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ABSTRACT 

Due to the capability of the Global Positioning System (GPS) to provide accurate, stable 

long-term navigation information, the use of a GPS receiver as a velocity and acceleration 

sensor has gained an increasing research interest. Navigation and control, airborne 

gravimetry and integration with inertial navigation systems (INS) are just some of the 

potential applications. 

GPS velocity and acceleration measurements are typically determined using Doppler and 

Doppler rate observations provided by the receiver carrier tracking loops. Thus, the final 

quality of the velocity/acceleration measurements depends on the variance of the Doppler 

and Doppler rate observations and on the approach used for the velocity/acceleration 

computation. It is therefore desirable to be able to predict the quality of Doppler and 

Doppler rate observations, not only for quality control and for estimating the uncertainty of 

this information, but also for properly weighting the measurements in the LS and KF 

solution. 

This thesis introduces a cohesive analysis describing the noise propagation process from the 

input of the carrier tracking loops to the final Doppler and Doppler rate estimates. Two 

different approaches used by GNSS receivers are considered namely the sequential carrier 

tracking, including the standard and memory discriminator based approaches, and block 

processing techniques. For each approach, a theoretical framework for Doppler estimation 

relating the variance and biases of the Doppler estimates to C/N0, the user dynamics and the 

algorithm parameters is introduced.  

Also, based on the proposed theoretical framework a new approach to loop filter design 

providing control over the noise variance of the Doppler measurements is introduced. 

The developed theoretical framework and the proposed approach to loop filter design have 

been verified by performing a number of static and dynamic pedestrian-based field tests 

and simulations with the major focus on the environments with strong signal attenuation 

and multipath.  
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CHAPTER 1:  INTRODUCTION 

1.1. Background and Justification 

The determination of velocity and acceleration from Global Positioning System (GPS) 

measurements is very important for many applications including navigation, airborne 

gravimetry and geophysics. GPS velocity and acceleration measurements are typically 

determined using Doppler and Doppler rate observations which, in turn, are estimated by 

directly processing carrier tracking loop outputs or, alternatively, obtained by 

differentiating carrier phase observations (Serrano et al 2004, Serrano et al 2004a, Wieser 

2007), once to get the line of sight velocity and twice, for acceleration. 

The feasibility of GPS-based velocity and acceleration estimation with mm/s and mm/s2

accuracy respectively has long been shown using differential techniques (Cannon et al 

1997, Ryan et al 1997, Bruton 2000). But during the last several years, low-cost GPS 

receivers capable to provide accurate Doppler, or carrier phase measurements from which 

Doppler and Doppler rate measurements can be derived became available for mass market. 

The achievable accuracy of low-cost GPS-based velocity and/or acceleration estimates has 

been investigated by Psiaki et al (1999), Serrano et al (2004a, b), Petovello et al (2003) and 

van Graas & Soloviev 2004, showing that it is possible to achieve accuracies of a few 

millimetres per second in velocity and acceleration at the millimetres per second squared 

level depending on the receiver quality, whether in stand-alone or relative and static or 

kinematic mode. Due to cost-effectiveness, ease in operation and maintenance, as well as 

capability to provide a long-term stable reference the use of GPS receivers rather than 

speedometers and/or accelerometers has become a very attractive option (Serrano et al 

2004a, Weiser 2007).  

While the use of velocity and acceleration measurements provided by GPS for dynamic 

applications is rather straightforward, in airborne gravimetry GPS observations are used to 

derive the Earth’s gravity field where acceleration measurements derived from the GPS 

1 

CHAPTER 1:  INTRODUCTION 

1.1. Background and Justification 

The determination of velocity and acceleration from Global Positioning System (GPS) 

measurements is very important for many applications including navigation, airborne 

gravimetry and geophysics. GPS velocity and acceleration measurements are typically 

determined using Doppler and Doppler rate observations which, in turn, are estimated by 

directly processing carrier tracking loop outputs or, alternatively, obtained by 

differentiating carrier phase observations (Serrano et al 2004, Serrano et al 2004a, Wieser 

2007), once to get the line of sight velocity and twice, for acceleration. 

The feasibility of GPS-based velocity and acceleration estimation with mm/s and mm/s2

accuracy respectively has long been shown using differential techniques (Cannon et al 

1997, Ryan et al 1997, Bruton 2000). But during the last several years, low-cost GPS 

receivers capable to provide accurate Doppler, or carrier phase measurements from which 

Doppler and Doppler rate measurements can be derived became available for mass market. 

The achievable accuracy of low-cost GPS-based velocity and/or acceleration estimates has 

been investigated by Psiaki et al (1999), Serrano et al (2004a, b), Petovello et al (2003) and 

van Graas & Soloviev 2004, showing that it is possible to achieve accuracies of a few 

millimetres per second in velocity and acceleration at the millimetres per second squared 

level depending on the receiver quality, whether in stand-alone or relative and static or 

kinematic mode. Due to cost-effectiveness, ease in operation and maintenance, as well as 

capability to provide a long-term stable reference the use of GPS receivers rather than 

speedometers and/or accelerometers has become a very attractive option (Serrano et al 

2004a, Weiser 2007).  

While the use of velocity and acceleration measurements provided by GPS for dynamic 

applications is rather straightforward, in airborne gravimetry GPS observations are used to 

derive the Earth’s gravity field where acceleration measurements derived from the GPS 

1 

CHAPTER 1:  INTRODUCTION 

1.1. Background and Justification 

The determination of velocity and acceleration from Global Positioning System (GPS) 

measurements is very important for many applications including navigation, airborne 

gravimetry and geophysics. GPS velocity and acceleration measurements are typically 

determined using Doppler and Doppler rate observations which, in turn, are estimated by 

directly processing carrier tracking loop outputs or, alternatively, obtained by 

differentiating carrier phase observations (Serrano et al 2004, Serrano et al 2004a, Wieser 

2007), once to get the line of sight velocity and twice, for acceleration. 

The feasibility of GPS-based velocity and acceleration estimation with mm/s and mm/s2

accuracy respectively has long been shown using differential techniques (Cannon et al 

1997, Ryan et al 1997, Bruton 2000). But during the last several years, low-cost GPS 

receivers capable to provide accurate Doppler, or carrier phase measurements from which 

Doppler and Doppler rate measurements can be derived became available for mass market. 

The achievable accuracy of low-cost GPS-based velocity and/or acceleration estimates has 

been investigated by Psiaki et al (1999), Serrano et al (2004a, b), Petovello et al (2003) and 

van Graas & Soloviev 2004, showing that it is possible to achieve accuracies of a few 

millimetres per second in velocity and acceleration at the millimetres per second squared 

level depending on the receiver quality, whether in stand-alone or relative and static or 

kinematic mode. Due to cost-effectiveness, ease in operation and maintenance, as well as 

capability to provide a long-term stable reference the use of GPS receivers rather than 

speedometers and/or accelerometers has become a very attractive option (Serrano et al 

2004a, Weiser 2007).  

While the use of velocity and acceleration measurements provided by GPS for dynamic 

applications is rather straightforward, in airborne gravimetry GPS observations are used to 

derive the Earth’s gravity field where acceleration measurements derived from the GPS 

1 

CHAPTER 1:  INTRODUCTION 

1.1. Background and Justification 

The determination of velocity and acceleration from Global Positioning System (GPS) 

measurements is very important for many applications including navigation, airborne 

gravimetry and geophysics. GPS velocity and acceleration measurements are typically 

determined using Doppler and Doppler rate observations which, in turn, are estimated by 

directly processing carrier tracking loop outputs or, alternatively, obtained by 

differentiating carrier phase observations (Serrano et al 2004, Serrano et al 2004a, Wieser 

2007), once to get the line of sight velocity and twice, for acceleration. 

The feasibility of GPS-based velocity and acceleration estimation with mm/s and mm/s2

accuracy respectively has long been shown using differential techniques (Cannon et al 

1997, Ryan et al 1997, Bruton 2000). But during the last several years, low-cost GPS 

receivers capable to provide accurate Doppler, or carrier phase measurements from which 

Doppler and Doppler rate measurements can be derived became available for mass market. 

The achievable accuracy of low-cost GPS-based velocity and/or acceleration estimates has 

been investigated by Psiaki et al (1999), Serrano et al (2004a, b), Petovello et al (2003) and 

van Graas & Soloviev 2004, showing that it is possible to achieve accuracies of a few 

millimetres per second in velocity and acceleration at the millimetres per second squared 

level depending on the receiver quality, whether in stand-alone or relative and static or 

kinematic mode. Due to cost-effectiveness, ease in operation and maintenance, as well as 

capability to provide a long-term stable reference the use of GPS receivers rather than 

speedometers and/or accelerometers has become a very attractive option (Serrano et al 

2004a, Weiser 2007).  

While the use of velocity and acceleration measurements provided by GPS for dynamic 

applications is rather straightforward, in airborne gravimetry GPS observations are used to 

derive the Earth’s gravity field where acceleration measurements derived from the GPS 



2 

observables are used to compensate for the motion of the aircraft isolating the desired 

gravity component (Bruton 2000, Kennedy 2002). This information depending on the 

required accuracy and resolution is used in geodesy, geophysics and oceanography. 

However, despite the beneficial effect that GPS brought to the field of airborne gravimetry 

due to its capability to provide an accurate measure of the absolute position, velocity and 

acceleration of the aircraft over the long-term, the accuracy of GPS acceleration 

measurements continues to pose a major challenge (Psiaki et al 2000).  

At the same time, escalating requirements from the Federal Communications Commission 

for the provisioning of Enhanced 911 (E-911) services and the increasing demand for 

Location Based Services (LBS) in signal degraded environments have been driving the 

development of positioning technologies where GPS-based techniques have become very 

attractive due to the great effort made by the industry to miniaturize front-ends and 

processing cores into one single chipset while increasing both acquisition and tracking 

sensitivity and the availability of the position solution especially in urban environments. 

However, GPS-based positioning techniques still encounter issues in urban canyon and 

indoor areas where LBS users are very likely to be. In such environments, already 

attenuated GPS signals are further affected by strong multipath and fading making user 

location a real challenge. To enhance the sensitivity and thus the availability of the position 

solution using GPS in these adverse environments, High Sensitivity (HS) techniques based 

on the use of either long integration times (Peterson et al 1997), or massive parallel 

correlation/block processing (van Diggelen 2001, van Graas et al 2005) have been 

developed.  

In this regard, Doppler rate measurements can be used to improve tracking loop 

performance as suggested in (Kazemi et al 2009). In particular, Doppler rate information is 

used to aid the Numerically Controlled Oscillator (NCO) in order to produce a linearly 

varying local carrier frequency. This reduces the accumulated signal power losses 

introduced by the mismatch between locally generated and incoming signals. This is 
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especially valuable in the case of High-Sensitivity (HS) GPS receivers where loops 

employing long integration time and low update rates are used (Kazemi et al 2009). 

An alternative solution to achieve performance in degraded GPS signal environments is by 

integrating different technologies such as, for example, standard or HSGPS with dead-

reckoning sensors such as Inertial Navigation Systems (INS) (Mezentsev 2005, Bancroft et 

al 2008). Traditionally, a GPS/INS integrated system employs GPS derived pseudorange 

measurements to aid the INS system. But indoors and in urban areas pseudorange 

measurements are heavily degraded by errors such as multipath, non-line of sight signals as 

well as from degraded satellite geometry (Kubo 2009). To circumvent this problem velocity 

information derived from GPS Doppler measurements (Moafipoor et al 2004), raw Doppler 

measurements (Petovello et al 2003) or time-differenced carrier phase measurements 

(Wendel et al 2006) can be used as alternative aiding sources. The advantage of this 

approach is that Doppler multipath effects are a function of receiver velocity, and therefore 

for low dynamic navigation in the indoor and urban environments should remain minimal. 

But for successful implementation of an integrated system, the accuracy of aiding 

information is critical as an aiding source with poor accuracy will not be able to restrain the 

INS navigation error growth (El-Sheimy 2009).
Typically, both acceleration and velocity of the user are determined using either a Least 

Squares (LS) or Kalman Filter (KF) estimation technique. According to estimation theory, 

weighting the measurements properly should lead to better estimates (Gelb 1974). A 

precise observation should have a higher weight and thus contribute more to the computed 

parameters than an imprecise one. Knowledge of the accuracy of the Doppler/Doppler rate 

observables is also important in view of statistical failure detection and identification. 

Inaccurate variance information may cause outliers to remain undetected and accurate 

observations to be rejected. Thus, in order to obtain precise and reliable 

velocity/acceleration estimates it is essential not only to have accurate Doppler and/or 

Doppler rate information, but also a figure of merit providing an estimate of the uncertainty 

of this information that can be used for appropriate weighting of the measurements. 
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Therefore, it is advantageous to have a theoretical framework that will allow one to 

effectively evaluate and predict the quality of Doppler and Doppler rate measurements 

providing bounds on the acceleration and velocity accuracy.  

1.2 Limitations of the Previous Research 

Intense research activities have been focused on the area of Doppler and Doppler rate 

estimation using GPS. However, most of the previous studies have been essentially limited 

to hardware receivers (Ryan et al 1997, van Graas & Soloviev 2003, Serrano et al 2004, 

Zhang et al 2005). Hardware receivers with proprietary algorithms and post-processing 

software do not provide any insight on how Doppler and Doppler rate measurements are 

formed, preventing an accurate analysis at the tracking loop level. Moreover, a hardware 

GPS receiver doesn’t allow one to access the Doppler-rate measurements directly from the 

tracking loops of the receiver. Therefore, to obtain the user’s acceleration either a double 

time differentiation of the GPS derived position or, preferably, differentiation of the raw 

Doppler or double differentiation of the carrier phase measurements has to be performed 

(Bruton 2000, Zhang et al 2005).  

In this way, only the relationship between carrier phase, Doppler and Doppler rate 

measurements and velocity and/or acceleration estimation has been investigated. In 

particular, a thorough review of behaviour and magnitude of the GPS Doppler and carrier 

phase error sources (multipath, satellite geometry, effect of ionosphere, clock errors, etc.) is 

provided by Bruton (2000) and Wieser (2007). A good study of the process of time 

differentiation and an overview of existing methods is given in Bruton (2000) with 

emphasis on determining velocity and acceleration from measurements made by the GPS 

receivers. An experimental study of the Doppler measurement quality as a function of the 

Carrier-to-Noise density ratio (C/N0) is presented in (Petovello et al 2003), but the 

introduced results are empirical and do not consider the parameters and structure of the 

carrier tracking loops.  
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As it has been mentioned above, Doppler and Doppler rate measurements are obtained by 

processing the outputs of the carrier tracking loops of the receiver, and parameters such as 

the loop type and order, integration time and loop bandwidth strongly impact their quality. 

Ward (1998, 2005) investigated the capability of an FLL to provide accurate frequency 

estimates depending on C/N0, loop bandwidth and the coherent integration time by 

performing interpolation of the simulation results using the Monte Carlo techniques. A 

study of the process of Doppler estimation based on analytical derivations and the use of a 

Software Defined Radio (SDR) GPS receiver was performed by Sokolova (2009), 

proposing a theoretical framework allowing the evaluation of Doppler accuracy relating the 

variance and biases of the Doppler estimates to PLL parameters such as the PLL bandwidth 

and integration time, as well as the C/N0 and the user dynamics. But the theoretical 

framework presented in Sokolova (2009) is valid for PLLs only, and considers only the 

process of Doppler estimation. Given the benefits provided by the use of the SDR receiver, 

it is desirable to develop a similar theoretical framework applicable for evaluation of 

Doppler rate measurements. Moreover, to be able to evaluate the accuracy of the Doppler 

estimates in the cases when the receiver is losing phase lock, it is desirable to extend such 

framework to Frequency Lock Loops (FLLs) and FLL-assisted-PLLs.  

Finally, most of the previous studies on Doppler and Doppler rate estimation analysis e.g., 

Ryan et al (1997), van Graas & Soloviev (2003), Serrano et al (2004) were focused on the 

near Line Of Sight (LOS) conditions only, which are in the absence of multipath and for 

high to moderate values of C/N0. The impact of strong signal attenuation and biases 

introduced by multipath has been rarely addressed. As it has been mentioned in the 

previous section, performance in degraded signal environments can be achieved using 

HSGPS. HSGPS is a technology developed to enhance acquisition and tracking thresholds 

based either on the use of long integration times or massive parallel correlation/block 

processing. Petovello et al (2003) performed an experimental analysis of Doppler 

measurements accuracy provided by a low-cost HSGPS hardware receiver, but as discussed 

above, due to the limitations of hardware receivers only the relationship between the C/N0
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measurements provided by the receiver and Doppler measurements quality could be 

analysed. A software HSGPS receiver architecture based on memory discriminators 

proposed by Borio et al (2009) was used in the analysis provided in (Sokolova 2009) where 

the presented theoretical framework for Doppler evaluation was extended also to include 

this type of architecture. However, a memory discriminator based HSGPS architecture 

represents a sequential approach, i.e., the current frequency estimate is obtained by 

updating previous estimates using the new information provided by the correlator outputs. 

Another approach, based on massive parallel correlation, can be adopted and used in 

investigations such as those outlined in van Diggelen (2001) and van Graas et al (2005) to 

facilitate the complex task of searching for weak GPS signals. In the literature, this 

technique is often referred to as block or batch processing e.g., van Graas et al (2005). 

Because of the frequent use of this approach in HSGPS receiver design, it is desirable to 

develop a theoretical model that will allow the evaluation of Doppler measurement quality 

applicable to block processing GPS receiver architectures.  

It is also important to consider that although the thermal noise is often treated as the 

dominant source of carrier tracking error, due to the fact that it is common to use low 

quality oscillators in consumer grade GNSS receivers, the oscillator phase noise can also 

pose significant difficulties for PLLs (Kaplan 2006). In particular, it can impose an upper 

limit on the coherent integration period (Gaggero & Borio, 2008), can impose a lower limit 

on the PLL filter bandwidth (Curran et al 2010) and can limit the range of applications in 

the case where oscillators are particularly sensitive to high dynamics and vibrations (Filler 

1988). Optimisation of PLL filters with respect to the local oscillator is a topic that has 

been and still is being studied (Kaplan 2006, Curran et al 2010). Analysis of this source of 

noise jitter, however, falls beyond the scope of this thesis. 
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1.3 Statement of the Problem  

The overall objective of this thesis is to develop, test and verify a comprehensive 

theoretical framework for the analysis of the process of Doppler and Doppler rate 

estimation necessary for studying and charactering the impact of the algorithm parameters, 

C/N0 and user dynamics on the accuracy of the measurements. The developed theoretical 

framework should include the analysis of two approaches used in GNSS receivers, namely 

sequential carrier tracking, including the standard and memory discriminator based 

approaches, and block processing techniques. In the case of sequential carrier tracking three 

types of carrier tracking loops should be considered: PLL, FLL-assisted-PLL and FLL. 

1.3.1 Objectives and Contributions 

Considering the above-mentioned limitations of the research performed previously on 

Doppler and Doppler rate determination, the objectives and major contributions of this 

thesis can be summarised as follows: 

1. Analysis of the Doppler estimation process in tracking loops of a sequential GPS 

receiver architecture. Doppler measurements are obtained by processing the carrier 

tracking loop outputs and parameters such as integration time, loop bandwidth and order 

strongly impact their quality. The major objective here is to develop a complete theoretical 

framework allowing the evaluation of Doppler accuracy, relating the variance and biases in 

the Doppler estimates to the type of loop and its parameters, C/N0 and user dynamics 

extending and completing the research performed in (Sokolova 2009). To get a 

comprehensive framework, the following types of the carrier tracking loops are considered: 

• Phase Lock Loop (PLL) 

• Frequency Lock Loop (FLL) 

• FLL-assisted-PLL 
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Moreover, two different types of sequential architecture are used in this research, the 

standard and memory discriminator based one. 

2. Noise propagation and Doppler estimation analysis in a block processing 

architecture. Because of the ability to perform a massive parallel search over the entire 

range of possible code delays/carrier frequencies and ensure that the correlation peak will 

always be detected, even in degraded signal environments with significant signal fading, a 

block processing technique is frequently used in HSGPS receivers. It is, therefore, desirable 

to perform a study on the noise propagation process in this type of architecture and provide 

a theoretical model allowing the evaluation of the Doppler measurements obtained from HS 

receivers employing block processing techniques. 

3. Investigation and verification of the loop filter design based on Doppler bandwidth.  

The flexibility of the controlled-root formulation approach to loop filter design proposed by 

Stephens & Thomas (1995) and introduction of the Doppler bandwidth parameter 

(Sokolova 2009) allows one to design the loop filter in a way which provides control over 

the noise variance of the Doppler frequency measurements.  

Doppler bandwidth has been derived as a related design parameter to the loop noise 

bandwidth with the major difference between these two parameters being that Doppler 

bandwidth provides a more faithful interpretation of the bandwidth required to track 

particular system dynamics. 

The proposed approach consists of modifying the controlled-root formulation by basing it 

on the Doppler bandwidth allowing one to configure the tracking loop to output Doppler 

measurements with a desired level of Doppler jitter. The design criteria behind this 

approach are specified, and the effectiveness of proposed algorithm analysed using real 

GPS data. 

4. Development and verification of a theoretical framework for the analysis of 

Doppler rate estimation process in a sequential receiver architecture. Given the 

flexibility of the SDR GPS receiver it is possible to obtain Doppler rate measurements by 

evaluating the outputs of the FLL or the FLL-assisted-PLL of the receiver. Also in this 
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3. Investigation and verification of the loop filter design based on Doppler bandwidth.  

The flexibility of the controlled-root formulation approach to loop filter design proposed by 

Stephens & Thomas (1995) and introduction of the Doppler bandwidth parameter 

(Sokolova 2009) allows one to design the loop filter in a way which provides control over 

the noise variance of the Doppler frequency measurements.  

Doppler bandwidth has been derived as a related design parameter to the loop noise 

bandwidth with the major difference between these two parameters being that Doppler 

bandwidth provides a more faithful interpretation of the bandwidth required to track 

particular system dynamics. 

The proposed approach consists of modifying the controlled-root formulation by basing it 

on the Doppler bandwidth allowing one to configure the tracking loop to output Doppler 

measurements with a desired level of Doppler jitter. The design criteria behind this 

approach are specified, and the effectiveness of proposed algorithm analysed using real 

GPS data. 

4. Development and verification of a theoretical framework for the analysis of 

Doppler rate estimation process in a sequential receiver architecture. Given the 

flexibility of the SDR GPS receiver it is possible to obtain Doppler rate measurements by 
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case, tracking loop parameters such as the integration time, loop order and bandwidth, 

impact the quality of the measurements and it is therefore necessary to perform a complete 

and cohesive analysis of the noise propagation through the entire estimation process from 

the input of the carrier tracking loop to the final Doppler rate estimate. To be able to 

perform such analysis, a general linear model relating the variance and bias of Doppler rate 

estimates to the C/N0, the user dynamics and the loop parameters is used. Additionally, in 

order to get a complete model, the following types of Doppler rate measurements will be 

considered: 

• raw Doppler rate measurements 

• Doppler rate measurements derived from carrier phase observations 

Finally, to demonstrate the validity and investigate the effectiveness of the developed 

theoretical model for the analysis of the Doppler rate measurements, it is necessary to 

perform extensive data collections in various GPS operating environments to be able to test 

the theory against real data.   

1.3 Thesis Outline 

In order to provide a comprehensive view of the research performed, the structure and 

content of the subsequent chapters is outlined in the following. 

Chapter 2 focuses on the types of Doppler and Doppler rate measurements. The first one is 

the raw Doppler and raw Doppler rate measurement type obtained directly from the outputs 

of the carrier tracking loops. The second one is carrier phase derived Doppler and Doppler 

rate measurement type obtained by performing a single time differentiation of the carrier 

phase observables, in the case of Doppler, or double time differentiation in the case of 

Doppler rate measurements. Relationship between these two measurement types is 

highlighted and an alternative approach consisting in filtering raw measurements in order to 

achieve equivalent performance is discussed. Moreover, this chapter gives a brief overview 
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of existing differentiation methods for velocity and acceleration determination. In addition 

to this, the underlying theory behind velocity and acceleration estimation process using 

GPS, and GNSS in general is provided. A review of HSGPS techniques is also provided 

with specific focus on memory discriminator based and block processing approaches. 

Chapter 3 considers sequential carrier tracking, including the standard and memory 

discriminator based approaches, and block processing techniques introducing theoretical 

frameworks for Doppler estimation for each of the approaches. In the case of sequential 

carrier tracking the quality of Doppler measurements is theoretically evaluated by 

reformulating the standard tracking loop linear theory with respect to the signal Doppler 

frequency, the frequency noise and the final Doppler frequency measurement provided by 

the loop. Tracking loops, including PLL, FLL-assisted-PLL and FLL are considered and it 

is shown that the concept of Doppler bandwidth is general and can be applied to different 

types of tracking loops. An approach used to extend the theoretical model in order to 

include the effect of memory discriminators is also detailed. For the block processing 

approach the Cramer-Rao Lower Bound (CRLB) for frequency estimation is provided and 

used to derive an approximation of the variance of the frequency estimates generated by 

block processing techniques. The theory developed is the basic tool extensively used in the 

rest of the thesis.  

Finally, the proposed theoretical framework is validated by using simulated and real life 

GPS L1 C/A signals and the analysis of the test results presented.  

Chapter 4 concentrates on the investigation of an approach to loop filter design based on 

Doppler bandwidth that will allow one to control the noise variance of the Doppler 

measurements. Following an introduction of the controlled-root formulation algorithm 

(Stephens & Thomas 1995) and a discussion of the motivation behind this design, the 

necessary changes to this algorithm are described and the design criteria specified. Both 

standard and memory discriminator based PLLs are considered.  
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The effectiveness of the proposed approach is verified by live GPS L1 C/A data. 

Methodology for the data analysis is described and the obtained results presented and 

analyzed in detail in the last part of the chapter.

Chapter 5 considers sequential carrier tracking, including the standard and memory 

discriminator based approaches, and block processing techniques with respect to the 

process of Doppler rate estimation. First, the assumption of negligible Doppler rate during 

the integration period adopted in GNSS receivers is discussed, and the CRLB for the 

Doppler rate estimates is provided and used as a comparison for the proposed theoretical 

models. In the case of sequential carrier tracking, the PLL, common-rate FLL-assisted-PLL 

and FLL are explicitly considered where each type of the tracking loop is approximated as 

a linear device extracting Doppler rate measurements from the input samples. The linear 

transfer functions from the input noise to the final Doppler rate estimate are also derived. In 

order to quantify the portion of noise transferred from the input signal to the final Doppler 

rate estimates the concept of Doppler rate bandwidth is introduced. For the block 

processing approach, an expression of the variance of the Doppler rate estimates is derived 

based on the CRLB for the Doppler frequency measurements introduced in Chapter 3. It is 

noted that theoretical framework introduced in this chapter is a generalization of the 

analysis provided in Chapter 3 with respect to Doppler frequency estimation.  

Test methodology and equipment setup for the static and dynamic pedestrian-based field 

tests and simulations that were carried out for evaluation of the developed theory for 

Doppler rate analysis are also presented in this chapter. The collected data analysis is 

presented here through comparison of the results obtained empirically with the ones 

obtained using the theoretical model. Different combinations of tracking loop parameters 

and different methods for Doppler rate measurements derivation are considered.  

Finally, in Chapter 6, conclusions are drawn from the performed investigations and 

directions for further research suggested. 
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CHAPTER 2: FUNDAMENTALS 

To establish the basic notation for this thesis, a description of the signal and system model 

is given in the first section of this chapter. The major focus of this thesis is on the process 

of Doppler and Doppler rate estimation in digital carrier tracking loops. Therefore, an 

overview of available types of Doppler and Doppler rate observables from the loop outputs 

is presented. As time differentiation plays an important role in the process of deriving 

Doppler and Doppler rate measurements from the GPS carrier phase observables, a 

discussion of the choice of the differentiator types suitable for this particular research is 

also given. Following this, a brief review of the background relevant to the task of velocity 

and acceleration estimation using GPS observables is provided.  

HSGPS techniques with particular attention on memory discriminator-based receiver 

architecture and a block processing approach for weak signal tracking are reviewed in the 

last section of this chapter. These two receiver architectures will be considered in the 

following chapters to extend the developed theoretical model for Doppler and Doppler rate 

analysis to be applicable to HSGPS techniques. Finally, a short note on future GNSS signal 

structures in terms of weak signal tracking is provided focusing on is the availability of the 

pilot channel. 

2.1 Doppler and Doppler rate Estimation Process in GNSS Carrier Tracking Loops 

2.1.1 Signal and System Model 

The complex baseband signal at the input of a digital tracking loop can be expressed as the 

sum of L useful signal components modulated using Direct Sequence Spread Spectrum 

(DSSS) techniques and a noise term:�
1

0
[ ] [ ] [ ]

L

i
i

s n y n w n
−

=

= +� .                                                                                                      (2.1)
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The input signal, [ ]s n , in Eq.(2.1) has already been down-converted and digitized by the 

receiver front-end. The notation [ ] ( )sy n y nT=  is used to denote a digital sequence 

sampled at the frequency 1
s

s
f

T
=  and n  is the discrete time index. Each useful signal 

component can be modeled as follows (Misra & Enge 2006):  

( )( ),[ ] cos 2i i
i i i i IF d i s i

s s
y n A d n c n f f nT

T T
τ τ π ϕ

� � � �
= − − + ⋅ +� � � �

� � � �
,                                         (2.2)                       

where  

• iA  is the useful signal amplitude of the ith signal component; 

• ( )id ⋅  is the bit sequence modeling the transmitted navigation message; 

• ( )ic ⋅  is the signal spreading sequence; 

• iτ is the delay experienced by the received signal; 

• ,d if  and iϕ are the carrier Doppler frequency and phase; 

• IFf is the receiver intermediate frequency. 

Due to the quasi-orthogonality of the spreading codes, ( )ic ⋅ , the receiver is able to process 

each signal component independently. Thus, it is possible to assume the presence of a 

single useful signal at the correlator output, ( )1L = . Herein, the case of a single useful 

component is considered and the index i  is dropped for ease of notation. Moreover, the 

major focus of this thesis is on the analysis of the estimation process of Doppler and 

Doppler rate measurements. For this reason, it is assumed that the spreading sequence, 

( )ic ⋅ , of each signal is successfully removed by, for example, the Delay Lock Loop (DLL) 

used for estimating the code delay, iτ . Thus, under the assumption of perfect code 

synchronization and after code wipe-off, the input signal (2.2) becomes: 
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( )( )[ ] cos [ ]IF d s
s

r n Ad n f f nT w n
T
τ ϕ

� �
= − + ⋅ + +� �

� �
� ,                                                           (2.3)  

where the code dependence has been removed from the useful signal and 

[ ] [ ] [ / ]sw n w n c n Tτ= −�  is a complex Gaussian process characterized by the same mean 

and variance of [ ]w n .  

Figure 2-1 shows a block diagram of the general structure of a carrier tracking loop which 

can be applied to both a PLL and an FLL. The loop consists of four main components: 

• the integrate and dump (I&D) block used for evaluating the complex correlator 

output, that is the projection of the incoming signal over the locally generated 

replica; 

• the non-linear discriminator for extracting the phase/frequency error; 

• the loop filter, characterized by the transfer function ( )B z ; 

• the Numerically Controlled Oscillator (NCO) used for the local carrier generation. 

Non-linear
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Loop Filter
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NCO model
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1
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Figure 2-1: General structure of a carrier tracking loop.  
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In the PLL case, a phase discriminator is used, and the control signal is the phase difference 

between the incoming and local carriers averaged over the integration interval (Ward 1998, 

Ward et al 2005). In an FLL, a frequency discriminator is used, and the loop is driven by an 

estimate of the frequency difference between incoming and local signals.  

A combination of these loops can be used and the receiver can switch among different 

operating modes depending on the frequency uncertainty and the noise level (Ward 1998, 

Borio et al 2009b). In the presence of large frequency uncertainty, an FLL is typically used 

due to its large pull-in range (Ward 1998, Ward et al 2005). Once frequency tracking in 

FLL mode is achieved, the PLL takes over. The FLL mode is also used as a fall-back mode 

when phase lock is lost. However, since it is usually difficult to transit directly from FLL 

tracking to PLL tracking, a structure called an FLL-assisted-PLL is generally used as a 

transition step between the two above-mentioned modes. Rather  than using  a  single  loop,  

it  consists  of  a  PLL  and  an  FLL  in  a coupled mode, to reduce locking times and avoid 

false locks. As the major task of this section is to provide a general description of the 

system and signal model used in this thesis, the FLL-assisted PLL is only marginally 

considered here. A more detailed description of this type of carrier tracking loop structure 

is provided in Chapter 3, while a complete study relative to the structure and performance 

of standard carrier-tracking loops is presented in (Ward 1998, Ward et al, 2005).  

