was made to compile regular expressions to machine

code, so that it could be used for very fast matching of text strings. The resulting

code would take the text to be matched as input, and find all substrings in the

text that matched the regular expression.

This compiler consisted in three concurrently running stages, where the first

stage would examine the regular expression to make sure that it is not mal-

formed. The second stage would reorganize the whole regular expression into

reverse Polish form, with a special juxtaposition operator, symbolized with the

character ’·’. To use the same example as Thompson, the expression a(b|c)*d

would be translated to abc|*·d· in reverse Polish form. The next step would

be to introduce a pushdown stack, and start pushing the characters onto the

stack, where the elements on the stack are pointers to the compiled code of

an operand. When the boolean OR-operator (|) or the juxtaposition operator

(·) is encountered, the two topmost elements on the stack are combined, and a

new pointer to this operation replaces the two elements. The result is thereby

available as an operand to another operation. Because the ’|’ and ’·’ operators

operate on two values, they are called binary operators. When a quantifier,

like ’*’, is encountered, this acts as a unary operator which only acts upon the

topmost element on the stack. The quantifiers have defined operations that

replace the last element with an operand of the functionality represented by the

quantifier. Finally, when the last character or operator of the regular expression

has been compiled, the pushdown stack holds only one element, and that is the

pointer to the code for the whole regular expression.

Using the same example as above, the process would begin by pushing the
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elements a, b and c on the stack in that order. Then the ’|’ operator would

replace the two topmost elements with a pointer to the compiled code of the

operand b|c. Then the ’*’ quantifier would replace the topmost element with

a special construct looping the b|c element back around itself to a search path

splitting node, so that zero or more occurrences of b or c would lead to the

same place in the search path. Next up is the ’·’ operator that combines the two

topmost elements on the stack to one by attaching them to each other, search

path wise. Then d is pushed onto the stack, and the last ’·’ combines the two.

The stack is now left with one pointer, pointing to the code for the whole regular

expression.

4.2 My own algorithm

Although Thompson’s algorithm is a very efficient algorithm for compiling or-

dinary regular expressions into machine code, it does not use states in the same

way this system will have to use states. Instead it uses two kinds of nodes called

NNODEs and CNODEs that represent characters and search path splitters re-

spectively. Using states is essential for this project because the states represent

actual hardware modules with functionality. Also, using functor markers in

the regular expressions both makes this syntactically more complicated with

Thompson’s algorithm, and this state machine might demand more states since

two parallel path ways might be set to trigger different functors. I therefore

decided to make a new algorithm with Thompson’s algorithm as a foundation.

But instead of first translating the regular expression to reverse Polish form, I

decided to make a recursive algorithm instead.

Before describing this recursive algorithm in a step-by-step fashion, I would
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like to point out a couple of things. First I will discuss something I call the fun-

damental building blocks that are used as a basis when a unit or subexpression

is quantified with either no quantifier, the zero or more quantifier (*), the one

or more quantifier (+), or the zero or one quantifier (?). These are all solved

by creating a new state and making transitions between the states by a certain

pattern. These patterns can be seen in Figure 4.1, where they are shown with

a simple unit as the transition conditions. However—and this is very impor-

tant—these fundamental building blocks are also used for subexpressions. In

other words, a fundamental building block is not just two states with simple and

single transitions between them, but patterns of connection that correspond to

the different quantifiers. So a quantified subexpression would be connected be-

tween these two states replacing the single unit in the figure, with any epsilon

transitions exactly as shown.

The other thing I would like to point out is that units or subexpressions

quantified with the {m,n} quantifier are equivalent to a subexpression of n-m+1

parallel alternatives, where the first alternative is the unit or subexpression re-

peated m times, the second alternative is the unit or subexpression repeated

m+1 times, and so on up to the last alternative which is the unit or subexpres-

sion repeated n times. For instance, the quantified unit <a>{2,4} is equivalent

to the expression <a><a>|<a><a><a>|<a><a><a><a>.

The translation from regular expressions to nondeterministic finite-state ma-

chines in a system that supports actions will differ somewhat depending on what

type of action is used. This system will perform actions when certain input con-

ditions are met, which leaves the options of transition actions and entry actions.

I chose entry actions because they seemed easier to implement, especially when

using the fundamental building blocks explained above as a basis.
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<a> Sn Sn+1 1

<a>* Sn Sn+1 0 or more

<a>+ Sn Sn+1 1 or more

<a>? Sn Sn+1 0 or 1

a

ε

a

a

ε

a

a

Figure 4.1 – The fundamental building blocks of regular expression to

NDFSM construction. Left: regular expression units with quantifiers; center:

NDFSM fundamental building blocks; right: literal description. The units

can be exchanged with complete subexpressions, with epsilon transitions still

connected as shown.
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In the following step-by-step description of the algorithm, there are four val-

ues referred to as start-state, end-state, old-state and new-state. When assigning

values to them, this is implicitly done by reference, so states are not copied. The

first two are incoming arguments, and the last two are local variables used to

keep track of the states as they are created and transition conditions are de-

fined. The first call to this recursive function happens after the first state has

been created, and this is passed as the start-state argument, while end-state is

NULL. In the description, token refers to a either a unit with succeeding quan-

tifier and functor declaration, if any, a subexpression with succeeding quantifier

and functor declaration, if any, or a boolean OR-operator.

1. Set old-state to start-state.

2. Try to read the next token.

3a. If the token is a unit or subexpression quantified with the {m,n} quantifier,

translate it to a new equivalent subexpression and go to 3c.

3b. If the token is a unit, create a new state and set new-state to this, create

transitions between old-state and new-state according to the fundamental

building blocks, and associate appropriate functor to new-state if any. Go

to 2.

3c. If the token is a subexpression, create a new state and set new-state to this,

call self with subexpression as new regular expression, old-state and new-

state as start-state and end-state arguments according to the fundamental

building blocks, and associate appropriate functor to new-state if any. Go

to 2.

3d. If the token is a boolean OR-operator, save old-state in a local stack, and

set old-state to start-state. Go to 2.

3e. If no token could be read because of reaching the end of the string, create
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epsilon transitions from old-state and all states in the local stack to end-

state if end-state is not NULL.

When the recursive loop is finished, the complete regular expression is trans-

lated into a nondeterministic finite-state machine, with functors associated with

the states representing the search path positions at which their respective func-

tors were declared in the regular expression.
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Chapter 5

SystemC implementation

In this chapter I will describe how the SystemC implementation works, how it

is designed and why it is designed the way it is. I have divided the chapter into

several sections, where the first describes and explains some new C++ features

that are used in the implementation, the second explains the programmatic

structure of the system, and the rest describes each part of the structure in

detail. The complete code is listed in the appendix and can be a useful resource

when reading the following sections, but in addition, every section that explains

a class or a list of functions will contain an overview of the relevant members,

methods and/or functions.

When designing the library, care was taken to make the model easy to use.

Declaring, defining, initializing and using the model should not be complicated,

tedious or overly verbose. It should have as little limitations as reasonably

possible when it comes to accepted data types of the inputs, as well as the

number of inputs.

37
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5.1 C++11 (C++0x)

Since this is a future oriented project, I decided to take use of some of the

new and upcoming C++ functionality. A new standard for C++ has been in

the works for quite some years, and was originally supposed to be released in

2008 or 2009. For this reason, the standard was, and is, commonly referred to

as C++0x, but is being finalized this year, and it is now often referred to as

C++11. The additions and changes are fairly numerous and I have no intention

of naming them all here, but I will briefly explain the two new concepts that

are used in this project. To prevent any unnecessary confusion, I must also

point out that C++11 allows for juxtapositioning of right angle brackets in

template declarations, like vector<a class<int>>, something its predecessors

C++98 and C++03 did not, and that I have used this syntax consistently in

the project’s code.

Also note that to compile a program with C++11 functionality with the

compilers of today, the compiler must be run with the appropriate command

line parameters. For GCC (G++), the compiler argument is ”-std=c++0x”,

or ”-std=gnu++0x” to enable GNU extensions—the latter is necessary for the

SystemC library to compile.

5.1.1 Lambda functions

Lambda functions are function objects—also known as functors—with certain

characteristics and a special syntax. They can operate on variables in their

parent scopes both by reference and by copy, they can take arguments and

return values. They are very practical for using as functors that perform actions

associated with the states, and are the default value for the template parameters
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of the system. Lambda functions follow the following syntax.

[ capture mode ] ( parameters ) mutable throw ( ) −> r e tu rn type {body}

Listing 5.1 – C++11 lambda function syntax.

The [capture mode] dictates how variables from the surrounding scope when

the lambda was defined (not when they are called) are captured. They can

be captured by reference, by value, or not at all. An ampersand means that

variables are captured by reference; an equals sign means that the variables

are captured by value; and an empty set of brackets means that variables are

not captured at all. However, one can also specify which variables are to be

captured by reference, which variables are to be captured by value, and which

variables are not to be captured. Some examples follow.

[ ] // Var iab l e s are not captured

[&] // Al l v a r i a b l e s are captured by re f e r ence

[=] // Al l v a r i a b l e s are captured by va lue

[ a , &b ] // a i s captured by value , b by re f e r ence

[ a , &] // a i s captured by value , a l l o the r s by re f e r ence

[&a , =] // a i s captured by re ference , a l l o the r s by va lue

Listing 5.2 – C++11 lambda function capture modes.

The (parameters) section behaves like the parameters section of other func-

tion definitions, except for three things: 1) The parameter list cannot have

default arguments, 2) the parameter list cannot have a variable length parame-

ter list, and 3) the parameter list cannot have unnamed parameters. However,

it can be omitted if, and only if, the function has no parameters and the return

type is implicit and there is no exception specification—I will get back to what

an implicit return type means shortly.
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The keyword mutable needs to be included if the function changes the value

of a variable captured by value—otherwise an error will be thrown. This is

because variables captured by value are considered to be consts in the functions’

scope. Note that the variable does not change value externally, even if it is

changed inside the lambda function with the mutable keyword, as long as it is

captured by value.

Lambda functions can have exception specification like ordinary functions.

This specification comes between the mutable keyword and the return type, and

is optional.

Return types are written with a preceding hyphen and right angle bracket,

similar to the arrow operator, followed by the data type that the function re-

turns. Explicitly stating the return type can be omitted if the return type is

void, or if the function body is a single line in the form return expression;. If

omitted, the function’s return type is said to be implicit.

The {body} section is, of course, the function body, and contains C++ code

just like ordinary functions.

The data type of a lambda function is function<return type (parameter type 1,

parameter type 2, ...)>. This means that lambda functions with different return

types or different parameters cannot be elements of the same array, vector or

similar container structure. In other situations it is rarely necessary to explicitly

state the data type of the lambda function, as they are often defined and used

in ways that do not demand them being stored as variables, and because the

auto keyword has been extended in C++11 as a shorthand for declaring any

variable type that is known at compile time—a concept called type inference.

Examples of both cases follow.

#include <iostream>
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#include <f unc t i ona l>

using namespace std ;

int main ( int argc , char∗ argv [ ] ) {

int a = 3 , b = 5 ;

int c = [=]{ return a + b ; } ( ) ;

auto l = [& ] ( int d)−>f loat{++a ; return ( f loat ) ( c ) /d ; } ;

cout << a << ” ” << c << ” ” << l ( 3 ) << endl ;

return 0 ;

}

Listing 5.3 – Trivial examples of defining and using C++11 lambda

functions.

Compiling and running the code above would result in the output ”4 8

2.66667 ”.

In addition to being much less tedious to define than self defined function

objects, a small part of the reason I chose to introduce lambda functions in

the design is that some kind of template argument would have to be supplied

when declaring the PMatch object to specify the functor data type, and the

ability to default this argument to something practical and predefined opens

for somewhat less verbose code on the user end—PMatch<> pmatch, versus

PMatch <My own functor> pmatch.

Lambda functions are supported by GCC version 4.5 and higher[10], and

Visual C++ 2010 and higher.[11]
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5.1.2 Variadic templates

It has been possible, in both C++ and C, to have functions that are able to take

a variable amount of arguments through the cstdarg library. This makes use

of several macros to enable the unpacking and looping through the arguments

that are passed.

In C++11, a new concept called variadic templates is introduced. This

allows for templates to take any amount of arguments, which can be used for

both class and function definitions. The syntax is fairly similar to the cstdarg

syntax, but does not allow for looping through the arguments. Instead, recursion

is commonly used. The syntax is shown in a very simple example below:

#include <iostream>

using namespace std ;

template<typename T>

void pr in t (T f i r s t ) {

cout << f i r s t << endl ;

}

template<typename T, typename . . . Args>

void pr in t (T f i r s t , Args . . . r e s t ) {

cout << f i r s t << endl ;

p r i n t ( r e s t . . . ) ;

}

int main ( int argc , char∗ argv [ ] ) {

pr in t (12 , ’ f ’ , ” s t r i n g ” , 3 . 14 , true ) ;

return 0 ;

}
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Listing 5.4 – Simple example showing how C++11 variadic templates can

be used.

There are two meanings to the ellipsis operator. When it occurs on the left

of the parameter name, it declares a parameter pack. A parameter pack can be

used in a function’s parameter list to represent zero or more arguments. When

the ellipsis occurs on the right of the parameter name, it unpacks the arguments,

and they can be used as arguments in another function call—usually one that

also implements variadic templates, and often itself in a recursive manner. In

the example above, the print() function prints the first argument and calls itself

with the rest of the arguments. This will go on recursively until the parameter

pack is empty, in which case it calls an overloaded version that takes only

one argument. The one-argument version prints the last argument and ends

the recursive loop. This ends up printing the arguments from right to left in

the parameter order, but to change the order one could simply define the print

function as void print(Args... rest, T last) instead—where the parameter names

are completely arbitrary, of course.

