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Problem Description
With a plethora of digital imaging devices on the market today, and the trend
going toward higher density imaging (more pixel elements on smaller imaging sen-
sors), the need for novel and known filtering techniques are evident. As imaging
sensors get smaller, less light per surface area is captured, and as the amount of
light decreases in comparison to the thermal noise detected by the imaging sensor,
the capturing of an image becomes difficult. Some of this noise can be removed
by filters, either by applying filtering circuitry on the imaging device or as post
processing. Traditional linear filtering techniques are not always sufficient for such
as they are prone to smoothing the edges in the image. Alternate approaches
can be found in nonlinear filtering techniques, such as median filtering, which can
preserve edges and can be more visually pleasing.

For this purpose a software based imaging editor needs to be developed that is
able to analyze and apply different filtering algorithms. Filtering operations will
utilize general purpose computing on graphics processing units(GPGPU) to allow
parallelization of the process.

This project will be done at IET, with supervisor Tor Audun Ramstad.
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Abstract
This project has produced a software suite for image processing of noisy digital im-
ages. The software utilizes a series of nonlinear filtering techniques in the attempt
to remove noise from images. The noise included might be forms of white noise,
impulsive noise or uniform noise. To make the software use its given cpu-cycles
in an efficient manor, the utilization of general purpose computing on graphics
processing units was adopted. Using hardware in such a manor allowed parallel
processing techniques to be utilized, which suits image filtering well. This parallel
processing was done with Microsoft Accelerator libraries, a API for processing ar-
rays in parallel.

The user interface of this software was implemented using the WPF subsystem
of the .NET framework. WPF allowed for both rich and powerful user experi-
ences, but also allowed for rapid development and easy extensibility. The use of
this software aimed to provide a straightforward, but also powerful, solution to
image noise filtering.

The method for developing this software was a form of adapted agile develop-
ment. The development process was iterative and development of modules was
done upon need of that module. This approach allowed a working version of the
software always to be available during development. As such the final documen-
tation is always the source code itself, but this thesis will do its best to describe
all the features and implementations of the project. And lastly we present results
of filtering performed in the application.
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1 Introduction
Digital images surrounds us everywhere nowadays, with an increasing amount of
devices capable of delivering, capturing and sharing multimedia sources. With in-
creased interconnectivity it is easier to share experiences, often in form of an image
or an video. Often this kind of media is shared on social network sites such as
Facebook™1 or Twitter™2. More devices is being able to connect to the Internet
so media can be shared from anywhere, at anytime.

The devices used to share images is ofttimes mobile phones, and their captur-
ing device is in form of an integrated charge-coupled device (CCD). As keeping
the size of mobile devices small is often essential, not much space is allowed for the
image capturing device. With ever increasing resolutions being demanded of the
CCD’s the amount of light per pixel becomes diminishingly small. Mobile devices
is often required to capture high mobility situations, which require high shutter
speed, and/or dark scenes. Either situation making it difficult to capture enough
light.

Capturing images under such difficult working conditions, will introduce sensor
errors that may be observed as noise in the resulting image. Two kinds of noise
or often introduced under such conditions: Gaussian white noise and/or impulsive
noise.

There are many techniques for handling such noise, called image filtering. Some
of these filtering techniques are explained in section 2. In this thesis the main fo-
cus is mainly on Nonlinear Filters (and median-based filters in particular), because
they have certain capabilities that makes them interesting for image filtering, such
as being able to preserve edges while still suppressing noise.

In this thesis an image filtering software will be developed, which have been
given the name ImageLab, to apply these filters. The software will be capable
of common image operations, such as gamma correction and contrast/brightness
alterations, and addition to being able to apply the different filters.

The software will not aim to replace Photoshop™or other professionally devel-
oped photo editors, but simply act as an alternative when more powerful filtering
techniques are required. As such it is planed to release the source code when an
adequate license is located.

1 service found on http://www.facebook.com/
2 service found on http://www.twitter.com/
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Since image processing often is a repetition of the same series of operations
for each pixel of the image, there is a potential to utilize parallelization. Thus
this software uses Microsoft™Accelerator v2, to utilize the additional computing
power of modern graphics processing units from a managed environment.