As can be observed from Figure 2-1, the signal [ ]r n  is multiplied by a complex sinusoid 

and integrated (low-pass filtered) over N samples, for a total duration c sT NT= , where 

1
s

s
T

f
=  is the sampling interval of the input signal, [ ]r n , and cT  is the coherent integration 

time. After integration and decimation, a complex correlator output is obtained and the 

control signal driving the loop error is extracted by the non-linear discriminator. The 

control signal is filtered and used for driving the Numerically Controlled Oscillator (NCO) 

that, in turn, is used for the local carrier generation.  

The properties of the loop are mainly influenced by the loop filter, ( )B z . The order of the 

loop filter determines the ability of the carrier tracking loop to track signal dynamics, while 
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the filter coefficients determine the bandwidth of the loop (Stephens & Thomas 1995, Ward 

et al, 2005). The portion of input noise variance transferred from the input samples to the 

final phase/frequency estimate is determined by the loop filter bandwidth (Stephens & 

Thomas 1995). Hereafter, the loop filter bandwidth is denoted by the symbol nB .  

The complex correlator output can be modeled as suggested by van Dierendonck et al, 

(1996): 

( ) { }sin
exps

I Q c P
s

N f TP P jP d A j
N f T
π

φ η
π

Δ
= + = +

Δ
,                                                              (2.4)     

where d models the effect of the navigation message, cA  is the amplitude of the correlator 

output, fΔ is the residual frequency error, φ  is a residual phase error that will be extracted 
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When considering a carrier tracking loop with extended integration time, several correlator 

outputs, obtained from subsequent portions of the input signal, are evaluated and used for 

producing an improved phase estimate. For this reason, the index   0,1,  ...,  -1k K=  is 

introduced, and different correlator outputs are denoted as  

{ }, , ,expk I k Q k k c P kP P jP d A jφ η= + = + ,                                                                             (2.7) 

where the quantities { } 1

0

K
k kd −

=
 are modeled as independent random variables assuming 

values from the set { }1, 1− with equal probability. Eq. (2.7) represents the basic signal 

model used in this thesis. It is noted that in Eq. (2.7) the signal phase,φ , is assumed to be 

approximately constant during the total integration time and thus does not depend on K.  

2.1.2 Carrier Tracking Loop Observables 

2.1.2.1 Doppler frequency observable

There exist two different ways to estimate the signal Doppler frequency in carrier tracking 

loops of a GPS receiver (Hebert 1997, Serrano et al 2004a). Consider Figure 2-2 that shows 

a standard structure of a PLL illustrating the types of available observables.  The first 

option is to use the raw Doppler measurements provided by the loop filter output which is 

an instantaneous measure produced over a very small time interval, namely the coherent 

integration time, cT . In the following the loop filter output or raw Doppler estimate will be 

indicated as: 

[ ]rawf k .                                                                                                                              (2.8) 

The second method uses time-differenced GPS carrier phase observables allowing the 

production of smoother Doppler frequency measurements. These carrier phase derived 

Doppler measurements are given by 
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[ ] [ ] [ ]cp obf k k kφ= ∗ Δ ,                                                                                                         (2.9) 

where [ ]ob kφ  is the carrier phase observable, and [ ]kΔ  is the impulse response of a  digital 

differentiator. 
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Figure 2-2: Standard PLL structure and available observables. 

Carrier phase observables are obtained by integrating raw Doppler measurements: 

[ ] [ ] [ ] [ 1] [ ]ob raw ob c rawk f k i k k T f kφ φ= ∗ = − + ,                                                                   (2.10) 

where [ ]i k is the impulse response of a digital integrator characterized by the following 

transfer function 
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−
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·{ }ZT  is used to denote the Z-transform of a discrete time sequence. It is noted that other 

types of integrators can be used for producing carrier phase observables. In the following, 

only the case of the integrator with transfer function (2.11) is considered.    

In the literature, the second approach has been considered advantageous, mainly because of 

the achievable accuracy and the noise reduction obtained in the process of computing 

carrier phase measurements. Differentiating the observables over a short time interval 

brings some advantageous effects, namely removal of the residual effects of the 

tropospheric and ionospheric delays and the provision of an ambiguity free solution 

(Moafipoor et al 2004, Wendel et al 2006).  

But as it has been shown in (Borio et al 2009b) and (Sokolova 2009), equivalence with the 

carrier phase derived Doppler measurements, [ ]cpf k , can be achieved by performing 

appropriate filtering of the raw Doppler measurements. More specifically, consider for 

example the integrator model given by Eq.(2.11), and a first order central difference 

approximation type differentiator [ ]kΔ  the transfer function of which can be expressed as 

follows 
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where cHT is the interval between consecutive carrier phase measurements. It should be 

noted here that an additional delay term, Hz− , is included to account for the latency 

introduced by the receiver for computing the carrier phase difference. In this case, the 

transfer function between raw and carrier phase derived Doppler measurements can be 

expressed as: 
2 2 1
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Eq.(2.13) represents the transfer function of a moving average (MA) filter with the analysis 

window length equal to 2H . A GPS receiver can output carrier phase observations at a rate 

lower than the loop update rate. This corresponds to down-sampling the raw Doppler, 

[ ]rawf k , by a factor H . The fact that the process of computation of the carrier phase 

derived Doppler measurements, [ ]cpf k , can be expressed as a MA filter, in the specific case 

of Eq.(2.12), and a low-pass filter in the general case, indicates the equivalence between 

carrier phase derived Doppler measurements, [ ]cpf k , and filtered raw Doppler 

observations. Thus, in the case with the raw Doppler measurements  

( ) 1S z = ,                                                                                                                           (2.14) 

while for the case with the carrier phase derived Doppler measurements relationship 

defined in Eq.(2.13) applies. Under poor tracking conditions e.g., high user dynamics, 

heavily attenuated signals or severe multipath effects, it is very likely that PLL looses lock 

and the receiver will have to use FLL to track the frequency of the received carrier. The 

difference between these two carrier tracking loops is that the FLL uses a frequency 

discriminator and an additional integrator is inserted after the loop filter (Ward 1998, Ward 

et al 2005). In this case, an estimate of Doppler frequency is provided by the integrated 

output of the FLL filter, as shown in Figure 2-3. Notation given by in Eq.(2.8) will be used 

for this type of measurement. 

2.1.2.2 Doppler rate observable

Due to the limitations imposed by the use of hardware GPS receivers, it has been 

considered impossible to get direct Doppler rate measurements (Zhang et al 2005, Bruton 

2000). In the case of a Software-Defined Radio (SDR) GPS receiver using an FLL, Doppler 

rate measurements can be obtained directly from the outputs of the FLL loop filter, as 

shown in Figure 2-3.  
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Similar to raw Doppler measurements, the Doppler rate measurements are produced over 

an interval equal to the coherent integration time, cT , and therefore they can be considered 

as  an instantaneous observation. In this thesis, the FLL filter output or raw Doppler rate 

estimates will be indicated as:  

[ ]rawf k
⋅

.                                                                                                                           (2.15)                
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Figure 2-3: Standard FLL structure: the FLL filter output is a raw Doppler rate 
estimate. Raw Doppler estimates are obtained by integrating the outputs of the filter. 

In the absence of the direct Doppler rate measurements approach involving double time 

differentiation of the carrier phase GPS observables provided by the PLL was typically 

used (Bruton 2000, Serrano et al 2004b). Differentiating carrier phase observable gives 

Doppler estimates and, if performed a second time, Doppler rate measurements. As in the 

case of Doppler measurements, Doppler rate measurements obtained by double 

differentiation of the carrier phase observables are considered more accurate due to the 

smoothing effect intrinsic in the processes of their computation. But by performing 

22 

Similar to raw Doppler measurements, the Doppler rate measurements are produced over 

an interval equal to the coherent integration time, cT , and therefore they can be considered 

as  an instantaneous observation. In this thesis, the FLL filter output or raw Doppler rate 

estimates will be indicated as:  

[ ]rawf k
⋅

.                                                                                                                           (2.15)                

Frequency
discriminator

Loop Filter

[ ]r n

( )B z)(zI
Integrator

Raw Doppler Doppler rate

NCO model
( )N z

[ ]rawf k [ ]rawf k
�

1

0

1 ( )
N

nN
−

=

⋅�

Integrate & Dump:
Coherent Integration

N

Figure 2-3: Standard FLL structure: the FLL filter output is a raw Doppler rate 
estimate. Raw Doppler estimates are obtained by integrating the outputs of the filter. 

In the absence of the direct Doppler rate measurements approach involving double time 

differentiation of the carrier phase GPS observables provided by the PLL was typically 

used (Bruton 2000, Serrano et al 2004b). Differentiating carrier phase observable gives 

Doppler estimates and, if performed a second time, Doppler rate measurements. As in the 

case of Doppler measurements, Doppler rate measurements obtained by double 

differentiation of the carrier phase observables are considered more accurate due to the 

smoothing effect intrinsic in the processes of their computation. But by performing 

22 

Similar to raw Doppler measurements, the Doppler rate measurements are produced over 

an interval equal to the coherent integration time, cT , and therefore they can be considered 

as  an instantaneous observation. In this thesis, the FLL filter output or raw Doppler rate 

estimates will be indicated as:  

[ ]rawf k
⋅

.                                                                                                                           (2.15)                

Frequency
discriminator

Loop Filter

[ ]r n

( )B z)(zI
Integrator

Raw Doppler Doppler rate

NCO model
( )N z

[ ]rawf k [ ]rawf k
�

1

0

1 ( )
N

nN
−

=

⋅�

Integrate & Dump:
Coherent Integration

N

Figure 2-3: Standard FLL structure: the FLL filter output is a raw Doppler rate 
estimate. Raw Doppler estimates are obtained by integrating the outputs of the filter. 

In the absence of the direct Doppler rate measurements approach involving double time 

differentiation of the carrier phase GPS observables provided by the PLL was typically 

used (Bruton 2000, Serrano et al 2004b). Differentiating carrier phase observable gives 

Doppler estimates and, if performed a second time, Doppler rate measurements. As in the 

case of Doppler measurements, Doppler rate measurements obtained by double 

differentiation of the carrier phase observables are considered more accurate due to the 

smoothing effect intrinsic in the processes of their computation. But by performing 

22 

Similar to raw Doppler measurements, the Doppler rate measurements are produced over 

an interval equal to the coherent integration time, cT , and therefore they can be considered 

as  an instantaneous observation. In this thesis, the FLL filter output or raw Doppler rate 

estimates will be indicated as:  

[ ]rawf k
⋅

.                                                                                                                           (2.15)                

Frequency
discriminator

Loop Filter

[ ]r n

( )B z)(zI
Integrator

Raw Doppler Doppler rate

NCO model
( )N z

[ ]rawf k [ ]rawf k
�

1

0

1 ( )
N

nN
−

=

⋅�

Integrate & Dump:
Coherent Integration

N

Figure 2-3: Standard FLL structure: the FLL filter output is a raw Doppler rate 
estimate. Raw Doppler estimates are obtained by integrating the outputs of the filter. 

In the absence of the direct Doppler rate measurements approach involving double time 

differentiation of the carrier phase GPS observables provided by the PLL was typically 

used (Bruton 2000, Serrano et al 2004b). Differentiating carrier phase observable gives 

Doppler estimates and, if performed a second time, Doppler rate measurements. As in the 

case of Doppler measurements, Doppler rate measurements obtained by double 

differentiation of the carrier phase observables are considered more accurate due to the 

smoothing effect intrinsic in the processes of their computation. But by performing 



23 

appropriate filtering of the raw Doppler rate measurements, also in this case equivalence 

can be achieved. A more detailed discussion of this topic will be given in Chapter 5. 

The design of differentiator filters, [ ]kΔ , suitable for the derivation of Doppler frequency 

and Doppler rate has been of particular interest in the GNSS receiver community, and 

several techniques have been proposed. Fenton & Townsend (1994) demonstrated the use 

of parabolic functions. Both Cannon et al (1997) and Hebert (1997) approached the task 

using simulated GPS data by applying low-order Taylor series approximations of the 

derivative (i.e. central difference equations) and by differentiating cubic spline interpolation 

of the carrier phase data. A Kalman filtering approach was also proposed and applied by 

Hebert (1997). Bruton (2000) gave a comprehensive review and characterization in the 

frequency domain of several possible methods of carrying out the differentiation process 

with specific focus on higher order central difference approximations and curve fitting also 

known as Savitsky-Golay (Savitzky & Golay 1964) differentiators for high dynamics 

applications.  

2.1.2.3 Differentiator Selection

A common choice of a differentiator for deriving Doppler and Doppler rate measurements 

from carrier phase observables is a Finite Impulse Response (FIR) differentiator (Bruton 

2000, Serrano et al 2004a, Zhang et al 2005). The use of Infinite Impulse Response (IIR) 

filters has been investigated in (Zhang et al 2005) and found applicable as well as being a 

good alternative to FIR filters, especially for real-time applications. This approach is not 

treated in this research due to a less straightforward design than that of FIR filters and 

frequent necessity to perform reverse time filtering in order to achieve a zero-phase 

response, as concluded by Bruton (2000). 

The frequency response of an ideal uniformly-sampled discrete-time differentiator is given 

by (Antoniou 1993): 
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where ω is the frequency of the spectrum of the signal, 2 /S Tω π= is the sampling 

frequency in radians per second, and T is the corresponding sampling period. While the 

ideal differentiator increases its amplification with increasing frequency, realizable FIR 

differentiators can only approximate the ideal case within a certain bandwidth, above which 

it attenuates the signal. This practical constraint of differentiator design is useful, as it can 

be used to suppress noise, particularly in low dynamic applications.  

As indicated by Bruton (2000), the key issue in designing a suitable differentiator algorithm 

is that the differentiator should be close to ideal in the frequency band where the user 

motion is present. The danger in using a differentiator with a very narrow bandwidth, or 

smoothing before differentiation, is that higher frequency motion of the user may not be 

captured, resulting in a poor estimate of the derivative. Using a wider bandwidth ensures 

that all user motion frequencies will be retained, but more noise will also be allowed to pass 

into the derivative. Another important consideration is the absolute length of the impulse 

response. A filter with a short impulse response offers the advantage of a small time delay 

whereas a filter with a longer impulse response offers the advantage that it can achieve a 

more accurate magnitude response. Moreover, such errors as cycle slips and gaps in GPS 

data will affect less data  if  the  length  of  the  impulse  response  of  the  filter  is  small.  

In the research presented here to obtain the carrier phase derived Doppler and Doppler rate 

measurements, FIR filters are considered exclusively, because they can be designed to have 

a time-symmetric impulse response implying that all spectral components of the input 

signal are subject to the same delay. Moreover, this thesis is concentrated on low levels of 

user dynamics characteristic to pedestrian motion. Therefore, consistent with suggestions 

made by Ryan et al (1997), Cannon et al (1997) and Bruton (2000), and as a compromise 

between sufficient bandwidth, simplicity, and noise suppression, the first-order central 

difference approximation and Savitzky-Golay smoothing filter approaches will be used to 

generate the Doppler and Doppler rate observations.
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The impulse response of a first-order differentiator, neglecting the delay introduced in 

Eq.(2.12), is given by (Hebert 1997): 

[ ] [ ][ ]
2 c

k H k Hk
HT

δ δ+ − −Δ =                                                                                               (2.17) 

where cHT is the interval between consecutive carrier phase measurements and [·]δ  is the 

Kronecker delta.  

In the case of a Savitzky-Golay smoothing filter, a sliding window is used to analyze carrier 

phase observations over a specific time interval. The selected carrier phase observations are 

then fitted to a polynomial curve. The Doppler estimate is obtained as the time derivative of 

the interpolating polynomial. A third order polynomial is usually adopted, and overlap 

between the analysis windows is used to reduce discontinuities between subsequent 

Doppler estimates (Hebert 1997). A more detailed description of these two differentiator 

types as applied for derivation of Doppler frequency from GPS carrier phase observables 

can be found in Bruton (2000) and Sokolova (2009). 

2.2 Velocity and Acceleration Estimation from GNSS Carrier Tracking Loop 

Observables 

This section briefly describes the process of estimating velocity and acceleration from the 

observables provided by the carrier tracking loops of a GPS receiver. Doppler observables 

are direct measures of the relative velocity between user and satellite, measured along the 

line-of-sight (LOS). If the satellite velocities and accelerations are known, and the user 

position is approximately known, these LOS velocities and accelerations can be corrected 

for the contribution of satellite motion. Therefore, the first step in this process is to compute 

the satellite velocity and acceleration from the broadcast ephemeris.  For a detailed 

description of satellite velocity and acceleration computation see (Zhang et al 2006) and 
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(Serrano et al 2004b). The Doppler and Doppler rate measurements then represent 

essentially the projection of the user acceleration and velocity onto the respective LOS, and 

the user velocity and acceleration can be computed directly from these projections.  

The observation equations relate the observed Doppler and Doppler rate to the user  

velocity and acceleration and  form  the  basis  for  estimating  the  user  velocity  from  

GPS observations.  

These equations are typically given in the following form (Misra & Enge 2001, Kaplan & 
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and ( )k

φ
ε ⋅ denotes the combined error in the satellite clock, receiver system noise,  

ionosphere and troposphere. A thorough review of the behavior and magnitude of each 

error source can be found in Raquet (1998) or Bruton (2000). Similarly, the observation 

equation for the Doppler rate is: 
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                                                        (2.19) 

with all the quantities in the equation being now of the second order. Some of the error 

effects in the measurements can be modeled and partially compensated for using 

appropriate algorithms the description of which can be found in numerous references (e.g., 

Parkinson et al 1996, Misra & Enge 2001, Kaplan & Hegarty 2005). After modeling the 

measurements, the observation equations for velocity and acceleration determination can be 

stated as follows:  
( ) .

( ) ( ) ( )( )
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k k kdT
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⋅
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= − ⋅ + − ⋅ + +v v h a a h                                                             (2.21) 

where ( )kv and ( )ka  stand for the satellite velocity and acceleration vectors; v  and a  for the 

user velocity and acceleration vectors, to be estimated, and ( )kh is a user-to-satellite LOS 

unit vector that can be determined from an estimate of the user position given as 
( )

( )
( )

k
k

k
−=
−

u uh
u u

,                                                                                                               (2.22) 

where ( )ku and u  are the position of the kth satellite and user, respectively. It should be 

noted that positioning accuracy of at least 10 m is required for the errors caused by the 

wrong coordinates to be negligible (Itani et al 2000). As it has been shown by Weiser 

(2007), an error in the user position of 10 m in any of the coordinate direction may cause an 
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apparent Doppler shift of up to 1.5 mm/s. Thus, for mm/s level velocity estimation, the 

receiver position can only be treated as known to within 7 m.  

Equations (2.20) and (2.21) are linear in user velocity and acceleration components, so that 

they can be rewritten as 

.

. .
( ) ( ) ( ) ( ) ( )( )k k k k kdT

φ
φ ε− ⋅ = − ⋅ + +v h h v                                                                              (2.23) 
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k k k
k k k k kdT

φ
φ ε ⋅⋅

⋅⋅ ⋅ ⋅ ⋅⋅
− ⋅ − ⋅ = − ⋅ − ⋅ + +v h a h h v h a .                                             (2.24)               
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.
( ) ( ) ( )( )k k kφ − ⋅v h  and 

( ) ( )
( ) ( ) ( )( )

k k
k k kφ

⋅⋅ ⋅
− ⋅ − ⋅v h a h , which are the observations 

corrected for the contribution of satellite motion as 
.

( )' kφ  and ( )' kφ
⋅⋅

respectively, the final 

functional models for velocity and acceleration determination can be written as sets of 

equations in matrix form as: 

.

. .
' T dT

φ
φ ε� �= +� �� �

H v                                                                                                   (2.25)  

' T TdT dT
φ

φ ε ⋅⋅
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where  
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                                                                                                           (2.27) 

is an ( 4)k ×  matrix characterizing the receiver-satellite geometry. The receiver velocity and 

acceleration are then typically estimated by implementing epoch by epoch Weighted Least 

Squares (WLS) solution or Kalman Filter (KF) approach (advanced approaches with less 
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stringent requirements are beyond the scope of this thesis). Using either of these techniques 

requires the knowledge of the accuracy of each Doppler/Doppler rate estimate modelling 

which will be the main topic of the following chapters.  

2.3 Overview of High Sensitivity GNSS  

During the past several years new techniques have been developed for processing GPS 

signals with a very low C/N0. Methods for increasing the length of the integration period 

beyond classical limits at both acquisition and tracking have received particular attention. 

For a given integration duration and in the absence of residual frequency/phase errors, the 

higher the coherent integration time, the better the reduction of the noise power at the 

output of the correlators with respect to the signal power, i.e. the higher the probability of 

detection (Julien 2008), or of maintaining lock in a receiver which is already in tracking 

mode. To enhance acquisition and tracking thresholds and thus the availability of the 

position solution using GPS, High Sensitivity techniques based on the use of long 

integration times have been developed (Peterson et al 1997). For weak signal acquisition 

and tracking, coherent integration and non-coherent accumulation are performed in 

conjunction to increase the total signal dwell time.  

Alternatively, a massive number of correlators can be used to perform a simultaneous 

parallel search over the entire range of code delays and Doppler frequencies (van Diggelen 

2001). All the correlator outputs are evaluated in parallel in this case by jointly processing 

blocks of input samples and for this reason this approach is often referred to as block or 

batch processing (van Graas et al 2005). 

2.3.1 Coherent processing 

In standard receivers the coherent integration time is typically limited to 20 ms because of 

the presence of the navigation data, and even where the navigation data are known a-priori, 
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higher the coherent integration time, the better the reduction of the noise power at the 

output of the correlators with respect to the signal power, i.e. the higher the probability of 
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mode. To enhance acquisition and tracking thresholds and thus the availability of the 

position solution using GPS, High Sensitivity techniques based on the use of long 
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and tracking, coherent integration and non-coherent accumulation are performed in 

conjunction to increase the total signal dwell time.  

Alternatively, a massive number of correlators can be used to perform a simultaneous 

parallel search over the entire range of code delays and Doppler frequencies (van Diggelen 

2001). All the correlator outputs are evaluated in parallel in this case by jointly processing 

blocks of input samples and for this reason this approach is often referred to as block or 
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integration is limited by residual frequency errors due to the receiver motion. Moreover, 

depending on the receiver oscillator quality, the receiver oscillator error can induce an 

additional reduction in the signal to noise ratio (SNR) that increases with the integration 

time (Watson 2006). Extension of the integration time beyond the navigation data bit period 

can be accomplished by detecting, estimating and removing possible bit transitions. The 

subject of estimation of the received navigation message and removal of the effect of bit 

transitions have been treated recently in a number of publications including (Soloviev et al 

2008), (Petovello et al 2008) and (Borio & Lachapelle 2009).  

In general, an initial synchronization is assumed and the bit boundaries are asserted to be 

known. The basic idea is then to search for the bit sequence that maximizes the signal 

energy over the entire correlation integration interval consisting of K consecutive correlator 

outputs integrated over 20 ms. This bit sequence is an estimate of the received navigation 

message which can then be used to remove the effect of the transmitted bits and further 

increase the coherent integration time.  

An apparent drawback of this approach is that it becomes unreliable for low C/N0, reducing 

the gain provided by extended coherent integration, (Petovello et al 2008). Moreover, as 

this technique requires testing of all possible bit combinations it leads to a computational 

load growing exponentially with the added number of integrations. For these reasons, to be 

able to effectively track the signals in degraded environments, other methods such as non-

coherent processing have to be considered for the extension of the integration period in 

tracking loops. 

Feasibility of extremely long coherent integration of up to several tens of seconds for 

positioning indoors has been thoroughly investigated by Watson et al (2006) and Gaggero 

& Borio, (2008). In both cases data bits have been removed using reference data in a 

manner similar to AGPS techniques, and ultra-stable reference oscillators were used to 

avoid losses due to the stability of the local frequency source.  

Although signal acquisition indoors has been successfully demonstrated, the achieved 

position solution accuracy was rather poor, in the best case with relative error of 20 m in 
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the horizontal plane and 100 m in the vertical plane. In addition to the relative inaccuracy 

of the above, the position calculations provided in the latter study referenced above 

required significant external aiding information, and the overall thrust of the work was not 

directed towards creating a receiver which could operate autonomously within degraded 

environments.  In this work, significant attention is given to approaches that will not only 

allow receiver operation in degraded signal conditions, but will do so independently of 

external aiding information. 

2.3.2 Non-coherent processing 

Non-coherent integration, obtained by applying a non-linear function to the correlator 

outputs for removing the impact of data bits, can be much longer than coherent integration, 

but since this procedure involves squaring or other non-linear operations, it also implies 

squaring losses relative to pure coherent integration of the same net duration (Lachapelle et 

al 2004). This approach is mostly used for acquiring weak signals (O’Driscoll 2007). 

Extending the non-coherent integration period at the tracking level has been recently 

proposed by Borio & Lachapelle (2009).  

A solution for non-coherently extending the integration time at the tracking level can be 

represented by the use of non-linear operations for removing the signal dependence on the 

data bit. Assuming a random distribution of data bits, the ML estimator for the signal phase 

can be derived. Navigation data can then be considered as nuisance parameters that do not 

need to be estimated and therefore can be removed through squaring. According to the 

comparative analysis presented in (Borio & Lachapelle 2009), the non-coherent 

architecture results in an effective alternative to coherent integrations enabling less noisy 

measurements than the ones obtained by means of standard loops. 
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2.3.3 Memory Discriminator-Based Tracking Loop Architecture 

In this thesis, an approach using memory discriminators (Borio et al 2009a) that includes a 

general low-pass filtering stage for the non-coherent extension of the integration time is 

considered. The concept of memory discriminators is quite new. It has been first proposed 

by Borio & Lachapelle (2009) and then further studied and characterized by (Borio et al 

2009a) and Sokolova (2009). The major objective of memory discriminators is to introduce 

extended integration times, without requiring the estimation of the navigation message. 

This gives origin to tracking loops capable of tracking strongly attenuated signals in the 

presence of additional impairments such as fading and multipath as well as bear higher 

dynamics without losing phase lock.  

This approach directly derives from the ML phase estimator in the presence of sign 

transitions. The ML phase estimator is derived assuming that the navigation data bits are 

randomly distributed. As previously stated, under this assumption the navigation data are 

considered as nuisance parameters which do not need to be estimated, and therefore can be 

removed through squaring. This non-coherent ML phase estimator is used as a 

discriminator for a new type of tracking loop that allows extended non-coherent 

integrations. In (Borio & Lachapelle 2009), the ML phase discriminator in the presence of 

bit transitions is derived as:  
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where 2arctan  is the four-quadrant arctangent (Ward et al 2005), kP  is the complex 

correlator output, as defined in Eq.(2.7), and   0,1,  ...,  -1k K=  is the index denoting the 

number of correlator outputs when considering PLL with extended integration time. It 
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should be noted that for only one complex correlator output, 1K = , ( )kS φ  equals to the 

standard arctan discriminator 
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The discriminator represented by Eq. (2.28) performs bit removal by squaring the complex 

correlator outputs, kP , and non-coherent integration by further summing the squared 

correlator outputs. Finally, the phase is extracted using the arctan2 operators.  

The process of non-coherent integration is equivalent to low-pass filtering the squared 

correlator, 2
kP , with a Moving Average filter (MA) of length K  (Borio & Lachapelle 2009).  

In this way, the input of the four-quadrant arctangent is a process that depends on the last K

complex correlator outputs. By updating the filter at the correlator rate,   c sT NT= , a first 

type of memory discriminator is obtained. In this way, longer integration time can be 

achieved without reduction of the loop’s update rate. 

Substituting the moving average filter with a general low pass filtering stage leads to a new 

class of memory discriminators. Thus, the expression for the ML phase discriminator given 

in Eq. (2.28) can be generalised to 
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 define the low-pass filter impulse response 
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Figure 2-4 illustrates the general structure of a PLL with memory discriminator. As shown 

on Figure 2-4, this type of discriminator operates by first removing the bit dependence from 

the correlator outputs by squaring. A low-pass filtering stage responsible for the 
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Figure 2-4 illustrates the general structure of a PLL with memory discriminator. As shown 

on Figure 2-4, this type of discriminator operates by first removing the bit dependence from 

the correlator outputs by squaring. A low-pass filtering stage responsible for the 
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discriminator memory is then applied to further extend the integration time. A memory-less 

discriminator finally extracts the phase information. Similarly, the same method can be 

applied for frequency and delay estimation as well, as shown by Borio et al (2009a). 
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Figure 2-4: PLL with non-coherent integrations (Borio et al 2009a). The integration 
time is extended non-coherently by the additional filter after the squaring block. 

The ML discriminator given in Eq. (2.28) has been derived assuming that the phase is 

constant during the integration interval. In this case, a uniform filtering is performed and all 

the input samples are weighted equally. However, including a more general low-pass 

filtering into the discriminator allows one to progressively de-weight the input 

observations, so that older samples, kP , have less impact on the current phase estimate with 

respect to more recent ones. More specifically, as it has been suggested by Borio et al 

(2009a), an exponential filter can be used to extend the integration time before extracting 

the phase/ frequency/delay information. Exponential filtering has been chosen for its 

reduced computational load and for the possibility of progressively de-weighting the 

squared correlator outputs, according to the filter forgetting factor, α . The transfer function 

of an exponential filter can be expressed as follows:  
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where 0 1α≤ <  is the filter forgetting factor, specifying how quickly the filter “forgets” 

past sample information. Setting 0α = means that no filtering has been performed making 

the memory discriminator to degenerate into a standard memory-less discriminator. On the 

other extreme, setting 1α = specifies an infinite memory.  

From (2.32) it is possible to determine the filter impulse response that is given by  
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Figure 2-5 shows an example of the exponential filter impulse responses for different 

values ofα . 
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Figure 2-5: Exponential filter impulse response.  

Whereas Figure 2-5 illustrates the performance of the memory discriminator based 

architecture using exponential filtering, Figure 2-6 considers cases of 0.5α =  and 0.8α = , 

demonstrating that due to the introduction of an additional filtering stage as a part of the 

memory discriminator, this type of tracking loop architecture has increased noise rejection 
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capability and is, therefore, able to provide a faster lock-in time and more accurate Doppler 

frequency estimates when compared to the standard architecture ( 0)α = . 
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Figure 2-6. Raw Doppler estimated using standard, � = 0 , and memory 
discriminators, .� = 0 5  and .� = 0 8  for the indoor data. (PRN 16, C/N0 = 33 dB-Hz), 
(Sokolova 2009).  

An important fact is that memory discriminators introduce additional poles and zeros in the 

linear transfer function of the loop and a new procedure for the design of the loop filter is 

required to ensure the stability of the loop. Since standard techniques derived from the 

transformation of analog filters cannot be directly applied, the controlled-root formulation 

proposed by Stephens & Thomas (1995) can be modified to account for the effect of the 

additional poles introduced by the new discriminators (Borio & Lachapelle 2009). In this 

way, stable loops able to work under strongly attenuated conditions can be obtained. A 

brief overview of the procedure used for loop filter design and design criteria is given in 

Chapter 4 of this thesis, whereas a more thorough explanation can be found in (Borio et al 

2009a, Sokolova 2009). Also more details about the performance of the memory 

discriminator based architecture can be found in (Borio et al 2009a, Sokolova 2009) where 

36 

capability and is, therefore, able to provide a faster lock-in time and more accurate Doppler 

frequency estimates when compared to the standard architecture ( 0)α = . 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
2 1 5 0

2 2 0 0

2 2 5 0

2 3 0 0

2 3 5 0

2 4 0 0

2 4 5 0

T im e  [s ]

C
ar

rie
r D

op
pl

er
 [H

z]

I nd o o r D ata : P R N 1 6 , B n =  8  H z 

α  =  0
α  =  0 .5
α  =  0 .8

Figure 2-6. Raw Doppler estimated using standard, � = 0 , and memory 
discriminators, .� = 0 5  and .� = 0 8  for the indoor data. (PRN 16, C/N0 = 33 dB-Hz), 
(Sokolova 2009).  

An important fact is that memory discriminators introduce additional poles and zeros in the 

linear transfer function of the loop and a new procedure for the design of the loop filter is 

required to ensure the stability of the loop. Since standard techniques derived from the 

transformation of analog filters cannot be directly applied, the controlled-root formulation 

proposed by Stephens & Thomas (1995) can be modified to account for the effect of the 

additional poles introduced by the new discriminators (Borio & Lachapelle 2009). In this 

way, stable loops able to work under strongly attenuated conditions can be obtained. A 

brief overview of the procedure used for loop filter design and design criteria is given in 

Chapter 4 of this thesis, whereas a more thorough explanation can be found in (Borio et al 

2009a, Sokolova 2009). Also more details about the performance of the memory 

discriminator based architecture can be found in (Borio et al 2009a, Sokolova 2009) where 

36 

capability and is, therefore, able to provide a faster lock-in time and more accurate Doppler 

frequency estimates when compared to the standard architecture ( 0)α = . 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
2 1 5 0

2 2 0 0

2 2 5 0

2 3 0 0

2 3 5 0

2 4 0 0

2 4 5 0

T im e  [s ]

C
ar

rie
r D

op
pl

er
 [H

z]

I nd o o r D ata : P R N 1 6 , B n =  8  H z 

α  =  0
α  =  0 .5
α  =  0 .8

Figure 2-6. Raw Doppler estimated using standard, � = 0 , and memory 
discriminators, .� = 0 5  and .� = 0 8  for the indoor data. (PRN 16, C/N0 = 33 dB-Hz), 
(Sokolova 2009).  

