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Abstract

One inevitable trend of network development is to deliver information
with various traffic characteristics and diverse Quality of Service (QoS)
requirements. In response to the continually growing demand for more
bandwidth, network performance analysis is needed to optimize the
performance of existing technologies and evaluate the efficiency of new
ones. Performance analysis investigates how traffic management mech-
anisms deployed in the network affect the resource allocation among
users and the performance which the users experience. This topic can
be investigated by constructing models of traffic management mech-
anisms and studying how these mechanisms perform under various
types of network traffic.

To this end, appropriate mathematical models are needed to char-
acterize the traffic management mechanisms which we are interested
in and represent different types of network traffic. In addition, funda-
mental properties which can be employed to manipulate the models
should be explored.

Over the last two decades a relatively new theory, stochastic net-
work calculus, has been developed to enable mathematical performance
analysis of computer networks. Particularly, several related processes
are mathematically modeled, including the arrival process, the wait-
ing process and the service process. This theory can be applied to
the derivation and calculation of several performance metrics such as
the backlog bound and the delay bound. The most attractive contri-
bution of stochastic network calculus is to characterize the behavior
of a process based on some bound on the complementary cumulative
distribution function (CCDF). The behavior of a computer network is
often subject to many irregularities and stochastic fluctuations. The
models based on the bound on the CCDF are not very accurate, while
they are more feasible for abstracting computer network systems and
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representing various types of network traffic.
This thesis is devoted to investigate the performance of networks

from the temporal perspective. Specifically, the traffic arrival process
characterizes the distribution of the cumulative inter-arrival time and
the service process describes the distribution of the cumulative service
time. Central to finding a bound on the CCDF of the cumulative inter-
arrival time and the cumulative service time, several variations of the
traffic characterization and the service characterization are developed.
The purpose of developing several variations to characterize the same
process is to facilitate the derivation and calculation of performance
metrics.

In order to derive and calculate the performance metrics, four fun-
damental properties are explored, including the service guarantees, the
output characterization, the concatenation property and the superpo-
sition property. The four properties can be combined differently when
deriving the performance metrics of a single node, a series of nodes or
the superposition flow.

Compared to the available literature on stochastic network calculus
which mainly focuses on studying network performance in the space-
domain, this work develops a generic framework for mathematically
analyzing network performance in the time-domain. The potential
applications of this temporal approach include the wireless networks
and the multi-access networks.

Furthermore, the complete procedure of concretizing the generic
traffic models and service models is presented in detail. It reveals the
key of applying the developed temporal network calculus approach
to network performance analysis, i.e., to derive the bounding function
which is the upper bound on the tail probability of a stochastic process.
Several mathematical methods are introduced, such as the martingale,
the moment generating function (MGF) and a concentration theory
result.
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Notations

a(n) Arrival time of the (n + 1)th packet
A(t) Cumulative amount of arrival traffic up to time t
A∗(t) Cumulative amount of departure traffic up to time t
B(t) Space-domain system backlog at time t
B(t) Time-domain system backlog at time t
D(t) Space-domain system delay at time t
d(n) Departure time of the (n + 1)th packet.
D(n) Time-domain system delay of packet P (n)
E(t) Cumulative error by time t

Ê(t) Instant error at time t
F Set of non-negative wide-sense increasing functions
FX Cumulative distribution function of random variable X
F̄X Complementary cumulative distribution function of X
F̄ Set of non-negative wide-sense decreasing functions
Ḡ Subset of F̄
I(t) Cumulative amount of impaired service up to time t
I(m,n) Cumulative impairment in the cumulative service time
Ln Length of packet P (n)
MX Moment generating function of random variable X
P (n) The (n + 1)th packet
S(t) Cumulative amount of provided service up to time t
W (n) Waiting delay of packet P (n)
δn Service time of packet P (n)
τn Inter-arrival time between packets P (n − 1) and P (n)
τ ∗
n Inter-departure time between packets P (n − 1) and P (n)

εn Error term associated with serving packet P (n)
Δ(m,n) Cumulative service time between two packets
Γ(m,n) Cumulative inter-arrival time between two packets
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Chapter 1. Introduction

Computer networks have dramatically evolved over the past sev-
eral decades and significantly influenced the way of life, communi-
cation methods and working methods. Users can share resources of
devices connected by communication channels. Compared to the user
requirements, the network resources including bandwidth and buffers
are scarce. Efficiently utilizing the resources while fulfilling the de-
sired performance metrics at the same time is thus one of the key con-
siderations for network planning and design and for developing new
technologies. Performance analysis is required when constructing com-
puter network systems that can fulfill the desired performance metrics.
In addition, analyzing the performance of the existing network tech-
nologies and the current network systems is helpful for developing new
technologies and improving the current systems.

1.1 Performance Analysis

To analyze the performance of computer networks is a challenging
task. It requires an intimate knowledge of the network system which
is analyzed, and a careful selection of the methodology and tools [59].
Among various performance analysis techniques, this thesis focuses on
the analytical modeling technique.

Analytical modeling abstracts the features of a computer network
system as a set of parameters or parameterized functions in order
to make the modeling task tractable [69]. A computer network sys-
tem is mathematically described so that certain information about
the system behavior can be yielded [89], such as establishing some sys-
tem equations. Network performance is then derived by solving these
equations [97].

Modeling provides a framework for gathering, organizing, evaluat-
ing, and understanding information about a system [77]. In order to
capture the essential characteristics of the analyzed systems but ex-
clude extraneous information, proper assumptions and hypotheses are
necessary for building models. Considering that computer networks
behave non-deterministically, statistical models are needed to repre-
sent the random events happening in computer networks, such as the
randomly generated network traffic and the time-varying service de-
livered to a traffic flow. Most assumptions and hypotheses therefore
imply the underlying stochastic nature.
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1.1. Performance Analysis

Statistical modeling tools such as variable distributions, queueing
models and Markov models are commonly used for characterizing the
behavior of computer networks. Stochastic models are first set up, and
the performance metrics are then determined. The mostly concerned
performance metrics include:

• Throughput refers to the average rate of successful data or
message delivery over a communication link or system. It is
usually measured in bits per second (bit/s or bps).

• Latency refers to the time delay experienced in a system. The
definition may vary depending on the system. It is usually mea-
sured in millisecond (ms).

• Delay in a general sense refers to a lapse of time. It is usually
measured in millisecond (ms).

• Packet delay variation (PDV) refers to the difference in end-
to-end delay between selected packets in a flow with any lost
packets being ignored [38].

• Bandwidth metric contains four sub-metrics as listed below:

– Bandwidth capacity

– Achievable bandwidth

– Available bandwidth

– Bandwidth utilization

Queueing phenomena are very common in computer network sys-
tems, where the various computers or devices can be modeled as indi-
vidual queues. The whole system itself can be modeled as a queueing
network providing the required service to the traffic that needs to
be transmitted. In queueing systems, the shared resources are called
servers and the customers arriving at a queue may be messages and/or
packets.

In order to conduct the performance analysis for a network sys-
tem, properly defined traffic models and service models are needed.
The traffic model characterizes the traffic arrival process. The well-
known arrival processes having been widely applied to the analysis
of queueing systems include processes with exponential inter-arrival
time distribution, Erlang-k inter-arrival time distribution or determin-
istic inter-arrival time distribution. The service model describes the
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Chapter 1. Introduction

service process, particularly, the service time distribution. The above
mentioned distributions are applicable for the service time distribution
as well.

Having constructed the queueing model for a computer network
system, we can analyze the system mathematically. For example, a
number of performance metrics can be derived [3]:

• The distribution of the waiting time and the system time1 of a
customer. The system time is the waiting time plus the service
time.

• The distribution of the number of customers in the system (in-
cluding or excluding the one or those in service).

• The distribution of the amount of the work in the system. That
is the sum of service times of the waiting customers and the
residual service time of the customer in service.

• The distribution of the busy period of the server. This is a period
of time during which the server is working continuously.

A queueing system is a stochastic system, yet its time-dependent or
transient behavior is difficult to analyze. Statistical equilibrium is a
significant role in the analysis of stochastic systems. This represents
a state of stochastic processes, the behavior of which is independent
of time and the initial state [12]. The equilibrium or limiting behavior
appears to be much easier to analyze. Under certain conditions, the
system of interest is assumed to enter a steady state or a state of equi-
librium after enough time has elapsed. The concerned performance
metrics have the limiting distributions as time goes to infinity. These
distributions are independent of the initial condition of the system.

Having derived the limiting distribution of the concerned perfor-
mance metrics, the expected values of these metrics are of interest as
well:

• the mean waiting time;

• the mean system time;

• the mean number of customers in the queue;

1It is also called sojourn time in the queueing theory literature.
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1.1. Performance Analysis

• the mean number of customers in the system;

• the probability that the system is in a particular state.

A common situation is that the limiting distribution of the number of
customers in the system is firstly derived. To further derive the ex-
pected value of the other metrics, the Little’s Theorem plays a pivotal
role. Under the steady state assumption, Little’s Theorem reveals the
relationship between the number of customers in a system and the
time that a customer spends in this system under a given arrival rate.

For several decades, extensive efforts have been devoted to analy-
sis of queueing systems. Significant results in the classical queueing
theory have been widely used to study queueing type problems in com-
puter networks. For example, the Lindely equation is fundamental
and yet elementary for computing the queue length at an arbitrary
instant for a queueing system, in which the arrival process is char-
acterized by a general inter-arrival time distribution and the service
process is described by a general distribution. Moreover, deriving the
moments of the distributions of interest is a common way to find and
describe the behavior of queueing systems.

As diverse network-based applications and services emerge continu-
ously, the existing queueing models are sometimes difficult to capture
the unique customer and service characteristics and requirements in
modern packet-switched computer networks. To analyze the compli-
cated queueing systems, such as integrated services networks, needs
to take into account the correlations among two or more stochastic
processes. The study of such queueing systems has become more chal-
lenging because it needs both a good understanding of the analyzed
network system and a deep knowledge of mathematics. The engineer-
ing specialists may lack strong mathematical skills and the mathe-
maticians may not thoroughly understand the network systems. To
shorten the gap between engineering and applied mathematics gives
rise to the need of developing new analytical theories for performance
analysis of computer networks.

Network Calculus is one of the new analytical theories. It was in-
troduced in early 1990s to deal with the performance analysis issues in
modern packet-switched computer networks. Alternate algebras such
as the min-plus algebra and the max-plus algebra are used to trans-
form complex non-linear network system into analytically tractable
linear systems.
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Chapter 1. Introduction

Central to network calculus is properly defining the traffic model
and service model. The traffic model called arrival curve in net-
work calculus describes the traffic characterization and was initially
developed from the (σ, ρ)-traffic characterization [33] [34]. The ser-
vice model called service curve in network calculus characterizes the
service behavior of a network element and was originated from the ser-
vice characterization of Generalized Processor Sharing (GPS) [86] [87].
The core concept of model definitions in network calculus is to find a
bound on the cumulative traffic or service. One representative class
of traffic models is envelope processes which are comprehensively re-
viewed in [84]. The state-of-the-art of the service models is nicely
summarized in [47].

In order to facilitate performance analysis, network calculus has
explored some properties, including the analysis of single-node service
guarantees, extending the single-node analysis to a sequence of nodes,
the aggregate flow analysis and the per-flow analysis.

Unlike the conventional queueing theory which focuses on the quan-
tities in an equilibrium state, network calculus focuses on the analy-
sis of either deterministic or stochastic bounds on performance met-
rics. Correspondingly, network calculus has been developed along two
tracks - deterministic and stochastic.

Deterministic network calculus deals with deterministic queueing
systems in computer networks and is based on worst-case scenario
analysis. Although the deterministic service guarantee provides the
highest Quality of Service (QoS) level that can be provided, a sig-
nificant portion of network resources is unused on average. However,
multimedia applications have gradually dominated data communica-
tions. These applications typically have diverse requirements on the
service provided by computer networks and most of them can tolerate
a certain amount of violation on the service requirements which are
called stochastic service guarantees. A stochastic service guarantee
allows the QoS objectives specified by a flow to be guaranteed with
a probability less than 1 [44]. By allowing some packets to violate
their required QoS measures, the stochastic service can exploit the
statistical multiplexing gain on network links and hence improve the
network utilization. To deal with the stochastic service guarantee is-
sue, stochastic network calculus has attracted much research attention
recently.

Excellent books [15] [21] not only summarize the significant progress
of deterministic network calculus but also provide the details of the rel-
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1.2. Focus of This Thesis

evant mathematical knowledge and application examples. In addition,
the theory of effective bandwidth and the pioneer work on stochastic
network calculus are covered [21]. A systematic review of stochastic
network calculus is available [67].

Most available research effort on service characterization in both
deterministic and stochastic network calculus is considered as gener-
alized from the Latency Rate (LR) server which is a general model
for analysis of scheduling algorithms [95]. Essentially, LR models the
service process using the amount of service delivered by the server in
a time period. The server behavior is characterized from the spatial
perspective. Another general server model, called Guaranteed Rate
(GR) server, has also been investigated for deterministic service guar-
antees [21]. The GR model captures the service characterization by
comparing with a virtual time function in the time domain. The time-
domain model has also been extended to analyze deterministic service
guarantees for aggregate flows [31] [63]. However, to the best of our
knowledge, it is unclear whether the virtual time function can be ex-
tended to a stochastic version and how to conduct the performance
analysis. Similarly, while there is an extensive network calculus liter-
ature on performance analysis from the spatial perspective, the study
from a temporal network calculus perspective is very limited.

An objective of this thesis is to develop a temporal network calculus
which can be applied to model and analyze networks with stochastic
service provision. The trend toward supporting multimedia services in
wireless networks invokes research on analytically evaluating wireless
network performance. Another objective of this thesis is to apply the
proposed temporal network calculus to model and analyze the IEEE
802.11 network and the error-prone wireless channel.

1.2 Focus of This Thesis

We focus on analyzing the queueing behavior in computer networks
from a temporal network calculus perspective. The temporal behavior
of arrivals is described by the cumulative inter-arrival time. The ser-
vice provided to arrivals is quantified using the cumulative service time
correspondingly. The cumulative time interval can be represented by
a stochastic process. The fundamental concept of network calculus is
using a bound to characterize the distribution of a stochastic process.
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Chapter 1. Introduction

The bound on the cumulative inter-arrival time is called arrival curve.
The bound on the cumulative service time is called service curve.

The bound on a stochastic process is not unique. The tightness of
bounds is a trade-off issue since we may face the situation that it is
difficult to find a tighter bound. However, a loose bound without any
insight on the analyzed system is not appreciated. Finding an optimal
bound is thus a consideration of model definition as well.

In order to ease the derivation of performance bounds, we may
enforce extra constraints on the arrival and service curves. This may
result in the hardness of numerical computation. Thus, we need some
transformations between models.

To examine the applicability of the defined time-domain models,
we have to apply them to the analysis of real applications.

This thesis studies the above-mentioned problems and introduces
some approaches to handle them.

1.3 Research Challenges and

Contributions

Performance models capture the behavior characteristics of networks.
The behavior of a computer network is often subject to many irregular-
ities and stochastic fluctuations. The reason behind this phenomena
is manifold. First of all, the diverse network applications incorporate
some complicated dynamics which generate the varying traffic pat-
terns, accordingly. Secondly, in many network systems, the service
provided by the networks are non-deterministic. These networks are
stochastic in nature. In addition, aggregate multiplexing has been
employed extensively in order to improve resource utilization. From
the perspective of individual flows, the service received dynamically
changes over time because new flows join or existing flows leave.

With the aim to characterize the network behavior with the consid-
eration of the above mentioned issues, we develop a temporal network
calculus including generic model definition, property exploration, the
concretization of generic models and application study.
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1.3. Research Challenges and Contributions

1.3.1 Time-domain Modeling and

Transformations

In order to capture the temporal behavior of the arrival process and
the service process, we develop the time-domain models.

1. Time-domain Stochastic Arrival Curve

The first model is based on a probabilistic extension of a deter-
ministic lower-bound on the cumulative inter-arrival time. How-
ever, this basic and simple model without any additional con-
straint is difficult to be applied for deriving performance bounds.
Another model is then introduced to enforce some constraint for
characterizing the stochastic behavior of the cumulative inter-
arrival time.

2. Time-domain Stochastic Service Curve

The deterministic GR server model [52] is the root of modeling
the service behavior in the time-domain. A guaranteed depar-
ture time is introduced to be the criteria for evaluating the ser-
vice provided by a system. A stochastic service curve is defined
to represent a bounded probability that the actual departure
time is later than the guaranteed departure time. In order to
explore the fundamental properties of the time-domain models,
a stronger definition with some constraint is introduced.

3. Transformations between Models

Having defined the above arrival curve and service curve models,
new questions arise:

I. What is the guidance of applying the appropriate model?

II. If the available information abstracted from the system is
not sufficient for constructing the appropriate model, can
we first construct a model based on the available informa-
tion and then transform this model to the appropriate one?

To answer these two questions, we establish the relationships
between the basic and the improved models.
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Chapter 1. Introduction

Moreover, the available literature of stochastic network calculus
mainly focuses on characterizing the spatial behavior of the ar-
rival and the service. Particularly, many models of the arrival
process which are the so-called space-domain arrival curves in
this thesis have been extensively studied, including the (σ(θ), ρ(θ))
stochastic traffic model [21], the effective bandwidth model [42]
[72], the exponentially bounded burstiness (EBB) model [102],
the stochastically bounded burstiness (SBB) model [94], the gen-
eralized stochastically bounded bursty (gSBB) model and two
generalized arrival curve models [61] [67]. It is worth investigat-
ing the underlying correlation between the time-domain arrival
curve and the space-domain arrival curve.

1.3.2 Fundamental Properties

Model construction provides the fundamental elements to performance
analysis. Based on the stochastic arrival curve and the stochastic
service curve models, several questions of interest need to be answered.

Q1. How to acquire some insight about the behavior of the departure
process?

Q2. How to obtain the stochastic performance bounds guaranteed by
a system?

Q3. How to analyze the performance of a system consisting of multiple
servers in series?

Q4. How to analyze the performance of the aggregate flow?

The above questions rely on four fundamental properties to solve.

P1. Service Guarantees provide the probabilistic bounds on back-
log and system delay.

P2. Output Characterization property shows that the temporal be-
havior of the departure process can be described using the arrival
curve and the service curve.

P3. Concatenation property can be used to represent a tandem sys-
tem with multiple servers as a ‘black box’. Then this system can
be treated as a single server system when analyzing the system
performance.
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1.3. Research Challenges and Contributions

P4. Superposition property can be applied for treating multiple indi-
vidual flows as a ‘single’ flow under the First-In-First-Out (FIFO)
aggregate service discipline.

1.3.3 Concretization of Generic Models

The generic time-domain models have been defined. The further
work is to concretize the generic models with linking some well-known
stochastic processes to them and then conducting the performance
analysis. In addition, we exemplify the temporal analysis approach by
investigating the delay performance of a Gilbert-Elliott channel.

1. Key technique: Moment Generating Function (MGF)

A key technique used in linking an arrival process or service pro-
cess to the time-domain stochastic arrival curve characterization
or stochastic service curve characterization is the MGF.

2. Error-Prone Wireless Channel Analysis

The error-prone nature of wireless channels causes data trans-
mission inherently stochastic and influences the link capacity
over time. Thus, the service provided by wireless channels is
non-deterministic.

Gilbert-Elliott channel model [40] [50] is simple while still ab-
stracts the essential properties of the real wireless channel. This
channel model can be represented by a two-state homogeneous
Markov chain, based on which, the time-domain stochastic ser-
vice curve of the Gilbert-Elliott channel is obtained. Then given
the arrival process characterization, the delay performance can
be investigated by applying the service guarantee property (i.e.,
P1.). Moreover, the delay bound can be improved by taking into
account the independence between the arrival process and the
service process2.

We also compare the delay bounds obtained from the temporal
analysis approach with those obtained from the spatial analysis
approach. The numerical results show that these two approaches
essentially yield very close results.

2This conclusion holds for this specific case while may not hold in some other
cases.
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1.3.4 Application Study

The IEEE 802.11 wireless network is studied to demonstrate how the
temporal network calculus is applied to performance analysis.

IEEE 802.11 Medium Access Control (MAC) defines two access
methods, the Distributed Coordination Function (DCF) and the Point
Coordination Function (PCF). The former is the basic access method
and investigated in this thesis. The DCF employs the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) mechanism
which allows multiple terminals to share a wireless channel. To alle-
viate the collisions, the Binary Exponential Backoff (BEB) retrans-
mission algorithm is implemented in coordination with the contention-
based channel access mechanism.

The additional delay introduced by the collision and the following
backoff can be characterized by a delay process. The temporal behav-
ior of the shared wireless channel is thus modeled as a time-domain
stochastic server. The crucial step of defining the stochastic service
curve is to find an upper bound on the Complementary Cumulative
Distribution Function (CCDF) of the cumulative service time. Then
for an arrival process which has a stochastic arrival curve, the system
delay bound can be readily obtained by applying the service guarantee
property (i.e., P1.). Moreover, we also study the system delay bound
under finite buffer size3. The numerical results using MATLAB are
discussed to extensively examine the relevant parameters and provide
insight into the obtained analytical bounds.

1.3.5 Service Model with Error Process

Many networks may only provide stochastic service due to some ran-
dom impairment process. Wireless networks are the most known ex-
amples because the error-prone nature of wireless channels causes data
transmission error. Such errors happen at the bit-level. In the avail-
able stochastic network calculus literature, transmission errors are con-
sidered implicitly. The amount of service consumed by transmission
errors is simply treated as impaired service and deduced in perfor-
mance analysis [61]. This simple way of treating errors is not sufficient
to investigate networks where transmission errors influence the perfor-

3This condition is different from the important assumption in stochastic net-
work calculus that assumes an infinite buffer size.

13



1.3. Research Challenges and Contributions

mance and some error handling schemes are adopted to adapt service
provision based on the error information. In order to give some insight
on how the bit-level error does influence the performance, we propose
an error process to explicitly characterize the errors occurring at the
bit-level.

1. Error Characterization

We define two stochastic processes to capture the behavior of
error occurrence. The snapshot observation of error occurrence
records a temporal behavior and is represented by an instant er-
ror process. The cumulative number of errors is a spatial quan-
tity and described by a cumulative error process.

2. Concatenation Property

The concatenation property is investigated through analyzing
three systems.

• The study of a single server system shows that the instant
error introduced by the system remains stochastically un-
changed no matter how the error process and the ideal ser-
vice process are ordered, so does the cumulative error.

• Analyzing a system consisting of two error processes in tan-
dem reveals that both the instant system error process and
the cumulative system error process do not change regard-
less how the two error processes constituting the system are
ordered.

• A system of multiple servers in tandem can be viewed as
multiple individual processes connected in series. Investi-
gating this system illustrates that both the instant error
and the cumulative error introduced by the system are
stochastically equal regardless of the order of placing in-
dividual processes.

3. Stochastic Error curve

The error process can be considered as a ‘virtual error flow’ com-
peting the bandwidth with the arrival traffic. A stochastic error
curve model is defined to describe the stochastic nature of the
error process. The error curve model is proved to hold the con-
catenation property as well.

14
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4. Influence of Error Handling on Performance Bounds

A simple network is studied to demonstrate how to apply the
introduced concepts and to show the influence of error handling
on system performance. The approach of re-transmitting the un-
successfully delivered units causes the transmitted units to delay
longer. Another approach to handle the error is discarding the
unsuccessfully delivered units and hence degrades the goodput.

1.4 Organization of thesis

This thesis is organized as follows. In Chapter 2 we review mathe-
matical knowledge involved in this thesis and the relevant results of
stochastic network calculus. In addition, notations that will be used
in the sequel and the specification of system are introduced.

The time-domain model definitions and the model transformations
are described in Chapter 3, the material in which has been partially
published in Paper B and Paper C.

The four properties (P1. - P4.) are thoroughly investigated in
Chapter 4. The relevant discussion reveals the reasons why we estab-
lish the transformations between models in Chapter 3. This chapter
partially extends Paper B and Paper C.

In Chapter 5, we concretize the time-domain traffic and service
models by linking some well-known stochastic processes to them. In
addition, we exemplify the temporal analysis approach by investigat-
ing the delay performance of a Gilbert-Elliott channel. This chapter
is based on the content of Paper E.

The detailed analysis of IEEE 802.11 DCF service time, the deriva-
tion of analytical bounds and the numerical evaluation are presented
in the first part of Chapter 6. This chapter covers the content of Paper
D.

In Appendix A, we define the service model with the error process
and investigate the concatenation property of this model. The com-
parison of two error handling approaches are presented in detail as
well. The main results have been published in Paper A.
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Chapter 2. Network Model and Background

This chapter describes the network model and gives some mathe-
matical preliminaries that are needed for the analysis in the following
chapters. A brief overview on stochastic network calculus of partic-
ular relevance to this thesis is presented as well. Section 2.1 defines
the network model and introduces the notations used throughout this
thesis. In Section 2.2, the fundamental operations of the min-plus al-
gebra and the max-plus algebra and the relevant properties of these
operations are reviewed. The knowledge of probability and stochastic
process used throughout this thesis is given in Section 2.3. We end this
chapter by summarizing the significant aspects of stochastic network
calculus relevant to this thesis.

2.1 Notations and System Specification

In this thesis, we make the following assumptions unless stated other-
wise.

• A packet is considered to be received by a network element when
and only when its last bit has arrived to the network element.

• A packet is considered out of a network element when and only
when its last bit has been transmitted by the network element.

• A packet can be served only when its last bit has arrived.

• Packets arriving to a network element are queued in the buffer
and served in the FIFO order. All queues are assumed to be
empty at time 0.

• We assume that systems are lossless and provide sufficient buffer
space to store all incoming traffic.

In the following subsections, we define various processes to model a
network from the spatial perspective and the temporal perspective,
respectively.

2.1.1 Space-Domain Notations

A process of characterizing the network spatial behavior is defined to
be a function of time t (t ≥ 0). Particularly, several process are defined
below.
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• The cumulative amount of traffic arriving to a network element
up to time t is represented as the space-domain arrival process
denoted by A(t).

• The cumulative amount of traffic departing from the network
element up to time t is represented as the space-domain departure
process denoted by A∗(t).

• The cumulative amount of service provided by the network el-
ement up to time t is represented as the space-domain service
process denoted by S(t).

• The cumulative amount of service consumed by some impairment
up to time t is represented as the space-domain impairment pro-
cess denoted by I(t).

Assume that all processes are defined on t ≥ 0 and by convention, have
zero value at t = 0. All functions are assumed to be left-continuous1.

For any 0 ≤ s ≤ t, let

A(s, t) ≡ A(t) −A(s),

A∗(s, t) ≡ A∗(t) −A∗(s),

S(s, t) ≡ S(t) − S(s),

I(s, t) ≡ I(t) − I(s).

To differentiate the arrivals from different flows, we use Ai(t) and
A∗

i (t) to denote the arrival and departure processes of the ith flow,
where i = 1, 2....

When analyzing the performance of a network system in this thesis,
we mainly focus on the system backlog and system delay which
are defined as [15] [21] [35] [67]:

Definition 1. Let A(t) and A∗(t) denote the space-domain arrival

process and departure process of a lossless network system, respectively.

The system backlog B(t) at time t ≥ 0 is defined as

B(t) = A(t) −A∗(t). (2.1)

1Refer to Chapter 1.1 of [15] for the discussion about the left-continuous as-
sumption.
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Assume the arrival packets are served according to the FIFO discipline.

The system delay of traffic arriving at time t ≥ 0, D(t), is defined as

D(t) = inf
{
τ : A(t) ≤ A∗(t + τ)

}
. (2.2)

2.1.2 Time-Domain Notations

A process of characterizing the network temporal behavior is defined
to be a function of packet sequence number n (n ≥ 0). In this thesis,
we consider packets arriving to a network system according to some
general inter-arrival distribution.

We use P (n), a(n), d(n) and δn, to denote the (n + 1)th packet
entering the system, its arrival time to the system, departure time from
the system and the service time provided by the system, respectively,
where n = 0, 1, 2, ....

The inter-arrival time and inter-departure time between packets
P (n) and P (n + 1) are denoted by τn+1 and τ ∗

n+1, respectively. Let
P (0) be the initial arrival, τ0 = a(0) and τ ∗

0 = d(0). Note that a(n) =∑n

k=0 τk and d(n) =
∑n

k=0 τ ∗
k .

• From the temporal perspective, an arrival process counts the
cumulative inter-arrival time between two arbitrary packets and
is denoted by Γ(m,n) =

∑n

k=m+1 τk. Note Γ(n, n) = 0.

• A service process describes the cumulative service time received
between two arbitrary packets and is denoted by Δ(m,n) =∑n

k=m δk. Note that Δ(n, n) = δn.

• A departure process represents the cumulative inter-departure
time between two arbitrary packets and is denoted by Γ∗(m,n) =∑n

k=m+1 τ ∗
k . Note that Γ∗(n, n) = 0.

• The impairment process represents the cumulative impairment
in the cumulative service time received between two arbitrary
packets and is denoted by I(m,n) =

∑n

k=m εk.

All processes are defined on 0 ≤ m ≤ n.
In this thesis, both a(n) and Γ(m,n) are used interchangeably to

represent an arrival process.
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To differentiate the packets of different flows, we use Pi(n) to de-
note the (n + 1)th packet of the ith flow, where i = 1, 2, .... This
subscript is also applicable for other notations, such as ai(n), di(n),
δi,n and τi,n.

In the time-domain, the system backlog B(t) and system delay
D(n) are defined as follows.

Definition 2. Let a(n) and d(n) be the time of packet P (n) arriving

to a system and that of departing from the system, respectively. Let the

departure time of packet P (n) be d(n) = t (t ≥ 0). Then the system

backlog at time t ≥ 0 is

B(t) ≤ inf
{
k ≥ 0 : d(n) ≤ a(n + k)

}
. (2.3)

The system delay of packet P (n) experienced in the system is

D(n) = d(n) − a(n). (2.4)

Moreover, the time that packet P (n) has waited in queue is

W (n) = D(n) − δn. (2.5)

2.1.3 Other notations

In this thesis, the following function sets are often used. Particularly,
the set of non-negative wide-sense increasing functions is denoted by
F , where for each function f(·), there holds

F =
{
f(·) : ∀0 ≤ x ≤ y, 0 ≤ f(x) ≤ f(y)

}
and for any function f(·) ∈ F , we set f(x) = 0 for all x < 0.

We denote by F̄ the set of non-negative wide-sense decreasing func-
tions where for each function f(·), there holds

F̄ =
{
f(·) : ∀0 ≤ x ≤ y, 0 ≤ f(y) ≤ f(x)

}
and for any function f(·) ∈ F , we set f(x) = 1 for all x < 0.
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Chapter 2. Network Model and Background

We denote by G the set of functions in F̄ , where for each function
f(·) ∈ Ḡ, its nth-fold integration, denoted by f (n)(x) ≡ (

∫ ∞
x

dy)nf(y),
is bounded for any x ≥ 0 and still belongs to Ḡ for any n ≥ 0, i.e.,

Ḡ =
{
f(·) : ∀n ≥ 0, (

∫ ∞

x

dy)nf(y) ∈ Ḡ}
. (2.6)

By definition, the processes defined in the space-domain, A(t),
A∗(t), S(t) and I(t), belong to F . Similarly, the processes defined
in the time-domain, a(n) and d(n), belong to F as well. In addition,
negative exponential functions belong to F̄ .

For ease of exposition, we adopt

[x]+ ≡ max[0, x] and [x]1 ≡ min[1, x].

In addition, the ceiling and floor functions are used in this thesis as
well.

• The ceiling function �x� returns the smallest integer not less
than x.

• The floor function 	x
 returns the larget integer not greater than
x.

2.2 Min-Plus Algebra and Max-Plus

Algebra Basics

An essential idea of (stochastic) network calculus is to use alternate
algebras particularly the min-plus and max-plus algebras [15] to trans-
form complex non-linear network systems into analytically tractable
linear systems [67]. To the best of our knowledge, the existing models
and results of stochastic network calculus mainly focus on character-
izing network behavior from the spatial perspective and are based on
the min-plus algebra that has basic operations particularly suitable for
characterizing the cumulative amount of arrival traffic and the cumu-
lative amount of service. Interestingly, analytically modeling network
behavior from the temporal perspective heavily relies on the max-plus
algebra.

In the following, we review the basics of both min-plus algebra and
max-plus algebra used in this thesis.
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In the min-plus algebra, the ‘addition’ operation represents infi-
mum or minimum when it exists, and the ‘multiplication’ operation
is +.

For functions in the min-plus algebra, the following operations are
often used.

• The min-plus convolution of functions f, g ∈ F , denoted by ⊗,
is defined as

(f ⊗ g)(t) = inf
0≤s≤t

{f(s) + g(t − s)}

where, when it applies, ‘infimum’ should be interpreted as ‘min-
imum’.