This thesis will be partitioned as follows: Section 2 will give an introduction to
the different filtering techniques that will be used in the software. Section 3 will
describe the tools that will be used to develop ImageLab, and why they are suited
for the purpose. Section 4 will describe the development of the software. It will
give an in-depth, or in certain instances as much as is reasonable, description of
the implementation of ImageLab. In Section 5 the results of filtering operations
performed with the software will be presented. And lastly, Section 6 will conclude
this thesis and give suggestions for future or similar work.
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2 Background
In this section the various techniques and filtering methods will be defined. Pseudo-
code will be given where it is appropriate, and a few examples will be given of how
the code changes when we instead uses parallel programing paradigms.

2.1 Windowing
Often it is impractical to work on whole pictures at once, for many filtering oper-
ations only pixel data from nearby pixels is used. For such a windowing operation
is needed. In this thesis only square windowing functions are considered. For a
given radius r the resulting window Wr will be:

Wr =



x(i−r,j−r) · · · x(i−r,j) · · · x(i−r,j+r)
... . . . ... ...

x(i,j−r) · · · x(i,j) · · · x(i,j+r)
... ... . . . ...

x(i+r,j−r) · · · x(i+r,j) · · · x(i+r,j+r)

 (1)

where x(a,b) is pixel elements from the current image. When this window is close
to the edges of the image some of the elements x(a,b) may be undefined. There are
several ways to handle these undefined elements, some are:

Replicate Use the closest defined element.

Default Value Use a constant value instead.

Ignore Do not use undefined elements. Effectively making the window smaller as
it approaches the edges.

In this thesis replicate is the preferred method for defining undefined elements.

The complexity of the naive approach to selecting the window Wr is O(r2). So
doubling the window size will quadruple the number of instructions needed. This
limitation makes larger window sizes impractical, but there are solutions to this
complexity problem.

When moving the window one step, not all of the elements needs to be selected
anew, most of the elements will be the same. Observing that there are 2 ∗ r + 1
new elements and the same amount of old elements, it is possible to just exchange
these, see figure 1. This will yield a complexity of O(r), which is further described
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Figure 1: Figure showing the movement of windowing function W2, if only oper-
ating on the marked pixels, a complexity of O(r) can be achieved.

W

by Huang[3].

Further improvements may be achieved if one observe that for each row, the
elements are moved only one step per loop. Thus only one new element needs to
be added and one element be removed[4], achieving a complexity of O(1).

These improvements work well for sequential processing units, but cannot eas-
ily be applied on parallel processing units. This project is thus often forced to
utilize the naive approach to windowing, making it impractical for very large win-
dow sizes.

2.2 Mean Filter
Mean filtering is one of the simplest techniques for smoothing images. For each
pixel in an image, average the output of the windowing function for that pixel.
This technique can remove noise, as long as the noise source is additive and is
zero-mean. Consider the 1 dimensional noise signal xnoise of length N :

xnoise(i) = Xi, ∀i ∈ 1 ≤ N ≤ N (2)
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Figure 2: Showing the overview of the constant time windowing (O(1)).

W

where Xi is a random number with E[X] = 0, then applying the 1 dimensional
version of Window Wr on the signal xnoise resulting in:

Wr(i) = (xnoise(i− r), . . . , xnoise(0), . . . , xnoise(i+ r)) (3)

Taking the mean of the Window Wr:

mean(Wr(i)) =
∑i+r

j=i−r xnoise(j)
(2r + 1) , (4)

As the window size r increases we observe that:

lim
r→∞

mean(Wr(i)) = 0
∞

= 0 (5)

The requirement that expectation value E[X] = 0 is not strictly required, and
more usefully the filtering is capable of removing the noise entirely. But outside
this example its not reasonable to expect a signal entirely consisting of noise. The
filter will also remove information from the original signal, in addition to the noise.

Even with this drawback, which exists in pretty much all filters, it is still an
useful filtering technique. As long as the signal is approximately uniform over
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Figure 3: Mean Filtering of edge with Gaussian noise for different window sizes r.
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an area, the mean filtering works well. This observation is utilized in some the
nonlinear filters later in this thesis, by using nonlinear techniques for selecting
only relevant pixels, it is possible to utilize that the image is somewhat piecewise
uniform.

The filter also display some undesired behavior near edges, as can be seen in
figure 3. As the window size r increases the initially sharp edge becomes gradu-
ally more sloped. The figure also displays the inherent trade off between image
detail and noise removal (for larger r the signal is much smoother), as a function
of window size r.

