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Problem Description

In room acoustic softwares such as CATT-Acoustic and Odeon, geometrical room
acoustics is the basis for prediction of the sound field calculations. However, a
great disadvantage of this method is that geometrical room acoustics is not able
to handle diffraction effects. Further, extended methods, still based on geomet-
rical room acoustic assumptions, have been developed to successfully include
diffraction. However, the subsequent calculations have been found hard to im-
plement in existing room acoustic software. This thesis should study alternative
ways of modelling diffraction, which somehow could be fairly easily-implemented
in CATT-Acoustic.
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Abstract

This report presents a potential method to efficiently implement edge diffraction
from a noise barrier into geometrical room acoustic softwares. The modelling is
based on semi-transparent surfaces, and the classic digital signal processing mul-
tipath transmission equation has been employed to describe in a mathematical
term the presented method. The basic idea is to subdivide the noise barrier into
a number of subareas, and then give each subarea an optimalized transmission
coefficient for building the best possible output impulse response.

To evaluate the proposed semi-transparent modelling, a Matlab simulation model
of an infintite noise barrier case has been developed, and the corresponding sim-
ulations have been compared with the ideally correct solution. Accordingly, it is
stated that there seems to be a clear positive potential in the proposed modelling
technique. However, the results also reveal a somewhat instability in the mod-
elling, which is expected to appear mainly for rare critical source and receiver
positions.

A main goal has been to develop a method that can easily be implemented in
the existing calculation algorithms of today’s commercial software developers.
For verification, the proposed modelling has by discussion been associated with
the often employed diffuse rain method. However, since no true implemenation
in geometrical room acoustic software has been performed, further studies are
required.

To maintain efficiency and reliability, another desired outcome of the presented
modelling has been that is should function for a general one-to-all source-receiver
condition. Surely, the modelling seems to give fairly good results for symmetric
source and receiver positions, but as the receiver is moved away from these sym-
metric conditions some unwanted errors occur, especially at higher frequencies.

Main focus has been given to receiver positions located in the shadow zone, but
some simulations and discussion has also been given to receiver positions located
near the source-receiver sight line - at where direct sound energy contributions are
also included and an interference pattern arises. To cope with this interference
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pattern, a polarity shift is proposed, which gives a clear improvement at low
frequencies.

One certainly interesting feature of the presented modelling technique is that it
involves a broadband-based simulation method, which means that it gives the full
frequency response by running only one simulation. Indeed, this is advantageous
regarding calculation efficiency, but it does however also introduce some issues
regarding a potential future software implementation - as the common case in
geometrical room acoustics is to run individual octaveband-based simulations.
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Chapter 1

Introduction

This chapter starts with a review on the background and motivation for the
research presented in this report. Further, it gives a formal description of the
current task, and argues for the main focus of the present research process. Fi-
nally, this chapter presents the outline for the rest of this report.

1.1 Background

Indeed, the noise barrier edge diffraction case this is a very classic acoustic situ-
ation. In room acoustics, such noise barriers are common features in e.g. office
landscapes and classroom environments - as an attempt to devide a room into a
number of partly separated zones. Our daily experience reveals that such noise
barriers aren’t necessarily as acoustically efficient as desired, as a large amount of
the sound energy tends to leak over the barrier due to edge diffraction. Diffrac-
tion is one of the most well-known qualities of the wave nature, and as acoustic
waves involves fairly large wavelengths compared with potentially obstructing
objects (such as noise barriers), the edge diffraction topic is highly relevant when
studying noise reduction cases.

From an acoustic consultant’s point of view it would come in handy to own soft-
ware tools that can deal with such enclosed room edge diffraction cases. Finite-
element method-based softwares often provide very accurate results in any type
of acoustic situation. However, when dealing with three-dimensional enclosed
spaces these calulations get way too complex and time-consuming - even for
today’s powerful computers. Fortunately, geometrical room acoustics-based soft-
wares is an alternative, much more efficient method for solving the wave equation
in enclosed spaces. The disadvantage of geometrical room acoustics is that it has



some limitations - among them not being able to handle diffraction phenomena
in a proper way. Consequently, geometrical room acoustic simulations will typi-
cally return a sound pressure amplitude equal to zero for receivers locateded in
the shadow zone of the discussed noise barrier edge diffraction case.

Previous studies have been published regarding the issue on how edge diffraction
can be implemented in geometrical room acoustics. In 1999, Svensson, Fred &
Vanderkooy [1] presented a mathematical solution that calculates the impulse
response for an perfectly rigid edge diffraction case based on geometrical room
acoustic assumptions. Their concept is based on the employment of a secondary
edge source, which agrees with Huygen’s wave propagation principle. However,
due to an introduced complexity in the consecutive calculation algorithm, the
method has been found inconvenient to implement in existing commercial room
acoustic softwares.

Further, in Dammerud’s [2] PhD thesis a smart and easily implemented trick
was introduced in order to mimic the diffraction phenomena of sound propa-
gation through a symphony orchestra. A symphony orchestra includes a large
number of sound sources and obstructing objects - hence a very complex acoustic
case. Briefly, diffraction was here implemented by claiming that the sound waves
propagates through the obstucting objects rather than around them. In princi-
ple, this means that an assumption was made that edge diffraction is a quality
of the barrier rather than a quality of the wave nature. Indeed, this is easy to
imagine for very small obstructing objects, as they will appear "invisible" for
frequencies of somewhat much longer wavelengths. However, Dammerud’s study
indicated that the method also seemed to function for obstructing objects of a
somewhat larger size. Even though such a mimetic edge diffraction implementa-
tion of course will introduce some errors compared to the physical nature of wave
propagation, the method is still interesting and valuable, both because it is very
efficient, and because too accurate results often is outside the scope of interest
when dealing with room acoustics.

Moreover, a research by Isebakke [3] studied whether the semi-transparent diffrac-
tion modelling technique also could be employed to simulate the locally perceived
acoustic conditions in a public hall audience seating area. Clearly, such a complex
geometrical case will be affected by diffraction effects. First, the seat benches
can be regarded as a line of obstructing objects. In addition, a characteristic
seat dip [4, 15, [6] diffraction effect is often found. Isebakke’s research also revealed
somewhat convincing results, and consequently it was ensured a general potential
in the semi-transparent diffraction modelling technique.

However, the drawback in both Dammerud [2] and Isebakke [3] is that their
results were achieved in a somewhat tentatively proceeding form of research,
where available parameters in the simulations were utilized in order to optimally



tune the model relative to a measurement session of the same acoustic case.
Accordingly, it would at this point be interesting to obtain a more in-depth
mathematical linkage between the physical edge diffraction behavior and the
available semi-transparent simulation parameters. The trend in the previous
studies is that the sound propagation is obstructed in a very complex way, which
makes it difficult to derive simple relationships. Hence, it could be interesting to
study a simpler diffraction case, such as the simple noise barrier, in search for a
rational design procedure for the introduced semi-transparent surface property.

1.2 Current task description

The superior intention of the presented research is to investigate whether the sim-
ple noise barrier edge diffraction case can be implemented in geometrical room
acoustic softwares by using semi-transparent surfaces. A somewhat theoretical
approach to the developed modelling is desired. Further, a vital goal will be to
develop a method that easily can fit into the already existing calculation algo-
rithms of today’s commercial geometrical room acoustic softwares. Accordingly,
it will also be of interest to obtain a result that function for a general one-to-all
source-receiver condition.

Main foucs will be given to receiver positions located in the shadow zone - i.e.
positions where the direct sound contributions are obstructed by the noise bar-
rier. In the shadow zone, it will be assumed that only edge diffraction energy
contributions appear at the receiver. Still, some simulations and discussion will
also be presented regarding receiver positions located around the limit of the
source-receiver sight line.

The research process will consider the frequency range within the 63 — 8000H z
octavebands, as this is the frequency range in which edge diffraction leakage
is most relevant. Of course, frequencies even further down in the frequency
range will also be diffracted over the edge, but due to the general limitations in
geometrical room acoustics, these lowest frequencies have been ignored.

The research will be carried out by developing a geometrical room acoustic Mat-
lab simulation model of the noise barrier edge diffraction case. In order to evalu-
ate the research outcome, the Edge diffraction Matlab toolboz [7] will be employed
as the reference solution.



1.3 Outline

Chapter [2| gives a detailed review on the theory and methods that have been used
in the research process. Hence, the chapter includes all the required acknowl-
edgements in order to fully grasp the content of the research process and further
discussion. The final proposed semi-transparent noise barrier modelling is de-
scribed in detail. Chapter [3| gives the achieved results, presented as octaveband
energy level errors relative to the Edge diffraction Matlab toolbox. Chapter
gives an extensive discussion on the results, with main focus on validation of the
proposed modelling. Possible improvements and practical software implementa-
tion issues are also discussed. Finally, Chapter | contains the overall conclusion.
In the Appendix all belonging CATT-Acoustic and Matlab files can be found.



Chapter 2

Methods

This chapter describes the methods and theory that has been used, and is essen-
tial reading in order to fully grasp the content of this report. A detailed review
is given on the proposed semi-transparent noise barrier modelling, including the
basic idea, mathematical terms and final design. Also, this chapter accounts and
argues for all assumptions that have been made.

2.1 Brief review on geometrical room acoustics

Geometrical room acoustics is a software tool that has been developed in order to
obtain efficient simulations in room acoustic cases. It has the advantages of being
both fast and powerful, and is often capable to bring out somewhat satisfying
results for complicated enclosed room shapes. In 1968, pioneer research was
performed by Krokstad, Strom & Sprsdal [8]. Today, CATT-Acoustic, Odeon and
FEase are some of the most well-known commercial developers.

Briefly, geometrical room acoustics solves the wave equation based on the as-
sumption that all room modes can be ignored - i.e. that all frequencies of current
interest lie above the Schroeder frequency. This assumption can only be justified
if the dimensions of the room are large compared with the wavelength of the
sound. Accordingly, the assumption may cause a somewhat incorrect result at
lower frequencies.

There are in principle two different calculation methods being used in geometrical
room acoustic softwares: the ray-tracing method and the image-source method.
The ray-tracing method will be the employed platform for the presented mod-
elling in this report. In short, ray-tracing regards sound propagation as rays



travelling normal to the wave front. This is implemented by a defined point
source that sends out a large number of rays distributed in all directions. Each
ray then represents a certain angle of a spherical wave. Subsequently, all rays
are traced throughout their travel in the room - until all energy has died out.
For non-rigid surfaces a mixture of specular reflections (the angle of the reflected
wave is found by Snell’s law) and diffuse reflections (the angle of the reflected
wave is random) can be found. This decision is implemented by a dedicated sur-
face scattering coefficient set between 0% and 100% with a corresponding number
of rays speculary and randomly reflected. Finally, a receiver of a given spherical
expansion is employed to ensure that a certain stochastic number of rays actually
do hit the receiver. Apparently, it is profitable to employ a fairly large number
of rays to reduce stochastic variation.

A simplified way to describe how the ray-tracing method builds an impulse re-
sponse can be given by the classic digital signal processing multipath transmission
equation:

K

h(n) = cxb(n —ny) (2.1)

k=1

where K is the number of rays sent out by the receiver, ci is the energy contri-
bution of ray k as it strikes the receiver, and ny is the sample number for when
ray k strikes the receiver. For a source placed in an enclosed space the ray energy
contribution ¢ is mainly affected by spherical propagation damping and surface
absorption due to surface hits.

Note that eq. is not a totally correct mathematical representation of the
classic ray-tracing technique, as it is not for granted that each ray will strike
the receiver. However, an improved method called diffuse rain ray-tracing (by
Heinz [9]) has been developed to ensure that each ray indeed will contribute in
the consecutive impulse response. In short, diffuse rain replaces the standard
method of checking each ray for hits with the receiver sphere during the ray’s
propagation. Instead, for each ray’s wall hit, a separate wall-to-receiver ray is
constructed which makes sure that every single wall hit will generate a subsequent
hit at the receiver (as long as the wall hit point has an unobstructed path to the
receiver point). This separate ray is valid for diffusely reflecting wall’s and hence
the name of the method.

As mentioned, geometrical room acoustics is not able to handle diffraction phe-
nomena. When sound waves are regarded as rays the phase quality of the wave
nature is ignored, which often results in low frequency errors as interference pat-
terns often occur and affect this frequency region.



Dammerud [2], in his mimetic semi-transparent diffraction modelling, took ad-
vantage of an octaveband-dependent semi-transparent quality that geometrical
room acoustic surfaces can be dedicated. According to CATT-Acoustic user’s
manual |10, IT], semi-transparent surfaces are implemented in the software by
introducing a transparency coefficient T, being a property of the surface, defined
specificly for each octaveband. The range of 7 goes from 7 = 0 (zero trans-
parency, only reflected sound and absorption) to 7 = 1 (full transparency, no
reflected sound). The direct sound goes deterministically through a maximum of
one semi-transparent surface and is then attenuated by (1 — a)7. Higher order
transmission is random depending on the transmission coefficient.