An important fact is that memory discriminators introduce additional poles and zeros in the 

linear transfer function of the loop and a new procedure for the design of the loop filter is 

required to ensure the stability of the loop. Since standard techniques derived from the 

transformation of analog filters cannot be directly applied, the controlled-root formulation 

proposed by Stephens & Thomas (1995) can be modified to account for the effect of the 

additional poles introduced by the new discriminators (Borio & Lachapelle 2009). In this 

way, stable loops able to work under strongly attenuated conditions can be obtained. A 

brief overview of the procedure used for loop filter design and design criteria is given in 

Chapter 4 of this thesis, whereas a more thorough explanation can be found in (Borio et al 

2009a, Sokolova 2009). Also more details about the performance of the memory 

discriminator based architecture can be found in (Borio et al 2009a, Sokolova 2009) where 

36 

capability and is, therefore, able to provide a faster lock-in time and more accurate Doppler 

frequency estimates when compared to the standard architecture ( 0)α = . 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
2 1 5 0

2 2 0 0

2 2 5 0

2 3 0 0

2 3 5 0

2 4 0 0

2 4 5 0

T im e  [s ]

C
ar

rie
r D

op
pl

er
 [H

z]

I nd o o r D ata : P R N 1 6 , B n =  8  H z 

α  =  0
α  =  0 .5
α  =  0 .8

Figure 2-6. Raw Doppler estimated using standard, � = 0 , and memory 
discriminators, .� = 0 5  and .� = 0 8  for the indoor data. (PRN 16, C/N0 = 33 dB-Hz), 
(Sokolova 2009).  

An important fact is that memory discriminators introduce additional poles and zeros in the 

linear transfer function of the loop and a new procedure for the design of the loop filter is 

required to ensure the stability of the loop. Since standard techniques derived from the 

transformation of analog filters cannot be directly applied, the controlled-root formulation 

proposed by Stephens & Thomas (1995) can be modified to account for the effect of the 

additional poles introduced by the new discriminators (Borio & Lachapelle 2009). In this 

way, stable loops able to work under strongly attenuated conditions can be obtained. A 

brief overview of the procedure used for loop filter design and design criteria is given in 

Chapter 4 of this thesis, whereas a more thorough explanation can be found in (Borio et al 

2009a, Sokolova 2009). Also more details about the performance of the memory 

discriminator based architecture can be found in (Borio et al 2009a, Sokolova 2009) where 



37 

this type of the architecture is evaluated compared to the standard one with the focus on 

weak signal environments and the impact of different levels of dynamics.  

2.3.4 Block Processing 

Previous discussion in Section 2.3 was focused on sequential carrier tracking loop 

approaches where the current phase/frequency estimate is obtained by updating previous 

estimates using the new information provided by the correlator outputs, Figure 2-1. In this 

way, only one correlator output is required to produce a new phase/frequency estimate. To 

be more specific, in this case the acquisition block of the receiver provides the first 

frequency estimate that is being further refined by the carrier tracking loop.  

A different approach based on the use of a massive number of correlators to perform a 

simultaneous evaluation of GPS signal correlation over the entire range of possible code 

delays/carrier frequencies is being frequently used in HSGPS receivers (van Diggelen 

2001) and  (van Grass et al 2005). As has been mentioned above, due to the fact that all the 

correlator outputs are evaluated in parallel by jointly processing blocks of input samples 

this approach is referred to as block or batch processing. In this approach, the receiver 

generates several replicas of the incoming code and carrier and correlates them with the 

incoming signal. The parameters of the incoming signal are then estimated so as to 

maximize the correlation function with the local replica. A basic structure of the frequency 

search algorithm in this type of architecture is illustrated in Figure 2-7.  

As it can be seen from Figure 2-7, the Doppler shift of the signal is estimated as the 

frequency that maximizes the energy of the signal correlation with the local carrier. The 

Doppler frequency rate, in its turn, is obtained by time differentiating the Doppler 

estimates. The simultaneous evaluation of a block of correlator outputs is typically 

performed by employing efficient Fast Fourier Transform (FFT) algorithms. A detailed 

discussion on FFT-based block processing techniques is presented in Psiaki (2001) and van 

Graas et al (2005). 
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Figure 2-7: General structure of the frequency estimation process in a block 
processing approach (van Graas et al 2005). A bank of correlators is employed to 
perform a search over all possible code delays/carrier frequencies. 

In degraded signal environments with significant fading as well as in high dynamic 

situations, a receiver experiences frequent loss of lock. Computing all possible correlations 

simultaneously ensures that the correlation peak is always detected resulting in lack of 

signal loss as well as minimization of the tracking dynamic sensitivity. Furthermore, since 

the block processing approach is based on the evaluation of a block of correlator outputs, 

and the integration time is typically extended at the correlation level, the same techniques 

as the ones developed for the sequential architecture for improving the tracking sensitivity 

can be applied here. Thus, such methods as navigation data bit estimation, discussed in 

Section 2.3.1, use of external aiding to remove the navigation data bits (Turunen 2007), as 

well as non-coherent processing techniques, can be used. These factors make block 

processing a very attractive approach to HSGPS implementation. 
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2.3.5 Note on Future GNSS Signals 

Previous subsections are concentrated on the methods for improvement of the GNSS signal 

tracking sensitivity on the tracking loop/receiver level. In this regard, it is important to 

mention that a lot of effort is being done also on the system level. The modernized GPS and 

upcoming GNSS are being designed to solve some of the problems limiting the current 

GPS performances. The existence of several carrier frequencies for better ionosphere error 

estimation, and the use of new signal modulations for enhanced tracking performance are 

two important examples. The latter is mainly of interest when considering applications 

requiring high sensitivity as well as improved measurement accuracy. 

As discussed above, the existing HSGNSS techniques provide substantial improvements 

but still the presence of data bits remains to be the one of the major limiting factors for 

weak signal tracking. Therefore, the most important modification in most of the future 

GNSS signal structures in terms of weak signal tracking is the availability of a dataless, or 

pilot channel in quadra-phase with the classical channel containing the data (Fontana et al 

2001, Spilker & Van Dierendonck 1999, Hein et al 2002). 

Under weak signal conditions, the advantages of the pilot channel include the ability to 

integrate the signal for a longer period, and the use of a pure PLL with more robust carrier 

phase tracking which is often described as the weakest link in the receiver signal processing 

blocks (Kaplan 2006).  

Moreover, both data and pilot channels undergo exactly the same impairments. This makes 

the Doppler shift and code delay identical on both cannels. In this way, the pilot channel 

provides an additional and independent observation for the parameters to be estimated by 

the receiver. This makes joint data/pilot processing an advantageous option to improve 

signal tracking performance by reducing the tracking jitter (Muthuraman 2010). 

Since this thesis is mainly focused on the GPS L1 C/A signal tracking, only a brief review 

on the current modernization of the GNSS signal structure is presented. Moreover, the 

provided discussion is limited to the developments directed for improvement of weak 
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signal tracking. For more information on the new GNSS signals and their structure and a 

more complete list of references the reader is referred to (Fontana et al 2001, Spilker & van 

Dierendonck 1999, Hein et al 2002). More details about combined data/pilot tracking can 

be found in (Muthuraman 2010). 
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CHAPTER 3:  THEORETICAL FRAMEWORK FOR DOPPLER FREQUENCY 

ESTIMATION: SEQUENTIAL AND BLOCK PROCESSING ARCHITECTURES 

In this chapter two different approaches used by GNSS receivers are considered with 

respect to the process of the Doppler estimation, namely the sequential carrier tracking, 

including the standard and memory discriminator based approaches, and block processing 

techniques. For each approach, a theoretical framework for Doppler estimation relating the 

variance and biases of the Doppler estimates to C/N0, the user dynamics and the algorithm 

parameters is introduced. In the case of sequential carrier tracking, the quality of Doppler 

measurements is theoretically evaluated by reformulating the standard tracking loop linear 

theory with respect to the signal Doppler frequency, the frequency noise and the final 

Doppler frequency measurement provided by the loop.  

Three types of tracking loops are explicitly considered: the PLL, common-rate FLL-

assisted-PLL and FLL. For the block processing approach, results from previous studies 

(Rife & Boorstyn 1974, Chan et al 1997) are exploited: the Cramer-Rao Lower Bound 

(CRLB) for frequency estimation is provided and used to derive a tight approximation of 

the variance of the frequency estimates generated by block processing techniques. 

The second part of the chapter concentrates on the practical verification of the proposed 

theoretical framework. Test methodology and equipment setup adopted for the performed 

experiments are described, and the results obtained using the proposed theoretical models 

for the Doppler variance and bias are compared against the empirical data.  

3.1 Theoretical Analysis 

The expression of the signal at the input of the processing block responsible for Doppler 

frequency estimation given in Eq.(2.3), can be written in the following form:    

( )( ) [ ][ ] cos IF d s
s

r n Ad n f f nT w n
T
τ ϕ

� �
= − + + +� �

� �
�                                                               (3.1)     
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where ( )d ⋅  is the bit sequence modeling the transmitted navigation message, τ is the delay 

experienced by the received signal, df  and ϕ  are the Doppler frequency and carrier phase, 

whereas IFf  is the intermediate frequency to which the signal [ ]s n  (Eq.(2.3)) has been 

down-converted. [ ]r n  in Eq.(3.1) indicates the signal after code wipe-off and [ ]w n�  is, the 

noise term derived in Chapter 2. When the impact of the navigation message, is neglected, 

the problem of estimating the Doppler frequency, df , degenerates to the classical problem 

of estimating the frequency of a sinusoid in noise (Kay 1993). The above-mentioned 

estimation problem has been intensively investigated and several results are available in 

such references as (Rife & Boorstyn, 1974), (Chan et al 1997), (Kay 1993) and (Flower 

2002). In (Rife & Boorstyn, 1974), in particular, it has been shown that the Maximum 

Likelihood (ML) frequency estimator for a sinusoid in noise is given by: 

[ ] [ ] ( ){ }
1

0

arg max exp
d

N

ML IF d s
f n

f n r n j f f nT
−

=

= − +∑ ,                                                           (3.2) 

where N  is the number of samples used for frequency estimation. Eq.(3.2) is valid only if 

the navigation message ( )d ⋅ , is constant during the integration interval, cT . A more 

detailed explanation of the derivation of Eq.(3.2) is provided in Appendix B. 

In this chapter two different techniques, the sequential and block processing approaches, 

are considered and their relationship with the ML frequency estimator is highlighted.  
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3.1.1 Sequential Architecture: Carrier Tracking Loop Linear Analysis 

In a sequential approach a new frequency estimate is obtained by updating the cost function 

(Eq.(3.2)) which is sequentially updated using one correlator output at the time. The first 

frequency estimate provided by the acquisition block is further refined by carrier tracking 

loops that are a form of local estimators (Rife & Boorstyn, 1974) operating on a frequency 

uncertainty reduced by the acquisition stage. Thus, this type of receiver architecture is a 

suboptimal implementation of the ML frequency estimator, (Eq.(3.2)). 

To be able to evaluate the quality of Doppler frequency measurements in the case of a 

sequential GPS receiver architecture, it is necessary to perform a theoretical analysis of the 

carrier tracking loops with respect to the frequency observables, characterising the noise 

propagation process from the input signal to the final Doppler frequency estimates. Such an 

analysis can be performed by extending the PLL linear theory from the phase domain to the 

frequency domain considering the signal Doppler frequency, the frequency noise and the 

final Doppler frequency estimate provided by the loop. The basics of the linear loop theory 

are thoroughly detailed in such references as for example (Borio & O’Driscoll, 2009) and 

(Julien 2008). The adopted analysis can then be subsequently applied to the FLL and the 

FLL-assisted-PLL. In order to get a complete model for Doppler frequency analysis and 

incorporate both the raw and the carrier-phase derived Doppler measurements, the standard 

linear tracking loop model is further extended to include the effect of a smoothing filter, 

( )S z ,  to account for the case when Doppler measurements are derived from the carrier 

phase observations. 

3.1.1.1 PLL Linear Model: General Theory

The tracking loop linear theory is generally based on the approximation of the non-linear 

discriminator by a constant discriminator gain (Gardner 2005). In general, the function of a 

phase discriminator is to produce an estimate of the phase error, φΔ , or an error signal 
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approximately proportional to it. Typically, this error signal provided by the discriminator 

is calculated on the basis of an odd discriminator function. Although this function is non-

linear, for small phase errors it is possible to obtain a linear discriminator model by 

assuming that the phase error is close to zero, assumption that is true when the loop is 

locked without bias. The non-linear function can then be approximated by a constant gain 

so that: 

( )3)( dS G Oφ φφ ≈ Δ + ΔΔ ,                                                                                                 (3.3) 

where ( )3O φΔ  is the Landau symbol ( )O ⋅  indicating the truncation error of the odd 

discriminator function, and 

( )
( ) 0

dG
S

φ

φ
φ

Δ =

∂ Δ
=

∂ Δ
,                                                                                                           (3.4) 

is the discriminator gain also defined as the slope of the discriminator function when the 

phase error is zero (Kaplan 2006). Both the gain and non-linearity function depend on the 

type of the used discriminator. A broad overview of the carrier tracking loop discriminators 

typically used in GNSS, their characteristics and the effect on the tracking capabilities can 

be found in (Kaplan 2006, Misra & Enge 1996).  

Furthermore, normalising the discriminator gain to unity allows one to design the loop filter 

independently of the discriminator gain. Thus, using this assumption and the fact that the 

remainder of the PLL is linear, a linear loop model of a standard PLL can be defined as 

illustrated in Figure 3-1, 
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Figure 3-1: PLL equivalent linear model (Sokolova 2009). 

where  

- [ ]kφ  is the average phase at the correlator output that the loop is trying to track (the 

average is computed over the integration time adopted at the correlator level); 

- [ ]kφΔ  is the phase error; 

- [ ]kφ
∧

 is the phase estimated by the loop; 

- [ ]dN k  is a white random process accounting for the noise at the input of the loop and the 

distortions introduced by the non-linearities in the discriminator; 

-  [ ]rawf k  is the raw Doppler estimate, 

- ( )N z and ( )B z  are the transfer functions characterizing the NCO and loop filter 

respectively. 

As shown in Figure 3-1, the phase error, [ ]kφΔ , is evaluated as the phase difference 

between the useful signal component of [ ]r n , (Eq.(2.2)), and of the locally generated 

carrier averaged over the integration interval: 
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[ ] [ ] [ ]k k kφ φ φ
∧

Δ = − ,                                                                                                          (3.5)              

The effect of the noise present in the input signal is modeled by [ ]dN k  which also accounts 

for the effect of the non-linear discriminator that amplifies the impact of the input noise 

(van Dierendonck 1997). Denoting the loop filter impulse response as [ ]b k , raw Doppler 

measurements can be expressed as: 

( )[ ] [ ] [ ] [ ]raw df k b k k N kφ= ∗ Δ + .                                                                                       (3.6) 

It is noted that [ ]dN k  and [ ]kφ  are updated at a rate equal to c sT NT= , whereas the input 

useful signal and noise samples, [ ]r n  and [ ]'w n , are at a rate sT . This justifies the used of 

two different time indexes, k and n. The raw Doppler, [ ]rawf k , is finally integrated by the 

NCO that produces a new phase estimate [ ]kφ
∧

. It should be noted that since the objective 

of this subsection is to give a general overview of the PLL linear theory, no assumption on 

the NCO and loop filter models are made. Using the linear model shown in Figure 3-1 this 

new phase estimate can be expressed in the Z-domain as: 

( ) ( ) ( ) ( ) ( ) ( )d dz N z B z G z z N zφ φ φ
∧ ∧� �� �= ⋅ ⋅ ⋅ − +� �� �� �� �

.                                                             (3.7) 

Approximation of the non-linear discriminator by a constant gain allows the removal of the 

non-linearities present in the PLL so that the tracking loop can be approximated by a linear 

device that computes phase estimates as a linear combination of filtered noise and input 

signal phase. Thus, assuming the discriminator gain, dG , to be equal to 1, relationship 

given in Eq.(3.7) can be re-formulated as follows: 
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where ( )H zφ  and ( )nH z  are the signal and noise transfer functions, respectively. It is 

noted, that the assumption, 1dG = , is not restrictive since a normalization can be applied to 

the discriminator in order to achieve the mentioned condition. Given relations defined in 

Eqs.(3.5) and (3.8), the phase error, [ ]kφΔ , can be then expressed as: 

( )( ) 1 ( ) ( ) ( ) ( )n dz H z z H z N zφφ φΔ = − + .                                                                          (3.9)    

In the discrete time domain Eq.(3.9) takes the following form: 

[ ] [ ]( ) [ ] [ ] [ ]( ) n dk k h k k h k N kφφ δ φΔ = − ∗ + ∗ ,                                                              (3.10)

where  [ ]h kφ  and [ ]nh k  are the signal and noise impulse responses, respectively and [·]δ

is the Kronecker delta.  

Under the assumption that the signal term, [ ] [ ]( ) [ ]k h k kφδ φ− ∗ , in Eq.(3.10) introduces 

only a deterministic bias in [ ]kφΔ , the variance of [ ]kφΔ can be expressed as 
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where [ ]dN k  has been assumed to be a white sequence. The term 

[ ]20.5/ 2
0.5/

1 ( )
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T j f T
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B H e df Hzπ
−

= �                                                                            (3.12) 

 in Eq.(3.11) defines the loop filter bandwidth and quantifies the amount of noise 

transferred from the input equivalent noise to the tracking error, φΔ .  

As shown in Ward et al (2005), the variance of [ ]dN k  is approximately given by 
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where ( )H zφ  and ( )nH z  are the signal and noise transfer functions, respectively. It is 

noted, that the assumption, 1dG = , is not restrictive since a normalization can be applied to 

the discriminator in order to achieve the mentioned condition. Given relations defined in 

Eqs.(3.5) and (3.8), the phase error, [ ]kφΔ , can be then expressed as: 
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is the Kronecker delta.  
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and by using Eqs. (3.11), (3.12) and (3.13) it is possible to obtain the standard formula for 

the phase tracking jitter: 
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where LS  represents the squaring loss which, as shown by Lindsey & Chie (1981), in the 

case when the bandwidth of the integrate and dump filter of the PLL is wide enough not to 

introduce signal distortion, can be approximated by

0

11
2 /L

c
S

T C N
≈ + .                                                                                                         (3.15) 

                             

3.1.1.2 PLL as a Frequency Filter

The general PLL linear theory discussed in the previous section focuses on the propagation 

of the phase noise. This section will introduce PLL linear analysis performed with respect 

to the frequency observables based on the research performed by Sokolova (2009), 

reformulating the standard PLL model with respect to the signal Doppler frequency, the 

frequency noise and the final estimate provided by the loop.  

In a similar way as in the case of the standard linear model (Figure 3-1), the PLL can also 

be approximated by a linear device that forms frequency estimates as a linear combination 

of the filtered version of the true Doppler frequency [ ]df k  and filtered frequency 

noise [ ]fN k . This relation is illustrated in Figure 3-2, representing the PLL as a frequency 

filter. It is noted that similarly to the standard PLL linear model, the non-linear 

discriminator is approximated by a unit gain, and this assumption will be used in all 

subsequent analyses. With respect to the phase linear model shown in Figure 3-1, an 

integrator has been added in order to explicitly model the input driving frequency [ ]df k . In 

this case, the phase, [ ]kφ , is obtained by integrating [ ]df k . As suggested in Borio et al 
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(2009b), the integrator modeling the relation between the frequency and the phase is 

characterized by the same transfer function of the NCO since both local and incoming 

signals are processed in the same way through the Integrate and Dump (I&D) component of 

the PLL. 
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Figure 3-2: PLL as a frequency filter: Doppler frequency estimates are formed as a 
linear combination of the filtered noise and input signal frequency (Sokolova 2009). 

In order to get all quantities at the inputs and the output of the PLL model in the same units 

of radians per second, a frequency noise term [ ]fN k  is introduced. This term is obtained by 

scaling [ ]dN k  by the coherent integration time cT  as follows: 

1[ ] [ ]f d
c

N k N k
T

= .                                                                                                           (3.16) 

A functional block representing a smoothing filter with transfer function ( )S z  has also 

been added to incorporate both the raw and the carrier phase derived Doppler 
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measurements. In the case of the raw Doppler measurements ( ) 1S z = , whereas for the 

carrier phase derived Doppler measurements ( )S z  acts as a low pass smoothing filter and, 

as discussed in Chapter 2, the following relationship applies: 

( ) ( ) ( )S z I z z= Δ ,                                                                                                              (3.17) 

where ( )I z  and ( )zΔ  are the transfer functions of an integrator and a differentiator defined 

by Eqs. (2.10) and (2.11). In this case, the final Doppler frequency estimate is given by 

[ ] [ ] [ ]rawf k s k f k
∧

= ∗ ,                                                                                                        (3.18) 

where [ ]s k  is the impulse response of the smoothing filter.  

Considering the linear model of a PLL as a frequency filter defined above and illustrated in 

Figure 3-2, it is possible to show that in the Z-domain, the final frequency estimate is 

obtained as: 

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )raw f c d rawf z S z f z S z B z N z T N z f z f z
∧

� �= ⋅ = ⋅ ⋅ ⋅ + ⋅ −� � .                   (3.19) 

Then, similarly to the case of the standard PLL linear model, Eq.(3.19) can be re-

formulated as follows:  

( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

n ff

c
d f

zHH z

T S z B zS z B z N zf z f z N z
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∧
= ⋅ + ⋅

+ +������� �������
,                                                    (3.20) 

where ( )fH z  and ( )n fH z  are the input signal frequency and frequency noise transfer 

functions. Eq.(3.20) shows that the final frequency estimate, ( )f z
∧

, is also given as a linear 

combination of the filtered input signal frequency and noise. In the time domain this 

relationship can be expressed as: 

[ ] [ ] [ ] [ ]( ) f d nf ff k h k f k h k N k
∧

= ∗ + ∗ ,                                                                          (3.21) 
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where [ ]fh k  and [ ]nfh k  are the frequency and frequency noise impulse responses. In 

order to evaluate the noise and signal frequency transfer functions it is necessary to define 

the models for the loop filter and NCO. As mentioned above, the non-linear discriminator is 

approximated by a unit gain. For the loop filter, the most commonly used approach, namely 

the integrator-based model is considered: 

1

1 1

0 0

1 1 1( )
(1 ) 1c c

iL L

i ii
i i

zB z K K
T z T z−

− −

= =

� �= = � �− −� �
� � .                                                               (3.22)                     

In this case, the loop filter is constrained to be a linear combination of several integrators of 

different order. L denotes the order of the loop and { } 1
0

L
i iK −

=  are the filter integrator gains.  

In the following, for the NCO, a rate-only feedback NCO (Stephens & Thomas 1995) is 

considered, where the phase estimate is updated according to the following equation: 

[ ] [ ] [ ] [ ]( )11 1 2
2 raw c raw ck k f k T f k Tφ φ

∧ ∧
= − + − ⋅ + − ⋅ ,                                                       (3.23) 
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Following the same approach as in the case of the standard PLL linear model, it is assumed 

that the signal term [ ] [ ]f dh k f k∗  in Eq.(3.21) does not contribute to the variance of the 

final frequency estimates. Considering this fact the following relationship is found: 
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Eq.(3.26) is analogue to the expression for the phase variance (Eq.(3.11)), therefore the 

concept of Doppler bandwidth can be introduced as a counterpart of the loop bandwidth, 

given in Eq.(3.12), for frequency estimation: 
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The Doppler bandwidth parameter is obtained by considering the transfer function of the 

overall frequency linear model of the PLL. Thus, it summarizes in a single parameter the 

ability of the tracking loop to produce smooth frequency estimates including the effects of 

the loop components and the smoothing filter, ( )S z , while quantifying the amount of noise 

transferred from the input equivalent noise to the final frequency estimate. This fact makes 

it an effective metric for comparing different receivers when the same input 0/C N  and 

coherent integration time are assumed.  

The major difference between the loop noise bandwidth and Doppler bandwidth is that 

Doppler bandwidth provides a more faithful interpretation of the bandwidth required to 

track particular system dynamics. A closer illustration of the relationship between these two 

parameters is provided in the last part of this chapter when discussing the results of the tests 

performed to validate the proposed theoretical models. It is possible to study the 

relationship between the loop noise bandwidth and Doppler bandwidth by performing 

numerical integration of Eqs. (3.12) and (3.27), which is in fact done in Chapter 4 in 

regard to a new approach to loop filter design, but further investigation is required to 

characterise the exact relationship between these two parameters.  
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Using Eqs. (3.26) and (3.27), the variance of the frequency estimate, [ ]f k
∧

, can be 

expressed as 
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The Doppler jitter then becomes 
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where LS  represents the squaring loss as defined in Eq.(3.15).  

As discussed in Chapter 2, all Doppler measurements are obtained by processing PLL 

outputs and therefore parameters of the tracking loop strongly impact their quality. 

Expressions for the frequency estimate variance and the Doppler jitter introduced above can 

be effectively used for the assessment of the Doppler measurements quality as a function of 

the input C/N0, the coherent integration time and the Doppler bandwidth, dB .  

Doppler Bias Analysis

In a way similar to the variance analysis, biases introduced by the loop can be determined 

starting from the frequency transfer function, ( )fH z . Biases in the Doppler estimates are 

induced by the transient response of the loop to changes in the input frequency as well as 

latencies introduced by the smoothing filter, ( )S z . The ability of the loop to recover from 

changes in the input Doppler without steady-state errors depends on its order. Systemic 

errors in the Doppler measurements can be defined as 

[ ] [ ]f dE f k f kε
∧� �= −� �� �

.                                                                                                    (3.30) 
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Using the relationship from Eq.(3.21), and considering the fact that [ ]fN k  is zero mean, 

the Doppler systemic error, Eq.(3.30) can be expressed as: 

( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]f d f d f d dk f k h k f k k h k f k h k f kεε δ= − ∗ = − ∗ = ∗ ,                            (3.31)                            

where 

[ ] [ ] [ ]fh k k h kε δ= −                                                                                                          (3.32) 

is the bias impulse response. Using the model given by Eq.(3.31), analysis of the bias 

introduced by the loop due to the variations in the input Doppler can be performed. 

However, one should note that for this type of analysis a reference for Doppler 

measurements is required. The computation of this reference will be discussed in the last 

part of this chapter. 

     

3.1.1.3 Doppler Variance and Bias Analysis: FLL 

As discussed in the previous chapter, an FLL operates in a similar way as the PLL. The 

main differences are the use of a frequency discriminator instead of a phase discriminator 

and the insertion of an additional integrator after the loop filter. Capability of this type of 

the carrier tracking loop to provide accurate frequency estimates depending on C/N0, loop 

bandwidth and the coherent integration time has been previously investigated by Ward 

(1998), (Ward et al 2005) by performing interpolation of the simulation results using the 

Monte Carlo techniques. More specifically, the following expression for the frequency jitter 

has been suggested (Ward 1998), (Ward et al 2005): 

0 0

41 11
/ /

n
f

c c

FB
C N C

ad
T T N

r
s

σ
� �

+� �
� �= � ��� ��

                                                                   (3.33) 

where 

F=1 at high C/N0, 

F=2 at near threshold,  
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[ ] [ ] [ ]fh k k h kε δ= −                                                                                                          (3.32) 

is the bias impulse response. Using the model given by Eq.(3.31), analysis of the bias 

introduced by the loop due to the variations in the input Doppler can be performed. 

However, one should note that for this type of analysis a reference for Doppler 

measurements is required. The computation of this reference will be discussed in the last 

part of this chapter. 

     

3.1.1.3 Doppler Variance and Bias Analysis: FLL 

As discussed in the previous chapter, an FLL operates in a similar way as the PLL. The 

main differences are the use of a frequency discriminator instead of a phase discriminator 

and the insertion of an additional integrator after the loop filter. Capability of this type of 

the carrier tracking loop to provide accurate frequency estimates depending on C/N0, loop 

bandwidth and the coherent integration time has been previously investigated by Ward 

(1998), (Ward et al 2005) by performing interpolation of the simulation results using the 

Monte Carlo techniques. More specifically, the following expression for the frequency jitter 
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where the frequency jitter threshold (1�) is equal to 1/12 0.0833 / [ ]c cT T Hz⋅ = .  

This section introduces a theoretical analysis of the FLL based on the tracking loop linear 

theory. The main objective with using this approach is to provide an alternative method for 

the analysis of the noise propagation process in an FLL based on analytical derivations as 

opposed to the simulation/interpolation approach used in the derivation of Eq.(3.33). The 

general structure detailing the operations performed by an FLL is shown in Figure 3-3.  
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Figure 3-3: General structure of a digital FLL detailing the operations performed by 
the frequency discriminator, (Borio et al 2010). 

A smoothing filter, ( )S z , is also included into the scheme to account for the fact that 

frequency estimates can be further smoothed in order to get observations equivalent to 

carrier phase derived Doppler measurements. As it has been detailed in this figure, the 
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frequency discriminator implicitly performs a phase differentiation using two subsequent 

correlator outputs, [ ]P k  and [ ]1P k − . To be more specific, the quantity  

[ ] [ ]1P k P k∗⋅ −                                                                                                                 (3.34) 

is evaluated first and its phase is extracted using a phase discriminator. This operation 

corresponds to evaluation of the phase difference of two subsequent complex correlators: 

[ ] [ ]{ } [ ]{ } [ ]{ } [ ] [ ]1 1 1P k P k P k P k k kϕ ϕ∗∠ ⋅ − = ∠ − ∠ − = Δ − Δ − .                              (3.35) 

After this phase difference is extracted by the phase discriminator, it is normalised by the 

coherent integration time, cT . In this way, the frequency discriminator output is given by: 

[ ] [ ] [ ]( )1 1out
c

radf k k k
T s

ϕ ϕ � �= Δ − Δ − � �� �
.                                                                      (3.36) 

In a frequency discriminator, only the phase difference [ ] [ ]1k kϕ ϕΔ − Δ −  has to be 

extracted. Performing this phase differentiation helps to mitigate phase wrapping (Flower 

2002, Borio et al 2010), a problem that is common for both the PLL and FLL. A phase 

discriminator is usually able to extract phases in a specific range: [ ],π π−  for a four 

quadrant arctangent, [ ]/ 2, / 2π π−  for a two quadrant arctangent. So if the phases [ ]kϕΔ

and [ ]1kϕΔ −  were to be extracted directly, then they could differ by an integer number of 

cycles ( 2π  for a four quadrant arctangent, π  for a two quadrant arctangent). In this way, 

their difference would be evaluated with an error equal to an integer number of cycles. This 

problem is called phase wrapping. But while in an FLL phase wrapping problem is reduced 

by performing phase differentiation (Eq.(3.34)), in a PLL, where the phases [ ]kϕΔ  and 

[ ]1kϕΔ −  are extracted directly, consecutive phase measurements can be affected by an 

additional difference equal to an integer number of cycles. After being averaged by the loop 

filter these phase measurements can lead to a biased loop control signal that can cause loss 
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of lock. This is the main reason why the FLL is more robust when compared to the PLL in 

terms of frequency tracking (Ward 1998, Ward et al 2005). 

As it has been shown in (Borio et al 2010), when the phase error affecting the prompt 

correlators is small, the frequency discriminator is equivalent to a phase discriminator 

followed by a differentiator. This differentiator is fully determined by the frequency 

discriminator structure as indicated in Figure 3-3, and is in fact a first order differentiator 

that can be defined by a following transfer function: 
11( )f

c
z z

T

−−Δ = .                                                                                                               (3.37) 

In particular, the dot-cross arctangent frequency discriminator can be obtained by applying 

the first order differentiator defined above to the output of an arctangent phase 

discriminator (Ward et al. 2005). The discriminator is obtained by using the arctangent 

addition formula. 

This equivalence can be used to develop the FLL frequency linear model. By replacing the 

frequency discriminator by a phase discriminator followed by the differentiator defined in 

Eq.(3.37) and considering that this differentiator and the integrator, 1( )
1

cTI z
z−=

−
, 

following the loop filter are complementary operators and their effects cancel in the 

frequency linear model, it is possible to show that FLL and PLL are  characterized by the 

same linear model with respect to the Doppler frequency. Thus, the expressions for Doppler 

bandwidth, Doppler jitter and Doppler bias given in Eqs. (3.27),  (3.29) and (3.31) also 

apply to FLL.  