• The min-plus deconvolution of functions f, g ∈ F , denoted by
�, is defined as

(f � g)(t) = sup
s≥0

{f(s + t) − g(s)}

where, when it applies, ‘supremum’ should be interpreted as
‘maximum’.

It has been proved that the min-plus convolution operation is as-
sociative and commutative [9] [15] [22] [67].

• Associativity: for any f1, f2, f3 ∈ F , (f1⊗f2)⊗f3 = f1⊗(f2⊗f3).

• Commutativity: for any f1, f2 ∈ F , f1 ⊗ f2 = f2 ⊗ f1.

In the max-plus algebra, the ‘addition’ operation represents supre-
mum or maximum when it exists, and the ‘multiplication’ operation
is +. For functions in the max-plus algebra, the following operations
are often used.

• The max-plus convolution of functions f, g ∈ F , denoted by ⊗̄,
is defined as

(f⊗̄g)(n) = sup
0≤m≤n

{f(m) + g(n − m)}

where, when it applies, ‘supremum’ should be interpreted as
‘maximum’.
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• The max-plus deconvolution of functions f, g ∈ F , denoted by
�̄, is defined as

(f � g)(n) = inf
m≥0

{f(n + m) − g(m)}

where, when it applies, ‘supremum’ should be interpreted as
‘maximum’.

The max-plus convolution is associative and commutative [15].

• Associativity: for any g1, g2, g3 ∈ F , (g1⊗̄g2)⊗̄g3 = g1⊗̄(g2⊗̄g3).

• Commutativity: for any g1, g2 ∈ F , g1⊗̄g2 = g2⊗̄g1.

2.3 Probability and Stochastic Process

2.3.1 Random Variables

For any random variable X,

• its cumulative distribution function (CDF) denoted by FX(x) ≡
P{X ≤ x}, belongs to F ;

• its complementary cumulative distribution function (CCDF) de-
noted by F̄X(x) ≡ P{X > x}, belongs to F̄ .

FX(x) is monotone non-decreasing and right-continuous. In addition,
we know

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1.

The Stieltjes convolution of two functions is often used in this thesis
and thus the definition is given below. For two functions f(x) and
g(x), their Stieltjes convolution is

(f ∗ g)(x) =

∫ +∞

−∞
f(x − y)dg(y). (2.7)

The Stieltjes convolution is commutative when f(x) and g(x) are
CDFs.
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After expanding the right-hand side of (2.7), we have

(f ∗ g)(x) =

∫ +∞

−∞
f(x − y)dg(y)

= f(x − y)g(y)
∣∣∣+∞

−∞
+

∫ +∞

−∞
g(x − y)df(y),

where the first term on the right-hand side must be zero in order to
make the Stieltjes convolution is commutative.

For two independent random variables X and Y , it is well known
that

FX+Y = FX ∗ FY =

∫ ∞

−∞
FX(x − y)dFY (y)

and

F̄X+Y = 1 − FX ∗ FY .

If X and Y are non-negative, FX(x) = 0 and FY (x) = 0 for x < 0.
Suppose there exist F̄X(x) ≤ f(x) and F̄Y (x) ≤ g(x). The following
lemma (Lemma 6.1 [67]) introduces a relation between F̄X+Y and f(x)
and g(x).

Lemma 1. Consider non-negative random variables X and Y . Sup-

pose they are independent and F̄X(x) ≤ f(x) and F̄Y (x) ≤ g(x), where

f, g ∈ F̄ . Then, for x ≥ 0, there holds

P{X + Y > x} ≤ 1 − (f̄ ∗ ḡ)(x) (2.8)

where f̄ = 1 − [f(x)]1 and ḡ = 1 − [g(x)]1.

Let E[X] denote the expected value of a random variable X. Then
the moment generating function (MGF) of this random variable, de-
noted by MX(θ), is defined as:

MX(θ) ≡ E[eθX ]

=

⎧⎪⎨
⎪⎩

∑
x eθx pX(x), X is discrete

∫ ∞
−∞ eθx fX(x)dx, X is continuous
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where, θ is real variable, pX(x) and fX(x) represent the probability
density function (PDF) of a discrete random variable X and probabil-
ity mass function (PMF) of a continuous random variable X, respec-
tively.

The well-known Chernoff bound gives an upper bound on the
CCDF of a random variable X:

P{X ≥ x} ≤ e−θxE[eθX ] (2.9)

for all θ ≥ 0.
In this thesis, we often concern about the sum of multiple of ran-

dom variables {Xi}, namely,

Y =
N∑

i=1

Xi,

where, if X1, ..., XN are independent, it is known that

MY (θ) = MX1(θ) · · · MXN
(θ). (2.10)

For Y =
∑N

i=1 Xi, if X1, ..., XN are possibly dependent, the follow-
ing lemma (Lemma 1.5 [67]) is important.

Lemma 2. For the sum of multiple random variables Y =
∑N

i=1 Xi,

no matter whether they are independent or not, there holds for the

CCDF of Y ,

F̄Y (y) ≤ F̄X1 ⊗ · · · ⊗ F̄XN
(y). (2.11)

2.3.2 Stochastic Processes

A stochastic process {X(t), t ∈ T} is a collection of random variables
defined for each t in the index set T . When T is countable set, the
stochastic process is said to be a discrete-time process. If T is an in-
terval of the real line, the stochastic process is said to be a continuous-
time process.

The CDF of a stochastic process X(t) is defined as for any (allowed)
t:

FX(x, t) = P{X(t) ≤ x}, −∞ < x < ∞.
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The CCDF of the stochastic process X(t) is defined as

F̄X(x, t) = P{X(t) > x}, −∞ < x < ∞.

The MGF of the stochastic process X(t) is defined as

MX(θ(t), t) ≡ E[eθ(t)X(t)]

=

⎧⎪⎨
⎪⎩

∑
x eθ(t)x pX(x, t), X is discrete

∫ ∞
−∞ eθ(t)x fX(x, t)dx, X is continuous

where θ(t) is a real variable possibly dependent on t.
The stationary process is often considered in this thesis. For a

stochastic process {X(t)} with FX(xt1+τ , ..., xtn+τ ) representing the
CDF of the joint distribution of {X(t)} at times t1+τ ,...,tn+τ , {X(t)}
is said to be stationary if for all n, τ and t1,...τn, there holds

FX(xt1+τ , ..., xtn+τ ) = FX(xt1 , ..., xtn).

In the stationary case, for ease of expression, we often use FX(x) and
F̄X(x) to represent the CDF and the CCDF, respectively.

A martingale is a stochastic process, where, the conditional ex-
pected value of an observation at some time t, given all the observa-
tions up to some earlier time s, equals the observation at that time
s.

Let Un be a stochastic process. If Un is a discrete-time process
with finite mean, then it is a discrete-time martingale iff there holds
for all n = 1, 2, ...

E[Un+1|U1, U2, ..., Un] = Un.

The stochastic process Un is said to be a supermartingale iff for all
n = 1, 2, ...

E[Un+1|U1, U2, ..., Un] ≤ Un.

The stochastic process Un is said to be a submartingale iff for all
n = 1, 2, ...

E[Un+1|U1, U2, ..., Un] ≥ Un.

A martingale is a supermartingale and a submartingale as well.
The following lemma (Theorem 3.2 in [39]) presents the Doob’s

submartingale inequalities which are useful when the supremum oper-
ation is involved.
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Lemma 3. If {Uk, 1 ≤ k ≤ n} is a submartingale, then for any real

number x, there holds:

P
{

sup
1≤m≤n

Um ≥ x
}

≤ E[U+
n ]

x
, (2.12)

P
{

inf
1≤m≤n

Um ≤ x
}

≥ E[U1] −E[U+
n ]

x
. (2.13)

Lemma 4 presents an inequality of supermartingale and the corre-
sponding proof [65].

Lemma 4. If {Uk, 1 ≤ k ≤ n} is a supermartingale and all Uk, k =

1, ..., n, are non-negative, then for any real number x > 0, there holds:

P
{

sup
1≤m≤n

Um ≥ x
}
≤ E[U1]

x
. (2.14)

Proof. Since {Uk, 1 ≤ k ≤ n} is a supermartingale, it is trivially true

that {−Uk, 1 ≤ k ≤ n} is a submartingale. Then, from Eq.(2.13), we

obtain

P
{

inf
1≤m≤n

(−Um) ≤ −x
}

≤ E[−U1] − E[(−Un)+]

−x

=
E[−U1]

−x
=

E[U1]

x

where we have applied the fact that (−Un)+ = 0 and hence E[(−Un)+] =

0. Then

{
sup

1≤m≤n

Um ≥ x
}

=
{

inf
1≤m≤n

(−Um) ≤ −x
}

from which, the proof is completed.

Remark. Note that while Lemma 3 holds under more general
conditions, Lemma 4 requires that the supermartingale is comprised
of non-negative random variables.
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2.3.3 Stochastic Ordering

For any two random variables X and Y , if F̄X(x) ≤ F̄Y (x) for all x,
namely,

P{X > x} ≤ P{Y > x}, for all x,

we say that X is stochastically smaller than Y [90], written as X ≤st Y .
The same notation applies when X and Y are random vectors.

Similarly, we say stochastic process X(t) is stochastically smaller
than Y (t), written as X(t) ≤st Y (t), if for any t and all x, there holds

P{X(t) > x} ≤ P{Y (t) > x}.

2.4 State of The Art in Stochastic

Network Calculus

This section briefly reviews the important background on stochastic
network calculus of particular relevance to this thesis. More specif-
ically, the available literature on stochastic network calculus mainly
focuses on modeling network behavior and analyzing network perfor-
mance from the spatial perspective [17] [30] [45] [47] [61] [67] [68] [78]
[80] [84]. We call the corresponding models and results space-domain
models and results in this thesis.

2.4.1 Space-domain Traffic Models

In order to characterize the arrival process of a flow from the spatial
perspective, let us consider the amount of traffic generated by this flow
in a time interval (s, t], denoted by A(s, t). In general, the amount of
traffic generated by the flow should be limited so that a certain level
of QoS for this flow can be guaranteed. A “famous” traffic model of
(deterministic) network calculus is Cruz’s (σ, ρ)-traffic characterization
defined as below [33]:

A(s, t) ≤ ρ · (t − s) + σ, (2.15)

where σ is the burstiness allowed and ρ is an upper bound on the
long term average rate of the traffic flow. The right-hand side of
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Inequality (2.15) is a simple linear function while an upper bound on
the cumulative amount of traffic A(s, t) could be any non-decreasing,
non-negative function of time. Thus, let α(t) denote a deterministic
bound on the cumulative amount of the generated traffic as shown in
Figure 2.1, where always holds for all 0 ≤ s ≤ t,

A(s, t) ≤ α(t − s), (Traffic amount property).
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Figure 2.1: The cumulative amount of traffic A(t) is bounded above
by α(t)

However, the stochastic nature of most network traffic may cause
this deterministic relation hardly holding. Alternatively, we may use
the probability distribution of A(s, t) to express the arrival process.
The Stochastically bounded burstiness (SBB) traffic model is the prob-
abilistic version of the (σ, ρ)-traffic characterization. The SBB model
is defined as follows [94]:

P{A(s, t) ≥ ρ · (t − s) + σ} ≤ f(σ) (2.16)

where ρ is the upper rate and f(σ) is the bounding function which
is non-increasing and non-negative. Similarly, we can define a traffic
model in terms of a general function α(t).

The following traffic model is defined based on the traffic amount
property and called the t.a.c stochastic arrival curve [67].
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Definition 3. (t.a.c Stochastic Arrival Curve).

A flow is said to have a traffic-amount-centric (t.a.c) stochastic

arrival curve α(t) ∈ F with bounding function f(x) ∈ F̄ , if for all

0 ≤ s ≤ t and all x ≥ 0, there holds

P
{A(s, t) − α(t − s) > x

} ≤ f(x). (2.17)

Remark. The left-hand side of Inequality (2.17) represents the vi-
olation probability that the actual amount of generated traffic A(s, t)
exceeds the upper bound α(t − s). The right-hand side of Inequality
(2.17) gives an upper-bound on the violation probability. The stochas-
tic arrival curve α(t) is an upper bound on A(t) and not unique. Thus,
finding a tighter bound is of concern.

While promising and intuitively simple, Definition 3 has limited
use for deriving further results such as delay bound or backlog bound.
Thus, another traffic model with more restriction called the v.b.c stochas-
tic arrival curve is introduced to facilitate the derivation of perfor-
mance bounds [67] .

Definition 4. (v.b.c Stochastic Arrival Curve).

A flow is said to have a virtual-backlog-centric (v.b.c) stochastic

arrival curve α(t) ∈ F with bounding function f(x) ∈ F̄ , if for all

0 ≤ s ≤ t and all x ≥ 0, there holds

P
{

sup
0≤s≤t

[A(s, t) − α(t − s)
]

> x
}
≤ f(x). (2.18)

Definition 4 solves the difficulty of Definition 3. However, Inequal-
ity (2.18) represents a property that may be hard to calculate [100].
A compromise way is to establish a general relation between the t.a.c
stochastic arrival curve (SAC) and the v.b.c SAC. Then we can flex-
ibly use any of them according to the need. The following theorem
provides the relation between the t.a.c SAC and the v.b.c SAC [67].

Theorem 1. (1) If a flow has a v.b.c SAC α(t) ∈ F with bounding

function f(x) ∈ F̄ , then the flow has a t.a.c SAC α(t) ∈ F with the

same bounding function f(x) ∈ F̄ .
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(2) Conversely, if a flow has a t.a.c SAC α(t) ∈ F with bounding

function f(x) ∈ F̄ , then the flow has a v.b.c SAC αε(t) ∈ F with

bounding function f ε(x) ∈ Ḡ, where

αε(t) = α(t) + ε · t
f ε(x) =

[
f(x) +

1

ε

∫ ∞

x

f(y)dy
]
1

for any ε > 0.

Remark. The bounding function f ε(x) belongs to Ḡ which is a
subset of F̄ .

2.4.2 Space-domain Service Models

Many network systems may only provide stochastic service, such as
wireless networks and multi-access networks. In order to ensure a
certain level QoS for an admitted flow, a network system typically
guarantees a minimum amount of service to this flow such as the GPS
service discipline. In the context of stochastic network calculus, the
service curve model is defined based on a stochastic lower bound on
the cumulative amount of service provided by the system. In this
thesis, the word ‘server’ is often used interchangeably with ‘network
system’.

The GPS service discipline [86] provides the basic concept of defin-
ing the service curve model. Consider a network node employing the
GPS discipline. Let r denote the rate allocated to the arrival process
A. Then the departure process A∗ can be expressed by

A∗(t) −A∗(t0) ≥ r(t − t0) (2.19)

where t0 is the beginning of the last busy period for the arrival process
up to time t. Recall that A is left-continuous. At time t0, the backlog
is 0, i.e., A(t0) = A∗(t0). Combining this with Eq.(2.19), we have

A∗(t) −A(t0) ≥ r(t − t0)

⇒ A∗(t) ≥ inf
0≤s≤t

[A(s) + r(t − s)]

which can be written as the min-plus convolution:

A∗(t) ≥ A⊗ r(t).
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The service curve, like the arrival curve, could be any non-decreasing
and non-negative function of time. Let β(t) denote a deterministic
lower bound on the cumulative amount of service up to time t. Then
there always holds for all t ≥ 0,

A∗(t) ≥ A⊗ β(t). (2.20)

Based on Inequality (2.20), a probabilistic version of the determin-
istic lower bound is defined below [67].

Definition 5. (Weak Stochastic Service Curve).

A network system is said to provide a weak stochastic service curve

β(t) ∈ F with bounding function g(x) ∈ F̄ , if for all t ≥ 0 and all

x ≥ 0, there holds

P
{A⊗ β(t) −A∗(t) > x

} ≤ g(x). (2.21)

Remark. Similar to the stochastic arrival curve, the stochastic
service curve of a network system is not unique.

Definition 5 does not explicitly define the stochastic service curve
β(t) because Inequality (2.21) couples the arrival process, the service
curve and the departure process. Thus, Definition 6 defines a stochas-
tic strict service curve [61] to explicitly describe the relation between
the service process and the stochastic service curve.

Definition 6. (Stochastic Strict Service Curve).

A network system is said to provide stochastic strict service curve

β(t) ∈ F with bounding function g(x) ∈ F̄ , if during any period (s, t],

the amount of service S(s, t) provided by this system satisfies, for any

x ≥ 0,

P
{S(s, t) < β(t − s) − x

} ≤ g(x). (2.22)

The following model [61] defines an important type of stochastic
strict server. In such a stochastic server, the stochastic nature of
service is due to some impairment process.
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Definition 7. (Stochastic Strict Service Curve with Impair-

ment).

Consider a network system providing strict service curve β̂(t) ∈ F
with impairment process I(t). If the impairment process has a stochas-

tic arrival curve αI(t) ∈ F with bounding function fI(x) ∈ F̄ , which

can be either the t.a.c SAC or the v.b.c SAC, then the system provides

stochastic strict service curve β(t) with bounding function fI(x), where

β(t) = β̂(t) − αI(t).

Remark. Here β̂(t) characterizes the ideal service process without
the impairment process. It is a deterministic lower bound on the
cumulative amount of service that the system would have provided if
there had been no service impairment.

2.4.3 Five Basic Properties

This section reviews the five basic properties of stochastic network
calculus which have been throughly investigated in [67]. These prop-
erties can ease tractable network analysis and are explored under the
various traffic models and service models reviewed in Section 2.4.1 and
Section 2.4.2.

(P1.) Service Guarantees
The service guarantee property means that the performance bounds

such as delay bound and backlog bound can be derived under the given
traffic model and service model. In order to facilitate the derivation
of performance bounds, we introduce two important concepts which
are often used in the rest of the thesis.

Definition 8. Consider two functions α(t), β(t) ∈ F . The maximum

horizontal distance between them, denoted by h(α, β), is defined as

(e.g., [15] [36] [67])

h(α, β) = sup
t≥0

{
inf{τ ≥ 0 : α(t) ≤ β(t + τ)}}, (2.23)
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and the maximum vertical distance between them, denoted by v(α, β),

is defined as (e.g., [15] [36] [67])

v(α, β) = sup
t≥0

{
α(t) − β(t)

} ≡ α � β(0). (2.24)

Figure 2.2 gives an intuitive explanation of these two concepts
using functions α(t) and β(t).
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Figure 2.2: Maximum horizontal and vertical distances between two
functions

The following theorem [67] gives the backlog bound under the con-
dition that the arrival process has a v.b.c SAC and the network system
provides a weak stochastic service curve (SSC).

Theorem 2. Consider a network system providing a weak SSC β(t) ∈
F with bounding function g(x) ∈ F̄ . The arrival process has a v.b.c

SAC α(t) ∈ F with bounding function f(x) ∈ F̄ . Then for all t ≥ 0

and x ≥ 0, the system backlog B(t) at time t is bounded by

P
{B(t) > x

} ≤ f ⊗ g(x − α � β(0)). (2.25)

Note that α�β(0) denotes the min-plus deconvolution and repre-
sents the maximal vertical distance between functions α(t) and β(t).

36



Chapter 2. Network Model and Background

Assume the network system provides a strict service curve2 β̂(t)
with impairment process I(t) which has a v.b.c SAC αI(t) with bound-
ing function fI(x). If the arrival process is independent of the impair-
ment process, Theorem 3 [67] gives the backlog bound by taking into
account the independence.

Theorem 3. Consider a network system providing a strict service

curve β̂(t) ∈ F with impairment process I(t) which has a v.b.c SAC

αI(t) ∈ F with bounding function fI(x) ∈ F̄ . The arrival process A(t)

has a v.b.c SAC α(t) ∈ F with bounding function f(x) ∈ F̄ . If A(t)

and I(t) are independent of each other, then for all t ≥ 0 and x ≥ 0,

the system backlog B(t) at time t is bounded by

P
{B(t) > x

} ≤ 1 − f̄ ∗ f̄I

(
x − sup

s≥0
[α(s) − β(s)]

)
. (2.26)

where β(t) = β̂(t) − αI(t), f̄ = 1 − [f(x)]1 and f̄I = 1 − [fI(x)]1.

Under the same condition as for Theorem 2, we have the following
result [67] for the system delay bound.

Theorem 4. Consider a network system providing a weak SSC β(t) ∈
F with bounding function g(x) ∈ F̄ . The arrival process has a v.b.c

SAC α(t) ∈ F with bounding function f(x) ∈ F̄ . Then for all t ≥ 0

and x ≥ 0, the system delay D(t) is bounded by

P
{D(t) > h(α + x, β)

} ≤ f ⊗ g(x). (2.27)

Note that h(α + x, β) represents the maximal horizontal distance
between functions α(t) + x and β(t).

Under the same assumption as for Theorem 3, the system delay
bound is given below [67].

2This is a special case of stochastic strict service curve with bounding function
ĝ(x) = 0.
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Theorem 5. Consider a network system providing a strict service

curve β̂(t) ∈ F with impairment process I(t) which has a v.b.c SAC

αI(t) ∈ F with bounding function fI(x) ∈ F̄ . The arrival process A(t)

has a v.b.c SAC α(t) ∈ F with bounding function f(x) ∈ F̄ . If A(t)

and I(t) are independent of each other, then for all t ≥ 0 and x ≥ 0,

the system delay D(t) is bounded by

P
{D(t) > h(α + x, β)

} ≤ 1 − f̄ ∗ ḡ(x), (2.28)

where β(t) = β̂(t) − αI(t), f̄ = 1 − [f(x)]1 and f̄I = 1 − [fI(x)]1.

(P2.) Output Characterization
In order to analyze the end-to-end performance, we should be able

to characterize the traffic behavior after the traffic departs from the
previous node. Particularly, the focus is on using the same arrival
traffic model to represent the departure traffic. The relevant result is
presented below [67].

Theorem 6. Consider a network system providing a weak SSC β(t) ∈
F with bounding function g(x) ∈ F̄ . The arrival process has a v.b.c

SAC α(t) ∈ F with bounding function f(x) ∈ F̄ . Then the departure

flow has a t.a.c SAC α � β(t) with bounding function f ⊗ g.

Note that the arrival flow has a v.b.c SAC while the departure flow
has a t.a.c SAC. However, the t.a.c SAC can be transformed into the
v.b.c SAC according to Theorem 1. Thus, the output characterization
can be applied iteratively.

(P3.) Concatenation Property
As shown in the upper sub-figure of Figure 2.3, if a flow traverses

a path consisting of n nodes, the end-to-end performance can be ob-
tained by the node-by-node analysis, i.e., analyzing the performance
at each node on the path. However, such an approach generally yields
looser performance bounds [15] [67]. The concatenation property is
thus introduced to represent a series of nodes in tandem as a ‘black
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Figure 2.3: Concatenation property of stochastic service curve

box’ which can be treated as a single node. This property can fa-
cilitate the end-to-end QoS performance analysis and improve results
obtained from the node-by-node analysis. Theorem 7 [67] presents one
relevant result of the concatenation property.

Theorem 7. Consider a flow passing through a network of N nodes

in tandem. If each node n(= 1, 2, ..., N) provides weak SSC βn(t) ∈ F
with bounding function gn(x) ∈ Ḡ, then the network guarantees to the

arrival process a weak SSC β(t) ∈ F with bounding function g(x) ∈ Ḡ,

where

β(t) = β1 ⊗ β2
−ε ⊗ · · · ⊗ βN

−(N−1)ε(t),

g(x) = g1,ε1 ⊗ g2,ε2 ⊗ · · · ⊗ gN,εN (x)

with

βn
−(n−1)ε(t) = βn(t) − (n − 1)ε · t

for n = 1, ..., N and ε > 0,

gn,εn(x) = gn(x) +
1

εn

∫ ∞

x

gn(y)dy
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for n = 1, ..., N − 1, and gN,εN (x) = gN(x), for any ε1, ..., εN−1 > 0.

(P4.) Leftover Service
The leftover service property characterizes the service available to

a flow at a server with competing flows. A simple example shown in
Figure 2.4, where flows F1 and F2 compete for the resource at server
S1 under aggregate scheduling, then flow F1 passes through server S2

while flow F2 leaves. In order to analyze the end-to-end performance
of flow F1, it needs to characterize the service received by flow F1

at server S1. From the following theorem [67], we can compute the
leftover service provided to the constituent flow.

���� ���� ��

�� ��

Figure 2.4: Leftover service of flow F1

Theorem 8. Consider a system with arrival process A which is the

aggregation of two constituent arrival processes A1 and A2. Suppose

A2 has a v.b.c SAC α2(t) ∈ F with bounding function f2(x) ∈ F̄ and

the system provides to the aggregation arrival process A a weak SSC

β(t) ∈ F with bounding function g(x) ∈ F̄ . Then if β(t) − α2(t) ∈
F , A1 receives a weak SSC β(t) − α2(t) ∈ F with bounding function

f2 ⊗ g(x) ∈ F̄ .

This property is very useful for deriving per-flow performance bounds
under aggregate scheduling. When focusing on a specific flow such as
F1 in Figure 2.4, all the other flows can be considered together as an
aggregate flow F2.

(P5.) Superposition Property
The superposition property means that the superposition of mul-

tiple flows under the FIFO scheduling can be treated together as a

40



Chapter 2. Network Model and Background

��
��

������ ������

Figure 2.5: Superposition of two constituent flows

single aggregate flow. A simple example shown in Figure 2.5, where
two individual flows F1 and F2 are aggregated into flow F1,2 at server
1. Since two flows are treated equally at both server S1 and server
S2, from analyzing the end-to-end performance of the aggregate flow
F1,2, the performance of each individual flow is readily obtained. The-
orem 9 [67] provides the result of deriving the arrival process for the
aggregate flow.

Theorem 9. Consider N flows with arrival processes Ai, i = 1, ..., N ,

respectively. Let A denote the aggregate arrival process. If for all i,

the arrival process has a t.a.c (or v.b.c) SAC αi(t) ∈ F with bounding

function fi(x) ∈ F̄ , then the aggregate arrival process has a t.a.c (or

v.b.c) SAC α(t) ∈ F with bounding function f(x) ∈ F̄ , where

α(t) =
N∑

i=1

αi(t),

f(x) = f1 ⊗ · · · ⊗ fN(x).
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Time-domain Modeling and

Transformations

The material in this chapter has been partially published as follows:

• Jing Xie and Yuming Jiang. “Stochastic Service Guarantee
Analysis Based on Time-domain Models.” In Proceedings of 17th

Annual Meeting of the IEEE/ACM International Symposium on
Modelling, Analysis and Simulation of Computer and Telecom-
munication System (MASCOTS), London, UK, September 2009.
(Extended paper)

• Jing Xie and Yuming Jiang. “Stochastic Network Calculus Mod-
els under Max-plus Algebra.” In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM)), Honolulu, US,
December 2009.
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3.1 Introduction

Modeling the behavior of queues existing in computer networks is a
fundamental issue of network performance analysis. One of related re-
search topics is QoS [49]. Stochastic Network calculus focuses on QoS
guarantee analysis [20] [45] [61] [67]. It particularly studies networks
where service guarantees are provided stochastically. Such networks
include wireless networks, multi-access networks, and multimedia net-
works where applications can tolerate some certain violation of the
desired performance [44].

One open research challenge related to stochastic network calculus
is time-domain modeling and analysis [67]. Time-domain modeling for
service guarantee analysis has its root from the deterministic Guar-
anteed Rate (GR) server model [52], where the service guarantee is
captured by comparing with a (deterministic) virtual time function in
the time-domain. This time-domain model has been extended to de-
sign aggregate-scheduling networks to support per-flow (deterministic)
service guarantees [31] [63], while few such results are available from
space-domain models. Other network scenarios where time-domain
modeling may be preferable include wireless networks and multi-access
networks.

In wireless networks, the varying link condition may cause failed
transmission when the link is in ‘bad’ condition. The sender may hold
until the link condition becomes ‘good’ or re-transmits. For such cases,
it is difficult to directly find the stochastic service curve in the space-
domain because we need to characterize the stochastic nature of the
impaired service caused by the ‘bad’ link condition. A possible way is
that we use an impairment process [61] to characterize the impaired
service. However, how to define and find the impairment process arises
another difficulty. Even though we can define an impairment process,
we need to first convert the impairment process into some existing
stochastic network calculus models, and then further analyze the per-
formance bounds. The obtained performance bounds may become
loose because of such conversion. If we characterize the service pro-
cess in the time-domain, we can use random variables to represent
the time intervals when the link is in ‘bad’ condition. Analyzing the
stochastic nature of such random variables would be easier. In addi-
tion, this way can avoid the difference introduced by the intermediate
conversion.

In contention-based multi-access networks, backoff schemes are of-
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ten employed to reduce collision occurrence. Because the backoff pro-
cess is characterized by backoff windows which may vary with the dif-
ferent backoff stages, it is quite cumbersome for a space-domain server
model to characterize the service process with the consideration of the
backoff process. This also prompts the possibility of characterzing the
service process in the time-domain. Having said this, however, how
to define a stochastic version of the virtual time function and then
perform the corresponding analysis is yet open [67].

In this chapter, we define traffic and service models in the time-
domain. Particularly, traffic models are defined based on probabilistic
lower bounds on the cumulative packet inter-arrival time. Service mod-
els are defined in terms of the virtual time function and probabilistic
upper bounds on the cumulative packet service time. Moreover, we
establish the transformation between two traffic models or two ser-
vice models. In order to bridge the gap between the newly defined
time-domain models and the existing space-domain models, the trans-
formations between them are established as well.

The chapter is organized as follows. Section 3.2 introduces the
preliminary results to be used throughout this chapter. In Section
3.3 and Section 3.4, based on the introduction of the time-domain
(deterministic) traffic and service models, we extend them to stochastic
versions. In addition, the relationships among them as well as with
some existing space-domain models are established.

3.2 Preliminary Results

3.2.1 Distance between Two Functions

The maximum horizontal and vertical distance between two functions
have been defined in Definition 8. In the time-domain, we use λ(n)
instead of β(t) and γ(n) instead of α(t). Then the maximum horizon-
tal distance between functions λ(n) and γ(n), denoted by H(γ, λ), is
defined as

H(γ, λ) = sup
n≥0

{
inf [k ≥ 0 : γ(n − k) ≤ λ(n)]

}
, (3.1)

and the maximal vertical distance between them is defined as

V (γ, λ) = sup
n≥0

{γ(n) − λ(n)} ≡ γ � λ(0). (3.2)

46



Chapter 3. Time-domain Modeling and Transformations

The intuitive illustration of the above two distances is shown in Figure
3.1.
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Figure 3.1: Maximum horizontal/vertical distance between two func-
tions

It is worth noticing that in Figure 3.1, the x-axis represents the
number of cumulative arrival or departure packets and the y-axis rep-
resents the cumulative inter-arrival time or service time when λ(n)
and γ(n) are interpreted as the arrival curve and service curve de-
fined in the time-domain, respectively. While in Figure 2.2, the x-axis
represents the discrete time and the y-axis represents the cumulative
amount of arrival or service when α(t) and β(t) are interpreted as the
arrival curve and service curve defined in the space-domain, respec-
tively.

3.2.2 A Fundamental Transformation

Observing the arrivals from the temporal perspective captures the
characteristics of the cumulative inter-arrival time. A natural question
invoked here is to find the relationship between the cumulative inter-
arrival time and the number of cumulative arrivals.

Recall that A(t) denotes the cumulative amount of arrival traffic
up to time t. For ease of exposition, A(t) denotes the number of
cumulative arrival packets throughout this chapter unless stated
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otherwise. If A(t) has a deterministic upper-bound α(t) ∈ F , then
the packet arrival time a(n) can be determined according to α(t).

Lemma 5. For function α(t) ∈ F , there holds the following relation-

ships:

1. the following statements are equivalent:

a) for all 0 ≤ s ≤ t, A(s, t) ≤ α(t − s) + x for any x ≥ 0;

b) for all t ≥ 0, A(t) ≤ A⊗ α(t) + x for any x ≥ 0;

2. if A(t) ≤ A ⊗ α(t) + x holds for any t, x ≥ 0, we have a(n) ≥
a⊗̄λ(n) − y, where λ(n) ∈ F and y are defined as follows

λ(n) = inf{τ : α(τ) ≥ n}, (3.3)

y = sup
k≥0

[λ(k) − λ(k − x)]. (3.4)

Proof. (1). For (a) → (b), from the condition, we obtain:

A(s, t) − α(t − s) − x ≤ 0

for any 0 ≤ s ≤ t.

Thus there holds

sup
0≤s≤t

[A(s, t) − α(t − s) − x] ≤ 0

which implies

A(t) − inf
0≤s≤t

[A(s) + α(t − s)] − x ≤ 0.

Then we can conclude for any t, x ≥ 0,

A(t) ≤ A⊗ α(t) + x.
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For (b) → (a), from the condition, we have

A(t) − inf
0≤s≤t

[A(s) + α(t − s)] − x ≤ 0

which implies

sup
0≤s≤t

[A(s, t) − α(t − s) − x] ≤ 0.