For further insight on geometrical room acoustics: check out Chapter 3 and 4 in
Kuttruff: Room acoustics [12] and Chapter 4 in Vigran: Bygningsakustikk [13].

2.2 Infinite noise barrier edge diffraction

In the presented study a hard rigid infinite noise barrier on a totally absorptive
floor and otherwise free-field conditions has been studied. A simple geometrical
cross-section model of the given case can be seen in Figure It is highly
recommended to give this model a close look, as the presented variables and
their notations will be frequently referred to in this report.
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Figure 2.1: The infinite noise barrier geometry

A typical impulse response of the edge diffraction shadow zone case can be seen
in Figure 2.2] and the consecutive frequency response can be seen in Figure
[2.3] Note that the frequency response slope appears to decrease for an increased
frequency. This means that the noise barrier behaves like a typical lowpass filter,
which indeed agrees with our daily experience.
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Figure 2.2: Typical impulse response of the edge diffraction case
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Figure 2.3: Typical frequency response of the edge diffraction case



2.3 Proposed semi-transparent modelling technique

In order to easily implement noise barrrier edge diffraction in geometrical room
acoustic softwares, the most efficient solution would be to simply take advantage
of those properties that already exist in the software. Accordingly, it would be
highly profitable to develop an approach that fits right into eq. .

As described in Chapter [L.I], the assumption that edge diffraction is a quality
of the barrier rather than a quality of the wave nature is now implemented.
Accordingly, it is claimed that no sound energy is radiated from a secondary
edge source, and instead that the barrier is semi-transparent - i.e. that some
sound energy is radiated through the barrier. In principle, this means that the
physical properties of the barrier is manipulated so that it behaves more in the
sense of a digital signal processing filter than in the genuine sense of a hard rigid
infinite barrier. Of course, this is not true by nature, but it could somehow be
justified in the virtual dimensions of the simulation software - as long as it gives
satisfying results.

2.3.1 Semi-transparent division

In order for the introduced approach to function, it is essential that the noise
barrier is given a somewhat functional semi-transparent design. One possible
action is then to divide the total area of the noise barrier surface Si,; into a
number of subareas, and give each subarea a suitable transmission coefficient.
For simplicity, it is assumed that each subarea dSy will be hit by one ray k and
contribute with one certain amount of energy ci at the receiver position. Appar-
ently, this assumption can be justified by the mentioned diffuse rain algorithm
of geometrical room acoustic softwares. Strictly, this diffuse rain approvement is
neither required, as the stochastic differences compared with classic ray-tracing
will dimish as the number of rays is increased. The arrival time n; of ray k will
be given by the sum of the distance between the source S and the barrier hit Py
and the distance between the barrier hit to the receiver R. Consequently, the
resulting impulse response will be given directly by eq. (2.1)).

To grasp a simple understanding of the concept, Figure gives a helpful illus-
tration on this type of division. The barrier is here divided into a number of
equally large rectangular subareas. Due to the simple geometry of this rectan-
gular tessellation pattern, this will also be the employed type of division for the
final noise barrier design presented in this report.



Subarea tessellation and ray paths

z-axis [m]

x-axis [m]

y-axis [m]

Figure 2.4: Ray paths of the proposed model

For each ray k, the value ¢ in eq. (2.1) will be given by the following formula:

1

%= SP.-RP,

-Tk-Sk'dSk (2.2)

where 7, is the transmission coefficient of the subarea dSj that ray k propagates
through, and s is a scattering coefficient out from the noise barrier. These
two parameters will be further described in Chapter and [2.3.4] SP; is the
length of the propagation path between the source and the subarea, and RPj is
the length of the propagation path between the subarea and the receiver.

Note, that the application of eq. somehow corresponds more in the sense
of a Rayleigh integral than in the sense of classic ray-tracing, as the equation
represents the sound pressure rather than the squared sound pressure. However,
the classic squared impulse response as primary quantity will be further described

in Chaper

The value ny in eq. (2.1) will be given by the following formula:

[s

Cair

ng = - (SP, + RPy) (2.3)

where f; is the sample frequency, and cg;, is the speed of sound.

Now, in theory it should be possible to create any type of impulse response as
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long as the number of subareas is large enough. As the noise barrier is devided
into an increased number of subareas, the travel length difference between two
succeeding incomming rays will naturally decrease. Therefore, as the number of
subareas grows towards infinity, a number rays will even arrive within the same
sample, which means that every sample n in the impulse response h(n) will hold
a certain number of ray energy contributions. Accordingly, the impulse response
values can be optimally tuned as the subareas are dedicated optimal transmission
coefficients 7.

2.3.2 nth sample barrier intersection area

To give the parameter 73 optimalized values, there will be a vital task to map all
rays/subareas that contribute within the same sample. These will be bounded
by a certain barrier projection, centered by the barrier intersection of the di-
rect sound propagation path SR. To grasp a deeper understandig, Figure
illustrates the nth sample’s barrier relationship.

The nth sample barrier intersection area

. 1st sample
2nd sample
3rd sample
etc...

z-axis [m]

‘ Receiver

y-axis [m]

x-axis [m]

Figure 2.5: The nth sample barrier intersection area

In theory, the exact shape and size of each nth sample barrier intersection area
will be bounded by an elliptic radiation pattern quite similar to a Fresnel zone
(commonly referred to in optics and radio communications), which in this par-
ticular case will be given by the source position {S;,S,,S.} and the receiver
position {R,, Ry, R.}, as well as the sample frequency f, and the speed of sound
Cair- A cross-section of this elliptic zone can be seen in Figure 2.6
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Figure 2.6: Cross-section of nth sample barrier intersection area

For simplicity, it is now assumed that the nth sample barrier intersection is
a circular desk. In reality, this is only the true case for source and receiver
positions that are symmetric in proportion to both the y-axis and the z-axis.
Still, for relatively large S, + R, it will be a fairly good assumption. Be aware,
however, that it may introduce some errors if a small S, + R, is combined with
a comparatively large S, — R, and/or S, — R..

By employing the Pythagorean Theorem to the cross-section in Figure [2.6] the
nth sample barrier intersection radius Ph, can be expressed by the following
relationship:

\/ SP? 4 Ph,* + \/ RP? + Ph,”> — SR = C} n (2.4)

Since the set X = {SP,RP} > Ph,, the following Taylor/Maclaurin series
approximation [14] can be employed:

X1/1+(P;”>QQX<1+;<P;">2> (2.5)

Accordingly, eq. (2.4) can be re-writtten into the following expression:

SP-RP cgur
Ph,, ~ /2 ——— - . 2.
I, \/ R 7. n (2.6)

The nth sample barrier intersection area will then be found by the following
equation:

n—1

S, = (W(Phn)Q -truncn) — Z S; (2.7)

i=1
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where trunc, € [0, 1] is a truncation factor that appears because the radius Ph,,
at some point may exceed the fixed z-axis size of the noise barrier. This will
typically take place for somewhat distant source and/or receiver positions. As
truncation finds place, the region S, will appear as an area that consists of a
circle sector Sse. and an isosceles triangle Sy, as illustrated in Figure 2.7]

o0

Figure 2.7: The truncated nth sample intersection area

Note that the n-notation in .S, temporary has been removed. This is to avoid
confusion between edge vs. floor truncation sectors in Figure [2.7 and the sample
parameter n.

The angles 81 and (B2 of the circle sector can easily be found by the following
equations:

f1 =2 <7r —cos™ ! (g)) , dy=Ph—-PFE (2.8)

By =2 <7r —cos~! (ﬁ)) , dy = Ph— PO (2.9)

Hence, the area of the two truncated circle sectors in Figure 2.7 will be given by
the following equations:

Ph?

Ssect +Strin = Pr——+ di\/ Ph? — dy? (2.10)
Ph? R —

SsecZ + StriZ = /327 + d2 Ph2 - d22 (211)

Accordingly, the truncation factor trunc will be given by the following equation:
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Ssecl + Stril + SsecZ + StTi2 - W(Ph)Q
7(Ph)?

trunc =

(2.12)

2.3.3 Transmission coeflicient

At this moment, the model will be considered by an one-to-one source-receiver
condition. Later, the desired, more complex general one-to-all source-receiver
condition will be considered. For now, also assume that the scattering coefficient
of eq. is neglected by a constant value s = 1.

As mentioned, a major challenge in the present reseach process will be to dedi-
cate optimal transmission coefficients 73 to each subarea dSg. In order to build a
correct impulse response, the idea is then that the sum of all rays contributions
¢, within a sample n should result in a value that corresponds to the true impulse
response value hy¢(n). Accordingly, an equation that gives the transmission fac-
tor for the true impulse response h,.f(n) being considered as a semi-transparent
noise barrier is needed:

_ SP-RP

T
Sn

hpeg(n) (2.13)

where S, is the nth sample barrier intersection area given by eq. (2.7).

Further, for the simulated impulse response h(n) it would now be appropriate
to claim that all ray contributions that arrive within the same sample have an
equal transmission coefficient 7. This means that all subareas that contribute
within the nth sample can be dedicated the following transmission coefficient:

T =Tn < np=n (2.14)

By introducing this relationship, there should in theory be possible to build a
perfect impulse response h(n) = hyer(n) regarding a one-to-one source-receiver
condition. However, things get more complicated as the desired multiple receivers
condition is introduced in the next section.

2.3.4 Scattering coefficient

As mentioned, one of the main goals in this study is to maintain the efficient
general one-to-all source-receiver quality of geometrical room acoustic softwares.
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A first step towards this achievement would be to claim that the ray energy is
scattered out from the noise barrier - i.e. that the energy out from each subarea
will contribute at each potential receiver position. Apparently, this assumption
can be justified by the mentioned diffuse rain method. Hence, the scattering
coefficient s in eq. is introduced.

For simplicity, it would be favourable to assume a simple cosinus-relatied scat-
tering pattern:

Sk = COS ¢, (2.15)

where ¢y, is the ray k’s angle out from the subarea dS.

The drawback of the introduced scattering is that further attention must be given
to the semi-transparent design of the noise barrier. Indeed, it must be stated that
it is a complex case to make a noise barrier modelling design that works fairly
well at every receiver position. Still, a proposed modelling will be presented in
the next section.

2.3.5 Final semi-transparent noise barrier design

To create a functional multiple receivers situation, the employed idea is to allow a
small general error ahead of potentionally very large errors at certain distinct re-
ceiver positions. Accordingly, the following semi-transparent noise barrier design
procedure is proposed:

1. A simple source and an array of receivers are employed to dedicate
transmission coeffients. These source and receiver objects, Sg and Rg, will
now be regarded as the noise barrier’s "modelling generator" - almost like a
building kit. Originally, the intention of the introduced building kit was that the
barrier modelling should be adjusted only as a function of the source position Sg,
and that the consecutive model should give acceptable results for all employed
receiver positions. However, the receiver array Rg must also be placed somewhere
along the x-axis, and accordingly the results will also vary to some extent as a
function of Rg.

S¢ is a source randomly placed within the intervals S, = [—30.0, —1.0]m and
S, =[0.25,2.75]m. R¢ is a receiver array of nine units along the z-axis, equally
distributed within the interval R, = [0.5,2.5] m, placed at a random position
within the interval R, = [1.0,30.0]m. S and Rg are placed symmetric regarding
the y-axis.
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2. The noise barrier is devided into two different zones, named the
mid/high peak zone and the bass tail zone. As known from quasi-anechoic
recording techniques [15], 16, [17], a Fourier transform of the initital samples of
a somewhat time-smeared impulse response will only give a complete energy
representation for relatively high frequencies. Evidently, this can be associated
with the ray contributions that arrive earliest at the receiver. Consequently, it can
also be claimed that all ray contributions that arrives somewhat further out in the
impulse response will only perform the accomplishment of "boosting" the lower
frequencies to a more and more correct representation. Based on this, the utilized
idea is that the mid/high peak zone - represented by the ray contributions that
arrive very early at the receiver, should give a somewhat flat frequency response
level, while the bass tail zone - represented by the more delayed ray contributions,
should give the frequency response the more typical shape of a lowpass filter.
Hence the adopted names. To illustrate this proposed semi-transparent modelling
concept, Figure gives a sketch of the zone division.