This also means that the PLL and FLL with the same loop and Doppler bandwidths will 

produce frequency estimates with the same jitter. However, it is important to consider that 

the equivalence between PLL and FLL only holds for the linear frequency model under the 

assumption of a small phase error.  
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The validity of the proposed model as defined in Eq.(3.29) with respect to Eq.(3.33)  is 

discussed later in this chapter, where live GPS L1 Coarse Acquisition (C/A) data are used 

to determine the empirical Doppler jitter.   

3.1.1.4 Doppler Variance and Bias Analysis: FLL-assisted-PLL

As it has been briefly introduced in Chapter 2, because of the difficulties in direct 

transition from FLL tracking to PLL tracking, an intermediate tracking loop stage, called an 

FLL-assisted-PLL, can be used as a transition step between the two tracking modes. In this 

case, instead of a single loop, a PLL and an FLL are used in a coupled mode, in order to 

reduce locking times and avoid false frequency locks. A structure of an FLL-assisted-PLL 

is shown in Figure 3-4. 
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The basic principle of FLL-assisted-PLL is such that both the phase and frequency 

discriminators are implemented in the same loop structure. Both the phase and frequency 

discriminator errors are then applied to their respective loop filter inputs, where an 

additional integrator follows the loop filter in the FLL part of the structure. In the case 

when the phase error at the input of the PLL loop filter is zero, the loop becomes a pure 

FLL, and on the contrary, if the frequency error at the input of the FLL filter is zeroed, the 

loop becomes a pure PLL. An important consideration about this type of a carrier tracking 

loop design is that it can be implemented using either common or different loop update rate 

for the PLL and FLL parts (Ward 1998, Legrand 2002). The design shown in Figure 3-4 

represents the so-called common-rate FLL-assisted-PLL, since PLL and FLL branches are 

updated at the same rate. In particular, the same correlator outputs are used by the 

frequency and phase discriminators. Different FLL-assisted-PLL schemes can however be 

adopted (Ward 1998) where PLL and FLL branches are updated at different rates. In (Ward 

1998), for instance, the FLL discriminator is updated using a 10 ms coherent integration 

time whereas the PLL branch uses correlator outputs computed over 20 ms. Monte Carlo 
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PLL and FLL loops in a single structure can be modeled by using a loop filter the transfer 

function of which is given by the sum of the FLL and PLL loop filter transfer functions: 

( ) ( ) ( )eq p fB z B z B z= + ,                                                                                                   (3.38) 

where expressions for the PLL and FLL loop filter transfer functions ( )pB z  and ( )fB z are 

given by Eq.(3.22). 
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Figure 3-5: Derivation of the common-rate FLL-assisted-PLL frequency linear model: 
effect of the frequency discriminator is modeled by a phase discriminator followed by 
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As the input of the frequency and phase discriminators (the output of the I&D block) in an 

FLL-assisted-PLL is exactly the same as the input of the phase discriminator in a PLL, the 

noise impact on the input signal can be modeled by [ ]fN k  that is the scaled  phase noise 

defined by Eq.(3.16). Considering this, and approximating the non-linear phase 

discriminator by a constant gain, an approximated linear model of a common rate FLL-
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assisted-PLL can be finally derived as shown in Figure 3-5, and the signal and noise 

transfer functions defined as follows: 
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The derived frequency linear model of a common rate FLL-assisted-PLL shows that it is 

also possible to represent this type of a carrier tracking loop as a frequency filter, so that the 

final frequency estimate, [ ]f k
∧

, can be expressed as a linear combination of the filtered 
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noise and input frequency. Thus, using the derived signal and noise transfer functions the 

Doppler variance, jitter and bias can be determined as defined using Eqs. (3.28), (3.29) and 

(3.31), where the Doppler bandwidth is computed using the noise transfer function defined 

in Eq.(3.40). 

3.1.1.5 Doppler Variance and Bias Analysis Applied to Memory Discriminator Based 
Tracking Loops

As it has been shown in the previous sections, the proposed analysis approach and the 

developed model for Doppler variance and bias analysis are general and can be applied to 

PLL, FLL and the common-rate FLL-assisted-PLL tracking loops. Due to the similarity in 

the basic structure of different designs of sequential carrier tracking loops, this approach 

can also be applied for the analysis of the memory discriminator based carrier tracking 

loops. While in traditional carrier tracking loops the non-linear discriminator can be 

approximated by a constant gain, in the case of memory discriminators, the additional low-

pass filtering stage introduced by this type of algorithms has to be accounted for. As 

explained in Chapter 2, exponential filtering has been chosen to be used as a part of the 

memory discriminator design responsible for progressively de-weighting the squared 

correlator outputs and extending the integration time before extracting the phase/frequency 

information. In this case, the loop linear model is obtained by approximating the loop 

discriminator with a linear filter (Borio et al 2009a, Sokolova 2009). The transfer function 

of an exponential filter has been defined in Eq.(2.32).  

The generality of the suggested approach allows one to perform analysis of all types of the 

memory discriminator based carrier tracking loops exploiting the fact that a memory 

discriminator can be approximated by a linear filter model which can be easily adopted into 

the linear models of the standard tracking loops. The approximated frequency linear model 

for a PLL with memory discriminator is illustrated in Figure 3-6. 
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Figure 3-7: Frequency linear model of a PLL with discriminator with memory 
discriminator.  

Similarly to the standard PLL, the memory discriminator based PLL can also be 

approximated as a linear frequency filter that computes the final Doppler frequency 

estimates as a linear combination of filtered noise and input signal frequency. The same 

approach for the derivation of the standard PLL frequency linear model has been used here 

as in Section 3.1.2, with the only difference, as it can be observed by comparing Figures 3-2 

and 3-7, being the presence of the linear approximation of the memory discriminator. Thus, 

considering Eq. (2.32)and the PLL linear model defined in Figure 3-7, the signal and noise 

transfer functions for a PLL with memory discriminator can be evaluated as follows: 

( ) ( ) ( ) ( )( )
1 ( ) ( ) ( )f
S z F z B z N zH z

F z B z N z
=

+
,                                                                                         (3.41) 
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Similarly to the standard PLL, the memory discriminator based PLL can also be 

approximated as a linear frequency filter that computes the final Doppler frequency 

estimates as a linear combination of filtered noise and input signal frequency. The same 

approach for the derivation of the standard PLL frequency linear model has been used here 

as in Section 3.1.2, with the only difference, as it can be observed by comparing Figures 3-2 

and 3-7, being the presence of the linear approximation of the memory discriminator. Thus, 

considering Eq. (2.32)and the PLL linear model defined in Figure 3-7, the signal and noise 

transfer functions for a PLL with memory discriminator can be evaluated as follows: 
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where ( )F z  is the transfer function of the memory discriminator. 

Here the same models for the NCO and loop filter, as defined in Eqs. (3.24) and (3.22), are 

considered. As in the case with the standard loops, the effect of the smoothing filter, ( )S z , 

is included in order to account for different methods for Doppler frequency determination. 

Having the expressions for the signal and noise transfer functions, the Doppler variance and 

jitter, and the Doppler bias given by Eqs. (3.28), (3.29) and (3.31) can be obtained. 

Also in the case of an FLL with a memory discriminator the same approach as suggested 

for the standard FLL can be applied. Recall from Chapter 2, Figure 2-4 that a memory 

discriminator consists of three parts: squaring for removing the bit dependence from the 

correlator outputs, a low-pass filtering stage responsible to further extend the integration 

time and finally a memory-less discriminator that extracts the phase/frequency information. 

To derive the frequency linear loop model of an FLL with a memory discriminator the 

effect of the memory-less frequency discriminator can be modelled in the same way as 

described in Section 3.1.3 - by replacing it by a phase discriminator followed by the 

differentiator defined in Eq.(3.37). In this way, the effects of the differentiator and the 

integrator placed after the FLL filter cancel out, and the remaining combination of the 

squaring stage, the low-pass filter and the memory-less phase discriminator can be 

approximated by its linear filter (Eq.) as in the case of the memory discriminator based 

PLL. This means that the Doppler variance, jitter and bias of an FLL with a memory 

discriminator can be evaluated using Eqs. (3.28), (3.29) and (3.31), where the signal and 

noise transfer functions are defined by Eqs. (3.41) and(3.42),  respectively. 

The derivation of the frequency linear loop model of a memory discriminator based 

common-rate FLL-assisted-PLL is very similar to the procedure described in Section 3.1.4, 

therefore, in order to avoid repetition, only a brief discussion is given here. First, the 

frequency memory discriminator in the FLL path of the loop structure can be modelled in 
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the same way as described above for the case of the memory discriminator based FLL. Also 

here the effects of the differentiator and the integrator cancel out, so that the effect of joint 

loop structure can be modeled by using a loop filter with the transfer function, ( )eqB z , 

defined in Eq.(3.38) and the final expressions of the signal and noise transfer functions can 

be defined as follows: 

( ) ( ) ( ) ( )
( )

1 ( ) ( ) ( )
eq

f
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+
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+
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3.1.2 Block Processing Architecture 

As detailed in the previous chapter, in a block processing approach, a massive number of 

correlators are used to perform a simultaneous search for all possible code delays and 

Doppler frequencies. The receiver locally generates several replicas of the incoming code 

and carrier and evaluates their correlation with the incoming signal, so that the parameters 

of the incoming signal are estimated as those of the local replica that maximize the 

correlation function. In other words, block processing approach evaluates the function 

defined in Eq.(3.2) over a finite and discrete frequency grid.  

Due to the high non-linearity of the “ arg max( )⋅ ” component in the block processing 

architecture, the linear tracking loop theory is not applicable and a different approach for 

the Doppler frequency variance analysis is required. Block processing and FFT-based 

techniques for frequency estimation have been object of extensive research (Palmer 1974, 

Rife & Boorstyn 1974) and several asymptotic findings, based on the Cramer-Rao Lower 

Bound (CRLB) and simulation results are available. In particular, as it has been 
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summarized in (Borio et al 2010), a frequency estimator obtained implementing a 

frequency search over a finite grid is characterized by three different error regions: 

• granularity errors: since the frequency search is performed over a finite grid, 

{ }0 1 2 1, , ,., Nf f f f − , the estimated frequency can assume only one of the values tested 

during the search. This error, due to the finite granularity of the grid, is independent 

of the input C/N0 and dominates for high Signal-to-Noise ratios (SNRs). Granularity 

errors lead to a floor in the frequency estimator variance; 

• above threshold region: block processing techniques are non-linear frequency 

estimators and thus exhibit a SNR dependent behaviour (Rife & Boorstyn 1974). A 

threshold is defined as the C/N0 value below which the estimator variance starts 

increasing significantly as the SNR drops. When the estimator is operating above 

threshold, its variance approximately follows the CRLB; 

• below threshold region: below a certain SNR, block processing techniques are 

unable to detect the signal presence and determine a valid frequency estimate. This 

essentially corresponds to the loss-of-lock condition in sequential tracking loops. A 

GNSS receiver should be able to detect this condition and stop outputting Doppler 

estimates.

According to (Rife & Boorstyn 1974, Chan et al 1997), in the above threshold region, the 

variance of frequency estimates approximately follows the CRLB that is given by (Kay 

1993): 

( ) ( )
2 2

2
2 22

2 rad
s

12 ·
· 12CRLB

sN TSNR N
πσ

π
� � � �

= � � � �− � �� �
,                                                      (3.45)  

where   

02 / sSNR C N T= ⋅ ⋅ ,                                                                                                         (3.46)  
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and is the pre-integration SNR . Whereas the term 
2

2

sT
π� �

� �
� �

has been introduced in order to 

get the variance of the frequency estimates expressed in units of 2 2rad /s . By substituting 

the expression of the pre-integration SNR (Eq.(3.46)) into Eq.(3.45) and considering that 

c sT NT= , the following expression for the standard deviation of frequency estimates 

obtained using block processing techniques is obtained (Borio et al 2010): 

2

2
0 0

6 / 6 / rad
/ 1

1 1·
/ s

c c
CRLB

c c

N
T T

T T
C N N C N

σ � �= ≈ ��− ��
.                                                          (3.47) 

In Eq.(3.47) the condition, 1N 	 , is used. A more detailed description of the process of 

the derivation of Eq.(3.47) is provided in Appendix A.  

If compared to the expression of the Doppler jitter given in Eq.(3.29) with the squaring loss 

term 
0

1
2 /

1
cC NT

� �
+� �

� �
 neglected, Eq.(3.47) has the same functional form. By identifying the 

different terms in both Eq.(3.29) and Eq.(3.47) a parameter similar to the Doppler 

bandwidth can be defined for the block processing approach: 

6
d

c
B

T
= .                                                                                                                           (3.48) 

However, it is important to note that in this case dB  is not derived from an approximate 

linear model as it has been done in the case of the sequential tracking loop architecture, but 

determined from the CRLB exploiting the functional similarity between Eqs. (3.47) and 

(3.29).  
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 3.2 Practical Verification  

In order to evaluate the proposed theoretical models for Doppler estimation analysis, 

several static and dynamic pedestrian-based field tests in various GPS operating 

environments have been conducted. A number of simulations were carried out as well to 

test the model suggested for the Doppler bias analysis under a wider range of dynamics.  

This section introduces the methodology used for the empirical determination of the 

Doppler jitter values and compares the obtained results with the theoretical models 

developed in the first part of this chapter. 

3.2.1 Doppler Jitter Model Verification 

3.2.1.1 Attenuated Line-Of-Sight (LOS) Test

In the first experiment, data sets were collected in an open sky environment using an 

antenna located on the roof of the CCIT building, University of Calgary. The antenna used 

was the NovAtel 702 antenna with 29 dB gain, and noise figure of 2 dB. Figure 3-8 

illustrates the adopted experimental setup.  

GSNRxTM
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Figure 3-8: Experimental setup adopted for the attenuated LOS GPS data collection.   

68 

 3.2 Practical Verification  

In order to evaluate the proposed theoretical models for Doppler estimation analysis, 

several static and dynamic pedestrian-based field tests in various GPS operating 

environments have been conducted. A number of simulations were carried out as well to 

test the model suggested for the Doppler bias analysis under a wider range of dynamics.  

This section introduces the methodology used for the empirical determination of the 

Doppler jitter values and compares the obtained results with the theoretical models 

developed in the first part of this chapter. 

3.2.1 Doppler Jitter Model Verification 

3.2.1.1 Attenuated Line-Of-Sight (LOS) Test

In the first experiment, data sets were collected in an open sky environment using an 

antenna located on the roof of the CCIT building, University of Calgary. The antenna used 

was the NovAtel 702 antenna with 29 dB gain, and noise figure of 2 dB. Figure 3-8 

illustrates the adopted experimental setup.  

GSNRxTM

Software 
Receiver

Active roof
antenna

Variable
Attenuator

PC

Data storage

Sparkfun SiGe
GN3S v1

Figure 3-8: Experimental setup adopted for the attenuated LOS GPS data collection.   

68 

 3.2 Practical Verification  

In order to evaluate the proposed theoretical models for Doppler estimation analysis, 

several static and dynamic pedestrian-based field tests in various GPS operating 

environments have been conducted. A number of simulations were carried out as well to 

test the model suggested for the Doppler bias analysis under a wider range of dynamics.  

This section introduces the methodology used for the empirical determination of the 

Doppler jitter values and compares the obtained results with the theoretical models 

developed in the first part of this chapter. 

3.2.1 Doppler Jitter Model Verification 

3.2.1.1 Attenuated Line-Of-Sight (LOS) Test

In the first experiment, data sets were collected in an open sky environment using an 

antenna located on the roof of the CCIT building, University of Calgary. The antenna used 

was the NovAtel 702 antenna with 29 dB gain, and noise figure of 2 dB. Figure 3-8 

illustrates the adopted experimental setup.  

GSNRxTM

Software 
Receiver

Active roof
antenna

Variable
Attenuator

PC

Data storage

Sparkfun SiGe
GN3S v1

Figure 3-8: Experimental setup adopted for the attenuated LOS GPS data collection.   

68 

 3.2 Practical Verification  

In order to evaluate the proposed theoretical models for Doppler estimation analysis, 

several static and dynamic pedestrian-based field tests in various GPS operating 

environments have been conducted. A number of simulations were carried out as well to 

test the model suggested for the Doppler bias analysis under a wider range of dynamics.  

This section introduces the methodology used for the empirical determination of the 

Doppler jitter values and compares the obtained results with the theoretical models 

developed in the first part of this chapter. 

3.2.1 Doppler Jitter Model Verification 

3.2.1.1 Attenuated Line-Of-Sight (LOS) Test

In the first experiment, data sets were collected in an open sky environment using an 

antenna located on the roof of the CCIT building, University of Calgary. The antenna used 

was the NovAtel 702 antenna with 29 dB gain, and noise figure of 2 dB. Figure 3-8 

illustrates the adopted experimental setup.  

GSNRxTM

Software 
Receiver

Active roof
antenna

Variable
Attenuator

PC

Data storage

Sparkfun SiGe
GN3S v1

Figure 3-8: Experimental setup adopted for the attenuated LOS GPS data collection.   



69 

The received signal power was gradually decreased by means of a variable attenuator 

inserted prior to a Sparkfun SiGe GN3S v1 front-end, specifications of which are shown in 

Table 3-1. After a minute without attenuation the signal was progressively attenuated at a 

rate of 1 dB each 30 s for a total range of 40 dB. The collected data were stored in an 

external hard drive and processed in post mission using two versions of the University of 

Calgary’s GNSS Software Navigation Receiver (GSNRxTM), namely standard version 

(Petovello et al 2008) and a memory discriminator based architecture. 

Table 3-1: Characteristics of the GPS signals collected using the SiGe GN3S v1 front-
end.  

Parameter Value 

Sampling frequency 16.367sf MHz=

Intermediate frequency 4.1304IFf MHz=

Sampling Real 

No. of bits 2 

The collected data sets were processed several times using different values of the tracking 

loop parameters in order to analyze their impact on the quality of the Doppler estimates. 

The procedure adopted for the estimation of the Doppler jitter from the empirical data is 

illustrated in Figure 3-9. 
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Figure 3-9: Doppler tracking jitter estimation procedure. 
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Following this procedure, the mean of the Doppler estimates provided by GSNRxTM was 

obtained by implementing a moving average (MA) filter. The mean was then subtracted 

from the measurements which were further squared and filtered. Thus, the final estimate of 

the empirical Doppler jitter is obtained as follows:  
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Both in Figure 3-9 and Eq.(3.49), K  represents the length of the analysis window of the 

MA filter. The use of a moving analysis window for the determination of the empirical 

Doppler jitter provides estimates as a function of time, and the length of the analysis 

window length, K . It is noted that all the results presented in this section were obtained 

using 100K =  ms. As GSNRxTM provides C/N0 estimates as a function of time, it was 

possible to associate a C/N0 value to each empirical Doppler tracking jitter estimate 

obtained using Eq.(3.49). The C/N0 estimates were also smoothed using a MA filter with 

the same length of the analysis window, 100K =  ms. In this way, it was possible to 

determine the empirical Doppler jitter as a function of the input C/N0.   

Attenuated LOS: Sequential Carrier Tracking – PLL

The validity of the models for the Doppler frequency variance (Eq.(3.28)) and the Doppler 

jitter (Eq.(3.29)) as applied to a standard 3rd order PLL was thoroughly investigated and 

verified by Sokolova (2009). The impact of the coherent integration time, as well as the 

effect of different implementations of the smoothing filter, ( )S z , was studied and in all 

cases a good agreement between theoretical and empirical results was found. Therefore, 

only a brief illustration of performance of the above-mentioned theoretical models as 

applied to a PLL is provided here. Figure 3-10 shows the Doppler jitter obtained using a 
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fixed coherent integration time of 20 ms, but different loop bandwidth values for a third 

order PLL.  

Figure 3-10: Empirical and theoretical jitter of the raw Doppler measurements as a 
function of C/N0 and loop bandwidth, 3rd order PLL. 

Empirical data are compared to the theoretical Doppler jitter defined in Eq.(3.29) showing a 

good agreement between theoretical and empirical results. Figure 3-10 also illustrates the 

fact that narrow bandwidths shield the tracking loop from excessive noise power, and give 

better Doppler estimates with lower variance in the measurements. It is noted that similar 

decreasing jitter behaviour is observed when investigating the effect of reduced loop noise 

bandwidth. 

Table 3-2 compares the values of the loop and Doppler bandwidths for the cases considered 

in Figure 3-10 highlighting the relationship between the two parameters. The Doppler 

bandwidth values in Table 3-2 have been obtained by numerically integrating Eq.(3.27). 
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Table 3-2: Loop and Doppler bandwidth for raw Doppler estimation; 3rd order PLL, 
Tc = 20 ms. 

Parameter Value 

Loop bandwidth Bn [ Hz ] 4.00 8.00 

Doppler bandwidth Bd [ Hz ] 0.89 2.99 

Attenuated LOS: Sequential Carrier Tracking – FLL

In order to test the proposed model for the FLL case, GSNRxTM was constrained to operate 

in FLL-only mode. Figure 3-11 shows the results generated by a second order FLL using a 

2 Hz loop bandwidth and a 10 ms coherent integration time. The value of the Doppler 

bandwidth found in this case was 0.138 Hz. Here the empirical Doppler jitter is compared 

against the proposed theoretical Doppler jitter (Eq.(3.29)) and the expression for the 

frequency jitter (Eq.(3.33)) suggested by Ward et al (2005).  

Figure 3-11: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0. 2nd order FLL, Bn = 2 Hz, Bd = 0.138 Hz, Tc = 10 ms.  
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As it can be observed from Figure 3-11, the proposed model (Eq.(3.29)) is in good 

agreement with the empirical results, whereas Eq. (3.33) overestimates the Doppler jitter.  

Figure 3-12: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0. 2nd order FLL, Tc = 1 ms. a) Bn = 8 Hz, b) Bn = 4 Hz. 

The difference between these two different models becomes even more significant when 

lower integration times and larger loop bandwidths are considered. This can be explained 

by the fact that the difference between the loop and Doppler bandwidth increases and 

model given by Eq.(3.33) becomes more and more inaccurate. This divergence can be 
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clearly seen in Figure 3-12 where the cases of fixed 1cT =  ms, and nB =  4, and 8 Hz are 

considered. Thus, it can be concluded that the analytical approach used in this work is a 

better method for predicting the carrier tracking loop performance in terms of frequency 

jitter when compared to the approach involving interpolation of the Monte Carlo simulation 

results used by Ward (1998). In particular, the concept of Doppler bandwidth introduced in 

Section 3.1.2, Eq.(3.27), allows an accurate characterization of the noise propagation 

process in the loop considering the effects of the loop components including the smoothing 

filter, ( )S z . By using this parameter, a more accurate evaluation of the carrier tracking loop 

performance in terms of the Doppler frequency jitter is achieved. 

Table 3-3 shows the values of the loop and Doppler bandwidths for the cases considered in 

Figure 3-12 supporting the fact that for shorter coherent integration times and larger values 

of the loop bandwidth the difference between the loop and Doppler bandwidths becomes 

larger. 

Table 3-3: Loop and Doppler bandwidth for raw Doppler estimation; 2nd order FLL, 
Tc = 1 ms. 

Parameter Value 

Loop bandwidth Bn [ Hz ] 4.00 8.00 

Doppler bandwidth Bd [ Hz ] 0.06 0.21 

Attenuated LOS Data: Sequential Carrier Tracking - FLL-assisted-PLL

To be able to evaluate the model developed for the common rate FLL-assisted-PLL, 

GSNRxTM was constrained to operate in an FLL-assisted-PLL mode only. The empirical 

data were processed as defined by Eq.(3.49). The theoretical Doppler jitter values were 

obtained using the model given in Eq.(3.29) , where the effect of coupling the PLL and 

FLL loops in a single structure was accounted for as described by Eq.(3.38). Results 

obtained using a common rate FLL-assisted-PLL are shown in Figure 3-13, where cases  
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with 4 Hz and 8 Hz loop bandwidth in both the PLL and FLL branches and 1 ms coherent 

integration time are considered, whereas Table 3-4 shows the values of the common loop 

and Doppler bandwidth for the cases considered in Figure 3-13.  

As it can be observed from Figure 3-13 and Table 3-4, coupling the PLL and FLL in a 

single loop structure results in a higher level of noise transferred from the input signal to 

the final Doppler estimate. To be more specific, a common-rate FLL-assisted-PLL provides 

less accurate Doppler estimates compared to PLL- and FLL-only designs. This is due to the 

fact that noise is transferred to the final Doppler estimate by both PLL and FLL branches, 

the result of which is a loop with a higher Doppler bandwidth. However, as indicated by 

Ward (1998), an FLL-assisted-PLL design should provide better lock performance since it 

combines the features of both PLL and FLL tracking techniques. For this reason FLL-

assisted-PLL should be used only during acquisition. Therefore, due to its higher 

robustness to high dynamics when compared to a pure PLL design, it is still beneficial to 

use this type of tracking loop for the improvement of the overall receiver performance. 

Figure 3-13 demonstrates as well that the theoretical values of the Doppler jitter match the 

empirical results in the case of a common-rate FLL-assisted-PLL, providing further 

confirmation of the validity of the developed theoretical model. 
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Figure 3-13: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0 obtained using a common rate FLL-assisted-PLL. Cases 
considered: loop bandwidths, Bn(PLL) = Bn(FLL) 4 Hz and = 8 Hz and Tc = 1 ms.  

Table 3-4: Common loop and Doppler bandwidth for raw Doppler estimation; 
Common-rate FLL-assisted-PLL Tc = 1 ms. 

Parameter Value 

Loop bandwidth Bn [ Hz ] 4.00 8.00 

Doppler bandwidth Bd [ Hz ] 0.22 0.89 

Attenuated LOS: Sequential Carrier Tracking - Memory Discriminator Based Tracking 
Loops

As discussed in Section 3.1.5 the same approach can be applied for the analysis of memory 

discriminator based tracking loops. Figure 3-14 illustrates the theoretical Doppler jitter 
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obtained using a 3rd order memory discriminator based PLL using 1 ms coherent integration 

time, 5 Hz loop bandwidth and the forgetting factor, α , equal to 0 and 0.8, where α  = 0 

represents the case of a standard tracking loop. Such a short coherent integration time was 

chosen in order to allow usage of a higher value of the forgetting factor α , (Borio et al 

2009a, Sokolova 2009). The theoretical Doppler jitter in this case was determined as 

defined by Eq.(3.29), where the effect of the memory discriminator was accounted for by 

using the expression of the noise transfer function found in Eq.(3.42) when evaluating the 

Doppler bandwidth. The empirical data were processed as described in Figure 3-9 and 

Eq.(3.49).  

Figure 3-14: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0 and forgetting factor,� , obtained using a memory discriminator 
based 3rd order PLL, Tc = 1 ms, Bn = 5 Hz.  

Values of the Doppler bandwidth obtained in the cases considered in Figure 3-14 are 

compared in Table 3-5, illustrating the performance of a PLL with a memory discriminator 
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compared to a standard loop in terms of the amount of noise transferred by the loop to the 

final Doppler estimate.  

Table 3-5: Doppler bandwidth for raw Doppler estimation in the cases of a standard 
and a memory discriminator based PLL.  Bn = 5 Hz, Tc = 1 ms. 

Parameter Value 

Forgetting factor � 0 (standard loop) 0.8 

Doppler bandwidth Bd [ Hz ] 0.08 0.01 

Figure 3-15 shows the case considering a memory discriminator based 2nd order FLL.  

Figure 3-15: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0 and forgetting factor, � , obtained using a memory discriminator 
based 2nd order FLL, Tc = 1 ms, Bn = 4 Hz.  

Following the procedure used for the analysis of the results above, the theoretical Doppler 

jitter was determined by applying Eq.(3.42) to the model defined in Eq.(3.29) and 
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compared with the Doppler jitter values computed from the empirical data. The coherent 

integration time used in this case was 1 ms and the loop bandwidth 4 Hz allowing the use 

of α  up to 0.6.  

As Figures 3-14 and 3-15 are showing, memory discriminators improve the quality of 

Doppler estimates by reducing the variance of the measurements. Using the extended 

theoretical model including the effect of memory discriminators allows one to effectively 

predict the quality of Doppler measurements obtained from memory discriminator based 

carrier tracking loops. 

Attenuated LOS: Block Processing

For the practical verification of the theoretical model proposed for the block processing 

approach a modified version of GSNRxTM implementing block processing techniques, 

namely the GSNRx™-rr (GSNRxTM - reference rover), has been used. To achieve higher 

tracking sensitivity, the software receiver was designed to be capable of simultaneously 

processing test and reference data in order to remove the navigation data bits and extend the 

coherent integration time possible for the test data set beyond 20 ms (Satyanarayana et al 

2010). Figure 3-16 illustrates the test setup used for collecting the data used in this case.  

In this configuration the received signal was split between two channels of the National 

Instruments (NI) PXI-5661 signal analyzer. The signal on the first channel (RF chain 1 ) 

was progressively attenuated with a step of 1 dB each 30 s for a total range of 40 dB after a 

minute without attenuation, whereas the signal on the second channel (RF chain 2) was not 

attenuated and used as a reference signal.  

Both data sets were stored in an external hard drive and processed in post mission using 

GSNRxTM-rr. The reason there has been used a second LNA at the input of the NI system is 

that from experience it is known that absent a second LNA, the C/N0 level of captured 

GNSS signals is too degraded for acquisition to work reliably. 

79 

compared with the Doppler jitter values computed from the empirical data. The coherent 

integration time used in this case was 1 ms and the loop bandwidth 4 Hz allowing the use 

of α  up to 0.6.  

As Figures 3-14 and 3-15 are showing, memory discriminators improve the quality of 

Doppler estimates by reducing the variance of the measurements. Using the extended 

theoretical model including the effect of memory discriminators allows one to effectively 

predict the quality of Doppler measurements obtained from memory discriminator based 

carrier tracking loops. 

Attenuated LOS: Block Processing

For the practical verification of the theoretical model proposed for the block processing 

approach a modified version of GSNRxTM implementing block processing techniques, 

namely the GSNRx™-rr (GSNRxTM - reference rover), has been used. To achieve higher 

tracking sensitivity, the software receiver was designed to be capable of simultaneously 

processing test and reference data in order to remove the navigation data bits and extend the 

coherent integration time possible for the test data set beyond 20 ms (Satyanarayana et al 

2010). Figure 3-16 illustrates the test setup used for collecting the data used in this case.  

In this configuration the received signal was split between two channels of the National 

Instruments (NI) PXI-5661 signal analyzer. The signal on the first channel (RF chain 1 ) 

was progressively attenuated with a step of 1 dB each 30 s for a total range of 40 dB after a 

minute without attenuation, whereas the signal on the second channel (RF chain 2) was not 

attenuated and used as a reference signal.  

Both data sets were stored in an external hard drive and processed in post mission using 

GSNRxTM-rr. The reason there has been used a second LNA at the input of the NI system is 

that from experience it is known that absent a second LNA, the C/N0 level of captured 

GNSS signals is too degraded for acquisition to work reliably. 

79 

compared with the Doppler jitter values computed from the empirical data. The coherent 

integration time used in this case was 1 ms and the loop bandwidth 4 Hz allowing the use 

of α  up to 0.6.  

As Figures 3-14 and 3-15 are showing, memory discriminators improve the quality of 

Doppler estimates by reducing the variance of the measurements. Using the extended 

theoretical model including the effect of memory discriminators allows one to effectively 

predict the quality of Doppler measurements obtained from memory discriminator based 

carrier tracking loops. 

Attenuated LOS: Block Processing

For the practical verification of the theoretical model proposed for the block processing 

approach a modified version of GSNRxTM implementing block processing techniques, 

namely the GSNRx™-rr (GSNRxTM - reference rover), has been used. To achieve higher 

tracking sensitivity, the software receiver was designed to be capable of simultaneously 

processing test and reference data in order to remove the navigation data bits and extend the 

coherent integration time possible for the test data set beyond 20 ms (Satyanarayana et al 

2010). Figure 3-16 illustrates the test setup used for collecting the data used in this case.  

In this configuration the received signal was split between two channels of the National 

Instruments (NI) PXI-5661 signal analyzer. The signal on the first channel (RF chain 1 ) 

was progressively attenuated with a step of 1 dB each 30 s for a total range of 40 dB after a 

minute without attenuation, whereas the signal on the second channel (RF chain 2) was not 

attenuated and used as a reference signal.  

Both data sets were stored in an external hard drive and processed in post mission using 

GSNRxTM-rr. The reason there has been used a second LNA at the input of the NI system is 

that from experience it is known that absent a second LNA, the C/N0 level of captured 

GNSS signals is too degraded for acquisition to work reliably. 

79 

compared with the Doppler jitter values computed from the empirical data. The coherent 

integration time used in this case was 1 ms and the loop bandwidth 4 Hz allowing the use 

of α  up to 0.6.  

As Figures 3-14 and 3-15 are showing, memory discriminators improve the quality of 

Doppler estimates by reducing the variance of the measurements. Using the extended 

theoretical model including the effect of memory discriminators allows one to effectively 

predict the quality of Doppler measurements obtained from memory discriminator based 

carrier tracking loops. 