The implementation in algorithm 2 is inspired by Braünl[2], where they made
the O(r2) into O(r) through the use of separability. Unfortunately the median
filter is not separable.
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Algorithm 1: Mean Filter�
input : Image , r ad iu s
output : Result

N = (2 ∗ radius+ 1) ∗ (2 ∗ radius+ 1)
for i = 1 to Image .Width do

for j = 1 to Image . Height do
p lace window Wr at (i, j)
accumulator = 0
for each element x ∈ Wr

accumulator = accumulator + x
Result(i, j) = accumulator/N
� �

Algorithm 2: Mean Filter Parallel�
input : Image , r ad iu s
output : Result

N = (2 ∗ radius+ 1) ∗ (2 ∗ radius+ 1)
for i = −radius to radius do

rowsum = rowsum + Image . Sh i f t (0 , i)
for j = −radius to radius do

sum = sum + rowsum . Sh i f t (j , 0 )
Result = sum / N
� �
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2.3 Median Filter
While the mean filter is a basic linear filter, the median filter is one of the most
basic nonlinear filtering techniques around. They are very similar in both function
and construction, but yield significantly differing results. Where the mean filter
averages the output of the sliding window, the median filter instead uses the me-
dian of the sliding window output.

As the median is described by:

MED(X) = xmedian where P (X ≥ xmedian) ≥ 1
2 ∧ P (X ≤ xmedian) ≥ 1

2 (6)

It can be shown for any symmetrical zero-mean random function that the me-
dian will remove such noise. Given a normal distributed signal(such as in 2) with
probability density function f(x) described by N(0, 1), similar result as in section
2.2 may be achieved for removing the noise.

As the rest of the filters in this thesis is a variation of either mean or median
filtering, we can generally assume that the ability to totally remove the image
noise also holds for these filters.

Comparing figure 4 with figure 3 the median filters properties are evident.
Where the mean filter smoothed the edge, the median filter preserved it while still
suppressing the noise. Clearly this is a useful property for image processing.

It is evident from figure 5 that edges may be moved with median filter. This
total loss of detail and variably moving of edges can make median filters a bit
unpredictable compared to mean filters, where loss of detail is more gradual with
increasing window sizes. Other filters in this thesis will try to combine the best
from both worlds.

Upon visual inspection of filtered images, the result of median filtering often
seems more visually pleasing than the result obtained from mean filtering. This
may be due to how perception of images work. Ie. while moving an edge is hardly
noticed, blurring it may cause it to seem bigger.

2.4 Distance Weighted Median Filter
A Distance Weighted Median Filter (DWMFilter) utilizes a weighted median. The
weighted median can be seen as an extension of the median function, and if all
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Figure 4: Median Filtering of edge with Gaussian noise for different window sizes
r.
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Algorithm 3: Median Filter�
input : Image , r ad iu s
output : Result

N = (2 ∗ radius+ 1) ∗ (2 ∗ radius+ 1)
for i = 1 to Image .Width do

for j = 1 to Image . Height do
p lace window Wr at (i, j)
Result ( i, j ) = median (Wr )
� �
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Figure 5: Median Filtering of edge with Gaussian noise for different window sizes
r, showing how structure may be lost.
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Algorithm 4: Weighted Median�
input : x , w
output : Result

i n d i c e s = So r t I nd i c e s ( x )

wsum = 0
for each wi ∈ w do wsum = wsum + wi

sum = 0
for i = 1 to x . Length do

sum = w[ i n d i c e s [ i ] ]
i f sum ≥ wsum

Result = x [ i n d i c e s [ i ] ]
return
� �

weights are equal to one, they are the same. Given a signal x ∈ R with weights in a
corresponding signal w ∈ R≥0 it is possible to follow the pseudo-code in algorithm
4 to obtain the weighted median.