Then there must hold, for any 0 ≤ s ≤ t,

A(s, t) − α(t − s) − x ≤ 0.

Thus, for any 0 ≤ s ≤ t and x ≥ 0, the following holds

A(s, t) ≤ α(t − s) + x.

(2). From (1), we know that

A(t) ≤ A⊗ α(t) + x ⇔ A(s, t) ≤ α(t − s) + x

for any 0 ≤ s ≤ t and x ≥ 0.

Then for any 0 ≤ m ≤ n, we have

A(
a(m), a+(n)

) ≤ α
(
a+(n) − a(m)

)
+ x

where a+(n) = a(n) + ε with ε → 0. We also know

n − m ≤ A(
a(m), a+(n)

) ≤ α
(
a+(n) − a(m)

)
+ x.

Taking the inverse function of α
(
a+(n) − a(m)

)
yields

a+(n) − a(m) ≥ λ(n − m − x)

= λ(n − m) − [λ(n − m) − λ(n − m − x)]

≥ λ(n − m) − sup
n−m≥0

[λ(n − m) − λ(n − m − x)]

= λ(n − m) − sup
k≥0

[λ(k) − λ(k − x)]

=⇒ a(n) ≥ a(m) + λ(n − m) − y,
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which holds because ε → 0 and y = supk≥0[λ(k) − λ(k − x)].

Since the above inequality holds for any 0 ≤ m ≤ n, we conclude

a(n) ≥ sup
0≤m≤n

[a(m) + λ(n − m) − y] = a⊗̄λ(n) − y.

Example 1.

Suppose the number of cumulative arrival packets of a flow, A(t),
is upper-bounded by α(t) + x for t, x ≥ 0, where α(t) = ρ · t. Let
α(t) ≡ n. We get the inverse function of α(t), λ(n) = n

ρ
. Inserting λ

into Eq.(3.4) results in

y = sup
k≥0

{k

ρ
− (k − x)+

ρ

}
=

{
x
ρ

k ≥ x,

< x
ρ

0 ≤ k < x,

from which we get y = x
ρ
. Then, for any packet, its arrival time

satisfies

a(n) ≥ sup
0≤m≤n

[
a(m) +

n − m

ρ

]
− x

ρ
.

From the view of the packet arrival time, if a(n) has a deterministic
lower-bound λ(n) ∈ F , the following lemma can be used to compute
the cumulative number of arrival packets according to λ.

Lemma 6. For function λ(n) ∈ F , there holds:

1. the following statements are equivalent:

a) for any 0 ≤ m ≤ n, a(n)− a(m) ≥ [λ(n−m)− y]+ for any

y ≥ 0.

b) for any n ≥ 0, a(n) ≥ [a⊗̄λ(n) − y]+ for y ≥ 0;

2. if a(n) ≥ [a⊗̄λ(n) − y]+ holds for any n, y ≥ 0, we have A(t) ≤
A⊗ α(t) + x, where α(t) ∈ F and x are defined as follows

α(t) = sup{k : λ(k) ≤ t}
x = sup

u≥0
[α(u + y) − α(u) + 1]. (3.5)
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Proof. (1). The (a) → (b) part has been proved in Lemma 5(2). We

only prove the (b) → (a) part. From the condition, we know

a(n) − sup
0≤m≤n

{a(m) + λ(n − m)} + y ≥ 0

=⇒ inf
0≤m≤n

{a(n) − a(m) − λ(n − m)} + y ≥ 0.

Thus there holds

a(n) − a(m) ≥ [λ(n − m) − y]+

for any 0 ≤ m ≤ n and y ≥ 0.

(2) For any 0 ≤ s ≤ t, let A(s) = m and A(t) = n, where m and n

can be obtained by

m = sup{k : a(k) ≤ s},

n = sup{k : a(k) ≤ t}.

Then we know A(s, t) = n−m and a(n)− a(m + 1) ≤ t− s. Part

(1) shows that a(n) ≥ a⊗̄λ(n) − y is equivalent to a(n) − a(m) ≥
λ(n − m) − y. Then we have

t − s ≥ a(n) − a(m + 1) ≥ λ(n − m − 1) − y.

Taking the inverse function of λ(n−m−1) yields n−m−1 ≤ α(t−s+y).

Because A(s, t) = n − m, we have

A(s, t) ≤ α(t − s + y) + 1

= α(t − s) + [α(t − s + y) − α(t − s) + 1]

≤ α(t − s) + sup
t−s≥0

[α(t − s + y) − α(t − s) + 1]

= α(t − s) + sup
u≥0

[α(u + y) − α(u) + 1] = α(t − s) + x.
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Since A(s, t) − α(t − s) − x ≤ 0 holds for any 0 ≤ s ≤ t, we have

sup
0≤s≤t

[A(s, t) − α(t − s) − x] ≤ 0

=⇒ A(t) − inf
0≤s≤t

[A(s) + α(t − s)] − x ≤ 0,

from which, we conclude A(t) ≤ A⊗ α(t) + x.

Remark. Lemma 6(1) reveals that if (a) holds, so does (b) and
vice versus. We hence call Lemma 6(1) the duality principle of the
time-domain arrival process with respect to the lower bound λ(n).

3.3 Time-domain Traffic Models

This section first reviews the (deterministic) arrival curve model de-
fined in the time-domain [21]. Then we generalize the deterministic
model and define time-domain stochastic arrival curve models.

3.3.1 Deterministic Arrival Curve

Consider an arrival process that specifies packets arriving to a system
at time a(n). In order to deterministically guarantee a certain level of
QoS to this flow, the traffic sent by this flow must be constrained. The
(deterministic) network calculus traffic model in the time-domain char-
acterizes packet inter-arrival times using a lower-bound function [23],
called time-domain (deterministic) arrival curve in this thesis and de-
fined as follows.

Definition 9. (Arrival Curve).

A flow is said to have a (deterministic) arrival curve λ(n) ∈ F , if

its arrival process satisfies, for any m,n ≥ 0 and τ ≥ 0,

a(m + n) − a(m) ≥ λ(n) − τ, (3.6)

where a(m+n)−a(m) = Γ(m,m+n) represents the inter-arrival time

between packets P (m) and P (m + n).
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The following example explains the concept of Definition 3.3.1.

Example 2.

The Generic Cell Rate Algorithm (GCRA) [58] with parameter
(T, τ) is a parallel algorithm to the Leaky Bucket algorithm and has
been used in fixed-length packet networks such as Asynchronous Trans-
fer Mode (ATM) networks.

The GCRA measures cell rate at a specified time scale and as-
sumes that cells will have a minimum interval between them. Here, T
denotes the assumed minimum interval between cells and τ denotes
the maximum acceptable excursion that quantifies how early cells may
arrive with respect to T . It can be verified that if a flow is GCRA(T, τ)-
constrained, it has an arrival curve

λ(n) =
(
T · n − τ

)+
.

Thus, for any packet that conforms to the traffic contract, its arrival
time satisfies a(n) ≥ λ(n + 1)1. In addition, for any two conformed
packets, P (m) and P (m + n), their inter-arrival time satisfies

a(m + n) ≥ a(m) + n · T − τ

⇒ a(m + n) − a(m) ≥ n · T − τ.

3.3.2 Inter-arrival-time Stochastic Arrival Curve

Definition 9 defines a (deterministic) arrival curve λ(n) which is the
lower-bound of the inter-arrival time between two arbitrary packets.
However, the real network traffic characterization is complicated and
Inequality (3.6) may not hold in general. Considering this, we extend
the deterministic bound into a probabilistic bound.

Definition 10. (i.a.t Stochastic Arrival Curve).

A flow is said to have an inter-arrival-time (i.a.t) stochastic arrival

curve λ(n) ∈ F with bounding function h(x) ∈ F̄ , if for any m,n ≥ 0

and x ≥ 0, there holds

P
{

a(m + n) − a(m) <
[
λ(n) − x

]+
}
≤ h(x). (3.7)

1Recall that a(n) represents the arrival time of the n + 1th packet.
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It is readily proved that Definition 9 is a special case of Definition
10 with h(x) = 0 for all x ≥ 0.

Queueing theory typically characterizes the arrival process in terms
of the probability distribution of the inter-arrival time between two
consecutive customers:

P{a(n) − a(n − 1) = τn ≤ x} = F (x).

Comparing F (x) with Inequality (3.7), we notice that Inequality (3.7)
gives a more general probability expression of the (cumulative) inter-
arrival time. Thus, F (x) is a special case of Inequality (3.7).

Example 3.

Consider a flow with fixed unit packet size. Suppose its packet
inter-arrival times follow an exponential distribution with mean 1/μ.
Then, the packet arrival time has an Erlang distribution with param-
eter (n, μ) [2]. For any two packets P (m) and P (m + n), their inter-
arrival time Γ(m,m + n) satisfies, for x ≥ 0,

P
{

a(m + n) − a(m) <
n

μ
− x

}
≤ P

{
a(m + n) − a(m) ≤ [n

μ
− x

]+
}

= 1 −
n−1∑
k=0

e−μy(μy)k

k!

where y = n
μ
− x.

The i.a.t SAC is intuitively simple, but it has limited use if no ad-
ditional constraint is enforced. We study a simple example to under-
stand this problem. Consider that a single node provides the constant
service time T to its input which has an i.a.t SAC λ(n) with bounding
function h(x), where λ(n) ≥ T · n for any n > 0. We are interested
in the system delay D(n), where, by definition, D(n) = d(n) − a(n).
Because the node provides the constant service time T , the service
process has a (deterministic) service curve γ(n) = T · n which implies
the departure time (see Eq.(3.13))

d(n) = sup
0≤m≤n

[a(m) + T · (n − m + 1)],
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where a(m) is the beginning of the backlogged period within which
packet P (n) is transmitted. Then the waiting delay is

W (n) = D(n) − T

= sup
0≤m≤n

{
a(m) + T · (n − m + 1)

} − a(n) − T

= sup
0≤m≤n

{
a(m) + T · (n − m) − a(n)

}
≤ sup

0≤m≤n

{
λ(n − m) − [a(n) − a(m)]

}
. (3.8)

From Inequality (3.8), it is difficult to derive more results if no addi-
tional constraint is added because we only know

P{λ(n − m) − [a(n) − a(m)] > x} ≤ h(x)

according to Inequality (3.7). When investigating the performance
metrics such as delay bound and backlog bound in Section 4.1, we
face the similar difficulty.

3.3.3 Virtual-waiting-delay Stochastic Arrival

Curve

The previous subsection has stated the difficulty of applying the i.a.t
SAC to service guarantee analysis. To avoid such difficulty, we intro-
duce another stochastic arrival curve model which is called virtual-
waiting-delay (v.w.d) stochastic arrival curve. Before introducing the
definition of this new arrival curve model, we need to know what is
the virtual-waiting-delay property.

Consider a flow F of which packets arrive to a system at time a(n).
Suppose the arrival process of this flow has a (deterministic) arrival
curve λ(n). We are interested in the following function:

sup
0≤m≤n

{
λ(n − m) − [a(n) − a(m)]

}
(3.9)

which can be interpreted as follows. Let us consider a virtual single
server queue (SSQ) system fed with the same flow F . The SSQ system
has infinite buffer space and is initially empty. Suppose the virtual
SSQ provides a constant service time λ(1) for each packet. The time
that packet P (n) departs from the virtual SSQ is (see Definition 12):

d(n) = sup
0≤m≤n

[a(m) + λ(n − m + 1)].
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The waiting delay of P (n) experienced in the virtual SSQ system is

W (n) = D(n) − λ(1)

= d(n) − a(n) − λ(1)

= sup
0≤m≤n

[λ(n − m) + a(m)] − a(n)

= sup
0≤m≤n

{
λ(n − m) − Γ(m,n)]

}
where the last step is Eq.(3.9). We thus call Eq.(3.9) the virtual wait-
ing delay property of the arrival process Γ(m,n).

Recall Figure 3.1, if we replace γ(n) by λ(n − m) and λ(n) by
Γ(m,n), Eq.(3.2) becomes Eq.(3.9). Thus, Eq.(3.2) can be used to
express the system delay with Γ(m,n) as the arrival process and λ(n)
as the service process.

By extending Eq.(3.9) into a probabilistic version, we define the
v.w.d stochastic arrival curve in the following.

Definition 11. (v.w.d Stochastic Arrival Curve).

A flow is said to have a virtual-waiting-delay (v.w.d) stochastic

arrival curve λ(n) ∈ F with bounding function h(x) ∈ F̄ , if for any

0 ≤ m ≤ n and x ≥ 0, there holds

P
{

sup
0≤m≤n

{
λ(n − m) − [

a(n) − a(m)
]}

> x
}
≤ h(x). (3.10)

Through some manipulation, Inequality (3.10) can be expressed as
the max-plus convolution:

P
{
a(n) < a⊗̄λ(n) − x

} ≤ h(x). (3.11)

Here, a⊗̄λ(n) can be considered as the expected time that the packet
would arrive to the head-of-line (HOL) if the flow has passed through
a virtual SSQ with the (deterministic) service curve λ(n). The packet
is expected to arrive not earlier than the expected HOL time and x is
introduced to denote the difference between the expected HOL time
and the actual arrival time. The vioaltion probability is bounded by
the function h(x) which should decrease as x increases.
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Example 4.

Consider a flow with the same fixed packet size. Suppose all packet
inter-arrival times are exponentially distributed with mean 1

μ
. Based

on the steady-state PMF of the queue-waiting time for an M/D/1
queue [93], we say that the flow has a v.w.d SAC λ(n) = � · n with
bounding function hexp for 0 < � < 1

μ
. Let ρ = μ · �. We can obtain

the bounding function of the probability that the waiting delay W (n)
exceeds x(≥ 0)

hexp(x) = 1 − (1 − ρ)

�x
�
�∑

i=0

e−μ(i�−x) [μ(i� − x)]i

i!

where, 	y
 denotes the floor function.

Lemma 6(1) demonstrates a duality principle for the (determinis-
tic) arrival curves. It is interesting to study whether there exists some
similar relationship between the i.a.t and the v.w.d models.

Theorem 10. 1. If a flow has a v.w.d SAC λ(n) ∈ F with bound-

ing function h(x) ∈ F̄ , then the flow has an i.a.t SAC λ(n) ∈ F
with the same bounding function h(x) ∈ F̄ .

2. Conversely, if a flow has an i.a.t SAC λ(n) ∈ F with bounding

function h(x) ∈ Ḡ, it also has a v.w.d SAC λ−η(n) ∈ F with

bounding function hη(x) ∈ Ḡ, where for η > 02

λ−η(n) = [λ(n) − η · n]+,

hη(x) =
[
h(x) +

1

η

∫ ∞

x

h(y)dy
]
1
.

Proof. The first part follows from that for any 0 ≤ m ≤ n, there

trivially holds

λ(n − m) − [a(n) − a(m)] ≤ sup
0≤m≤n

{
λ(n − m) − [a(n) − a(m)]

}
.

2Note that η should not be greater than limn→∞

λ(n)
n

.
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For the second part, there holds

P
{

sup
0≤m≤n

{
λ−η(n − m) − [a(n) − a(m)]

}
> x

}
≤ P

{
sup

0≤m≤n

{
λ−η(n − m) − [a(n) − a(m)]

}+
> x

}
.

For any x ≥ 0,

P
{
{λ(n − m) − η · (n − m) − [a(n) − a(m)]}+ > x

}
= P

{
λ(n − m) − η · (n − m) − [a(n) − a(m)] > x

}
= P

{
λ(n − m) − [a(n) − a(m)] > x + η · (n − m)

}
≤ h

(
x + η · (n − m)

)
.

Based on the above steps, we have

P
{

sup
0≤m≤n

{λ−η(n − m) − [a(n) − a(m)]} > x
}

≤
n∑

m=0

P
{
{λ−η(n − m) − [a(n) − a(m)]}+ > x

}

≤
n∑

m=0

h(x + η · (n − m))

=
n∑

k=0

h(x + η · k)

≤
∞∑

k=0

h(x + η · k)

= h(x) +
∞∑

k=1

h(x + η · k)

≤ h(x) +
1

η

∫ ∞

x

h(y)dy.

The right-hand side of the last inequality still belongs to Ḡ. The

second part follows from the above inequality and the fact that the

probability is always not greater than one.
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Remark. In the second part of Theorem 10, h(x) ∈ Ḡ while
not ∈ F̄ . If the requirement on the bounding function is relaxed to
h(x) ∈ F̄ , the above relationship may not hold in general.

Theorem 10 implies that under the condition that the bounding
function is in Ḡ, the v.w.d SAC is as general as the i.a.t SAC since if a
traffic source can be modeled by an i.a.t SAC, it can also be modeled
by a v.w.d SAC but may be with a more loose bounding function.

It is worth highlighting that the v.w.d SAC looks similar as the
v.b.c SAC (see Definition 4) defined in the space-domain. Since these
two models play an important role for performance analysis in their
respective domains, we also establish their relationship in the following
theorem.

Theorem 11. 1. If a flow has a space-domain v.b.c SAC α(t) ∈ F
with bounding function f(x) ∈ F̄ , the flow has a time-domain

v.w.d SAC λ(n) ∈ F with bounding function h(y) ∈ F̄ , where

λ(n) = inf{τ : α(τ) ≥ n}, and h(y) = f
(
z−1(y)

)
with z−1(y) denoting the inverse function of y, where

y = z(x) ≡ sup
k≥0

{λ(k) − λ(k − x)}.

Specifically, if λ(·) is sub-additive, z(x) = λ(x).

2. Conversely, if a flow has a time-domain v.w.d SAC λ(n) ∈ F
with bounding function h(y) ∈ F̄ , the flow has a space-domain

v.b.c SAC α(t) ∈ F with bounding function f(x) ∈ F̄ , where

α(t) = sup{k : λ(k) ≤ t}, and f(x) = h
(
z−1(x)

)
with z−1(x) denoting the inverse function of x, where

x = z(y) ≡ sup
τ≥0

{α(τ + y) − α(τ) + 1}.

Specifically, if α(·) is sub-additive3, z(y) = α(y) + 1.

3 [14] clarifies that α(t) defines a meaningful constraint only if it is subadditive.
If α(t) is not subadditive, it can be replaced by its subadditive closure.
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Proof. (1) From Lemma 5, we know that for any t, x ≥ 0, event

{A(t) ≤ A⊗ α(t) + x}

implies event

{a(n) ≥ a⊗̄λ(n) − y}

where y is obtained from Eq.(3.4):

y = sup
k≥0

{
λ(k) − λ(k − x)

} ≡ z(x).

Thus, there holds

P
{A(t) ≤ A⊗ α(t) + x

} ≤ P
{
a(n) ≥ a⊗̄λ(n) − y

}
=⇒ P

{
a(n) < a⊗̄λ(n) − y

} ≤ P
{A(t) > A⊗ α(t) + x

}
≤ f(x),

where the relationship between y and x is decided by function Eq.(3.4)

as shown above. Particularly, if λ is sub-additive, i.e. λ(a + b) ≤
λ(a) + λ(b) for any a and b, we then have:

P
{
a(n) < a⊗̄λ(n) − λ(x)

}
≤ P

{
a(n) < a⊗̄λ(n) − sup

k≥0
[λ(k) − λ(k − x)]

}
≤ f(x).

Hence, the first part follows.

(2) From Lemma 6, we know that for any n, y ≥ 0, event

{a(n) ≥ a⊗̄λ(n) − y}

implies event

{A(t) ≤ A⊗ α(t) + x}

60



Chapter 3. Time-domain Modeling and Transformations

where x is obtained from Eq.(3.5) as:

x = sup
u≥0

{α(u + y) − α(u) + 1} ≡ z(y).

Thus, there holds

P
{
a(n) ≥ a⊗̄λ(n) − y

} ≤ P
{A(t) ≤ A⊗ α(t) + x

}
=⇒ P

{A(t) > A⊗ α(t) + x
} ≤ P

{
a(n) < a⊗̄λ(n) − y

}
≤ h(y),

where the relationship between x and y is decided by function Eq.(3.5)

as shown above. Particularly, if α is sub-additive, we have

P
{A(t) > A⊗ α(t) + α(y) + 1

}
≤ P

{A(t) > A⊗ α(t) + sup
u≥0

[α(u + y) − α(u) + 1]
}

≤ h(y),

which ends the proof.

The generalized stochastically bounded burstiness (gSBB) [103]
is a special case of the space-domain v.b.c SAC. A summarization
of some well-known traffic belonging to gSBB is given [67], including
both Gaussian self-similar processes [4] [27] [73] [83], such as fractional
Brownian motion, and non-Gaussian self-similar processes, such as
α−stable self-similar process [5] [70], and the (σ(θ), ρ(θ)) stochastic
traffic model [19] [21]. With Theorem 11, the following example shows
that gSBB can be readily represented using the time-domain v.w.d
stochastic arrival curve.

Example 5.

If the arrival process of a flow A(t) can be described by gSBB with
upper rate ρ and bounding function f(x) ∈ F̄ , i.e., for any t, x ≥ 0,
there holds

P
{

sup
0≤s≤t

{A(s, t) − ρ · (t − s)
}

> x
}
≤ f(x),
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then the process A(t) has a v.b.c SAC α(t) = ρ · t with the bounding
function f(x). With Theorem 11 (1), the arrival process has a v.w.d
SAC λ(n) = n

ρ
which is sub-additive and the bounding function h(y) =

f(ρ · y), i.e.,

P
{

sup
0≤m≤n

{1

ρ
· (n − m) − [a(n) − a(m)]

}
> y

}
≤ f(ρ · y).

Remark. Theorem 11 provides a bridge through which we can
readily utilize the available results of gSBB traffic. On the other hand,
for some traffic types, they may be more suitable for being charac-
terized using the time-domain traffic models rather than using the
space-domain traffic models. We thus believe that the transformation
between the two domains can facilitate the analysis.

3.4 Time-domain Service Models

Queueing theory characterizes the service process of a system based on
the per customer service time. The time-domain service models borrow
the similar concept from queueing theory to describe the cumulative
service times.

���������	
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Figure 3.2: Packet departure time

As the upper part of Figure 3.2 shows, if packet P (n) arrives to
a system after packet P (n − 1) has departed from the system, the
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departure time of P (n) is a(n) + δn. However, if P (n) arrives to the
system and ‘see’ P (n− 1) still in the system, then its departure time
will be d(n−1)+δn as shown in the lower part of Figure 3.2. Combining
both cases, we have

d(n) = max[a(n), d(n − 1)] + δn (3.12)

with d(0) = 0.
Applying Eq.(3.12) iteratively to its right-hand side results in

d(n) = sup
0≤m≤n

[
a(m) +

n∑
k=m

δk

]
. (3.13)

3.4.1 Deterministic Service Curve

In order to provide deterministic service guarantees to an arrival flow,
the system usually allocates a minimum service rate to the flow. A
guaranteed minimum service rate is equivalent to a guaranteed max-
imum service time for each packet of the flow, and accordingly the
packet’s departure time from the system is bounded. The Guaran-
teed Rate Clock (GRC) is defined based on the guaranteed maximum
service time δ̂n [52] [53]:

GRC(n) = max[a(n), GRC(n − 1)] + δ̂n. (3.14)

with GRC(0) = 0.
The above equation looks very similar to Eq.(3.12). The only differ-

ence between Eq.(3.12) and Eq.(3.14) is that GRC(n) represents the
guaranteed departure time4 of packet P (n) while d(n) is the actual
departure time of packet P (n).

Plugging the guaranteed maximum service time δ̂n into Eq.(3.13)
results in the following expression for GRC(n):

GRC(n) = sup
0≤m≤n

[
a(m) +

n∑
k=m

δ̂k

]
. (3.15)

4The guaranteed departure time is actually GRC(n)+error term [52]. However,
the underlying service discipline considered throughout this thesis is FIFO, under
which, the error term is zero.
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Suppose we can use a function γ(n−m+1) to denote
∑n

i=m δ̂i. Then,
Eq.(3.15) becomes

GRC(n) = sup
0≤m≤n

[
a(m) + γ(n − m + 1)

]
= a⊗̄γ(n) (3.16)

which is the basis for defining the (deterministic) service model [23] as
follows. The right-hand side of Eq.(3.16) is the max-plus convolution
of the arrival time a(n) and function γ(n).

Definition 12. (Service Curve).

Consider a system S with the arrival process a(n) and the departure

process d(n). The system is said to provide to the arrival a (determin-

istic) service curve γ(n) ∈ F , if for any n ≥ 0,

d(n) ≤ a⊗̄γ(n). (3.17)

Inequality (3.17) illustrates that the actual packet departure time
will not be later than the guaranteed departure time. Definition 12
implies that γ(n) is an upper bound on the cumulative service time.

The (deterministic) service curve has the following duality princi-
ple:

Lemma 7. For any n, x ≥ 0, there holds

d(n) − a⊗̄γ(n) ≤ x,

if and only if

sup
0≤m≤n

[d(n) − a⊗̄γ(n)] ≤ x

for any n ≥ 0, where γ(n) ∈ F .

Proof. For the ”if” part, it trivially holds because

d(n) − a⊗̄γ(n) ≤ sup
0≤m≤n

[d(n) − a⊗̄γ(n)].
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For the ”only if” part, from d(n) − a⊗̄γ(n) ≤ x for any n ≥ 0, we

have

sup
0≤m≤n

[d(n) − a⊗̄γ(n)] ≤ sup
0≤m≤n

[x] = x.

The first part of Lemma 7 defines a (deterministic) service curve
γ(n) + x. Lemma 7 states that if a server provides a service curve
γ(n) + x, then sup0≤m≤n[d(m) − a⊗̄γ(m)] ≤ x holds, and vice versa.
In this sense, we call Lemma 7 the duality principle of service curve.

3.4.2 Stochastic Service Curve

For systems that only provide service guarantees stochastically or ap-
plications that require only stochastic QoS guarantees, the service
time may not be deterministically guaranteed. Accordingly, Inequality
(3.17) does not hold in general. Then we extend the (deterministic)
service curve into a probabilistic version.

Definition 13. (i.d Stochastic Service Curve).

A system is said to provide an inter-departure time (i.d) stochastic

service curve γ(n) ∈ F with bounding function j(x) ∈ F̄ , if for any

n, x ≥ 0, there holds

P
{

d(n) − a⊗̄γ(n) > x
}
≤ j(x). (3.18)

Remark. The stochastic service curve (SSC) of a service process
is not unique. It implies that some optimization techniques may be
needed when we try to find the SSC of a specific system.

Example 6.

Consider two nodes, the sender and the receiver, communicate
through an error-prone wireless link which is modeled as a slotted
system. The wireless link can be considered as a stochastic server.
Packets have fixed-length and are served in FIFO manner at the sender.
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To simplify the analysis, we assume the length of time slot equals one
packet transmission time5.

The sender can send the head-of-queue packet only at the begin-
ning of a time slot. Due to the error-prone characteristics of the wire-
less link, the probability that a packet can be sent correctly is deter-
mined by packet error rate (PER). Here, we assume that packet errors
happen independently in every transmission with the fixed PER de-
noted by Pe. The successful transmission probability of one packet is
hence 1 − Pe. If error happens, the unsuccessfully transmitted packet
can be retransmitted in the next time slot immediately. One packet
can be retransmitted unlimited times until it is successfully received
by the receiver.

The per-packet service time, δn, is a geometric random variable
with parameter 1 − Pe. The cumulative service time of sending pack-
ets P (m) to P (n) is

∑n

k=m δk which follows the negative binomial
distribution with parameter 1−Pe. The mean per-packet service time
is δ̄ = 1

1−Pe
.

According to the CCDF of the negative binomial distribution, the
cumulative service time for two arbitrary packets P (m) and P (m +n)
is given by

P
{ m+n∑

k=m

δk > δ̄ · (n + 1) + x
}

≤
∞∑

i=	γ(n+1)+x


(
i − 1

n

)
(1 − Pe)

n+1P i−(n+1)
e , (3.19)

for any x ≥ 0, where �·� is the ceiling function.
The right-hand side of Inequality (3.19) represents the bound on

the probability that the cumulatively actual service time exceeds the
cumulative mean service time. From Inequality (3.19), we can obtain
the i.d SSC provides to the arrival packets. Let γη(n) = δ̄ · n + η · n
for η > 0. The right-hand side of Inequality (3.19) is denoted by j(x).

5It means we only compute the number of time slots in this example.
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According to Definition 13, we know

d(n) − a⊗̄γη(n)

= sup
0≤m≤n

[
a(m) +

n∑
k=m

δk

] − sup
0≤m≤n

[
a(m) + (δ̄ + η) · (n − m + 1)

]

≤ sup
0≤m≤n

[ n∑
k=m

δk − δ̄ · (n − m + 1) − η · (n − m + 1)
]
,

from which, we have

P
{

sup
0≤m≤n

[ n∑
k=m

δk − δ̄ · (n − m + 1) − η · (n − m + 1)
]

> x
}

≤
n∑

m=0

P
{ n∑

k=m

δk − δ̄ · (n − m + 1) > x + η · (n − m + 1)
}

≤
n∑

m=0

j(x + η · (n − m + 1))

=
n+1∑
k=1

j(x + η · k)

≤
[1

η

∫ ∞

x

j(y)dy
]

1
.

Thus, we conclude that this error-prone wireless link provides an i.d
SSC γη(n) with the bounding function jη(x) for η > 0, where

γη(n) = δ̄ · n + η · n,

jη(x) =
[1

η

∫ ∞

x

j(y)dy
]

1
.

Inequality (3.19) is only relevant to the cumulative service time
and does not invovle the arrival process. Thus it provides a way to
find the i.d SSC.

Remark. Example 6 illustrates that we can obtain the SSC from
analyzing per packet service time. However, if applying the space-
domain results for such case, we need an impairment process [67] to
characterize the cumulative amount of service consumed by unsuc-
cessful transmissions. In other words, we still need to compute the
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cumulative slots due to failed transmission and then convert it into
the amount of service. Such conversion may introduce error or result
in looser bounds.

In Chapter 4, we show that many results can be derived from the
i.d SSC. However, without additional constraints, we have difficulty
in proving the concatenation property for the i.d SSC. To address this
difficulty, we introduce another service curve model in the following
subsection.

3.4.3 η-Stochastic Service Curve

Lemma 7 reveals the duality principle of the (deterministic) service
curve γ, which is provided by a system with input a(n) and output
d(n) if and only if for all n ≥ 0, there holds

sup
0≤m≤n

{
d(m) − a⊗̄γ(m)

} ≤ x,

which can be generalized to the η-stochastic service curve as defined
below.

Definition 14. (η-Stochastic Service Curve).

A system is said to provide an η-stochastic service curve γ(n) ∈ F ,

with respect to η, with bounding function jη(x) ∈ F̄ , if for any n, x ≥ 0,

there holds

P
{

sup
0≤m≤n

[
d(m) − a⊗̄γ(m) − η · (n − m)

]
> x

}
≤ jη(x), (3.20)

for any small η > 0.

Note that the left-hand side of Inequality (3.20) represents a prop-
erty that is typically hard to calculate. It means that Definition 14
is more strict than Definition 13. Thus it is important to find the
relationship between the i.d SSC and the η-stochastic service curves.

Theorem 12. 1. If a system provides to its arrival process an η-

stochastic service curve γ(n) with bounding function jη(x) ∈ F̄ ,
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it provides to the arrival process an i.d SSC γ(n) with the same

bounding function jη(x) ∈ F̄ ;

2. If a system provides to its arrival process an i.d SSC γ(n) with

bounding function j(x) ∈ Ḡ, it provides to the arrival process an

η-stochastic service curve γ(n) with bounding function jη(x) ∈ Ḡ
for η > 0, where

jη(x) =
[
j(x) +

1

η

∫ ∞

x

j(y)dy
]
1
.

Proof. The first part follows since there always holds

d(n) − a⊗̄γ(n) ≤ sup
0≤m≤n

[
d(m) − a⊗̄γ(m) − η · (n − m)

]
by letting m = n on the right hand side.

For the second part, there holds

sup
0≤m≤n

[
d(m) − a⊗̄γ(m) − η · (n − m)

]
≤ sup

0≤m≤n

{d(m) − a⊗̄γ(m) − η · (n − m)}+.

Hence for any x ≥ 0, there exists

P
{

sup
0≤m≤n

{d(m) − a⊗̄γ(m) − η · (n − m)} > x
}

≤
n∑

m=0

P
{
d(m) − a⊗̄γ(m) − η · (n − m) > x

}

≤
n∑

u=0

j(x + η · u)

≤
[
j(x) +

1

η

∫ ∞

x

j(y)dy
]

1
.

The right-hand side of the above inequality still belongs to Ḡ and is

always not greater than 1. The proof of the second part is completed.
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In the second part of the above theorem, j(x) ∈ Ḡ while not ∈ F̄ .
If the requirement on the bounding function is relaxed to j(x) ∈ F̄ ,
the above relationship may not hold in general.