Attenuated LOS: Block Processing

For the practical verification of the theoretical model proposed for the block processing 

approach a modified version of GSNRxTM implementing block processing techniques, 

namely the GSNRx™-rr (GSNRxTM - reference rover), has been used. To achieve higher 

tracking sensitivity, the software receiver was designed to be capable of simultaneously 

processing test and reference data in order to remove the navigation data bits and extend the 

coherent integration time possible for the test data set beyond 20 ms (Satyanarayana et al 

2010). Figure 3-16 illustrates the test setup used for collecting the data used in this case.  

In this configuration the received signal was split between two channels of the National 

Instruments (NI) PXI-5661 signal analyzer. The signal on the first channel (RF chain 1 ) 

was progressively attenuated with a step of 1 dB each 30 s for a total range of 40 dB after a 

minute without attenuation, whereas the signal on the second channel (RF chain 2) was not 

attenuated and used as a reference signal.  

Both data sets were stored in an external hard drive and processed in post mission using 

GSNRxTM-rr. The reason there has been used a second LNA at the input of the NI system is 

that from experience it is known that absent a second LNA, the C/N0 level of captured 

GNSS signals is too degraded for acquisition to work reliably. 



80 

National 
Instruments
PXI-5661

GSNRxTM

Software 
Receiver

Active Roof
antenna

Variable
Attenuator

PC

Data storage

LNA

LNA

RF chain 1

RF chain 2

Figure 3-16: Experimental setup for the attenuated LOS GPS data collection adopted 
for the case of block processing approach.   

Results obtained using this approach are presented in Figure 3-17, where the values 

representing the CRLB (Eq.(3.47)) and empirical Doppler jitter values determined using 

different integration times are compared. In all cases a step equal to 0.2 Hz was used to 

perform the search for the correlation peak in the frequency domain.  
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Figure 3-17: Empirical and theoretical Doppler jitter of raw Doppler measurements 
as a function of C/N0, PRN 20. The measurements used to evaluate the empirical 
Doppler jitter were obtained using a modified version of GSNRx™ implementing 
block processing techniques. 

Also in this case a good agreement between empirical and theoretical results is found 

supporting previous results on frequency estimation using batch/block processing (Chan et 

al 1997) and showing that a parameter, playing the same role as the Doppler bandwidth, 

can also be defined for block processing approach. 

3.2.1.2 Moderate Urban Canyon Environment: Sequential Architecture

Further analysis of the Doppler jitter was performed by studying data collected in more 

realistic conditions and in the presence of different signal impairments. Several static and 
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pedestrian-based tests were performed in various real world operating environments such as 

under forest canopy, in urban canyon environment and indoors. Although all the tests were 

successfully performed, only two of them, are detailed here in order to avoid repetition of 

similar results.

The first test has been performed in a moderate urban canyon environment on the 

University of Calgary campus (51° latitude). This particular scenario has been chosen 

because it represents a realistic situation with a steep elevation mask present in moderate 

urban canyons. Buildings obscured the signals on the east and west sides of the location at 

elevation angles up to 50° and 30°, respectively. In addition, a walled walkway obscured 

signals arriving from the north below about 25° in elevation (MacGougan 2003). The 

southern direction was relatively unhindered with some trees contributing to signal masking 

from the southwest side of the test site. Moreover, the buildings surrounding the test 

location have glass and metallic surfaces that act as signal blockers and reflectors creating 

strong multipath.  

Photos of the test location and results obtained using a standard version of the software 

receiver compared to the ones obtained using the memory discriminator based architecture 

using α  = 0.3 are shown in Figure 3-18. Coherent integration time in this case was set to 

20 ms and loop bandwidth to 8 Hz. An urban canyon is a type of environment where the 

measured C/N0 is significantly affected by slow fades that degrade the signal quality, 

directly translating the reduced received power into increased Doppler tracking jitter. This 

trend can be seen in Figure 3-18.  

Although the proposed theoretical model for Doppler jitter analysis only considers the 

thermal noise introduced by the carrier tracking loops, due to the fact that both the C/N0

estimates and the Doppler values provided by the GSNRxTM receiver are evaluated from the 

same correlator outputs, they are both affected by the same impairments. Therefore, such 

phenomena as multipath and fading which are not accounted for in the model are partially 

compensated by the use of the C/N0 provided by the receiver.  
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Figure 3-18: Environment view and Doppler jitter analysis of raw Doppler 
measurements obtained using standard and memory discriminator based tracking 
loop architectures.  

It is noted that during the entire test, sample results of which are presented in Figure 3-18, 

the receiver maintained phase lock, and therefore operated in the PLL tracking mode. 
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However, when constraining the receiver to operate in FLL-assisted-PLL or FLL modes, 

similar results were obtained verifying that the proposed theoretical framework is valid in 

each case considered. Figure 3-18 also illustrates the ability of the memory discriminator 

based architecture to provide better Doppler estimates in the presence of multipath and 

fading compared to the standard receiver architecture. 

3.2.1.3 Indoor Environment/Wooden Residential House: Block Processing Architecture

The second experiment represents a pedestrian-based test performed in a typical North 

American wooden residential house. The house contains an upper level with wooden walls 

and large windows, and a basement with a concrete wall structure and small windows 

located at ceiling level. As wooden walls attenuate the received GPS signal much less than 

concrete ones, the upper floor represents a less challenging environment while the 

basement area produced very low power signals with C/N0 ranging as low as 17 dB-Hz.  

The test was initialized and ended outside the house where the user stayed stationary for 60 

seconds in both cases. After that, the test trajectory illustrated in Figure 3-19, including 

several loops on the main level of the house at the start, and then several loops in the 

basement area was followed. To be able to track the signals in such challenging 

environments, the GSNRxTM-rr version implementing block processing techniques was 

used. In this case the reference antenna was placed on the roof of a shed outside the house 

while the rover antenna was continuously carried along the trajectory indoors as described 

above. Data were collected using two channels of the NI PXI-5661 signal analyzer and 

processed in post-mission.  
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Figure 3-19: Schematic map of the building and test trajectory used for the 
pedestrian-based indoor data collection, (Satyanarayana et al 2010). 

Figure 3-20 shows the results obtained using 100 ms integration time and a 0.2 Hz search 

step used to perform the search for the correlation peak in the frequency domain. The 

theoretical Doppler jitter was determined using Eq.(3.47), whereas the empirical data were 

processed according to Eq.(3.49). Also in this case a good match between empirical and 

predicted Doppler jitter is observed showing the validity of the proposed model for the 

block processing approach.  

In this experiment the length of the moving average filter for the empirical estimation of the 

Doppler jitter, K, (Eq.(3.49)), has been limited to 200 ms in order to preserve possible 

effects in the Doppler measurements caused by the user gait. Long integrations would 

remove the e��ects of the user gait from the Doppler mean, leading to biased estimates of 

the Doppler jitter. Slower variations in the Doppler measurements during the section of the 

test trajectory indoors can be the result of the user motion along the trajectory. As it can be 

seen from Figure 3-19, on both the main floor and in the basement several minor loops 

85 

Figure 3-19: Schematic map of the building and test trajectory used for the 
pedestrian-based indoor data collection, (Satyanarayana et al 2010). 

Figure 3-20 shows the results obtained using 100 ms integration time and a 0.2 Hz search 

step used to perform the search for the correlation peak in the frequency domain. The 

theoretical Doppler jitter was determined using Eq.(3.47), whereas the empirical data were 

processed according to Eq.(3.49). Also in this case a good match between empirical and 

predicted Doppler jitter is observed showing the validity of the proposed model for the 

block processing approach.  

In this experiment the length of the moving average filter for the empirical estimation of the 

Doppler jitter, K, (Eq.(3.49)), has been limited to 200 ms in order to preserve possible 

effects in the Doppler measurements caused by the user gait. Long integrations would 

remove the e��ects of the user gait from the Doppler mean, leading to biased estimates of 

the Doppler jitter. Slower variations in the Doppler measurements during the section of the 

test trajectory indoors can be the result of the user motion along the trajectory. As it can be 

seen from Figure 3-19, on both the main floor and in the basement several minor loops 

85 

Figure 3-19: Schematic map of the building and test trajectory used for the 
pedestrian-based indoor data collection, (Satyanarayana et al 2010). 

Figure 3-20 shows the results obtained using 100 ms integration time and a 0.2 Hz search 

step used to perform the search for the correlation peak in the frequency domain. The 

theoretical Doppler jitter was determined using Eq.(3.47), whereas the empirical data were 

processed according to Eq.(3.49). Also in this case a good match between empirical and 

predicted Doppler jitter is observed showing the validity of the proposed model for the 

block processing approach.  

In this experiment the length of the moving average filter for the empirical estimation of the 

Doppler jitter, K, (Eq.(3.49)), has been limited to 200 ms in order to preserve possible 

effects in the Doppler measurements caused by the user gait. Long integrations would 

remove the e��ects of the user gait from the Doppler mean, leading to biased estimates of 

the Doppler jitter. Slower variations in the Doppler measurements during the section of the 

test trajectory indoors can be the result of the user motion along the trajectory. As it can be 

seen from Figure 3-19, on both the main floor and in the basement several minor loops 

85 

Figure 3-19: Schematic map of the building and test trajectory used for the 
pedestrian-based indoor data collection, (Satyanarayana et al 2010). 

Figure 3-20 shows the results obtained using 100 ms integration time and a 0.2 Hz search 

step used to perform the search for the correlation peak in the frequency domain. The 

theoretical Doppler jitter was determined using Eq.(3.47), whereas the empirical data were 

processed according to Eq.(3.49). Also in this case a good match between empirical and 

predicted Doppler jitter is observed showing the validity of the proposed model for the 

block processing approach.  

In this experiment the length of the moving average filter for the empirical estimation of the 

Doppler jitter, K, (Eq.(3.49)), has been limited to 200 ms in order to preserve possible 

effects in the Doppler measurements caused by the user gait. Long integrations would 

remove the e��ects of the user gait from the Doppler mean, leading to biased estimates of 

the Doppler jitter. Slower variations in the Doppler measurements during the section of the 

test trajectory indoors can be the result of the user motion along the trajectory. As it can be 

seen from Figure 3-19, on both the main floor and in the basement several minor loops 



86 

were made. Another possible reason for this type of behavior can be due to effects of 

Rayleigh fading.  

C/N0 [dB-Hz]

Time [s]

Outdoors Outdoors
Main 
floor Basement

Figure 3-20: Doppler jitter analysis for a pedestrian-based test in an indoor 
environment. Doppler measurements were obtained using a block processing 
approach. 

3.2.2 Doppler Bias Model Verification 

This section gives a brief overview of the test methodology adopted for the Doppler bias 

analysis using the model given in Eq.(3.31) As defined previously, Doppler bias is a 

measure of the systematic error in Doppler estimates introduced by the transient response 

of the loop to changes in the input frequency.  
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To be able to determine the Doppler bias a reference solution is required. Therefore, a GPS 

hardware simulator, the GSS 7700 from Spirent capable of providing an accurate reference 

Doppler solution and generating various scenarios, was used. The adopted setup is shown 

in Figure 3-21. In the case of hardware simulations, there is no antenna, and the source 

(antenna) temperature is actually room temperature rather than antenna temperature. This 

means that the noise level in a simulated environment in general is higher than in the real 

case. To simulate the effect of an active antenna, a high gain must be applied at the first 

processing stage. Thus, in all tests discussed herein where a hardware simulator is used, a 

30 dB LNA with a noise figure of 1.5 dB is applied to the output of the simulator.  
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Figure 3-21: Experimental setup adopted for the evaluation of the Doppler bias. 

As Figure 3-21 illustrates, the Spirent GSS 7700 hardware simulator was used for 

generating RF signals and reference Doppler values. The RF signals were collected using 

87 

To be able to determine the Doppler bias a reference solution is required. Therefore, a GPS 

hardware simulator, the GSS 7700 from Spirent capable of providing an accurate reference 

Doppler solution and generating various scenarios, was used. The adopted setup is shown 

in Figure 3-21. In the case of hardware simulations, there is no antenna, and the source 

(antenna) temperature is actually room temperature rather than antenna temperature. This 

means that the noise level in a simulated environment in general is higher than in the real 

case. To simulate the effect of an active antenna, a high gain must be applied at the first 

processing stage. Thus, in all tests discussed herein where a hardware simulator is used, a 

30 dB LNA with a noise figure of 1.5 dB is applied to the output of the simulator.  

Spirent HW Simulator

GSNRxTM

Software 
Receiver

National 
Instruments
PXI-5661

RF signals

Reference 
Doppler

Doppler bias
Impulse Response

[ ]h kε

Doppler bias
(Theoretical Model)

Doppler estimates

Clock Drift
(from the NAV solution)

Doppler bias
(Measured)

-LNA

Figure 3-21: Experimental setup adopted for the evaluation of the Doppler bias. 

As Figure 3-21 illustrates, the Spirent GSS 7700 hardware simulator was used for 

generating RF signals and reference Doppler values. The RF signals were collected using 

87 

To be able to determine the Doppler bias a reference solution is required. Therefore, a GPS 

hardware simulator, the GSS 7700 from Spirent capable of providing an accurate reference 

Doppler solution and generating various scenarios, was used. The adopted setup is shown 

in Figure 3-21. In the case of hardware simulations, there is no antenna, and the source 

(antenna) temperature is actually room temperature rather than antenna temperature. This 

means that the noise level in a simulated environment in general is higher than in the real 

case. To simulate the effect of an active antenna, a high gain must be applied at the first 

processing stage. Thus, in all tests discussed herein where a hardware simulator is used, a 

30 dB LNA with a noise figure of 1.5 dB is applied to the output of the simulator.  

Spirent HW Simulator

GSNRxTM

Software 
Receiver

National 
Instruments
PXI-5661

RF signals

Reference 
Doppler

Doppler bias
Impulse Response

[ ]h kε

Doppler bias
(Theoretical Model)

Doppler estimates

Clock Drift
(from the NAV solution)

Doppler bias
(Measured)

-LNA

Figure 3-21: Experimental setup adopted for the evaluation of the Doppler bias. 

As Figure 3-21 illustrates, the Spirent GSS 7700 hardware simulator was used for 

generating RF signals and reference Doppler values. The RF signals were collected using 

87 

To be able to determine the Doppler bias a reference solution is required. Therefore, a GPS 

hardware simulator, the GSS 7700 from Spirent capable of providing an accurate reference 

Doppler solution and generating various scenarios, was used. The adopted setup is shown 

in Figure 3-21. In the case of hardware simulations, there is no antenna, and the source 

(antenna) temperature is actually room temperature rather than antenna temperature. This 

means that the noise level in a simulated environment in general is higher than in the real 

case. To simulate the effect of an active antenna, a high gain must be applied at the first 

processing stage. Thus, in all tests discussed herein where a hardware simulator is used, a 

30 dB LNA with a noise figure of 1.5 dB is applied to the output of the simulator.  

Spirent HW Simulator

GSNRxTM

Software 
Receiver

National 
Instruments
PXI-5661

RF signals

Reference 
Doppler

Doppler bias
Impulse Response

[ ]h kε

Doppler bias
(Theoretical Model)

Doppler estimates

Clock Drift
(from the NAV solution)

Doppler bias
(Measured)

-LNA

Figure 3-21: Experimental setup adopted for the evaluation of the Doppler bias. 

As Figure 3-21 illustrates, the Spirent GSS 7700 hardware simulator was used for 

generating RF signals and reference Doppler values. The RF signals were collected using 



88 

the NI PXI-5661 front-end and the collected data were processed by GSNRxTM to estimate 

the Doppler and clock drift and evaluate the Doppler bias. Several experiments were 

performed simulating different trajectories and different levels of dynamics. Since findings 

were similar using each of these experimental data sets, only one scenario is considered in 

this section, namely a scenario simulating the dynamics of a road bound vehicle moving 

along the rectangular trajectory illustrated in Figure 3-22. For this test a maximum constant 

velocity of 17 m/s was simulated. In all, there were seven 90 degrees turns: each turn, 

starting from the second one, exhibiting increasing magnitudes of acceleration from 0.5 g to 

3 g in 0.5 g increments per turn. 
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Figure 3-22: Simulated test trajectory. 

In order to better observe the biases that could have been completely hidden by noise in the 

presence of strong attenuation, clear-sky conditions were simulated. In total, there were 10 

satellites in view during the simulation, all with a relative channel power of 10 dB (-150 

dBW).  
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At each turn of the trajectory the receiver experiences a sharp jerk at the start and end of the 

turn. Figure 3-23 shows the dynamics (acceleration and jerk) during a 1 g turn section of 

the simulation trajectory. For this 1 g turn, similarly as with the other consecutive turns, 

there are a sharp north and east jerk values at the start and end of the turn. 
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Figure 3-23: Acceleration and jerk experienced by the receiver during a 1 g turn. 

The tracking loops of the receiver are not able to instantaneously follow the rapid Doppler 

variations thereby a bias is introduced at each turn. The Doppler bias was measured and 

compared against the theoretical Doppler bias obtained by filtering the true Doppler 

provided by the simulator with the bias impulse response given by Eq.(3.32). Both standard 

and memory discriminator based tracking loops were used for data processing using 

different values of tracking loop parameters. 

It should be considered that the GSS 7700 hardware simulator is not able to generate a 

continuous reference Doppler which is approximated by a piece-wise linear function 

resulting in Doppler frequency values linearly changing over 100 ms intervals. Therefore, 

the generated reference Doppler looks like a sawtooth wave. This behaviour is directly 

transferred to the theoretical Doppler rate bias. 
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3.2.2.1 Standard Tracking Loops

The observed and theoretically predicted biases for a 2 g turn in the simulated trajectory 

obtained using a third order PLL are compared in Figure 3-24. To assure the receiver to 

maintain phase lock during high dynamic sections of the trajectory a 10 Hz loop bandwidth 

and 1 ms coherent integration time were used. The obtained raw Doppler measurements 

were smoothed with a MA filter with a 100 ms analysis window. For the determination of 

the theoretical bias values, the effect of the MA filter was accounted for in the theoretical 

model by setting the smoothing filter, ( )S z , as defined in Eq.(2.13) in the signal frequency 

transfer function (Eq.(3.20)). As it can be seen from Figure 3-25 the proposed theoretical 

model effectively predicts the Doppler bias introduced by a third order PLL. 

Figure 3-24: Observed and predicted Doppler bias of a 3rd order PLL, 2 g turn. The 
raw Doppler measurements were filtered using a MA filter with a 100 ms analysis 
window. (PRN 18). 
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Figure 3-25: Observed and predicted Doppler bias of a 2nd order FLL, 2 g turn. The 
raw Doppler measurements were filtered using a MA filter with a 100 ms analysis 
window. (PRN 18). 

The same dataset was used to test the FLL model. The software receiver was constrained to 

operate in the FLL mode and the theoretical Doppler bias was determined using Eq.(3.31). 

Also in this case the obtained raw Doppler measurements were smoothed with a MA filter 

with a 100 ms analysis window. A 10 Hz loop bandwidth and 1 ms coherent integration 

time were used. As shown in Section 3.1.3, the behaviour of an FLL, when considering the 

linear model approximation, is equivalent to the one of a PLL. This fact can be observed 

from the results presented in Figures 3-24 and 3-25 showing empirical and theoretically 

predicted biases for a 2 g turn for PLL and FLL. The two loops react in the same way to the 

same type of dynamics.   

To test the model proposed for the evaluation of the Doppler bias in the case of the 

common-rate FLL-assisted-PLL, GSNRxTM was constrained to operate in the FLL-assisted-

PLL mode and the theoretical Doppler bias was determined using Eq. (3.31), in this case 

accounting for the coupled loop structure by using the relation given in Eq.(3.38). Figure 3-
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26 shows the observed and theoretically predicted biases for a 2.5 g turn in the simulated 

trajectory. Here as well the obtained raw Doppler measurements were smoothed with a MA 

filter with a 100 ms analysis window in order to reduce the noise in the measurements. 1 

ms coherent integration time and loop bandwidth of 10 Hz in both the PLL and FLL 

branches were used. 

Figure 3-26: Observed and predicted Doppler bias of a common-rate FLL-assisted-
PLL, 2.5 g turn. The raw Doppler measurements were filtered using a MA filter with 
a 100 ms analysis window. (PRN 29). 

Results presented in this subsection indicate that the proposed theoretical model Eq. (3.31), 

is able to effectively predict the Doppler bias caused by changes in the input Doppler 

frequency. It has been shown that the developed model can also include the effect of the 

smoothing filter, ( )S z . The model has been evaluated for different levels of dynamics, and 

in all cases a good agreement between the measured and predicted Doppler bias was 
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is able to effectively predict the Doppler bias caused by changes in the input Doppler 

frequency. It has been shown that the developed model can also include the effect of the 

smoothing filter, ( )S z . The model has been evaluated for different levels of dynamics, and 

in all cases a good agreement between the measured and predicted Doppler bias was 
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observed. More results on the models performance applied to a 3rd order PLL can be found 

in (Sokolova 2009). 

3.2.2.2 Memory Discriminator Based Tracking Loops

As it has been discussed in Chapter 2 and demonstrated previously by Borio et al (2009a) 

and Sokolova (2009), the memory discriminator based tracking loop architecture is capable 

to provide more accurate Doppler estimates by rejecting a larger quantity of noise with 

respect to the standard tracking loop architecture. Introduction of a low-pass filter prior to 

the memory-less phase/frequency discriminator reduces the amount of noise transferred to 

the discriminator, allowing it to stay in its linear region and the tracking loop to maintain 

lock. This, in its turn, allows the memory discriminator based architecture to bear higher 

dynamics without loosing phase lock when compared to the standard PLL architecture. 

This fact can be illustrated by the results obtained from this simulation. The same data set 

was processed using the standard and memory discriminator based tracking loop 

architectures. In both cases an 8 Hz loop bandwidth and 1 ms coherent integration time was 

used and the forgetting factor parameter, α , was set equal to 0.8 for the memory 

discriminator based architecture. Figure 3-27 illustrates the absolute acceleration and the 

tracking mode indicating which state the given receiver channel is operating at.  
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Figure 3-27: Absolute acceleration experienced by the receiver during the simulation 
and the tracking state of the standard and memory discriminator based receiver 
architectures. PRN 18, Bn = 8 Hz, Tc = 1 ms.  

Table 3-6 lists the tracking modes specified for the GSNRxTM software (Petovello & 

O’Driscoll 2007) which are valid for both receiver architectures used in this thesis and the 

abbreviations that will be used herein for these modes. The tracking modes are regulated by 

the Phase and Frequency Lock Indicators (PLI/FLI) (van Dierendonck 1996) that determine 

the quality of the frequency and phase estimations.
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Table 3-6: Abbreviations of tracking modes of the GSNRxTM software receiver. 

Abbreviation used herein GSNRxTM tracking mode 

PLL PLL 

FLL-PLL FLL-assisted-PLL 

narrow FLL Narrow pull-in FLL 

wide FLL wide pull-in FLL 

Initializing Initializing 

While the standard receiver was losing phase lock and therefore transiting to the FLL-

assisted-PLL and FLL modes during all the turns in the trajectory, the memory 

discriminator based receiver architecture was capable to maintain phase lock and remain in 

the PLL-only mode during the first 3 turns (from 0.5 g to 1 g). It should be noted though 

that for higher values of the loop bandwidth higher level of dynamics can be resisted by 

both standard and memory discriminator tracking loops architectures, but the same relative 

improved performance of the memory discriminator based architecture is observed. In this 

regard, it is important to consider that the major advantage of the memory discriminator 

based architecture is the noise rejection capability. Its increased resilience against thermal 

noise allows a memory discriminator based tracking loop to maintain lock under higher 

dynamics. Whereas the joint impact of noise and dynamics makes standard loop lose lock. 

This also means that the values of the Doppler bias measured by a standard and memory 

discriminator based tracking loop of the same order using equal values of the loop 

bandwidth and coherent integration time will be similar.  

To give a better overview of how the developed model for Doppler bias analysis performs 

when applied to memory discriminator based tracking loops, analysis of the results for a 2.5 

g turn for a 2nd order memory discriminator based FLL are presented. Figure 3-28 compares 

the measured and predicted Doppler bias values obtained using a 10 Hz loop bandwidth, 1 
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ms coherent integration time and 0.4α = . Raw Doppler measurements were smoothed 

with a MA filter with a 100 ms analysis window. 

Figure 3-28: Observed and predicted Doppler bias for a 2nd order memory 
discriminator based FLL, 2.5 g turn, PRN 18. The raw Doppler measurements were 
filtered using a MA filter with a 100 ms analysis window. 

The results presented in Figure 3-28 are consistent with the ones obtained for the case of 

the standard receiver architecture. A good match between empirical and predicted Doppler 

bias is found, showing the validity and applicability of the proposed theoretical framework 

for quantifying the effect of dynamics on the Doppler estimates for the memory 

discriminator based tracking loops.  
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CHAPTER 4: LOOP FILTER DESIGN BASED ON THE DOPPLER BANDWIDTH 

This chapter presents a new approach to designing the loop filter based on the Doppler 

bandwidth. The proposed approach provides control over the noise variance of the Doppler 

frequency measurements. Both standard and memory discriminator based PLLs are 

considered.  

In the first part of the chapter, a review of the general principle of the controlled-root 

formulation for the digital loop filter design is provided. First the standard approach, as 

proposed by Stephens & Thomas (1995) is described. Then the special case of memory 

discriminator based tracking loops is considered.  

To be able to design the PLL loop filter based on the Doppler bandwidth, the original 

controlled-root formulation was modified. A discussion of the motivation behind this 

design and a detailed description of the algorithm for the design of the loop filter based on 

the Doppler bandwidth is given in the second part of the chapter. In order to apply the 

proposed design approach to the memory discriminator based PLL, similar modifications 

were applied to the controlled-root formulation extended to account for the additional pole 

introduced by exponential filtering. 

In the last part of the chapter a short discussion on the choice of the Doppler bandwidth 

value to be used in the design is given and the effectiveness of the proposed approach is 

tested using live GPS L1 C/A data.  

4.1 Controlled-root Formulation: General Principle 

Most of the current approaches for the design of digital tracking loop filters are based on 

the transformation of a continuous-time system into the discrete-time domain. The filter is 

first designed in the analogue domain and its digital counterpart is then obtained by means 

of mapping functions, such as for example the bilinear or impulse invariant transforms. The 

necessary condition for the digital filter to be equivalent to its analogue counterpart is to 
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have the product between the loop noise bandwidth, nB , and the integration time, cT , 

( )n cB T  be close to zero (Lindsey & Chie 1981, Stephens & Thomas 1995). In particular, it 

has been shown experimentally that the third order loop can remain stable for n cB T  less 

than 0.55. As this product increases the loop roots are displaced with respect to the original 

position designed in the analogue domain. Also changes in the open loop gain can be 

observed and the actual loop noise bandwidth increases more rapidly than the desired 

bandwidth (Stephens & Thomas 1995). The error in the actual loop noise bandwidth 

becomes more prominent with increased n cB T , for example it exceeds 10% when >0.1n cB T

(Curran et al 2011).  

In this way, the n cB T  constraint required for having a stable loop significantly limits the 

maximum integration time and/or loop noise bandwidth. The controlled-root formulation 

(Stephens & Thomas 1995) is one of the approaches proposed in order to overcome these 

shortcomings.  

According to the controlled-root formulation, the poles of the loop filter are constrained to 

lie on specific positions depending on design parameters, such as the decay-rate and the 

damping factor. In this way, the poles are positioned in order to ensure a stable loop and the 

design parameters are adjusted in order to meet the bandwidth requirements. More 

specifically, according to (Stephens & Thomas 1995), the system poles are parameterized 

as follows:  

{ }
{ }1 2 2 3 3

1 2 3 4 5 6

(1 ) (1 ) (1 )

, ; , ; , ;

; ; ;c c cT T T

z z z z z z

e e eβ η βλ η βλ η− ± − ± − ±=






                                                                      (4.1)                             

where { } 1

L
i iz

=
 are the poles of the transfer function of the loop, β  is the control parameter 

that is adjusted to meet the bandwidth requirements and determines the decay rate of the 

loop impulse response, whereas { }iλ  and { }iη  are the 1N −  constants determining the 

damping characteristics of the loop with 1 1λ = . The choice of all 1iλ =  and 0iη =
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corresponds to a super-critically damped response, whereas 1iλ =  and 1i jη = = −  to the 

standard underdamped response. In both cases the L  poles are constrained to lie on a 

segment parallel to the imaginary axis, the distance to which from the Z-plane origin is 

controlled by β . This relationship is illustrated in Figure 4-1. 

β

{ }Im z

{ }Re z

Figure 4-1: Root-locus diagram illustrating the relationship between the pole 
placement and the control parameter, � ,  (Borio & O’Driscoll 2008). 

In this regard, it is important to consider that the controlled-root formulation allows 

constraining only L  poles, corresponding to L  free parameters – the integrator gains, 

whereas the position of the remaining poles is determined by the type of NCO (Stephens & 

Thomas 1995) and memory discriminator (Borio et al 2009a).  

The procedure of determining the control parameter, β , is summarized in Figure 4-2, where 

the control parameter, β , is progressively adjusted in order to meet the bandwidth 

requirements and used for fixing the position of L poles.  
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requirements are met  

Figure 4-2: Iterative algorithm for determining the control parameter, � , used for 
loop filter design according to the controlled-root formulation (Borio et al 2009a). 

As it can be seen from Figure 4-2, first L poles are fixed according to an initial value of the 

control parameter, β . The values of these L poles are then substituted into the expression 

of the loop transfer function, so that a system of L equations with L unknowns is defined. 

Recall the expression of the transfer function of the standard PLL derived in the previous 

chapter (Eq.(3.8)), which takes the following form after substituting the expression of the 

NCO transfer function (Eq.(3.24)): 
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Each pole is converted into an equation of the type: 
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where ( )D ⋅  is the denominator of the transfer function given in Eq.(4.2), iz  is the ith pole 

of the system and the unknowns are the integrator gains in ( )iB z . Also, when multiple 

poles are present, the following condition for the derivative of ( )D z  has to be verified 

( ) 0 1, , 1
i

h

h
z z

d D z h H
dz =

= = −
 ,                                                                                 (4.4) 

where H  is the order of the pole. Eqs. (4.3) and (4.4) form a linear system of  L equations 

containing L unknowns. By solving this system of equations, the integrator gains { } 1
0i

L
iK −
=   

can be determined, and finally, the loop noise bandwidth (Eq.(3.11)) can be evaluated. The 

control parameter, β , is then iteratively adjusted until the required bandwidth is obtained. 

Since the integrator gains are derived specifically for a given n cB T  value, this approach 

effectively solves the problem of deviation between the actual loop noise bandwidth and 

the desired design bandwidth. However, as it has been shown by Stephens & Thomas 

(1995), when using this method the n cB T  product should be kept lower than 0.4 for third 

order loops with rate-only feedback NCOs. Beyond this limit it is not possible to obtain 

stable loops. 

4.1.1 Controlled-root Formulation: Memory Discriminator Based Carrier Tracking Loops

The general structure of memory discriminator based tracking loops adopting exponential 

filtering was described in Chapter 2. This section will provide a brief overview of the 

approach used for designing the loop filter in this type of tracking loops. Exponential 

filtering used in the memory discriminators introduces an additional pole into the system 

which has to be accounted for when designing the loop filter. In this case, it is impossible to 

use the direct transformation of the analog filters (Lindsey & Chie 1981). The controlled-
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root formulation discussed in the previous section can be applied, but it allows one to fix 

the positions of only L  poles, as only L  free parameters are available. Thus, to be able to 

account for that additional pole, the controlled-root formulation has to be modified. 

Position of the L  poles can be fixed as in the original approach, whereas the position of the 

remaining pole can be determined exploiting the constraints imposed by the structure of the 

loop transfer function, which is expressed as follows: 
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In Eq.(4.5)   
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is the denominator of ( )H z  that determines the poles of the system, and the transfer 

functions ( )N z , ( )B z  and ( )F z  are defined in Eqs. (3.24), (3.22) and (2.32), 

respectively. Having determined position of all poles, the integrator gains, { } 1
0i

L
iK −
= , can be 

computed and the loop noise bandwidth evaluated. Similarly to the original approach, the 

process is repeated until the loop noise bandwidth requirements are met by adjusting the 

control parameter, β . In the case of a third order PLL, the system is characterized by four 

poles, three of which are fixed according to the controlled-root formulation, whereas the 

position of the fourth pole essentially depends on the forgetting factor parameter, α . A 
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detailed discussion on the loop filter design in the case of exponential discriminators and 

the impact of the forgetting factor, α , on the stability of the loop is given in (Borio et al 

2009a, Sokolova 2009). It has been shown that the loop becomes unstable for α  greater 

than a threshold value Tα . Figure 4-3 shows the magnitude of the pole controlled by α  as a 

function of the forgetting factor considering several bandwidths and coherent integration 

times of 20 and 10 ms. The pole magnitude increases almost linearly as a function of α

until the threshold value, Tα , is reached. It is important to emphasize that the threshold is 

different for each combination of loop bandwidth and coherent integration time. 
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provides control over the noise variance of the Doppler frequency measurements. As 

detailed in Chapter 3, the Doppler bandwidth, dB , was derived as a counterpart of the loop 

noise bandwidth, nB , to quantify the amount of noise transferred from the input frequency 

noise to the final Doppler frequency estimate, considering the overall frequency linear 

model of the tracking loop (Figure 3-2). Together with the coherent integration time, cT , 

and C/N0, the Doppler bandwidth is used to determine the Doppler jitter (Eq.(3.29)). 