In the DWMFilter the weights are set to be inversely proportional with the
distance to the center of the current windowing function, thus taking advantage
of the inherent spatial relationship between nearby pixels. It seems reasonable to
chose such weights, because closer pixels is more likely to resemble the window
center. As such the following weights have been chosen:

wi,j =


3
2 if i = 0 and j = 0

1√
i2+j2

else (7)

The selection of constant value 3/2 in equation 7 is quite arbitrary and may be
substituted in different implementations. The center weight has to be implemented
different than the rest of the weights, or else the center weight will be positive ∞,
and no other pixel than the central pixel would ever be used. Any value between
0 and

∑
wi,j

2 ∀i, j will suffice.
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The weights used in the Distance Weighted Median Filter
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Algorithm 5: Hybrid Mean-Median Filter�
input : Image , radius , s e l e c t i o n p o i n t
output : Result

Imagevariance = var ( Image , rad iu s )
Imagemean = mean( Image , rad iu s )
Imagemedian = median ( Image , rad iu s )

for i = 1 to Image .Width do
for j = 1 to Image . Height do

i f Imagevariance(i, j) ≥ selectionpoint
do Result(i, j) = Imagemedian(i, j)
else do Result(i, j) = Imagemean(i, j)
� �

2.5 Hybrid Mean-Median Filter
A Hybrid Mean-Median Filter is exactly what it sounds like, it is a filter that
utilizes both Mean Filtering and Median Filtering depending on a set selection
criteria. The idea is to utilize the Mean Filter in uniform portions of the image
and the Median Filter in non-uniform portions. In this implementation the selec-
tion criteria is the variance of the sliding window, see algorithm 5 and Astola[1].

2.6 Hybrid Mean-Distance Weighted Median Filter
The Hybrid Mean-Distance Weighted Median Filter (HMDWMFilter) is also what
it sounds like, a hybrid between a Mean Filter and a DWMFilter. See section 2.5.
It is an attempt to improve on the HMMFilter, and utilizing the the similarity
between nearby pixels.

2.7 Winsorized Mean Filter
The idea behind the Winsorized Mean Filter (WMFilter) is to only use a subset
of the windowed pixels. The subset contains the usual pixels from the windowing
function without the n− smallest and n+ largest elements, see equation 8. This
approach allows us to remove outliers from the set of pixels, especially impulsive
noise, that otherwise would have a significant impact on the Mean Filter.
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Algorithm 6: Modified Trimmed Mean Filter�
input : Image , radius , α
output : Result

for i = 1 to Image .Width do
for j = 1 to Image . Height do

p lace window Wr at (i, j)
xmedian = median (Wr )
count = 0
sum = 0
for each x ∈ Wr do

i f |xmedian − x| ≤ α
count = count+ 1
sum = sum+ x

Result ( i, j ) = sum/count
� �

YW insorizedMean =
∑n−n+

i=n− Xsorted(i)
n− n− − n+

(8)

This is a compromise between the median and mean filters, attempting to im-
prove on the existing filters. Discarding subsets due to not meeting some criteria
is an approach we will use in the next filters also.

2.8 Modified Trimmed Mean Filter
Similarly to the WMFilter the Modified Trimmed Mean Filter (MTMFilter) dis-
cards a subset of the windowed pixels. The pixels that are more than α different
from the median xmedian of the set, are discarded, and the rest are averaged, see
algorithm 6.

The MTMFilter introduces the use of a variable amount of pixels per position.
And some filter input may present problems, i.e. for certain input all of the pixels
may be discarded (the median itself is not necessarily a member of the set, unless
the set consist of an odd amount of members). In this thesis the window sizes
available prevents this, see table 1. As seen in the table all the sizes is odd, and
thus the problem is avoided.
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r N
0 1
1 9
2 25
3 49
4 81
5 121
. . . . . .

Table 1: Window radius vs. elements used.

2.9 K-Nearest Neighbor Filter
The K-Nearest Neighbor Filter (KNNFilter) takes a slightly different approach to
the discarding of pixels. It uses the k least different pixels in the window and
averages them. This may make the filter easier to set up, as the input don’t need
much tweaking.
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3 Tools
This section will describe the different tools used during the development of Im-
ageLab. The coming subsections will clarify why these tools where used, instead
of other tools. Often the choice of one tool limits or even dictates what other tools
must be used in conjunction with it.

3.1 .NET Framework
The .NET Framework is a software framework, mainly for windows. It contains
a large library with many utilities that allow for quite rapid (high level) develop-
ment. There is also a choice of languages that are compatible with the framework,
these include C#, C++, Visual Basic and F#. Programs authored for the .NET
Framework is run on a virtual machine (managed space), and has utilities like
garbage handling and memory management built-in.

Figure 7: .NET Framework allows for ease of development

It was chosen due to familiarity with the .NET Framework, its utility functions,
access to the relevant IDE3 and its speed of development. Alternatives most likely
would have been Java or C++. Either could also have served well for this project.
With Java also sporting increased portability between platforms.