The final semi-transparent noise barrier design

‘ Mid/igh peak zone
Bass tail zone

z-axis [m]

y-axis [m]

s-axdis [m]

Figure 2.8: The final semi-transparent noise barrier design

Further, Figure gives a rough sketch of the concept of an impulse response
being shaped by the two transmission zones. Note however, that there in practice
will be a much more blurred overlap in the transition between the two zone’s
impulse response contributions, and that the final curve shape will be expected
somewhat less smooth.
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x10° Impulse response of an edge diffraction case
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Figure 2.9: Ideal impulse response build by two transmission zones

3. The mid/high peak zone: is bounded by the union of the 1st sample
barrier intersection areas of all the nine receivers in Rg. Further, the transmission
factor of the impulse response peak value 77 is found at each receiver. Then, a
1st order polynomial fit is given to the resulting array of transmission factors
T}, using the Matlab function polyfit(). Subsequently, the subareas included in
the mid/high peak zone are given transmission coefficients depending on their
location along the z-axis. By such a transmission coefficient distribution, the
property that receivers located closer to the limit of the shadow zone should hold
a somewhat larger portion of mid/high frequency energy, was to some extent
considered treated. Also, this difference will be expected to smear out for a more
distant receiver location along the x-axis.

4. The bass tail zone: involves all subareas of the noise barrier that are not
occupied by the mid/high peak zone. The bass tail zone is given a constant
transmission coefficient which is found by the mean value of the array of nine
transmission factors 71 multiplied by a factor 0.1. The mean value is found using
the Matlab function mean(). The intention is that the continous damped tail
of the impulse response should appear due to the steadily increased spherical
propagation damping of succeeding rays, in addition to an increased scattering
influence.

2.4 Polarity error

Eventually, when studying a noise barrier and moving the receiver closer to the
source-receiver sight line, direct sound contributions will appear in the frequency
response. As described in Chapter 2 in Kuttruff: Room acoustics [12], an inter-
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ference pattern will occur due to the opposite polarities of the direct sound and
the diffracted sound. This intereference effect will typically be strongest around
the source-receiver sight line, where both direct sound and diffracted sound con-
tain much energy. For further insight, a study by Lokki, Svensson & Sawvioja [18]
gives an example that illustrates this interference effect. Note, that this study
at the same time proves that the edge diffraction solution by Swvensson, Fred &
Vanderkooy [I] is capable to bring out a fairly correct representation of the given
case.

Unfortunately, when dealing with classic geometrical room acoustic softwares,
such a polarity shift will not be displayed, since the rays don’t consider the
wave'’s phase property. As described in Chapter 2.1 this assumption is fair for
high frequencies, but it also means that some low frequent errors may occur.

In order to check how crucial this polarity error is, a polarity-check was imple-
mented in the Matlab code. The polarity-check simply checks whether direct
sound contributions are included in the impulse response, and does in that case
make sure that the diffracted sound contribution is multiplied by a factor —1.
The succeeding results are presented in Chapter

2.5 Squared impulse response as primary quantity

The fact that interference phenomena are neglected in geometrical room acous-
tics, means in practice that the squared impulse response could be considered as
the primary quantity, instead of the impulse response. In fact, this also seems to
be the common case in commercial geometrical room acoustic softwares. Most
often, this squared impulse response quantity is referred to as the echogram.

As a consequence, in a potential implementation of the proposed semi-transparent

noise barrier modelling, the 7, and 7 values in eq. (2.13) and eq. (2.14) may
have to be re-written into the following echogram form:

SP%.RP?
T, = " hes(n)? (2.16)
Sh
=T, < nm=n (2.17)
which leads to the re-written c¢; values:
Cl2¥-7,-sl'd;§k (2.18)
o sp2.Rrp? KR '
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and finally the succeeding re-written impulse response:

K
h(n) =\ > ¢.d(n—ng) (2.19)
k=1

In order to review the scope of the introduced differences by the alternative
echogram quantity, a plot of the given case is presented in Chapter

2.6 Reference model: Edge diffraction Matlab toolbox

As a reference model the EDBtoolbox [7] (developed by the Acoustics Group,
NTNU) was employed. This toolbox is a set of Matlab functions that gives the
impulse response for a point source in an environment of rigid, plane surfaces.
The calculations are based on the secondary source method by Svensson, Fred &
Vanderkooy [1], and accordingly the toolbox is supposed to give a correct result
regarding the rigid infinite noise barrier case. The EDBtoolbox performs the
calculations based on a .cad geometry file (which easily can be created using
CATT-Acoustic) and two vectors/matrices of employed sources and receivers.
All adopted sources and receivers are omni-directive.

As it is impossible to create an infinte noise barrier in CATT-Acoustic, the em-
ployed reference model .cad geometry file contained a 120m wide noise barrier.
However, the EDBtoolbox includes a smart feature that gives the opportunity
to exclude edge diffraction contributions from all edges that are built by corners
with corner numbers higher than a specified value. Therefore, the outcome will
in fact give solutions for a true infinite noise barrier.

To work with a Matlab toolbox as a reference model, rather than e.g. an acoustic
measurement session, was considered appropriate because of the fast procedure
and flexible possibilities to quickly make adjustments.

2.7 Validation of the further presented results

A sample frequency fs = 24000Hz was used in all the Matlab calculations.
According to Nyquist’s theorem, this should correspond to a correct energy
representation for all frequencies f < 12000H z, which means that the desired
63 — 8000H z octavebands are covered. The speed of sound was given the value
Cair = 343m/sec.
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Furthermore, a 3m high noise barrier was studied. Indeed, this is not the typical
indoor office landscape noise barrier height. However, in order to capture a
detailed review of the edge diffraction phenomena as function of the receiver
height R,, such a tall barrier was still employed.

As it is very unpractical and somehow pointless to run calculations on a truely
infinte noise barrier, the barrier width of the developed semi-transparent noise
barrier model was strongly truncated to a total width of 12m. In other words, it
was assumed that all subareas outside the limits y € [—6,6]m could be given a
transmission coefficient equal to zero. Hence, the total number of subareas could
be set to a somewhat applicable value. By experiments, the noise barrier was
finally devided into a total number of 20301 elements, 201 along the y-axis and
101 along the z-axis.

For the outcome of the simulations, it was considered appropriate to present
octaveband energy level-based results. Consequently, the broadband impulse re-
sponses were octaveband-filtered by the function oktavbandfilter.m (developed
by the Acoustics Group, NTNU). Note, that due to the increased bandwidth of
an increased octaveband, the octaveband energy level will constantly increase
with 3dB for each octaveband. However, when comparing results from two dif-
ferent calculation methods such knowledge is irrelevant. The energy level of each
octaveband impulse response was found by the following equation:

N
Eoct.band =10- log (Z |hoct.band(n)|2> (220)

n=1

where hoct pand(n) is the octaveband-filtered impulse response.

In order to present reliable results for general source and receiver positions, the
presented octaveband error plots are all based on the averaged outcome of a
total number of 100 simulation sessions. To obtain random source and receiver
positions the Matlab function rand() was employed.

All relevant Matlab scripts can be found in the Appendix. Also, the applied
CATT-Acoustic geometry file can be found here.
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Chapter 3

Results

This chapter gives a presentation of the obtained results from the proposed semi-
transparent noise barrier modelling presented in Chapter As mentioned,
the EDBtoolbox serves as the reference for all the presented results. Be aware
that the distributions of Sg and R¢ were defined in Chapter[2.3.5] Further, some
supplementary comments are included in order to clarify possible vaguenesses
related to the presented figures.

3.1 Errors in the shadow zone

As a first evaluation for the proposed method, a set of simulation sessions were
performed for receivers located in the shadow zone, which means that no direct
sound contributions are included. Furthermore, the proposed modelling was
evaluated for three different scenarios of increased complexity.
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First, Figure gives a plot of the mean octaveband error for the receiver array
R¢. In addition, two extended receivers at R, = 0.25m and R, = 2.75m are also
included. Sg is the employed source. Accordingly, it can be stated that Figure
holds a multiple receiver quality regarding the z-axis.

Mean octaveband error in the shadow zone
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Figure 3.1: Mean octaveband error
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Secondly, Figure gives a plot of the mean octaveband error as the receiver
is placed at different positions along the y-axis. Again, Sg is the employed
source. However, all the presented receivers are now set up in addition to the
receiver array Rg. The receivers are placed along an array R, = {0,2,---,8}m,
at the same x-axis value as Rg, somewhere randomly within the interval R, =
[0.25,2.75]m. Accordingly, it can be stated that Figure holds a multiple
receiver quality regarding the y-axis.

Mean octaveband error: off y-axis
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Figure 3.2: Mean octaveband error - off y-axis
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Thirdly, Figure gives a plot of the mean octaveband error as the receiver
is placed at different positions along the x-axis. As in the non-symmetric y-
axis case, all the presented receivers in Figure [3.3] are placed in addition to the
receiver array Rg. The receivers are placed along an array which is displaced
by a factor Az relative to the x-axis value of Rg. Further, the receivers are
placed at a random position within the interval R, = [0.25,2.75]m, at R, = Om.
Accordingly, it can be stated that Figure holds a multiple receiver quality
regarding the x-axis. In order to enable the presented receiver position Az =
—10m, the range of the receiver array Rg was truncated to R, = [11.0,30.0]m.

Mean octaveband error: off x-axis
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Figure 3.3: Mean octaveband error - off z-axis
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3.2 Errors at source-receiver sight line

Figure [3.4] gives a plot of the errors that occur for receivers locateded close to
the source-receiver sight line. The presented receivers are placed at the same
position as the receiver array R regarding the x-axis and y-axis. In order to fix
the presented receivers relative to the source-receiver sight line, a parameter zg,
is now introduced - given by the interesection between the line determined by

the source Sg and the barrier edge E: , and the floor perpendicular at Rg.

Mean octaveband error: around the source-receiver sight line
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Figure 3.4: Mean octaveband error - around the source-receiver sight line
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Figure[3.5|gives a plot of the receiver positions just above the source-receiver sight
line presented with and without the polarity correction described in Chapter [2.4]
The presented results are based on the same simulation series as in Figure [3.4]

[dB]

Mean octaveband error: around the source-receiver sight line - polarity correction

63Hz 125Hz 250Hz 500Hz 1kHz ZkHz 4kHz 8kHz

g Polarity error: z=z_, +2m
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Polarity correction: z= 25, +2m
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Figure 3.5: Error plot for the polarity correction case

26



3.3 Squared impulse response as primary quantity

Figure gives a plot of the mean octaveband error by the squared impulse
response/echogram as primary quantity. Hence, the calculations are based on
the list of equations given in Chapter Otherwise, the presented result in
Figure is achieved by the exact same simulation setup as in Figure 3.1

Mean octaveband error - squared impulse response as primary quantity
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Figure 3.6: Mean octaveband error - squared IR as primary quantity
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Chapter 4

Discussion

This chapter gives a discussion on the achieved results. The chapter focuses to
a great extend on the advantages, limitations and possible side effects caused by
the proposed semi-transparent noise barrier modelling. Furthermore, discussion
is given to some practical issues regarding a potential future implementation of
the semi-transparent edge diffraction modelling in commercial geometrical room
acoustic softwares.

4.1 First impression

By first impression it must be argued that the errors in Figure [3.1]reveals a fairly
hopeful result. The mean-value errors are very small and almost negleciable.
Sadly, large errors are introduced for the max/min-values, as 10dB-errors can-
not be tolerated. In addition, the range between max and min is also large,
which indicates a disturbing instability in the modelling. The main reason for
these errors can probably be explained by an introduced uncertainty in the ap-
plied semi-transparent noise barrier modelling procedure of Chapter 2.3.5] On
the other hand, the performed simulation sessions do include a large amount of
critical rare positions, where there in any case is assumed that the modelling
will function badly. Errors are expected for positions close to the barrier; as well
as for positions close to the floor and barrier height. These expected errors are
caused partly due to the assumptions introduced for the nth sample barrier inter-
section area S), in eq. , and partly due to a potential unfavourable scattering
behaviour. Especially, for a combination of an odd source position and an odd
receiver position there must be expected a misleading impulse response shape.
Fortunately, most of these odd source and receiver positions are indeed rare in any
practically relevant source-receiver setup. Accordingly, it may be stated that the
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largest errors will not appear very frequently, and that the large max/min errors
probably will vanish by a slightly truncated range of source/receiver positions.
Further, the interquartile range also indicates a somewhat improved impression
of the overall stability of the modelling. A 5dB-error is of course not a desired
outcome, but it is still within a fairly reasonable range.

Nevertheless, it must also be restated that geometrical room acoustics in any case
often introduces some errors in the lower octavebands, as room modes, comb
filtering effects, ect. are neglected. It could therefore be questioned whether
the diffraction errors of Figure [3.1] at all should be questioned ahead of these
already existing uncertainties? Moreover, it will perhaps also be advantageous
to implement a mimetic edge diffraction modelling that introduces some errors
and uncertainties - versus a modelling that yields no edge diffraction energy
contributions at all.

4.2 Multiple receivers case

By studying Figure [3.2], it must be stated that the presented semi-transparent
modelling has some limitations regarding a non-symmetric y-axis case. Especially
for the highest octavebands, the non-symmetric y-axis case reveals large errors.
However, this is not a very surprising outcome, since the samples that arrives
first at the receiver in the symmetric y-axis case will not arrive first in the non-
symmetric y-axis case. Accordingly, the desired pulse shape in Figure will not
arise, as the mid/high peak zone will be more smeared out and arrive further out
in the impulse response. In addition, the energy contributions ¢y of the mid/high
peak zone rays will be further affected by the scattering coefficient sg, due to an
increased angle out from the noise barrier. However, this scattering damping
may actually not be such a bad approach to how the higher frequencies decrease
along the non-symmetric line. Hence, the major concern should most likely be
given to the mentioned delayed arrival time of the mid/high peak zone rays.