I have used variadic templates in the methods that are involved in stepping

the state machine with inputs, so that the data types and the number of inputs

are not limited. However, using variadic templates was a more difficult deci-

sion, because they are not supported in Visual C++ 2010. Because of this, I

considered using the cstdarg library or overloading the methods that use this

functionality with varieties that take from one to a reasonable high amount of

templated arguments. Some research revealed that the next version of Visual

C++, commonly referred to as Dev11, will support variadic templates[12]. This

method of creating variadic functions and methods will most likely be the stan-
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dard in the future, and the cstdarg will equally likely become deprecated at

some point. At the same time, compiling on Windows is still possible today

using the Windows port of GCC, called MinGW. With this is mind, I decided

to use variadic templates instead of the alternatives.

Variadic templates are supported by GCC version 4.3 and higher[10].

5.2 Functors

A functor is a function object, and is traditionally implemented as a class with its

parenthesis operator overloaded so that it can be called as a function. PMatch

uses lambda functions as the default functors, but user defined functors can also

be used.

One of the easier ways to implement user defined functors where different

functors of the same type are to do different things without being called with

arguments, is to define a class that has a variable that is used within its over-

loaded parenthesis operator function body to decide what functionality should

be executed. This variable can be passed as a constructor argument, so that the

functor is initialized with a certain ”active” functionality. A trick for making

the functor operate outside its scope is to define pointers of the data type of

variables, signals, et cetera, that are to be acted upon by the functors, and to

pass the addresses of these variables and signals as constructor arguments—or

through other methods, of course.

A couple of things need to be kept in mind when using user defined functors.

One is that the functor needs to have a parameterless constructor defined, even

if it has an empty body. That is because the states contain functors, and when

initializing the states, the parameterless constructor of the functor will be called.



5.3. SYSTEM STRUCTURE 45

The other thing is that some functors may have members of complex data types,

and since associating a functor with a state involves copying the state through

the assignment operator, this might need to be overloaded in certain cases. C++

handles this automatically in most cases.

It would save memory and make any possible need for overloading of the

assignment operator unnecessary if I had chosen to use functor pointers in the

states instead. There are several reasons why I did not choose this. For one,

it could cause unexpected behavior if the functor objects were deleted, changed

or moved in memory during simulation. Second, the states are supposed to

represent actual hardware modules, and as such they should hold their own

functionality.

The class name, or data type, of the functor is passed as a template argument

when declaring the PMatch object.

An example showing how user defined functors can be defined and used is

shown and explained in Chapter 6.3.

5.3 System structure

The system is structured in a hierarchical way, and is in many ways similar to

the hierarchical structure I have used to explain the regular expressions, with

units, sub-units, field sets, fields, and ranges and values. The main class is called

PMatch. PMatch holds several State objects, which represent the states of the

state machine. State objects can hold Rule objects, which correspond to regular

expression units, and Rule objects hold Sub rule objects that correspond to sub-

units and field sets in the regular expression syntax. The Sub unit objects holds

the values and ranges that correspond to the regular expression fields. Only the
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PMatch class inherits sc module. It could be said that it would be appropriate

for the State class to also inherit sc module, as the states actually represent

hardware modules, but since sc module objects cannot be created or deleted

during simulation, this would make it impossible to initialize and re-initialize a

PMatch object after the simulation has started.

I have deliberately avoided using ordinary arrays in the code, and use vectors

instead—except for the container of State objects, which is a deque, but this

is explained later. Vectors are much more convenient than arrays, in that they

are dynamic and have boundary checking when accessing elements.

All methods that are not supposed to be accessed from outside of the class

in question are private, and the same goes for all the class members.

The next chapters explain the different classes, their methods and their

members in detail.

5.4 The PMatch class

The PMatch class is the top class. This is the class one instantiates objects of

or inherits when using the system. It contains only one member, a deque of

states, but a range of private and public methods. An overview of the class can

be seen below.

template <class Functor=std : : funct ion<void ( )>>

class PMatch : public sc module {

private :

s td : : deque<State<Functor>> s t a t e s ;

int max( int a , int b) ;

int g e t h i g h e s t c a l l b a c k i n d e x ( std : : s t r i n g reg exp ) ;
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std : : s t r i n g ex t r a c t subexp r e s s i on ( std : : s t r i n g expre s s ion , int

s t a r t p o s ) ;

s td : : s t r i n g e x t r a c t un i t ( std : : s t r i n g expre s s ion , int s t a r t p o s ) ;

s td : : s t r i n g bu i l d quan t i f i e d s ub exp r e s s i o n ( std : : s t r i n g expres s ion

, int min , int max) ;

void bu i l d f r om exp r e s s i on ( std : : s t r i n g reg exp , State<Functor> ∗

s t a r t s t a t e , State<Functor> ∗ end state , s td : : vector<Functor>&

func t i on s ) ;

public :

PMatch( sc module name name) ;

void i n i t i a l i z e ( std : : s t r i n g reg exp , Functor ∗ functor , bool

cont inuous = true ) ;

void i n i t i a l i z e ( std : : s t r i n g reg exp , Functor functor , bool

cont inuous = true ) ;

void i n i t i a l i z e ( std : : s t r i n g reg exp , std : : vector<Functor>

func t i ons , bool cont inuous = true ) ;

template <typename . . . Inputs>

void s tep ( Inputs . . . inputs ) ;

void r e s t a r t ( ) ;

bool i s empty ( ) ;

#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) ;

#end i f

} ;

Listing 5.5 – An overview of the members and methods of the PMatch

class.



48 CHAPTER 5. SYSTEMC IMPLEMENTATION

The reason for using a deque, and not a vector, as a container for the states

is that elements in a deque maintain their position in memory for the lifetime

of the deque, while elements in a vector are not guaranteed to keep their mem-

ory address when elements are added or removed. The states activate each

other through pointers, so maintaining memory location is completely neces-

sary. However, it would be possible to have the states activate each other via

the PMatch class using indexes instead of pointers, but this would be a much

more complicated solution.

PMatch takes a template argument that defines the functor object that is

to be used. This defaults to lambda functions with return type void and no

parameters, as lambda functions are, in my opinion, far easier to use, and much

less tedious to define, than self defined function objects. Having a well chosen

default template argument also makes the code less verbose on the user end.

When instantiated, PMatch remains empty of states. It is initialized with

the initialize(...) function, which takes the regular expression as the first ar-

gument. The method is overloaded, so that it takes either a single functor, an

array of functors or a vector of functors as the second argument. The third argu-

ment is a boolean value that controls whether the resulting state machine’s first

state will perform a conditionless self transition for every step—the argument

is optional, and defaults to true, meaning that it does perform self transitions.

In other words, the last argument controls whether the state machine will run

continuously, or if it has to be restarted when an input symbol results in all

states being deactivated.

On initialization, PMatch builds the state machine according to the pre-

viously described algorithm. This involves creating the states, and using the

states’ methods to create the transition conditions, all according the aforemen-
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tioned algorithm.

I will go through the methods from top to bottom in the order they are

written in the overview above—skipping the constructor, as it does absolutely

nothing more than pass the sc module name to the parent class sc module.

5.4.1 int max(...)

This method takes two integer arguments and returns the largest one. This is

done in a straight forward manner and should require no further explanation.

5.4.2 int get highest callback index(...)

When PMatch is initialized with an array of functors, it actually just receives

the pointer to the first functor in the array. This method is then used to scan

through the regular expression to find @-signs that are not escaped, and extract

and return the highest succeeding integer.

5.4.3 std::string extract subexpression(...)

This method takes two arguments—a string and an integer. The first is a

regular expression that contains a subexpression, and the second is the start

position of the subexpression to be extracted, including the opening parenthesis.

The method keeps track of any additional non-escaped opening parentheses it

encounters and returns the subexpression without the enclosing parentheses.

5.4.4 std::string extract unit(...)

Working in roughly the same way as the method immediately above, this takes

the regular expression as its first argument, and start position of a unit as the
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other. It returns the unit with the enclosing angle brackets.

5.4.5 std::string build quantified subexpression(...)

A part of the regular expression syntax is the special quantifier that specifies

the minimum and maximum amount of repetitions. In Chapter 4.2 I explain

how these are realized by creating a new subexpression that contains parallel

chains. This method takes three arguments—one string and two integers. The

string is the expression that will be quantified, which can be either one unit or

a complete expression, and the two integers are the minimum and maximum

numbers of allowed repetitions. The method simply loops from minimum to

maximum, with a nested loop that chains the subexpression to the appropriate

lengths, and returns the complete expression.

5.4.6 void build from expression(...)

This is the longest and most complex method in the PMatch class, and requires

some more detailed explanation. The method takes four arguments—a string,

two State pointers and a vector of functors—the latter passed as reference to

avoid a possibly large amount of memory consuming copies. The string is the

regular expression that will be translated into a state machine. The two State

pointers are pointers to the start and end states that the created state machine,

or part of a state machine, will connect to. The method works in a recursive

manner, according to the algorithm described in Chapter 4.2.

To explain the method, I will start by explaining the method’s variables.

enum {ONE, ZEROORMORE, ONEORMORE, ZEROORONE, OTHER} qu a n t i f i e r ;

int quant min , quant max , ca l lback n , cu r r en t po s = 0 ;

State<Functor> ∗new state , ∗ f r om s ta t e = s t a r t s t a t e ;
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std : : s t r i n g unit , subexpre s s i on ;

std : : vector<State<Functor>∗> l o o s e end s ;

Listing 5.6 – The variables of the build from expression(...) method.

The first variable, quantifier, is an enum with the named values ONE, ZE-

ROORMORE, ONEORMORE, ZEROORONE and OTHER, which corresponds

to the different quantifiers in the regular expression syntax. OTHER refers to

the {m,n} quantifier.

Then there are four integer variables, called quant min, quant max, call-

back n and current pos. The first two holds the minimum and maximum values

of the {m,n} when it is used, callback n is used to hold the value of a func-

tor index succeeding an @-sign, and exists simply for readability reasons, and

current pos is used for iterating through the regular expression string.

Two State pointers, called new state and from state, are used to hold the

addresses of the two states corresponding to the states of the fundamental build-

ing blocks explained earlier. While from state holds the address of the state it

will be transitioned from, new state holds the address of the state it will be

transitioned to. The transition between these states can be either one single

transition, or several transitions and states, depending on whether the expres-

sion is a single unit or another subexpression, and whether it is quantified.

The strings unit and subexpression are used to save the returned values from

the extract unit(...) and extract subexpression(...) methods. They are passed

either as transition conditions to the relevant State method or as the regular

expression to a recursive call to itself.

Last, we have a vector of State pointers called loose ends. Regular expres-

sions often contain boolean OR-operators between units to define alternative
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accepted strings, like <a><c>|<c><d>. When this happens, one has to start

over at the start state at every vertical bar, and a pointer to the last state before

the bar is then pushed onto the vector temporarily. When the iterator hits the

end of the string, all the states with their addresses in the vector, in addition

to the last one created before the end of the string, get an epsilon transition to

the end state pointer if it is not NULL.

The rest of the method is wrapped in a while loop that continues as long as

the iterator current pos is less than the length of the regular expression string.

In this function I use the square bracket notation to access characters in the

string instead of the usual at(...) method, because at the end of the last iteration

the code might try to access a character outside the boundaries of the string,

which would throw an error with at(...), but evaluates to NULL with square

brackets—this simplifies the code in this specific case. The code inside the loop

is based on a switch that evaluates the character at the position of the iterator.

The switch has three cases in addition to the default case. If the character is

a left angle bracket or an opening parenthesis, the code extracts the unit or

subexpression and sets the value of the appropriate string, and clears the other

one. The iterator is increased with the length of the unit or subexpression, so

that the new iterator value will point to the character immediately following

after the closing bracket or parenthesis. When this is done, a new state is

created, and the new state pointer is set to hold the address of the new state.

Then, a new switch evaluates the next character. There are cases responding

to all the different quantifiers, including the opening curly brace as the start of

the {m,n} quantifier, and a default case that in all other cases sets quantifier

to ONE. If the character is either ’*’, ’+’ or ’?’, the corresponding value of

quantifier is set, and the iterator is increased by one. If the character is ’{’,
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however, the minimum and maximum values are extracted from the string and

assigned to quant min and quant max respectively, and the preceding unit or

subexpression is passed to the build quantified subexpression method. The re-

turn value is assigned to the subexpression string, the unit string cleared, and

the iterator is increased so that it points to the character immediately following

the closing curly brace.

After this switch, a series of if-clauses tests the value of quantifier and empti-

ness of the unit and subexpression strings. Based on this and the fundamental

building blocks, it either uses the State methods to create the transition con-

ditions between the states, or it calls itself recursively with the subexpression

as the regular expression string, from state as start state, new state as end

state, and of course passes the vector of functors as the last argument. After

this, epsilon transitions are added, also according to the fundamental building

blocks.

One of the last things that are done, is checking the next character to see

if it is an @-sign. If it is, it means that the new state should be assigned

a functor through its add functor(...) method. Which functor is decided by

trying to convert the following character, or characters, to an integer. If this

succeeding character is not a number, the index will be set to zero through the

functionality of the standard atoi(...) function. The iterator is increased to the

character succeeding the @-sign. This might be an integer if the index is more

than one digit, but this does not matter as it will be handled by the switch’s

default case. Before ending the case, from state is set to the value of new state.

The last case of the outermost switch, not counting the default case, is for the

vertical bar character. This case simply pushes the address of the last created

state onto the loose ends vector, sets from state to the value of the start state,



54 CHAPTER 5. SYSTEMC IMPLEMENTATION

and increases the iterator by one. It is worth noting that this may seem like

an error at first glance, since vertical bars are also used inside units, between

sub-units, but remember that the iterator will be skipped passed units in the

case above, and will never evaluate the characters inside the units, unless the

regular expression is malformed.