3.4.4 Stochastic Strict Service Curve

Definition 13 explores the relationship between the arrival process and
the departure process, but it does not explicitly characterize the ser-
vice process. From Inequality (3.18), it is difficult to directly find
the stochastic service curve γ(n) for a specific system. Example 6
illustrates this difficulty since we have to add some increment η to
the stochastic service curve γ(n). To solve this problem, we expand
Eq.(3.16) as follows:

d(n) − a⊗̄γ(n) = sup
0≤m≤n

[
a(m) + Δ(m,n)

] − a⊗̄γ(n). (3.21)

Without loss of generality, assume a(m0) (0 ≤ m0 ≤ n) is the begin-
ning of the backlogged period in which packet P (n) is served. Then,

sup
0≤m≤n

[
a(m) + Δ(m,n)

]
= a(m0) + Δ(m0, n)

and a⊗̄γ(n) ≥ a(m0) + γ(n − m0 + 1).
We rewrite the right-hand side of Eq.(3.21) as

a(m0) + Δ(m0, n) − a⊗̄γ(n)

≤ a(m0) + Δ(m0, n) − a(m0) − γ(n − m0 + 1)

= Δ(m0, n) − γ(n − m0 + 1). (3.22)

Note that Inequality (3.22) holds for arbitrary m0 ≤ n. Inspired by
this, we define a new service curve model as below.

Definition 15. (Stochastic Strict Service Curve).

A system is said to provide stochastic strict service curve γ(n) ∈
F with bounding function j(x) ∈ F̄ , if the cumulative service time

between two arbitrary packets P (m) and P (n)6 satisfies

P
{

Δ(m,n) − γ(n − m + 1) > x
}
≤ j(x) (3.23)

6If P (m) and P (n) are in the same backlogged period, Δ(m,n) = d(n)−d(m−
1) = Γ∗(m − 1, n).
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for any x ≥ 0.

Moreover, Inequality (3.22) reveals a relationship between the i.d
SSC and the stochastic strict service curve. And from Theorem 12(2),
the relationship between the stochastic strict service and the η−stochastic
service curve is indirectly obtained.

Theorem 13. Consider a system providing stochastic strict service

curve γ(n) ∈ F with bounding function j(x) ∈ F̄ .

1. It provides an i.d SSC γ(n) with the same bounding function

j(x).

2. If j(x) ∈ Ḡ, it provides an η−stochastic service curve γ(n) with

bounding function jη(x) ∈ Ḡ, where

jη(x) =
[
j(x) +

1

η

∫ ∞

x

j(y)dy
]
1
.

3.5 Conclusion

This chapter first defines two traffic models, the i.a.t SAC and the
v.w.d SAC. The former is a straightforward extension of the determin-
istic arrival curve which characterizes the cumulative inter-arrival time.
The i.a.t arrival curve model is simple while not applicable for explor-
ing the basic properties, such as service guarantees. The v.w.d arrival
curve model is thus introduced to facilitate the property exploration.

The v.w.d arrival curve is defined based on the virtual-waiting-
delay property, which is generally hard to compute. In order to flexi-
bly apply these two models, the transformation between them is estab-
lished. Moreover, the transformation between the time-domain v.w.d
arrival curve model and the space-domain v.b.c arrival curve model is
established. With this transformation, it is possible to map the avail-
able examples of space-domain traffic models into the time-domain
traffic models.

The second part of this chapter focuses on defining three service
models. The i.d SAC model is the probabilistic extension of the guar-
anteed rate clock function. This service curve model is simple but has
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the same problem as the i.a.t arrival curve model, i.e., inapplicable
for exploring the basic properties, such as the concatenation property.
The η−stochastic service curve model is hence defined to deal with
this problem. The η−stochastic service curve is based on the supre-
mum of a given set, which is a more strict condition compared to the
condition of finding the i.d. service curve. The i.d stochastic service
curve can be transformed into the η−stochastic service curve with a
more lose bounding function.

In addition, the i.d service model couples the service process of a
system with both the arrival process and the departure process. Such
connection makes it difficult to explicitly characterize the service pro-
cess. Therefore, the stochastic strict service curve is introduced to
help find the i.d stochastic service curve of a system. The correspond-
ing relationships between these three service models are investigated
as well.
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els under Max-plus Algebra.” In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM)), Honolulu, US,
December 2009.
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Chapter 4. Fundamental Properties

This chapter presents further results derived from the time-domain
traffic and service models defined in Chapter 3. Particularly, we inves-
tigate the four basic properties reviewed in Section 2.4.3, including ser-
vice guarantees, output characterization, concatenation property and
superposition property. Some properties can directly be proved only
for the combination of a specific traffic model and a specific service
model. This clarifies why we established the various transformations
between models in Section 3.3 and Section 3.4. With these transforma-
tion, we can flexibly apply the corresponding models to characterizing
specific systems.

4.1 Service Guarantees

This section investigates the delay bound and backlog bound under the
scenario that the arrival process has a v.w.d stochastic arrival curve
and the service process has an i.d stochastic service curve.

4.1.1 Delay Bound

The system delay significantly impacts QoS and is an important perfor-
mance metric. The following theorem shows that given the stochastic
arrival curve and stochastic service curve, we can obtain a bound on
system delay readily.

Theorem 14. (System Delay Bound).

Consider a system S providing an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to the input which has a v.w.d SAC λ(n) ∈ F with

bounding function h(x) ∈ F̄ . Let D(n) = d(n) − a(n) be the delay in

the system of packet P (n). For x ≥ 0, D(n) is bounded by

P{D(n) > x} ≤ j ⊗ h([x − γ � λ(1)]+). (4.1)

Proof. For any n ≥ 0, according to the definition of D(n), there holds

D(n) = d(n) − a(n)

=
[
d(n) − a⊗̄γ(n)

]
+

[
a⊗̄γ(n) − a(n)

]
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=
[
d(n) − a⊗̄γ(n)

]
+ sup

0≤m≤n

{
a(m) + γ(n − m + 1) − a(n)

}
=

[
d(n) − a⊗̄γ(n)

]
+ sup

0≤m≤n

{
λ(n − m) − [a(n) − a(m)] +

γ(n − m + 1) − λ(n − m)
}

≤ d(n) − a⊗̄γ(n) + sup
0≤m≤n

{
λ(n − m) − [a(n) − a(m)]

}
+ sup

0≤m≤n

{γ(n − m + 1) − λ(n − m)}

≤ d(n) − a⊗̄γ(n) + sup
0≤m≤n

{
λ(n − m) − [a(n) − a(m)]

}
+ sup

k≥0
{γ(k + 1) − λ(k)}.

To ensure system stability, we require

lim
k→∞

1

k
[γ(k) − λ(k)] ≤ 0. (4.2)

In the rest of the thesis, without explicitly stating, we shall assume

inequality Eq.(4.2) holds. In addition, the following results are given

P
{
d(n) − a⊗̄γ(n) > x

}
and

P
{

sup
0≤m≤n

{
λ(n − m) − [

a(n) − a(m)
]}

> x
}

.

From Lemma 2 and

sup
k≥0

{
γ(k + 1) − λ(k)

}
= γ � λ(1),

we can conclude

P{D(n) > x} ≤ j ⊗ h(x − γ � λ(1)).

If the arrival process and the service process are independent, ac-
cording to Lemma 1, we can obtain the corresponding bound on the
system delay as follows.
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Lemma 8. (System delay bound: independent condition)

Consider a system S providing an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to the arrival process which has a v.w.d SAC λ(n) ∈
F with bounding function h(x) ∈ F̄ . Suppose the arrival process and

the service process are independent. Then for x ≥ 0, the system delay

D(n) is bounded by

P{D(n) > x} ≤ 1 − j̄ ∗ h̄([x − γ � λ(1)]+), (4.3)

where j̄(x) = 1 − [j(x)]1 and h̄(x) = 1 − [h(x)]1.

Recall Equation (3.13) which expresses the packet departure time
d(n) in terms of the beginning of the latest backlogged period a(m)
(m ≤ n) and the cumulative service time

∑n

k=m δk. Replacing the
packet departure time d(n) with Equation (3.13) results in another
expression for the system delay D(n):

D(n) = sup
0≤m≤n

[
a(m) +

n∑
k=m

δk

]
− a(n)

= sup
0≤m≤n

[ n∑
k=m

δk −
n∑

k=m+1

τk

]
. (4.4)

Assume γ(n) ≤ λ(n) for any n > 0 and γ(n) = λ(n) = 0 for all n ≤ 0.
In addition, λ(n) and γ(n) are subadditive. Adding λ(n − m + 1) −
γ(n − m + 1) to the right-hand side of Eq.(4.4) leads to

D(n) ≤ sup
0≤m≤n

[
Δ(m,n) − γ(n − m + 1) + λ(n − m + 1) −

n∑
k=m+1

τk

]
≤ sup

0≤m≤n

[
Δ(m,n) − γ(n − m + 1)

]
+

sup
0≤m≤n

[
λ(n − m + 1) − Γ(m,n)

]
≤ sup

0≤m≤n

[
Δ(m,n) − γ(n − m + 1)

]
+

sup
0≤m≤n

[
λ(n − m) + λ(1) − Γ(m,n)

]
,
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where, the last step is obtained from the condition that λ(n) is subad-
ditive. Suppose there exists the following inequalities:

P
{

sup
0≤m≤n

[
Δ(m,n) − γ(n − m + 1)

]
> x

}
≤ j(x), (4.5)

P
{

sup
0≤m≤n

[
λ(n − m) − Γ(m,n)

]
> x

}
≤ h(x), (4.6)

with which, we obtain another delay bound:

P{D(n) > x} ≤ j ⊗ h
(
x − λ(1)

)
. (4.7)

Remark. Inequality (4.6) represents a v.w.d SAC λ(n) with bounding
function h(x). From Inequality (4.5), we can prove that γ(n) is an i.d
SSC with the same bounding function j(x).

Proof. Let d(n) be instead of Eq.(3.13). According to Definition 13,

we can write

d(n) − a⊗̄γ(n)

= sup
0≤m≤n

[
a(m) + Δ(m,n)

] − sup
0≤m≤n

[
a(m) + γ(n − m + 1)

]
≤ sup

0≤m≤n

[
Δ(m,n) − γ(n − m + 1)

]
.

From the above inequality and the condition of Inequality (4.5), we

know

P
{
d(n) − a⊗̄γ(n) > x

}
≤ P

{
sup

0≤m≤n

[
Δ(m,n) − γ(n − m + 1)

]
> x

}
≤ j(x).

Thus, we conclude γ(n) is an i.d SSC with bounding function j(x).

The left-hand side of Inequality (4.5) requires finding the supre-
mum of a set, i.e., P{supn fn > x}. The right-hand side of Inequality
(4.5) is an upper bound on the probability computed by the left-hand
side. In order to find this upper bound, we consider a virtual SSQ
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with δn as packet service times and γ(1) as packet inter-arrival times.
Then the waiting time of packet P (n + 1) in such virtual SSQ is

W (n + 1) = d(n + 1) − a(n + 1) − δn

= sup
0≤m≤n+1

[
a(m) +

n+1∑
k=m

δk

]
− a(n + 1) − δn+1

= sup
0≤m≤n+1

[ n∑
k=m

δk − [a(n + 1) − a(m)]
]

= sup
0≤m≤n

[ n∑
k=m

δk − γ(n − m + 1)
]
,

from which, Inequality (4.5) can be interpret as the bound on the
CCDF of waiting time distribution in D/G/1 queue. If the packet
service times are independent, a bound based on martingale can be
derived for GI/GI/1 queue (e.g. [64]). Fixing n, we define a stochastic
process

V (l) = eθ
Pn

k=n−l[δk−γ(1)]

with θ > 0 and 0 ≤ l < n. Note that eθ[δn−1−(l+1)−γ(1)] is independent of
all eθ[δn−1−v−γ(1)] for all v = 0, 1, ..., l. It can be proved that {V (l)}, l =
0, 1, ..., n, is a supermartingale1. In this way, with Doob’s inequality
for martingale, we have for θ > 0 and E[eθ(δ0−γ(1))] ≤ 1:

P
{

sup
0≤m≤n

[ n∑
k=m

δk − γ(n − m + 1)
]

> x
}

= P
{
eθ sup0≤m≤n

Pn
k=m[δk−γ(1)] > eθx

}
= P

{
sup

0≤l<n

V (l) > eθx
}

≤ E[eθ(δ0−γ(1))]e−θx, (4.8)

where E[eθ(δ0−γ(1))] is the moment generating function of δ0 − γ(1).
Inequality (4.8) shows that θ is an optimization parameter. The

following way is used to get an optimized bound for the waiting time
in queue.

1Readers refer to the literature, e.g. [64] for the complete proof. Note that we
can find similar result of this martingale proof back to Kingman in 1970s.
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Lemma 9. Consider a D/GI/1 queue. Assume that Mδ0−γ(1) exists

for small θ > 0. Let θ∗ = sup{θ : Mδ0−γ(0) ≤ 1}. Then, we have the

following bound for waiting time in queue:

P
{
W > x

} ≤ inf
0<θ≤θ∗

Mδ0−γ(1))e
−θx. (4.9)

Following the same approach, Inequality (4.6) also represents a
virtual SSQ with λ(1) as packet service times and τn as packet inter-
arrival times. Then Inequality (4.6) can be interpreted as the waiting
time in GI/D/1 queue. For such virtual system, the bounding function
h(x) is

h(x) = inf
0<θ≤θ∗

E[eθ(λ(1)−τ0)]e−θx, (4.10)

where θ∗ = sup{θ : Mλ(1)−τ0) ≤ 1}.
The following example shows how to obtain a system delay bound

based on Inequalities (4.5) and (4.6).

Example 7.

Consider an E2/M/1 system. The packet inter-arrival times follow
a 2-stage hypo-exponential distribution with two different arrival rates
μ and 2μ. The packet service times are distributed exponentially with
mean 1

μ
.

Then, taking γ(n) = n
rs

where rs < μ, the right-hand side of In-
equality (4.8) becomes

j(x) = inf
0<θ≤θ∗

μ

μ − θ
e−

θ
rs e−θx,

where
θ∗ = sup{θ :

μ

μ − θ
e−

θ
rs ≤ 1}.

Taking λ(n) = n
ra

where ra > 2μ

3
, the right-hand side of Inequality

(4.6) becomes

h(x) = inf
0<θ≤θ∗

μ

μ + θ

2μ

2μ + θ
e

θ
ra e−θx,

where

θ∗ = sup{θ :
μ

μ + θ

2μ

2μ + θ
e

θ
ra ≤ 1}.
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Considering the arrival process and the service process are inde-
pendent, applying Lemma 1 may yield a tighter system delay bound
compared with the bound given in Inequality (4.7). Note that we use

j(x) =
μ

μ − θ
e−

θ
rs e−θx

and

h(x) =
μ

μ + θ

2μ

2μ + θ
e

θ
ra e−θx

to implement Stieltjes convolution when applying Inequality (2.7) here.
Then, we have the following bound on the system delay

P{D > x}
≤ 1 − (

(1 − j) ∗ (1 − h)
)
(x)

= inf
0<θ≤θ∗

1 − μ

μ − θ
e−

θ
rs

(
1 − e−θx∗ − 2θμ2x∗

(2μ + θ)(μ + θ)
eθ( 1

ra
−x∗)

)
(4.11)

where x∗ = x − 1
ra

.
When computing the bound based on Inequality (4.11), rs and ra

are confined by 2μ

3
< ra ≤ rs < μ. For the allowed combinations of rs

and ra, their corresponding θ∗ are listed in Table 4.1.

ra 0.7μ 0.7μ 0.7μ 0.8μ 0.8μ 0.9μ
rs 0.7μ 0.8μ 0.9μ 0.8μ 0.9μ 0.9μ
θ∗ 0.1225μ 0.1225μ 0.1225μ 0.3713μ 0.1931μ 0.1931μ

Table 4.1: Combination of ra and rs vs. θ0

The right-hand side of Inequality (4.11) is influenced by ra, rs and
θ∗. To study the influence of these three parameters, we compare the
bound with the exact CCDF of system delay. First, we know the CDF
of the waiting time in the G/M/1 queue [74]:

Fw(x) = P{W ≤ x}
= 1 − (2 −

√
2)e−μ(

√
2−1)x.

The system delay equals the waiting time in queue plus the service
time, then the CCDF of system delay is expressed as2

P{D > x} = P{W + δ > x}
= 1 − Fw ∗ Fexp(x) (4.12)

2The waiting time in queue and the service time are independent.
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4.1. Service Guarantees

where Fexp(x) = 1 − e−μx is the CDF of the exponential distribution.
Thus we get the CCDF of the system delay in the G/M/1 system:

P{D > x} = e−μ(
√

2−1)x. (4.13)

Let μ = 1. Figure 4.1 shows that the curve obtained with ra =
0.8μ, rs = 0.8μ is the most tight bound. Revisit Table 4.1, the corre-
sponding θ∗ is 0.3713μ. The two curves obtained with ra = 0.8μ, rs =
0.9μ and ra = 0.9μ, rs = 0.9μ are very close. The corresponding θ∗ for
these two combinations are the same, 0.1931μ. Similarly, if ra = 0.7μ,
the three combinations have the same θ∗ = 0.1225μ. The correspond-
ing curves are also very close. It reveals that the curve becomes tighter
as θ∗ increases.
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Figure 4.1: CCDF and bound of E2/M/1 system delay

82



Chapter 4. Fundamental Properties

4.1.2 Backlog Bound

When investigating the backlog in the system at time t, we first recall
the definition of the system backlog:

B(t) = A(t) −A∗(t),

where A(t) and A∗(t) represent the cumulative number of arrival pack-
ets and the cumulative number of departure packets up to time t,
respectively.

Let the departure time of packet P (m) be d(m) = t. Then B(t)
can be determined by:

B(t) ≤ inf
{
k ≥ 0 : d(m) ≤ a(m + k)

}
.

The following theorem provides a probabilistic bound on the system
backlog in terms of the arrival process and the service process.

Theorem 15. (Backlog Bound)

Consider a system providing an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to the input which has a v.w.d SAC λ(n) ∈ F with

bounding function h(x) ∈ F̄ . The backlog at time t (≥ 0) is bounded

as below

P{B(t) > x} ≤ j ⊗ h
(
γ�̄λ([x − 1]+)

)
(4.14)

for x ≥ 1.

Let

H(λ, γ + x) = sup
m≥0

{
inf[k ≥ 0 : γ(m) + x ≤ λ(m + k)]

}

represent the maximum horizontal distance between functions λ(n) and

γ(n) + x. The probability that B(t) exceeds H(λ, γ + x) is bounded by

P{B(t) > H(λ, γ + x) + 1} ≤ j ⊗ h(x). (4.15)

83



4.1. Service Guarantees

Proof. From the condition, we have

d(m) − a(m + x)

=
[
d(m) − a⊗̄γ(m)

]
+

[
a⊗̄γ(m) − a(m + x)

]
=

[
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
a(k) + γ(m − k + 1)

} − a(m + x)

=
[
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
λ(m + x − k) − [a(m + x) − a(k)]

+ γ(m − k + 1) − λ(m + x − k)
}

≤ [
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m+x

{
λ(m + x − k) − [a(m + x) − a(k)]

}
− inf

0≤k≤m

{
λ(m − k + x) − γ(m − k + 1)

}
Let v = m − k + 1. The above inequality is written as

d(m) − a(m + x)

≤ [
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m+x

{
λ(m + x − k) − [a(m + x) − a(k)]

}
− inf

1≤v≤m+1

{
λ(v + x − 1) − γ(v)

}
.

Because there holds

inf
1≤v≤m+1

{
λ(v + x − 1) − γ(v)

} ≥ inf
v≥1

{
λ(v + x − 1) − γ(v)

}
= λ�̄γ([x − 1]+),

with the same conditions as analyzing the delay, we obtain

P{B(t) > x} ≤ j ⊗ h
(
λ�̄γ([x − 1]+)

)
.

To prove Inequality (4.15), we replace x = H(λ, γ + y) + 1 in event

{B(t) > x} and have

d(m) − a(m + H(λ, γ + y) + 1)

≤ [
d(m) − a⊗̄γ(m)

]
+ a⊗̄λ

(
m + H(λ, γ + y) + 1

)
−a

(
m + H(λ, γ + y) + 1

)
+ sup

v≥0

{
γ(v) − λ(v + H(λ, γ + y))

}
.
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The definition of H(λ, γ + y) implies

γ(v) + y ≤ λ(v + H(λ, γ + y))

for any v ≥ 0, i.e.,

sup
v≥0

{
γ(v) − λ(v + H(λ, γ + y))

} ≤ −y.

Then we conclude

P{B(t) > H(λ, γ + x) + 1} ≤ j ⊗ h(x).

Remark. H(λ, γ + x) can be considered as the maximum system
backlog in a (deterministic) virtual system, where the arrival process
is λ(n) and the service process is γ(n) + x. Inequality (4.15) is thus a
bound on such maximum system backlog.

If the arrival process and the service process are independent of
each other, from Lemma 1, another bound on the system backlog is
provided as follows.

Lemma 10. (Backlog Bound: independent condition)

Consider a system providing an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to the input which has a v.w.d SAC λ(n) ∈ F with

bounding function h(x) ∈ F̄ . Suppose the input process and the service

process are independent. Then the backlog at time t (≥ 0) is bounded

by:

P{B(t) > x} ≤ 1 − j̄ ∗ h̄
(
γ�̄λ([x − 1]+)

)
(4.16)

for x ≥ 1.

Let H(λ, γ+x) represent the maximum horizontal distance between

functions λ(n) and γ(n)+x. The probability that B(t) exceeds H(λ, γ+

x) is bounded by

P{B(t) > H(λ, γ + x) + 1} ≤ 1 − j̄ ∗ h̄(x). (4.17)
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4.2 Output Characterization

The previous section introduces the service guarantees in a single node.
Another common scenario which performance analysis deals with is
the end-to-end service guarantees. An intuitive and simple approach
is called node-by-node analysis [60]. The idea of node-by-node analysis
is: it first analyzes service guarantees provided to a flow at each node
along its path and then integrates obtained analytical results for all
nodes of its path to get the end-to-end service guarantees provided
by this path. In order to conduct the node-by-node analysis, it is
necessary to know how to characterize the departure process from a
single node.

Let us consider a simple network shown in Figure 4.2. After a flow
passes through Server 1, its departure process is the arrival process for
Server 2.

�����#		
���$�����
�

��%�	&	�$�������
$� � ��

$� �

Figure 4.2: Output characterization

Assume the initial arrival a(n) has a stochastic arrival curve λ(n)
and each server provides service with a stochastic service curve γk,
k = 1, 2. In order to analyze the end-to-end performance for the
initial arrival flow, such as delay bound, the intuitive method is to
derive the delay bound in Server 1 and Server 2, respectively. Adding
these two delay bounds together gives the end-to-end delay bound.

Deriving the delay bound in Server 1 directly follows the result of
Section 4.1.1. When deriving the delay bound in Server 2, we need to
characterize the arrival process of Server 2. Clearly, the arrival process
of Server 2 is the departure process of Server 1. Now the question is
how to characterize the departure process of Server 1 based on the
given conditions?

Theorem 16. (Output Characterization)

Consider a system provides an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to its arrival which has a v.w.d SAC λ(n) ∈ F with
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bounding function h(x) ∈ F̄ . The output has an i.a.t SAC λ�̄γ(n −
m−1) with bounding function j⊗h(x) ∈ F̄ , i.e., for any 0 ≤ m < n−1,

there holds

P
{

λ�̄γ(n − m − 1) − [d(n) − d(m)] > x
}
≤ j ⊗ h(x). (4.18)

Proof. For any two departure packets m < n, there holds

d(m) − d(n) ≤ d(m) − a(n)

= d(m) − a(n) + a⊗̄γ(m) − a⊗̄γ(m)

=
[
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
a(k) + γ(m − k + 1)

} − a(n)

=
[
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
γ(m − k + 1) − [a(n) − a(k)]

}

=
[
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
γ(m − k + 1) − λ(n − k)

+ λ(n − k) − [a(n) − a(k)]
}

≤ [
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤m

{
λ(n − k) − [a(n) − a(k)]

}
+ sup

0≤k≤m

{
γ(m − k + 1) − λ(n − k)

}
.

Let v = m − k + 1. Then the above inequality is written as

d(m) − d(n) ≤ [
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤n

{
λ(n − k) − [a(n) − a(k)]

}
− inf

1≤v≤m+1

{
λ(n − m − 1 + v) − γ(v)

}
≤ [

d(m) − a⊗̄γ(m)
]
+ sup

0≤k≤n

{
λ(n − k) − [a(n) − a(k)]

}
− inf

0≤v≤m+1

{
λ(n − m − 1 + v) − γ(v)

}
where the last step is because

inf
0≤k≤m+1

[fk] ≤ inf
1≤k≤m+1

[fk].
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Adding inf0≤v≤m+1

{
λ(n − m − 1 + v) − γ(v)

}
to both sides of the

above inequality results in

inf
0≤v≤m+1

{
λ(n − m − 1 + v) − γ(v)

} − [d(n) − d(m)]

≤ [
d(m) − a⊗̄γ(m)

]
+ sup

0≤k≤n

{
λ(n − k) − [a(n) − a(k)]

}
.

In addition, there holds

λ�̄γ(n − m − 1) = inf
v≥0

{
λ(n − m − 1 + v) − γ(v)

}
≤ inf

0≤v≤m+1

{
λ(n − m − 1 + v) − γ(v)

}
.

To ensure that the right-hand side of the above inequality is meaning-

ful, it requires n−m− 1 > 0. With the same conditions as analyzing

delay, we conclude

P
{

λ�̄γ(n − m − 1) − [d(n) − d(m)] > x
}

≤ P
{[

d(m) − a⊗̄γ(m)
]
+ sup

0≤k≤n

{
λ(n − k) − [a(n) − a(k)]

}
> x

}
≤ j ⊗ h(x).

Remark. In the above theorem, the initial arrival process has
a v.w.d SAC while the departure process has an i.a.t SAC. In order
to derive the service guarantees in Server 2, we need Theorem 10
(2) to transform the i.a.t SAC into a v.w.d SAC. Such transformation
introduces a more loose bounding function. The node-by-node analysis
thus generates a more loose end-to-end delay bound. Alternatively,
network calculus possesses an attractive property - the concatenation
property which is discussed in the following section. The comparison
between the node-by-node analysis and the concatenation analysis has
proven that the latter can yield a tighter bound on the end-to-end
delay bound [62].

The output characterization property however is very useful when
analyzing complicated network scenarios, such as Figure 4.3, where
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flows join or leave dynamically. In order to analyze the per-flow service
guarantees, the departure process from each single node should be
characterized using the same traffic model as the arrival process and
the service model of this node.

���� ����
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Figure 4.3: Complicated network scenario

Moreover, if the arrival process and the service process are indepen-
dent of each other, the following lemma characterizes the departure
process.

Lemma 11. (Output Characterization: independent condi-

tion.)

Consider a system provides an i.d SSC γ(n) ∈ F with bounding

function j(x) ∈ F̄ to its arrival which has a v.w.d SAC λ(n) ∈ F with

bounding function h(x) ∈ F̄ . The output has an i.a.t SAC λ∗ ∈ F
with bounding function h∗(x) ∈ F̄ , where

λ∗(n) = λ�̄γ(n − 1),

h∗(x) = 1 − j̄ ∗ h̄(x). (4.19)

4.3 Concatenation Property

The concatenation property uses an equivalent system to represent a
system of multiple servers connected in tandem, each of which provides
a stochastic service curve to the input. Then such equivalent system
provides the initial input a stochastic service curve, which is derived
from the stochastic service curve provided by all involved individual
servers.
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In the following discussion, γk and jk denote the stochastic service
curve and bounding function of the kth server. For packet P (n), the
time arriving to the kth server is ak(n) and the time departing from
the kth server is dk(n). For a network of N tandem servers, the initial
arrival is a(n) = a1(n) and the final departure is d(n) = dN(n).

Theorem 17. (Concatenation Property)

Consider a flow passing through a network of N nodes connected

in tandem. If each node k(= 1,2,...,N) provides an i.d SSC γk(n) ∈ F
with bounding function jk(x) ∈ Ḡ to its input, the network provides to

the initial input an i.d SSC γ(n) with bounding function j(x), where

γ(n) = γ1⊗̄γ2
η⊗̄ · · · ⊗̄γN

(N−1)η(n)

j(x) = j1,η1 ⊗ j2,η2 ⊗ · · · ⊗ jN(x),

with

γk
(k−1)η(n) = γk(n) + (k − 1) · η · n

for k = 2, ..., N and η > 0, and

jk,ηk(x) =
[
jk(x) +

1

ηk

∫ ∞

x

jk(y)dy
]
1

for k = 1, ..., N − 1 and ηk > 0.

Proof. We shall only prove the three-node case, from which, the proof

can be easily extended to the N -node case.

The departure of the first node is the arrival to the second node,
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so d1(n) = a2(n) and d2(n) = a3(n). We then have,

d(n) − a⊗̄γ1⊗̄γ2
η⊗̄γ3

2η(n)

= d(n) − sup
0≤m≤n

{
a⊗̄γ1(m) + γ2

η⊗̄γ3
2η(n − m + 1)

}
+ d1(m) − d1(m)

≤ d(n) − sup
0≤m≤n

{
γ2

η⊗̄γ3
2η(n − m + 1) + d1(m) − η · (n − m + 1)

− [d1(m) − a⊗̄γ1(m) − η · (n − m)]
}

≤ d(n) − sup
0≤m≤n

{
γ2

η⊗̄γ3
2η(n − m + 1) + d1(m) − η · (n − m + 1)

}
+ sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)]

}
= d(n) − sup

0≤m≤n

{a2(m) + sup
0≤k≤n−m+1

[γ2(k) + η · k + γ3(n − m + 1 − k)

+2η · (n − m + 1 − k)] − η · (n − m + 1)
}

+

+ sup
0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
= d(n) − sup

0≤m≤n

{
a2(m) + sup

0≤k≤n−m+1
[γ2(k) + γ3(n − m + 1 − k)

+η · (n − m + 1 − k)]
}

+ sup
0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
= d(n) − a2⊗̄γ2⊗̄γ3

η(n) + sup
0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
≤ d(n) − sup

0≤m≤n

{
a2⊗̄γ2(m) + γ3

η(n − m + 1)
}
− a3(m) + η · (n − m + 1)

+d2(m) − η · (n − m) + sup
0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
≤ d(n) − sup

0≤m≤n

{
a3(m) + γ3

η(n − m + 1) − η · (n − m + 1)
}

+ sup
0≤m≤n

{
d2(m) − a2⊗̄γ2(m) − η · (n − m)

}
+ sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
= d(n) − a3⊗̄γ3(n) + sup

0≤m≤n

{
d2(m) − a2⊗̄γ2(m) − η · (n − m)

}
+ sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
.

Based on the relationship between the i.d SSC and the η-stochastic

service curve presented in Theorem 12(2), the following inequality

91



4.3. Concatenation Property

holds

P{d(n) − a⊗̄γ1⊗̄γ2
η⊗̄γ3

2η(n) > x} ≤ j3 ⊗ j2,η2 ⊗ j1,η1 ,

which completes the proof.

Remark. Note that both the max-plus convolution and the min-

plus convolution are associative and commutative.

The proof of Theorem 17 utilizes the relationship between the i.d
SSC and the η−stochastic service curve. The following lemma directly
describes the service characterization of a network of nodes connected
in tandem, where each single node provides an η−stochastic service
curve to its input.

Lemma 12. Consider a flow passing through a network of N nodes

connected in tandem. If each node k(= 1,2,...,N) provides an η-stochastic

service curve γk(n) ∈ F with bounding function jk(x) ∈ F̄ to its input,

i.e.,

P
{

sup
0≤m≤n

{
dk(m) − ak⊗̄γk(m) − η · (n − m)

}
> x

}
≤ jk(x),

then the network guarantees to the initial arrival process an i.d SSC

γ(n) with bounding function j(x) with

γ(n) = γ1⊗̄γ2
η⊗̄ · · · ⊗̄γN

(N−1)η(n)

j(x) = j1 ⊗ j2 ⊗ · · · ⊗ jN(x),

where γk
(k−1)η(n) = γk(n) + (k − 1) · η · n, k = 2, ..., N , for any small

η > 0.

Proof. We shall only prove two-node case, from which, the proof can

be extended to the N -node case. Keep in mind that a2(n) = d1(n).
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For the two-node case, we have

d(n) − a⊗̄γ1⊗̄γ2
η(n)

= d(n) − sup
0≤m≤n

{
a⊗̄γ1(m) + γ2(n − m + 1) + η · (n − m + 1)

}
≤ d(n) − sup

0≤m≤n

{
a⊗̄γ1(m) + γ2(n − m + 1) + η · (n − m)

}
+d1(m) − a2(m)

≤ d(n) − sup
0≤m≤n

{
a2(m) + γ2(n − m + 1)

}
+ sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
= d(n) − a2⊗̄γ2(n) + sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
≤ sup

0≤m≤n

{
d(m) − a2⊗̄γ2(m) − η · (n − m)

}
+ sup

0≤m≤n

{
d1(m) − a⊗̄γ1(m) − η · (n − m)

}
.