Further, the non-symmetric y-axis errors in the lower octavebands can easily be
justified by emphasizing that the simulated infinite noise barrier is not infinite
for real. As mentioned in Chapter each subarea outside the barrier region
y € [—6,6]m is given a transmission coeffiecient 73 equal to zero. Surely, for
the non-symmetric y-axis case this implemented simplification will introduce side
effects. Therefore, the lower octaveband errors could probably have been avoided
by just adding the bass tail zone transmission coefficient to a larger region of the
infinite noise barrier. Furthermore, it may perhaps be stated that the lower
octavebands are modelled in a somewhat satisfying way by the applied constant
transmission coefficient of the bass tail zone.
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Figure [3.3|reveals that the proposed modelling seems a bit more stabile regarding
movement along the x-axis. Still, some errors do appear - especially for receivers
located closer to the noise barrier relative Rg. The presented 6dB-errors at
Ax = —10m cannot be tolerated. Further, it is noticeable that the errors at
Az = bm and Ax = 10m in fact are smaller than at Az = Om. This may
indicate a somewhat non-optiamlized semi-transparent noise barrier modelling
regarding the the x-axis. Another interesting observation is that the presented
receiver Ax = Om yields a different result than the presented mean error in
Figure Most likely, this appears due to the truncated range of Rg along the
X-axis.

4.3 Interference issues at source-receiver sight line

As expected, Figure[3.4]reveals that serious errors are introduced for receivers lo-
cated close to the source-receiver sight line. First, it is evident that the modelling
does not deliver enough energy for the receiver postions just below the source-
receiver sight line - i.e. at positions where direct sound contributions still are
obstructed and the diffracted sound contributions are appreciable. Accordingly,
it can be concluded that the proposed modelling fails to deliver enough energy
in this critical region of the shadow zone.

Secondly, it is obvious that the modelling gives a fatal mismatch along the source-
receiver sight line z,,, and especially for the higher octavebands. Most likely, this
is caused by the total lack of direct sound contributions, which indeed not is the
case for the true acoustic conditions. Maybe an additional scattering coefficient
at the edge of the barrier could mend the faulty modelling? However, for the
presented results in this report, this given error must again be justified by the
somewhat rare receiver positions. In addition, this highly critical region concerns
only a very limited receiver range.

Thirdly, Figure also displays noticeable errors at the lowest octavebands for
the receivers located just above the source-reiver sight line. These errors are
most certainly caused by the polarity error described in Chapter Clearly, the
improved result of the polarity correction plot in Figure[3.o|largues in favour of this
statement. As expected, the improved outcome of the polarity correction curve is
best for the lower octavebands, while it tends to diminish at higher frequencies.
The reason is that the higher octavebands will not be as strongly affected by the
introduced interference effect. Moreover, it must be stated that an improvement
of about 6dB in the two lowest octavebands is quite noteworthy. Accordingly, it
could be further questioned whether it would be profitable to study a potential
polarity correction implementation for the edge diffraction energy in geometrical
room acoustic software. Indeed, this correction is easy to treat in the developed
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Matlab script, but it may however disturb the simple calculation algorithms that
makes the ray-tracing method so efficient.

4.4 Semi-transparent noise barrier design improvements

One action to potentially lower the presented errors could of course be to study
whether there exists alternative noise barrier modelling methods that function
better. As mentioned, the presented model is based on a two-zones transmission
coefficient mapping, where the idea is that the first zone mainly builds the energy
of the mid and high frequencies, whereas the second zone adds requisite energy to
the lower frequencies. Even though this solution turns out to give an applicable
result, there may still exist other noise barrier designs that imitates the true
noise barrier behaviour even better. Perhaps a more complex design of even
more zones could be profitable? Likewise, maybe entirely different, more clever
modelling concepts could be developed?

By contrast, one obvious alternative modelling technique could be to develop a
noise barrier design that involves an octaveband-based transmission coefficient.
Such a solution corresponds to both the previous semi-transparent edge diffrac-
tion modelling studies by Dammerud [2] and Isebakke [3]. As mentioned, an
octaveband-dependent semi-transparent feature already exists in CATT-Acoustic,
which surely is beneficial. However, the disadvantage of such a modelling tech-
nique is that the succeeding pulse shape of the impulse response is less controlled.
In addition, it must also be stated that a broadband simulation technique surely
is advantageous in many ways.

It is evident that the presented modelling technique introduces errors at the
highest receiver positions in the shadow zone, as too little energy is added to the
early samples of the impulse response. One way to possibly improve these errors
could be to study whether the high/mid frequency region could distribute the
energy even more accurately. Maybe the mid/high peak zone should be more
semi-transparent in the higher region, and less semi-transparent in the lower
region? For the presented modelling, the transparency distribution is based on a
1st order polynomial fit to the transmission factors 77 of the reciever array Rg.
Perhaps another more progressive/complex curve fit could do a better job?

Moreover, to lower the non-symmetric errors in Figure|3.2] one possible improve-
ment could be to devide the barrier into a number of additional mid/high peak
zones - arranged in a pattern to optimally fit the hig/mid frequency expansion
along the y-axis. In order to maintain the natural damping for an increased
receiver position along the y-axis, the mid /high peak zones could have been ded-
icated a suitable damping factor as function of distance along the y-axis.
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4.5 Echogram issues

By Figure it must be stated that a semi-transparent noise barrier modelling
given by the squared impulse response/echogram as primary quantity introduces
some additional octaveband errors. An additional error of about 3dB can be
found at the lower octavebands. As stochastic differences are expected to have
a minor impact for the averaged outcome of a number of 100 simulations, these
introduced differences are most probably caused by the difference in eq.

and eq. (2.19).

First, as the scattering coefficient will now have a y/cos ¢, influence (instead of
a cos ¢y, influence) on the ray contributions of the impulse response h(n)" there
might be expected a somewhat different resulting impulse response: h(n) # h(n).
Furthermore, as \/cos ¢ > cos ¢y, for all ¢, € (0,7), the re-written echogram
quantity-based impulse response h(n)" will probably include a somewhat larger
energy amount: h(n)’ > h(n). Indeed, by comparing Figure and Figure [3.1]
this also seems to be the case. However, it might be a bit harsh to claim that
this scattering coefficient inequality alone will constitute in a 3dB difference.

Yet another interesting difference that may appear by the echogram as primary
quantity is a coherent ray addition problem. In ordinary ray-tracing, energy
contributions can safely be added to the impulse response, since all the individ-
ual contributions typically correspond to very different propagation paths, and
thereby very different phase shifts. Then, on average, energy addition will be
correct. Here, on the other hand, all the contributions that arrive within the
same sample will have exactly the same phase shift, which leads to a coherent
ray addition. Fortunately, however, the calculation of the transmission coeffi-
cients is based on such a coherent addition for the receiver array Rg. Therefore,
the coherent ray addition does give close to the expected results.

Accordingly, there should probably be stated that the main reason for the intro-
duced additional errors are caused by a somewhat non-optimalized noise barrier
modelling for the echogram as primary quantity. Note that the entire procedure
of Chapter in this case was based on the reference signal hgef(n), which
means that 7, not necessarily equals to T,?-dSk. Clearly, such a conditional
equality would conflict the entire comprehension of primary guantity. Further,
the proposed semi-transparent noise barrier modelling in Chapter is surely
not developed by any exact mathematical background, and instead given by a
basic two-zones division concept and a succeeding trial by error procedure. Es-
pecially, the introduced constant 0.1 in the bass tail zone transmission coefficient
remains an unknown property. By lowering this value an improved result could be
expected in Figure [3.6] In conclusion, it does not seem to be vitally impractical
to implement the proposed modelling into the perferred echogram quantity.

33



4.6 Propagation phase error

As the first incomming ray will now arrive at a time that corresponds to the
source-receiver propagation path SR, rather than a time that corresponds to the
true source-edge-receiver propagation path SE + RFE, a propagation phase error
has been introduced, which is given by the following equation:

Aterror = SE+ RE - Sk (4:1)

Cair

The propagation phase error lies somewhere in the region Aterror € (0, 20'5_7? )

which corresponds to some milliseconds. To be more specific, the studied case of
a 3m high noise barrier will return a maximum propagation error of 17.5msec.
However, the error will most likely be further reduced in any practically relevant
source-receiver setup.

Now, which effects will this propagation phase error cause? In an enclosed room
case, as early reflections from walls and ceilings are included, the propagation
phase error will cause a small time shift for the edge diffraction energy contri-
bution relative to the rest of the room’s impulse response. Therefore, if Ateyror
is large, there may be expected some errors in the auralized sound quality of
the simulation relative to the true acoustic conditions. As an indicator on the
scope of this error, it may be appropriate to consider the well-established room
acoustic parameters Deutlichkeit Dsg and Clarity Cgg. Accordingly, since these
parameters operates with time intervals of [0,50]msec and [0,80]msec, there
may be reasonable to assume that the propagation phase error will be of minor
importance.

Some interference pattern errors may also appear due to the propagation phase
error. However, as interference patterns are generally neglected in geometrical
room acoustics, these potential interference pattern errors will not be further
discussed.

4.7 Finite noise barrier issues

When considering a finite noise barrier case some new troubles are introduced,
and the presented modelling may not be able to comply. In the presented results,
only the infinite noise barrier case has been simulated. Evidently, this is an ideal
situation and a rare case in room acoustics. In the more applicable case of a
finite noise barrier, edge diffraction contributions will also arise from the two
sides of the barrier. By the presented noise barrier modelling technique, the
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potential number of three edge diffraction contributions, all arriving at different
propagation times, is clearly not supported.

Again, one possible solution could be to reconsider the semi-transparent noise
barrier modelling design. Maybe it could be more profitable to apply a semi-
transparent design that is most semi-transparent close to the edges? However,
more attention would then be required regarding the overall ray arrival sample
ny - as it is highly desired to obtain the typical impulse response shape of the
edge diffraction case.

Anyhow, for the presented semi-transparent noise barrier modelling it must be
stated that only 1st order edge diffraction from a surface can be applied. Ap-
parently, this again corresponds to a reliance on the room acoustic parameters
Deutlichkeit Dsg and Clarity Cgg. Whether or not this is a good approach re-
garding auralization could perhaps be further discussed.

4.8 Further transmission coefficient studies

Interestingly, a consecutive assumption by the proposed semi-transparent mod-
elling is that there seems to be a strong correlation between the peak value of
the impulse response hyef(npeqr) and the entire impulse response hyef(n). This
assumption is given by the fact that the entire simulated impulse response h(n)
is constructed based on the receiver array Rg’s impulse response peak values.
Consequently, also the bass tail zone transmission coefficient is based on the out-
come of these peak values. However, it is a well-known fact that the frequency
response will vary to some extent as the receiver is moved closer to the barrier
edge, since the efficient screening height is then lowered and more mid frequency
energy is added. Therefore, it should be expected that the assumed peak value
correlation will lead to a certain amount of errors. Fortunately, as the above
discussion claims, the peak correlation assumption still seems to work out fairly
well.

Now, as the true impulse response peak value 77 in eq. plays an important
role in the proposed semi-transparent modelling, there should also be of vital
interest to study whether there is possible to derive a simple relationship between
Ty and the simple geometry of the infinite noise barrier case. The preferred
variables would then typically be the source position {S;,S.} and the receiver
position {R,, Rz}. However, the total number of four input parameters will make
it a bit complicated to derive a simple relationship. Therefore, a great advantage
would be to assume a relationship that can be expressed by e.g. the product of
two transmission coefficients:
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Tl(Sam 527 R$7 Rz) = TSl(S$7 Sz) . TRl (Rza Rz) (42)

At an early stage in this research process, some simulation sessions were carried
out in order to seek such a relationship. Sadly, no usable material was found,
and as this was not considered main focus in the research process it was even-
tually decided to instead take advantage of the results from the pre-processed
reference Edge diffraction toolbox values. Such an alternative could be associ-
ated with an implemented table sheet in geometrical room acoustic softwares.
However, for advantage, further studies should be performed in search for a pos-
sible T1(S4, S, Rz, R,) relationship. A reasonable proposal would perhaps be to
work with spherical coordinates - centered at the noise barrier edge. The reason
is that there may be assumed that the angles g and 0r will contain essential
information.