The default case of the outermost switch only increments the iterator.

When the while loop condition no longer evaluates to true, meaning that

the string has been iterated through to the end, all the states with their ad-

dress in the loose ends vector, in addition to the last state created, are assigned

with epsilon transitions to the pointer given in the end state argument, if this

is not NULL. When the first call of this recursive function finishes, the reg-

ular expression has been translated to a working nondeterministic finite-state

machine.

5.4.7 void initialize(...)

This is actually three overloaded methods that differ in the definition of their

functor receiving parameter. They all have the first parameter, which is the reg-

ular expression string, and the third and last parameter, which is the boolean

value deciding whether the initial state will self transition regardless of input,

defaulting to true, in common. The first variant takes a functor pointer, and trig-

gers when an array of functors—and, strictly speaking, a pointer to a single func-

tor—is passed. The second variant takes a single functor object. Both of these

creates a vector of functors, where the first uses get highest callback index(...)

to decide the vector length, and the second simply makes a vector with one

element, and passes it to the third overloaded method which takes a vector of

functors.
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The vector receiving method has only one variable, the integer callback n,

which is used to extract the index of any leading @-sign, and exists simply to

better the readability. The first thing the method does is to clear the states

vector. This is to make sure that any previously built initialized state machine

is erased before building another. Second, a new state is created and pushed

on the state vector, before checking if the regular expression starts with an @-

sign. If it does, the index is extracted from the string, and the proper functor

is assigned to the first state. This functor will be run on every restart, and if

initialized with continuous it will run every time the PMatch object is stepped.

Then, build from expression(...) is called with the complete regular expres-

sion, the first state address as start state, NULL as the end state, and of course

the vector of functors. After this, the first state is set to make a conditionless

self transition through the State method set stay enabled(...) if appropriate,

and the first state is marked for enabling.

The last thing that happens is that all the states are looped through to be set

as enabled if they have been marked for enabling. The reason it is not sufficient

to only call this method on the first state, is that the first state might have one

or more epsilon transitions to other states that will be marked for enabling, and

thus all should be updated.

5.4.8 void step(...)

This method exists in all of the classes except the Sub rule class. It uses vari-

adic templates, and does not do much in this class, except calling the State

step(...) method of all the states with the unpacked arguments it received, and

subsequently loop through all the states to enable those that have been marked

for enabling.
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5.4.9 void restart()

The restart() method is a very simple method that first loops through all the

states to disable them, then marks the initial state for enabling, and loops

through all the states to enable the ones that are marked for enabling. This

restarts the PMatch object.

5.4.10 bool is empty()

The term ”empty” refers to whether the state machine contains no enabled

states. If there are no enabled states, no states will ever be enabled in the

future, unless the PMatch object is restarted. This can be very handy in many

circumstances.

This method contains one variable—a boolean called contains active states

that is initialized as false. Then it loops through all the states and calls the State

method is active(), which simply returns whether it is enabled or not. This is

done in a manner where in each iteration of the loop, contains active states is

set to equal itself OR’ed with the value of the return value of the is active()

method of the state in that iteration. It should be noted that this is actually

a very simple optimization that takes advantage of short circuit evaluation, so

that if contains active states is already set to true, the state’s is active() method

will not be called, as C++ understands that the result of the OR’ing will be

true no matter what.

The return value is the boolean inverse of contains active states, which rep-

resents whether the state machine is empty or not.
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5.4.11 void debug output structure()

If the flag PMATCH DEBUG is set through a #define preprocessor statement,

this method is declared and can be called. It is meant for debugging purposes

only, and outputs the structure of the state machine in a human readable man-

ner. Every state is outputted with the headline ”Si”, where i is the index of the

state in the vector, with its own memory address and its transition conditions

formed as regular expression units together with the memory address of the

state the transition points to, and whether the state has an associated functor.

The method is propagated through identical and similar methods in the states,

rules and sub rules, which is why the transition conditions are outputted with

the memory address, and not the vector index, of the states they point to. In

PMatch, the method only outputs a string of the form ”Si (ADDR):\n”, where

i is the vector index, ADDRis the state’s memory address and \n is a newline

character.

The same flag is checked to see if the <iostream> library should be included.

5.5 The State class

This is the implementation of the actual states in the state machine. In this

model, states can be enabled or disabled, and enabled states are sensitive to

input passed from PMatch. When they receive an input, they start the process of

going through all of their saved transition conditions to see if any of them match

the input symbol. If one or more transitions do match, the state marks the

target states for enabling, and disable themselves. PMatch then loops through

all states to update their status, in which the states that have been marked for

enabling enable themselves. This has to be done in two steps, because only the
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states that are enabled should be able to enable other states, and the states

somehow need to ”know” whether they were just activated by a transition in

this step or if they have been active all along.

The State class does not inherit sc module, because that would prevent the

user from being able to re-initialize the PMatch object during simulation, as the

states are deleted and other states are created when the PMatch initialize(...)

method is called.

An overview of the class members and methods follows.

template <typename Functor>

class State {

private :

bool enabled , do enable , s tay enab led , ha s func to r ;

s td : : vector<Rule<Functor>> t r a n s i t i o n r u l e s ;

s td : : vector<State<Functor>∗> e p s i l o n t r a n s i t i o n s ;

Functor c a l l b a c k f un c t i o n ;

public :

State ( ) ;

void add functor ( Functor f un c t o r ) ;

void add ru l e ( std : : s t r i n g unit , State<Functor> ∗ t a r g e t s t a t e ) ;

void add eps i l on ( State<Functor> ∗ t a r g e t s t a t e ) ;

template <typename . . . Inputs>

void s tep ( Inputs . . . inputs ) ;

void mark enable ( ) ;

void update enabled ( ) ;

void s e t s t a y enab l ed (bool s t ay enab l ed ) ;

void d i s ab l e ( ) ;

bool i s a c t i v e ( ) ;
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#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) ;

#end i f

} ;

Listing 5.7 – An overview of the members and methods of the State class.

The first four members are the boolean variables enabled, do enable, stay enabled

and has functor. The first obviously holds whether the state is enabled, the sec-

ond holds whether the state has been marked for enabling, the third is used

only by the initial state as an indicator for whether it should do a self transition

regardless of what the input symbol is, and the fourth holds whether the state

has an assigned functor or not.

Then there is a vector of Rules. A Rule is another class in the model, and

is described in further detail in its own chapter below. Every Rule contains a

pointer to a state and the conditions for transitioning to that state. There is

also a vector of State pointers, which are simply epsilon transitions.

The last member is the functor, specified as the data type Functor given

from the template definition.

Again, I will go through the methods from top to bottom in the order they

are written in the overview above, and explain what they do and how.

5.5.1 State()

The constructor only initializes the members to appropriate values. All the

boolean values are set to false.
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5.5.2 void add functor(...)

This method takes a functor as an argument and sets the state’s own functor

equal to this, and sets has functor to true.

5.5.3 void add rule(...)

Taking a regular expression unit as the first argument and a State pointer as the

second and last argument, this method creates a new Rule with these arguments

as the Rule’s constructor argument and pushes it onto the vector of Rules.

5.5.4 void add epsilon(...)

This method takes a State pointer and pushes it to the epsilon transitions vector.

5.5.5 void step(...)

This is propagated down from the PMatch step(...) and takes the same variadic

template argument. It first checks if the state itself is enabled, and if it is, it

loops through the Rule vector and calls a similar step(...) method of the Rules.

After this it disables itself, and finally it checks if stay enabled is set to true,

and if so, it marks itself for enabling—the latter can only happen if it is the

initial state and the PMatch object was initialized as continuous, meaning its

last argument was specifically set to true or omitted.

5.5.6 void mark enable()

This method is used by another state that performs a transition to the state in

question to mark it for enabling. The method sets do enable to true, before it
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loops through any epsilon transitions and calls the mark enable() methods of

the states pointed to.

5.5.7 void update enabled()

After the step(...) method of all the states have been called, this method is

called to make all the states that are marked for enabling enable themselves.

It first checks if do enable is set to true, and if it is, it sets enabled to true. If

has functor is true, the functor is called.

5.5.8 void set stay enabled(...)

This method is only called if it is the initial state, and only if the PMatch object

was initialized as continuous. It simply sets stay enabled to the boolean value

passed as the argument.

5.5.9 void disable()

When restarting the state machine, all states must be disabled before the initial

state is re-enabled. This method sets both enabled and do enable to false.

5.5.10 bool is active()

This method simply returns the value of enabled. It is used when the PMatch

method is empty() is called.

5.5.11 void debug output structure()

As for PMatch, this is only declared and defined when the flag PMATCH DEBUG

is defined through the #define preprocessor statement. It starts by calling the



62 CHAPTER 5. SYSTEMC IMPLEMENTATION

identically named function of all the Rules in the Rule vector, and continues by

outputting all the epsilon transitions and whether the state has an associated

functor.

5.6 The Rule class

The Rule class corresponds to a regular expression unit. It is what defines

the transitions and contains both a State pointer that points to the state the

transition goes to, and the conditions that must be met for the transition to

occur. A regular expression unit consists of several sub-units with boolean

operators between them, and in exactly the same way does a Rule consist of

several Sub rules and boolean operators. An overview of the Rule class can be

seen below.

template <typename Functor>

class Rule{

private :

s td : : vector<Sub rule> s ub ru l e s ;

s td : : vector<char> b o o l r e l s ;

State<Functor> ∗ t a r g e t s t a t e ;

s td : : s t r i n g unescape ( std : : s t r i n g e s c a p e s t r i n g ) ;

s td : : vector<std : : s t r i ng> s p l i t f i e l d s t o v e c t o r ( std : : s t r i n g

f i e l d s e t ) ;

s td : : vector<std : : s t r i ng> s p l i t i f r a n g e ( std : : s t r i n g f i e l d ) ;

s td : : vector<bool> r ecur s ive compare ( int input number ) ;

template <typename Fir s t , typename . . . Rest>

std : : vector<bool> r ecur s ive compare ( int input number , F i r s t f i r s t

, Rest . . . r e s t ) ;
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void c r e a t e s u b r u l e f r om s t r i n g ( std : : s t r i n g sub un i t ) ;

public :

Rule ( std : : s t r i n g regexp uni t , State<Functor> ∗ t a r g e t s t a t e ) ;

template <typename . . . Inputs>

void s tep ( Inputs . . . inputs ) ;

#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) ;

#end i f

} ;

Listing 5.8 – An overview of the members and methods of the Rule class.

As usual, I will start by explaining the members. The first member is a

vector of Sub rules. The Sub rules contain the conditions for a transition to

occur, and have methods for matching against input. The second member is a

vector of characters. These characters equal the boolean operators that separate

the sub-units in a unit, where increasing index correspond to their order when

reading from left to right. This means that the boolean relationship between the

Sub rules in the Sub rule vector with index n and n+1 is saved in the character

vector at index n.

The methods of the class, from top to bottom in the overview, are explained

below.
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5.6.1 std::string unescape(...)

This method takes a string and deletes all the escaping backslashes, and returns

the result. This is done by looping through the string until a backslash is found,

and then deleting the backslash and skipping the succeeding character. Skipping

the succeeding character avoids deleting escaped backslashes.

5.6.2 std::vector<std::string> split fields to vector(...)

The field sets need to be split up into separate fields, and this method does ex-

actly that. It takes the field set without enclosing square brackets, and without

a leading caret, and splits the set of comma separated fields into a vector of

field strings. It ignores escaped commas. The resulting vector is returned.

5.6.3 std::vector<std::string> split if range(...)

This method takes a field string, and if it is a range field, it splits it into a two

element vector containing the upper and lower bounds of the range. If it is not

a range, it returns a vector of length zero.

5.6.4 std::vector<bool> recursive compare(...)

The recursive compare(...) method actually consists of two overloaded meth-

ods, where one has an empty body and takes only an integer as argument,

while the other takes an integer, a template argument and a variadic template

argument. It works, as the name suggests, in a recursive manner, comparing

the non-integer arguments to the transition conditions of the Rule. The sin-

gle template argument is compared to the Sub rule corresponding to the index
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passed as the integer argument, and then it calls itself with the integer argu-

ment incremented and the unpacked argument pack as the other arguments.

When the method calls itself with a zero length argument pack, it effectively

calls the empty method which ends the recursion. It ends up returning a vector

of boolean values representing the results of comparing each input—index zero

is the result of comparing the first input to the first Sub rule, index one is the

result of comparing the second input to the second Sub rule, and so on.

The method has two variables, which are both boolean vectors. One is called

result and another append. First it matches the single template argument with

the appropriate Sub rule, and pushes the result on the result vector. Second,

it calls itself recursively like explained above and saves the result in the append

vector. The third step is appending append to result, and finally it returns

result.

5.6.5 void create sub rule from string(...)

This method takes a regular expression sub-unit passed as a string and creates

a Sub rule. The method has five variables; four string vectors and one boolean.

The first two string vectors are values and ranges. These are used to contain the

single values and the upper and lower bounds of the ranges that may be defined

in the sub-unit. The other string vectors, split fields and new range, are used to

temporary hold fields and ranges—this prevents calling a few functions several

times. The last variable is a boolean variable called invert, which is initialized

to false and is set to true if the sub-unit is a field set starting with a caret—this

would match any input except the values and ranges defined by the fields.

The method starts by checking if the sub-unit is nothing more than a dot

character. If it is, then a wildcard transition is made by creating a new Sub rule
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without constructor arguments and pushing it onto the sub rule vector and class

member. If it is not a dot character, it checks if the first character is an opening

square bracket. If so, this means that the sub-unit is a field set, and the square

brackets are trimmed. The next step is to check if the following character is a

caret, and if it is, invert is set to true and the caret is trimmed.