3.2 Windows Presentation Foundation
The Windows Presentation Foundation (WPF) is a system for rendering graphical
interfaces in windows based applications. WPF allows programmers to separate
the design of interfaces (which is handled in xaml-files) from application logic
(which is handled by the relevant language’s source files, here cs-files).

3Microsoft Visual Studio 2010™
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The use of a graphical designer allows the interface to be easily developed.
Thus allowing more time for developing the application logic.

Alternatives to WPF would most likely be to develop the interface using Win-
dows Forms, but WPF uses DirectX technology where Windows Forms is drawn
using GDI making WPF much more powerful.

3.3 Microsoft Accelerator v2 API
Microsoft Accelerator v2 allows developers to easily integrate parallel processing
of arrays and images, utilizing the parallel processing capabilities of modern multi
core processors (cpu)/graphical processing units (gpu).

Parallel processing is accomplished by building data structures of either arrays
or images and transferring them to respective processing unit (either cpu or gpu).
This of course introduces some overhead (time spent transferring data from mem-
ory to processing units memory), which is very small for cpu processing and larger
for gpu prcessing. To compensate the gpu has far more processing units. Thus
making the cpu the better target for small data sets, while the gpu is better for
larger data sets.

Alternatives here is not much to choose between, it is possible to do general-
purpose computing on graphics processing units (gpgpu) trough the use of shader
programs or CUDA implementations trough managed wrappers, but none is as
straightforward as Microsoft Accelerator v2 API.
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4 Development
This section describes ImageLab’s features and how they’re implemented.

4.1 Graphical User Interface
The classes described here are all contained within the System.Windows names-
pace.

4.1.1 Main Window

Within the main window of ImageLab, see figure 8, is where most of the interaction
with the user will happen. The window is implemented as an subclass of Window.

4.1.2 Layout

The main window lays out its subcomponents in a grid like fashion, like a table,
making placement of subcomponents straightforward and easily extensible. This
is implemented through one Controls.Grid controller, with three rows.

4.1.3 Menu

Selection of program commands/filtering is done through a menu laid out top-
most in the Grid described in 4.1.2. Both the the placement and functionality of
this menu should be familiar to most Windows™users. The menu system is im-
plemented with Controls.Menu and Controls.MenuItem controls. Functionality
such as Open, Save and such is implemented trough the Input.CommandBinding
connected event handlers, whereas the other menu items is implemented through
their own event handlers.

4.1.4 Image

Filling up most of ImageLab’s layout space is the current image. The image
will try to retain it proportions. This functionality is implemented trough a
Controls.Image control.

4.1.5 Status Bar

Bottommost in the Grid a status bar is placed, which will give feedback to the user
about the current pixel coordinate and color data. This is implemented trough a
Controls.TextBlock within a Controls.Primitives.StatusBar.
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Figure 8: ImageLab’s main window.
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Figure 9: Histogram window

4.1.6 Histogram

Additionally a histogram window have been implemented. It can show the distri-
bution of the RGB-color data. It also has the option to display the data frequency
linearly or logarithmically (it is changed by clicking on the graph).

The histogram graph tries to automatically scale to any input, so it can present
useful information to the user, see figure 9.

The histogram is implemented trough a Forms.DataVisualization.Charting.Chart
control, it actually is a part of Windows Forms (not WPF as the rest of the con-
trols). Windows Forms controls are generally not interchangeable with WPF con-
trols, and COM Interop hosting is used to host the Chart control within a WPF
Controls.UserControl control.

4.2 Image processing
All of the image processing methods are implemented after a similar pattern
F4PA FilterName(F4PA input, Object[] parameters) where the input and return
value is of the type F4PA (a 4 component floating point parallel structure), and
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Algorithm 7: Actual implementation of Mean Filter�
public stat ic F4PA Mean(F4PA input ,

params ob j e c t [ ] parameters )
{

var rad iu s = ( int ) parameters [ 0 ] ;

var sum1 = new F4PA(new F4(0 f ) , input . Shape ) ;
var sum2 = new F4PA(new F4(0 f ) , input . Shape ) ;

var n_samples = (2 ∗ rad iu s + 1) ∗ (2 ∗ rad iu s + 1 ) ;

for ( int i = −rad iu s ; i <= rad iu s ; i++)
{

sum1 += PA. Sh i f t ( input , new int [ ] { i , 0 } ) ;
}
for ( int i = −rad iu s ; i <= rad iu s ; i++)
{

sum2 += PA. Sh i f t ( sum1 , new int [ ] { 0 , i } ) ;
}
return sum2 / new F4( n_samples ) ;

}
� �
parameters is a variable length array of various types of argument. This common
pattern for all filters allow all the methods to be invoked in a similar manor. For
an example of such a pattern look at algorithm 7.