4.9 Software implementation issues

As mentioned, a main goal of this study has been to find an edge diffraction
modelling that easily can be implemented in existing commercial geometrical
room acoustic softwares. Likewise, it has been stated that the proposed mod-
elling concept seems to correspond with the often applied diffuse rain algorithm.
However, the presented semi-transparent noise barrier modelling results have all
been built by a Matlab script, and no serious attempt has so far been made on
a true geometrical room acoustic software implementation. Therefore, this fi-
nal discussion will be dedicated to possible issues regarding a potentional future
semi-transparent edge diffraction implementation.

Interestingly, the presented modelling is based on a broadband simulation tech-
nique, which to some extent is advantageous, but which also will cause some is-
sues regarding a potentional room acoustic software implementation. Normally,
to imitate an octaveband-dependent absorption factor related to each surface,
simulations are run separately for each octaveband. From there, the echogram
values of each octaveband are post-processed to form an interpolated frequency
response. Finally, this frequency response is combined with a digital signal pro-
cessing minimum-phase filter to generate a continuous broadband impulse re-
sponse curve. Accordingly, the question is then how a broadband simulation
technique can be added to this applied octaveband simulation technique? One
possible solution could perhaps be to run a separate "edge diffraction” simula-
tion session in addition to all the octaveband simulations, and then somehow
merge the edge diffraction impulse response to the final output impulse response
by post-processing. Unfortunately, at this moment it remains unknown whether
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such an operation successfully can be implemented, but hopefully some future
studies will deal with this current problem.

For simplicity, rays are usually distributed with a constant mutual angle out
from the source in geometrical room acoustic softwares. This means that each
ray represents a certain constant angle of the sphereical wave. However, in the
developed model - as each ray k is linked to a fixed size subarea dSj, of the noise
barrier, the rays do not represent a uniformly distributed angle of a spherical
wave source. However, this fact should not cause troubles in a potential future
geometrical room acoustic software implementation, as the only adaptation would
be to give dSj a variable value.

Further studies should be performed regarding the reverbant consequencies of
the presented edge diffraction modelling. In this study only early edge diffraction
energy contributions are considered. How is the reverbant field affected by this
modelling technique? Moreover, since this is a broadband simulation method,
what will happen as these rays hit a frequency-dependent absorptive surface?
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Chapter 5

Conclusion

To summarize, a general potential in the proposed semi-transparent edge diffrac-
tion modelling technique has been revealed. The presented results and discussion
indicate a somewhat successful modelling of the infinite noise barrier edge diffrac-
tion case. However, some unwanted errors are introduced at rare source-receiver
positions. Also, some errors are found by the adoption of a multiple receivers
quality, especially for a non-symmetric y-axis. Thus, possible future studies
should be performed in search for a somewhat improved modelling procedure.

As desired, there seems to be possible to implement the presented edge diffrac-
tion modelling in existing geometrical room acoustic softwares. Apparently, the
modelling tends to agree with the often applied diffuse rain algorithm. However,
no attempt has so far been made on a true geometrical room acoustic software
implementation. Some possible complications are introduced as the presented
modelling is a broadband ray-tracing simulation method, whereas the common
procedure is to perform individual octaveband simulations. In conclusion, further
research should study to which extent the proposed modelling technique actually
can be implemented in commercial geometrical room acoustic softwares.

A main outcome of this report reveals that a fairly satisfying model of the noise
barrier edge diffraction case can be devoloped based only the reference model’s
impulse response peak value. Accordingly, there should be of further interest to
find a somewhat simple relationship between the impulse response peak value
and the simple geometry of the given infinite noise barrier case.
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Appendix A

CATT-Acoustic files

A.1 CATT-Acoustic geometry file

This is the CATT-Acoustic .geo file that was exported into a .cad file and used
as the geometry file in the EDBmainISESx Matlab toolbox.

:MASTER.GEO
;PROJECT=NoiseBarrier

; INCLUDE

; OFFSETCO
; OFFSETPL

;MIRROR co_add pl_add
ABS wall <10 10 10 10 10 10> ;L <10 10 10 10 10 10>
CORNERS

;id
1
2
11
12
101 0O 0 O

y z

CCOoOONX
(=2
o

PLANES
;[id name / / absname |

[1 sourceSide / 1 2 12 101 11 / wall ]
[2 receiverSide / 1 11 101 12 2 / wall ]
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Appendix B

Matlab files

B.1 The EDBtoolbox setup file

A file that was run as the setup file by the EDBmainISESx function in the
EDBtoolbox. The file includes the source Sg and receiver array Rg. For those
presented figures with additional receiver positions, the additional receivers where
simply added by an extended receiver matrix.

%% NOISE BARRIER — infinite in free field
% by Anders Isebakke

global FSAMP CAIR RHOAIR SHOWTEXT
FSAMP = 24000; % Sample frequency

CAIR = 343; % Speed of sound
RHOAIR = 1.21; % Rho air
SHOWTEXT = 3; % Determines how much text will be printed on the screen

%% Input/Output files

% INPUT: CAD geometry file

CADfile = ’C:\ Anders\Skole\Master\Simulations\NoiseB\NoiseBarrierGEO .CAD’;
open_or_closed model = ’0’; % Specify if the model is open or closed
int_or_ext model = ’e’; % Specify if you are interested in the

% interior or exterior of the model.

% OUTPUT filepath
Filepath = ’C:\ Anders\Skole\Master\Simulations\NoiseB\MatlabOUT\ ’;

% OUTPUT filestem (output files will start with this name)
Filestem = ’NoiseBarrier_infinite_freefield _OUT ’;

%% Source and receivers

% SOURCE: SG
sources = [—((30—1)*rand(1,1) + 1) 0 ((2.75—0.25)*rand(1,1)+40.25)];

% RECEIVERS: RG
xREC = ((30—1)*rand(1,1) + 1);
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yREC = zeros (1,9);
zREC = linspace (0.5,2.5,9);

receivers = zeros(length (zREC) ,3);
receivers (:,1) = xREC;
receivers (:,2) = yREC;
receivers (:,3) = zREC;

%% Calculation parameters

EDcalcmethod = ’'n’; % ’'n’ = the new method by Svensson et al.
directsound = 1; % 1 to include the direct sound
% 0 to exclude the direct sound

specorder = 2; % The highest number of specular reflections.
difforder = 1; % The highest number of edge diffractions.
% Note that specorder must be >= difforder.
elemsize = 1; % Accuracy parameter for each order of edge diffraction.

% The vector must start with 1. The value 0.5 decides how
% small edge elements will be used for second order

% diffraction. A higher number gives more accurate

% results but takes much longer time.

% For third—order: elemsize = [1 0.5 0.25] for

% instance.

nedgesubs = 2; % This is a parameter that decides how many parts
% each edge is divided into for the
% part—visibility check of edges. A higher number
% gets more accurate but takes much longer time.
% Minimum = 2.

calcpaths = 1; % If you want to run the first calculation step
% (find the paths), set the value 1.

% 1f you have run this part earlier and just want
% to change some setting for the second calculation
% step, then you can re—use the first step and set
% this value to O.

calcirs = 1; % 1f you want to run the second calculation step

% (construct IRs), set the value 1, otherwise 0.
firstskipcorner = 10; % exclude all cormers with corner numbers higher than this.
Rstart = 0; % All impulse responses will have a lot of zeros

% at the start, if the distance from source

% to reciever isb5 long, and the sampling frequency
% is high. By setting Rstart to some non—zero

% value, the impulse responses will all start at
% the time that corresponds to this distance in

% meters. It is important to set this longer than
% the minimum that can ever happen since there
might be some cryptic error message otherwise.

X
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B.2 Typical impulse and frequency response

A file that was used for to make the figures of the typical impulse response in
Figure 2.2 and frequency response in Figure 2.3

%% A typical example of noise barrier edge diffraction
% by Anders Isebakke

%% Initialize the IR matrix

longestIR = load ([ ’MatlabOUT\ NoiseBarrier _infinite_freefield _OUT_1_ ",
num2str(length(receivers(:,1))),’ _ir.mat’]);

% Impulse response vector
ir = zeros(int64(1.5xlength (longestIR.irtot)),length(receivers (:,1)));

% Time vector
tvec = 0:1/FSAMP:(length (ir (:,1)) —1)/FSAMP; % Time vector
/ g

for ii = l:length(receivers(:,1))
temp = load ([’ MatlabOUT\NoiseBarrier infinite freefield OUT _ 1 _’,
num2str(ii),’ ir.mat’]);

ir(l:length (temp.irtot),ii) = temp.irtot;
end

%% Preform the Fast Fourier transform

nfft = FSAMP/4; % Number of FFT elements
fvec = 1:4:FSAMP; % Frequency vector

% The frequency response vector
FreqResp = zeros (nfft ,length (ir (1 ,:)));
for ii = 1l:length(FreqResp (1,:))
FreqResp (:,ii) = fft (full (ir(:,ii)),nfft);
end

%% Make figures

figure (1); % Impulse responses

plot (1000.xtvec ,ir ,’b’, LineWidth’ ,4);

set (gca, FontSize ’ ,14);

xlabel (’>Time [ms]’);

title (’Impulse response of an edge diffraction case’,
’FontWeight ’, >bold >, Fontsize ' ,16);

axis ([25 55 —0.0005 0.008]);

grid on;

figure (2); % Frequency responses

semilogx (fvec ,20.x1logl10 (abs(FreqResp)),’b’, LineWidth’ ,4);

axis ([100 5000 —45 —27]);

set (gca, ' FontSize ' ,14);

xlabel (’Frequency [Hz]’);

ylabel (’[dB]’);

title (’Frequency response of an edge diffraction case
’FontWeight ’, >bold ’, > Fontsize > ,16);

grid on;

s
’
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B.3 Ray paths illustration

A file that was used to build the ray paths illustration in Figure 2.4

%% A script that illustates the ray paths
% by Anders Isebakke

%% The geometry

FSAMP = 24000; % Sample frequency

CAIR = 343; % Speed of sound
src = [-5 0 1.5]; % Sources
rec = [5 0 1.5]; % Receiver
edge = 3; % The barrier height

barrierH = 3; % Barrier height

barrierW = 6; % Barrier width

numbOfElemZ = 3; % Number of elements along z—axis

numbOfElemY = 5; % Number of elements along y—axis

elemArea = (barrierH/numbOfElemZ)x*(barrierW /numbOfElemY ); % Element area
%% Ray hits at barrier — [x y z]

rayHits = zeros (numbOfElemY *numbOfElemZ,3);
for jj=0:numbOfElemZ—1
for ii=0:numbOfElemY—1
rayHits ((ii+41)4+(numbOfElemY=*jj),2) = (0.5%barrierW /numbOfElemY) -+
(ii.* barrierW /numbOfElemY) — (barrierW /2);
end
end
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
rayHits ((14(jj *(numbOfElemY ))): (numbOfElemY+(jj * (numbOfElemY))) ,3) =
— (0.5xbarrierH /numbOfElemZ) + ((jj+1).*xbarrierH/numbOfElemZ);
end
end

%% Noise Barrier Color Mapping

wallCorners = zeros (numbOfElemY +1,numbOfElemZ+1);
for ii=1l:numbOfElemY+1

wallCorners (ii ,:) = linspace (0,barrierH ,numbOfElemZ+1);
end
zVec = linspace (0,barrierH ,numbOfElemZ+1);
xVec = zeros (1,4);
yVec = linspace(—barrierW /2,barrierW /2,length(wallCorners (:,1)));
patchesY = zeros (numbOfElemY *numbOfElemZ ,4);
for jj = 0:numbOfElemZ-—1
for ii = 1l:numbOfElemY
patchesY (ii+(numbOfElemYx*jj ) ,:) = [yVec(ii) yVec(ii+1) yVec(ii+1) yVec(ii)];
end
end

patchesZ = zeros (numbOfElemY*numbOfElemZ ,4);
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
patchesZ (ii+(jj *(numbOfElemY )) ,:) = [zVec(jj+1) zVec(jj+1) zVec(jj+2) zVec(jj+2)];
end
end
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%% A plot of the ray paths
edgeColoor = [0.2 0.2 0.2];

figure (2);
plot3(src(l),src(2),src(3),’k o’,” MarkerSize’,20,  MarkerFaceColor’,’b’);
text (src(1),src(2)—0.25,src(3),’\ color{black}Source’,’  FontSize’,14, .
’HorizontalAlignment ', " left *);
for ii = l:length(rec(:,1))
hold onj;
plot3(rec(ii ,1),rec(ii,2),rec(ii,3),’k d’,’ MarkerSize’,20,
>MarkerFaceColor’,’b’);
end
text (rec (1), rec(2)—0.25,rec(3),’\ color{black}Receiver’,’FontSize’,14,
’HorizontalAlignment >, left ’);
for ii = l:numbOfElemY*numbOfElemZ
hold on;
patch (xVec,patchesY (ii ,:), patchesZ(ii ,:),[0.4 0.8 0.6],
>EdgeColor’ ,edgeColoor);
end
for ii = l:length(rayHits (:,1))
hold onj;
plot3 ([src (1) rayHits(ii ,1) rec(1)],[src(2) rayHits(ii,2) rec(2)],
[src(3) rayHits(ii ,3) rec(3)],’b’, LineWidth’,2);
end
set (gca, ' FontSize ' ,14);
hold off;
axis([=5 5 —3 3 0 5]);
xlabel (’x—axis [m] ’);
ylabel (’y—axis [m]’);
zlabel ("z—axis [m]’);
title (’Subarea tessellation and ray paths’,’FontWeight’, bold’,’Fontsize’ ' ,18);
grid off;
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B.4 nth sample barrier intersection area illustration