The field set is then passed as an argument to the split fields to vector(...)

method, which returns a string vector of fields. This vector is saved to the local

variable split fields. Next, the method loops through all the fields in split fields,

passing them one at the time to split if range(...) and temporary saving the

returned vector in new range. If new range has no elements, it means that the

field was not a range field, and the field has its escaped characters unescaped

before it is pushed onto the values vector. If new range does have elements, it

means that the field is a range field, and the lower and upper bounds of the

range have their escaped characters unescaped before being pushed onto the

ranges vector in that order. After the loop is finished, a Sub rule is created

with these values and ranges and pushed onto the sub rules vector.

If the sub-rule is not in its entirety a dot character, and the first character

of the sub-unit is not an opening square bracket, then the sub-unit must consist

of a single value. This value has its escaped characters unescaped before it is

pushed onto the values vector, and a new Sub rule is created based on this value

and pushed onto the sub rule vector.

5.6.6 Rule(...)

The constructor takes a regular expression unit as the first argument, and a

State pointer as the second argument. First, it sets the Rule’s target state

equal to the incoming state pointer, and then it trims the angle brackets off
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the regular expression unit. The stripped unit is then iterated through, and

when it reaches a boolean OR- or AND-operator, in the form of the not-

escaped characters ’|’ and ’&’ respectively, it passes the preceding field set or

value to create sub rule from string(...). Then it pushes the boolean operator

character onto the member vector containing all the boolean relationships be-

tween sub-units, and saves the character position after the operator in order

to extract the next field. When the loop ends, the last field is passed to cre-

ate sub rule from string(...).

5.6.7 void step(...)

This is where the propagation of the step(...) function from PMatch via State

ends. This step(...) method uses a boolean variable called condition met to

keep track of whether the transition conditions are met, and two boolean vectors

to save the results of matching the Sub rules and the results of AND ’ing the

appropriate results, called sub results and anded respectively.

First, condition met is initialized to false, and sub results is initialized to

the return value of recursive compare(...) called with zero as the first index

together with the unpacked input arguments. After sub results has been set,

the AND ’ing and OR’ing between the results needs to be done. As I have already

mentioned, AND has higher precedence than OR, so all the AND ’ing is done

first. This is done by first appending the first result in sub results to the anded

vector, and then looping through the character vector containing the boolean

operators. When the operator at the current index is the AND-operator, the

value in that index plus one in sub results is AND ’ed with the last value of the

anded vector, and the result overwrites the last element of anded. When the

operator at the current index is the OR-operator, the value in that index plus
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one in sub results is appended at the end of anded.

When this process is over, all the elements in anded are OR’ed together, and

the result is written to condition met. If condition met ends up true, the Rule’s

target state is marked for enabling.

5.6.8 void debug output structure()

Again, this is only declared and defined if the flag PMATCH DEBUG is defined

with the #define preprocessor statement. The method simply outputs its own

target state, and calls the similar method in its Sub rules.

5.7 The Sub rule class

Sub rules in the state machine correspond to sub-units in the regular expres-

sions. They contain whether they are a wild card, whether they are inverted or

not, the different values and the different ranges. But they also contain methods

for matching input to these values and ranges, as well as methods for building

the Sub rule from a sub-unit. An overview of the code follows.

class Sub ru le {

private :

bool i n v e r t ;

bool wi ldcard ;

std : : vector<std : : s t r i ng> s i n g l e v a l u e s ;

s td : : vector<std : : s t r i ng> ranges ;

public :

Sub ru le (bool i nv e r t , s td : : vector<std : : s t r i ng> s i n g l e v a l u e s ,

s td : : vector<std : : s t r i ng> range s ) ;

Sub ru le ( ) ;
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template <typename Input>

bool match ( Input input ) ;

#i f d e f PMATCHDEBUG

std : : s t r i n g debug e s cape cha rac t e r s ( std : : s t r i n g chars ) ;

void debug output s t ruc ture ( ) ;

#end i f

} ;

Listing 5.9 – An overview of the members and methods of the Sub rule

class.

There are four members—the boolean variables invert and wildcard, and the

string vectors single values and ranges. What information they hold should be

fairly obvious, but I can mention that ranges always contain an even amount of

elements. A range is saved in ranges as two separate elements, the first being

the lower bound and the succeeding being the upper bound. The methods

of the class are rather simple, and do not need a very detailed walk through.

Nonetheless, the methods are described below.

5.7.1 Sub rule(...)

The constructor is overloaded, where one takes no arguments and the other

takes a boolean value that represents whether the sub-rule is inverted, and two

string vectors containing the values and ranges of input. In the former case

the Sub rule becomes a wildcard, and thus wildcard is set to true and invert

is set to false. In the latter case, wildcard is set to false, and invert is set to

the corresponding argument, as are the single values and ranges vectors. Note

that the values that will be compared to the input symbols are saved as string
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representations. Casting to the input data type of the step(...) functions are

done when comparing the input to the transition conditions.

5.7.2 bool match(...)

This method takes a templated argument. It can take absolutely any data type,

but the user must make sure that casting process from the string representa-

tion to the input data type is correct—this is mentioned elsewhere, but a walk

through of the casting functions can be found in chapter 5.8 has only one vari-

able, the boolean matched. This is initially set to the same value as wildcard,

and the reason for this will become clear. After initialization, the first thing

that happens is a looping through the single values vector, where the input is

compared to the values in the vector, after being casted to the input data type.

The OR’ing of the boolean variable matched and the result of the comparing

is written back to matched. Again, this is done in a way that short circuits

evaluation if matched is already set to true, either by a successful match or the

Sub rule being a wildcard.

Next, the same kind of matching is done with the elements of ranges, where

the evaluation of the input being greater than or equal to the range’s lower

bound is AND ’ed with the evaluation of the input being less than or equal

to the upper bounds, and this result is OR’ed with the accumulated result in

matched, and written back to matched itself. Again this takes the advantage of

evaluation short circuiting.

Note that if one is using self defined data types, one must both be sure that

the casting happens the way it should, and also that the data type supports

equality testing, as well as the greater than or equal to and less than or equal to

operations if ranges are used. In some cases this might demand that the user
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overloads these operations in the data type definition.

5.7.3 std::string debug escape characters(...)

Also only being declared and defined if the PMATCH DEBUG flag is set with

the #define preprocessor statement, this method loops through the argument

string and escapes reserved characters. This is used to prevent any ambiguity

when outputting the conditions of the transition.

5.7.4 void debug output structure()

As above, this is only declared and defined if the PMATCH DEBUG flag is set.

It does nothing more than output the transition conditions, using the method

described immediately above to escape reserved characters.

5.8 The casting functions

The casting is a very important part of the state machine functionality. If

the values of the regular expressions were to be saved as the data type they

would later be compared with, the structure of the system would become much

more complicated—for instance, it would prevent Rule’s from having vectors

of Sub rules, as Sub rules for different inputs would be structurally different in

memory. It would also become excessively verbose on the user end when using

many inputs, and would prevent the user from reinitializing a PMatch object

for using inputs of different data types.

For the casting to work properly with any data type, I have made a main,

general, templated casting function which uses a stringstream, and several ex-



72 CHAPTER 5. SYSTEMC IMPLEMENTATION

plicit template specifications for certain otherwise problematic data types. The

main function works by first inserting the string passed as argument into a

stringstream and then extract it with the >> operator into a templated variable

which it returns. The problem, however, occurs when the template argument

is a string, a c-type string (character pointer with null termination) or a char-

acter. The extraction operator of these data types is programmed to stop at

whitespace characters. For strings and c-type strings, that means that it would

only return the first ”word” of the string, ignoring leading whitespaces. For the

char data type, it would simply not convert whitespace characters.

Because of this, explicit template specializations were made for std::string,

char of types signed and unsigned, both const and not const, and the same

with char pointers. Since the string parameter of the function is specified to

pass by reference, the char pointer specifications simply return the pointer to

the string’s own c-string representation, and the char specifications return the

character at index zero in the string. These explicit template specializations

allow for using whitespace characters and strings with any kind of whitespace

as input. I refer the reader to the appendix for the code, as an overview here

would be unnecessary and superfluous.

To prevent any interference with other libraries or user code, these functions

are enclosed in their own namespace. They were made as global functions first

and foremost because C++ does not allow partial template specifications inside

classes, and only allows them at namescape scope[13]. Having them global also

makes them easily overloaded with user defined functions, and the functions

could be used from outside the Sub rule class, if necessary or desirable.

When using user defined data types as input, it is absolutely necessary to

either overload the stream extraction operator of that data type, or define an



5.8. THE CASTING FUNCTIONS 73

explicit template specialization for that data type in the pcast namespace.
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Chapter 6

Examples of use

6.1 Inheriting PMatch, two boolean inputs

In my last related project, I used the example of performing one task if the

input was four consecutive ones, and something else if the input was only three

consecutive ones. I decided to use a conceptually, architecturally and function-

ally similar example here to show the difference between the two systems. The

difference in this context is that one can have several inputs, that the main

system—the state machine then and PMatch now—does not use a SystemC

interface unless one is defined by the user, and that it is much simpler and less

tedious to initialize.

The example consists of one top module that contains a generator module, a

datapath module and the pattern matching module—and the system is clocked

and synchronous. The architecture can be seen in Figure 6.1. The genera-

tor produces output consisting of two boolean values as input to the pattern

75
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top

generator regexpmatch

datapath

Figure 6.1 – The architecture used in the four double ones versus three

double ones and a one-zero-combination example. The clock signal is not

shown.

matching module, and one 16 bit SystemC integer (sc int<16>) value to the

datapath module, on every negative edge of the clock signal. The datapath

module performs a clocked shifting of the incoming integer into a local register

with a length of four elements on positive clock edges, and is sensitive to two

input signals that triggers two different mathematical operations on the integers

in the register. In this example, the datapath module simply outputs the results

to the screen as a confirmation, and does nothing more with the results.

The pattern matching class inherits PMatch, and is called Regexpmatch.

It initializes itself with the proper regular expression and lambda functions,
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and omits the continuous argument, meaning it defaults to true. On every

positive edge on the clock signal, it steps itself with the incoming inputs. If

the input is four consecutive double ones, it sets one of the two signals used for

performing calculations in the datapaths high, and resets itself—the resetting

is to prevent every following one to trigger the same function. Also remember

that the surrounding scope of the lambda function remains what it was when it

was defined, which is why we can conveniently use the this pointer. Note that

the this pointer does not refer to the lambda function object. Calling restart()

from within the lambda without specifying an object does not work.

If the input is three consecutive double ones followed by the first input

being one and the other zero, the other lambda function is triggered—resetting

is not necessary in this case, but it could of course be done for uniformity and

readability reasons. This lambda function sets the other calculation triggering

signal high. Both of these calculation signals are brought low on the next

negative clock edge.

It is worth noting that the method of initializing vectors used in this exam-

ple—here done directly in the initialize(...) argument list—is a C++11 feature

called initializer lists. This feature allows for many container structures and

other classes to be initialized with the same syntax one is familiar with being

used for initializing arrays and structs.

The code listing for this example, the console output, and the waveform

showing the signal changes throughout the simulation follows.

#include <systemc . h>

#include ” regexpmatch . h”

#include ” generato r . h”

#include ”datapath . h”
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using namespace std ;

class Top : public sc module {

public :

Regexpmatch match ;

Generator genera to r ;

Datapath datapath ;

s c s i g n a l<bool> r egex input 1 , r egex input 2 , c a l c u l a t i o n 1 ,

c a l c u l a t i o n 2 ;

s c s i g n a l<s c i n t <16>> i n t e g e r da t a ;

s c c l o c k c l k ; // 10 ns per iod c l o c k

Top( sc module name name) : sc module (name) , match ( ”match” ) ,

genera to r ( ” genera tor ” ) , datapath ( ”datapath” ) , c l k ( ” c l k ” , 10 ,

SC NS) {

genera to r . out 1 ( r eg ex input 1 ) ;

genera to r . out 2 ( r eg ex input 2 ) ;

genera to r . out data ( i n t e g e r da t a ) ;

genera to r . c l k ( i n t e g e r da t a ) ;

match . i n 1 ( r eg ex input 1 ) ;

match . i n 2 ( r eg ex input 2 ) ;

match . o u t c a l c 1 ( c a l c u l a t i o n 1 ) ;

match . o u t c a l c 2 ( c a l c u l a t i o n 2 ) ;

match . c l k ( c l k ) ;

datapath . i n c a l c 1 ( c a l c u l a t i o n 1 ) ;

datapath . i n c a l c 2 ( com 4 ) ;

datapath . in data ( c a l c u l a t i o n 2 ) ;

datapath . c l k ( c l k ) ;

}
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} ;

int sc main ( int argc , char∗ argv [ ] ) {

Top top ( ” top” ) ;

s c t r a c e f i l e ∗ fp ; // VCD f i l e p o i n t e r

fp=s c c r e a t e v c d t r a c e f i l e ( ”wave” ) ; // Create wave . vcd f i l e

s c t r a c e ( fp , top . c lk , ” c l k ” ) ; // Add s i g n a l s to

t race f i l e

s c t r a c e ( fp , top . r egex input 1 , ” r eg ex input 1 ” ) ;

s c t r a c e ( fp , top . r egex input 2 , ” r eg ex input 2 ” ) ;

s c t r a c e ( fp , top . c a l c u l a t i o n 1 , ” c a l c u l a t i o n 1 ” ) ;

s c t r a c e ( fp , top . c a l c u l a t i o n 2 , ” c a l c u l a t i o n 2 ” ) ;

s c t r a c e ( fp , top . i n t ege r da ta , ” i n t e g e r da t a ” ) ;

s c s t a r t (130 , SC NS) ;

s c c l o s e v c d t r a c e f i l e ( fp ) ; // c l o s e wave . vcd

return 0 ;

}

Listing 6.1 – SystemC code for the top module.