The last step holds because of Theorem 12(1). From the condition,

we conclude

P
{
d(n) − a⊗̄γ1⊗̄γ2

η(n) > x
} ≤ j1 ⊗ j2(x).

If the arrival process and all individual service processes are inde-
pendent of each other, the following lemma summarizes the service
characterization of such a network.

Lemma 13. (Concatenation property: independent condition).

Consider a flow passing through a network of N nodes connected

in tandem. Suppose each node k(= 1,2,...,N) provides an η-stochastic

service curve γk(n) ∈ F with bounding function jk(x) ∈ F̄ to its

input. The initial arrival process and all individual service processes

are independent of each other. Then the network provides to the initial
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input an i.d SSC γ(n) with bounding function j(x) with

γ(n) = γ1⊗̄γ2
η⊗̄ · · · ⊗̄γN

(N−1)η(n)

j(x) = 1 − j̄1 ∗ j̄2 ∗ · · · ∗ j̄N(x), (4.20)

where j̄k = 1 − [jk]1 for k = 1, ..., N .

Remark. The proof of the concatenation property reveals another
reason of defining the η−stochastic service curve model.

4.4 Superposition Property

The superposition property can be applied for treating multiple indi-
vidual flows as an aggregate flow under the FIFO aggregate schedul-
ing. Particularly, if the arrival process of each individual flow can be
stochastically characterized by a stochastic arrival curve, we also can
find a stochastic arrival curve to describe the arrival process of the
aggregate flow. Then we only need to analyze the service guarantees
for the aggregate flow since all constituent flows are served equally.

4.4.1 Superposition of Renewal Processes

The superposition of multiple flows essentially falls into the research
issue - superposition of renewal processes. In queueing networks, an
individual server may receive inputs from different sources. Therefore,
it may be reasonable to postulate that the arrival process to a server
is a superposition of statistically independent constituent processes
[76]. The individual constituent processes are typically considered as
renewal processes. A renewal process is a counting process for which
the times between successive events are independent and identically
distributed possibly with an arbitrary distribution [91].

The arrival process of each constituent flow Fi is a renewal pro-
cess denoted by

{Ai(t), t ≥ 0
}

which is a non-negative integer-valued
stochastic process. This renewal process has inter-arrival times τi,1,τi,2,...
and the (n + 1) − th renewal ai(n) =

∑n

k=0 τi,k. The superposition of
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renewal processes has been widely studied since the original inves-
tigation by Cox and Smith [32]. However, the renewal property is
not preserved under superposition except for Poisson sources. More
precisely, the inter-arrival times in the superposition process are sta-
tistically dependent, a property that cannot be captured by a renewal
model [96].

One important work has pointed out that if the number of con-
stituent processes tends to infinity, the superposition converges to
a Poisson process [6] [7]. Although the approximate renewal model
[6] shows very low errors in the analysis of a representative set of∑

i GIi/G/1 queueing systems, it requires that the number of con-
stituent processes should be large enough. There is a lot of research
work on the superposition of renewal processes [41] [71].

The available literature on this research issue mainly focuses on
finding the exact stationary distribution of the interval between two
consecutive events for the superposition process. Moreover, much
mathematical knowledge is typically needed to conduct the analysis.

In the following, we introduce an approach to characterize the su-
perposition processes of multiple flows from a network calculus view-
point.

4.4.2 Arrival Time Determination

First, we only consider the superposition of two flows, F1 and F2. Let
a1(n), a2(n) and a(n) be the arrival process of F1, F2 and the aggregate
flow, respectively. As shown in Figure 4.4, F1 and F2 are aggregated
in the FIFO manner at the server.
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Figure 4.4: Aggregation of two flows

Figure 4.5 illustrates that the arrival process of the aggregate flow
is dependent on the arrival process of two individual flows. Packet
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4.4. Superposition Property

P (n)3 of the aggregate flow is either the mth packet of flow F1 or the
(n + 1 − m)th packet of flow F2, where 0 ≤ m ≤ n + 1.
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Figure 4.5: Packet arrival time

For instance, when observing the arrival process of the aggregate
flow at time t, we find that packet P (4) (arrival time: a(4) < t) has
arrived to the server. Packet P (4) is the 3rd packet of F1 and arrives
to the server later than the 2nd packet of F2, i.e., a1(2) = a(4) < a2(1).
Thus, we have the generalized expression for the arrival time of packet
P (n):

a(n) = max
[
a1(m − 1), a2(n − m)

]
. (4.21)

However, from Eq.(4.21), we can have n+1 combinations for 0 ≤ m ≤
n + 1. By convention, we adopt ai(m) = 0 if m < 0. The minimum
among all combinations represents the time when the first packet of
these combinations arrives to the server. Then this packet is inserted
into the FIFO queue as packet P (n) and its arrival time is

a(n) = min
0≤m≤n+1

{
max

[
a1(m − 1), a2(n − m)

]}
(4.22)

with

a(0) = min
{

max
[
0, a2(0)

]
, max

[
a1(0), 0

]}
= min[a1(0), a2(0)].

3Recall that P (n) denotes the (n + 1)th packet of the aggregate flow. The
same notation is also used for single flows F1 and F2.
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We again examine the arrival time of packet P (4) according to
Eq.(4.22). The arrival time a(4) is the minimum of the following set:{

max
[
a1(4), 0

]
= a1(4), max

[
0, a2(4)

]
= a2(4),

max[a1(0), a2(3)] = a2(3), max[a1(1), a2(2)] = a2(2),

max[a1(2), a2(1)] = a1(2), max[a1(3), a2(0)] = a1(3)
}

,

among which, the combination max[a1(2), a2(1)] = a1(2) is the mini-
mum and thus a(4) = a1(2).

Eq.(4.22) can be generalized to the aggregation of N(≥ 2) flows:

a(n) = minP
mi=n+1

{
max[a1(m1 − 1), a2(m2 − 1), ..., aN(n −

N−1∑
i=1

mi)]
}

(4.23)
for 0 ≤ mi ≤ n + 1.

4.4.3 Superposition Process Characterization

Eq.(4.22) can compute the packet arrival time of the aggregate flow,
whereas we still have the difficulty in characterizing the packet inter-
arrival time of the aggregate flow if the packet inter-arrival times of two
constituent flows follow the general distribution. For this reason, it is
difficult to directly characterize the arrival process of the aggregate
flow from the temporal perspective. Alternatively, we rely on the
available results of the superposition property explored in the space-
domain (see Theorem 9).

In Figure 4.5, the cumulative arrival packets of the aggregate flow
by time t, A(t), equals A1(t) + A2(t), from which we can indirectly
find the stochastic arrival curve for the aggregate flow.

As shown in Figure 4.6, the condition is that the time-domain
stochastic arrival curve of all constituent flows are known, and the
target is to verify that the aggregate flow also has a time-domain
stochastic arrival curve.

Since it is difficult to directly reach the target, we try to find a
bypass. If a flow has a time-domain v.w.d SAC, with Theorem 11(2),
this flow has a space-domain v.b.c SAC, for which the superposition
property holds, i.e., Theorem 9. Applying Theorem 11(1) can get the
v.w.d SAC for the aggregate flow.
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Figure 4.6: Transformation in Theorem 18

If flow Fi has a v.w.d SAC λi(n) with bounding function hi(x),
i = 1, 2, ..., N , from Theorem 11(2), we can verify that flow Fi has
a v.b.c SAC αi(t) with bounding function fi(x) = hi

(
z−1

i (x)
)
, where

αi(t) and z−1
i (x) are given in Theorem 11(2). Furthermore, according

to Theorem 9, the aggregate flow has a v.b.c SAC α(t) =
∑N

i=1 αi(t)
with bounding function f(x) = f1 ⊗ · · · ⊗ fN(x). Finally, we apply
Theorem 11(1) and can verify that the aggregate flow also has a v.w.d
SAC.

Theorem 18. (Superposition property)

Consider the aggregate of N flows. If the arrival process of each

flow has a v.w.d SAC λi(n) ∈ F for i = 1, 2, ..., N , i.e.,

P{ai(n) < ai⊗̄λi(n) − y} ≤ hi(y),

which implies that every flow also has a v.b.c SAC

αi(t) = sup{k : λi(k) ≤ t}

with bounding function

fi(x) = hi

(
z−1

i (x)
)
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where z−1
i (x) denote the inverse function of x:

x = zi(y) ≡ sup
τ≥0

{αi(τ + y) − αi(τ) + 1}.

Then the aggregate arrival process a(n) has a v.w.d SAC λ(n) with

bounding function h(y), where

λ(n) = inf{τ :
N∑

i=1

αi(τ) ≥ n}, h(y) = f
(
z−1(y)

)
,

with f(x) = f1 ⊗ · · ·⊗ fN (x) and z−1(y) denoting the inverse function

of y:

y = z(x) ≡ sup
k≥0

{λ(k) − λ(k − x)}.

4.4.4 Special Case: Superposition of Poisson

Processes

As we have mentioned in Section 4.4.1, the Poisson process is a special
case of renewal processes because its renewal property is still preserved
under superposition. On the hand, the superposition of multiple Pois-
son processes is still a Poisson process. If describing a Poisson process
from the temporal perspective, the inter-arrival times between two ar-
bitrary events follow the Gamma distribution. We can readily exam-
ine the superposition property of Poisson processes from the temporal
perspective.

Example 8. Consider the superposition process of two independent

Poisson arrival processes. Suppose all packets of both arrival processes

have the same size. The packet inter-arrival times follow exponential

distributions with mean 1
μ1

and 1
μ2

, respectively. Find the time-domain

v.w.d stochastic arrival curve for the superposition process.

It is well-known that the superposition of two Poisson processes is
still a Poisson process. According to the condition, the superposition
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process is a Poisson process with mean arrival rate μ1 + μ2. If char-
acterizing the superposition process in terms of the inter-arrival time
between two arbitrary packet, it is a Gamma process. Recall Exam-
ple 4 which has given the v.w.d stochastic arrival curve for a Gamma
process. We thus know that the superposition process has a v.w.d
stochastic arrival curve λs(n) = Ts ·n (0 < Ts < 1

μ1+μ2
) with bounding

function hs(x):

hs(x) = 1 − (1 − ρs)

� x
Ts

�∑
i=0

e−(μ1+μ2)(iTs−x) [(μ1 + μ2)(iTs − x)]i

i!
,

where ρs = (μ1 + μ2) · Ts.
Remark. It is readily to generalize the above example into the

superposition of multiple independent Poisson processes.

4.5 Conclusion

This section investigated four basic properties of stochastic network
calculus under the time-domain models defined in Chapter 3.

Deriving the delay bound is intuitively straightforward because
we directly applied the definition of the v.w.d SAC and the i.d SSC.
Whereas both the v.w.d SAC and the i.d SSC are difficult to find.
This difficulty can be solved for some special cases by constructing
two virtual SSQs, such as GI/GI/1 queue. It requires that the packet
inter-arrival times are independent and identically distributed. Since
the per packet service times are typically independent, this condition
is often satisfied.

The system backlog is essentially a space-domain property. By
fixing the packet departure time, the number of backlogged packets
can be determined. This property also holds under the combination of
the v.w.d SAC and the i.d SSC. Moreover, the bound on the maximum
system backlog in a (deterministic) virtual system is given. This bound
may be applied as a threshold to measure whether the system is stable.

The output characterization is very useful for analyzing the end-
to-end performance. Particularly, the node-by-node analysis requires
that the arrival process to each node along a path is known. The
arrival process to the current node is the departure process from the
previous node. The output characterization property shows that the
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departure process of a flow can be represented using the traffic of the
arrival process and the service process provided to the arrival process.
This property holds under the combination of the v.w.d SAC and the
i.d SSC. However, the derived departure process has a i.a.t SAC while
not the v.w.d SAC.

The concatenation property can simplify the analysis and yield
tighter performance bounds compared with the node-by-node analysis
approach. We indirectly prove that the i.d SSC holds such a property
through transforming the i.d into the η−stochastic service curve. From
investigating this property, the reason of defining η−stochastic service
curve is clarified. This property is only relevant to the service process.

Exploring the superposition property attempts to tackle a research
problem which has been studied for several decades, i.e., the superposi-
tion of renewal processes [32]. The available literature on this research
problem mainly focuses on finding the exact stationary distribution of
the interval between two events. In order to achieve this objective,
most work requires extensive mathematical background and is not
readily understandable. In the context of stochastic network calculus,
although the superposition property cannot be directly proved from
the temporal perspective, it can be indirectly obtained through trans-
forming the time-domain arrival curve into the space-domain arrival
curve. This property only replies on the arrival process.
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Chapter 5

Concretization of Generic

Models

The main work in this chapter is based on the following paper.

Jing Xie and Yuming Jiang. “A Temporal Network Calculus Ap-
proach to Service Guarantee Analysis of Stochastic Networks.” In Pro-
ceedings of 5th International ICST Conference on Performance Evalu-
ation Methodologies and Tools (ValueTools), Paris, France, May 2011.
(Regular paper)
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In the previous chapters, the time-domain traffic and service mod-
els have been defined. Based on the defined models, four fundamental
properties have been explored. However, a clear guidance on finding
the arrival curve characterization for an arrival process or the ser-
vice curve characterization for a service process is missing. In this
chapter, we concretize the time-domain traffic and service models by
linking some well-known stochastic processes to them. In addition,
we exemplify the temporal analysis approach by investigating the de-
lay performance of a Gilbert-Elliott channel. The results show that
the delay bound can be improved under the independence condition.
Furthermore, a comparison between the temporal and the spatial anal-
ysis results reveals that the two analytical approaches essentially yield
close results.

5.1 Arrival Process Characterization

In this section, we first recall the definitions of the i.a.t SAC and
the v.w.d SAC models and then obtain the stochastic arrival curve
characterization of the arrival process.

5.1.1 Moment Generating Function of

Inter-arrival Time

When observing the traffic arrival process Γ(m,m + n) from the tem-
poral perspective, it is indeed formed from process {τm+1}, where
τm+1 ≡ a(m + 1) − a(m). In order to guarantee a certain level of
QoS to this arrival process, the packet inter-arrival times should be
constrained. For the arrival process Γ(m,m+n) formed by identically
distributed {τm+1}, suppose there exists ϕ(η, n) satisfying

E[eηΓ(m,m+n)] ≥ eηnϕ(η,n),

which becomes the following expression

1

ηn
logE

[
eηΓ(m,m+n)

] ≥ ϕ(η, n),

where E[eηΓ(m,m+n)] is the MGF of the arrival process Γ(m,m + n).
By convention, we adopt ϕ(η, 0) = 0.
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If {τm+1} are i.i.d., then it is easily verified that

1

ηn
logE

[
eηΓ(m,m+n)

]
=

1

η
logE

[
eητ0

]
,

which is independent of n, and we hence adopt:

1

η
logE

[
eητ0

] ≥ ϕ(η).

5.1.2 i.a.t Stochastic Arrival Curve

Characterization

Recall the definition of the i.a.t SAC (see Definition 10). If an arrival
process has an i.a.t SAC λ(n) with bounding function h(x), then there
holds:

P
{

Γ(m,m + n) <
[
λ(n) − x

]+
}
≤ h(x). (5.1)

Assume {τm+1} are identically distributed. Let

ϕ(η, n) ≤ 1

ηn
logE

[
eηΓ(m,m+n)

]
.

Then Inequality (5.1) is rewritten as

P
{
ϕ(η, n) · n − Γ(m,m + n) > x

}
= P

{
eη[ϕ(η,n)·n−Γ(m,m+n)] > eηx

}
≤ e−ηxE

[
eη[ϕ(η,n)·n−Γ(m,m+n)]

]
(5.2)

= e−ηx eηϕ(η,n)·n

E
[
eηΓ(m,m+n)

]
≤ e−ηx (5.3)

for η > 0. Here step (5.2) is known as the Chernoff bound (see Inequal-
ity (2.9)), and step (5.3) is obtained due to E

[
eηΓ(m,m+n)

] ≥ eηnϕ(η,n)

by definition. The following lemma summarizes the above result.

Lemma 14. For an arrival process Γ(m,m+n), if there exists ϕ(η, n)

which satisfies, for m ≥ 0, n > 0,

1

ηn
logE

[
eηΓ(m,m+n)

] ≥ ϕ(η, n),
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then this process has an i.a.t. SAC λ(n) = ϕ(η, n) · n with bounding

function h(x) = e−ηx for η > 0.

If {τm+1} are i.i.d., let ϕ(η) ≤ 1
η
E[eητ0 ]. Then Inequality (5.1) is

rewritten as follows:

P
{

ϕ(η) · n − Γ(m,m + n) > x
}

≤ e−ηxE
[
eη[ϕ(η)·n−Γ(m,m+n)]

]
= e−ηx

(
E

[
eη[ϕ(η)−τ0]

])n

≤ e−ηxE
[
eη[ϕ(η)−τ0]

]
,

from which, we have the following lemma.

Lemma 15. If the inter-arrival times of arrival process Γ(m,m + n)

are i.i.d., then the arrival process has an i.a.t. SAC λ(n) = ϕ(η) ·
n with bounding function h(x) = e−ηxE

[
eη[ϕ(η)−τ0]

]
, where ϕ(η) ≤

1
η
logE

[
eητ0

]
for η > 0.

Remark: Lemma 14 becomes Lemma 15 by taking into consider-
ation the independence condition of inter-arrival times.

5.1.3 v.w.d Stochastic Arrival Curve

Characterization

Recall the definition of the v.w.d SAC (see Definition 11). If an arrival
process Γ(m,n) has a v.w.d SAC λ(n) with bounding function h(x),
there holds

P
{

sup
0≤m<n

{
λ(n − m) − Γ(m,n)

}
> x

}
≤ h(x). (5.4)

Remark. Note that the left-hand side of the above inequality does not
take m = n in order to ensure the meaning for the following analysis.

The left-hand side of Inequality (5.4) represents an instantaneous
property which is generally hard to calculate. To address this difficulty,
additional constraint on the bounding function is needed.
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Assume {τn} are identically distributed. Without loss of generality,
assume when m takes m0, the following holds

sup
0≤m<n

{
ϕ(η, n − m) · (n − m) − Γ(m,n)

}
= ϕ(η, n − m0) · (n − m0) − Γ(m0, n).

Then from Inequality (5.4), we can write, for any x ≥ 0,

P
{

sup
0≤m≤n

{
ϕ(η, n − m) · (n − m) − Γ(m,n)

}
> x

}
= P

{
ϕ(η, n − m0) · (n − m0) − Γ(m0, n) > x

}
≤ e−ηxE[eη[ϕ(η,n−m0)·(n−m0)−Γ(m0,n)]]

≤ e−ηx

where, the last step is obtained from Inequality (5.3) which is inde-
pendent of (n − m0) and holds for any 0 ≤ m0 < n.

Lemma 16. For an arrival process Γ(m,n), if there exists ϕ(η, n−m)

which satisfies, for any 0 ≤ m < n,

1

η(n − m)
logE

[
eηΓ(m,n)

] ≥ ϕ(η, n − m)

then this arrival process has a v.w.d SAC λ(n) = ϕ(η, n) · n with

bounding function h(x) = e−ηx for η > 0.

Remark. Lemma 14 and Lemma 16 give the same stochastic
arrival curve

ϕ(η, n) ≤ E[eη[ϕ(η,n−m)·(n−m)−Γ(m,n)]]

associated with the same bounding function h(x) = e−ηx. Compared
with Theorem 10(2), Lemma 16 provides a tighter bound. Such im-
provement is obtained under the condition that the bounding function
in Lemma 14 is independent of the number of packets.

If the arrival process is formed by the i.i.d. inter-arrival times, it
has a v.w.d SAC given as below.
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Lemma 17. If the inter-arrival times of arrival process Γ(m,n) are

i.i.d., then the arrival process has a v.w.d SAC λ(n) = ϕ(η) · n with

bounding function h(x) = eηϕ(η)E[e−ητ0 ]e−ηx for η > 0, where ϕ(η) ≤
1
η
logE

[
eητ0

]
.

Proof. In order to prove this lemma, we need to construct a martin-

gale.

Consider a sequence of non-negative random variables {Vm}, m =

1, 2, ..., n − 1, formed by

Vm = eηϕ(η)·m−ηΓ(n−m,n) = eηϕ(η)·m−η
Pn

k=n−m+1 τk .

Since {τk} are i.i.d., we then have

Vm+1 = eηϕ(η)·(m+1)−ηΓ(n−m−1,n)

= eηϕ(η)·(m+1)−η
Pn

k=n−m τk

= eηϕ(η)·m−η
Pn

k=n−m+1 τk · eηϕ(η)−ητn−m

= Vm · eηϕ(η)−ητn−m .

In addition, there holds:

E
[
Vm+1|V1, ..., Vm

]
= E

[
Vm+1|τn, τn−1, ..., τn−m+1

]
= E

[
Vm · eηϕ(η)−ητn−m|τn, ..., τn−m+1

]
= E

[
Vm|τn, ..., τn−m+1

] · E[
eηϕ(η)−ητn−m

]
(5.5)

= Vm · eηϕ(η)

E
[
eητ0

] (5.6)

≤ Vm (5.7)

where, step (5.5) is due to that τn−m is independent of {τn, τn−1, ..., τn−m+1},
step (5.6) is because {τ1, τ2, ...} are identically distributed and

E
[
Vm(τn, τn−1, ..., τn−m+1)|τn, τn−1, ..., τn−m+1

]
= Vm,
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and step (5.7) holds since E
[
eητ0

] ≥ eηϕ(η) by definition.

Hence V1, V2, ..., Vn form a non-negative supermartingale. From

Lemma 4, there holds

P
{

sup
1≤m<n

{
ϕ(η) · (n − m) − Γ(m,n)

}
> x

}
= P

{
sup

1≤m<n

{
eϕ(η)·(n−m)−Γ(m,n)

}
> ex

}
= P

{
sup

1≤m<n

Vm > ex
}

≤ E[V1]e
−ηx

= eηϕ(η)E[e−ητ0 ]e−ηx

which ends the proof.

Remark. Lemma 16 becomes Lemma 17 by taking into account
the independence condition. The bounding function in Lemma 17 con-
tains a scaling factor eηϕ(η)E[e−ητ0 ] with regard to ϕ(η). This scaling
factor will yield tighter arrival curves if it is smaller than 1.

Example 9. Exponential inter-arrival time distribution.

Consider an arrival process of packets generated at times {a(n)}.
Suppose the inter-arrival times {τn} are i.i.d. exponentially distributed
random variables with mean 1

μ
. Then the arrival process Γ(m,n) fol-

lows gamma distribution with parameters n−m and μ. We thus have

E
[
eηΓ(m,n)

]
=

( μ

μ − η

)n−m

⇒ 1

η(n − m)
logE

[
eηΓ(m,n)

]
=

1

η
log

μ

μ − η

Let ϕ(η) = 1
η
log μ

μ−η
. By applying Lemma 15 and Lemma 17, the

i.a.t SAC and the v.w.d SAC of the arrival process can be obtained.
Specifically, this arrival process has a v.w.d SAC λ(n) with bounding
function h(x), where

λ(n) = ϕ(η) · n =
n

η
log

μ

μ − η

h(x) = eηϕ(η)E[e−ητ0 ]e−ηx = e−ηx.
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5.2 Service Process Characterization

This section first reviews the i.d SSC model, from which we define
a stochastic strict service curve model to facilitate obtaining the i.d
SSC. Moreover, a time-domain impairment process is introduced to
decouple the characterization of the cumulative impaired service time
from the real service process.

5.2.1 Concretizing Stochastic Strict Service

Curve

Consider a network system having the stochastic nature. The following
definition describes the service process of this system by comparing
the packet actual departure time d(n) with a virtual departure time
a⊗̄γ(n), i.e., the i.d. SAC.

If a system provides an i.d SAC γ(n) with bounding function j(x),
then there holds for x ≥ 0,

P
{

d(n) − a⊗̄γ(n) > x
}
≤ j(x). (5.8)

Since the above inequality does not explicitly characterize the ser-
vice process, the stochastic strict service curve (see Definition 15) is
introduced to help find the i.d SSC. According to Theorem 13 (1),
there exists the following relationship:

d(n) − a⊗̄γ(n) ≤ Δ(m,n) − γ(n − m + 1).

If the service times {δn} are identically distributed, we define

ν(η, n − m + 1) ≥ 1

η(n − m + 1)
logE

[
eηΔ(m,n)

]
.

And let γ(n) = (ν(η, n) + ηγ) · n for ηγ ≥ 0. According to this, The
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left-hand side of Inequality (5.8) is rewritten as:

P
{

d(n) − a⊗̄γ(n) > x
}

≤ P
{

Δ(m,n) − γ(n − m + 1) > x
}

≤ P
{

eη[Δ(m,n)−γ(n−m+1)] > eηx
}

≤ e−ηxE
[
eη[Δ(m,n)−(ν(η,n−m+1)+ηγ)·(n−m+1)]

]
≤ e−ηxe−ηηγ(n−m+1)

≤ e−ηxe−ηηγ

where the last step holds due to the fact e−ηηγ ≥ e−k·ηηγ for any k ≥ 1.
If the service times {δn} are i.i.d., the stochastic strict service curve

γ(n−m+1) = (ν(η)+ηγ) ·(n−m+1) with ηγ ≥ 0 and ν(η) satisfying

ν(η) =
1

η
logE

[
eηδ0

]
.

From the above result, we rewrite the left-hand side of Inequality (5.8):

P
{

d(n) − a⊗̄γ(n) > x
}

≤ P
{

Δ(m,n) − (ν(η) + ηγ) · (n − m + 1) > x
}

≤ e−ηxE
[
eη[Δ(m,n)−(ν(η)+ηγ)·(n−m+1)]

]
= e−ηxE

[
eη[δ0−(ν(η)+ηγ)]n−m+1]

≤ e−ηxe−ηηγ .

The following lemma summarizes the above two cases.

Lemma 18. If the system provides stochastic strict service curve γ(n)

with bounding function j(x) and

• the service times {δn} are identically distributed, then γ(n−m+

1) = (ν(η, n − m + 1) + ηγ) · (n − m + 1) and j(x) = e−ηxe−ηηγ

for all η > 0, ηγ ≥ 0, where

ν(η, n − m + 1) ≥ 1

η(n − m + 1)
logE

[
eηΔ(m,n)

]
;
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• the service times {δn} are i.i.d., then γ(n − m + 1) = (ν(η) +

ηγ) · (n − m + 1) and j(x) = e−ηxe−ηηγ for η > 0, ηγ ≥ 0, where

ν(η) =
1

η
logE

[
eηδ0

]
.

5.2.2 Time-domain Impairment Process

Characterization

Networks that are stochastic in nature may be modelled as a stochas-
tic server which consists of an ideal service process and an impairment
process. The former describes the service that the server would have
delivered in an interval if there have been no service impairment in the
interval, and the latter characterizes the service that cannot be deliv-
ered in the interval due to some impairment to the server. The impair-
ment process was originally proposed to describe the impaired service
from the spatial perspective [61]. In this section, we present charac-
terizing the impaired service from the temporal perspective through
investigating a typical example of the stochastic server.

Consider a wireless channel providing service with stochastic na-
ture which is due to some random impairment process. The impair-
ment degrades the network performance because packets may not be
transmitted successfully when the channel condition is ‘bad’ or packets
are queued in the buffer until the channel condition becomes ‘good’.
Either dropping/re-transmitting the unsuccessfully delivered packets
or holding the queued packets longer can be counted as impairment in
the service time. The cumulative impairment in service time can be
explicitly described by an impairment process.

If the channel is always in ‘good’ condition, the service time of
packet P (n) equals the packet transmission time denoted by δ̂n. How-
ever, the varying link condition may cause packet P (n) to suffer addi-
tional delay denoted by εn. Then the actual service time equals the
packet transmission time plus the additional delay, i.e., δn = δ̂n + εn.

Let

• Δ̂(m,n) =
∑n

k=m δ̂k represent the ideal service process without
errors;

• I(m,n) =
∑n

k=m εk represent the error process;
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5.2. Service Process Characterization

• Δ(m,n) represent the actual service process.

The cumulative actual service time satisfies, for any 0 ≤ m ≤ n,

Δ(m,n) = Δ̂(m,n) + I(m,n). (5.9)

If the ideal service process Δ̂(m,n) has a (deterministic) strict
service curve1 γ̂(n), i.e., Δ̂(m,n) ≤ γ̂(n − m + 1) for any 0 ≤ m ≤ n.
Then from (5.9), there holds

Δ(m,n) ≤ γ̂(n − m + 1) + I(m,n).

Furthermore, if the impairment process I(m,n) has a stochastic strict
service curve γI(n), we get a further result

Δ(m,n) − γ̂(n − m + 1) − γI(n − m + 1)

≤ I(m,n) − γI(n − m + 1).

The following lemma illustrates that the above-mentioned stochastic
server with impairment process provides a stochastic strict service
curve.

Lemma 19. Consider that a stochastic server consists of an ideal ser-

vice process Δ̂(m,n) having a (deterministic) strict service curve γ̂(n)

and an impairment process I(m,n) having a stochastic strict service

curve γI(n) with bounding function jI(x). Then, the stochastic server

provides a stochastic strict service curve γ(n) with bounding function

jI(x), where

γ(n) = γ̂(n) + γI(n).

Remark. According to Lemma 18, if {εn} are identically distributed,
then γI(n) = (νI(η, n)+ηγ)·n with bounding function jI(x) = e−ηxe−ηηγ ,
where

νI(η, n − m + 1) ≥ 1

η(n − m + 1)
logE

[
eηI(m,n)

]
.

1The deterministic strict service curve is a special case of the stochastic strict
service curve with bounding function j(x) = 0.
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If {εn} are i.i.d., then γI(n) = (νI(η) + ηγ) ·n with the same bounding
function jI(x), where νI(η) = 1

η
logE

[
eηε0

]
.

Discussion. Recall Definition 7 which characterizes the service
process of the space-domain stochastic server with impairment pro-
cess. Interestingly, in the space-domain, the impairment process is
characterized using a stochastic arrival curve αI(t). That is the im-
pairment process being considered as a ‘cross-traffic’ which competes
the server resource with the concerned arrival process. Whereas, in
the time-domain, it is more intuitively to consider the impairment pro-
cess as a ‘delay server’ which introduces additional delay between the
packet reaching the HOL and the beginning of successfully transmit-
ting the packet. Thus, the impairment process is represented using a
stochastic service curve γI(n).

5.3 Service Curve Example

This section gives an example to demonstrate how to obtain the stochas-
tic service curve characterization of a Gilbert-Elliott channel. We first
analyze the constant rate server which can be considered as the ideal
service process of a stochastic server. Then we investigate the Gilbert-
Elliott channel in detail.

5.3.1 Constant Rate Server

Consider a server with the constant service rate C. Let Ln denote the
packet length of packet P (n).

If all packets of the arrival process have the fixed-length L, then
the server provides a deterministic strict service curve

γ(n) =
L

C
· n.

If the packet lengths of the arrival process are i.i.d. random vari-
ables with the MGF ML(η) = E

[
eηL0

]
, according to Lemma 18 (2),

the service process provided to the arrival process is characterized as
follows.
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Lemma 20. Consider a server with constant service rate C. If the

packet lengths are i.i.d., then the server provides a stochastic strict

service curve γ(n) = (ν(η) + ηγ) · n with bounding function j(x) =

e−ηxe−ηηγ for η > 0, ηγ ≥ 0, where

ν(η) =
1

ηC
logE

[
eηL0

]
.

Example 10.

If the packet lengths follow the exponential distribution with pa-
rameter μ, then the server provides the stochastic strict service curve
(ν(η) + ηγ) · n with bounding function j(x) = e−ηxe−ηηγ , where

ν(η) =
1

ηC
log

μ

μ − η
.

Example 11.

If the packet lengths are (discrete) uniformly distributed over the
range [A,B], then the server provides the stochastic strict service curve
(ν(η) + ηγ) · n with bounding function j(x) = e−ηxe−ηηγ , where

ν(η) =
1

ηC
log

eηB − eηA

η(B − A)
.

5.3.2 Gilbert-Elliott Channel: Markov Chain

Modeling

Consider a time-slotted2 Gilbert-Elliott ON-OFF communication chan-
nel [40] [50] which is modeled by a two-state homogeneous Markov
chain. The time (number of time slots) between state transitions is a
random variable with a memory-less distribution3.

In state ON, the channel transmits packets with a constant rate C.
In state OFF, the channel does not transmit any packet and thus has

2As the slot length approaches zero, the service process is approximately con-
tinuous.

3Strictly speaking, the intervals between state transition are conditionally in-
dependent and follow geometric distribution.