The other filters are of a similar structure. For more information on the other
filters, please review the attached source code.
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5 Results
In this section the results from this project is presented. The results will be in
the form of filtered images. Two sided impulsive noise were added to a reference
image (the reference image Lena is used). The filtered images are then compared
to a noise-free version of the reference image. Not all filters are presented equally
exhaustively, but rather in a manner that highlights the interesting results. For
completeness, a more exhaustive table is presented at the end of this section.

The results determines how effective a certain filter (with a given set of pa-
rameters) is at removing noise of this kind from this image. The reference image
contains both small details, sharp edges and uniform areas, making it well suited
as a test image.

5.1 An objective metric
Mean Square Error (MSE) was chosen as the metric for deciding which filtering
operations performs the best. MSE may differ from what is subjectively perceived
as the optimal metric, for research on perceptual quality the Q2S[5] center can
be queried. But MSE it is still a robust and objective measure for signal to noise
ratios, and is well suited for use with these filtering operations.

5.2 Analysis of images
The results of filtering is presented for a selection of results in figures, for an ex-
ample see figure 10. To the top and left in the figure the image is presented. On
the top right there are two zoomed in versions of the image, so one can prop-
erly see the effects of filtering, and two difference images for the same zoomed in
area. The difference images highlights what kind of details are lost during filter-
ing. On the bottom left there is a scan-line from the above image, which allows
us to see the effects of filtering in an alternative, and perhaps more familiar way
(each color component is separate). To the bottom right there is a histogram of
the errors, detailing number of samples vs error (more samples to the left is better).

5.3 Analysis of a 3-by-3 mean filtered image
The first result that is presented is that of the 3-by-3 (1 radius) mean filter, and
this result will be used as a benchmark result for comparison against the novel,
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Figure 10: Analysis of the noisy image created by adding 2-sided impulsive noise
to the reference image Lena.

nonlinear filters. From figure 11 it is evident that there is less noise in the im-
age than before. In the difference images some of the details of the edges can be
discerned, and some of the impulses was averaged out over a larger area (making
them more noticeable in the process). Much of the variation that was observed on
the scan line in figure 10 is significantly lessened by the mean filter.

5.4 Analysis of a 3-by-3 median filtered image
Of the nonlinear filters that is treated in this thesis the simplest of them is the
median filter, and as such is an interesting result to present. Looking at figure12
it is clear that significantly more noise have been removed by the median filtering
than by the mean filter. From the difference images there is evidence that some
of the repetitive structures in the hat and eyelashes are lost, but overall the edges
are well preserved. From the scan-line extraction of the image we can see the crisp
contours of the underlying structure. Without yet having examined the objective
metrics it is relatively safe to note that this is a significant improvement over the
mean 3-by-3 filter.
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Figure 11: Mean 3-by-3 Filter
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Figure 12: Median 3-by-3 Filter
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Figure 13: Distance Weighted Median 3-by-3 Filter

5.5 Analysis of a 3-by-3 DWM-filtered image
Next in line the Distance Weighted Median filter is presented, also this in the 3-by-
3 variant. In figure 13 similar results as the median filtering are obtained, which
is not a big surprise since the filters are very similar. From the difference images
it seems like the DWMFilter is even better than the median filter at preserving
edges, but also slightly worse when it comes to removing noise impulses. Both of
the two last images seems to be very sharp, and almost noise free.

5.6 Analysis of a 3-by-3 MTM-filtered image
Next the Modified Trimmed Mean Filter 3-by-3 is examined, see figure 14. From
the images it almost seems like the edges are enhanced, but from the difference
image it is evident that they are not, they are just very sharp. The MTMFilter
tries to average as many samples as possible so long as they their value is reason-
ably close to the median, leading us to expect great edge preservation and impulse
removal, at the cost of small level structure. That is exactly what is observe in
the difference images, the average error seems to have increased, but larger struc-
tures are well preserved. By tuning this filter correctly significantly better results
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Figure 14: Modified Trimmed Mean 3-by-3 Filter

may be achieved (by matching the detail loss to the detail that is lost due to noise).