#include ” . . / pmatch/pmatch . h”

#include <iostream>

#include <systemc . h>

#include <f unc t i ona l>

using namespace std ;

class Regexpmatch : public PMatch<>{
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private :

public :

s c i n<bool> c lk , in 1 , i n 2 ;

sc out<bool> ou t ca l c 1 , o u t c a l c 2 ;

Regexpmatch ( sc module name name) : PMatch<>(name) {

SC HAS PROCESS(Regexpmatch ) ;

SCMETHOD( s t e p i t ) ;

s e n s i t i v e << c l k ;

d o n t i n i t i a l i z e ( ) ;

i n i t i a l i z e ( ”<1&1><1&1><1&1>(<1&1>@0|<1&0>@1) ” , { [& ] ( ) {

ou t c a l c 1 . wr i t e (1 ) ; this−>r e s t a r t ( ) ;} , [& ] ( ) { ou t c a l c 2 .

wr i t e (1 ) ; this−>r e s t a r t ( ) ;} }) ;

}

void s t e p i t ( ) {

i f ( c l k . posedge ( ) ) {

s tep ( i n 1 . read ( ) , i n 2 . read ( ) ) ;

}

else {

ou t c a l c 1 . wr i t e (0 ) ;

o u t c a l c 2 . wr i t e (0 ) ;

}

}

} ;

Listing 6.2 – SystemC code for Regexpmatch, which inherits PMatch.

#include <systemc . h>

class Generator : public sc module {
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public :

s c i n<bool> c l k ;

sc out<bool> out 1 , out 2 ;

sc out<s c i n t <16>> out data ;

sc bv<10> b i t s 1 , b i t s 2 ;

s c i n t <16> data [ 1 0 ] ;

int counter ;

Generator ( sc module name name) : sc module (name) {

SC HAS PROCESS( Generator ) ;

SCMETHOD(main ) ;

s e n s i t i v e << c l k . neg ( ) ;

d o n t i n i t i a l i z e ( ) ;

b i t s 1 = ”1111101111” ;

b i t s 2 = ”1111010111” ;

for ( int i = 0 ; i < 10 ; i++){

data [ i ] = i +1;

}

counter = 0 ;

}

void main ( ) {

i f ( counter < 10) {

out 1 . wr i t e ( b i t s 1 . g e t b i t ( counter ) ) ;

out 2 . wr i t e ( b i t s 2 . g e t b i t ( counter ) ) ;

out data . wr i t e ( data [ counter ] ) ;

++counter ;

}

}

} ;
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Listing 6.3 – SystemC code for the Generator module.

#include <iostream>

#include <systemc . h>

class Datapath : public sc module {

public :

s c i n<bool> c lk , i n c a l c 1 , i n c a l c 2 ;

s c i n<s c i n t <16>> i n da ta ;

deque<s c i n t <16>> reg ;

Datapath ( sc module name name) : sc module (name) , reg (4 , 0 ) {

SC HAS PROCESS(Datapath ) ;

SCMETHOD( push reg ) ;

s e n s i t i v e << c l k << i n c a l c 1 << i n c a l c 2 ;

d o n t i n i t i a l i z e ( ) ;

}

void push reg ( ) {

i f ( c l k . posedge ( ) ) {

reg . pop back ( ) ;

reg . push f ront ( in data . read ( ) ) ;

}

i f ( c l k . read ( ) && i n c a l c 1 . posedge ( ) ) {

cout << reg . at (2 ) ∗ reg . at (1 ) + reg . at (0 ) << endl ;

}

i f ( c l k . read ( ) && i n c a l c 2 . posedge ( ) ) {

cout << ( reg . at (3 ) + reg . at (2 ) ) ∗ ( reg . at (1 ) + reg . at (0 ) ) <<

endl ;

}

}
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} ;

Listing 6.4 – SystemC code for the Datapath module.

SystemC 2 . 2 . 0 −−− Mar 3 2011 12 : 17 : 11

Copyright ( c ) 1996−2006 by a l l Contr ibutors

ALL RIGHTS RESERVED

WARNING: Defau l t time step i s used for VCD tra c i ng .

21
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Listing 6.5 – The simulation results from the four double ones versus three

double ones and a one-zero-combination example.

Figure 6.2 – The waveform from the simulation of the four double ones

versus three double ones and a one-zero-combination example.

6.2 Using PMatch as a module, a HTTP server

Sometimes it can be just as convenient to use PMatch as a stand alone module,

as to define a class that inherits it. To illustrate how this is done and to give

some other ideas about what PMatch can be used for, this example defines a

simple server that accepts and reacts to HTTP requests. Sockets and details

about the communication protocols is not included, but a client and server with

proper interfaces are defined and implemented.
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The server accepts GET and HEAD requests. These request types and their

corresponding responses are largely similar, but where a GET request results in

the contents of a file being returned in the response, the HEAD request results

in only the response headers.

An ordinary but simple GET request may look like this:

GET /path/ index . html HTTP/1 .1

Host : example . com

Refe r e r : http : //example . com/ index . html

User−Agent : SomeAgent /1 .0

Listing 6.6 – An ordinary but simple HTTP GET request.

First, we have the keyword GET, where we in this case also accept HEAD.

This is followed by the URL relative to the domain root, and the characters

’HTTP/ ’ followed by the HTTP version. The version is either 1.1 or 1.0. The

next lines follow the pattern of ’keyword: value’, and there are a lot of possible

keywords that are of no interest in this example that may come in any which

order. The request ends with an empty line. What we need to extract from the

request is the GET or HEAD keyword, the URL, the HTTP version and the

host. Any other sets of keywords and values needs to be ignored.

Since a server often hosts the files of different domains, it is not unusual to

have one folder for each domain with its name identical to the domain name. The

files that belong to this domain are all in this folder, where the URL represents

the relative path. The HTTP version is used in the response.

The headers of a normal response to a GET request—or, identically, the

entire response of a HEAD request—may look like this:

HTTP/1.1 200 OK

Content−Type : t ex t /html
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Content−Length : 179

Listing 6.7 – The headers of a normal response to a GET request.

Following the HTTP version is the status code. When the file is found, this

is usually ’200 OK ’. If the file is not found, the status code is ’404 Not Found ’,

and the data is usually a standard HTML page explaining that the file was not

found. The next line describes the mime type of the response data, and the last

one describes how many bytes of data the response is, excluding the headers.

Many more sets of keywords and values can be included, but this suffices for

this example.

The server is realized through initializing PMatch with a somewhat elaborate

regular expression, a set of lambda functions operating on an input buffer to

store values, and a method for initiating a request that restarts the PMatch. The

regular expression is case sensitive, but it could easily be made case insensitive

by exchanging all values of a single character with a field set consisting of both

upper and lower case. The request is made character by character, and I will

break down the regular expression into parts and walk through it. Here, \n is

used instead of an actual newline character for readability reasons.

(<G><E><T>@1|<H><E><A><D>@2) : This accepts GET and HEAD, and each

triggers their own lambda function. This function simply saves the request type.

< >+@0<[^ ]>+< >@3 : First it accepts one or more spaces, with each space

triggering a lambda function that clears the buffer. Then it accepts one or more

characters that are not spaces, followed by another space. This is the URL. On

the space succeeding the URL, a lambda function is triggered that saves the

buffer except for the last space into a URL holding variable.

< >*<H><T><T><P></><1><\\.>(<0>@4|<1>@5)< >*<\n> : This part starts
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by accepting zero or more spaces, followed by the string ’HTTP/1.’. Then it

accepts either ’0 ’ or ’1 ’, where each trigger their own lambda function saving

the character in a variable as the HTTP version. This is followed by zero or

more spaces and a newline character. This concludes the first line of the request.

(<H><o><s><t><:>< >*@0<[^\n]>+<\n>@6|<[^\n]>+<\n>)* : This subex-

pression has two alternatives. The first is the Host keyword followed by a colon,

and zero or more spaces. After the colon, the lambda function with index zero is

triggered, and will be triggered for every space received. This lambda function

clears the buffer. The next unit matches one or more characters that are not

newlines, and the following newline triggers a lambda function that saves the

host value in a variable. The other alternative matches any series of charac-

ters followed by a newline, and is needed to accept but still ignore any other

keyword and value pairs. The subexpression can accept such patterns zero or

more times. Also note that it would not in fact be very complicated change the

expression to accept any keyword and value pair, and save these in a standard

std::map<std::string, std::string> variable.

<\n>@7 : The last part of the regular expression reacts at the first blank line

and executes the response generation.

The response generating method uses the saved values to try and open the

file, and responds with the file contents and proper headers if it exists, and

responds with a standard 404 page with the proper headers if it does not. If

the request is a HEAD request, only the headers are sent in return.

The example defines two modules—the server and a client. It is a very

simplistic model without complex communication protocols and such, and the

regular expression could easily be made more robust with regards to whitespace,

as well as accepting more keyword and value pairs, accepting URL encoded GET
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arguments and so on. But the point of this example is not to make a complete

and working HTTP server, but to show a simple example of how PMatch can

be used to define fairly complex models using nondeterminism without a lot of

code. The code of this example is contained in a single file, and the complete

code is listed below. An example of a response after sending a successful GET

request is also shown.

#include <iostream>

#include <fstream>

#include <vector>

#include <f unc t i ona l>

#include <systemc . h>

#include ” . . / pmatch/pmatch . h”

using namespace std ;

class Ht t p s e r v e r i f : public s c i n t e r f a c e {

public :

virtual void s t a r t r e q u e s t ( ) = 0 ;

virtual void r e qu e s t w r i t e (char ) = 0 ;

} ;

class C l i e n t i f : public s c i n t e r f a c e {

public :

virtual void r e spon s e wr i t e (char ) = 0 ;

} ;

class Httpserver : public Ht tp s e r v e r i f , public sc module {

public :

PMatch<> pmatch ;

s c por t<C l i e n t i f > c l i e n t p ;

s t r i n g bu f f e r , address , host ;
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char ht tp ve r 1 ;

enum {GET, HEAD} r eq type ;

void s end re sponse ( ) {

s t r i n g f i l e c o n t e n t s ;

char f i l e s i z e [ 2 0 ] ;

s t r i n g re sponse = ”HTTP/1 . ” ;

r e sponse += ht tp ve r 1 ;

r e sponse += ” ” ;

i f s t r e am f i l e ;

f i l e . open ( host + address ) ;

i f ( f i l e . i s open ( ) ) {

g e t l i n e ( f i l e , f i l e c o n t e n t s , ’ \0 ’ ) ;

s p r i n t f ( f i l e s i z e , ”%d” , f i l e c o n t e n t s . l ength ( ) ) ;

r e sponse += ”200 OK\n” ;

re sponse += ”Content−Type : t ex t /html\n” ;

re sponse += ”Content−Length : ” ;

r e sponse += f i l e s i z e ;

r e sponse += ”\n\n” ;

i f ( r eq type == GET) {

re sponse += f i l e c o n t e n t s ;

}

}

else {

s p r i n t f ( f i l e s i z e , ”%d” , 197 + address . l ength ( ) ) ;

r e sponse += ”404 Not Found\n” ;

re sponse += ”Content−Type : t ex t /html\n” ;

re sponse += ”Content−Length : ” ;

r e sponse += f i l e s i z e ;

r e sponse += ”\n\n” ;

i f ( r eq type == GET) {
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re sponse += ”<!DOCTYPE HTML PUBLIC \”−//IETF//DTD HTML

2.0//EN\”>\n” ;

re sponse += ”<html><head>\n” ;

re sponse += ”<t i t l e >404 Not Found</ t i t l e >\n” ;

re sponse += ”</head><body>\n” ;

re sponse += ”<h1>Not Found</h1>\n” ;

re sponse += ”<p>The reques ted URL ” + address + ” was not

found on t h i s s e r v e r .</p>\n” ;

re sponse += ”</body></html>\n” ;

}

}

for ( int i = 0 ; i < re sponse . l ength ( ) ; ++i ) {

c l i e n t p−>r e spon s e wr i t e ( re sponse . at ( i ) ) ;

wait (10 , SC NS) ;

}

}

Httpserver ( sc module name name) : sc module (name) , pmatch ( ”pmatch

” ) {

vector<funct ion<void ( )>> lambdas = { [& ] ( ) { bu f f e r . c l e a r ( ) ;} ,

[& ] ( ) { r eq type = GET;} ,

[& ] ( ) { r eq type = HEAD;} ,

[& ] ( ) { address = bu f f e r ; address . e r a s e (

address . l ength ( ) − 1) ;} ,

[& ] ( ) { ht tp ve r 1 = ’ 0 ’ ;} ,

[& ] ( ) { ht tp ve r 1 = ’ 1 ’ ;} ,

[& ] ( ) {host = bu f f e r ; host . e r a s e ( host . l ength

( ) − 1) ;} ,

[& ] ( ) { s end re sponse ( ) ;} } ;

pmatch . i n i t i a l i z e ( ”(<G><E><T>@1|<H><E><A><D>@2)< >+@0<[ˆ ]>+< >

@3< >∗<H><T><T><P></><1><\\.>(<0>@4|<1>@5)< >∗<\n>(<H><o><s
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><t><:>< >∗@0<[ˆ\n]>+<\n>@6|< [ˆ\n]>+<\n>)∗<\n>@7” , lambdas ,

fa l se ) ;

}

void s t a r t r e q u e s t ( ) {

bu f f e r = ”” ;

pmatch . r e s t a r t ( ) ;

}

void r e qu e s t w r i t e (char ch ) {

bu f f e r += ch ;

pmatch . s tep ( ch ) ;

}

} ;

class Cl i en t : public C l i e n t i f , public sc module {

public :

s c por t<Ht tp s e r v e r i f> http p ;

C l i en t ( sc module name name) : sc module (name) {

SC HAS PROCESS( C l i en t ) ;

SC THREAD( do reques t ) ;

}

void do reques t ( ) {

const char∗ r eque s t = ”GET / index . html HTTP/1.1\ nHost : example .

com\ nReferer : http : / / 1 2 7 . 0 . 0 . 1 / \ n\n” ;

http p−>s t a r t r e q u e s t ( ) ;

while (∗ r eque s t ) {

http p−>r e qu e s t w r i t e (∗ r eque s t ) ;

++reques t ;

wait (10 , SC NS) ;
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}

}

void r e spon s e wr i t e (char ch ) {

cout << ch ;

}

} ;

int sc main ( int argc , char∗ argv [ ] ) {

Httpserver s e r v e r ( ” s e r v e r ” ) ;

C l i en t c l i e n t ( ” c l i e n t ” ) ;

c l i e n t . http p ( s e r v e r ) ;

s e r v e r . c l i e n t p ( c l i e n t ) ;

s c s t a r t ( ) ;

return 0 ;

}

Listing 6.8 – SystemC code for a client and HTTP server – the latter using

a PMatch object.