116



Chapter 5. Concretization of Generic Models

�

	
��

�

	
���

��

��

��
��

Figure 5.1: Gilbert-Elliott channel model

the transmission rate 0. Here, we assume that when the packet is being
transmitted, the channel is always in ON state and does not change
to OFF state, i.e., the packet transmission will not be interrupted due
to the change of the channel state.

As shown in Figure 5.1, the transition probability from state i to
j is denoted by pij, i, j = 0, 1 where 0 represents the ‘ON’ state and 1
represents the ‘OFF’ state. The transition probability matrix P is as
follows:

P =

[
p00 p01

p10 p11

]
.

For this ON-OFF service process, we define the packet service time
as the interval between the time when a packet reaches HOL and the
time when the last bit of this packet has been successfully transmitted.
Let v(n) denote the time when a packet reaches the HOL, and be called
the virtual start time defined by:

v(n) = max[a(n), d(n − 1)]. (5.10)

The service time δn is computed by

δn = d(n) − v(n).

If the packet reaches the HOL when the channel is in ON state, the
packet is transmitted immediately. Otherwise, the packet has to wait
until the channel state becomes ON. Let TOff

n denote the OFF interval
before packet P (n) can be successfully transmitted. The service time
is computed by

δn = TOff
n + ttxn , (5.11)
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Figure 5.2: On-off model

where ttxn is the time (number of time slots) of transmitting a packet
with length Ln. Assume that the packet lengths are i.i.d. and follow
some general distribution.

Figure 5.2 shows three scenarios of the packet service time.

• Scenario I: v(n) is within the ON interval, thus

δn = ttxn .

• Scenario II: v(k) is the boundary between the ON interval and
the OFF interval, thus

δk = TOff
k + ttxk .

• Scenario III: v(m) is within the OFF interval, thus

δm = TOff
m + ttxm.

Note that TOff
k represents a complete OFF interval while TOff

m

denotes the residual of the OFF interval.
For any packet P (n) served in a backlogged period, Scenario III

will not happen because v(n) = d(n − 1) + ε (ε → 0) and d(n − 1) is
always in the ON interval. Thus, the service time of packets which
are served in backlogged periods equals either ttxn or TOff

n + ttxn . Since
Scenario III takes on value between Scenario I and Scenario II, it is
suffice to analyze only Scenario I and Scenario II.

The cumulative service process Δ(m,n) (in any backlogged period)
is formed from process {δY

n } that takes on values Y ·T off + Ln

C
, where

• Y = 1 if v(n) is exactly the boundary between the ON interval
and the OFF interval;
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• Y = 0 if v(n) is within the ON interval.

The moment generating function of the i.i.d. random variables δY
n are

MδY (η) = E
[
eηδY ]

. Let M be the diagonal matrix

M =

[
Mδ0(η) 0

0 Mδ1(η)

]
.

Given the initial condition v(0) = i (i = 0, 1), from Kolmogorov
backward equation, we have

E
[
eηΔ(0,n)|v(0) = i

]
= E

[
eηδY |v(0) = i

]
E

[
eη(Δ(0,n)−δY )|v(0) = i

]
= Mδi(η)

1∑
j=0

E
[
eη(Δ(1,n)|v(1) = j, v(0) = i

] · P (v(1) = j|v(0) = i)

= Mδi(η)
1∑

j=0

E
[
eη(Δ(1,n)−δ0)|v(1) = j

]
pij

= Mδi(η)
1∑

j=0

E
[
eηΔ(1,n)|v(1) = j

]
pij (5.12)

Let
Φ(η, n) =

(
E

[
eηΔ(0,n)|v(0) = 0

]
,E

[
eηΔ(0,n)|v(0) = 1

])
and Φ(η, n)T be its transpose. We then rewrite (5.12) in matrix form:

Φ(η, n)T = MPΦ(η, n − 1)T . (5.13)

Applying (5.13) to its right-hand side iteratively results in

Φ(η, n)T =
(
MP

)n
Φ(η, 0)T . (5.14)

The initial condition can be obtained by

Φ(η, 0)T = M1T

where 1 = [1 1] is a vector with two entries being one.
Let πi be the steady probability at state i and ψ = [π0 π1]. The

steady probability at state i are computed by

π0 =
p10

2 − p00 − p11

, π1 =
p01

2 − p00 − p11

.
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Then we have

E
[
eηΔ(0,n)

]
= ψΦ(η, n)T

= ψ
(
MP

)n
M1T . (5.15)

Let ρ(·) denote the spectral radius of a matrix:

ρ(·) = sup{|α| : α ∈ σ(·)}
where | · | denotes the absolute value of α, and σ(·) represents the set
of all eigenvalues of a matrix. Then the spectral radius of matrix MP

is denoted by ρ
(
MP

)
. Note that MP is a non-negative matrix. Having

known the transition probability matrix P, the spectral radius of MP

is

ρ(MP) =
p00Mδ0(η) + p11Mδ1(η) +

√
Z

2
(5.16)

where

Z =
(
p00Mδ0(η) − p11Mδ1(η)

)2
+ 4p01p10Mδ0(η)Mδ1(η).

A useful corollary (see Corollary 5.6.13 [57]) is introduced here to
facilitate the following analysis.

Corollary 1. Let A be an k × k matrix and ε > 0 be given. There is

a constant σε
4 such that

|(Am)ij| ≤ σε(ρ(A) + ε)m (5.17)

for all m = 1, 2, 3, ... and i, j = 1, 2, ..., k.

From Corollary 1, we know that the every entry of matrix
(
MP

)n

is bounded above by σε

(
ρ(MP) + ε

)n
for any ε > 0 and some constant

σε > 0.
Then (5.15) is bounded by

E
[
eηΔ(0,n)

] ≤ ψσε

(
ρ(MP) + ε

)n
M1T

= σε

(
ρ(MP) + ε

)n
ψM1T

= σε

(
ρ(MP) + ε

)n
(5.18)

≤ (
ρ(MP) + ε

)n+1

4This parameter is relevant to ε.
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for σε ≤ ρ(MP)+ ε. Here step (5.18) is obtained because ψM = ψ and
then ψ1T = 1. Hence, we have

1

η(n + 1)
logE

[
eηΔ(0,n)

] ≤ 1

η
log(ρ(MP) + ε).

As ε is arbitrary, letting ε → 0 results in the stochastic strict service
curve (ν(η) + ηγ) · (n − m + 1) for the service process Δ(m,n) with
the bounding function j(x) = e−ηxe−ηηγ , where

ν(η) =
1

η
logρ(MP). (5.19)

Example 12.

Consider a flow of variable-length packets. Suppose the packet
lengths are i.i.d. variables with moment generating function ML(η).
The OFF intervals follow geometric distribution with parameter π0

5.
Then

Mδ0(η) =
(
ML(η)

) 1
C , Mδ1(η) = Mδ0(η)

π0e
η

1 − π1eη

for π1e
η < 1. Inserting Mδ0(η) and Mδ1(η) into (5.16), we obtain

the stochastic service curve (ν(η) + ηγ) · n with bounding function
j(x) = e−ηxe−ηηγ for the flow, where

ν(η) =
1

η
log

Mδ0(η)
[
p00 + p11π0eη

1−π1eη + Υ
]

2
(5.20)

with

Υ =

√(
p00 − p11π0eη

1 − π1eη

)2

+
4p10p01π0eη

1 − π1eη
. (5.21)

Example 13.

Consider a flow consisting of fixed-length packets. The OFF inter-
vals follow geometric distribution with parameter π0. Let the packet

5Suppose that the state of time slots are independent trail which are performed
until the first slot being in ON state (i.e., success). Each slot has probability π0

of being in ON state. Let X be the number of time slots needed until the first
slot being in ON state. Then X is said to be a geometric random variable with
parameter π0 [91].
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transmission time be T time slots. Similar to Example 12, we have
the moment generating functions of δi, i = 0, 1, as below:

Mδ0(η) = eηT , Mδ1(η) = eηT π0e
η

1 − π1eη

for π1e
η < 1.

Inserting Mδ0(η) and Mδ1(η) into (5.16), we have the stochastic
service curve (ν(η) + ηγ) · n with bounding function j(x) = e−ηxe−ηηγ

for such flow, where

ν(η) =
1

η
log

eηT
[
p00 + p11π0eη

1−π1eη + Υ
]

2

= T +
1

η
log

p00 + p11π0eη

1−π1eη + Υ

2
(5.22)

where Υ is given in (5.21).

5.3.3 Gilbert-Elliott Channel: Impairment

Process Analysis

The previous subsection is based on directly analyzing backlogged pe-
riods. In this subsection, we adopt an intuitive way which models
the channel OFF intervals as an impairment process. The channel is
treated as a stochastic server consisting of an ideal service process and
an impairment process.

The ideal service process provides service at a constant rate C. The
impairment process is described as an ON-OFF process. As shown in
Figure 5.3, the channel ON state corresponds to the impairment OFF
state and the channel OFF state corresponds to the impairment ON
state. When the channel is in impairment ON state, the impairment
process provides service time εn following geometric distribution with
parameter π0. When the channel is in impairment OFF state, the
impairment process does not provide service, i.e., the service time is
zero.

The transition probability matrix is the same as P. However, the
diagonal matrix MI is diag{MI,0(η),MI,1(η)} where MI,0(η) = 1 and
MI,1(η) = π0eη

1−π1eη , i.e.,

MI =

[
1 0
0 π0eη

1−π1eη

]
.
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Figure 5.3: Impairment Process On-off model

The impairment process provides a stochastic strict service curve

γI(n) = (
1

η
logρ(MIP) + ηγ) · n

with bounding function jI(x) = e−ηxe−ηηγ , where ρ(MIP) is obtained
from (5.16):

ρ(MIP) =
p00 + p11π0eη

1−π1eη + Υ

2
(5.23)

with Υ given in (5.21).
By taking into account the ideal service process γ̂(n), the stochastic

server thus provides a stochastic strict service curve γ(n) = γ̂(n) +
γI(n).

Example 14.

Consider the same flow given in Example 12. The packet lengths
are i.i.d. random variables with moment generating function ML(η).
Then the ideal service process provides a (deterministic) strict service
curve γ̂(n):

γ̂(n) =
1

η
logE

[
eη

L0
C

]
.
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Combining the stochastic strict service curve provided by the impair-
ment process, i.e., Eq.(5.23), then the Gilbert-Elliott channel essen-
tially provides a stochastic strict service curve (ν(η) + ηγ) · n with
bounding function j(x) = e−ηxe−ηηγ , where

ν(η) =
1

η
logE

[
eη

L0
C

]
+

1

η
logρ(MIP)

=
1

η
log

E
[
eη

L0
C

](
p00 + p11π0eη

1−π1eη + Υ
)

2

which matches the result of Example 12.

Example 15.

Consider the same flow given in Example 13. The packets have
the same length L and the corresponding transmission time is T slots.
Then the Gilbert-Elliott channel provides a stochastic strict service
curve (ν(η) + ηγ) · n with bounding function j(x) = e−ηxe−ηηγ , where

ν(η) = T +
1

η
log

p00 + p11π0eη

1−π1eη + Υ

2
(5.24)

which matches the result of Example 13.
Remark. By comparing the above two examples to Example 12

and Example 13, we notice that the backlogged period analysis and
the impairment process analysis yield the same results for analyzing
the two-state Gilbert-Elliott channel. However, these two analysis
methods may not yield the same results in general.

5.4 Stochastic Delay Bound

In the previous sections, we have introduced applying the logarithmic
moment generating function to finding the stochastic arrival curve
and the stochastic service curve for several arrival processes and ser-
vice processes. If the stochastic arrival curve of an arrival process is
known and the service process provided to the arrival process can be
characterized by a stochastic service curve, we readily obtain the delay
bound based on the results of Section 4.1.1.
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5.4.1 Delay Bound Analysis

Recall two delay bounds derived under the condition that the stochas-
tic arrival curve λ(n) with bounding function h(x) and the stochastic
service curve γ(n) with bounding function j(x) are known.

From Theorem 14, the system delay is bounded by:

P{D(n) > x} ≤ j ⊗ h
(
[x − γ � λ(1)]+

)
. (5.25)

If the arrival process Γ(m,n) is independent of the service process
Δ(m,n), from Lemma 8, the stochastic delay bound is given below

P{D(n) > x} ≤ 1 −
∫ x∗

0

(
1 − j(x∗ − z)

)
d(1 − h(z)) (5.26)

where x∗ = [x − γ � λ(1)]+.
Remark. Inequality (5.25) holds with the requirement that the

arrival process has a v.w.d stochastic arrival curve and the service
process has an i.d stochastic service curve. Moreover, Inequality (5.26)
implies that at least one of h(x) and j(x) should be integrable.

Example 16.

Consider a flow of fixed-length packets, of which the inter-arrival
times follow the exponential distribution with mean 1

μ
. Packets of

this flow arrive to a wireless node and are queued in the buffer before
they are transmitted over a Gilbert-Elliott On-Off channel as given in
Example 15. Considering the assumption that when a packet is being
transmitted, the channel state will not change to OFF, we set the time
slot length to one packet transmission time.

From Example 9, the arrival process has a v.w.d SAC:

λ(n) =
n

η
log

μ

μ − η
, h(x) = e−ηx.

From Example 15, the service process has a stochastic strict service
curve:

γ(n) = (1 +
1

η
log

p00 + p11π0eη

1−π1eη + Υ

2
+ ηγ) · n,

j(x) = e−ηxe−ηηγ .
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In order to ensure system stability, we know

γ � λ(1) = γ(1).

Then according to Inequality (5.25), the delay that a packet experi-
ences in this system is stochastically bounded by

P{D(n) > x} ≤ inf
0<η≤η∗

inf
0≤z≤x∗

[
e−ηηγe−ηz + e−η(x∗−z)

]
(5.27)

where x∗ = [x − γ(1)]+ and η∗ is the maximal value that η can take
under π1e

η < 1.
If the arrival process is independent of the service process, accord-

ing to Inequality (5.26), the stochastic delay bound is given by

P{D(n) > x} ≤ inf
0<η≤η∗

[
e−ηx∗

+ x∗ηe−η(ηγ+x∗))
]
, (5.28)

where x∗ is the same as that in (5.27).

5.4.2 Comparison between Spatial and Temporal

Analysis

As introduced in Section 2.4.3, the available stochastic network calcu-
lus literature on performance guarantee analysis focuses on the spatial
perspective. In this subsection, we derive the system delay bound us-
ing the spatial analysis approach. For ease of exposition, the arrival
process given in Example 9 and the network system given in Example
15 are adopted here.

The spatial approach characterizes the arrival process based on
the cumulative amount of arrival traffic (in number of arrival packets)
and the service process based on the cumulative amount of service (in
number of served packets). Accordingly, the space-domain stochastic
arrival curve and the space-domain stochastic service curve are the
bounds on the cumulative amount of traffic and service, respectively.

Recall that A(t) and α(t) respectively denote the space-domain ar-
rival process and its arrival curve which is associated with the bound-
ing function f(y). And S(t) and β(t) respectively denote the space-
domain service process and its service curve which is associated with
the bounding function g(y).
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Example 17.

The arrival process given in Example 9 is a compound Poisson
process from the spatial perspective. Let L be the packet length for all
packets. The arrival rate of the Poisson process is μ. This compound
Poisson arrival process has the stochastic arrival curve as below [65],
for t ≥ 0 and θ > 0

1

θt
logE

[
eθA(t)

]
=

μ

θ
(eθL − 1), (5.29)

from which, the compound Poisson process has a space-domain v.b.c
stochastic arrival curve α(t):

α(t) =
(μ

θ
(eθL − 1) + θα) · t, f(y) = e−θθαe−θy,

for θα ≥ 0.
For the Gilbert-Elliott ON-OFF channel, its space-domain stochas-

tic service curve is the variation of the ON-OFF model’s envelop pro-
cess (see [21]), for all t ≥ 0 and θ > 0,

β(t) =
t

θ
log

(p11 + p00e
1
T

θ + Y

2

)
, g(y) = e−θy,

where

Y =

√
(p11 + p00e

1
T

θ)2 − 4(p11 + p00 − 1)e
1
T

θ.

Here 1/T represents the channel transmission rate (number of packets)
in the ‘ON’ state due to the time-slotted channel with the slot length
T .

Recall that the maximum horizontal distance between functions
α(t) and β(t) is h(α, β) (see Definition 8):

h(α, β) = sup
s≥0

{
inf{τ ≥ 0 : α(s) ≤ β(s + τ)}},

which can be considered as the maximal system delay of a virtual
system, where the arrival process is α(t) and the service process is
β(t).

The system delay of the traffic arriving at time t ≥ 0 is bounded
by (see Theorem 4):

P
{
D(t) > h(α + y, β)

}
≤ f ⊗ g(y)

= inf
0<θ≤θ∗

inf
0≤z≤y

[
e−θθαe−θz + e−θ(y−z)

]
, (5.30)
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where θ∗ is the maximum meaningful value of θ.
Similar to Inequality (5.26), if the arrival process A(t) is indepen-

dent of the service process S(t), the system delay is stochastically
bounded by the Stieltjes convolution of f(y) and g(y):

P
{
D(t) > h(α + y, β)

}
≤ 1 −

∫ y

0

(1 − g(y − z))d(1 − f(z))

= inf
0<θ≤θ∗

e−θy + θye−θθαe−θy. (5.31)

Remark. Although the bounding functions obtained by applying the
spatial approach (see Inequalities (5.30) and (5.31)) look very similar
as those obtained from the temporal analysis (see Inequalities (5.27)
and (5.28)), their arguments have different meanings. To compute the
delay bound, the spatial approach uses the amount of traffic denoted
by y as the argument, while the temporal approach uses the time
denoted by x (or x∗) as the argument. Since the bounding functions of
both approaches are negative exponential functions, a larger argument
yields a smaller result and vice versa.

5.4.3 Numerical Results

The available literature [67] provides a simple example to illustrate
that by considering the independence condition, the tightness of the
delay bound may be improved, i.e., Inequality (5.26) may provide a
tighter bound compared to Inequlity (5.25). In order to intuitively
illustrate these two bounds, we use Matlab to numerically compute
the two bounds derived in Example 16 (see Inequalities (5.27) and
(5.28)). Then, we investigate how the optimal parameter ηγ impact
the delay bound. Moreover, the system delay bounds obtained by the
temporal and the spatial approaches are compared.

The Gilbert-Elliott channel provides C = 2Mbps capacity when it
is in the ON state. All packets have the same length 250 bytes. Hence
the packet transmission time T = 1msec which is the time slot length.
The transition probabilities between ON and OFF states hold such
relationship p10/p01 = 3, from which, we calculate

π0 = 0.75, π1 = 0.25, p00 = (2 + p11)/3.
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If we set p00 = 0.95, the corresponding transition probabilities are

p01 = 0.05, p10 = 0.15, p11 = 0.85.

Moreover, according to π1 = 0.25, we obtain the maximal value of η,
η∗ = 1.386 in terms of π1e

η < 1.
In the following figures, we use Bound 1 and Bound 2 to repre-

sent the bounds given in Inequalities (5.27) and (5.28), respectively.
As shown in Figure 5.4, Bound 1 is looser than Bound 2 under the

same condition, i.e., the same arrival process and the same network
system. This result implies that by considering the independence con-
dition, the bound may be improved. The same phenomenon has been
discussed in [67].
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Figure 5.4: Bound Comparison: ηγ = 0

Since both Inequalities (5.27) and (5.28) contain the scaling factor,
e−ηηγ , how does this scaling parameter impact the delay bound?

From the definition of ηγ, it should be set in terms of ν(η). Figure
5.5 shows Bound 1 when ηγ takes 0, 0.5ν(η) and 0.6ν(η). The bound
obtained by setting ηγ = 0.5ν(η) is tighter than that obtained by
setting ηγ = 0. However, when ηγ exceeds 0.5ν(η) such as 0.6ν(η), the
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Figure 5.5: Bound 1 vs. Varying ηγ
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Figure 5.6: Bound 2 vs. Varying ηγ
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bound becomes more loose than that obtained by setting ηγ = 0.5ν(η).
Thus, ηγ = 0.5ν(η) is the optimal value.

Similarly, Figure 5.6 shows Bound 2 against various ηγ. As ηγ in-
creases from 0 to 0.3ν(η) or 0.5ν(η), the bound becomes looser. This is
because the increment of ηγ results in the decrement of y in Inequality
(5.28) for a fixed x. Moreover, taking the infimum impacts the final
result as well.
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Figure 5.7: Space and time domain bound comparison vs. varying μ
(θ∗ = η, ηγ = 0 and θα = 0)

Figure 5.7 shows the bounds obtained from the spatial and the tem-
poral approaches. When computing the space-domain delay bound
according to Inequality (5.30), we need to first compute the space-
domain arrival curve α(t) and the service curve β(t) under an implicit
relation, α(t) ≤ β(t), which ensures system stability. With this con-
dition and varying the arrival rate μ of the Poisson process, we can
determine the maximal meaningful value of θ, θ∗. As the amount of
traffic y varies, the bound on the probability that the system delay
exceeds h(α + y, β) can be obtained with θ∗.

Let η = θ∗ and x = h(α + y, β) when computing the time-domain
delay bound according to Inequality (5.27). In Figure 5.7, μ = 0.6
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or μ = 0.75 means the arrival rate per time slot. As μ increases,
more packets arrive and then the system delay becomes longer. Thus,
fixing a certain time and observing the bounds obtained by setting
μ = 0.6 and μ = 0.75, the trend is that a smaller μ causes a tighter
bound. When μ = 0.75, the space-domain bound and the time-domain
bound are very close. However, when μ = 0.6, the space-domain
bound is tighter than the time-domain bound. The reason is that
under the current parameter setting, the amount of traffic y used to
compute the space-domain bound is larger than the time h(α+y, β)−
γ(1) used to compute the time-domain bound. A larger argument
yields a smaller result for the negative exponential functions as we
have discussed in Section 5.4.2.

From Figure 5.7, we notice that the spatial and the temporal ap-
proaches give close results. However, how the individual parameters
of bounding functions influence the final result still needs more inves-
tigation.

5.5 Conclusion

This chapter concretizes the temporal network calculus approach for
performance guarantee analysis of stochastic networks. A key tech-
nique used in linking an arrival process or a service process to the time-
domain stochastic arrival curve characterization or stochastic service
curve characterization is Moment Generating Function. Based on the
arrival process characterization and the service process characteriza-
tion, performance bounds such as delay bound can be further derived
from the temporal stochastic network calculus.

Moreover, the Gilbert-Elliott channel is particularly investigated
to demonstrate how to obtain the MGF of the service process. The
numerical results show that the delay bound is improved by taking
into consideration the independence between the arrival process and
the service process. Finally, we illustrate that the temporal and the
spatial analysis approaches give close performance bounds under the
appropriate match between the arguments used in both approaches.
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Application Case: IEEE

802.11 Delay Evaluation

The material in this chapter has been partially published as follows:

Jing Xie and Yuming Jiang. “A Network Calculus Approach to
Delay Evaluation of IEEE 802.11 DCF.” In Proceedings of the 35th

IEEE Conference on Local Computer Networks (LCN), Denver, USA,
October 2010.
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6.1 Introduction

The time-domain stochastic service curves are defined to characterize
the service process of networks which contain inherently stochastic
factors. Wireless networks are one typical representative of such net-
works. Some work on applying stochastic network calculus to service
analysis of wireless networks from the spatial perspective has been re-
ported [16] [46] [66]. In this chapter, the temporal approach will be
the analytical basis. The central idea is to compare the service pro-
cess with a virtual time function [67] as used by the deterministic GR
server model [53]. GR server model is an important model in defining
the two Internet QoS architectures: Integrated Services (IntServ) and
Differentiated Services (DiffServ) architectures [67].

The IEEE 802.11 wireless local area networks (WLANs) [1] [25]
[26] have been widely deployed to provide low-cost broadband wireless
Internet access [48]. To understand the potential of IEEE 802.11 for
supporting real-time applications, it is important to evaluate the delay
characteristics at the MAC layer.

The fundamental mechanism to access the medium in IEEE 802.11
networks is the distributed coordination function (DCF). The available
literature on delay evaluation of the DCF mainly focuses on investigat-
ing the packet service time under either the saturated condition [92] or
the non-saturated condition [104]. The impact of the arrival pattern
on the delay performance is still open. However, the various arrival
patterns may significantly influence delay performance and should be
taken into account when investigating the delay performance. The
objective of this chapter is to take one step towards evaluating delay
performance for various arrival processes through stochastic network
calculus.

This chapter is based on modeling a saturated, single cell network
with an ideal channel condition (without capture, fading or frame
error), where a finite number of homogeneous stations (STAs) contend
for a shared wireless channel. Each STA always has packets available
for transmission1. Assume that all packets have the same length.

The per-packet service time of the DCF is defined as the interval
between the instant when the packet reaches the HOL and the instant
when the packet is successfully received at the destination STA. The

1This implies that the analysis in this chapter applies to backlog period anal-
ysis.
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stochastic service curve essentially characterizes the service received
by a concerned STA2 in its backlogged periods. The stochastic service
curve derived under the saturated condition implies a probabilistically
guaranteed service time for packets transmitted from the concerned
STA under the maximal load that can be carried by the network.

6.2 IEEE 802.11 Distributed

Coordination Function

The DCF incorporates the CSMA/CA protocol and the truncated
binary exponential backoff (BEB) scheme. The DCF includes two
implementation mechanisms, the default basic access and the optional
request-to-send/clear-to-send (RTS/CTS). The RTS/CTS mechanism
can reduce the collision duration and the system degradation due to
the hidden terminal problem. However, this mechanism increases over-
head for transmitting short data packets and should not be used for ev-
ery data packet transmission [1]. To comprehensively study the DCF,
we investigate both the basic access and the RTS/CTS mechanisms.

In a network employing the CSMA/CA protocol, each STA hav-
ing a packet to transmit should sense the channel to determine if
another STA is transmitting. If the channel is sensed idle for an in-
terval greater than the distributed interframe space (DIFS), the STA
proceeds to transmission. If the channel is sensed busy, the STA de-
fers transmission and keeps sensing until the channel is sensed idle
for a DIFS. Then the STA generates a random backoff interval for an
additional deferred time before transmitting.

Backoff intervals are slotted. SATs are only allowed to transmit at
the beginning of a slot. When the backoff timer is initiated, a backoff
interval (in slots) is uniformly chosen in the range {0, 1, ..., CWk − 1}
where CWk is the contention window of the kth backoff stage. At
the first transmission attempt, CW is set to the minimum contention
window (CW), CWmin. The backoff counter is decremented by 1 after
one idle slot elapses. When the channel becomes busy during the
countdown, the counter is frozen and reactivated when the channel
is sensed idle more than one DIFS again. Such intervals when the
channel becomes busy are called inter-transmissions [11].

2In the homogeneous network, all STAs equally receive the service.
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The STA attempts to transmit packet when its countdown finishes.
A collision occurs when the counter of two or more STAs reach zero
in the same slot. Then all the involved STAs have to wait another
backoff interval until the next attempt. The new contention window
doubles the previous contention window. Doubling the contention
window stops when the current contention window CWk reaches the
maximal value 2MCWmin, where M is the doubling limit. If the packet
has not been transmitted successfully after M retransmissions, the
contention window is kept at 2MCWmin for the following attempts
until the packet is transmitted successfully, or until the retransmissions
reach the maximum number K specified in [1]. If the packet is still
not transmitted successfully after K retransmissions, it is discarded.
After the packet is successfully received, the destination STA waits
for a short inter-frame space (SIFS) interval and then immediately
transmits an acknowledgement (ACK) to the source STA.

The RTS/CTS mechanism transmits the RTS and CTS control
packets prior to data packet transmissions. An STA senses the chan-
nel before transmitting RTS packet. If the channel is idle during the
DIFS interval, this STA starts to transmit the RTS packet; otherwise,
the STA retains the RTS packet and keeps sensing until the channel
becomes idle. This procedure is the same as the basic access mech-
anism. A successful exchange of RTS and CTS packets reserves the
channel for transmitting data packets. Such reservation can reduce
the bandwidth loss since collisions occur only when transmitting RTS
packets.

6.2.1 Decoupling Approximation

In this chapter, we only consider the case that all the STAs have the
same backoff parameters, i.e., the homogeneous case. The decou-
pling approximation [75] effectively facilitates the backoff process
analysis and thus is adopted here to conduct the following analysis.

Let N denote the number of contending STAs. For a concerned
STA, the decoupling approximation assumes that the aggregate at-
tempt process of the other N − 1 STAs is independent of the backoff
process of the concerned STA.

The key approximation introduced by Bianchi [13] is that the colli-
sion probability for each packet is constant and independent regardless
of the number of retransmissions. Let pc denote the collision proba-
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bility that at least one of the N − 1 non-concerned STAs transmit in
the same slot. The attempt probability of an STA transmitting in a
random slot, denoted by pa, is constant and independent of the backoff
stage [13]. Given the number of STAs, pc can be expressed in terms of
pa and μk which denotes the mean backoff interval at the kth backoff
stage [28]:

pc = 1 − e−(N−1)pa ,

pa =

∑K

k=0 pk
c∑K

k=0 μkpk
c

. (6.1)

6.3 Stochastic Characteristics of The

Service Time

This section reviews related results on per-packet service time [92],
which will be used in the later analysis.

The concerned STA can be considered as an FIFO scheduler and
the shared wireless channel can be modeled as a stochastic delay server
as shown in Figure 6.1. The packet first passes through the FIFO
queue and then enters the stochastic server, where the packet suffers
a random delay in the delay process before it is finally served in the
ideal service process. The length of time that a packet stays in the
stochastic delay server is called per-packet service time.
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Figure 6.1: System Model

We decouple the delay process from the complete service process
and study the delay process separately. The delay process represents
the interval between the time when a packet reaches the HOL and the
beginning of the successful transmission of the packet.
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The homogeneous case implies that the transmission of any STA
is interfered by other STAs with the same probability. The per-packet
service time of all packets follows the same distribution due to the
fixed packet size and the ideal channel assumptions. Thus, it suffices
to analyze the per-packet service time for a concerned STA instead of
the whole network.

6.3.1 Per-Packet Service Time Analysis

In the considered IEEE 802.11 network, the service time of any packet
P (n) is related to the number of collisions κ it experiences. Let Cn

denote the sum of κ collisions. Then Cn equals κ · tc, where tc is
the duration of a collision. We denote the backoff interval at the kth
backoff stage by bk and the sum of backoff intervals by

Bn =
κ∑

k=0

bk.

Let In represent the sum of inter-transmissions of non-concerned STAs.
The service time of packet P (n) can be expressed as below [92]:

δn = Cn + Bn · σ + In + ts, (6.2)

where σ denotes one slot time and ts is the interval when the channel
is occupied because of a successful transmission.

Since the service time of all packets have the same distribution, for
ease of exposition, we remove the index n from the notations of (6.2)
in the following analysis.

Let H = LPHY +LMAC be the packet header and tP be the packet

transmission time. Then ts is given below [13]:

⎧⎨
⎩ tbs = H + tP + SIFS + ACK + DIFS

trs = H + tP + RTS + CTS + 3SIFS + ACK + DIFS,

where ‘b’ and ‘r’ are used to distinguish the basic access mechanism
and the RTS/CTS mechanism, respectively. Note that the propaga-
tion delay is not considered in this paper.
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6.3.2 Probability Distribution

Define Pk as the probability that a packet is successfully transmitted
at the kth retransmission. Then we have{

Pk = (1 − pc)p
k
c , k ∈ {0, 1, ..., K − 1}

PK = pK
c .

Since a packet is either successfully transmitted within K retransmis-
sions or dropped after K failed retransmissions, there holds

K∑
k=0

Pk = 1.

The probability mass function (PMF) of the sum of collisions is
given by

P{C = κ · tc} = Pκ, κ ∈ {0, ..., K}, (6.3)

from which, we compute the first and second moments of C

M1
C = tc

K∑
κ=1

pκ
c ,

M2
C = (tc)

2

K∑
κ=1

(2κ − 1)pκ
c .

For the basic access mechanism, the collision occurs in data packet
transmission. For the RTS/CTS mechanism, the collision occurs only
in RTS packet transmission. The collision duration of the two mecha-
nisms are given by [13]:{

tbc = H + tP + DIFS
trc = RTS + DIFS.

where, trc is always shorter than tbc [13] according to the numerical
values provided by the standard [1].

The distribution of the cumulative inter-transmission I relies on
the cumulative backoff interval B since the inter-transmission can oc-
cur at any slot when the channel is in ‘idle’ state. When the concerned
STA is in backoff state, its backoff counter decrements according to
the perceived channel state. We adopt the assumption [92] that if the
concerned STA detects the channel being occupied, the current slot is
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considered to pass. Two mutually exclusive events can cause the chan-
nel being occupied: either a successful transmission or an RTS packet
collision. Each slot will be sensed idle with the probability Pidle [92] if
no non-concerned STAs transmit, where

Pidle = (1 − pa)
N−1.