Designing the loop filter based on Doppler bandwidth instead of loop noise bandwidth, as it 

is done in the controlled-root formulation discussed above, allows one to configure the 

tracking loop to output Doppler measurements with a desired level of Doppler jitter. To be 

more specific, recall the expression of the Doppler jitter given in Eq.(3.28). As it follows 

from this expression, if the values of the Doppler jitter, fσ , and C/N0 are specified, the 

corresponding value of the Doppler bandwidth can be determined. If the loop filter is 

designed based on this value of the Doppler bandwidth, the tracking loop would be capable 

of producing Doppler frequency measurements with the specified Doppler jitter at a 

specified level of C/N0. A practical example using GPS L1 C/A signals will be considered 

later in this chapter to clarify the algorithm and verify the proposed approach. To be able to 

design the loop filter based on Doppler bandwidth, it is necessary to modify the original 

controlled-root formulation. As shown in Figure 4-4, the adopted algorithm is similar to the 

original formulation but the control parameter is adjusted in order to obtain a desired 

Doppler bandwidth. 

Following the original approach, first, poles are fixed according to an initial value of β . 

The values of these L poles are substituted into the expression of the loop transfer function, 

each pole of which can be converted into an equation of the type defined in Eq.(4.3), so that 

a system of L equations containing L unknowns is obtained. This system of equations is 

then solved for the integrator gains, { } 1
0i

L
iK −
= . This allows one to determine the frequency 

noise transfer function, which in the case of a PLL, is given by Eq.(3.20) and evaluate the 

Doppler bandwidth, dB , (Eq.(3.27)). 
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Figure 4-4: Iterative algorithm used for loop filter design based on Doppler 
bandwidth. 

Similar to the original formulation, the control parameter, β , is iteratively adjusted until the 

required Doppler bandwidth is obtained. It is important to emphasize that similarly to the 

original formulation, in this case as well the stability of the tracking loop is limited by the 

product of the coherent integration time and the Doppler bandwidth, dB . By studying the 

root location of the system it has been found that the maximum achievable value of d cB T

providing a stable loop is 0.27. As it has been shown in the previous chapter, dB  differs 

from the loop noise bandwidth and further investigation is required to characterise the exact 

relationship between these two parameters. However, in the design algorithm illustrated in 

Figure 4-4, when the required value of the Doppler bandwidth is finally achieved, the 

corresponding loop noise bandwidth, nB , can also be computed by using the final values of 
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the integrator gains { } 1
0i

L
iK −
=  to determine the loop transfer function defined in Eq.(4.2), and 

then numerically integrating Eq.(3.12). Figure 4-5 illustrates the relationship between the 

Doppler bandwidth and corresponding loop noise bandwidth for a standard 3rd order PLL 

considering  10 and 20 ms coherent integration times.  
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Figure 4-5: Doppler bandwidth as a function of the loop noise bandwidth for a third 
order PLL designed based on Doppler bandwidth parameter. Tc = 20 and 10 ms. 

4.2.2 Memory Discriminator Based Carrier Tracking Loops

A similar design algorithm can be applied to memory discriminator based tracking loops. 

But, as it has been explained previously, due to the use of exponential filtering in the 

memory discriminator, an additional pole is introduced into the system. The procedure 

shown in Figure 4-4 can be modified in the same way as described in Section 4.1.1, where 

the original controlled-root formulation was altered to account for the effect of an 

additional pole. In particular, after initializing the control parameter, first the position of the 

L  poles can be fixed, whereas the position of the remaining pole can be determined 
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according to the constraints imposed by the structure of the loop transfer function defined 

in Eq.(4.5). Then the same procedure as described in the previous section can be followed.  

Figure 4-6 shows the root position as a function of α  for a 3rd order memory discriminator 

based PLL designed based on the Doppler bandwidth, considering the case of 0.3 Hz 

Doppler bandwidth and 20 ms coherent integration time. It also highlights the relationship 

between Doppler bandwidth and the loop noise bandwidth. In Section 4.1.1 it has been 

shown that the magnitude of the pole controlled by the forgetting factor, α , increases as a 

function of α  until a certain threshold value, Tα , is reached. This is also valid in the case 

of the loops designed based on the Doppler bandwidth. In particular, Figure 4-3 shows that 

for the case of a 5 Hz loop noise bandwidth and 20 ms coherent integration time, this 

threshold value is about 0.6.  

As it can be observed from Figure 4-6, this threshold is reached when the Doppler 

bandwidth is equal to 0.3 Hz, and the corresponding loop noise bandwidth is equal to 5.2 

Hz. Also in this case, the loop noise bandwidth was evaluated by performing numerical 

integration of Eq.(3.12), where the loop transfer function (Eq.(4.2)) was determined by 

using the final values of the integrator gains { } 1
0i

L
iK −
=  computed in the design procedure. As 

the value of the forgetting factor, α , increases, the pole controlled by α  is progressively 

pushed outside the unit circle resulting in an unstable system. It is possible to use higher 

values of Doppler bandwidth for designing the loop, by either choosing a smaller value of 

α , or shorter coherent integration time.  
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integration of Eq.(3.12), where the loop transfer function (Eq.(4.2)) was determined by 

using the final values of the integrator gains { } 1
0i

L
iK −
=  computed in the design procedure. As 

the value of the forgetting factor, α , increases, the pole controlled by α  is progressively 

pushed outside the unit circle resulting in an unstable system. It is possible to use higher 

values of Doppler bandwidth for designing the loop, by either choosing a smaller value of 

α , or shorter coherent integration time.  
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Figure 4-6: a) Zero/pole placement as a function of the forgetting factor, � . Third 
order loop designed based on Bd = 0.3 Hz using 20 ms coherent integration time. b) 
Pole magnitude as a function of the forgetting factor, � . c) Doppler bandwidth as a 
function of loop noise bandwidth.  
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4.3 Practical Verification of the Design 

The fact that the Doppler bandwidth, dB , is used as a design parameter in the proposed 

approach makes it possible to specify a threshold value of the Doppler jitter to be expected 

at a given level of C/N0 – for example, the tracking sensitivity limit. By substituting the 

desired threshold value of the Doppler jitter and the specified value of C/N0 into the 

theoretical model of the Doppler jitter defined in Eq.(3.29), the corresponding value of the 

Doppler bandwidth can be determined and used for design of the loop filter. This allows 

one to design the tracking loop in such a way that the jitter of the obtained Doppler 

frequency measurements will stay under the desired Doppler jitter until the specified level 

of C/N0 is reached. Alternatively, one can simply select the value of dB  to be used for loop 

filter design. Then, by using this value in the theoretical model of the Doppler jitter 

(Eq.(3.29)), an accurate prediction of the expected Doppler jitter as a function of C/N0 can 

be obtained.  

An important consideration in this approach is the choice of the Doppler bandwidth value. 

Typically, one would choose the lowest possible Doppler jitter when designing the loop, 

however one must select a Doppler bandwidth which is commensurate with the expected 

value of user dynamics. If a very narrow Doppler bandwidth is selected, the receiver might 

simply lose lock due to the experienced user-satellite motion.  

The reasoning behind the choice of this parameter is the same as in the case of choosing the 

loop noise bandwidth in traditional tracking loops. As it has been mentioned previously, the 

Doppler bandwidth has been derived as a related design parameter to the loop noise 

bandwidth. The major difference between these two parameters is that Doppler bandwidth 

provides a more faithful interpretation of the bandwidth required to track particular system 

dynamics. Thus, assuming that the change in Doppler frequency due to the motion of the 

satellite is negligible (Tsui 2005), the following relationship 

r
d

ff a
c

δ = ⋅ ,                                                                                                                      (4.7) 
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where dfδ  is the Doppler rate, a  is the user acceleration, rf  is the GPS L1 centre 

frequency and c  is the speed of light, can be used to determine the corresponding change in 

the Doppler frequency. In Eq.(4.7) it has been assumed that the user is accelerating along 

the direction parallel to the user-to-satellite unit vector. This assumption corresponds to the 

worst case scenario, where the Doppler frequency change is maximum. The computed 

change in the Doppler frequency will provide approximate information about the value of 

the Doppler bandwidth to be used for designing the tracking loop. Consider a simple 

example of a standard road bound vehicle capable of accelerating from 0 to 100 km/h in 10 

seconds ( )22.8 /a m s= . The corresponding change in the Doppler frequency in this case is 

14.6 Hz, meaning that the value of the Doppler bandwidth to be used should be at least 14.6 

Hz or higher.   

In addition to this, as it has been mentioned in the previous chapter, in the case of 

pedestrian motion higher frequency components are introduced by the users’ gait. These 

frequency components also depend on the type of users’ motion - running or walking. In 

order to determine the appropriate Doppler bandwidth to track this type of dynamics, these 

components also have to be included. In this regard, it is also noted that in theory, one can 

use the spectral content of the Doppler observations to determine the Doppler bandwidth, 

but in practice this does not yield any easily usable information. Also, since the use of the 

inertial sensors co-located with GNSS receivers is becoming more and more common in 

consumer devices such as for example smart-phones and Personal Digital Assistants (PDA) 

it is, as well, worth considering the use of the inertial sensor data for on-line determination 

of the Doppler bandwidth.  

To assess the effectiveness of the proposed approach for loop filter design, data collected in 

the attenuated LOS test was used. A detailed description of the equipment setup used in this 

data collection and the methodology adopted to process the data, as well as to determine 

empirical Doppler jitter values is given Section 3.2.1.1.  

As the data in this test were collected in stationary mode, a fairly low (0.5 Hz) Doppler 

jitter threshold at C/N0 equal to 25 dB-Hz was selected. Substituting the specified Doppler 
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jitter threshold and C/N0 values into the theoretical model of the Doppler jitter (Eq.(3.29)), 

the corresponding value of Doppler bandwidth is found to be equal to 1.3 Hz. The loop 

filter of a standard PLL was then designed based on the obtained value of dB  using the 

approach proposed in Section 4.2.1 and following the procedure detailed in Figure 4-4. In 

this particular case, a 20 ms coherent integration time was used. The attenuated LOS data 

set was then processed using the PLL designed based on the specified parameters. 

Figure 4-7 compares the expected Doppler jitter values determined using the specified 

parameters in the theoretical model (Eq.(3.29)) with the Doppler jitter computed using the 

empirical data. The empirical data were processed according to the procedure detailed in 

Figure 3-9 and Eq.(3.49). As it can be seen from Figure 4-7, the empirical data closely 

follow the expected Doppler jitter values and the specified Doppler jitter threshold is not 

exceeded confirming the validity of the proposed design algorithm.  
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To demonstrate the validity of the proposed design algorithm developed for the case of the 

memory discriminator based PLL, an  0.2α =  was considered. Because of the higher noise 

rejection capability of this type of tracking loop a lower Doppler jitter threshold of 0.3 Hz 

at C/N0 equal to 25 dB-Hz was selected. Using the same theoretical model of Doppler jitter 

(Eq.(3.29)), and substituting the specified values of fσ  and C/N0, the corresponding 

Doppler bandwidth was found to be equal to 0.5 Hz. The loop filter was then designed 

based on dB = 0.5 Hz using the approach described in Section 4.2.2. In this case as well a 

20 ms coherent integration time was used. Figure 4-8 shows the results obtained by 

processing the attenuated LOS data set with the memory discriminator based PLL designed 

using the specified parameters.  
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Figure 4-8: Empirical and theoretical jitter of the raw Doppler measurements as a 
function of C/N0, obtained using a 3rd order memory discriminator based PLL 
designed based on the Doppler bandwidth. 

The empirical data were processed as defined in Eq.(3.49) and compared to the expected 

Doppler jitter values determined by using the theoretical model (Eq.(3.29)). 
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As it can be seen from Figure 4-8, also in this case a good agreement between the expected 

and empirical Doppler jitter is observed and the specified Doppler jitter threshold is not 

exceeded.  

Results shown in Figures 4-7 and 4-8 confirm the validity of the proposed design algorithm 

as applied to standard and memory discriminator based PLLs, and also the fact that by 

designing the loop filter based on the Doppler bandwidth, a loop capable to provide the 

Doppler measurements with the desired level of jitter is obtained. Finally, it is important to 

consider that the beneficial feature of this approach is not in the capability of the tracking 

loop to provide more accurate Doppler measurements, but in the capability to provide 

control over the noise variance of the measurements. 
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CHAPTER 5:  THEORETICAL FRAMEWORK FOR DOPPLER FREQUENCY 

RATE ESTIMATION: SEQUENTIAL AND BLOCK PROCESSING 

ARCHITECTURES 

In this chapter the analytic approaches used in Chapter 3 with respect to the process of 

Doppler estimation are extended and applied to the process of Doppler rate estimation. 

Both sequential carrier tracking, including the standard and memory discriminator based 

approaches, and block processing techniques are considered. In a similar way, a theoretical 

framework for Doppler rate estimation relating the variance and biases of the Doppler rate 

estimates to the C/N0, user dynamics and algorithm parameters is introduced for each of the 

mentioned approaches. In the case of sequential carrier tracking, the standard tracking loop 

linear theory is now reformulated with respect to the signal Doppler frequency rate, the 

frequency rate noise and the final Doppler rate measurement provided by the loop. For the 

block processing approach, an expression of the variance of the Doppler rate estimates is 

derived based on the CRLB for the Doppler frequency measurements (Eq.(3.47)). 

The proposed theoretical framework for Doppler rate estimation analysis is validated in the 

second half of this chapter using simulated and actual GPS L1 C/A signals. Test 

methodology and equipment setup used for the performed experiments are described, and 

the results obtained using the proposed theoretical models for the Doppler variance and bias 

are compared against empirical data.  

5.1 Doppler Rate: Theoretical Analysis 

5.1.1 Doppler Rate Estimation in GNSS 

Consider the analytic representation of the signal at the input of the processing block given 

in Eq.(3.1)  
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{ } [ ]{ } [ ][ ] exp 2 expIF sr n A j f nT j n w nπ ϕ= + � .                                                                  (5.1) 

In Eq.(5.1), the navigation message ( )d ⋅  is assumed to be constant over the observation 

time used by the receiver to generate a correlator output. Since the intermediate frequency, 

IFf , is known to the receiver, only the time varying phase, [ ]nϕ , has to be estimated. This 

phase can be approximated using a polynomial expansion 

[ ] 2 2
0

1
2d s d sn f nT f n Tϕ ϕ= + +
�

,                                                                                          (5.2) 

where 0ϕ  is a constant phase term, df  is the Doppler frequency in rad/s and df
�

 is Doppler 

frequency rate in rad/s2. The estimation of the coefficients, 0ϕ , df  and df
�

 in Eq.(5.2) 

corresponds to the problem of estimation of the parameters of a chirp signal, i.e., a signal 

with a polynomial phase of second order (Abatzoglou 1986, Djuri� & Kay 1990, Peleg & 

Porat 1991). This problem has been extensively studied with respect to various applications 

other than GNSS based navigation, such as, for example, radar technology. In particular, 

the CRLB for the variances of the estimated parameters of complex signals with 

polynomial phase has been derived by Peleg & Porat (1991), whereas algorithms attaining 

these bounds have been proposed by Abatzoglou (1986).  

In GNSS, Doppler rate measurements are obtained by considering several measurement 

epochs. During each measurement epoch, N  samples of the input signal (Eq.(5.1)) are used 

to produce a new frequency estimate, f
∧

, which is then used to update previous Doppler 

rate measurements. The basic assumption made in GNSS receivers is that the impact of 

Doppler rate is negligible over a single measurement epoch, 1
s c

c
f NT f T

T
=

� �
� , meaning 

that the maximum change in the signal Doppler frequency is small compared to the inverse 

of the integration time c sT NT= . For this reason, the different techniques implemented in 

GNSS receivers, such as PLL and block processing, simply neglect Doppler rate during a 
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single processing epoch. As mentioned in the previous chapter, the rate of change of the 

Doppler frequency caused by the satellite motion is very low (Tsui 2005) and for this 

reason has a negligible effect. Therefore, the dominant factor contributing to the change of 

the Doppler frequency is the acceleration of the receiver. Consider a simple example of 

pedestrian motion. Levels of dynamics typical to this type of motion are low, with the 

average walking speed of 1.35 m/s. Sudden turns or stops can be expected to induce 

accelerations of the order of 1.4 m/s2 (Fugger 2000). By substituting this value, 
21.4 /a m s= , into Eq.(4.7), the corresponding change in the Doppler frequency for 

20cT ms= , the longest coherent integration time achievable with no external assistance, is 

equal to only 0.15 Hz. In Eq.(4.7), it has been assumed that the user is accelerating along 

the direction parallel to the user-to-satellite unit vector. This example supports the 

assumptions adopted by a GNSS receiver for computing Doppler rate measurements.  

Doppler rate is then estimated, as detailed in Chapter 2, by differentiating Doppler 

measurements over multiple epochs. This assumption corresponds to approximating the 

time varying Doppler frequency of a GNSS signal by a staircase function as illustrated in 

Figure 5-1. 

This assumption leads to suboptimal algorithms for the estimation of Doppler rate and, 

consequently, to estimator variances greater than the CRLB provided in (Djuri� & Kay 

1990, Peleg & Porat 1991): 

2
5 2 2 5 5, 0 0

720 360
2 / ( 1)( 4) /f CRLB s cC N T M M M C N k T

σ = ≈
− −� .                                                    (5.3) 
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Figure 5-1: In GNSS receivers, the Doppler frequency is assumed constant during 
each processing epoch, i.e., the impact of Doppler rate is neglected during the 
integration time Tc = NTs. 

In Eq.(5.3), M is the total number of samples used for estimating the Doppler rate, f
�

, and 

M kN= is a multiple of the number of samples used during a single processing epoch. This 

means that if Doppler rate is estimated by differentiating two consecutive Doppler 

frequency measurements, 2M N=  and 
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In regard to Eq.(5.1), the expression given in Eq.(5.3) refers to the case where time index is 

assumed to be 0,1, , 1n M= −
 . More specifically, it is possible to show that the Doppler 

rate variance also depends on the time interval used for obtaining the measurements (Djuri�

& Kay 1990). If the time instants at which the correlator outputs are chosen are symmetric 

with respect to zero, a better operability is achieved. The zero instant refers to the time at 

which the Doppler rate is estimated. Due to the real-time nature of GPS, only a causal 

interval, 0,1, , 1n M= −
 , can be used. Appendix A will provide more details on the 

derivation of Eqs. (5.3) and (5.4). 
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In the following sections, Eq.(5.4) will be used as a comparison term for the algorithms 

used in GNSS receivers.  

5.1.2 Doppler Rate Variance and Bias Analysis: Sequential Carrier Tracking Loops 

5.1.2.1 PLL

In a standard PLL, the input signal, [ ]r n , is at first correlated with a local carrier replica 

which is generated on the basis of a previous estimate of the signal Doppler frequency. As 

detailed above, the local carrier does not include any Doppler rate terms since the input 

signal frequency is assumed constant over the integration time, cT . Each correlation is 

computed over N samples and the correlator output is  then  used  to  compute  an  estimate  

of  the  average  phase error between incoming and local signals. This phase estimate is 

obtained using a phase discriminator. The phase error is filtered and a new estimate of the 

Doppler frequency, [ ]rawf k , is obtained. Raw Doppler measurements are then used to drive 

the NCO for the local carrier generation. Finally, as discussed in Chapter 2, Doppler rate 

observables are obtained by differentiating the Doppler measurements, [ ]f k
∧

.   

To be able to evaluate the quality of Doppler rate measurements, the same approach based 

on the linear tracking loop theory described in Chapter 3 can also be used here. The PLL 

linear analysis can be further extended to characterize the noise propagation process from 

the input signal to the final Doppler rate estimate. Figure 5-2 illustrates the PLL model as a 

frequency rate filter also detailing the process of Doppler rate derivation in a PLL.  
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Figure 5-2: PLL as a frequency rate filter. The final Doppler rate estimates are 
formed as a combination of filtered input signal frequency rate and noise.

With respect to the linear model of the PLL as a frequency filter derived in Chapter 3 

(Figure 3-2), the following modifications have been introduced: 

• the true input frequency rate, [ ]df k
�

, has been explicitly modeled by introducing an 

additional integrator , 1( )
1

cTI z
z−=

−
, so that the phase, [ ]kφ , is obtained by 

performing double integration of [ ]df k
�

;  
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• a scaled phase noise, [ ]
f

N k� , has been introduced by normalizing [ ]dN k by 2
cT , the 

coherent integration time squared. This normalization was required in order to have 

all quantities at the inputs and output of the PLL model in units of radians per 

second squared;  

• a first order differentiator, ( )D z , is used to model the derivation of the Doppler rate 

measurements. 

As illustrated in Figure 5-2, in a PLL, the final Doppler rate estimate is obtained as: 

[ ] [ ] [ ] [ ] [ ] [ ]rawf k d k f k d k s k f k
∧

= ∗ = ∗ ∗
�

,                                                                       (5.5)

where [ ] ( ){ }1d k Z D z−=  is the impulse response of the differentiator used for obtaining 

Doppler rate measurements, characterised by the following transfer function: 

( ) 11 1
c

D z z
T

−� �= −� � .                                                                                                           (5.6) 

Although different types of differentiators can be used to derive the Doppler rate 

measurements, for simplicity reasons, only the case of the first order differentiator (Eq.(5.6)

) will be considered in this thesis.  

[ ]s k  in Eq.(5.5) is the impulse response of the smoothing filter added to incorporate both 

raw and carrier phase derived Doppler measurements. This smoothing filter is defined by 

the transfer function, ( )S z , given in Eqs. (2.13) and (3.17). Exactly as in the previous 

chapters, in the simplest case when raw Doppler measurements are used directly, ( ) 1S z = , 

whereas for carrier phase derived Doppler measurements, ( ) ( ) ( )S z I z z= Δ , where ( )I z  and 

( )zΔ  are the transfer functions of an integrator and a differentiator defined by Eqs. (2.11) 

and (2.12) 
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Considering the model introduced in Figure 5-2, and following the same procedure that was 

used in the case of the Doppler measurements in Chapter 3, it is possible to show that the 

final Doppler rate estimate, [ ]f k
�

, is also obtained as a linear combination of filtered input 

signal frequency rate and noise: 

[ ] [ ] [ ] [ ] [ ]
d

df n f f
f k h k f k h k N k= ∗ + ∗� � �

� �
,                                                                              (5.7) 

where [ ]
df

h k�  and [ ]
n f

h k�  are the frequency rate and frequency rate noise impulse responses. 

In the Z-domain, Eq.(5.7) can be written as: 

( ) ( ) ( )
2

( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

f n fd

c
d f

H z H z

T D z S z B zS z B z N zf z f z N z
B z N z B z N z

= ⋅ + ⋅
+ + �

� �

� �

������� �������
,                                              (5.8) 

where  ( )
df

H z�  and ( )
n f

H z�  represent the transfer functions that characterise the signal 

frequency rate and noise impulse responses and are derived from the model given in Figure 

5-2. In Eq.(5.8), ( )B z  and ( )N z  are the loop filter and NCO model transfer functions 

respectively. The variance of Doppler rate estimates is then obtained as 

[ ]{ } ( ) [ ]{ }20.5/ 22

0.5/

c c

c

T j fT
c Tf n f f

Var f k T H e df Var N kπσ
−

= = �� � �

�
.                                               (5.9)  

In Eq.(5.9), it has been assumed that the term [ ] [ ]
d

d
f

h k f k� �∗� �
� �

�

�
 in Eq.(5.7) is deterministic 

and therefore does not contribute to the variance of the final Doppler rate estimates. It can 

however introduce a bias in [ ]f k
�

 as discussed in the second part of this section. In  a  

similar  way  as  in  the  case  of  Doppler  frequency  and phase measurements discussed in 

Chapter 3, it is possible to define a single parameter, the Doppler rate bandwidth that 
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 as discussed in the second part of this section. In  a  

similar  way  as  in  the  case  of  Doppler  frequency  and phase measurements discussed in 

Chapter 3, it is possible to define a single parameter, the Doppler rate bandwidth that 
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determines the amount  of  noise  transferred  from  the  phase  discriminator output to the 

final Doppler rate estimates. The Doppler rate bandwidth is defined as follows: 
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Aside from characterising the ability of the tracking loop to produce accurate Doppler rate 

estimates, the Doppler rate bandwidth parameter also accounts for the impact of different 

differentiators/filters ( )( ) ( )D z S z  used for producing the final Doppler rate measurements. 
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In this way, the variance of Doppler rate measurements in a standard PLL becomes 
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Using the previous result, the Doppler rate jitter for a standard PLL assumes the following 

expression: 
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Eq.(5.13) has a similar functional form as the expression given in Eq.(5.4) when the  term  

0

11
2 /cT C N

� �
+� �

� �
 is  neglected. However it not possible to compare directly the performance 

of a sequential tracking loop with the CRLB. In sequential tracking loops, computation of a 

single Doppler/Doppler rate estimate is based on evaluation of a number of samples, M.. 
This is due to the presence of a reaction block and a filter that in sequential tracking loops 

introduce memory in the system, i.e., past information is retained for the computation of a 

single Doppler/Doppler rate estimate. This makes M difficult to determine. 

Doppler Rate Bias Analysis

Similarly to the case of the Doppler measurements, due to the transient response of the 

tracking loop to rapid changes in the input signal frequency rate and latencies caused by the 

smoothing filter, ( )S z , a bias is introduced in the Doppler rate estimates. The same analysis 

approach, as introduced in Chapter 3, can also be used here, thus, systemic errors in the 

Doppler rate measurements can be defined as 

[ ] [ ]df
E f k f kε � �= −� �� �

�

� �
.                                                                                                    (5.14) 

Then, using the relationship introduced in Eq.(5.7), and considering the fact that [ ]
f

N k�  is 

also zero mean, the systemic error, Eq.(5.14) can be formulated as follows: 
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is the bias impulse response, and [ ]kδ  is the Kronecker delta. As defined in the previous 

section, [ ]df k
�

 and [ ]
df

h k�  denote the input signal frequency rate and the loop frequency 

rate impulse response, respectively. The model defined in Eq.(5.15) allows one to quantify 

the bias introduced by the loop due to the variations in the input Doppler rate. However, it 

should be noted that as in the case of the bias in the Doppler estimates, a reference for 

Doppler rate measurements is required to be able to perform an experimental comparative 

analysis. 

5.1.2.2 FLL

The adopted analysis can then be applied to the FLL. As it has been discussed in detail in 

Chapter 3, an FLL operates in a similar way as the PLL. In an FLL, the frequency 

discriminator implicitly performs a phase differentiation using two subsequent correlator 

outputs [ ] [ ]( )and 1P k P k − , as shown in Figure 3-3. Thus, the output of the loop filter is a 

raw estimate of the Doppler rate, [ ]rawf k
�

. The additional integrator is used to obtain a new 

estimate of the Doppler frequency used by the NCO to generate the local carrier. As the 

raw Doppler rate estimate, [ ]rawf k
�

, is very noisy, the use of a smoothing filter is desirable, 

so that the final Doppler rate estimate is obtained as   

[ ] [ ] [ ]rawf k s k f k= ∗
� �

,                                                                                                     (5.17) 

where [ ]s k  is the impulse response of a smoothing filter with transfer function ( )S z , 

(Eq.(2.13)). In Chapter 3 it was shown that PLL and FLL are characterized by the same 

linear model with respect to the Doppler frequency, and that the advantage of the FLL is 

due to the phase unwrapping implicitly implemented when a frequency discriminator 

followed by an integrator are used. By replacing the frequency discriminator by a phase 
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discriminator followed by the differentiator, ( )f zΔ , (Eq.(3.37)) and using the same 

approach for the derivation of the linear tracking loop model as in the case of the PLL 

analysis discussed above, it can be shown that a similar result holds for the Doppler rate. 

However, in the case of the FLL, the final Doppler rate estimate is given as: 

( ) ( ) ( )
2

( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

f n fd

c f
d

f

H z H z

T z S z B zS z B z N zf z f z N z
B z N z B z N z

Δ
= ⋅ + ⋅

+ + �

� �

� �

������� ���������
,                                          (5.18) 

where ( ) 11 1f
c

z z
T

−� �Δ = −� �  is a first order differentiator which, as explained in the previous 

chapter, is fully determined by the frequency discriminator. This implies that although the 

general expression of the final frequency rate estimate provided by the PLL and FLL is the 

same, performance of these two tracking loops with respect to Doppler rate estimation is 

equivalent only in the case when a first order differentiator ( ) 11 1
c

D z z
T

−� �
� �= −� �� �

� �
 is used in 

the PLL for the computation of the Doppler rate observables.  

The Doppler rate variance, jitter and bias of the measurements obtained from the FLL  can 

then be determined by applying the expressions of the signal frequency rate and noise 

transfer functions, ( )
df

H z�  and ( )
n f

H z�  (Eq.(5.18)), to the models defined in Eqs. (5.11), 

(5.13) and (5.15). 

5.1.2.3 FLL-assisted-PLL

The procedure used for derivation of the approximated linear loop model of a common-rate 

FLL-assisted-PLL was discussed in detail in the previous chapter in regard to Doppler 

estimation. It has been shown that the effect of coupling the PLL and FLL loops in a single 

126 

discriminator followed by the differentiator, ( )f zΔ , (Eq.(3.37)) and using the same 

approach for the derivation of the linear tracking loop model as in the case of the PLL 

analysis discussed above, it can be shown that a similar result holds for the Doppler rate. 

However, in the case of the FLL, the final Doppler rate estimate is given as: 

( ) ( ) ( )
2

( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

f n fd

c f
d

f

H z H z

T z S z B zS z B z N zf z f z N z
B z N z B z N z

Δ
= ⋅ + ⋅

+ + �

� �

� �

������� ���������
,                                          (5.18) 

where ( ) 11 1f
c

z z
T

−� �Δ = −� �  is a first order differentiator which, as explained in the previous 

chapter, is fully determined by the frequency discriminator. This implies that although the 

general expression of the final frequency rate estimate provided by the PLL and FLL is the 

same, performance of these two tracking loops with respect to Doppler rate estimation is 

equivalent only in the case when a first order differentiator ( ) 11 1
c

D z z
T

−� �
� �= −� �� �

� �
 is used in 

the PLL for the computation of the Doppler rate observables.  

The Doppler rate variance, jitter and bias of the measurements obtained from the FLL  can 

then be determined by applying the expressions of the signal frequency rate and noise 

transfer functions, ( )
df

H z�  and ( )
n f

H z�  (Eq.(5.18)), to the models defined in Eqs. (5.11), 

(5.13) and (5.15). 

5.1.2.3 FLL-assisted-PLL

The procedure used for derivation of the approximated linear loop model of a common-rate 

FLL-assisted-PLL was discussed in detail in the previous chapter in regard to Doppler 

estimation. It has been shown that the effect of coupling the PLL and FLL loops in a single 

126 

discriminator followed by the differentiator, ( )f zΔ , (Eq.(3.37)) and using the same 

approach for the derivation of the linear tracking loop model as in the case of the PLL 

analysis discussed above, it can be shown that a similar result holds for the Doppler rate. 

However, in the case of the FLL, the final Doppler rate estimate is given as: 

( ) ( ) ( )
2

( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

f n fd

c f
d

f

H z H z

T z S z B zS z B z N zf z f z N z
B z N z B z N z

Δ
= ⋅ + ⋅

+ + �

� �

� �

������� ���������
,                                          (5.18) 

where ( ) 11 1f
c

z z
T

−� �Δ = −� �  is a first order differentiator which, as explained in the previous 

chapter, is fully determined by the frequency discriminator. This implies that although the 

general expression of the final frequency rate estimate provided by the PLL and FLL is the 

same, performance of these two tracking loops with respect to Doppler rate estimation is 

equivalent only in the case when a first order differentiator ( ) 11 1
c

D z z
T

−� �
� �= −� �� �

� �
 is used in 

the PLL for the computation of the Doppler rate observables.  

The Doppler rate variance, jitter and bias of the measurements obtained from the FLL  can 

then be determined by applying the expressions of the signal frequency rate and noise 

transfer functions, ( )
df

H z�  and ( )
n f

H z�  (Eq.(5.18)), to the models defined in Eqs. (5.11), 

(5.13) and (5.15). 

5.1.2.3 FLL-assisted-PLL

The procedure used for derivation of the approximated linear loop model of a common-rate 

FLL-assisted-PLL was discussed in detail in the previous chapter in regard to Doppler 

estimation. It has been shown that the effect of coupling the PLL and FLL loops in a single 

126 

discriminator followed by the differentiator, ( )f zΔ , (Eq.(3.37)) and using the same 

approach for the derivation of the linear tracking loop model as in the case of the PLL 

analysis discussed above, it can be shown that a similar result holds for the Doppler rate. 