HTTP/1.1 200 OK

Content−Type : t ex t /html

Content−Length : 179

<!DOCTYPE HTML PUBLIC ”−//IETF//DTD HTML 2.0//EN”>

<html><head>

<t i t l e >Example webpage</ t i t l e >

</head><body>

<h1>An example</h1>
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<p>This i s an example webpage.</p>

</body></html>

Listing 6.9 – The HTTP response from a successful GET request in the

HTTP server example.

6.3 User defined functors

Both of the above examples use lambda functions, but as I have pointed out, one

can just as well use other user defined functors. This example is a minimalistic

example that shows one way this can be done.

Here, a class called A functor is defined with a constructor that takes an

integer used to set the functionality of the functor, and an integer pointer which

is simply used to manipulate an integer outside of its own scope. The functor

contains only these two simple members, so no overloading of the assignment

operator is needed. The code is very simple and can be seen below, followed by

the output of the simulation.

#include <iostream>

#include <vector>

#include <systemc . h>

#include ” . . / pmatch/pmatch . h”

using namespace std ;

class A functor {

public :

int f u n c t i o n a l i t y ;

int ∗ po in t e r ;
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A functor ( ) {} ;

A functor ( int f u n c t i o n a l i t y , int ∗ po i n t e r ) {

f u n c t i o n a l i t y = f u n c t i o n a l i t y ;

po in t e r = po i n t e r ;

}

void operator ( ) ( ) {

i f ( f u n c t i o n a l i t y == 0) {

∗ po in t e r = ∗ po in t e r + 3 ;

}

else i f ( f u n c t i o n a l i t y == 1) {

∗ po in t e r = ∗ po in t e r − 5 ;

}

}

} ;

class Some c lass : public sc module {

public :

PMatch<A functor> pmatch ;

int some int , s ome othe r in t ;

Some c lass ( sc module name name) : sc module (name) , pmatch ( ”pmatch

” ) {

SC HAS PROCESS( Some c lass ) ;

SC THREAD( run ) ;

some int = 10 ;

some othe r in t = 20 ;

vector<A functor> f unc t o r s = {A functor (0 , &some int ) ,

A functor (1 , &some othe r in t ) } ;

pmatch . i n i t i a l i z e ( ”<a><b>@0<c>@1” , f unc t o r s ) ;
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}

void run ( ) {

pmatch . s tep ( ’ a ’ ) ;

pmatch . s tep ( ’b ’ ) ;

pmatch . s tep ( ’ c ’ ) ;

cout << some int << ” ” << some othe r in t << endl ;

}

} ;

int sc main ( int argc , char∗ argv [ ] ) {

Some c lass ob j e c t ( ” ob j e c t ” ) ;

s c s t a r t ( ) ;

return 0 ;

}

Listing 6.10 – SystemC code for an example using user defined functors.

SystemC 2 . 2 . 0 −−− Mar 3 2011 12 : 17 : 11

Copyright ( c ) 1996−2006 by a l l Contr ibutors

ALL RIGHTS RESERVED

13 15

Listing 6.11 – The output generated by the simulation of the example using

user defined functors.
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Discussion

Although the PMatch library works as specified and expected, some improve-

ments could, and perhaps should, be made. In this chapter I will discuss several

different points that may improve this system in some way or another. Some

regard optimization and some regard increased functionality.

7.1 Optimizing the + quantifier

The fundamental building block of the one or more quantifier is currently re-

alized as a transition condition based on the quantified unit from the old state

to the new state, and a self transition on the new state with the same unit. In

the case where the old state has a functor associated with it, this is the way it

still needs to be. But if the old state does not have an associated functor, this

building block can in principle be replaced with a different one that can poten-

tially save the complete state machine from a lot of unnecessary states if the

95
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Sn Sn+1 Sn Sn+1
a

a

a

ε

Figure 7.1 – The two alternatives of the fundamental building block for the

one or more quantifier. The left shows the current implementation, which

will have to remain as long as there is a functor associated with state Sn;

the right shows the potentially state saving alternative.

quantifier quantifies a subexpression rather than a single unit. The alternative

building block would consist of the same transition from the old state to the

new state, but instead of the self transition on the new state, there would be

an epsilon transition back the old state. This will obviously not work properly

if the old state has a functor.

Both of these building blocks can be seen in Figure 7.1.

To use an extreme example, the regular expression

<a>(<b><c><d><e><f><g><h><i><j><k><l><m>)+<n>@0

would end up in its state machine form with almost half the amount of states if

the proposed alternative building block was used, compared with how it would

end up with the current solution. I therefore think it would be a good idea to

implement this in the future—especially if area consumption is to be considered

in analyses at this stage.
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7.2 Bypassing epsilon transitions

Another, perhaps more complicated, method of optimization is epsilon bypass-

ing. This would not have such a dramatic effect, but could still remove a few

unnecessary states.

When units or subexpressions are OR’ed, which is also the case when using

the {m,n} quantifier, the current method is to keep building the state machine

until an OR-operator is encountered, leave the last state temporarily hanging,

and backtrack to the initial state of that recursive run and start over at the

first state with the rest of the expression. When the end of the subexpression

is encountered, all the states left hanging, including the last state made before

the end of the expression, are connected to the supplied end state with epsilon

transitions. This makes it possible to associate functors to the last state of such

an OR’ed ”string” of units, but if a functor is not associated with the last state,

the last transition of that state may just as well go directly to the end state

instead. The difference is shown in Figure 7.2.

This optimization could be somewhat efficient when having regular expres-

sions with a lot of OR-operators, or if {m,n} quantifiers where n is much larger

than m is often used.

Epsilon bypassing could also be done in the case of the zero or more quanti-

fier, as long as neither the old state nor the new state have associated functors.

This is done by simply dropping the new state and using the unit as the basis

for a self transition on the old state. The difference is shown in Figure 7.3.
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S1

S3 S4

S2

S5 S6

S1 S2

S3

S4

a

b

c

d

ε

ε

a

c

b

d

Figure 7.2 – The difference between no epsilon bypassing and with epsilon

bypassing on a ”two-threaded” expression. Without epsilon bypassing is

shown on the left, and with epsilon bypassing is shown on the right. This

operation assumes no functor association with states S4 and S6 on the left

state machine.

Sn Sn+1 Sn
ε

a a

Figure 7.3 – The difference between no epsilon bypassing and with epsilon

bypassing on a zero or more fundamental building block. Without epsilon

bypassing is shown on the left, and with epsilon bypassing is shown on the

right. This operation assumes no functor association with either of the

states.
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7.3 Introducing escape sequences

It could be practical to introduce a few escape sequences. An escape sequence

is written as a backslash preceding a character, where that combination is in-

terpreted as something in particular. If one is to write a regular expression unit

that contains, say, the newline or tabulator character, one has to use the actual

newline or tabulator character. This does not make much of a difference when

entering the string directly in the C++ code, where these characters have their

own escape sequences in the C++ language—\n and \t—but it can turn out to

be very unpractical when reading a regular expression from a file, or the console

input, for instance. Having defined escape sequences for whitespace characters

in particular would most likely be a good idea, and while one is at it, it might

be practical to introduce other typical escape sequences from regular expres-

sion syntaxes as well—such as \d for digits, \w for alphanumeric characters and

underscore, and \s for any whitespace character.

Having an escape sequence for newline could be especially useful to prevent

problems regarding to the two conflicting newline standards—the carriage return

and linefeed characters associated with Windows systems, and the single linefeed

character associated with Unix-like systems.

7.4 Two more quantifiers

In Perl syntax, and many syntaxes derived from the Perl syntax, there are two

more variations of the specific quantifier currently implemented as {m,n} alone.

These are {n,}, which means at least n repetitions, and {n}, which means exactly

n repetitions. I believe adopting this syntax could be very useful. Both can be
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accomplished with the existing syntax—just like {m,n} can be accomplished by

OR’ing several subexpressions—but it could make the regular expressions less

tedious to write and easier to read.

7.5 Analyzing expressions, and clearer error mes-

sages

PMatch does not check for malformed regular expressions, and as a result, a

small error in the regular expression string might lead to highly unexpected

behavior instead of a clear error message. Sometimes the state machine will

run, but not at all like expected; sometimes everything will seem to work until

PMatch is stepped, and the user is supplied with an vector out-of-range error

or something similar; and sometimes a similar non-descriptive error for the user

might come at compile time.

Implementing a method for analyzing the regular expression for syntactical

errors, as well as introducing try-catch blocks in the code at large to output er-

rors that are more easily understood by the end user—and the library developer,

for that matter—could prove beneficial.

7.6 Two more range definitions

With the current regular expression syntax, there is no way of declaring that the

input should be greater than or equal to some value without also specifying that

it should be less than or equal to some other value—as well as the opposite. This

could prove to be useful, so I suggest that it should be possible to write half-

defined ranges as ’n-’ and ’-n’, where n is an arbitrary value, which represent
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greater than or equal to n and less than or equal to n respectively.

To implement this, one would most likely have to introduce two more vectors

in the Sub rule class as well as giving its constructor two more parameters, and

edit a few methods in the Rule class.
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Chapter 8

Conclusion

A SystemC library for creating nondeterministic finite-state machines from reg-

ular expressions was created, and a specific regular expression syntax has been

developed to meet the needs of this system. The library works as specified, and

some additional features have been added during development. The PMatch

library can use any data type as input, and supports an indefinite amount of

inputs. Although some improvements can—and perhaps should—be made, this

is simply to improve upon existing functionality and make the system more ef-

ficient, less verbose and easier to use. The current version works exactly as it

should according to the specifications and the task description.

Some testing of the system has been performed, but this is a very difficult

task to automate since I have not found a similar system, or a combination of

systems, that can easily create regular expressions of this kind, associate func-

tionality with search path positions, test them with several inputs of different

data types and predict and compare the results to the ones generated by the

103
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PMatch library. Because of this, only the most obvious corner cases have been

tested to find potential bugs. If errors in code should reveal themselves after

more elaborate use of the library, anyone should feel free to make any changes

to the code and/or contact the author at the email address kvolden@gmail.com.

The next step is now to use this library to try and prove that nondeterminis-

tic finite-state machines as a fundamental unit of design is possible. If it proves

to be, and analyses show that this might be a good way to exchange cheap chip

area into expensive flexibility and speed, one would start to look into creating

more complex simulation models and how this could and should be implemented

as a self cloning state machine on an actual FPGA.



Appendix A

SystemC listings

Note that the code uses some features from the upcoming C++ standard C++11,

also known as C++0x, and needs to be compiled with the appropriate ar-

guments. In the g++ compiler, this is done through the compiler argument

’-std=gnu++0x ’.