The channel occupied by a successful transmission implies that only
one non-concerned STA transmits with the probability

Psuc = (N − 1)pa(1 − pa)
N−2.

The probability that the channel is occupied due to the collision in-
volving only non-concerned STAs is

1 − Pidle − Psuc.

Let Xi denote the length of time that the backoff counter decre-
ments by 1, where i = 1, 2, .... The PMF of Xi is given by

fX(x) =

⎧⎨
⎩

P{Xi = σ} = (1 − pa)
N−1 = 1 − pc

P{Xi = ts} = Psuc

P{Xi = tc} = pc − Psuc

from which, the first and second moments of Xi are obtained

M1
X = (1 − pc) · σ + Psuc · (ts − tc) + pc · tc

M2
X = (1 − pc) · σ2 + Psuc · (t2s − t2c) + pc · t2c .

Each slot is interrupted with the equal probability, thus

B · σ + I =
B∑

i=1

Xi. (6.4)

We denote the PMF of bk by fk(·) with mean μk and variance σ2
k.

The PMF of B can be expressed by conventional convolution of κ + 1
functions [28]:

fB(x) =
K∑

κ=0

(f0 ∗ · · · ∗ fκ)(x) · Pκ.

Obviously, the computation of fB(x) involves multiple convolutions
which can make the computation of (6.4) so complicated that it is
difficult to characterize the exact distribution of per-packet service
time. In order to ease the expression to help our understanding, the
next section makes use of stochastic network calculus, which enjoys the
advantage of flexibly analytical solutions and has the essence of finding
some bounds for the tail probability of the interested distribution.
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6.4 Probabilistic Bounds

In this section, we analyze and derive bounds for the tail probability
of the per-packet service time, the cumulative service time and the
system delay. The key technique is time-domain stochastic network
calculus.

6.4.1 Per-Packet Service Time Bound

The time-domain service curve characterizes the stochastic nature of
the cumulative per-packet service time. Section 6.3.2 reveals the dif-
ficulty of finding the exact probability distribution of the per-packet
service time. To solve this difficulty, this subsection presents two ap-
proaches for finding the bounds on the tail probability of the per-
packet service time.

We first adopt the moment bound [88]. Let MQ
Z denote the Qth

moment of Z. Then, the moment bound tells that the tail probability
of Z is bounded by

P{Z > z} ≤ inf
Q≥0

MQ
Z

zQ
. (6.5)

Recall that bk and B denote the backoff interval at the kth backoff
stage and the sum of backoff intervals, respectively. Given the mean
and variance of bk, the first and second moments of B are obtained [28]:

M1
B =

K∑
k=0

μkp
k
c ,

M2
B =

K∑
k=0

(μ2
k + σ2

k)p
k
c + 2

[ K∑
k=1

μkp
k
c ·

k−1∑
j=0

μj

]
.

The right-hand side of Eq.(6.4) is a compound random variable of
which the first and second moments are:

M1
B+I = M1

BM1
X ,

M2
B+I = M1

BM2
X + (M2

B − M1
B)(M1

X)2.

Combining the above results together with the per-packet service time
analysis in the previous section, the first moment (mean) of the service
time δ is calculated by:

M1
δ = M1

C + M1
B+I + ts. (6.6)
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Let Ω = C + B · σ + I, and correspondingly

M1
Ω = M1

C + M1
B+I ,

M2
Ω = M2

C + M2
B+I + 2M1

CM1
B+I .

By applying Inequality (6.5), we get a bound on the per-packet service
time:

P{δ > x} = P{Ω > x − ts} ≤ inf
[ M1

Ω

x − ts
,

M2
Ω

(x − ts)2

]
. (6.7)

The moment bound (6.7) is simple while not a closed-form ex-
pression. In order to derive the delay bound, the bounding function
associated with the service curve should be closed-form (see Theorem
14). The desired form should be integrable if the arrival process and
the service process are independent of each other (see Lemma 8).

To solve the above difficulty, the other bound is obtained as follows.
Note that for any θ > 0 and 0 ≤ Y ≤ 1, there always holds (e.g. see
Lemma 2.2 in [85]):

eθY ≤ 1 − Y + Y eθ.

If Y is a bounded random variable between 0 and 1, letting q ≡
E(Y ), we have

E[eθY ] ≤ 1 − q + qeθ. (6.8)

In order to apply Inequality (6.8) for bounding δ, we need to normalize
δ. Two extreme events determine the range of δ.

• No collision occurs and the backoff interval equals 0. Hence δ
takes the minimum value ts.

• δ reaches the maximum value K · tc + Bmax · ts + ts because
the number of collisions reaches K, the sum of backoff intervals
attains the maximum value Bmax, and every slot is interrupted
by a non-concerned STA’s successful transmission, where

Bmax =
K∑

k=0

(CWk − 1).
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Let us now define the following notations:

Y =
δ − ts

K · tc + Bmax · ts ,

q =
M1

δ − ts
K · tc + Bmax · ts ,

y =
x − ts

K · tc + Bmax · ts .

Applying first Chernoff bound to the per-packet service time and then
following Inequality (6.8) yield, for any θ > 0,

P{δ > x} = P{Y > y}
≤ e−θyE[eθY ]

≤ e−θy(1 − q + qeθ).

By setting eθ = y(1−q)
q(1−y)

, we have the following per-packet service time
bound:

P{δ > x} ≤
(q

y

)y(1 − q

1 − y

)1−y

.

The following lemma summarizes the above two bounds on the
per-packet service time.

Lemma 21. For a homogeneous single cell IEEE 802.11 network

where all contending STAs employ the DCF scheme3, the per-packet

service time can be bounded by the following bounds.

Bound 1. For x > ts, there holds4

P{δ > x} ≤ inf
[ M1

Ω

x − ts
,

M2
Ω

(x − ts)2

]
1
. (6.9)

where [z]1 ≡ min{z, 1}.
Bound 2. For 0 < x − ts < K · tc + Bmax · ts, there holds

P{δ > x} ≤
(q

y

)y(1 − q

1 − y

)1−y

. (6.10)

3Assume that all contending nodes employ the same access mechanism.
4The left-hand side of Inequality (6.9) has an upper bounded inf

[
M

1

Ω

x−ts

,
M

2

Ω

(x−ts)2

]
.

It is a probability and should not be greater than 1. Thus, we take the minimum
between 1 and the upper bound.
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Remark. For Bound 1, Inequality (6.9) still holds mathematically
even under x − ts > K · tc + Bmax · ts. However, for Bound 2, if
x − ts ≥ K · tc + Bmax · ts which causes 1 − y ≤ 0, then Inequality
(6.10) loses the mathematical meaning.

6.4.2 Network Calculus Approach

The (weak) law of large numbers states that the sample average con-
verges in probability towards the expected value (first moment), i.e.,
for any ε > 0,

lim
n→∞

P
{∣∣∣∑n

k=0 δk

n + 1
− M1

δ

∣∣∣ < ε
}

= 1,

which implies the average of the cumulative service time will approach
the first moment of the per-packet service time as ‘n’ becomes suffi-
ciently large. Then we get a stochastic service curve for the concerned
STA.

Lemma 22. In a homogeneous single cell IEEE 802.11 network, for

a concerned STA, the DCF access scheme provides a (time-domain)

stochastic service curve γη(n) = M1
δ · n + η · n with bounding function

j(x) for η ≥ 0, where for any x ≥ 0,

j(x) =
( q

q + y + η̄

)q+y+η̄( 1 − q

1 − q − y − η̄

)1−q−y−η̄

(6.11)

where

η̄ =
η

K · tc + Bmax · ts ,

y =
x

K · tc + Bmax · ts + ts
.

Proof. We shall prove that P{d(n) − a⊗̄γ(n) > x} ≤ j(x).
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Expanding d(n) and a⊗̄γ(n) yield

d(n) − a⊗̄γ(n)

= sup
0≤m≤n

{
a(m) +

n∑
k=m

δk

} − sup
0≤m≤n

{
a(m) + γη(n − m + 1)

}

≤ sup
0≤m≤n

{ n∑
k=m

δk − γη(n − m + 1)
}

= sup
0≤m≤n

{ n∑
k=m

(δk − M1
δ − η)

}
.

Let Ul ≡ ∑n

k=n−l(δk − M1
δ − η) and Vl ≡ eθUl with θ > 0 and

0 ≤ l < n. Note that δk, k = 1, . . . , n, are independent of each other

and follow the same distribution.

Let Ml denote the σ-algebra generated from the process V = {Vl :

0 ≤ l < n}. If E[eθ(δk−M1
δ −η)] ≤ 1, we then have:

E
[
Vl+1|Ml

]
= VlE

[
eθ[δn−1−(l+1)−M1

δ −η]
]

= VlE
[
eθ(δ0−M1

δ −η)
]

≤ Vl,

from which, we know that V0, . . . , Vn−1 form a supermartingale.

Similarly, if E[eθ(δk−M1
δ −η)] ≥ 1, V0, . . . , Vn−1 form a submartingale.

Combining both cases, V is a martingale, i.e., E[Vl+1|Ml] = Vl. With

Doob’s martingale inequality (see Lemma 3), we have

P{d(n) − a⊗̄γ(n) > x}
≤ P{ sup

0≤l<n

Ul > x}

= P{ sup
0≤l<n

Vl > eθx}

≤ e−θxE[V0]

= e−θxE
[
eθ(δn−M1

δ
−η)

]
. (6.12)
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If the distribution of δn is known, Inequality (6.12) usually gives

a good bound. However, as discussed earlier, for the studied network

scenario, an accurate estimation on the distribution is difficult. In the

following, we shall make use of the fact that in the considered network,

δn is formed by the sum of bounded random variables, as implied by

Eq.(6.2).

Let

Yk =
δk

K · tc + Bmax · ts + ts
,

η̄ =
η

K · tc + Bmax · ts ,

y =
x

K · tc + Bmax · ts + ts
.

Applying Yk to Inequality (6.12) and following the same principle

gives:

P{d(n) − a⊗̄γ(n) > x}

≤ P
{

sup
0≤m≤n

n∑
k=m

(Yk − q − η̄) > y
}

≤ e−θyE[eθ(Yn−q−η̄)]

≤ e−θye−θ(q+η̄)(1 − q + qeθ), (6.13)

which holds for any θ > 0. Setting eθ = (q+η̄)(1−q)
q(1−q−η̄)

results in

e−θye−θ(q+η̄)(1 − q + qeθ) =
( q

q + η̄

)y+q+η̄( 1 − q

1 − q − η̄

)1−y−q−η̄

from which, (6.11) is proved.

Remark. If a packet has not yet been transmitted successfully
when the retransmission limitation has reached, the packet is dis-
carded. However, the discarded packets have consumed the service pro-
vided by the server. Thus, the service curve represents a stochastically
guaranteed service time for all arrival packets regardless of whether the
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packets are successfully transmitted or discarded. In addition, Lemma
22 also holds for other non-concerned STAs in the homogeneous IEEE
802.11 network.

Lemma 22 presents a stochastic service curve for the concerned
node. If we know the arrival curve of the arrival process, the system
delay that a packet experiences in the concerned STA has an upper
bound by applying Theorem 14.

In the following, we discuss two types of arrival, denoted by F1 and
F2 respectively. The packets of F1 arrive at constant intervals T . This
arrival process has a (deterministic) arrival curve λcnt(n) = T · n with
bounding function hcnt(x) = 0. For F2, the packet inter-arrival times
are exponentially distributed with mean 1

Λ
. This arrival process has a

v.w.d stochastic arrival curve λexp(n) = � · n (� < 1
Λ
) with bounding

function hexp(x) (see Example 4):

hexp(x) = 1 − (1 − ρ)

�x
�
�∑

i=0

e−Λ(i�−x) [Λ(i� − x)]i

i!
(6.14)

where ρ = Λ·�. To ensure system stability, we require limn→∞ 1
n
[γ(n)−

λ(n)] ≤ 0 for both F1 and F2.
With Theorem 14, we readily obtain the system delay bounds with

two arrival processes, accordingly.

• The system delay of any packet belonging to flow F1 is bounded
by

P{Dcnt(n) > x} ≤ j(x − M1
δ − η). (6.15)

• The system delay of any packet belonging to flow F2 is bounded
by

P{Dexp(n) > x} ≤ j ⊗ hexp(x − M1
δ − η). (6.16)

Remark. Recall that the system delay can be expressed as

D(n) =
[
a(m0) +

n∑
k=m0

δk

]
− a(n),

where a(m0) is the beginning of the latest backlogged period. The sat-
urated condition implies a(m0) = a(0) for all packets. The stochastic
service curve given by Lemma 22 implies a probabilistically guaran-
teed service time under the maximal load that can be carried by the
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network. Thus, the system delay derived from this stochastic service
curve is essentially the probabilistic upper bound of the system delay
which an arrival process actually experiences in the network.

6.5 System Delay Bounds under Finite

Buffer

The system delay bounds derived from Theorem 14 rely on an impor-
tant assumption that the buffer space is sufficient to store all incoming
packets, i.e., a lossless system. This assumption has been commonly
used in the available literature on network calculus. However, the re-
alistic situation is not like this since the physical buffer must be finite.
How does the finite buffer space impact the system delay bound is
thus investigated in this section.

The saturation condition implies that every packet P (n) arrives to
the system before the previous packet P (n− 1) leaves the system, i.e.,
a(n) ≤ d(n−1). We discuss ‘<’ and ‘=’ separately. Recall the system
delay

D(n) = d(n) − a(n). (6.17)

Replacing d(n) with Eq.(3.13) yields

D(n) = sup
0≤m≤n

[a(m) +
n∑

k=m

δk] − a(n). (6.18)

Scenario I.
The first scenario is that a(n) = d(n− 1) for all n ≥ 1, i.e., packet

P (n) arrives to the system as packet P (n−1) departs from the system.
As shown in Figure 6.2, there is no queueing delay for any packet and
thus Eq.(6.17) returns D(n) = δn. Then the per-packet service time
bound given by Lemma 21 is also the system delay bound. Lemma 21
is also applicable when P (n) arrives to the system, P (n − 1) has de-
parted from the system, i.e., d(n − 1) < a(n), where, there holds
a(n + 1) − a(n) ≥ δn

5.

5However, this does not satisfy the saturation condition.
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Figure 6.2: No queueing delay

Scenario II.
The second scenario considers the queueing delay. The saturation

condition implies that all contending STAs are always backlogged.
However, an infinite queue is not desired and realistic. For uplink
transmission in IEEE 802.11 networks, the per-packet service time
may possess long range dependence [92] which can cause excessive
queueing delay. In the following, we assume a finite buffer of capacity
Φ (number of packets6). For packets allowed to enter the buffer, their
system delay should be upper bounded in terms of Φ.

!��"��!��"������ � ������

Figure 6.3: Finite buffer is full

We investigate the maximum system delay when the buffer is full.
Without loss of generality, suppose packet P (m+1) is the first packet
being placed into the buffer at some instant when the buffer is empty
while there is one packet being transmitted. More packets arrive to
the system until the buffer is full. When packet P (m + Φ) enters the
buffer, the first packet P (m + 1) is still in the system. As shown in
Figure 6.3, such scenario implies a(m+Φ) ≤ d(m+1). Then Eq. (6.18)
returns

D(m + Φ) ≤
Φ∑

k=1

δm+k. (6.19)

6Assume that packets have the same length. Otherwise, the buffer capacity
should be measured using the number of bits.
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Lemma 21 has given two bounds on the service time of a single
packet. In order to bound the cumulative service time presented in
Inequality (6.19), we generalize Lemma 21 into Lemma 23.

Lemma 23. Consider a concerned STA with a finite buffer size Φ in

a homogeneous single cell IEEE 802.11 network. The DCF guarantees

a system delay bound for packets transmitted from the concerned STA

as follows.

Bound 1. Recall Ω = C +B ·σ + I. According to Inequality (6.5),

we have for any n ≥ 0 and x − ts > 0

P{D(n) > x} ≤ inf
[ ΦM1

Ω

x − Φts
,
ΦM2

Ω + (Φ2 − Φ)(M1
Ω)2

(x − Φts)2

]
1
. (6.20)

Bound 2. Based on Inequality (6.10), we have the following bound

on the cumulative service time:

P{D(n) > x} ≤
{(q

y

)y(1 − q

1 − y

)1−y}Φ

(6.21)

where

y =
x

Φ · (K · tc + Bmax · ts + ts)
,

q =
M1

δ

K · tc + Bmax · ts + ts
.

Proof. Inequality (6.20) is obtained by applying the moment bound to

Φ ·Ω. Having known M1
Ω and M2

Ω, then the first and second moments

of Φ · Ω are given below respectively:

M1
Φ·Ω = ΦM1

Ω,

M2
Φ·Ω = ΦM2

Ω + (Φ2 − Φ)(M1
Ω)2,

with which, by applying the moment bound (6.5) to Φ ·Ω, we get the

moment bound (6.20) on the cumulative service time of Φ packets.
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Inequality (6.21) is the extension of Inequality (6.10). Here, q and

Yk have the same definition as those in Inequality (6.10). Let

y =
x

Φ(K · tc + Bmax · ts + ts)
.

Then we have

P
{ Φ∑

k=1

δk > x
}

= P
{ Φ∑

i=1

Yk > Φ · y}
≤ e−θ(Φ·y)E[eθ

PΦ
i=1 Yi ]

≤
(
e−θy(1 − q + qeθ)

)Φ

,

from which we get Inequality (6.21) by letting eθ = y(1−q)
q(1−q−y)

.

Remark. When Φ = 1, Inequality (6.21) becomes Inequality
(6.10). In addition, Φ also implies the burst tolerance of the system.

6.6 Numerical Evaluation and

Discussion

To better understand the analytical bounds derived in Section 6.4, we
use numerical analysis to extensively examine the relevant parameters.
We adopt the parameter setting of the IEEE 802.11b as listed in Ta-
ble 6.1. Two data packet sizes L1 = 1500 bytes and L2 = 150 bytes
are considered here.

We first examine the average per-packet service time calculated
using Eq.(6.6) and shown in Figure 6.4. For the short packet size L2 =
150 bytes, the basic access always outperforms the RTS/CTS access
against the varying number of STAS. This result is consistent with the
clarification of the RTS/CTS [1] that the RTS/CTS is not suitable for
short data packet transmission. For the long packet size L1 = 1500
bytes, we notice that although the RTS/CTS access performs better
when the number of STAs exceeds 25, the advantage is not apparent.
The reason is that the physical header and all control packets are
always transmitted at the rate of 2Mbps while the data packets are
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Table 6.1: IEEE 802.11b Parameters (for DSSS system)

Parameter Value
Control bit rate 2 Mbps
Data bit rate 11 Mbps
PHY header 192 bits
MAC header 224 bits
ACK packet 112 bits + PHY header
RTS packet 160 bits + PHY header
CTS packet 112 bits + PHY header
SlotTime (σ) 20 μs

SIFS 10 μs
DIFS 50 μs

Min CW (CWmin) 32
Max retransmission (K) 6

Doubling limit (M) 5
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Figure 6.4: Average Packet Service Time
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transmitted at the rate of 11Mbps. The influence of data packet size
on performance is beyond scope of this chapter. More discussion about
the influence of data packet size can be found [24].

To ease presentation, in Figure 6.5 - Figure 6.8, the x-axis repre-
sents the normalized time.

Lemma 21 provides two bounds on the per-packet service time. In
Figure 6.5, we compare these two bounds by configuring the scenario
that all contending STAs (10 and 20 respectively) employ the basic
access mechanism and the packet size is L1. For both 10-STA and
20-STA cases, the bound given by Inequality (6.9) (Bound 1 in Figure
6.5) are tighter than the bound given by Inequality (6.10) (Bound 2 in
Figure 6.5). An implicit reason is that while both the first and second
moments are used to find Inequality (6.9), the derivation of Inequality
(6.10) only involves the first moment.
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Figure 6.5: Two bounds given in Lemma 21 (basic access and packet
size L1)

The stochastic service curve γη(n) defined in Lemma 22 presents
an upper bound on the exceedance probability that the cumulative ac-
tual service time exceeds the cumulative guaranteed service time. As
shown in Inequality (6.11), η is an adjustable parameter. According
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Figure 6.6: Stochastic service curve for basic access (packet size L1

and 10 STAs)

to the analytical formula (6.11), Figure 6.6 shows the service curve
as the normalized η, denoted by bar[eta] in Figure 6.6, varies from
0.01 to 0.6. The considered scenario is that the network consists of
10 contending STAs and all STAs employ the basic access mechanism.
All packets have the same size L1. As η̄ increases, the guaranteed per-
packet service time becomes larger and accordingly the exceedance
probability decreases. If η̄ becomes so large that the normalized M1

δ +η
approaches ’1’, the guaranteed per-packet service time approaches the
maximal service time and then the service curve is not much meaning-
ful. We are interested in that for a specific criteria, how to choose the
service curve. For example, the dotted line in Figure 6.6 represents the
probability of 1%. The intersection of this dotted line and a service
curves represents the service time than which less than7 1% of packets
will receive a larger service time.

We now discuss the system delay bounds derived using the network
calculus approach and the finite buffer size. The investigated scenario
is that 10 contending STAs employ the RTS/CTS access mechanism

7Note that the service curve is an upper bound on the violation probability.
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and the packet size is L1.
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Figure 6.7: System delay bound for RTS/CTS (packet size L1 and 10
STAs)

For the network calculus approach, we evaluate the analytical bounds
for the Poisson and the constant arrival processes. The parameters of
Poisson arrival used in Inequality (6.14) are set to � = 0.04sec and
Λ = 12.5. The parameters of the constant arrival do not impact the
system delay bound. The system delay bound of two arrival flows are
computed using Inequality (6.15) and Inequality (6.16) and shown in
Figure 6.7. The system delay bound of the constant arrival flow is
tighter than that of the Poisson arrival flow. This result is consistent
with the analytical bounds.

For the same flow, the 100th packet may suffer longer system de-
lay than the 10th packet because the service curve is defined for the
situation that all contending STAs are always backlogged. Both the cu-
mulative waiting delay and cumulative service time of previously trans-
mitted packets contribute to the system delay of the current packet.
The packet arriving later will hence wait longer before it can be served.

Note that Inequality (4.1) (Theorem 14) gives the system delay
bound under the assumption of an infinite buffer size, which implies
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that all packets in the buffer will receive service regardless of their
waiting delay. However, the buffer size is limited in real networks.
Thus, bound 2 (see Inequality (6.21)) in Lemma 23 gives a maximal
system delay bound for a finite buffer. Figure 6.7 also shows such
system delay bounds against various buffer sizes, Φ, which can be
understood as either the physical buffer capacity or a threshold of
buffer occupancy. Φ can be dynamically set for differentiating the
QoS of different applications. For example, for the 10th packet of the
constant arrival process, when Φ = 4 and 8, Inequality (6.21) provides
a tighter bound than Inequality (6.15); if Φ > 10 such as 16 and
32, Inequality (6.21) becomes loose compared with Inequality (6.15).
Such trend is understandable since Inequality (6.15) and Inequality
(6.21) are close when the parameter n of Inequality (6.15) equals the
parameter Φ of Inequality (6.21). However, for the Poisson arrival
process, the impact of the arrival curve causes that such relationship
between n and Φ does not hold in general. For instance, for the
10th packet of the Poisson arrival, Inequality (6.21) is tighter than
Inequality (6.16) even when Φ = 16.
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Figure 6.8: Two bounds given in Lemma 23 for RTC/CTS access
(packet size L1 and 10 STAs)
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For a finite buffer, Lemma 23 also gives another bound (see Inequal-
ity (6.20)) obtained using the moment bound. Figure 6.8 compares
two bounds given in Lemma 23. Interestingly, neither Bound 1 nor
Bound 2 shows absolutely advantage under various buffer sizes. If the
system delay is lower than some threshold, such as 3 when Φ = 32,
Bound 1 outperforms Bound 2. Once the system delay exceeds this
threshold, Bound 2 decays much faster than Bound 1 and thus pro-
vides a tighter bound. As the buffer size Φ increases, such threshold
occurs earlier compared with the maximal system delay. Comparing to
Bound 2, Bound 1 shows a relatively slow decay. To obtain an optimal
bound, we may take the minimal one between these two bounds.

6.7 Conclusion

This chapter demonstrates an application of stochastic network calcu-
lus to delay evaluation of IEEE 802.11 DCF. The DCF behavior is
characterized using the i.d stochastic service curve model. The actual
per-packet service time is described by comparing with the guaranteed
service time. We present two approaches for bounding the tail proba-
bility of the per-packet service time. Comparing these two bounds, the
moment bound (the first approach) shows an apparent advantage but
does not provide a closed-form expression. Particularly, for defining
the stochastic service curve, we expect an integrable bounding func-
tion which is applicable for getting further results, such as delay bound.
According to the property of martingale, we obtain a stochastic service
curve associated with an integrable bounding function.

Based on the stochastic service curve, system delay bounds for the
constant and Poisson arrival processes are derived. Moreover, system
delay bound under finite buffer is investigated through extending the
per-packet service time bounds to bounds on the cumulative service
time. For this case, the moment bound outperforms the other bound
only when the cumulative service time is lower than some thresh-
old, which becomes relatively low as the number of served packets
increases.

It should be stressed that stochastic network calculus focuses on
characterizing the tail probability of the concerned performance met-
rics. For many cases, we can only find a bound on the tail probability
instead of the exact probability distribution. Particularly, we show
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that different mathematical approaches should be adopted appropri-
ately for bounding various performance metrics. To obtain a tighter
bound, a suitable approach should be applied and the stochastic na-
ture of the studied performance metrics should be further considered.
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7.1 Conclusions

Many computer networks such as wireless and multi-access networks
are stochastic in nature. In order to conduct performance guarantee
analysis of such networks, appropriate analytical tools and/or models
are required. Stochastic network calculus is a relatively new theory
evolved to deal with performance analysis issues over several years.
This thesis focuses on extending the application of stochastic network
calculus to analytical time-domain models and temporal behavior anal-
ysis of networks.

This thesis consists of two main parts: the first part is develop-
ing a generic time-domain framework for modeling network behavior
and analyzing network performance; the second part mainly presents
two applications to concretize the generic models and exemplify the
whole procedure of applying the developed framework to network per-
formance analysis.

Central to this thesis is the model definition which is the focus
of Chapter 3 and exploration of fundamental properties presented in
Chapter 4. The time-domain traffic models and service models may
be considered as a generalization of the models in the classical queue-
ing theory. More specifically, the traffic models in queueing theory
mainly focus on describing the inter-arrival distribution between two
consecutive customers while the time-domain traffic models defined in
this thesis describe the cumulative inter-arrival time between two arbi-
trary customers (packets in this thesis). Similarly, the service models
in queueing theory mainly focus on characterizing the per customer
service time while the time-domain service models characterizes the
cumulative service time of multiple packets.

Interestingly, the underlying connections between the time-domain
models and the queueing models help to both intuitively understand
the meaning of the time-domain models and explore the fundamental
properties. For instance, the virtual Single Server Queue is introduced
to explore the waiting delay in a virtual system which has been often
used in this thesis. Both the time-domain traffic models and service
models can be illustrated as a virtual system. Accordingly, some avail-
able queueing theory results about waiting delay distribution can be
used to derive the bounding function for some specific examples.

Defining models has to compromise when simple models that may
not be applicable for exploring the fundamental properties and the
more constrained models that may be difficult to build. One way to
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solve this difficulty is constructing transformation between the simple
model and the constrained model. However, such transformation may
sacrifice some of the precision in obtaining the bounding function, i.e.,
the bound may become loose.

The Chernoff bound is often applied to the arrival process char-
acterization or the service process characterization. To develop the
Chernoff bound, we need to compute the Moment Generating Func-
tion. However, if the packet inter-arrival time or service time does not
follow the well-known distributions of which the MGF are known, it
may be hard to find the MGF of such general distributions. More-
over, the worse case is that not every random variable has a moment
generating function.

The GI/GI/1 queueing system can be easily represented using the
time-domain models. For this special class of queueing systems, the
available results in martingale play an important role in concretizing
the generic time-domain models. Particularly, if a stochastic process
is proven to be a martingale (or supermartingale/submartingale), the
supremum of this stochastic process is stochastically bounded from
above by a specific random variable in this stochastic process. This
technique nicely overcomes the difficulty in analyzing the supremum
of a stochastic process.

Some simple examples are given to help illustrate the newly defined
models. Although these examples look intuitively simple, they still
convey the potential application fields. For example, the constant rate
server discussed in Section 5.3.1 is readily applicable for modeling the
wired networks.

The ON-OFF model is revisited in Chapter 5. This model has
been extensively used to characterize both the arrival process and the
service process from the spatial perspective [21] [46] [65] [72]. It can
also be applied to modeling the service process of error-prone wireless
channels in the time-domain. Particularly, the channel ‘good’ state cor-
responds to the ‘ON’ state of the model, and the channel ‘bad’ state
corresponds to the ‘OFF’ state of the model. Moreover, the impair-
ment process [61] is readily applicable for modeling the error-prone
wireless channel. Specifically, the impairment process of the error-
prone wireless channel can be represented using an ON-OFF model as
well. However, the channel ‘good’ state and ‘bad’ state are mapped
into the ‘OFF’ state and ‘ON’ state of the impairment process, re-
spectively. Interestingly, the two ON-OFF models above yield the
same analytical performance bounds. However, this conclusion may
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not hold in general.
Another insight gained from investigating the ON-OFF model is

that the time-domain analysis and the space-domain analysis may
yield close results under appropriately mapping the model arguments.

The performance analysis of IEEE 802.11 is an important research
issue related to investigating the potential whether WLANs could sup-
port the emerging real-time multimedia applications. The Distributed
Coordination Function is the basic medium access mechanism em-
ployed in WLANs while essentially difficult to analyze theoretically.
In Chapter 6, how to formulate the DCF mechanism from the tem-
poral perspective and then apply the time-domain stochastic network
calculus model to the formulated system is presented in detail. One
crucial strength of stochastic network calculus is to find the bounds
on the probability distribution instead of computing the exact proba-
bility distribution. Such strength significantly alleviates the difficulty
of the DCF performance analysis. Moreover, selecting the appropri-
ate mathematical tools is part of exemplifying the temporal network
calculus approach as well.

The preliminary work presented in Annex A mainly focused on
studying the impaired service caused by the bit-level transmission
errors. The corresponding stochastic process is defined as an error
process which is a concretization of the impairment process. The con-
catenation property is particularly investigated to reveal how does the
order of placing the ideal service process and the error process impact
the analysis. Moreover, the various error handling schemes influence
the network performance differently, for example, prolonging the delay
or degrading the throughput.

7.2 Open Research Issues

This thesis aims to develop a general framework for stochastic network
calculus to formulate queueing systems in the complicated computer
networks, derive performance bounds and provide some applications
to demonstrate how to apply the developed framework to the real
network analysis.

However, there are several issues which have been considered or
attempted to tackle but still open. In the following sections, we discuss
them respectively.
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7.2.1 A More Realistic IEEE 802.11 DCF

Scenario

In this thesis, the IEEE 802.11 DCF is analyzed under the homoge-
neous and saturated conditions. The saturated condition implies that
the analysis is conducted based on the worst case network behavior.
For these scenarios, the Poisson traffic is not really applicable because
it cannot guarantee the saturated condition. Thus, a more realistic
scenario should be considered. It is worthing highlighting that the
network load will impact the collision probability and the attempt
probability.

First, the network load is finite, i.e., non-saturated condition. How-
ever, in order to formulate the non-saturated IEEE 802.11 DCF net-
work, two important questions have to be answered first.

• How to determine the probability that the buffer is empty/nonempty
according to the network load?

• How to characterize the relation between the network load and
the average attempt rate which decides the collision probability
based on the Bianchi model [13]?

Some available work on modeling the non-saturated condition has
attempted to solve the above questions [18] [82] [106]. Particularly,
some assumptions or conditions used in [106] match the considerations
of Chapter 6 well, including a small buffer model and an infinite buffer
model, which are analyzed separately, and the Poisson arrival traffic.

7.2.2 Leftover Service Characterization

The leftover service analysis from the spatial perspective is intuitive
and readily obtained. In the space-domain, the leftover service char-
acterization is represented using the surplus of the aggregate flow’s
stochastic service curve minus the cross traffic’s stochastic arrival
curve. However, exploring this property from the temporal perspective
is much difficult and is yet lacked.

Paper C attempted to explore this property under the combina-
tion that the arrival process has a deterministic SAC and the service
process provides an i.d SSC. However, the difficulty of decoupling the
constituent flow’s arrival process from the aggregate arrival process

166



Chapter 7. Conclusions and Future Work

is still not solved. Indeed, the difficulty of exploring the superposi-
tion property indirectly invokes the difficulty of studying the leftover
service characterization, i.e., the superposition of multiple indepen-
dent renewal processes is generally not a renewal process. Moreover,
another difficulty is to find the connection between the stochastic ar-
rival curve of the cross traffic and the service process provided to the
aggregate arrival process.