A file that was used to build the nth sample barrier intersection area illustration
in Figure 23]

%% A script that illustates the different nth sample regions of the barrier
% created on Apr. 28, 2011 by Anders Isebakke

%% The geometry

FSAMP = 24000; % Sample frequency

CAIR = 343; % Speed of sound

src = [-5 0 1.5]; % Sources

rec = [5 0 1.5]; % Receivers

edge = 3; % The barrier height

barrierHit = zeros(length(rec(:,1)),1);
for ii = 1l:length(barrierHit)
barrierHit (ii) = ...
(rec(ii ,3) — rec(ii ,1)*((rec(ii,3)—src(3))/(rec(ii,1)—src(1))));
end

distSRCtoP = zeros(length(rec(:,1)),1);
for ii = l:length(distSRCtoP)

distSRCtoP (ii) = norm ([0 O barrierHit (ii)] — src);
end

distPtoREC = zeros (length(rec(:,1)),1);
for ii = 1l:length (distPtoREC)

distPtoREC(ii) = norm ([0 O barrierHit (ii)] — rec(ii ,:));
end

sampelRadius = zeros(length(rec(:,1)),1);
for ii = l:length (sampelRadius)
sampelRadius(ii) = ...
sqrt (2.% (CAIR/FSAMP) . x ((distPtoREC (ii )*distSRCtoP (ii))./
(distPtoREC (ii)+distSRCtoP (ii))));
end

barrierH = 3; % Barrier height

barrierW = 6; % Barrier width

numbOfElemZ = 201; % Number of elements along z—axis

numbOfElemY = 401; % Number of elements along y—axis

elemArea = (barrierH/numbOfElemZ)x*(barrierW /numbOfElemY ) ; % Element area

%% Ray hits at barrier — [x y z]

rayHits = zeros (numbOfElemY *numbOfElemZ,3);
for jj=0:numbOfElemZ—1
for ii=0:numbOfElemY—1
rayHits ((ii+1)+(numbOfElemY*jj
(0.5% barrierW /numbOfElemY)

),2) = ...
+ (ii.*barrierW /numbOfElemY) — (barrierW /2);

end
end
for jj=0:numbOfElemZ—1

for ii=1:numbOfElemY

rayHits ((14(jj *(numbOfElemY ))): (numbOfElemY+(jj * (numbOfElemY))) ,3) =
— (0.5xbarrierH /numbOfElemZ) + ((jj+1).*xbarrierH/numbOfElemZ);
end

%% Ray propagation Time and Sample

rayDelays = zeros(length(rayHits(:,1)),length(rec(:,1)));
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raySampleFloat = zeros(length (rayDelays),length(rec (:,1)));
for jj = l:length(rec(:,1))
for ii = l:length(rayHits (:,1))
rayDelays(ii,jj) = ..
(norm (rayHits (ii, )7src) + norm(rec(jj,: )7rayH1ts(11 ,1))) / CAIR;
raySampleFloat (ii , jj) = FSAMP.xrayDelays(ii ,jj);
end
end

minRaySampleFloat = min(raySampleFloat)—floor (min(raySampleFloat));

% Ray sample number
raySample = zeros (length (rayHits (:,1)),length(rec(:,1)));
for ii = 1l:length(rec(:,1
raySample (:,ii) = floor(raySampleFloat (:,ii)—minRaySampleFloat(ii));
end
minRaySample = min(raySample);

%% Noise Barrier Color Mapping

wallCorners = zeros (numbOfElemY +1,numbOfElemZ+1);
for ii=1:numbOfElemY+1

wallCorners (ii ,:) = linspace (0,barrierH ,numbOfElemZ+1);
end
zVec = linspace (0,barrierH ,numbOfElemZ+1);
xVec = zeros (1,4);
yVec = linspace(—barrierW /2,barrierW /2,length(wallCorners (:,1)));

patchesY = zeros (numbOfElemY *numbOfElemZ ,4);
for jj = 0:numbOfElemZ—1
for ii = 1l:numbOfElemY
patchesY (ii-+(numbOfElemY=x*jj) ,:)
[yVec(ii) yVec(ii+1) yVec(11+1) yVec(11 )]s
end
end

patchesZ = zeros (numbOfElemY*numbOfElemZ ,4);
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
patchesZ (ii+(jj *(numbOfElemY)) ,:) =
[zVec(jj+1) zVec(jj+1) zVeC(JJ+2) ZVeC(JJ +2)1;5
end
end

%% A plot of the nth sample noise barrier intersection

edgeColoor = ’'none’;

figure (2);
plot3(src(l),src(2),src(3),’k o’,” MarkerSize’,20,  MarkerFaceColor’,’b’);
text (src(1),src(2)—0.25,src(3),’\ color{black}Source’,’ FontSize’,14, .
’HorizontalAlignment ', " left ’);
for ii = l:length(rec(:,1))
hold onj;
plot3(rec(ii ,1),rec(ii,2),rec(ii ,3),’k d’,’ MarkerSize’,20,
>MarkerFaceColor’,’b’);

end

text (rec (1), rec(2)—0.25,rec(3),’\ color{black}Receiver’,’FontSize’,14,
>HorizontalAlignment ', left ’);

for ii = 1:numbOfElemY*numbOfElemZ
hold on;

patch (xVec,patchesY (ii ,:), patchesZ(ii ,:),[0.4 0.8 0.6],
’EdgeColor’ ,edgeColoor);
for jj = l:length (minRaySample)
if raySample(ii,jj)—minRaySample(jj) = 0
patch (xVec, patchesY (ii ,:),patchesZ (ii ,:),’r’,
’EdgeColor ’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) = 1
patch (xVec, patchesY (ii ,:),patchesZ (ii ,:),’
’EdgeColor’,edgeColoor);
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end
if raySample(ii,jj)—minRaySample(jj) = 2
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:), y’,
>EdgeColor’ ,edgeColoor);

end
if raySample(ii,jj)—minRaySample(jj) =— 3
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:), 'm’,
’EdgeColor’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) = 3
patch (xVec, patchesY (ii ,:),patchesZ (ii ,:), y"’,
’EdgeColor’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) =— 4
patch (xVec,patchesY (ii ,:),patchesZ (ii ,:), ' m’,
’EdgeColor’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) = 5
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:), y’,
’EdgeColor’ ,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) =— 6
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:), 'm’,
>EdgeColor’ ,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) = 7
patch (xVec, patchesY (ii ,:),patchesZ (ii ,:), y’,
’EdgeColor’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) =— 8
patch (xVec, patchesY (ii ,:),patchesZ(ii ,:), ' m’,
’EdgeColor’,edgeColoor);
end
if raySample(ii,jj)—minRaySample(jj) = 9
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:), y’,
’EdgeColor’ ,edgeColoor);
end
end
end
hold on;

sectorl = plot3(1000,1000,1000,’r o’,’MarkerSize’,18,  MarkerFaceColor

hold on;

sector2 = plot3(1000,1000,1000,’g o’,’ MarkerSize

hold on;

sector3 = plot3(1000,1000,1000,’y o’,’ MarkerSize’,18,  MarkerFaceColor

hold onj;

sector4 = plot3(1000,1000,1000,'m o’,’ MarkerSize’,18,  MarkerFaceColor

hold off;

set (gca, FontSize ' ,14);

axis([-5 5 —3 3 0 5]);

legend ([ sectorl sector2 sector3 sector4],’lst sample’,’2nd sample’,
’3rd sample’,’etc...");

xlabel (’x—axis [m] ’);

ylabel (’y—axis [m]’);

zlabel ("z—axis [m]’);

title ("The {\itn}th sample barrier intersection area’,
’FontWeight ', >bold ’,’ Fontsize ’ ,18);

grid off;

,18,” MarkerFaceColor
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B.5 Noise barrier zone division sketch

A file that was used to build the noise barrier zone division sketch in Figure 2.8

%% A script that builds a sketch of the noise barrier zone division
% by Anders Isebakke

FSAMP = 24000;
CAIR = 343;

%% The Geometry

src = [—4.5 0 1.5]; % Source position

xREC = 4.5;

yREC = 0;

zREC = linspace (0.5,2.5,9);

rec = zeros (length (zREC) ,3); % Receiver position
rec (:,1) = xREC;

rec (:,2) = yREC;

rec (:,3) = zREC;

edge = 3; % The barrier height

% Coordiates at where the direct sound rays hits the barrier
barrierHit = zeros(length(rec(:,1)),1);
for ii = l:length(barrierHit)
barrierHit (ii) = ...
(rec(ii ,3) — rec(ii ,1)*((rec(ii,3)—src(3))/(rec(ii,1)—src(1l))));
end

% Distance between SRC and barrier hit
distSRCtoP = zeros(length(rec(:,1)),1);
for ii = 1l:length (distSRCtoP)
distSRCtoP (ii) = norm ([0 O barrierHit(ii)] — src);
end

% Distance between REC and barrier hit
distPtoREC = zeros (length(rec(:,1)),1);
for ii = l:length (distPtoREC)
distPtoREC(ii) = norm ([0 O barrierHit (ii)] — rec(ii ,:));
end

% The 1st sample barrier intersection radius
sampelRadius = zeros(length(rec(:,1)),1);
for ii = l:length (sampelRadius)
sampelRadius(ii) = ...
sqrt (2.* (CAIR/FSAMP) . * ((distPtoREC (ii )*distSRCtoP (ii))./
(distPtoREC (ii)+distSRCtoP (ii))));

%% The simulated semi—transparent barrier

barrierH = 3; % Barrier height

barrierW = 6; % Barrier width

numbOfElemZ = 51; % Number of elements along z—axis

numbOfElemY = 101; % Number of elements along y—axis

elemArea = (barrierH/numbOfElemZ)x*(barrierW /numbOfElemY ); % Element area
%% Ray hits at barrier — [x y z]

rayHits = zeros (numbOfElemY *numbOfElemZ,3);
for jj=0:numbOfElemZ—1

for ii=0:numbOfElemY—1

rayHits ((ii41)4+(numbOfElemY=*jj),2) =
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(0.5« barrierW /numbOfElemY) + (ii.*barrierW /numbOfElemY) — (barrierW /2);
end
end
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
rayHits ((14(jj *(numbOfElemY ))): (numbOfElemY+(jj * (numbOfElemY))) ,3)
— (0.5xbarrierH /numbOfElemZ) + ((jj+1).*xbarrierH/numbOfElemZ);
end

%% Time dealys and sample numbers of the rays

% The time delay of each ray
rayDelays = zeros(length(rayHits(:,1)),length(rec(:,1)));

% The incomming sampel of each ray — float number!
raySampleFloat = zeros(length (rayDelays),length(rec (:,1)));

for jj = l:length(rec(:,1))
for ii = l:length(rayHits (:,1))
rayDelays(ii,jj) = ..
(norm(rayHits (ii , )7src‘) + norm(rec(jj,:)—rayHits(ii ,:)))/CAIR;
raySampleFloat (ii ,jj) = FSAMP.xrayDelays (ii,jj);
end
end

% A parameter used to obtain the 1st sample regions (a small time—shift)
minRaySampleFloat = min(raySampleFloat)—floor (min(raySampleFloat));

% The incomming sampel of each ray — integer number!
raySample = zeros(length(rayHits (:,1)),length(rec(:,1)));
for ii = l:length(rec(:,1
raySample (:,ii) = floor(raySampleFloat (:,ii)—minRaySampleFloat(ii));
end

% The direct sound rays’ sample number
minRaySample = min(raySample);

%% Noise Barrier color mapping

wallCorners = zeros (numbOfElemY+1,numbOfElemZ+1);
for ii=1l:numbOfElemY+1

wallCorners (ii ,:) = linspace (0,barrierH ,numbOfElemZ+1);
end
zVec = linspace (0,barrierH ,numbOfElemZ+1);
xVec = zeros (1,4);
yVec = linspace(—barrierW /2, ,barrierW /2 ,length (wallCorners (:,1)));

patchesY = zeros (numbOfElemY *numbOfElemZ ,4);
for jj = 0:numbOfElemZ—1
for ii = 1l:numbOfElemY
patchesY (ii-+(numbOfElemYx*jj ) ,:) =
[yVec(ii) yVec(ii+1) yVec(11+1) yVec(n )1
end
end

patchesZ = zeros (numbOfElemY*numbOfElemZ ,4);
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
patchesZ (ii+(jj *(numbOfElemY)) ,:) =
[zVec(jj+1) zVec(]jj+1) zVec(]j +2) zVec(” +2)];
end
end