A.1 pmatch.h

#ifndef PMatch h

#define PMatch h

#include <s t r i ng>

#include <deque>

#include <vector>

#include <f unc t i ona l>

#include <systemc . h>

#include ” s t a t e . h”

105
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#ifdef PMATCHDEBUG

#include <iostream>

#endif

template <class Functor=std : : funct ion<void ( )>>

class PMatch : public sc module {

private :

s td : : deque<State<Functor>> s t a t e s ;

int max( int a , int b) {

return ( a < b) ? b : a ;

}

int g e t h i g h e s t c a l l b a c k i n d e x ( std : : s t r i n g reg exp ) { // Returns

the h i g h e s t func tor index in the s t r i n g

int h i ghe s t i ndex = 0 , i = 0 ;

while ( i < reg exp . l ength ( ) ) {

switch ( reg exp . at ( i ) ) {

case ’ \\ ’ :

i += 2 ;

break ;

case ’@ ’ :

h i ghe s t i ndex = max( h ighe s t index , a t o i ( reg exp . subs t r(++

i ) . c s t r ( ) ) ) ;

break ;

default :

i++;

break ;

}

}

return h i ghe s t i ndex ;
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}

std : : s t r i n g ex t r a c t subexp r e s s i on ( std : : s t r i n g expre s s ion , int

s t a r t p o s ) { // Returns subexpress ion , t ake s expres s ion and

s t a r t p o s i t i on o f subexpres s ion

int i = s t a r t p o s + 1 ;

int open parentheses = 1 ; // Used to count nes ted

parentheses

while ( open parentheses > 0) {

switch ( exp r e s s i on . at ( i ) ) {

case ’ \\ ’ : // I f charac ter i s an escaping backs lash ,

s k i p next charac ter

++i ;

break ;

case ’ ( ’ :

++open parentheses ;

break ;

case ’ ) ’ :

−−open parentheses ;

break ;

}

++i ;

}

return exp r e s s i on . subs t r ( s t a r t p o s + 1 , i − s t a r t p o s − 2) ; //

Return subexpres s ion wi thout surrounding parentheses

}

std : : s t r i n g e x t r a c t un i t ( std : : s t r i n g expre s s ion , int s t a r t p o s ) {

int i = s ta r t po s , end pos = 0 ;

while ( end pos == 0) {

++i ;
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i f ( exp r e s s i on . at ( i ) == ’ \\ ’ ) {

++i ;

}

else i f ( exp r e s s i on . at ( i ) == ’> ’ ) {

end pos = i +1;

}

}

return exp r e s s i on . subs t r ( s t a r t po s , end pos−s t a r t p o s ) ;

}

std : : s t r i n g bu i l d quan t i f i e d s ub exp r e s s i o n ( std : : s t r i n g expres s i on

, int min , int max) {

std : : s t r i n g bu i l t e x p r e s s i o n = ”” ;

for ( int i = min ; i <= max ; ++i ) {

i f ( i > min) {

bu i l t e x p r e s s i o n += ” | ” ;

}

for ( int j = 0 ; j < i ; j++){

bu i l t e x p r e s s i o n += expr e s s i on ;

}

}

return bu i l t e x p r e s s i o n ;

}

void bu i l d f r om exp r e s s i on ( std : : s t r i n g reg exp , State<Functor> ∗

s t a r t s t a t e , State<Functor> ∗ end state , s td : : vector<Functor>&

func t i on s ) {

enum {ONE, ZEROORMORE, ONEORMORE, ZEROORONE, OTHER} qu a n t i f i e r ;

int quant min , quant max , ca l lback n , cu r r en t po s = 0 ;

State<Functor> ∗new state , ∗ f r om s ta t e = s t a r t s t a t e ;

s td : : s t r i n g unit , subexpre s s i on ;

std : : vector<State<Functor>∗> l o o s e end s ;
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while ( cu r r en t po s < reg exp . l ength ( ) ) {

switch ( reg exp [ cu r r en t po s ] ) {

case ’< ’ : // Marks s t a r t o f un i t

case ’ ( ’ : // Marks s t a r t o f subexpres s ion

i f ( reg exp [ cu r r en t po s ] == ’< ’ ) { // I f i t ’ s a un i t

uni t = ex t r a c t un i t ( reg exp , cu r r en t po s ) ;

cu r r en t po s += uni t . l ength ( ) ;

subexpre s s i on . c l e a r ( ) ;

}

else { // I f i t ’ s a subexpres s ion

subexpre s s i on = ex t r a c t subexp r e s s i on ( reg exp ,

cu r r en t po s ) ;

cu r r en t po s += subexpre s s i on . l ength ( ) + 2 ; // +2 fo r

parantheses s t r i p p ed from subexpres s ion

uni t . c l e a r ( ) ;

}

s t a t e s . push back ( State<Functor>() ) ;

new state = &s t a t e s . back ( ) ;

switch ( reg exp [ cu r r en t po s ] ) {

case ’ ∗ ’ :

q u a n t i f i e r = ZEROORMORE;

++cur r en t po s ;

break ;

case ’+ ’ :

q u a n t i f i e r = ONEORMORE;

++cur r en t po s ;

break ;

case ’ ? ’ :

q u a n t i f i e r = ZEROORONE;

++cur r en t po s ;
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break ;

case ’ { ’ :

q u a n t i f i e r = OTHER;

++cur r en t po s ;

quant min = a to i ( reg exp . subs t r ( cu r r en t po s ) . c s t r ( ) )

;

while ( reg exp [ cu r r en t po s++] != ’ , ’ ) ;

quant max = a to i ( reg exp . subs t r ( cu r r en t po s ) . c s t r ( ) )

;

while ( reg exp [ cu r r en t po s++] != ’ } ’ ) ;

i f ( ! subexpre s s i on . empty ( ) ) { // I f i t ’ s a

subexpres s ion

subexpre s s i on = bu i l d quan t i f i e d s ub exp r e s s i o n ( ” ( ”

+ subexpre s s i on + ” ) ” , quant min , quant max ) ;

}

else i f ( ! un i t . empty ( ) ) { // I f i t ’ s a un i t

subexpre s s i on = bu i l d quan t i f i e d s ub exp r e s s i o n ( unit

, quant min , quant max ) ; // Bui ld a

subexpres s ion

uni t . e r a s e ( ) ; // No longer a unit , but a

subexpres s ion

}

break ;

default :

q u a n t i f i e r = ONE;

}

i f ( q u a n t i f i e r == ONE | | qu a n t i f i e r == ONEORMORE | |

qu a n t i f i e r == ZEROORONE | | qu a n t i f i e r == OTHER) { //

Add ru l e s or b u i l d subexpres s ion

i f ( ! un i t . empty ( ) ) { // I f i t ’ s a un i t
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f rom state−>add ru l e ( unit , new state ) ; // Add ru l e

}

else i f ( ! subexpre s s i on . empty ( ) ) { // I f i t ’ s a

subexpres s ion

bu i l d f r om exp r e s s i on ( subexpress ion , f rom state ,

new state , f un c t i on s ) ; // Run r e c u r s i v e l y

}

}

i f ( q u a n t i f i e r == ONEORMORE | | qu a n t i f i e r == ZEROORMORE) {

i f ( ! un i t . empty ( ) ) { // I f i t ’ s a un i t

new state−>add ru l e ( unit , new state ) ; // Add ru l e

}

else i f ( ! subexpre s s i on . empty ( ) ) { // I f i t ’ s a

subexpres s ion

bu i l d f r om exp r e s s i on ( subexpress ion , new state ,

new state , f un c t i on s ) ; // Run r e c u r s i v e l y

}

}

i f ( q u a n t i f i e r == ZEROORONE | | qu a n t i f i e r == ZEROORMORE) {

// Add ep s i l o n s

f rom state−>add eps i l on ( new state ) ;

}

i f ( reg exp [ cu r r en t po s ] == ’@’ ) { // I f un i t or

subexpres s ion has c a l l b a c k

ca l l b a ck n = a to i ( reg exp . subs t r(++cur r en t po s ) . c s t r ( )

) ;

new state−>add functor ( f un c t i on s . at ( c a l l b a ck n ) ) ;

}
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f r om s ta t e = new state ;

break ;

case ’ | ’ :

l o o s e end s . push back(& s t a t e s . back ( ) ) ;

f r om s ta t e = s t a r t s t a t e ;

++cur r en t po s ;

break ;

default :

++cur r en t po s ;

}

}

i f ( end s ta t e != NULL) { // Connect a l l l o o s e ends to

end s t a t e

for ( int i = 0 ; i < l o o s e end s . s i z e ( ) ; ++i ) {

l o o s e end s . at ( i )−>add eps i l on ( end s ta t e ) ;

}

f rom state−>add eps i l on ( end s ta t e ) ;

}

}

public :

PMatch( sc module name name) : sc module (name) { }

void i n i t i a l i z e ( std : : s t r i n g reg exp , Functor ∗ functor , bool

cont inuous = true ) {

i n i t i a l i z e ( reg exp , std : : vector<Functor>( functor , func to r +

g e t h i g h e s t c a l l b a c k i n d e x ( reg exp ) + 1) , cont inuous ) ;
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}

void i n i t i a l i z e ( std : : s t r i n g reg exp , Functor functor , bool

cont inuous = true ) {

i n i t i a l i z e ( reg exp , std : : vector<Functor >(1 , func to r ) ,

cont inuous ) ;

}

void i n i t i a l i z e ( std : : s t r i n g reg exp , std : : vector<Functor>

func t i ons , bool cont inuous = true ) {

int ca l l b a ck n ;

s t a t e s . c l e a r ( ) ;

s t a t e s . push back ( State<Functor>() ) ;

i f ( reg exp . at (0 ) == ’@’ ) {

ca l l b a ck n = a to i ( reg exp . subs t r (1 ) . c s t r ( ) ) ;

s t a t e s . f r on t ( ) . add functor ( f un c t i on s . at ( c a l l b a ck n ) ) ; ;

}

bu i l d f r om exp r e s s i on ( reg exp , &s t a t e s . f r on t ( ) , NULL, f unc t i on s

) ;

s t a t e s . f r on t ( ) . s e t s t a y enab l ed ( cont inuous ) ;

s t a t e s . f r on t ( ) . mark enable ( ) ;

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) { // Update−enab led a l l

to ge t a l l e p s i l on t r a n s i t i o n s from S0 too

s t a t e s . at ( i ) . update enabled ( ) ;

}

}

template <typename . . . Inputs>
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void s tep ( Inputs . . . inputs ) {

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) {

s t a t e s . at ( i ) . s t ep ( inputs . . . ) ;

}

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) {

s t a t e s . at ( i ) . update enabled ( ) ;

}

}

void r e s t a r t ( ) {

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) {

s t a t e s . at ( i ) . d i s ab l e ( ) ;

}

s t a t e s . f r on t ( ) . mark enable ( ) ;

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) { // Update−enab led a l l

to ge t a l l e p s i l on t r a n s i t i o n s from S0 too

s t a t e s . at ( i ) . update enabled ( ) ;

}

}

bool i s empty ( ) {

bool c o n t a i n s a c t i v e s t a t e s = fa l se ;

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) {

c o n t a i n s a c t i v e s t a t e s = c o n t a i n s a c t i v e s t a t e s | | s t a t e s . at (

i ) . i s a c t i v e ( ) ;

}

return ! c o n t a i n s a c t i v e s t a t e s ;

}

#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) {

for ( int i = 0 ; i < s t a t e s . s i z e ( ) ; ++i ) {



A.2. STATE.H 115

std : : cout << ”S” << i << ” ( ” << &s t a t e s . at ( i ) << ” ) :\n” ;

s t a t e s . at ( i ) . debug output s t ruc ture ( ) ;

}

}

#end i f

} ;

#endif

A.2 state.h

#ifndef State h

#define State h

#include <vector>

#include <f unc t i ona l>

#include ” ru l e . h”

template <typename Functor>

class State {

private :

bool enabled , do enable , s tay enab led , ha s func to r ;

s td : : vector<Rule<Functor>> t r a n s i t i o n r u l e s ;

s td : : vector<State<Functor>∗> e p s i l o n t r a n s i t i o n s ;

Functor func to r ;

public :

State ( ) {

enabled = fa l se ;

do enable = fa l se ;

s t ay enab l ed = fa l se ;

ha s func to r = fa l se ;
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}

void add functor ( Functor f un c t o r ) {

f unc to r = func t o r ;

ha s func to r = true ;

}

void add ru l e ( std : : s t r i n g unit , State<Functor> ∗ t a r g e t s t a t e ) {

t r a n s i t i o n r u l e s . push back (Rule<Functor>(unit , t a r g e t s t a t e ) ) ;

}

void add eps i l on ( State<Functor> ∗ t a r g e t s t a t e ) {

e p s i l o n t r a n s i t i o n s . push back ( t a r g e t s t a t e ) ;

}

template <typename . . . Inputs>

void s tep ( Inputs . . . inputs ) {

i f ( enabled ) {

for ( int i = 0 ; i < t r a n s i t i o n r u l e s . s i z e ( ) ; i++){

t r a n s i t i o n r u l e s . at ( i ) . s t ep ( inputs . . . ) ;

}

enabled = fa l se ;

i f ( s tay enab l ed ) {

mark enable ( ) ;

}

}

}

void mark enable ( ) {

do enable = true ;

for ( int i = 0 ; i < e p s i l o n t r a n s i t i o n s . s i z e ( ) ; i++){

e p s i l o n t r a n s i t i o n s . at ( i )−>mark enable ( ) ;

}
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}

void update enabled ( ) {

i f ( do enable ) {

enabled = true ;

i f ( ha s func to r ) {

f unc to r ( ) ;

}

}

do enable = fa l se ;

}

void s e t s t a y enab l e d (bool s t ay enab l ed ) {

s tay enab l ed = s tay enab l ed ;

}

void d i s ab l e ( ) {

do enable = fa l se ;

enabled = fa l se ;

}

bool i s a c t i v e ( ) {

return enabled ;

}

#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) {

for ( int i = 0 ; i < t r a n s i t i o n r u l e s . s i z e ( ) ; ++i ) {

t r a n s i t i o n r u l e s . at ( i ) . debug output s t ruc ture ( ) ;

}

for ( int i = 0 ; i < e p s i l o n t r a n s i t i o n s . s i z e ( ) ; ++i ) {

std : : cout << ”−−− E −−−> ” << e p s i l o n t r a n s i t i o n s . at ( i ) <<

std : : endl ;



118 APPENDIX A. SYSTEMC LISTINGS

}

std : : cout << ”Has ca l l ba ck func t i on : ” << ( ( c a l l b a c k f un c t i o n )

? ”Yes” : ”No” ) << std : : endl ;

s td : : cout << std : : endl ;

}

#end i f

} ;

#endif

A.3 rule.h

#ifndef Rule h

#define Rule h

#include <s t r i ng>

#include <vector>

#include ” sub ru l e . h”

template <typename Functor> // Prototype f o r S ta te

po in t e r s

class State ;

template <typename Functor>

class Rule{

private :

s td : : vector<Sub rule> s ub ru l e s ; // One su b ru l e per

input

std : : vector<char> b o o l r e l s ; // Boolean r e l a t i o n s h i p s

between the s u b r u l e s

State<Functor> ∗ t a r g e t s t a t e ; // Pointer to t r an s i t i o n ’

s t a r g e t s t a t e
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std : : s t r i n g unescape ( std : : s t r i n g e s c a p e s t r i n g ) { // Remove

escaping back s l a s h e s

for ( int i = 0 ; i < e s c a p e s t r i n g . l ength ( ) ; i++){

i f ( e s c a p e s t r i n g . at ( i ) == ’ \\ ’ ) { // I s escaped charac ter

e s c a p e s t r i n g . e r a s e ( i , 1) ; // Dele te escaping

backs lash , keep/ s k i p escaped char

}

}

return e s c a p e s t r i n g ;