As discussed in Section 4.4.4, the Poisson process is an exceptional
case of renewal processes. It may be easier to prove the leftover service
characterization property under the condition that all constituent ar-
rival processes are Poisson process and independent of each other. For
such condition, the decomposition of a Poisson process [8] may provide
some useful results for studying the leftover service characterization.

If the constituent arrival processes follow some general distribu-
tions, one optional approach is to transform the time-domain models
into the space-domain models, based on which, the leftover service
characterization of the concerned flow can be obtained. Then, the
space-domain stochastic service curve of the concerned flow needs to
be transformed into the time-domain stochastic service curve. How-
ever, in order to apply this approach, the transformation between the
time-domain stochastic service curve and the space-domain stochastic
service curve has to be established. Such transformation is missed yet.

7.2.3 Finite-State Markov Channel Analysis

The two-state Markov wireless channel is analyzed as an example of
concretizing the generic time-domain models in Chapter 5. However,
the two-state Markov channel may not be applicable for modeling the
channel characteristics which may vary dramatically [98] [105]. The
finite-state Markov channel (FSMC) has been extensively applied for
investigating wireless network performance, such as computing the
channel capacity [51] [56] or deriving the expected performance met-
rics in steady states [79]. Moreover, a closed-form expression of the
effective bandwidth is derived from the FSMC subject to packet loss
and delay constraints [55]. The effective bandwidth can be readily
mapped into the stochastic arrival curve model. Accordingly, in order
to conduct the performance analysis, the stochastic service curve of
the wireless channel which can be modeled using the FSMC is needed.
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7.3 Future Work

This thesis develops a temporal analysis approach under the umbrella
of stochastic network calculus. The future work may cover several
aspects.

• Concretization of the time-domain stochastic arrival curve mod-
els

Many well-known types of traffic can be represented using the
space-domain stochastic arrival curve models. It is worth inves-
tigating whether these traffic types can also be represented us-
ing the time-domain stochastic arrival curve models. Moreover,
there may exist many traffic types which are not readily char-
acterized using the space-domain stochastic arrival curve while
more suitable for being modeled as the time-domain stochastic
arrival curve.

• Multi-hop wireless network analysis

The concatenation property is explored to facilitate the end-to-
end performance analysis. Since the single hop IEEE 802.11
network has been investigated in this thesis, it is natural to con-
sider analyzing the performance of multi-hop 802.11 networks.
Two challenges may be faced in analyzing multi-hop wireless
LANs [54].

1. Each node hears different events on the channel. There is
no common view of the wireless channel.

2. With a general channel model, the possible channel states
in the multi-hop wireless LANs are more complicated than
those in the single hop case.

Moreover, for 802.11 networks which may have a diameter of
about 2 or 3 hops, the intra-flow contention may severely degrade
the network performance [101].

• Wireless scheduling discipline analysis

In wireless networks, the available bandwidth depends on the
channel state. Hence, the wireless scheduling with QoS guaran-
tees is channel state dependent. The wireless scheduler has a very
important characteristic which is to utilize asynchronous channel
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variations or multi-user diversity [99]. Many wireless scheduling
disciplines are derived from the well-known GR servers. For ex-
ample, wireless fluid fair queueing (WFFQ) and idealized wire-
less fair queueing (IWFQ) [81] and channel-condition indepen-
dent packet fair queue (CIF-Q) [43] are based on GPS and WFQ.
The common characteristic among these wireless scheduling dis-
ciplines is to compare the received service of a flow with an ideal
error-free service which is defined as the weighted fair queuing
(WFQ).
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Service Model with

Impairment Process: A

Concrete Example

The material in this part has been partially published as follows:

Jing Xie and Yuming Jiang. “An Analysis on Error Servers for
Stochastic Network Calculus.” In Proceedings of the 33rd IEEE Confer-
ence on Local Computer Networks (LCN), Montreal, Canada, October
2008.
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Chapter A. Service Model with Impairment Process: A
Concrete Example

The purpose of this chapter is to propose a service model by taking
into account the impaired service which is caused by the bit-level trans-
mission errors. Typically, the transmission error issue is not severe in
wired networks whereas wireless networks often suffer higher trans-
mission errors [10]. The performance of wireless network is impacted,
accordingly. In order to investigate the performance of wireless net-
works, the appropriate service model which can explicitly characterize
the random transmission error is needed.

We propose a service model under the umbrella of stochastic net-
work calculus, which makes a step forward towards addressing the
above issue. Central to this issue is errors in transmission. Particu-
larly, in a network with error-prone links, errors are inherent in the
random quality nature of these links. The network may react accord-
ingly to the error information, such as re-send at the sender and/or
drop at the receiver. However, in the current network calculus litera-
ture, errors are either not considered or are considered only implicitly.
The amount of service corresponding to errors is simply treated as im-
paired service which is characterized using an impairment process and
deduced in service guarantee analysis [61]. This simple way of treat-
ing errors in the analysis makes it difficult to apply existing network
calculus results to investigate error-prone networks where some error
handling methods are adopted to adapt service provision based on the
error information.

The key idea is to introduce an error process in the service model.
The error process essentially concretizes the impairment process. We
use an ideal service process and an error process to model a server. The
ideal service process characterizes the amount of service when there
would be no transmission errors. The error process characterizes the
transmission errors in the service. The idea of introducing an error
process in the service model is intuitively simple. In addition, the pro-
posed service model may look similar to the space-domain stochastic
strict server model introduced in [61] where an impairment process is
used together with the ideal service process to model the server. Es-
sentially, the error process concretizes the impairment process in the
context of error-prone wireless networks.

The contributions of this chapter are several-fold. First, instant
error processes and cumulative error processes are introduced, based
on which the proposed error server model is described. Second, the
concatenation property (P3.) of the proposed service model is investi-
gated. Third, a simple network is studied to demonstrate how to apply
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the introduced concepts and to show the impact of error handling on
system performance.

The next section defines the service model with the impairment
process. Section A.2 investigates the concatenation property of the
proposed service model. In Section A.3, the proposed model is gen-
eralized, the concept of stochastic error curve is introduced, and its
concatenation property is presented. Section A.4 considers a simple
network to demonstrate the use of the proposed service model. Per-
formance bounds are derived and compared for two simplest error
handling methods.

A.1 Concretization of Impairment

Process: Error Process

This section defines the service model with the error process which
concretizes the impairment process. To explain the idea, we assume
bit-stream traffic in this section. The intuition of the service model
is based on the fact that if a received bit is different from the corre-
sponding bit that has been sent, a transmission error has happened.

A.1.1 Error Processes

To describe errors, two stochastic processes Ê(t) and E(t) are consid-
ered. They are an instant bit error process and a cumulative bit error
process.

Definition 16.

1. The instant bit error process Ê(t) is a collection of random vari-

ables {ε(t), t = 1, 2, ...} with ε(0) = 0, where ε(t) is a Bernoulli

random variable: ε(t) = 1 if the error happens, and ε(t) = 0 if

the error does not happen.
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Table A.1: XOR Truth Table

u(t)
⊕ 0 1

û(t) 0 0 1
1 1 0

2. The cumulative bit error process E(t) is a collection of random

variables {e(t) =
∑t

s=0 ε(s), t = 1, 2, ...} with e(0) = 0, where

e(t) represents the cumulative number of errors in interval (0, t].

Consider a system with instant bit error process Ê(t), which has
input A(t) and output Â(t). Assume no delay in the system. If u(t)
is the input bit at time t, then the corresponding output bit û(t) is:

û(t) = u(t) ⊕ ε(t) (A.1)

where, “⊕” denotes the bitwise XOR operation.
According to the truth table of XOR operation shown in Table A.1,

the equation below holds.

ε(t) = u(t) ⊕ û(t). (A.2)

Then, the cumulative error by time t equals

e(t) =
t∑

s=0

ε(s) =
t∑

s=0

u(s) ⊕ û(s). (A.3)

Let us say the cumulative error process is in state k when e(t) = k,
i.e. the cumulative number of error bits equals k at time t. It is then
clear that the cumulative error process can be described by a Markov
process, since there holds

P{e(t+1) = k+1} = P{ε(t+1) = 1|e(t) = k}+P{ε(t+1) = 0|e(t) = k+1}.
This implies that all properties of Markov process apply to it. Specif-
ically, E(t) is a pure birth process.

Assume that ε(t), t = 1, 2, . . . , are i.i.d. random variables. Then,
it is easy to verify that the cumulative error process has stationary
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increments, i.e. e(s, s + t) =st e(t) for all s, t ≥ 0, where e(s, s + t) ≡
e(s + t) − e(t), and ‘=st’ denotes stochastically equal1.

A.1.2 Service Model Definition

Having introduced the error processes, we now use them to model
a server. Specifically, we model the server with two processes: an
ideal service process S and an error process Ê as shown in Fig.A.1.
The ideal service process denotes the cumulative amount of service (in
bits) that the server provides no matter whether there is transmission
error occurring in delivering service. The error process represents the
number of errors (in bits) in the service. We call this model the service
model with error process.

������ 7����

Figure A.1: Service model with error process

Consider a communication link as a simple example. Suppose the
link capacity is C bps. In this case, the ideal service process S has
a (space-domain) strict service curve [37]: S(t) = C · t. While traffic
transmitted over this link may be received with errors, the damaged
transmission or service is not excluded from C. To take errors into
account in the model, we use the error process Ê(t). While on high-
quality wired links (e.g. optical fiber links), errors may rarely happen
and Ê(t) can be ignored, they can happen frequently on wireless links
and other wired links (e.g. DSL links).

The model views the system as a black-box because we are mainly
concerned about the difference between the initial input A(t) and the
final output Â∗(t).

Note that when the instant error process is considered in the service
model, the system delay must be taken into account when comparing
the output bit with its corresponding input bit, because they must
refer to the same information bit on the flow. Suppose bit u(t) is

1The knowledge of stochastic ordering has been introduced in Section 2.3.3.
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input to the system at time t and is delayed until time t + Du(t) to
leave the system, where Du(t) is the system delay for u(t). Then, the
corresponding output bit û∗(t + Du(t)) is obtained by

û∗(t + Du(t)) = u(t) ⊕ ε(t + Du(t)). (A.4)

Accordingly, the equation below holds

ε(t + Du(t)) = u(t) ⊕ û∗(t + Du(t)). (A.5)

In addition, the cumulative error is

e(t + Du(t)) =
t∑

s=0

ε(s + Du(s)). (A.6)

Due to delay, some care is needed in studying the service model
with error process, which will be discussed in the next section where
the focus is on investigating the concatenation property of such service
models.

A.2 Concatenation Property

This section examines the concatenation property for the proposed ser-
vice model. As discussed in the literature, the concatenation property
is both useful and important for network service guarantee analysis,
since it can result in much improved results [17] [29] [61] [66] [67] [78].
As in the previous section, we also assume bit-stream traffic for the
explanation in this section.

We first focus on the simplest single server case. Then, we study
two error processes in tandem. With the obtained results, we thirdly
investigate the concatenation of multiple servers and present the con-
catenation property.

A.2.1 Single Server: Ideal Service Process +

Error Process

Consider the single server shown in Fig.A.1. We are now interested in
decoupling the ideal service process and the error process, and use two
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virtual servers to represent the real server. One virtual server repre-
sents the ideal service process, and the other virtual server represents
the error process with no delay. We consider two scenarios where the
two virtual servers are arranged differently as shown in Fig.A.2.

� 7
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Figure A.2: Concatenation of Service Process and Error Process

Scenario I

As Fig.A.2 (I) illustrates, the initial input A(t) first flows into a server
with the ideal service process S and then goes through a server that
has no delay but with error process Ê. Let Â∗(t) be the actual output
process from the error server. Denote by A∗(t) the output process
from S, which is also the input process to Ê. Denote by u∗ (in A∗)
the corresponding output bit of u in A from S.

For bit u∗(t) in A∗(t), its corresponding output from Ê(t), denoted
by û∗(t), satisfies:

û∗(t) = u∗(t) ⊕ ε(t).

Since S is the ideal service process that only delays traffic but does
not introduce errors, we have

û∗
I(t + Du(t)) = u∗(t + Du(t)) ⊕ ε(t + Du(t)), (A.7)

where Du(t) is the delay for bit u(t) passing through the ideal server
with service process S.
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With the above investigation, the output cumulative error can be
expressed as:

eI(t + Du(t)) =
t∑

s=0

ε(s + Du(s)). (A.8)

Scenario II

Fig.A.2 (II) shows an alternative to represent the real server with
two virtual servers. In this scenario, the flow first traverses the error
process before flowing into the service process. Let Â(t) denote the
output from the error process Ê(t), which is also the input to the ideal
service process S. Denote by û (in Â(t)) the corresponding output bit
of u in A from Ê(t).

For bit u(t) in A(t), its corresponding output from Ê(t) is:

û(t) = u(t) ⊕ ε(t).

The cumulative error in Â(t) by time t is

eÊ(t) =
t∑

s=0

ε(s).

Since the error process does not introduce delay and the ideal ser-
vice process S does not introduce error, the output of u(t) from the
error server now becomes:

û∗
II(t + Du(t)) = û(t) = u(t) ⊕ ε(t). (A.9)

Then, under this scenario, the output cumulative error can be ex-
pressed as:

eII(t + Du(t)) =
t∑

s=0

ε(s). (A.10)

Comparison

Interestingly, the right side of Eq.(A.7) and that of Eq.(A.9) are differ-
ent, even though both scenarios are used to represent the same error
server.

Specifically, for the right side of Eq.(A.7) and that of Eq.(A.9), we
have

u∗(t + Du(t)) = u(t).
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However, some care is needed to treat ε(t + Du(t)) and ε(t).
In the rest, we assume the service process and the error process

are independent of each other, and the instant error process is com-
prised of i.i.d. random variables. Under this assumption, it can be
verified

ε(t + Du(t)) =st ε(t) (A.11)

and hence u∗(t+Du(t))⊕ε(t+Du(t)) =st u(t)⊕ε(t). Or, in other words,
there holds

û∗
I(t + Du(t)) =st û∗

II(t + Du(t)).

In addition, for the cumulative error,

eI(t + Du(t)) =st eII(t + Du(t)). (A.12)

Formally, we have the following result:

Theorem 19. (Concatenation of a Service Process and an

Error Process).

Consider a flow traversing a system that consists of an ideal ser-

vice process S and an error process Ê(t). Assume S(t) and Ê(t) are

independent of each other and Ê(t) is comprised of i.i.d. random vari-

ables. Then, for the flow, the instant error introduced by the system

remains stochastically unchanged no matter how the error process and

the ideal service process are ordered, so does the cumulative error.

Note that without the assumption in Theorem 19, the stochastic
equivalence between the two alternatives of ordering these two pro-
cesses may not hold in general.

A.2.2 Two Error Processes

The concatenation of two pure error processes may be difficult to
match to real network scenarios. However, if the concatenation prop-
erty also holds for error processes connected in tandem, we may sep-
arate the concatenation of servers into two process groups, the ideal
service process group and the error process group, and then analyze
these two process groups accordingly.
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Consider the concatenation of two error processes, Ê1(t) and Ê2(t),
and treat the concatenated system as a blackbox. Let A(t) and Â(t)
denote the input process to the system and the output process of the
system, respectively. Since we have assumed no delay in any error pro-
cess, it follows immediately that there is no delay in the concatenation
of multiple error processes.

Then, by time t, the cumulative error introduced by the concate-
nation system is given by

e(t) =
t∑

s=0

u(t) ⊕ û(t)

where u(t) and û(t) respectively denote the input bit and output bit
of the system at time t.

Similarly as discussed in Section A.2.1, there are two alternatives
to order the two error processes in the blackbox.

Scenario I: Ê1(t) followed by Ê2(t)

In this case, the input to Ê1(t) is A(t), which is the same as the input
to the black-box, and the output of Ê2(t) is Â(t), which is the same
as the output of the black-box. Denote by Â1(t) the output of Ê1(t),
which is also the input to Ê2(t). The final output from Ê2(t) for bit
u(t) of A is

ûI(t) = (u(t) ⊕ ε1(t)) ⊕ ε2(t).

Based on the associativity of “⊕”, ûI(t) can be written as

ûI(t) = u(t) ⊕ (ε1(t) ⊕ ε2(t)) (A.13)

with which, the instant error of bit u(t) is ε1(t) ⊕ ε2(t).
Then, we obtain the cumulative error as

eI(t) =
t∑

s=0

ε1(s) ⊕ ε2(s). (A.14)

Scenario II: Ê2(t) followed by Ê1(t)

Following the same discussion as above, the system output of unit u(t)
is

ûII(t) = u(t) ⊕ (ε2(t) ⊕ ε1(t)) (A.15)
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and the cumulative error process of the system is

eII(t) =

t∑
s=0

ε2(s) ⊕ ε1(s). (A.16)

Comparison

Comparing the right side of Eq.(A.13) with that of Eq.(A.15), we know

eI(t) = eII(t).

Consequently, we also have

ûI(t) = ûII(t).

Based on the above discussion, we conclude:

Theorem 20. (Concatenation of two Error Processes).

Consider a flow traversing a system that consists of two error pro-

cesses, Ê1(t) and Ê2(t). For this system, both the instant system error

process and the cumulative system error process do not change no mat-

ter how the two error processes constituting the system are ordered.

Theorem 20 can be directly extended to the concatenation of mul-
tiple error processes.

A.2.3 Multiple Servers

Based on the discussion in the previous two subsections, we study a
system of multiple servers in tandem. We focus on the simple case of
concatenating two servers, based on which, the results are generalized
to multiple servers.

The concatenation of two servers can be viewed as four individual
processes connected in tandem. Since we have discussed the concate-
nation of two processes in Sections A.2.1 and A.2.2, we shall only
consider three scenarios as illustrated in Fig.A.3 for the concatenation
of two servers.

As discussed in Section A.2.1, the delay in the service process
should be considered. The delay of a bit u(t) in the system is the
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Figure A.3: Concatenation of Two Service Processes and Two Error
Processes

summation of the corresponding delay in each of the two individual
service processes. View this system as a blackbox with input A(t) and
output A∗(t). The bit u(t) in A(t) injected into this system at time t
departures from the system at time t +Du(t), where Du(t) denotes the
system delay of u(t) and equals the summation of its delay in S1(t),
denoted by D1

u(t), and that in S2(t), denoted by D2
u(t). The cumulative

error introduced by this system for A(t) is then

e(t + Du(t)) =
t∑

s=0

u(s) ⊕ û∗(s + Du(s)).

The procedure of analyzing four processes separately is similar to
that of analyzing the single server and the two error processes. Let
u1s,∗ denote the output of bit u(t) from S1. Similarly, after bit u(t)
goes through S1 and S2 consecutively, its output is denoted by u12s,∗.

We omit the details and directly write the system output bit cor-
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responding to u(t) under each scenario as follows.

û∗
I(t + Du(t)) = u1s,∗(t + D1

u(t)) ⊕ (ε1(t + D1
u(t)) ⊕ ε2(t + Du(t)))

û∗
II(t + Du(t)) = u12s,∗(t + Du(t)) ⊕ (ε1(t + Du(t)) ⊕ ε2(t + Du(t)))

û∗
III(t + Du(t)) = u(t) ⊕ (ε1(t) ⊕ ε2(t)).

Since an error process does not bring delay, it can then be verified
that

u1s,∗(t + D1
u(t)) = u12s,∗(t + D1

u(t)) = u(t).

Assume that all service processes and error processes are indepen-
dent of each other, and each instant bit error process is comprised of
i.i.d. random variables. Then, with simple analysis, we can further
conclude that

û∗
I(t + Du(t)) =st û∗

II(t + Du(t)) =st û∗
III(t + Du(t)). (A.17)

The following result summarizes the above discussion and extends
to the case of multiple servers.

Theorem 21. (Concatenation of Multiple Error Servers).

Consider a flow traversing a system S that consists of M (M ≥ 1)

ideal service processes, S i (i=1...M), and N (N ≥ 1) error processes,

Êj (j = 1...N), where M and N are not necessarily equal. Assume all

these processes are independent, and for each bit error process Êj, it is

comprised of i.i.d. random variables. Then, for this flow, the instant

error introduced by the system is stochastically equal no matter how

these processes are ordered, so is the cumulative error introduced by

the system. Particularly, for the instant error process introduced by

the system, there holds:

ε(τ) =st ε1(τ) ⊕ ε2(τ) · · · ⊕ εN(τ), (A.18)

and for the cumulative error process, there holds:

e(t) =st

t∑
s=0

[
ε1(s) ⊕ ε2(s) · · · ⊕ εN(s)

]
. (A.19)
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A.3 Stochastic Error Curve

In the previous Sections A.1 and A.2, we have assumed bit-stream
traffic and focused on bit error processes. However, in real networks,
if there are bit errors in a received transmission unit, e.g. a packet, the
whole unit may be counted as error unit. To address this, we generalize
the definitions of error processes and the service model to transmission-
unit-level. In the rest of this chapter, we adopt the discrete time
model2.

A.3.1 Error Processes and Service Model

We again use two stochastic processes Ê(t) and E(t) to describe errors.
However, an error here should be interpreted as an error unit, so
when the error is counted, it is the total number of bits of the error
unit that should be counted. These two error processes are respectively
called the instant error process and the cumulative error process. With
these generalized error process definitions, the service model is defined
the same as in Section A.1.2.

Definition 17.

1. The instant error process Ê(t) is a collection of random variables

{ε(t), t = 1, 2, ...} with ε(0) = 0, where ε(t) is the length of error

unit at time t.

2. The cumulative error process E(t) is a collection of random vari-

ables {e(t) =
∑t

s=0 ε(s), t = 1, 2, ...} with e(0) = 0, where e(t)

represents the cumulative amount (in bits) of error units in in-

terval (0, t].

It is worth highlighting that the above error process definitions are
different from Definition 16, in which, the definitions are respectively

2A transmission unit is considered out of a server when and only when its last
bit has been served by this server. A transmission unit can be served only when
its last bit has arrived.
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special case of the above generalized definitions by considering bit as
the unit. However, with the generalized definitions, if u(t) is the input
unit at time t and the corresponding output unit is û∗(t+du(t)) where
du(t) denotes the delay of the unit in the system, we generally do not
have (A.4), or in other words,

û∗(t + du(t)) �= u(t) ⊕ ε(t + du(t)).

We can use a different way to express the instant error in terms of the
input and the corresponding output:

ε(t + du(t)) =

{
0, u(t) ⊕ û∗(t + du(t)) = 0
length of u(t), u(t) ⊕ û∗(t + du(t)) �= 0

Nevertheless, similar concatenation property investigated in Sec-
tion A.2 holds.

A.3.2 The Concatenation Property

In the rest of this chapter, we assume the instant error process Ê(t)
is comprised of i.i.d random variables, i.e. ε(t), t = 1, 2, ..., are i.i.d.
Under this assumption, it is easy to verify that the cumulative error
process E(t) has stationary increments, i.e. E(0, t) =st E(s, s + t) for
all s, t ≥ 0.

The following result presents the concatenation property for the
generalized service model with error process, corresponding to results
in Section A.2. Since it can be verified that Theorem 19 and Theo-
rem 20 are only special cases of Theorem 21, we only introduce the
corresponding result of Theorem 21 in the following.

Theorem 22. (Concatenation of Multiple Servers).

Consider a flow traversing a system that consists of M (M ≥ 1)

ideal service processes, S i (i=1...M), and N (N ≥ 1) error processes,

Êj (j = 1...N), where M and N are not necessarily equal. Assume

all these processes are independent, and for each instant error process

Êj, it is comprised of i.i.d random variables. Then, for this flow, the

instant error introduced by the system is stochastically equal no matter
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how these processes are ordered, so is the cumulative error introduced

by the system. Particularly, for the instant error process, there holds:

ε(t) ≤st ε1(t) + ε2(t) · · · + εN(t), (A.20)

and for the cumulative error process, there holds:

e(t) ≤st

t∑
s=0

[
ε1(s) + ε2(s) · · · + εN(s)

]
. (A.21)

Proof. The proof of Theorem 22 follows similar discussion in Section

A.2 by exploring the independence assumption of the error processes.

We use a simple example to intuitively explain Eq.(A.20). As shown

in Figure A.4, suppose we take a snapshot of a system consisting of

two error processes at time τ . We capture two units, m and n which

are leaving E1 and E2 respectively. The instant error process of this

system can be expressed as

ε(τ) = ε1(τ) + ε2(τ), (A.22)

where ε1(τ) equals either 0 or the length of unit m, and ε2(τ) equals

either 0 or the length of unit n.
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Figure A.4: Concatenation of two error processes

By taking into consideration the i.i.d. instant errors, we generalize

the example of two error processes to the case of multiple error pro-

cesses and obtain Eq.(A.20). Then Eq.(A.21) is readily derived from

the definition of the cumulative error process.
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A.3.3 Stochastic Error Curve

So far we have introduced the instant error process and the cumulative
error process concepts. Another concept that is helpful in service
guarantee analysis is related to the cumulative error in a time interval.
Specifically, we denote by E(s, t) the cumulative number of errors in
time interval (s, t]. From the definition of the cumulative error process,
it is know that E(s, t) = E(t) − E(s).

We then define a stochastic error curve model as follows.

Definition 18. A system is said to introduce to a flow a (space-

domain) v.b.c stochastic error curve αe with bounding function fe, if

for all s, t ≥ 0 and all x ≥ 0, there holds

P{ sup
0≤s≤t

[E(s, t) − αe(t − s)] > x} ≤ fe(x).

Alert reader may have noticed that Definition 18 is similar to the
definition of the space-domain v.b.c stochastic arrival curve in Defini-
tion 43. In fact, if we view the error process as a virtual ‘error flow’,
Definition 18 implies that the error process has a v.b.c SAC [61].

Based on Eq.(A.20), under the same assumption as Theorem 22,
it can be verified that

E(s, t) ≤st E1(s, t) + E2(s, t) · · · + EN(s, t)

with which, we can further have the following representation of the
concatenation property. Its proof follows easily from Lemma 1 and is
omitted.

Theorem 23. (Concatenation Property).

Consider a flow traversing a system that is a tandem of N servers.

Suppose each server introduces an error process Ei(t), i = 1, . . . , N,

to its input. Assume all the ideal service processes and error pro-

cesses are independent of each other. Also assume the corresponding

3Following the same idea as in defining the various variations of the stochastic
arrival curve [61] [67], similar variations of stochastic error curve can be defined
accordingly.
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instant error process of each error server is comprised of i.i.d random

variables εi(1), εi(2), · · · , (i = 1, . . . , N). Then, if the error process of

each server has a stochastic error curve αi
e with bounding f i

e, the error

process of the system has a stochastic error curve αe with bounding

function fe:

αe(t) = α1
e(t) + α2

e(t) · · · + αN
e (t) (A.23)

fe(x) = 1 − f̄ 1
e ∗ f̄ 2

e · ∗f̄N
e (x), (A.24)

where f̄ i
e = 1 − [f i

e]1.

Note that Eq.(A.24) is obtained from Lemma 1.

A.4 Error Handling and Performance

Bounds

Having introduced the service model with error process and its con-
catenation property, in this section we consider a simple network. We
apply two different error handling methods in this simple network,
then analyze the delay and backlog performance under two error han-
dling methods, and compare the obtained performance bounds.

When an error is detected, the network has many ways to handle it.
For example, the sender may re-transmit, or the error unit is simply
dropped by the receiver and no re-transmission is needed. The former
method is important for correctness-critical applications such as file
transfer, while the latter can be used for delay-critical applications
such as real-time inter-active applications which can tolerate a certain
amount of errors or packet loss.

The simple network consists of a single link with one input flow.
The link is error-prone. When there is no error in the ideal case, the
service rate of the link is C. In other words, the ideal service process
of the link has space-domain strict service curve β(t) = C · t. Suppose
the link error can be modeled with an error process E(t) that has
a stochastic error curve αe with bounding function fe. In addition,
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the input flow A has a space-domain stochastic arrival curve αa with
bounding function fa. For ease of expression and comparison, we
assume αa(t) = ra · t and αe(t) = re · t, and ra + re < C.

A.4.1 Scenario I: Delay Model

In this scenario, we assume that when an error happens, the sender
simply re-transmits the corresponding unit. This may also be viewed
as if the sender holds the transmission whenever the link is not error-
free and sends immediately when the link becomes error-free.

In this case, the error process can indeed be thought of as an
impairment process under the (space-domain) stochastic strict server
model [61]. As shown in Figure A.5, under this way of error handling,
the transmission units can be considered as passing through a virtual
delay process before they finally reach the ideal service process.

0���1�%	����� )�������	�
���
%	�����
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Figure A.5: Delay Model

Therefore, the network can be viewed as a stochastic strict server
providing strict service curve β(t) = C · t with impairment process
I(t) = E(t), which has a v.b.c stochastic arrival curve αe with bound-
ing function fe. With Definition 7, we obtain the following service
guarantees.

• From Theorem 3, the backlog B(t) at the sender is bounded by:

P{B(t) > x} ≤ 1 − f̄a ∗ f̄e

(
x − sup

s≥0

[
ra · s − (C − re) · s

])
= 1 − f̄a ∗ f̄e(x); (A.25)

• From Theorem 5, the delay D(t) is bounded by

P{D(t) >
x

C − re

} ≤ 1 − f̄a ∗ f̄e(x), (A.26)
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for all t ≥ 0 and x ≥ 0, where f̄a(x) = 1 − [fa(x)]1 and f̄e(x) =
1 − [fe(x)]1.

A.4.2 Scenario II: Loss Model

In this scenario, the sender does not care about the transmission error
occurrence and transmits as if the link always operates in the ideal
error-free condition. As shown in Figure A.6, the output traffic from
the channel may contain errors which make the corresponding trans-
mission units useless.
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Figure A.6: Loss Model

Then the network can be viewed as a strict server providing strict
service curve β(t) = C · t to the input, which implies a (weak) service
curve β(t) = C · t with bounding function g(x) = 0. Similarly, with
Definition 7, we obtain the following service guarantees.

• From Theorem 2, the backlog B(t) at the sender is bounded by

P{B(t) > x} ≤ fa ⊗ g
(
x − sup

s≥0

[
ra · s − C · s])

= fa(x); (A.27)

• From Theorem 4, the delay D(t) is bounded by

P{D(t) >
x

C
} ≤ fa(x), (A.28)

for all t ≥ 0 and x ≥ 0.

While in Scenario I, there is no error at the receiver side, in the
second scenario, the error rate by time t, defined as ε̄(t) ≡ E[t]

t
, may

be considered as an important performance measure. If all error units
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are dropped at the receiver, ε̄(t) can be viewed as the dropping rate.
Since the error process has a stochastic error curve αe = re · t with
bounding function fe, it can then be easily verified that the error rate
is bounded by:

P{ε̄(t) > re} ≤ fe(0). (A.29)

A.4.3 Comparison

Comparing the performance bounds obtained under the two error han-
dling methods, we can see that in terms of backlog bound and delay
bound, the second error handling method gives shorter backlog and
delay. To give a clearer picture about this, let fa(x) = fe(x) = e−x.
Then Table A.2 presents a comparison of the performance bounds ob-
tained under the two error handling methods.

Handling Bound on P{B(t) > x} Bound on P{D(t) > d}
Method I (1 + x)e−x [1 + (C − re)d]e−(C−re)d

Method II e−x e−Cd

Table A.2: Comparison of delay bounds

On the other hand, the second method has to sacrifice the error
performance and probably also the loss performance at the receiver
side as a compromise.

A.5 Conclusion

In this chapter we introduced a service model which concretizes the
generic impairment process by defining an error process. The error
processes characterize transmission errors. An ideal service process
and an error process are used to model the behavior of a server. Much
of the study has been devoted to deriving the concatenation property
for this service model, which is an important property for network
calculus.

We started with assuming bit-stream traffic to exploit the XOR re-
lationship among the input bit, the corresponding output bit and the
error bit. We also extended the model to more realistic configuration
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by using generalized error processes. For both cases, we proved that
under some independence assumption, the error performance of a tan-
dem system is stochastically equal no matter how the error processes
in the system are ordered. In addition, we defined the stochastic error
curve and derived its concatenation property. Moreover, to demon-
strate the use of the proposed service model, we studied the service
guarantee performance of a simple network under two error handling
methods. While these two error handling methods are intuitively sim-
ple, the importance of introducing the service model is mostly revealed:
error handling has significant impact on the system service guarantee
performance, and the proposed service model can facilitate the analy-
sis.

Many networks provide service stochastically due to inevitable un-
reliability, such as wireless networks where wireless channels are in-
herently error-prone. For such networks, only few results have been
presented [46] [66] and the progress of their service guarantee analysis
is however far-behind the progress of their wide implementation. We
believe the analysis in this chapter sheds light on and makes one step
forward towards studying these networks where the transmission error
is an indispensable feature, which will be our future work.
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