%% A plot of the noise barrier zone division
edgeColoor = [0.2 0.2 0.2];

figure (1);
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plot3(src(l),src(2),src(3),’k o’,” MarkerSize’,20,
>MarkerFaceColor’,’b’);
text (src(1l),src(2)—0.25,src(3),’\ color{black}sS_G’,

>FontSize’,14, HorizontalAlignment ', ’left ”);
for ii = l:length(rec(:,1))
hold on;

plot3(rec(ii ,1),rec(ii,2),rec(ii,3),’k d’,
’MarkerSize ’,20,’ MarkerFaceColor’,’'b’);

end
text (rec(6,1),rec(6,2)—0.25,rec(6,3),’\ color{black}R G,
’FontSize ’,14,  HorizontalAlignment ', ’left ’); -
for ii = 1:numbOfElemY*numbOfElemZ
hold onj;
patch (xVec,patchesY (ii ,:),patchesZ(ii ,:),[0.4 0.8 0.6],
’EdgeColor’,edgeColoor);
for jj = 1l:length (minRaySample)
if raySample(ii,jj)—minRaySample(jj) = 0
patch (xVec, patchesY (ii ,:), patchesZ(ii ,:),’r’);
end
end
end
hold on;

zonel = plot3(1000,1000,1000,’r o’, MarkerSize’,18 ,’MarkerFaceColor’,’'r’);

hold on;

zone2 = plot3(1000,1000,1000,’0’,” MarkerSize’,18, ...
’MarkerEdgeColor’,[0.4 0.8 0.6],  MarkerFaceColor’,[0.4 0.8 0.6]);

hold off;

set (gca, ' FontSize ' ,14);

axis([=5 5 —3 3 0 5]);

legend ([zonel zone2],’Mid/high peak zone’,’Bass tail zone’);

xlabel (’x—axis [m] ’);

ylabel (’y—axis [m]’);

zlabel (’z—axis [m]’);

title ("The final semi—transparent noise barrier design’,
’FontWeight ’, >bold ’,’ Fontsize > ,18);

grid off;
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B.6 Impulse response shaped by two transmission zones

A file that was used to build the sketch of the concept of an impulse response
being shaped by the two transmission zones in Figure 2.9

%% A script on the concept of a two—zones shaped impulse response
% by Anders Isebakke

%% Initialize the IR matrix

longestIR = load ([ ’MatlabOUT\ NoiseBarrier _infinite_freefield _OUT_1_ ",
num2str(length(receivers(:,1))),’ _ir.mat’]);

ir = zeros(int64(1.5xlength(longestIR.irtot)),length(receivers (:,1)));

tvec = 0:1/FSAMP:(length(ir (:,1)) —1)/FSAMP; % Time vector

for ii = l:length(receivers (:,1))

SRCtemp = load ([ MatlabOUT\ NoiseBarrier infinite freefield OUT 1 ',
num2str(ii),’ ir.mat’]); N N N o
ir (1l:length (SRCtemp.irtot),ii) = SRCtemp.irtot ;

end
[maxIR,maxIRsamp] = max(ir ); % The value and sampel nr of the peak

%% Make a figure

figure (1); % Impulse responses —two zones
plotl = stem (1000.%tvec (maxIRsamp+9:maxIRsamp+180), ...
ir (maxIRsamp+9:maxIRsamp+180),’Color’ ,[0.4 0.8 0.6],’LineWidth’,3,
’MarkerEdgeColor’, ’none’);
text (1000.* tvec (maxIRsamp+67),2.5% ir (maxIRsamp+67), ...
’\color{black}Bass tail zone’,’ FontSize’,20, .
>HorizontalAlignment ', left ”);
hold onj;
plot2 = stem (1000.x* tvec (maxIRsamp: maxIRsamp—+8), ...
ir (maxIRsamp: maxIRsamp+8),’r’, LineWidth’,3,>MarkerEdgeColor’, 'none ’);
text (1000.% tvec (maxIRsamp+2) 4+ 0.1,ir (maxIRsamp+2),
’\ color{black}Mid/High peak zone’,’FontSize’,20,
’HorizontalAlignment ', left ”);
hold off;
set (gca, FontSize’ ,14);
xlabel (’>Time [ms]’);
title (’Impulse response of an edge diffraction case
’FontWeight ', >bold ’, > Fontsize ’ ,16);
axis ([28 37 —0.0005 0.008]);

5
>
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B.7 Final developed semi-transparent modelling

A file that includes the entire procedure/processing of the final developed semi-
transparent noise barrier modelling.

%% The Semi—Transparent Noise Barrier Modelling
% by Anders Isebakke

%% Import the IR_ref files

longestIR = load ([ ’MatlabOUT\ NoiseBarrier _infinite_freefield _OUT_1_ ",
num2str(length(receivers(:,1))),’ _ir.mat’]);

% The IR_ref matrix
ir = zeros(int64(1.5xlength (longestIR.irtot)),length(receivers (:,1)));
for ii = l:length(receivers (:,1))

SRCtemp = load ([ ’MatlabOUT\ NoiseBarrier infinite freefield OUT_1_ ~,

num2str(ii),’ ir.mat’]);
for jj = l:length (SRCtemp.irtot)
ir(jj,ii) = full (SRCtemp.irtot (jj));
end
end
[maxIR ,maxIRsamp] = max(ir ); % The value and sampel nr of the peak

irPeak = zeros(l,length(maxIR));
for ii = l:length(irPeak)

irPeak (ii) = ir (maxIRsamp(ii),ii) + ir (maxIRsamp(ii)—1,ii);
end

%% The Geometry

src = sources; % Source position
rec = receivers; % Receiver positions (an array along z—axis)
edge = 3; % The barrier height

% Coordiates at where the direct sound rays hits the barrier
barrierHit = zeros(length(rec(:,1)),1);
for ii = l:length(barrierHit)
barrierHit (ii) = (rec(ii ,3) — rec(ii ,1)=
((rec(ii,3 )7src(3))/(rec(11,1)7src(1))))

end

% Distance between SRC and barrier hit
distSRCtoP = zeros(length(rec (:,1)),1);
for ii = l:length (distSRCtoP)
distSRCtoP (ii) = norm ([0 0 barrierHit(ii)] — src);
end

% Distance between REC and barrier hit
distPtoREC = zeros (length(rec(:,1)),1);
for ii = l:length (distPtoREC)
distPtoREC(ii) = norm ([0 O barrierHit (ii)] — rec(ii ,:));
end

% The 1st sample barrier intersection radius
sampelRadius = zeros(length(rec(:,1)),1);
for ii = l:length(sampelRadius)
sampelRadius(ii) = sqrt (2.%(CAIR/FSAMP).x* ...
((distPtoREC (ii)*distSRCtoP (ii))./(distPtoREC(ii)+distSRCtoP (ii))));
end

%% The truncated dS
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% dS — untruncated
dStemp = pi.*(sampelRadius."2);

dl = barrierHit; % distance from wall intersection to floor
d2 = edge—barrierHit; % distance from wall intersection to wall edge
% angle of the included circle sector — given by floor limitation

betal = 2.x(pi—real(acos(dl./sampelRadius)));

% angle of the included circle sector — given by wall height limitation
beta2 = 2.x(pi—real(acos(d2./sampelRadius)));

% The sector Sl
Ssecl = dStemp.x(betal /(2%xpi));
Stril = real(dl.xsqrt ((sampelRadius.~2)—(d1.72)));

% The sector S2
Ssec2 dStemp.* (beta2 /(2xpi));
Stri2 real (d2.xsqrt ((sampelRadius.”2)—(d2.72)));

% The trunctation factor: (S14+S2-8)/S
trunc = ((Ssecl+Stril)+(Ssec2+Stri2)—(dStemp))./dStemp;

% dS — truncated
dS = dStemp.* trunc;

%% The tremble/mid region transmission factors TI1

% The transmission factors found by EDBmainISESx
taul = irPeak (1:9) .%distSRCtoP (1:9).x*distPtoREC (1:9)./dS(1:9);

% The polynomial fitted curve being used to build the tremble/mid region
taulPolyCoeff = polyfit(edge—rec (1:9,3),taul ,1);
taulPoly = taulPolyCoeff(1l).x(edge—rec(1:9,3)) + taulPolyCoeff(2);

% A plot of the polynomial fitted curve
figure (1);

plot (edge—rec (1:9,3) ,taul);

hold onj;

plot (edge—rec (1:9,3) ,taulPoly,’'r’);
hold off;

%% The simulated semi—transparent barrier

barrierH = 3; % Barrier height

barrierW = 6; % Barrier width

numbOfElemZ = 101; % Number of elements along z—axis

numbOfElemY = 201; % Number of elements along y—axis

elemArea = (barrierH/numbOfElemZ)x*(barrierW /numbOfElemY ) ; % Element area
%% Ray hits at simulated barrier — [x y z]

rayHits = zeros (numbOfElemY *numbOfElemZ,3);
for jj=0:numbOfElemZ—1
for i1i=0:numbOfElemY—1
rayHits ((ii+1)+(numbOfElemY=*jj),2) = (0.5xbarrierW /numbOfElemY) +
(ii.*barrierW /numbOfElemY) — (barrierW /2);
end
end
for jj=0:numbOfElemZ—1
for ii=1:numbOfElemY
rayHits ((14(jj *(numbOfElemY ))): (numbOfElemY+(jj * (numbOfElemY))) ,3)
— (0.5%xbarrierH/numbOfElemZ) + ((jj+1).*barrierH/numbOfElemZ);
end
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%% Time delays and sample numbers of the rays

% The time delay of each ray
rayDelays = zeros(length(rayHits(:,1)),length(rec(:,1)));

% The incomming sampel of each ray — NB: float number!
raySampleFloat = zeros(length (rayDelays),length(rec (:,1)));

for jj = l:length(rec(:,1))
for ii = 1l:length(rayHits (:,1))
rayDelays(ii,jj) = (norm(rayHits(ii,:)—src) +
norm (rec(jj,:) —rayHits(ii ,:)))/CAIR;
raySampleFloat (ii ,jj) = FSAMP.xrayDelays (ii ,jj);
end
end

% A parameter used to obtain the 1st sample regions (a small time—shift)
minRaySampleFloat = min(raySampleFloat)—floor (min(raySampleFloat));

% The incomming sampel of each ray — integer number!
raySample = zeros(length(rayHits(:,1)),length(rec(:,1)));
for ii = 1l:length(rec(:,1))
raySample (:,1i) = floor(raySampleFloat (:,ii)—minRaySampleFloat(ii));
end

% Distance and Samples between SRC and REC
distSRCtoREC = zeros (length(rec(:,1)),1);
sampSRCtoREC = zeros(length(rec(:,1)),1);
for ii = l:length (distSRCtoREC)

distSRCtoREC (ii) = norm(rec(ii ,:) — src);

sampSRCtoREC (ii) = ...

floor (FSAMPxdistSRCtoREC (ii )/CAIR — minRaySampleFloat (ii));

end

% The direct sound rays’ sample number

minRaySample = min(raySample);

%% The Transmission Coefficients

% An initial constant "bass tail zone" value given to all subareas
tauSubArea = (1/10).*mean(taul).xones(1,length(rayHits (:,1)));

% The variable "mid/high peak zone" transmission coeff is added

for ii = 1l:numbOfElemY*numbOfElemZ
for jj = l:length(rec(1:9,3))
if raySample(ii,jj)—minRaySample(jj) =— 0

tauSubArea(ii) = ...
taulPolyCoeff(1l).x(edge—rayHits(ii ,3)) + taulPolyCoeff(2);
end
end
end

tauSubAreaMatrix = zeros(length(rec(:,1)),length(tauSubArea));

for ii=1:length(rec(:,1))
tauSubAreaMatrix(ii ,:) = tauSubArea;
end

%% The Scattering Coefficients

% Values based on cosinus scattering
rayScatt = zeros(length(rec(:,1)),length(rayHits (:,1)));
for jj=1l:length(rec(:,1))
for ii=1l:length(rayHits (:,1))
rayScatt(jj,ii) = (rec(jj,1)./norm(rayHits(ii,:)—rec(jj ,:)))s
end
end
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%% The noise barrier Filtering Process

% Initialize the rays by Dirac pulses (input)
rayDiracs = ones(length(rec(:,1)),length(rayHits (:,1)));

% Find travel lengths for SRCtoHIT and HITtoREC
RraySRCtoHIT = zeros (length(rec(:,1)),length(rayHits (:,1)));
RrayHITtoREC = zeros (length(rec(:,1)),length(rayHits (:,1)));
for jj = l:length(rec(:,1))
for ii l:length (rayHits (:,1))
RraySRCtoHIT (jj ,ii) = norm(rayHits(ii ,:) —src);
RrayHITtoREC (jj ,ii) = norm(rayHits (ii ,:) —rec(jj ,:));

end
end

% The filtering of each ray
rayTemp = ...
(rayDiracs./(RraySRCtoHIT .* RrayHITtoREC )).* tauSubAreaMatrix.xrayScattxelemArea;