}

std : : vector<std : : s t r i ng> s p l i t f i e l d s t o v e c t o r ( std : : s t r i n g

f i e l d s e t ) {

std : : vector<std : : s t r i ng> s p l i t f i e l d s ;

int s t a r t o f f i e l d = 0 ;

for ( int i = 0 ; i < f i e l d s e t . l ength ( ) ; ++i ) { // S p l i t the

comma separated f i e l d s in to a s t r ing−vec to r o f f i e l d s

i f ( f i e l d s e t . at ( i ) == ’ \\ ’ ) {

++i ;

}

else i f ( f i e l d s e t . at ( i ) == ’ , ’ ) {

s p l i t f i e l d s . push back ( f i e l d s e t . subs t r ( s t a r t o f f i e l d , i −

s t a r t o f f i e l d ) ) ;

s t a r t o f f i e l d = i + 1 ;

}

}

s p l i t f i e l d s . push back ( f i e l d s e t . subs t r ( s t a r t o f f i e l d ) ) ; //

Last f i e l d

return s p l i t f i e l d s ;

}
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std : : vector<std : : s t r i ng> s p l i t i f r a n g e ( std : : s t r i n g f i e l d ) {

std : : vector<std : : s t r i ng> range f rom to ;

for ( int i = 0 ; i < f i e l d . l ength ( ) ; ++i ) { // Search fo r not

−escaped dash

i f ( f i e l d . at ( i ) == ’ \\ ’ ) {

++i ;

}

else i f ( f i e l d . at ( i ) == ’− ’ ) {

range f rom to . push back ( f i e l d . subs t r (0 , i ) ) ;

range f rom to . push back ( f i e l d . subs t r ( i + 1) ) ;

}

}

return range f rom to ;

}

std : : vector<bool> r ecur s ive compare ( int input number ) { // Empty

func t i on to end r e cu r s i v e func t i on below

return {} ;

}

template <typename Fir s t , typename . . . Rest>

std : : vector<bool> r ecur s ive compare ( int input number , F i r s t f i r s t

, Rest . . . r e s t ) {

std : : vector<bool> r e s u l t s , append ;

r e s u l t s . push back ( s ub ru l e s . at ( input number ) . match ( f i r s t ) ) ;

append = recur s ive compare(++input number , r e s t . . . ) ;

r e s u l t s . i n s e r t ( r e s u l t s . end ( ) , append . begin ( ) , append . end ( ) ) ;

return r e s u l t s ;

}
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void c r e a t e s u b r u l e f r om s t r i n g ( std : : s t r i n g sub un i t ) { //

Create the sub ru l e from the s t r i n g r ep r e s en ta t i on

std : : vector<std : : s t r i ng> values , ranges , s p l i t f i e l d s ,

new range ;

bool i n v e r t = fa l se ;

i f ( sub un i t == ” . ” ) { // Wildcard

s ub ru l e s . push back ( Sub ru le ( ) ) ;

}

else i f ( sub un i t . at (0 ) == ’ [ ’ ) { // Severa l va lue s /

ranges in square b racke t s

sub un i t = sub un i t . subs t r (1 , sub un i t . l ength ( )−2) ; // Trim

square b racke t s

i f ( sub un i t . at (0 ) == ’ ˆ ’ ) { // I f NOT−cond i t i on

i n v e r t = true ;

sub un i t . e r a s e (0 , 1) ;

}

s p l i t f i e l d s = s p l i t f i e l d s t o v e c t o r ( sub un i t ) ; // Divide

the s t r i n g o f f i e l d s in to a vec tor o f f i e l d s

for ( int i = 0 ; i < s p l i t f i e l d s . s i z e ( ) ; ++i ) {

new range = s p l i t i f r a n g e ( s p l i t f i e l d s . at ( i ) ) ;

i f ( new range . s i z e ( ) ) {

ranges . push back ( unescape ( new range . at (0 ) ) ) ;

ranges . push back ( unescape ( new range . at (1 ) ) ) ;

}

else {

va lue s . push back ( unescape ( s p l i t f i e l d s . at ( i ) ) ) ;

}

}
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s ub ru l e s . push back ( Sub ru le ( inver t , va lues , ranges ) ) ;

}

else { // S ing l e va lue

va lue s . push back ( unescape ( sub un i t ) ) ;

s ub ru l e s . push back ( Sub ru le ( inver t , va lues , ranges ) ) ;

}

}

public :

Rule ( std : : s t r i n g regexp uni t , State<Functor> ∗ t a r g e t s t a t e ) {

int s u b un i t s t a r t = 0 ;

t a r g e t s t a t e = t a r g e t s t a t e ;

s td : : s t r i n g s t r i pp ed un i t = regexp un i t . subs t r (1 , r egexp un i t .

l ength ( )−2) ;

for ( int i = 0 ; i < s t r i pp ed un i t . l ength ( ) ; i++){ // Separate

the par t s ( inpu t s / sub un i t s ) o f the un i t

i f ( s t r i p p ed un i t . at ( i ) == ’ \\ ’ ) { // I f next

charac ter i s escaped , s k i p i t ( can ’ t be boolean operator )

i++;

}

else i f ( s t r i p p ed un i t . at ( i ) == ’&’ | | s t r i pp ed un i t . at ( i ) ==

’ | ’ ) {

c r e a t e s u b r u l e f r om s t r i n g ( s t r i p p ed un i t . subs t r (

s ub un i t s t a r t , i−s u b un i t s t a r t ) ) ;

b o o l r e l s . push back ( s t r i pp ed un i t . at ( i ) ) ;

s u b un i t s t a r t = i +1;

}

}
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c r e a t e s u b r u l e f r om s t r i n g ( s t r i p p ed un i t . subs t r ( s u b un i t s t a r t

) ) ; // Last par t o f the s t r i n g

}

template <typename . . . Inputs> // Variadic temp la tes = C

++0x

void s tep ( Inputs . . . inputs ) { // Steps the ru le ,

enab l e s t a r g e t i f cond i t i ons are met

bool cond i t ion met = fa l se ;

s td : : vector<bool> s u b r e s u l t s = recur s ive compare (0 , inputs . . . )

;

s td : : vector<bool> anded (1 , s u b r e s u l t s . f r on t ( ) ) ; // Push f i r s t

sub r e s u l t onto ”anded” vec tor

for ( int i = 0 ; i < b o o l r e l s . s i z e ( ) ; i++){ // Do a l l the AND

−ing and save temporary r e s u l t s in ”anded” vec tor

i f ( b o o l r e l s . at ( i ) == ’ | ’ ) {

anded . push back ( s u b r e s u l t s . at ( i +1) ) ;

}

else {

anded . back ( ) = anded . back ( ) && sub r e s u l t s . at ( i +1) ;

}

}

for ( int i = 0 ; i < anded . s i z e ( ) ; i++){ // Do the OR−ing

between the AND−ed va lue s

cond i t ion met = condi t ion met | | anded . at ( i ) ;

}

i f ( cond i t ion met ) {

t a r g e t s t a t e−>mark enable ( ) ;

}

}
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#i f d e f PMATCHDEBUG

void debug output s t ruc ture ( ) {

std : : cout << ”−−− <” ;

for ( int i = 0 ; i < s ub ru l e s . s i z e ( ) ; ++i ) {

s ub ru l e s . at ( i ) . debug output s t ruc ture ( ) ;

i f ( i < b o o l r e l s . s i z e ( ) ) {

std : : cout << b o o l r e l s . at ( i ) ;

}

}

std : : cout << ”> −−−> ” << t a r g e t s t a t e << std : : endl ;

}

#end i f

} ;

#endif

A.4 sub rule.h

#ifndef Sub ru l e h

#define Sub ru l e h

#include <vector>

#include <s t r i ng>

#include ” pcast . h”

class Sub ru le {

private :

bool i n v e r t ; // Whether to i n v e r t f i n a l answer

( not−t r a n s i t i o n )

bool wi ldcard ;

std : : vector<std : : s t r i ng> s i n g l e v a l u e s ;
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std : : vector<std : : s t r i ng> ranges ;

public :

Sub ru le (bool i nv e r t , s td : : vector<std : : s t r i ng> s i n g l e v a l u e s ,

s td : : vector<std : : s t r i ng> range s ) {

wi ldcard = fa l se ;

i n v e r t = i n v e r t ;

s i n g l e v a l u e s = s i n g l e v a l u e s ;

ranges = range s ;

}

Sub ru le ( ) { // Constructor wi thout arguments

means wi ldcard

wi ldcard = true ;

i n v e r t = fa l se ;

}

template <typename Input>

bool match ( Input input ) {

bool match = wi ldcard ; // Ends up re turn ing ” t rue ” ( shor t

c i r c u i t s ) i f wi ldcard , depends on input i f not

for ( int i = 0 ; i < s i n g l e v a l u e s . s i z e ( ) ; i++){ // Match any

s i n g l e va lue

match = match | | ( input == pcast : : cast<Input>( s i n g l e v a l u e s .

at ( i ) ) ) ;

}

for ( int i = 0 ; i < ranges . s i z e ( ) ; i += 2) { // Match any

range

match = match | | ( input >= pcast : : cast<Input>( ranges . at ( i ) )

&& input <= pcast : : cast<Input>( ranges . at ( i +1) ) ) ;

}
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return ( i nv e r t ? ! match : match ) ; // Return and in v e r t i f

appropr ia t e

}

#i f d e f PMATCHDEBUG

std : : s t r i n g debug e s cape cha rac t e r s ( std : : s t r i n g chars ) {

for ( int i = 0 ; i < chars . l ength ( ) ; ++i ) {

switch ( chars . at ( i ) ) {

case ’− ’ :

case ’ , ’ :

case ’ \\ ’ :

case ’ ˆ ’ :

chars . i n s e r t ( i , ”\\” ) ;

++i ;

break ;

}

}

return chars ;

}

void debug output s t ruc ture ( ) {

i f ( wi ldcard ) {

std : : cout << ” . ” ;

}

else {

std : : cout << ” [ ” << ( i nv e r t ? ”ˆ” : ”” ) ;

for ( int i = 0 ; i < s i n g l e v a l u e s . s i z e ( ) ; ++i ) {

std : : cout << debug e s cape cha rac t e r s ( s i n g l e v a l u e s . at ( i ) ) ;

i f ( i != s i n g l e v a l u e s . s i z e ( )−1){

std : : cout << ” , ” ;

}

}
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i f ( s i n g l e v a l u e s . s i z e ( ) && ranges . s i z e ( ) ) {

std : : cout << ” , ” ;

}

for ( int i = 0 ; i < ranges . s i z e ( ) ; i += 2) {

std : : cout << debug e s cape cha rac t e r s ( ranges . at ( i ) ) << ”−”

<< debug e s cape cha rac t e r s ( ranges . at ( i +1) ) ;

i f ( i != ranges . s i z e ( )−2){

std : : cout << ” , ” ;

}

}

std : : cout << ” ] ” ;

}

}

#end i f

} ;

#endif

A.5 pcast.h

#ifndef pcast h

#define pcast h

#include <sstream>

#include <s t r i ng>

namespace pcast {

template <typename Input>

Input ca s t ( std : : s t r i n g& value ) { // For ca s t i n g s t r i n g va lue

to input data type



128 APPENDIX A. SYSTEMC LISTINGS

Input conver t ed va lue ;

std : : s t r i ng s t r eam stream ;

stream << value ;

stream >> conver t ed va lue ;

return conver t ed va lue ;

}

template<> // Par t i a l template s p e c i f i c a t i o n :

s t r i n g

std : : s t r i n g ca s t ( std : : s t r i n g& value ) {

return value ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

char ca s t ( std : : s t r i n g& value ) {

return value . c s t r ( ) [ 0 ] ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

signed char ca s t ( std : : s t r i n g& value ) {

return ( signed char ) va lue . c s t r ( ) [ 0 ] ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

unsigned char ca s t ( std : : s t r i n g& value ) {

return (unsigned char ) va lue . c s t r ( ) [ 0 ] ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

const char ca s t ( std : : s t r i n g& value ) {

return value . c s t r ( ) [ 0 ] ;

}
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template<> // Par t i a l template s p e c i f i c a t i o n : char

const signed char ca s t ( std : : s t r i n g& value ) {

return ( signed char ) va lue . c s t r ( ) [ 0 ] ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

const unsigned char ca s t ( std : : s t r i n g& value ) {

return (unsigned char ) va lue . c s t r ( ) [ 0 ] ;

}

template<> // Par t i a l template s p e c i f i c a t i o n : char

∗

char∗ ca s t ( std : : s t r i n g& value ) {

return (char∗) va lue . c s t r ( ) ;

}

template<> // Par t i a l template s p e c i f i c a t i o n :

s igned char∗

signed char∗ ca s t ( std : : s t r i n g& value ) {

return ( signed char∗) va lue . c s t r ( ) ;

}

template<> // Par t i a l template s p e c i f i c a t i o n :

unsigned char∗

unsigned char∗ ca s t ( std : : s t r i n g& value ) {

return (unsigned char∗) va lue . c s t r ( ) ;

}

template<> // Par t i a l template s p e c i f i c a t i o n :

const char∗

const char∗ ca s t ( std : : s t r i n g& value ) {

return value . c s t r ( ) ;

}
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template<> // Par t i a l template s p e c i f i c a t i o n :

const s igned char∗

const signed char∗ ca s t ( std : : s t r i n g& value ) {

return ( signed char∗) va lue . c s t r ( ) ;

}

template<> // Par t i a l template s p e c i f i c a t i o n :

const unsigned char∗

const unsigned char∗ ca s t ( std : : s t r i n g& value ) {

return (unsigned char∗) va lue . c s t r ( ) ;

}

}

#endif
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