However, in the case of the FLL, the final Doppler rate estimate is given as: 

( ) ( ) ( )
2

( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

f n fd

c f
d

f

H z H z

T z S z B zS z B z N zf z f z N z
B z N z B z N z

Δ
= ⋅ + ⋅

+ + �

� �

� �

������� ���������
,                                          (5.18) 

where ( ) 11 1f
c

z z
T

−� �Δ = −� �  is a first order differentiator which, as explained in the previous 

chapter, is fully determined by the frequency discriminator. This implies that although the 

general expression of the final frequency rate estimate provided by the PLL and FLL is the 

same, performance of these two tracking loops with respect to Doppler rate estimation is 

equivalent only in the case when a first order differentiator ( ) 11 1
c

D z z
T

−� �
� �= −� �� �

� �
 is used in 

the PLL for the computation of the Doppler rate observables.  

The Doppler rate variance, jitter and bias of the measurements obtained from the FLL  can 

then be determined by applying the expressions of the signal frequency rate and noise 

transfer functions, ( )
df

H z�  and ( )
n f

H z�  (Eq.(5.18)), to the models defined in Eqs. (5.11), 

(5.13) and (5.15). 

5.1.2.3 FLL-assisted-PLL

The procedure used for derivation of the approximated linear loop model of a common-rate 

FLL-assisted-PLL was discussed in detail in the previous chapter in regard to Doppler 

estimation. It has been shown that the effect of coupling the PLL and FLL loops in a single 



127 

structure can be modeled by using a loop filter with the transfer function, ( )eqB z , given by 

the sum of the FLL and PLL loop filter transfer functions, (Eq.(3.38)). In an FLL-assisted-

PLL the Doppler rate observations are obtained in the same way as shown in Eq.(5.5), 

namely by time differentiating the Doppler measurements. Thus, considering the 

relationship given in Eq.(3.38), and using the same approach as described above, it can be 

shown that the final Doppler rate estimate produced by a common-rate FLL-assisted-PLL is 

given by a linear combination of filtered input signal frequency rate and noise, and thus can 

be expressed as: 
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where ( )
df

H z�  and ( )
n f

H z�  represent the signal frequency rate and noise transfer functions 

for this type of a tracking loop. Due to the generality of the theoretical models for the 

Doppler rate variance, jitter and bias analysis, Eqs. (5.11), (5.13) and (5.15) can also be 

applied to the common-rate FLL-assisted-PLL tracking loop. First, using the expression of 

the frequency rate noise transfer function, ( )
n f

H z� , the Doppler rate bandwidth can be 

determined as defined in Eq.(5.10). This allows one to determine the Doppler rate variance 

and jitter. The Doppler bias can be evaluated by analysing the signal frequency rate transfer 

function, ( )
df

H z� , as shown in Eq.(5.15). 

5.1.2.4 Memory Discriminator Based Tracking Loops

Because of the similarity in the basic structure of the standard and memory discriminator 

based carrier tracking loops, the approach used to determine the variance and bias of 
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Doppler rate measurements obtained from the standard tracking loops can be easily applied 

to the memory discriminator based tracking loops. As discussed in the previous chapter, in 

the case of the memory discriminator based tracking loops (PLL, FLL and FLL-assisted-

PLL) it is necessary to account for the presence of an additional low-pass filtering stage, 

which in this thesis has been chosen to be represented by an exponential filter. Thus, 

following the approach used in Chapter 3, a memory discriminator can be approximated 

by a linear filter (Eq.(2.32)) which can be adapted into the linear models of the standard 

tracking loops. Moreover, determination of Doppler rate measurements in the memory 

discriminator based tracking loops is performed in the same way as it is done in the 

standard tracking loops. Thus, in the case of the memory discriminator based PLL the 

signal frequency rate and noise transfer functions are given by: 

( ) ( ) ( ) ( )
( ) ( )

( )
1df

S z F z B z N zH z
B z N z

=
+� ,                                                                                     (5.20) 

( ) ( ) ( ) ( ) ( )
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c
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F z B z N z
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+� .                                                                               (5.21) 

The same approach as suggested for the standard FLL can be applied in the case of the 

memory discriminator based FLL. Thus, when ( ) ( ) 11 1f
c

D z z z
T

−� �= Δ = −� � , Eq.(5.21) can 

be directly applied to characterise the frequency rate noise transfer function of the memory 

discriminator based FLL. Otherwise, the transfer function of the differentiator, ( )D z , in 

Eq.(5.21) can be simply replaced by ( )f zΔ . 

Eqs. (5.20) and (5.21) also apply to the common-rate FLL-assisted-PLL where the loop 

filter transfer function, ( )B z , is replaced by ( )eqB z  (Eq.(3.38)) and can be used for 

evaluation of the Doppler variance, jitter and bias as defined in Eqs. (5.11), (5.13) and 

(5.15), respectively. 
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5.1.3 Block Processing Architecture 

In Section 3.1.2, it has been shown that, under the assumption of negligible Doppler rate, 

the variance of the Doppler measurements produced by block processing approach 

approximately follows the CRLB (Eq.(3.47)). Considering this, and accounting for the 

effect of the differentiator used for computing Doppler rate measurements it is possible to 

derive an expression for the variance of the Doppler rate and define the concept of Doppler 

rate bandwidth for block processing architectures. 

In the  block processing approach the frequency measurements, [ ]rawf k  (Figure 2-7),  form 

a white sequence since each frequency estimate is obtained using a different block of 

disjoint input samples, [ ]r n . As explained in Chapter 2, in the block processing approach, 

Doppler rate measurements are obtained by applying a differentiator, ( )D z , on the 

estimated Doppler frequencies. Exploiting the fact that, in this case, [ ]rawf k  is a white 

sequence, it is possible to express the power spectral density of the Doppler rate 

measurements as 

( ) � { }( ) 22
2

1 exp 2CRLB cf c
P f D j fT

T
σ π=� ,                                                                           (5.22) 

where   

� ( ) ( )cD z T D z= ,                                                                                                               (5.23) 

which is a normalized version of ( )D z . This normalization has been performed in order to 

better highlight the different quantities in Eq.(5.22), and also in the following equations. To 

be more specific, � ( )D z  is unitless. The variance of the Doppler rate measurements can 

then be expressed as follows: 
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In Eq.(5.24) the integral in the last line is a unitless quantity and the variance of [ ]f k
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 is 

thus expressed in 
2

4

rad
s

� �
� �
� �

. As it has been mentioned previously, only the case of a first 

order differentiator used for computation of the Doppler rate measurements will be 

considered in this thesis. In this case, � ( ) 11D z z−= − , and 

� ( )
20.5 2

0.5
2jD e dπφ φ

−
=� .                                                                                                     (5.25)  

By substituting the expression for the for the standard deviation of frequency estimates 

obtained using block processing techniques, CRLBσ , given in Eq.(3.47) into Eq.(5.24), the 

following expression for the standard deviation of Doppler rate estimates can be found: 
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defines the Doppler rate bandwidth parameter for the block processing approach. For the 

specific case of ( )D z  being a first order differentiator, Eq.(5.27) assumes the following 

form: 
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In this way the variance of Doppler rate estimates can be formulated as follows: 
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Eq.(5.29) has the same functional form as Eq.(5.4) providing the CRLB of the Doppler rate 

estimates.  

By comparing Eqs. (5.4) and (5.29), it can be concluded that block processing algorithms 

are not able to reach the CRLB showing that this technique is suboptimal with respect to 

other methods (Abatzoglou 1986) that attain this lower bound. The increase in variance is 

however small and is justified by a reduced computational load with respect to the 

algorithm described in (Abatzoglou 1986). 

5.2 Practical Verification  

The theoretical expressions of the Doppler rate jitter (Eqs. (5.13) and (5.29)) and bias 

(Eq.(5.15)) have been validated through the use of data simulated by means of a hardware 

GPS simulator in addition to using actual GPS L1 signals. Several static and dynamic 

pedestrian-based field tests in various GPS operating environments have been conducted, 

some of these experiments have been described in Chapter 3, where they were used for the 

evaluation of the theoretical model for the Doppler frequency estimation analysis. Also in 

this case, the tests presented in this section represent only sample results and several 

additional experiments have been performed with similar findings.  

131 

12
f c

B
T

=� .                                                                                                                          (5.28) 

In this way the variance of Doppler rate estimates can be formulated as follows: 
2

2
4 4

0

12 /1
/

c

f c

T rad
T C N s

σ � �
= � �

� �
� .                                                                                          (5.29) 

Eq.(5.29) has the same functional form as Eq.(5.4) providing the CRLB of the Doppler rate 

estimates.  

By comparing Eqs. (5.4) and (5.29), it can be concluded that block processing algorithms 

are not able to reach the CRLB showing that this technique is suboptimal with respect to 

other methods (Abatzoglou 1986) that attain this lower bound. The increase in variance is 

however small and is justified by a reduced computational load with respect to the 

algorithm described in (Abatzoglou 1986). 

5.2 Practical Verification  

The theoretical expressions of the Doppler rate jitter (Eqs. (5.13) and (5.29)) and bias 

(Eq.(5.15)) have been validated through the use of data simulated by means of a hardware 

GPS simulator in addition to using actual GPS L1 signals. Several static and dynamic 

pedestrian-based field tests in various GPS operating environments have been conducted, 

some of these experiments have been described in Chapter 3, where they were used for the 

evaluation of the theoretical model for the Doppler frequency estimation analysis. Also in 

this case, the tests presented in this section represent only sample results and several 

additional experiments have been performed with similar findings.  

131 

12
f c

B
T

=� .                                                                                                                          (5.28) 

In this way the variance of Doppler rate estimates can be formulated as follows: 
2

2
4 4

0

12 /1
/

c

f c

T rad
T C N s

σ � �
= � �

� �
� .                                                                                          (5.29) 

Eq.(5.29) has the same functional form as Eq.(5.4) providing the CRLB of the Doppler rate 

estimates.  

By comparing Eqs. (5.4) and (5.29), it can be concluded that block processing algorithms 

are not able to reach the CRLB showing that this technique is suboptimal with respect to 

other methods (Abatzoglou 1986) that attain this lower bound. The increase in variance is 

however small and is justified by a reduced computational load with respect to the 

algorithm described in (Abatzoglou 1986). 

5.2 Practical Verification  

The theoretical expressions of the Doppler rate jitter (Eqs. (5.13) and (5.29)) and bias 

(Eq.(5.15)) have been validated through the use of data simulated by means of a hardware 

GPS simulator in addition to using actual GPS L1 signals. Several static and dynamic 

pedestrian-based field tests in various GPS operating environments have been conducted, 

some of these experiments have been described in Chapter 3, where they were used for the 

evaluation of the theoretical model for the Doppler frequency estimation analysis. Also in 

this case, the tests presented in this section represent only sample results and several 

additional experiments have been performed with similar findings.  

131 

12
f c

B
T

=� .                                                                                                                          (5.28) 

In this way the variance of Doppler rate estimates can be formulated as follows: 
2

2
4 4

0

12 /1
/

c

f c

T rad
T C N s

σ � �
= � �

� �
� .                                                                                          (5.29) 

Eq.(5.29) has the same functional form as Eq.(5.4) providing the CRLB of the Doppler rate 

estimates.  

By comparing Eqs. (5.4) and (5.29), it can be concluded that block processing algorithms 

are not able to reach the CRLB showing that this technique is suboptimal with respect to 

other methods (Abatzoglou 1986) that attain this lower bound. The increase in variance is 

however small and is justified by a reduced computational load with respect to the 

algorithm described in (Abatzoglou 1986). 

5.2 Practical Verification  

The theoretical expressions of the Doppler rate jitter (Eqs. (5.13) and (5.29)) and bias 

(Eq.(5.15)) have been validated through the use of data simulated by means of a hardware 

GPS simulator in addition to using actual GPS L1 signals. Several static and dynamic 

pedestrian-based field tests in various GPS operating environments have been conducted, 

some of these experiments have been described in Chapter 3, where they were used for the 

evaluation of the theoretical model for the Doppler frequency estimation analysis. Also in 

this case, the tests presented in this section represent only sample results and several 

additional experiments have been performed with similar findings.  



132 

5.2.1 Doppler Rate Jitter Model Verification 

The validity of the proposed theoretical models of Doppler rate jitter is verified by 

comparing the Doppler rate jitter values predicted using the expressions defined in Eqs. 

(5.13) and (5.29) with the measurements of the actual Doppler rate jitter. The empirical 

Doppler jitter has been determined by first calculating the mean of the Doppler rate 

measurements provided by the GSNRxTM receiver using a moving average (MA) filter. The 

mean was then subtracted from the measurements which were further squared and filtered. 

In this way, the final estimate of the empirical Doppler rate jitter can be expressed as 

follows: 
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where K  represents the length of the MA filter analysis window.  

5.2.1.1 Attenuated Line-Of-Sight (LOS) Test

In this experiment, the LOS RF data were recorded using a stationary rooftop-mounted 

antenna. The equipment setup and procedure used to perform this data collection are 

described in detail in Section 3.2.1.1 (in particular, Figure 3-8 and Table 3-1). The signals 

were acquired, providing Doppler frequency rate and C/N0 estimates. Thus, using the C/N0 

values estimated by the receiver and knowing the length of the integration period, cT , it was 

possible to determine the empirical Doppler rate jitter as a function of the input C/N0.   
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Attenuated LOS: Sequential Carrier Tracking – PLL

Figure 5-3 shows the jitter of Doppler rate measurements obtained by time differentiating 

raw Doppler observables using a 200 ms period compared to the ones determined by 

performing double time differentiation of the carrier phase measurements. In this particular 

case a Savitsky-Golay type of smoothing filter/differentiator (Savitzky & Golay 1964) with 

a 10 ms analysis window was used to generate the carrier phase derived Doppler 

measurements. The obtained carrier phase derived Doppler measurements were further 

differentiated using a 200 ms period in order to get the Doppler rate estimates.  

In both cases, 1 ms coherent integration time and 8 Hz loop bandwidth were used. 

Empirical Doppler rate jitter values were determined as defined in Eq.(5.30), whereas the 

theoretical Doppler rate jitter was calculated using Eq.(5.13), where in the case of Doppler 

rate measurements derived from carrier phase observations the effect of the smoothing filter 

( )S z  was included through the use of ( ) ( ) ( )S z I z z= Δ .  

As it can be observed in Figure 5-3, Doppler rate jitter results predicted using the 

theoretical model (Eq.(5.13)) are in good agreement with the measurements of the actual 

Doppler rate jitter, showing the ability of the proposed theoretical model to predict the 

quality of Doppler rate measurements determined from the raw Doppler measurements as 

well as the ones obtained from the carrier phase observations. 

In order to evaluate the accuracy of the measurements, such factors as the loop bandwidth 

and coherent integration time, as well as the approach used to determine the Doppler rate 

(whether the measurements are derived by differentiating the filtered raw Doppler or by 

performing double differentiation of the carrier phase measurements) have to be 

considered. Also the size of the analysis window of the filters used in the process of 

derivation of the Doppler rate has to be taken into account.  
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Figure 5-3: Empirical and theoretical jitter of Doppler rate estimates as a function of 
C/N0. Doppler rate estimates obtained by differentiating raw Doppler measurements 
from a standard PLL and by performing a double differentiation of the carrier phase 
measurements. Differentiation is performed using a 200 ms period. 

However, the main focus of this thesis is the development and verification of the theoretical 

model for Doppler rate analysis, while no effort has been made to achieve the best accuracy 

of the empirical results. Therefore, it is noted that by appropriate filtering a better 

measurement accuracy can be achieved in all the considered cases.  

Attenuated LOS: Sequential Carrier Tracking – FLL

For testing of the proposed model in the case of the FLL, GSNRxTM was constrained to 

operate in FLL-only mode. Figure 5-4 shows the jitter of the Doppler rate measurements 

obtained directly from the output of the FLL loop filter and subsequently filtered using a 
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Moving Average filter with a 200 ms analysis window. A fixed coherent integration time of 

1 ms was used by the FLL and different loop bandwidths were tested. The empirical 

Doppler rate jitter was determined as defined in Eq. (5.30) and compared to the  results 

predicted using the theoretical model given in Eq.(5.13). A good agreement between the 

theoretical and empirical results can be observed from the plots presented in Figure 5-4, 

confirming the applicability of the model given in Eq.(5.13) to the FLL. 

Figure 5-4: Empirical and theoretical jitter of the Doppler rate estimates as a function 
of C/N0 and loop noise bandwidth Bn. Doppler rate estimates were obtained directly 
from the output of the FLL loop filter and subsequently filtered using a MA filter with 
a 200 ms analysis window. 
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Attenuated LOS: Sequential Carrier Tracking – FLL-assisted-PLL

The effectiveness of the theoretical model for the analysis of the Doppler rate jitter of the 

measurements provided by a standard common-rate FLL-assisted-PLL has been tested 

using the data obtained by processing the data set collected in this experiment in the FLL-

assisted-PLL mode only. Here as well, the empirical data were processed as described in 

Eq. (5.30), whereas the theoretical Doppler rate jitter values were determined by using the 

relationship defined in Eq.(3.38) to account for the effect of coupling the PLL and FLL 

loops in a single structure, and applying it to the theoretical model given in Eq.(5.13).  

Figure 5-5: Empirical and theoretical Doppler rate jitter of raw Doppler rate 
measurements as a function of C/N0 obtained using a common rate FLL-assisted-PLL. 
Cases considered: loop bandwidths, Bn(PLL) = Bn(FLL) 4 Hz and 8 Hz and Tc = 1 ms.  
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Results obtained using a common-rate FLL-assisted-PLL are shown in Figure 5-5, where 

cases  with 4 Hz and 8 Hz loop bandwidth in both the PLL and FLL branches and 1 ms 

coherent integration time are considered. In both cases considered in Figure 5-5, the 

Doppler rate measurements were obtained by time differentiating the raw Doppler 

observables using a 200 ms period.  

From the results presented in Figure 5-5, a similar conclusion as in the case of Doppler 

estimation analysis in this type of a carrier tracking loop can be made. To be more specific, 

coupling the PLL and FLL in a single loop structure results in a higher level of noise 

transferred from the input signal to the final Doppler rate estimate resulting in less accurate 

measurements. Figure 5-5 also demonstrates that the theoretical values of the Doppler rate 

jitter match the empirical results indicating that the approach used for deriving the 

equivalent linear model of a common-rate FLL-assisted-PLL with regard to the Doppler 

rate estimate is correct, and that the theoretical model is also valid when applied to this type 

of a tracking loop structure. 

Attenuated LOS: Sequential Carrier Tracking - Memory Discriminator Based Tracking 
Loops

In order to validate the proposed model for Doppler rate estimation in memory 

discriminator based tracking loops the collected data set has been processed by constraining 

the software receiver to operate in specified modes, namely PLL, FLL-assisted-PLL and 

FLL modes. In all the cases it has been observed that when compared to the standard loops, 

the memory discriminator based architecture provides more accurate Doppler rate 

estimates. The results have also shown good agreement between the Doppler rate jitter 

values predicted using the model defined in Eq.(5.13) and the actual Doppler rate jitter. It is 

noted, that to determine the theoretical Doppler rate jitter values, the model given in 

Eq.(5.13) has been extended to include the effect of memory discriminators by using the 

expression of the noise transfer function given in Eq.(5.21), where in the case of the 
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common-rate FLL-assisted-PLL the loop filter transfer function, ( )B z , was replaced by 

( )eqB z  (Eq.(3.38)). To avoid the repetition of similar findings, only the case of a memory 

discriminator based PLL will be presented here.  

Figure 5-6: Comparison of empirical and theoretical Doppler rate jitter as a function 
of C/N0 and forgetting factor,� , obtained using a memory discriminator based 3rd

order PLL, Tc = 1 ms, Bn = 5 Hz. The Doppler rate estimates were obtained by 
differentiation of the raw Doppler measurements using a 200 ms period. 

Figure 5-6 compares the theoretical Doppler rate jitter obtained using a 3rd order memory 

discriminator based PLL using 1 ms coherent integration time, 5 Hz loop bandwidth and a 

forgetting factor, α , equal to 0 and 0.8, where α  = 0 represents the case of a standard 

tracking loop. In this particular case Doppler rate measurements were computed by time 

differentiating the raw Doppler observables using a 200 ms period. 
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Attenuated LOS: Block Processing

The equipment setup used to collect the data for practical verification of the model 

proposed for Doppler rate estimation in the block processing approach is illustrated in 

Figure 3-16. The procedure adopted to perform this data collection and general details 

about the GSNRx™-rr are provided in Section 3.2.1.  

Results obtained using the block processing approach are presented in Figure 5-7 where the 

theoretical and empirical Doppler rate jitter values determined using different integration 

times are compared.  

Figure 5-7: Empirical Doppler rate jitter compared to the proposed theoretical model 
as a function of C/N0 and integration time. Doppler rate measurements obtained by 
performing the correlation peak search with a step of 0.2 Hz. No additional filtering 
applied to the empirical data. 

The theoretical Doppler rate jitter was determined using Eq.(5.26), whereas the measured 

Doppler rate jitter results were processed as specified in Eq.(5.30). In all cases a step in the 
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frequency domain equal to 0.2 Hz was used to perform the search for the correlation peak. 

The Doppler rate measurements were obtained by differentiating raw Doppler observables 

obtained using the search strategy described in Section 2.3.4. It is important to consider, 

that no additional filtering has been applied to the empirical data prior to the determination 

of the Doppler rate jitter. Again, a good agreement between the empirical and theoretical 

results can be observed confirming the fact that also for the block processing approach a 

parameter identical in function the Doppler bandwidth can be defined.  

5.2.1.2 Negligible Doppler Rate Assumption Verification 

It is important to consider that both Eqs. (5.13) and (5.26) are derived under the assumption 

of negligible Doppler rate during the integration period, cT . To confirm the validity of this 

assumption in practice, and further support the developed theoretical models, additional 

tests were performed. To have a full control over the user motion profile, a hardware GPS 

simulator, the GSS 7700 from Spirent was used to simulate the GPS signals. A simple 

linear trajectory has been simulated wherein the user was moving along the trajectory with 

a constant acceleration. Accelerations in the range of 0.1 - 2 m/s2 were simulated. At the 

same time the signal was progressively attenuated with a step of 1 dB each 6 s after 30 

seconds without attenuation. Equipment setups similar to the ones illustrated in Figures 3-8 

and 3-16 were used. But in this case the RF signals were generated by the GSS 7700 

hardware GPS simulator and external LNAs were used to simulate the effect of the active 

antenna.  

Figures 5-8 and 5-9 illustrate the results obtained in the case of a 1.5 m/s2 receiver 

acceleration. In particular, Figure 5-8 considers the case of a 3rd order PLL, where the 

empirical Doppler rate jitter values are compared to the theoretical ones determined 

according to the model defined in Eq.(5.13), whereas the comparison between the empirical 

results obtained using the block processing approach and the values computed using the 

theoretical expression given in Eq.(5.26) is shown in Figure 5-9.  
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Figure 5-8: Empirical and theoretical Doppler rate jitter as a function of C/N0.  
Doppler rate estimates obtained by differentiating the raw Doppler measurements 
with a 20 ms period and further filtered using a MA filter with 10 ms analysis 
window.  

Figure 5-9: Predicted and measured Doppler rate jitter as a function of C/N0. Doppler 
rate measurements were obtained by performing a search for the correlation peak 
with a step of 0.2 Hz. Constant user acceleration of 1.5 m/s2 simulated during the 
entire data collection. 
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From the results in Figures 5-8 and 5-9, it is possible to conclude that the assumptions 

made by a GPS for measuring Doppler rate, i.e., Doppler rate has a negligible impact 

during the integration time, are still valid even when significant acceleration for a 

pedestrian user is present. 

5.2.1.3 Moderate Urban Canyon Environment: Sequential Architecture

The theoretical model for the analysis of the Doppler rate measurement accuracy was 

further studied by using the GPS L1 C/A data collected in more realistic conditions and in 

the presence of different signal impairments. Results from a pedestrian-based test 

performed in a foliage obstructed environment will be presented in this section.  

In this experiment, after staying stationary for one minute, a trajectory including areas with 

open-sky at the start and the end of the test, and a forested area in the middle of the 

trajectory was followed. Figure 5-9 summarizes the results for this test by comparing the 

measured and theoretical Doppler rate jitter. Because of large variations in the values of 

Doppler rate jitter, the logarithmic scale was used for better visualization of the results. In 

the case considered in Figure 5-9 the collected data set was processed using the standard 

GSNRxTM receiver without any constrains. To be more specific, the choice of the tracking 

modes was regulated by the PLI and FLI of the software receiver (Petovello & O’Driscoll 

2007). Based on the tracking status provided by the receiver at each measurement epoch, it 

was possible to determine the value of the Doppler rate bandwidth using the appropriate 

signal frequency rate transfer function, ( )
n f

H z� . Having determined the Doppler rate 

bandwidth, the theoretical value of the Doppler jitter could be computed by using the 

proposed model given in Eq.(5.13). Tracking loop parameters used for each tracking loop 

are specified in Table 5-1.  

142 

From the results in Figures 5-8 and 5-9, it is possible to conclude that the assumptions 

made by a GPS for measuring Doppler rate, i.e., Doppler rate has a negligible impact 

during the integration time, are still valid even when significant acceleration for a 

pedestrian user is present. 

5.2.1.3 Moderate Urban Canyon Environment: Sequential Architecture

The theoretical model for the analysis of the Doppler rate measurement accuracy was 

further studied by using the GPS L1 C/A data collected in more realistic conditions and in 

the presence of different signal impairments. Results from a pedestrian-based test 

performed in a foliage obstructed environment will be presented in this section.  

In this experiment, after staying stationary for one minute, a trajectory including areas with 

open-sky at the start and the end of the test, and a forested area in the middle of the 

trajectory was followed. Figure 5-9 summarizes the results for this test by comparing the 

measured and theoretical Doppler rate jitter. Because of large variations in the values of 

Doppler rate jitter, the logarithmic scale was used for better visualization of the results. In 

the case considered in Figure 5-9 the collected data set was processed using the standard 

GSNRxTM receiver without any constrains. To be more specific, the choice of the tracking 

modes was regulated by the PLI and FLI of the software receiver (Petovello & O’Driscoll 

2007). Based on the tracking status provided by the receiver at each measurement epoch, it 

was possible to determine the value of the Doppler rate bandwidth using the appropriate 

signal frequency rate transfer function, ( )
n f

H z� . Having determined the Doppler rate 

bandwidth, the theoretical value of the Doppler jitter could be computed by using the 

proposed model given in Eq.(5.13). Tracking loop parameters used for each tracking loop 

are specified in Table 5-1.  

142 

From the results in Figures 5-8 and 5-9, it is possible to conclude that the assumptions 

made by a GPS for measuring Doppler rate, i.e., Doppler rate has a negligible impact 

during the integration time, are still valid even when significant acceleration for a 

pedestrian user is present. 

5.2.1.3 Moderate Urban Canyon Environment: Sequential Architecture

The theoretical model for the analysis of the Doppler rate measurement accuracy was 

further studied by using the GPS L1 C/A data collected in more realistic conditions and in 

the presence of different signal impairments. Results from a pedestrian-based test 

performed in a foliage obstructed environment will be presented in this section.  

In this experiment, after staying stationary for one minute, a trajectory including areas with 

open-sky at the start and the end of the test, and a forested area in the middle of the 

trajectory was followed. Figure 5-9 summarizes the results for this test by comparing the 

measured and theoretical Doppler rate jitter. Because of large variations in the values of 

Doppler rate jitter, the logarithmic scale was used for better visualization of the results. In 

the case considered in Figure 5-9 the collected data set was processed using the standard 

GSNRxTM receiver without any constrains. To be more specific, the choice of the tracking 

modes was regulated by the PLI and FLI of the software receiver (Petovello & O’Driscoll 

2007). Based on the tracking status provided by the receiver at each measurement epoch, it 

was possible to determine the value of the Doppler rate bandwidth using the appropriate 

signal frequency rate transfer function, ( )
n f

H z� . Having determined the Doppler rate 

bandwidth, the theoretical value of the Doppler jitter could be computed by using the 

proposed model given in Eq.(5.13). Tracking loop parameters used for each tracking loop 

are specified in Table 5-1.  

142 

From the results in Figures 5-8 and 5-9, it is possible to conclude that the assumptions 

made by a GPS for measuring Doppler rate, i.e., Doppler rate has a negligible impact 

during the integration time, are still valid even when significant acceleration for a 

pedestrian user is present. 

5.2.1.3 Moderate Urban Canyon Environment: Sequential Architecture

The theoretical model for the analysis of the Doppler rate measurement accuracy was 

further studied by using the GPS L1 C/A data collected in more realistic conditions and in 

the presence of different signal impairments. Results from a pedestrian-based test 

performed in a foliage obstructed environment will be presented in this section.  

In this experiment, after staying stationary for one minute, a trajectory including areas with 

open-sky at the start and the end of the test, and a forested area in the middle of the 

trajectory was followed. Figure 5-9 summarizes the results for this test by comparing the 

measured and theoretical Doppler rate jitter. Because of large variations in the values of 

Doppler rate jitter, the logarithmic scale was used for better visualization of the results. In 

the case considered in Figure 5-9 the collected data set was processed using the standard 

GSNRxTM receiver without any constrains. To be more specific, the choice of the tracking 

modes was regulated by the PLI and FLI of the software receiver (Petovello & O’Driscoll 

2007). Based on the tracking status provided by the receiver at each measurement epoch, it 

was possible to determine the value of the Doppler rate bandwidth using the appropriate 

signal frequency rate transfer function, ( )
n f

H z� . Having determined the Doppler rate 

bandwidth, the theoretical value of the Doppler jitter could be computed by using the 

proposed model given in Eq.(5.13). Tracking loop parameters used for each tracking loop 

are specified in Table 5-1.  



143 

Table 5-1: Carrier tracking loop parameters used to process the data collected in the 
foliage obstructed environment. 

Tracking State Loop Bandwidth Coherent 

integration time 

PLL 8nB Hz=

FLL-assisted-PLL 
( )

( )

8

10
PLL

FLL

n

n

B Hz
B Hz

=

=

Narrow pull-in FLL 10nB Hz=

Wide pull-in FLL 10nB Hz=

1cT ms=

In the cases of the PLL and FLL-assisted-PLL the Doppler rate estimates were obtained by 

differentiating raw Doppler measurements using a 1 ms period and then filtering them 

using a MA filter with a 400 ms analysis window. Whereas in the case of the FLL (this 

includes both wide and narrow pull-in FLL modes) Doppler rate measurements were 

obtained directly from the output of the FLL loop filter and subsequently filtered using a 

MA filter with a 400 ms analysis window. The effect of the MA filter was accounted for in 

the theoretical model by setting ( )S z  as defined in Eq.(2.13) in the expression of the 

frequency rate noise transfer function,  ( )
n f

H z� . As in the case of the Doppler analysis 

detailed in Chapter 3, due to the fact that the C/N0 estimates and the Doppler rate values 

provided by GSNRxTM are evaluated from the same correlator outputs, they are both 

affected by the same impairments. Thus, also in the case of Doppler rate measurements 

multipath and fading phenomena, which are not accounted for in the theoretical model of 

the Doppler rate jitter, are partially compensated by the use of the C/N0 provided by the 

receiver.  
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Figure 5-9: Environment view and Doppler rate jitter analysis for a pedestrian-based 
test in a foliage obstructed environment. Standard sequential architecture.  

Results obtained in this test also demonstrate a good match between the Doppler rate jitter 

predicted using the theoretical model (Eq.(5.13)) and the empirical results, further 

confirming the validity of the proposed model. The collected data set has also been 

processed using the memory discriminator based architecture and results comparable to 

those obtained with the standard architecture were achieved.  
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5.2.1.4 Indoor Environment/Wooden Residential House: Block Processing Architecture

The procedure used to perform this data collection, test environment and equipment setup 

are described in detail in Section 3.2.1.3, where the test trajectory is explicitly described in 

Figure 3-19. About seven minutes of RF data were recorded in a pedestrian-based test 

performed in a typical North American wooden residential house, during which nine GPS 

satellites were tracked. The collected data set was processed using GSNRxTM-rr version of 

the software receiver implementing block processing techniques. Following the data 

analysis methodology used in all the tests presented in this chapter, the empirical data were 

processed as specified in Eq.(5.30). The theoretical Doppler jitter, in its turn, was 

determined using the model defined in Eq.(5.26).  

Figure 5-10 shows the results obtained in this test by using a 50 ms integration time, where 

a step equal to 0.2 Hz was used to perform the search for the correlation peak in the 

frequency domain.  

The Doppler rate measurements in this case were obtained by differentiating the raw 

Doppler measurements using a 400 ms period. No additional filtering has been applied to 

either Doppler or Doppler rate measurements.  