5.7 Analysis of a 11-by-11 median filtered image
Lastly the use of larger window median filters is highlighted, especially the 11-by-
11 median filter. The filter is not chosen because of its proves as to removing noise,
but because it presents an interesting artistic effect, see figure 15. The image is
significantly softened, but still retains its high level structures/edges.

5.8 More filters
The table 2 presents a more exhaustive selection of filters, much more than the
limited selection that was presented in the previous paragraphs. From the table it
is evident that the most successful filters was indeed the DWMFilter and the Me-
dian Filter. What is surprising in the table is the trend that bigger (filter window
sizes) is not better. An explanation for this trend may be that as the filter sizes
grow, more of the details in the original image is also lost. This is not something
new, see section 2, but what is surprising is that so many of the filters tries to
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Figure 15: Median 11-by-11 Filter

incorporate as many samples as possible. When using the simplest approach, the
median filter, the best objective result were obtained.

It is also reasonable to assume that different types of noise, a different image
and different filtering parameters yields different outcomes. Mayhap some where
bigger is better. Fine tuning of parameters is not something that is emphasized in
this thesis, and will thus leave that problem to users of ImageLab instead.

Both the DWMFilter and the median filter is parameterless filters (not count-
ing the window size as a parameter), and yields good results for users without the
need to tweak parameters. This is good news for the applicability of the software
as it does not require a lot of explanation, and means it can be deployed partially,
or fully, to a broad spectrum of users.
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Filter Radius MSE Comment
Distance Weighted Median 1 40.1259
Distance Weighted Median 2 42.9816
HMDWM 1 131.4223 Parameter: 0.01
HMDWM 2 136.3852 Parameter: 0.01
Hybrid Mean Median 1 112.6582 Parameter: 0.01
Hybrid Mean Median 2 110.4107 Parameter: 0.01
Hybrid Mean Median 3 131.515 Parameter: 0.01
K-Nearest Neighbor 1 112.8108 Parameter: 6
K-Nearest Neighbor 2 90.6452 Parameter: 18
Mean 1 173.376
Mean 2 181.9212
Mean 3 217.2347
Mean 4 256.228
Mean 5 295.76
Median 1 38.5722
Median 2 59.0154
Median 3 86.3629
Median 4 112.2882
Median 5 136.8673
Modified Trimmed Mean 1 84.7571 Parameter: 0.1
Modified Trimmed Mean 2 88.0758 Parameter: 0.1
Modified Trimmed Mean 3 108.9378 Parameter: 0.1
Winsorized Mean 1 131.541 Parameter: 0.1
Winsorized Mean 2 102.2365 Parameter: 0.1
Winsorized Mean 3 133.4182 Parameter: 0.1
Unfiltered Image - 533.9996
Original Image - 0

Table 2: Mean Square Error for a selection of different filtering options.
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6 Summary
In this thesis an application named ImageLab have been developed. ImageLab is
an image filtering application focusing on the use of nonlinear filtering processes.
During development of the software it became clear that ImageLab is not a full
image processing suite, such as Photoshop™, but rather a complement to existing
software solutions. This is true for now, but further development of the software
may lead it to become an alternative full featured image processing solution.

Theory behind the use of ImageLab’s image processing techniques was intro-
duced in section 2, the same techniques was also introduced as pseudo-code. Also
the different filters and their functionality were explained. In section 4.2 the same
pseudo-code were turned into usable C#-code. Following this recipe it should be
a straightforward process to duplicate the work done in this thesis, both for novel
applications or extending the current application further.

In section 5 it was shown how the different filters performed with respect to an
objective metric. While not being able to generally conclude a given filters profi-
ciency at removing noise, we can conclude that for a given set of initial conditions
(input image, the type/strength of noise and parameters) some filters did perform
better than others. With 2-sided variable height impulsive noise and the Lena ref-
erence image a median-filter and a Distance Weighted Median-filter performed the
best (according to the objective Mean Square Error). All the filters did improve
the objective metric, the worst (Mean 11-by-11) was able to remove more than
40%4 of the noise. The best filter (Median 1-by-1) was able to remove more than
90%5 of the noise.

41− 295.76/533.9996 = 45%
51− 38.5722/533.9996 = 93%
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