Change of the test environments from clear-sky/outdoors to main floor, then basement and 

back to clear-sky, experienced by the receiver resulted in different levels of signal 

attenuation, this can be observed from the C/N0 plot at the bottom of Figure 5-10. In 

addition to this, since the user was in constant motion, making several loops on each level 

of the house, the e��ects of the user motion and gait caused variations in the Doppler rate 

measurements, effect of which was directly transferred to the Doppler rate jitter. Similar to 

the case of the sequential tracking loops, these effects are partially compensated for through 

the use of the C/N0 provided by the receiver in the theoretical values of Doppler rate jitter 

determined using Eq.(5.26), leading to good agreement between the empirical and 

theoretical results. 

145 

5.2.1.4 Indoor Environment/Wooden Residential House: Block Processing Architecture

The procedure used to perform this data collection, test environment and equipment setup 

are described in detail in Section 3.2.1.3, where the test trajectory is explicitly described in 

Figure 3-19. About seven minutes of RF data were recorded in a pedestrian-based test 

performed in a typical North American wooden residential house, during which nine GPS 

satellites were tracked. The collected data set was processed using GSNRxTM-rr version of 

the software receiver implementing block processing techniques. Following the data 

analysis methodology used in all the tests presented in this chapter, the empirical data were 

processed as specified in Eq.(5.30). The theoretical Doppler jitter, in its turn, was 

determined using the model defined in Eq.(5.26).  

Figure 5-10 shows the results obtained in this test by using a 50 ms integration time, where 

a step equal to 0.2 Hz was used to perform the search for the correlation peak in the 

frequency domain.  

The Doppler rate measurements in this case were obtained by differentiating the raw 

Doppler measurements using a 400 ms period. No additional filtering has been applied to 

either Doppler or Doppler rate measurements.  

Change of the test environments from clear-sky/outdoors to main floor, then basement and 

back to clear-sky, experienced by the receiver resulted in different levels of signal 

attenuation, this can be observed from the C/N0 plot at the bottom of Figure 5-10. In 

addition to this, since the user was in constant motion, making several loops on each level 

of the house, the e��ects of the user motion and gait caused variations in the Doppler rate 

measurements, effect of which was directly transferred to the Doppler rate jitter. Similar to 

the case of the sequential tracking loops, these effects are partially compensated for through 

the use of the C/N0 provided by the receiver in the theoretical values of Doppler rate jitter 

determined using Eq.(5.26), leading to good agreement between the empirical and 

theoretical results. 

145 

5.2.1.4 Indoor Environment/Wooden Residential House: Block Processing Architecture

The procedure used to perform this data collection, test environment and equipment setup 

are described in detail in Section 3.2.1.3, where the test trajectory is explicitly described in 

Figure 3-19. About seven minutes of RF data were recorded in a pedestrian-based test 

performed in a typical North American wooden residential house, during which nine GPS 

satellites were tracked. The collected data set was processed using GSNRxTM-rr version of 

the software receiver implementing block processing techniques. Following the data 

analysis methodology used in all the tests presented in this chapter, the empirical data were 

processed as specified in Eq.(5.30). The theoretical Doppler jitter, in its turn, was 

determined using the model defined in Eq.(5.26).  

Figure 5-10 shows the results obtained in this test by using a 50 ms integration time, where 

a step equal to 0.2 Hz was used to perform the search for the correlation peak in the 

frequency domain.  

The Doppler rate measurements in this case were obtained by differentiating the raw 

Doppler measurements using a 400 ms period. No additional filtering has been applied to 

either Doppler or Doppler rate measurements.  

Change of the test environments from clear-sky/outdoors to main floor, then basement and 

back to clear-sky, experienced by the receiver resulted in different levels of signal 

attenuation, this can be observed from the C/N0 plot at the bottom of Figure 5-10. In 

addition to this, since the user was in constant motion, making several loops on each level 

of the house, the e��ects of the user motion and gait caused variations in the Doppler rate 

measurements, effect of which was directly transferred to the Doppler rate jitter. Similar to 

the case of the sequential tracking loops, these effects are partially compensated for through 

the use of the C/N0 provided by the receiver in the theoretical values of Doppler rate jitter 

determined using Eq.(5.26), leading to good agreement between the empirical and 

theoretical results. 

145 

5.2.1.4 Indoor Environment/Wooden Residential House: Block Processing Architecture

The procedure used to perform this data collection, test environment and equipment setup 

are described in detail in Section 3.2.1.3, where the test trajectory is explicitly described in 

Figure 3-19. About seven minutes of RF data were recorded in a pedestrian-based test 

performed in a typical North American wooden residential house, during which nine GPS 

satellites were tracked. The collected data set was processed using GSNRxTM-rr version of 

the software receiver implementing block processing techniques. Following the data 

analysis methodology used in all the tests presented in this chapter, the empirical data were 

processed as specified in Eq.(5.30). The theoretical Doppler jitter, in its turn, was 

determined using the model defined in Eq.(5.26).  

Figure 5-10 shows the results obtained in this test by using a 50 ms integration time, where 

a step equal to 0.2 Hz was used to perform the search for the correlation peak in the 

frequency domain.  

The Doppler rate measurements in this case were obtained by differentiating the raw 

Doppler measurements using a 400 ms period. No additional filtering has been applied to 

either Doppler or Doppler rate measurements.  

Change of the test environments from clear-sky/outdoors to main floor, then basement and 

back to clear-sky, experienced by the receiver resulted in different levels of signal 

attenuation, this can be observed from the C/N0 plot at the bottom of Figure 5-10. In 

addition to this, since the user was in constant motion, making several loops on each level 

of the house, the e��ects of the user motion and gait caused variations in the Doppler rate 

measurements, effect of which was directly transferred to the Doppler rate jitter. Similar to 

the case of the sequential tracking loops, these effects are partially compensated for through 

the use of the C/N0 provided by the receiver in the theoretical values of Doppler rate jitter 

determined using Eq.(5.26), leading to good agreement between the empirical and 

theoretical results. 



146 

Outdoors OutdoorsMain 
floor

Basement
Time [s]

C/N0 [dB-Hz]

Figure 5-10: Doppler rate jitter analysis for a pedestrian-based test in an indoor 
environment, block processing approach. Doppler rate measurements were obtained 
by differentiating Doppler observables using a 400 ms period.  

5.2.2 Doppler Rate Bias Model Verification 

As in the case of Doppler bias considered in Section 3.2.2, to be able to validate the 

potential bias in the Doppler rate measurements, a reference Doppler rate solution is 

required. Therefore, the same experimental approach used in Section 3.2.2 was applied 

here: a GPS hardware simulator, the GSS 7700 from Spirent was used for GPS signal 

generation and to provide an accurate reference. The same scenario, simulating the 

dynamics of a road bound vehicle moving along a rectangular trajectory, as used for the 

evaluation of the Doppler bias is considered. A detailed description of the simulated 
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by differentiating Doppler observables using a 400 ms period.  

5.2.2 Doppler Rate Bias Model Verification 

As in the case of Doppler bias considered in Section 3.2.2, to be able to validate the 

potential bias in the Doppler rate measurements, a reference Doppler rate solution is 

required. Therefore, the same experimental approach used in Section 3.2.2 was applied 

here: a GPS hardware simulator, the GSS 7700 from Spirent was used for GPS signal 

generation and to provide an accurate reference. The same scenario, simulating the 

dynamics of a road bound vehicle moving along a rectangular trajectory, as used for the 

evaluation of the Doppler bias is considered. A detailed description of the simulated 
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platform dynamics, test methodology, equipment setup and specifications are provided in 

Section 3.2.2. In particular, Figures 3-22 and 3-25 (upper plot) illustrate the simulation 

trajectory and the absolute acceleration experienced by the receiver during the simulation. 

Because of higher levels of dynamics experienced by the receiver at each turn of the 

trajectory, the tracking loops of the receiver are not able to instantaneously follow the rapid 

variations in Doppler rate, leading to a bias introduced at each turn. 

The Doppler rate bias was measured by taking the difference between the Doppler rate 

values estimated by the receiver and the reference Doppler rate provided by the hardware 

simulator. These measurements were then compared against the theoretical Doppler rate 

bias obtained by filtering the reference Doppler rate provided by the simulator with the bias 

impulse response given by Eq.(5.16).  

Because of the way the hardware simulator generates the reference Doppler/Doppler rate, 

the theoretical Doppler rate bias looks like a sawtooth wave. Since the true Doppler rate is 

piece-wise linear, its derivative is discontinuous and these discontinuities are reflected in 

the predicted Doppler rate bias that assumes a sawtooth shape. It should be noted that this 

behaviour is observed in all the results presented in this section.  

5.2.2.1 Doppler Rate Bias: Standard Tracking Loops

Figure 5-11 compares the measured and theoretically predicted biases for a 2 g turn in the 

simulated trajectory obtained using a third order PLL. The collected data set was processed 

using a 10 Hz loop bandwidth and 1 ms coherent integration time to assure that the receiver 

maintains phase lock during high dynamic sections of the trajectory. In order to obtain 

Doppler rate measurements, the raw Doppler estimates were filtered by a MA filter with 

400 ms analysis window, and then subsequently differentiated using a 1 ms period. For the 

determination of the theoretical bias values, the effect of the MA filter was accounted for in 

the theoretical model by setting the smoothing filter, ( )S z , as defined in Eq.(2.13) and 

substituting into the signal frequency transfer function (Eq.(3.19)). Figure 5-11 shows that 
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the proposed theoretical model is capable to effectively predict the Doppler rate bias 

introduced by a third order PLL.  

Figure 5-11: Observed and predicted Doppler rate bias of a 3rd order PLL, 2 g turn. 
The Doppler rate measurements were obtained by differentiating the raw Doppler 
measurements filtered using a MA filter with a 400 ms analysis window. 

Good match between the theoretical and empirical Doppler rate biases also indicates that 

the developed model is capable to account for the effect of the smoothing filter, ( )S z . 

The same analysis has been performed with the data obtained by processing the collected 

data set in FLL mode. The theoretical Doppler rate bias was determined by filtering the 

reference Doppler rate with the bias impulse response given by Eq.(5.16), whereas the 

empirical one was computed as explained above, namely by taking a difference between the 

reference and measured Doppler rate values. Figure 5-12 illustrates the comparison of the 

predicted and measured Doppler rate bias values for a 2.5 g turn of the simulation 

trajectory.  
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Figure 5-12: Observed and predicted Doppler rate bias of a 2nd order FLL, 2.5 g turn. 
Doppler rate measurements were obtained directly from the output of the FLL loop 
filter and subsequently filtered using a MA filter with a 400 ms analysis window. 

The Doppler rate measurements were obtained directly from the output of the FLL loop 

filter and subsequently smoothed using a MA filter with a 400 ms analysis window. Also in 

this case a 10 Hz loop bandwidth and 1 ms coherent integration time were used. 

Results for other turns of the simulated trajectory were analysed as well. As in the case of 

the Doppler bias analysis, it has been observed that when subjected to the same type of 

dynamics, PLL and FLL react in the same way. However, due to better lock performance of 

the FLL (Ward 1998) it can tolerate higher levels of platform dynamics when compared to 

PLL. 

In the case of the common-rate FLL-assisted-PLL, the proposed theoretical model was 

validated by processing the collected data set with GSNRxTM constrained to operate in the 

FLL-assisted-PLL mode. As in the above, the theoretical values of the Doppler rate bias 

were determined by filtering the reference Doppler rate with the bias impulse response 

given by Eq.(5.16). To be able to apply Eq.(5.16) to this type of a tracking loop, the effect 
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of using PLL and FLL branches in a coupled mode was first modelled as defined in 

Eq.(3.38), and subsequently used to determine the transfer function of the input signal 

frequency rate, ( )
df

H z� , characterizing the signal frequency rate impulse response, [ ]
df

h k� . 

Figure 5-13 shows the observed and theoretically predicted Doppler rate biases for a 2.5 g 

turn. In this case as well, to obtain Doppler rate measurements, the raw Doppler estimates 

were filtered by a MA filter with 400 ms analysis window, and then subsequently 

differentiated using a 1 ms period. Loop bandwidth of 10 Hz in both the PLL and FLL 

branches, and 1 ms coherent integration time were used. 

Figure 5-13: Measured and predicted Doppler rate bias of a common-rate FLL-
assisted-PLL, 2.5 g turn. Loop bandwidth,  Bn(PLL) = Bn(FLL) 10 Hz and Tc = 1 ms. 

Results presented in Figure 5-13 indicate that the proposed theoretical model for Doppler 

rate bias analysis is also able to effectively predict the Doppler rate bias of a common-rate 

FLL-assisted-PLL.  
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5.2.2.2 Doppler Rate Bias: Memory Discriminator Based Tracking Loops

Most of the material presented in Section 3.2.2.2 on the performance of the memory 

discriminator based tracking loops in terms of Doppler tracking and Doppler bias 

estimation also apply to the case of Doppler rate estimation. Due to increased resilience 

against thermal noise, memory discriminator based tracking loops are capable to maintain 

lock under higher dynamics compared to the standard tracking loops which tend to loose 

lock under the joint impact of noise and dynamics. But, as it has been observed from the 

test results and as it is in fact expected in theory, the values of the Doppler rate bias 

measured by a standard and memory discriminator based tracking loop of the same order 

using equal values of the loop bandwidth and coherent integration time are similar.  

To give an insight into how the developed theoretical model for Doppler rate bias analysis 

performs when applied to memory discriminator based tracking loops, this section will 

present the results for a 2.5 g turn for a 2nd order memory discriminator based FLL. The 

measured and predicted Doppler rate bias values obtained using an 8 Hz loop bandwidth, 1 

ms coherent integration time and 0.4α = are compared in Figure 5-14.  

Since FLL provides direct access to Doppler rate information, the Doppler rate 

measurements were obtained directly at the output of the loop filter and then smoothed with 

a MA filter using a 400 ms analysis window.

The results presented in Section 5.2.2 are consistent and show a good agreement between 

the Doppler rate bias values predicted using the theoretical model and the ones determined 

empirically. This leads to the conclusion that the proposed theoretical model for Doppler 

rate bias analysis is capable to effectively quantify the effect of dynamics on the Doppler 

rate estimates and is applicable to both standard and memory discriminator based tracking 

loops. 
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Figure 5-14: Measured and predicted Doppler bias for a 2nd order memory 
discriminator based FLL, 2.5 g turn, PRN 18. Doppler rate measurements were 
obtained directly from the output of the FLL loop filter and subsequently filtered 
using a MA filter with a 400 ms analysis window. 
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

The conclusions of the thesis are divided into two parts to reflect the two primary 

contributions of the performed research. The first being the theoretical framework for the 

analysis of the process of Doppler and Doppler rate estimation in GNSS receivers and other 

the approach to designing the loop filter based on the Doppler bandwidth parameter. 

6.1 Conclusions 

The major contribution of this thesis is the development of a complete theoretical 

framework for Doppler frequency and Doppler frequency rate estimation. In order to 

provide a comprehensive study of the noise propagation in the process of estimation of the 

above-mentioned parameters, two approaches commonly used in GNSS receivers were 

considered: the sequential carrier tracking, including the standard and the memory 

discriminator based approaches, and block processing techniques. The analysis of the 

sequential carrier tracking also explicitly considered three types of tracking loops: the PLL, 

common-rate FLL-assisted-PLL and FLL. 

For each approach a theoretical model for predicting the quality of Doppler and Doppler 

rate measurements, relating their variance and bias to C/N0, the user dynamics and the 

algorithm parameters was introduced. For the derivation of the theoretical models a 

different method for each of the approaches was used. In particular, in the case of the 

sequential carrier tracking loop architecture the standard tracking loop linear theory 

focusing on the propagation of the phase noise was reformulated with respect to the signal 

Doppler frequency and frequency rate, frequency and frequency rate noise and the final 

Doppler frequency and frequency rate measurements provided by the loop. The concepts of 

Doppler and Doppler rate bandwidths have been introduced and used for characterizing the 

quality of Doppler and Doppler rate measurements. As it has been shown in Chapters 3 
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and 4 when performing the analysis of the test results, both parameters can be used as 

metrics for comparative analysis. 

For the block processing approach, the CRLB for frequency estimation was used to derive a 

tight approximation of the variance of the frequency estimates generated by block 

processing techniques. The derived expression was then subsequently used to determine the 

expression of the variance of the Doppler rate estimates. 

The provided theoretical framework allows one not only to study and characterize the 

impact of different algorithm parameters such as the loop noise bandwidth and integration 

time, as well as the C/N0 and the user dynamics on the accuracy of Doppler and Doppler 

rate measurements, but also to effectively predict the quality of the measurements. 

The validity of the proposed theoretical framework has been proven using live GPS L1 C/A 

data collected in various GPS operating environments in both static and dynamic modes.

Also a number of simulations were carried out to test the theoretical models under a wider 

range of dynamics. In all the experiments a thorough analysis of the results has been 

performed through comparison of the empirical results against the ones obtained using the 

developed theoretical models and in all cases a good agreement was observed. 

The following conclusions have been made from the research presented on this particular 

topic throughout this thesis:  

1. The concept of Doppler bandwidth was introduced to quantify the amount of noise 

transferred from the input of the tracking loop to the final frequency estimate. This 

concept represents a counterpart of the loop noise bandwidth for frequency 

estimation with the major difference being that Doppler bandwidth provides a closer 

interpretation of the bandwidth required to track particular system dynamics. 

Doppler bandwidth summarizes in a single parameter the ability of a tracking loop 

to produce smooth frequency estimates, including the effects of all  loop 

components and the smoothing filter, ( )S z . This quality makes it an effective 
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metric for comparing different receivers when the same input 0/C N  and coherent 

integration time are assumed. 

2. To determine the amount of noise transferred from the input of the carrier tracking 

loop to the final Doppler frequency rate estimate the concept of Doppler rate 

bandwidth was introduced. Aside from characterising the ability of the tracking 

loop to produce accurate Doppler rate estimates, the Doppler rate bandwidth 

parameter also accounts for the impact of different differentiators/filters 

( )( ) ( )D z S z  used for producing the final Doppler rate measurements. 

3. The developed theoretical models of the Doppler and Doppler rate jitter (Eqs. (3.29) 

and (5.13) can be effectively used for the assessment of the Doppler and Doppler 

rate measurement quality given the signal C/N0 and the processing parameters used 

for their generation. The validity of both models as applied to standard and memory 

discriminator based PLL, FLL-assisted-PLL and FLL has been thoroughly verified 

by live and hardware simulated GPS data and in all cases a good agreement between 

empirical and theoretical results was observed.  

4. The developed theoretical framework is general and applies to different methods for 

the derivation of Doppler measurements such as raw Doppler, carrier-phase derived 

and filtered raw Doppler measurements.  

5. The proposed theoretical models for the Doppler and Doppler rate bias analysis 

(Eqs. (3.31) and (5.15)) are able to effectively predict the errors caused by changes 

in the input Doppler frequency Doppler frequency rate and the transient response of 

the tracking loops (PLL, FLL-assisted-PLL and FLL). The developed models can be 

used for quantifying the effect of dynamics on the Doppler and Doppler rate 

estimates for standard and memory discriminator based loops, including the effect 

of the smoothing filter, ( )S z . The model has been evaluated for different levels of 

dynamics (acceleration levels up to 3 g) and in all cases a good agreement between 

values predicted using the theoretical model and the ones determined empirically 

was observed. 
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6. Under the assumption of negligible Doppler rate over a single measurement epoch, 

the variance of the Doppler frequency estimates generated by the block processing 

approach approximately follows the CRLB (Eq.(3.47)). Based on Eq.(3.47) a 

parameter playing the same role as the Doppler bandwidth, can also be defined for 

block processing approach. The validity and effectiveness of the model given in 

Eq.(3.47) have been confirmed by using live GPS data collected in stationary and 

pedestrian-based tests through comparison of the empirical results with the 

theoretical ones obtained by using the theoretical model (Eq.(3.47)).  

7. Due to the assumption of negligible Doppler rate over a single measurement epoch 

made in block processing, block processing algorithms are not able to reach the 

CRLB in terms of Doppler frequency rate leading to suboptimal algorithms for the 

estimation of Doppler rate and, consequently, to estimator variances greater than the 

CRLB.   

8. The proposed theoretical model for the variance of the Doppler rate measurements 

provided by the block processing approach (Eq.(5.26)) can also be effectively used 

for the assessment of the Doppler rate measurement quality as a function of the 

input C/N0 and the coherent integration time. The validity of this model as well has 

been confirmed by live and hardware simulated GPS data. 

The second contribution of this thesis is a new approach to designing the loop filter based 

on the Doppler bandwidth providing control over the noise variance of the Doppler 

frequency measurements. In order to implement this approach, the original controlled-root 

formulation approach to loop filter design proposed by Stephens & Thomas (1995) was 

modified. Both standard and memory discriminator based PLLs were considered. The 

design criteria behind this approach have been specified, and the effectiveness of proposed 

algorithm validated using real GPS L1 C/A data.  

To sum up the research performed on this part of the thesis, the following conclusions can 

be drawn: 
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1. Designing the loop filter based on the Doppler bandwidth allows one to configure 

the tracking loop to output Doppler measurements with a desired level of Doppler 

jitter. The beneficial feature of this approach is not in the capability of the tracking 

loop to provide more accurate Doppler measurements, but in the capability to 

provide control over the noise variance of the measurements. 

2. Similar to the standard approaches, the stability of the tracking loop designed based 

on Doppler bandwidth is limited by the product of the coherent integration time and 

the Doppler bandwidth, dB . By studying the root location of the system it has been 

found that the maximum achievable value of d cB T  providing a stable loop in the 

case of a standard PLL is 0.27. In the case of the memory discriminator based PLL, 

in addition to being limited by the d cB T  product, system’s stability also depends on 

the value of the forgetting factor parameter, α .

6.2 Future Work 

Based on the results and conclusions of this research, the following recommendations can 

be made: 

1. In this thesis the CRLB of the frequency rate measurements was used as a 

comparison term only for the block processing algorithms used in GNSS receivers. 

As it has been discussed in Chapter 5, the problem of using the CRLB as a 

comparison term for standard tracking loops is the evaluation of the number of 

samples used for the computation of a single Doppler estimate. The presence of a 

reaction block and a filter in standard tracking loops introduces memory in the 

system, i.e., past information is retained for the computation of a single Doppler 

estimate. This makes M , the number of samples used for the computation of a 

single Doppler estimate, quite complex. Thus, to be able to use CRLB as a 
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reaction block and a filter in standard tracking loops introduces memory in the 

system, i.e., past information is retained for the computation of a single Doppler 

estimate. This makes M , the number of samples used for the computation of a 

single Doppler estimate, quite complex. Thus, to be able to use CRLB as a 
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comparison term for standard tracking loops further investigation of different 

approaches for the determination of M  is required. 

2. Theoretical framework developed in this thesis does not include the analysis of the 

bias introduced due to the transient response of the block processing techniques to 

rapid changes in the input signal frequency/frequency rate. It is therefore desirable 

to extend the theoretical framework presented in this thesis to include this type of 

analysis as well. 

3. Research presented in this thesis concentrates on noise propagation through the 

process of Doppler and Doppler rate estimation. To be able to extend the proposed 

theoretical framework to the final velocity/acceleration estimates further studies are 

required in order to include the effects of errors in the satellite ephemeris and the 

user position.  
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APPENDIX A: DETERMINATION OF THE CRLB FOR FREQUENCY AND 

FREQUENCY RATE PARAMETERS OF A CHIRP SIGNAL 

The purpose of this appendix is to detail the procedure used for the determination of the 

CRLB for the frequency and frequency rate parameters of a chirp signal. The derivation is 

based on the material presented in (Djuri� & Kay 1990, Peleg & Porat 1991) and general 

CRLB theory given in (Kay 1993).  

The signal model is given as:  

[ ] [ ]{ } [ ]exp 1, 2, , 1.Ty n j n n n Nη= ⋅ + = −
� v ,                                                   (A.1)  

where 

[ ] 2 21 s sn n T n T� �= ⋅ ⋅� �v ,                                                                                                (A.2)                             

and sT  is the sampling interval, [ ]Tfϕ α=�  is the parameter vector and ϕ , f  and α

are the phase, frequency and frequency rate of the signal, respectively. All the parameters 

are expressed in units of / irad s , where 0,1 2i and= . It is also known that η  is a zero 

mean complex Gaussian process 

[ ] ( )2
0 0,nη σ
 I�                                                                                                          (A.3) 

with variance 2σ . The real and imaginary parts of η   are independent and white with equal 

variance (Djuri� & Kay). The probability density function can be then written as follows: 

( )
( )

[ ] [ ]{ }
1 2

22 0

1 1; exp exp
22

N
T

N
n

p y n j n
σπσ

−

=

	 
= − −� �

 �

�y � � v ,                                          (A.4) 

taking the logarithm of which yields 
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( ) ( )

[ ] [ ]{ } [ ] [ ]{ }

2

21 1 12

2
0 0 0

log ; log 2

1 exp 2 exp
2

N N N
T T

n n n

p N

y n j n e y n j n

πσ

σ

− − −

= = =

= − −

� �	 
− + − −� �� �� �
 �� �
� � ��

y �

� v � v
.                   (A.5) 

Differentiating once produces 

( ) [ ] [ ]{ }

[ ] [ ]{ } [ ] [ ]{ }
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1

2
0

1 1

2
0 0
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0 0

; 1 exp

1 exp exp
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=

− −

= =

− −

= =

∂ � �∂ 	 
= −� �� �∂ ∂ 
 �� �
∂ ∂� �= − + ∗� �∂ ∂� �

� �= − − + ∗� �� �

�

� �

� �

�
y �

� v
� �

� v � v
� �

v � v v � v

                 (A.6) 

After some manipulations Eq.(A.6) can be finally written as: 

( ) [ ] [ ] [ ]{ }{ }
1

2
0

;
exp

TN
T

n

np m y n j n
σ

−

=

∂
=
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� v

�
.                                                               (A.7) 

The entries of the Fisher information matrix are given by 

( )
[ ] [ ] [ ]{ }{ }

[ ] [ ]{ }{ } [ ]

[ ]� ( ) [ ]�

1 1

4
0 0

1 1

4
0 0 3 1 1 31 1

exp1

exp
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T T
N N

Tn m
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n m x xx
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E

m y m j m m

n a m n m

σ

σ

− −

= =

− −

= =

� �− ⋅
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� �⋅ − ⋅� �

=

��

�� �����
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v � v
I �

� v v

v v

                                                 (A.8) 

where 
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the Fisher information matrix can be written as follows 
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Following identities were used to derive Eq.(A.11):
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Exploiting the relationship 

02

1 2 / sC N T
σ

= ⋅ ,                                                                                                            (A.13) 

and the fact that s cNT T= ,  the CRLB for the wanted parameters can be finally defined 

from  Eq.(A.11). Thus, for the frequency: 
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It is noted that in Eq.(A.14) the condition 1N 	  was used. 

In the case of the frequency rate, due to the fact that Doppler frequency rate measurements 

are estimated by differentiating two consecutive Doppler frequency measurements, the 

relationship 2M N=  was used leading to the following expression: 
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APPENDIX B: FROM SIGNAL MODEL TO LIKELIGHOOD FUNCTION 

Presented below is a brief description of the derivation of the Maximum Likelihood (ML) 

function for a GNSS signal. A more detailed explanation of the computation procedure can 

be found in such references as for example (Rife 1974, Flower 2002, O’Driscoll 2007), 

whereas the basic concepts of the ML estimation approach are presented in (Kay 1993).  

For a single signal, the model of the signal at the input of the signal processing blocks 

(acquisition and tracking) can be written as follows:  

( )( ) [ ]

[ ] [ ]

,

,

[ ] 2 cos 2

, , ,

i i
i i i IF d i s i

s s

i i i d i

y n C d n c n f f nT w n
T T

s n C f w n s n w n

τ τ π ϕ

ϕ τ

� � � �
= − − + ⋅ + +� � � �

� � � �
� � � �= + = +� �� � �

,                         (B.1)  

where the subscript i  refers to the ith signal and 

• iC  is the carrier power; 

• ( )id ⋅  is the bit sequence modeling the transmitted navigation message; 

• ( )ic ⋅  is the signal spreading sequence; 

• iτ is the delay experienced by the received signal; 

• ,d if  and iϕ are the carrier Doppler frequency and phase; 

• IFf is the receiver intermediate frequency; 

In Eq.(B.1), [ ]w n  is assumed to be a zero mean complex additive white Gaussian noise 

process with single sided power spectral density (PSD) 0N , whereas �  denotes the vector 

of the signal parameters and is defined as: 

,, , ,
T

i i i d iC fϕ τ� �� �� = .                                                                                                        (B.2) 
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Assuming that the measurement vector x  is formed by N consecutive samples:  

[ ] [ ] [ ]0 , 1 , , 1
Ty y y N� �= −� �x 
 ,                                                                                        (B.3)        

and letting wC  denote the  N N×  covariance matrix of the noise samples, the likelihood 

function is given by (Kay 1993):  

( ) ( ) ( )( )1 1exp
HN

w wf π −− −= − − −� � � �� � � �x � x � C x s � C x s � ,                                             (B.4)

   

where ( )H⋅ denotes the combined operation of transposition and complex conjugation on 

the complex vector often called the Hermitian transpose, and wC  is the determinant of 

wC .  Given now the model of the likelihood function, we assume that the noise samples are 

mutually independent with variance 2σ , so that the covariance matrix is given by 
2 22w Iσ=C , where I  denotes the N N×  identity matrix. Then, maximizing the likelihood 

function requires maximizing:  

( ) ( ) ( ){ } ( ) 22 2
H e− − − = − + ⋅ −� � � �� � � �x s � x s � x x s � s �� ,                                            (B.5) 

      

where {}e ⋅�  denotes the real part of the complex number. In Eq.(B.5) the first term on the 

right hand side, 2x , is independent of � , therefore the ML estimation problem can be 

reduced to the following expression: 

( ){ } ( )( )2ˆ arg max 2ML e= ⋅ −
�

� x s � s �� ,                                                                          (B.6) 
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which is referred to as the decision statistic. It consists of two components, the first is given 

by twice the real part of the correlation between the observation vector and the signal 

vector, the second is a measure of the energy in the signal vector, and can be viewed as a 

biasing term (O’Driscoll 2007).  

Of the four elements of the parameter vector � , we are only interested in the last two, 

namely the code delay, iτ , and the carrier Doppler frequency, ,d if . Denoting the vector of 

the desired parameters as d� , and the vector of the nuisance parameters n� , so that 

[ ]
,,

,

T
d i d i

T
n i i

f

C

τ

ϕ

� �= � �

=

�

�
,                                                                                                                 (B.7) 

it can be shown that the ML of the desired parameters is given by: 

( )( )2
,

ˆ arg max
d

d ML = ⋅
�

� x s �� .                                                                                             (B.8) 

In Eq.(B.8), ( ) [ ]T
n=s � s� � , where  

,exp 2i
n i IF sd i

s
c n j f f nT

T
τ π
∧

∧� � 	 
� �� �= − − +� �� �� � � �
 �� �
s� .                                                                   (B.9) 

It is important to note that to derive Eq.(B.8) several assumptions have been made. In 

particular, it has been assumed that the received power is constant over the observation 

interval, also the effect of all other satellites, multipath and interference have been assumed 

to contribute only to the noise process. Furthermore, the time delay is approximated by a 
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which is referred to as the decision statistic. It consists of two components, the first is given 

by twice the real part of the correlation between the observation vector and the signal 

vector, the second is a measure of the energy in the signal vector, and can be viewed as a 

biasing term (O’Driscoll 2007).  
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first order Taylor series expansion (initial delay plus Doppler). Higher order effects are 

neglected. 

This thesis focuses only on the problem of Doppler frequency, ,d if , estimation. Thus, 

assuming that the receiver is able to correctly estimate the code delay, iτ , and successfully 

wipe-off the code ( )ic ⋅ ,  and neglecting the effect of the navigation message ( )d ⋅ , the 

above ML estimation problem is reduced to the classical problem of estimating the 

frequency of a sinusoid in noise. In this case, we have the signal at the input of the 

processing block responsible for Doppler frequency estimation given as: 

( )( ) [ ][ ] 2 cos 2 IF d s
s

r n C d n f f nT w n
T
τ π ϕ

� �
= − + ⋅ + +� �

� �
� .                                            (B.10)

In Eq.(B.10) subscript i  has been dropped since only a single useful component is 

considered. Following the derivation strategy presented above, it can be shown that the ML 

frequency estimator for a sinusoid in noise is given by: 

[ ] [ ] ( ){ }
1

0

arg max exp 2
d

N

ML IF d s
f n

f n r n j f f nTπ
−

=

= − +� ,                                                    (B.11) 

where N  is the number of samples used for frequency estimation and [ ]r n  is the signal 

after code wipe-off. Note that Eq. (B.11) is valid only if the navigation data message, ( )d ⋅ , 

is constant during the integration time period, c sT NT= . 
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