% The simulated IR — being built on basis of all the rays
simulR = zeros (2+*max(raySample(end,:)) ,length(rec(:,1)));
for jj=1l:length(rec(:,1))
for ii=1:length(rayHits (:,1))
simulR (raySample (ii ,jj),jj) = ...
simulR (raySample (ii, jj),jj)+rayTemp(jj ,ii);

% A plot of the IRs

count = 0;

figure (2);

for i1i=10:2:length(rec(:,1))
count = count+1;
subplot (2,3 ,count);
plot (ir (:,1ii),’r’,’LineWidth’ ,5);
hold on;
plot (simulR (:,ii),’g”, LineWidth’,3);
hold off;

end

clear count;

%% Perform Fourier Transform

nfft
fvec

FSAMP/ 4; % Number of FFT elements
1:4:FSAMP; % Frequency vector

% Frequency Responses (by FFT)
irFreq = fft (full (ir),nfft);
simulRFreq = fft (simulR, nfft);

% A plot of the FRs
count = 0;
figure (4);
for ii=10:2:length(rec(:,1))
count = count-+1;
subplot (2,3 ,count);
semilogx (fvec ,20.xlogl0(abs(irFreq (:,ii))),’r’, LineWidth’,3);
hold on;
semilogx (fvec ,20.%logl0 (abs(simulRFreq(:,ii))),’g’,  LineWidth’,3);
hold on;
axis ([45 10000 —60 —20]);
hold off;
grid on;
end
clear count;

%% Octave band filtering
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% Octave band filtered IRs — EDBmainISESx
truelR_63 = zeros(size (ir));
truelR_125 = zeros(size (ir));
truelR_250 = zeros(size (ir));
truelR_500 = zeros (size (ir));
truelR_ 1k = H
truelR_2k = zeros(size (ir));
truelR_4k = zeros(size (ir));
truelR_8k = zeros(size (ir));

zeros (size (ir))

% Octave band filtered IRs — Semi—Transparent Method
simulR_63 = zeros(size (simulR));
simulR_125 = zeros(size (simulR));
simulR_250 = zeros(size (simulR));
simulR_500 = zeros(size (simulR));

simulR_ 1k zeros (size (simulR));

simulR_2k = zeros(size (simulR));
simulR_4k = zeros(size (simulR));
simulR_8k = zeros(size (simulR));

for ii=1l:length(rec(:,1))
truelR_63(:,ii) = oktavbandfilter (full (ir (:,ii)),1);
truelR_125(:,ii) = oktavbandfilter(full (ir (:,ii)),2)
truelR_250(:,ii) = oktavbandfilter(full (ir (:,ii)),3)
truelR_500(:,ii) = oktavbandfilter(full (ir (:,ii)) ,4)
truelR_ 1k (:,ii) oktavbandfilter (full (ir (:,1i)),5);
truelR_ 2k (:,ii) oktavbandfilter (full (ir (:,1i)) ,6);

3
H
H

truelR 4k (:,ii) oktavbandfilter (full (ir (:,1i)),7);
truelR_ 8k (:,1ii) oktavbandfilter (full (ir (:,1i)),8);

simulR_63(:,ii) = oktavbandfilter (simulR (:,ii),1);
simulR_125(:,1i) = oktavbandfilter (simulR (:,1i),2);
simulR_250(:,1i) = oktavbandfilter (simulR (:,ii),3);
simulR_500(:,1i) = oktavbandfilter (simulR (:,1i) ,4);
simulR_ 1k (:, ii) oktavbandfilter (simulR (:,1ii),5);
simulR_ 2k (:, ii) oktavbandfilter (simulR (:,1ii),6);
simulR_ 4k (:,ii) oktavbandfilter (simulR (:,1ii),7);
simulR_ 8k (:, ii) oktavbandfilter (simulR (:,1ii),8);

% Octaveband energy level — EDBmainISESx

energyTruelR_63 = 10.xlogl0 (sum(abs(truelR_63).72));
energyTruelR_125 = 10.xlogl0 (sum(abs(truelR_125).72));
energyTruelR_250 = 10.xlogl0 (sum(abs(truelR_250).72));
energyTruelR_500 = 10.xlogl0 (sum(abs(truelR_500).72));
energyTruelR 1k = 10.xlogl0(sum(abs(truelR_1k)."~2));
energyTruelR 2k = 10.xloglO (sum(abs(truelR_2k)."~2));
energyTruelR_4k = 10.xloglO (sum(abs(truelR_4k)."2));
energyTruelR_8k = 10.xlogl0 (sum(abs(truelR_8k)."2));

% Octaveband energy level — Semi—transparent method

energySimulR_63 = 10.xlogl0 (sum(abs(simulR_63)."2));

energySimulR_125 = 10.xlogl0 (sum(abs(simulR_125)."2));

energySimulR_250 = 10.xlogl0 (sum(abs(simulR_250)."2));

energySimulR_500 = 10.xlogl0 (sum(abs(simulR_500)."2));

energySimulR_1k = 10.xlogl0 (sum(abs(simulR_1k).~2));

energySimulR_2k = 10.xlogl0 (sum(abs(simulR_2k).~2));

energySimulR_4k = 10.xlogl0 (sum(abs(simulR_4k).~2));

energySimulR_8k = 10.xlogl10 (sum(abs(simulR_8k).~2));

% Octaveband energy level ERROR

oBandErr = [(energySimulR_63 — energyTruelR_63) ;
(energySimulR_ 125 — energyTruelR_125) ;
(energySimulR_250 — energyTruelR_250)
(energySimulR_500 — energyTruelR_500) ;
(energySimulR_1k — energyTruelR_1k) ;
(energySimulR_2k — energyTruelR_2k) ;
(energySimulR_4k — energyTruelR_4k) ;
(energySimulR_8k — energyTruelR_8k)];

% A plot of the octaveband energy level error

figure (5);

plot ([0 10],[0 0],k ——',’LineWidth’,3);

hold on;

plotH1 = plot (oBandErr(:,end),’: o b’, LineWidth’,3,’MarkerSize ’,8,
’MarkerFaceColor’,’b’);

hold onj;
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plotH2 = plot (oBandErr(:,end —2),’: o g’,’ LineWidth’,3,’ MarkerSize
>MarkerFaceColor’,’g’);

hold on;

plotH3 = plot (oBandErr(:,end —4),’: o r’,’LineWidth’,5,’ MarkerSize
>MarkerFaceColor’,’r’);

hold on;

plotH4 = plot (oBandErr(:,end —6),’: o m’,’LineWidth’',3,’MarkerSize
’MarkerFaceColor’,’m’);

hold on;

plotH5 = plot (oBandErr(:,end —8),’: o ¢’,’LineWidth’,3,” MarkerSize’
’MarkerFaceColor’,’c’);

hold off;

set (gca, FontSize ' ,14);

legend ([ plotH1 plotH2 plotH3 plotH4 plotH5], rec nrl’,’rec nr2’,
’rec nr3’,’rec nrd’,’rec nr5’,’ Location’,’SouthEast ’);

axis ([0 10 —20 20]);

text (1,8, \color{blue}63Hz’,’ FontSize ' ,14, ...
>HorizontalAlignment ', center ’,’ BackgroundColor’ ,[.7 .9 .7]);

text (2,8, \color{blue}125Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', center ’,’ BackgroundColor’ ,[.7 .9 .7]);

text (3,8, \ color{blue}250Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', center ’,’ BackgroundColor’ ,[.7 .9 .7]);

text (4,8, \color{blue}500Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', center ’,’ BackgroundColor’ ,[.7 .9 .7]);

text (5,8, \ color{blue}lkHz’,’ FontSize’ ,14, ...
’HorizontalAlignment ', ’center >, BackgroundColor’ ,[.7 .9 .7]);

text (6,8, \ color{blue}2kHz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,  BackgroundColor’ ,[.7 .9 .7]);

text (7,8, \ color{blue}4kHz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’, ’ BackgroundColor’ ,[.7 .9 .7]);

text (8,8, \ color{blue}8kHz’,’FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor’ ,[.7 .9 .7]);

xlabel (’Octave band’);

ylabel (’[dB]’);

title ("Mean octaveband error’,’FontWeight’, bold’,’ Fontsize’,16);

grid omn;
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B.8 Mean octaveband error calculation scripts

A file that was used to create the mean octaveband error plots in Figure [3.1] and

Figure [3.6]

%% A script for Mean Octaveband Error Analyze
% by Anders Isebakke

%% Initialize the error matrix

numbOfFiles
errorMatrix

100;
zeros (8 ,11+*numbOfFiles);

for ii = l:numbOfFiles

errTemp = load ([ ’oBandErr’ ,num2str(ii),’.mat’]);

errorMatrix (:,1+4+(11%(ii —1)):114(11%(ii —1))) = errTemp.oBandErr;
end

%% Mean, Min and Max

meanError = mean(errorMatrix ,2);
maxError = max(errorMatrix ,[] ,2);
minError = min(errorMatrix ,[] ,2);

%% Interquartile range

interquartileLower zeros (8 ,1);
interquartileUpper zeros (8 ,1);
for ii=1l:length (errorMatrix (:,1))

[y,x] = hist(errorMatrix(ii ,:),50);
y = y/sum(y);

cy = cumsum(y );

lo find (cy >0.125);

lo2 = lo(1);

lol = lo2 —1;

polyFitCoeffLo polyfit ([x(lol) x(lo2)],[cy(lol) cy(lo2)],1);
interquartileLower (ii) = (0.125 — polyFitCoeffLo(2))/ polyFitCoeffLo (1);

hi = find (cy >0.875);

hi2 = hi(1);

hil = hi2 —1;

polyFitCoeffHi polyfit ([x(hil) x(hi2)],[cy(hil) cy(hi2)],1);
interquartileUpper (ii) = (0.875 — polyFitCoeffHi(2))/polyFitCoeffHi(1);

end

%% A plot of the mean octaveband error

figure (1);

plot ([0 10],[0 0],’k ——’,’LineWidth’,3);
hold on;
for ii=1:8
plotH1 = plot ([ii ii],[minError(ii) maxError(ii)],’: s r’,
’LineWidth ’,3 ,’ MarkerFaceColor’,’r’);
hold onj;
end
for ii=1:8
plotH2 = plot ([ii ii],[interquartileLower(ii) interquartileUpper (ii)],
’— s g’, LineWidth’,3,  MarkerFaceColor’,’g’);
hold onj;
end
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plotH3 = plot (meanError,”— o’,’ LineWidth’,5,’ MarkerSize’,10,

>MarkerFaceColor’,’b’);

hold off;

set (gca, FontSize’ ,14);

axis ([0 9 —15 20]);

text (1,17,’\ color{blue}63Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (2,17,’\ color{blue}l125Hz’, FontSize’,14, .
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (3,17,’\ color{blue}250Hz’,  FontSize’,14, .
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (4,17,’\ color{blue}500Hz’, FontSize’,14, .
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (5,17,’\ color{blue}1lkHz’,’FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (6,17,\ color{blue}2kHz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (7,17,’\ color{blue}4kHz’,’ FontSize ’,14,
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (8,17,’\ color{blue}8kHz’,’ FontSize’,14,
’HorizontalAlignment ', ’center ’,’ BackgroundColor

legend ([ plotH3 plotH1 plotH2], 'Mean error ’,’ Max/min
’Interquartile range’,’ Location’,’SouthWest’);

xlabel (>Octaveband ’);

ylabel ("[dB]’);

title (’Mean octaveband error in the shadow zone’,
’FontWeight >, >bold >, Fontsize ' ,16);

grid on;
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A file that was used to create the mean octaveband error plots in Figure [3.2] and

Figure

%% A script for Mean Octaveband Error Analyze
% by Anders Isebakke

%% Initialize the error matrix

numbOfFiles = 100;
errorMatrix = zeros(8,14*numbOfFiles);
errorCorrPMatrix = zeros (8,14*xnumbOfFiles);

for ii = l:numbOfFiles
errTemp = load ([’oBandErr’ ,num?2str(ii),’.mat’]);
errorMatrix (:,1+(14%(ii —1)):144(14%(ii —1))) = errTemp.oBandErr;

5

end

%% Pick out the wanted off—axis receiver errors

vadd0 = zeros (8 ,numbOfFiles);

vadd2 = zeros (8 ,numbOfFiles);

vadd4 = zeros (8 ,numbOfFiles);

vadd6 = zeros (8 ,numbOfFiles);

vadd8 = zeros (8 ,numbOfFiles);

for ii = l:numbOfFiles
yvaddO (:,ii) = errorMatrix(:,10+14x(ii —1));
vadd2 (:,ii) = errorMatrix(:,11+14x(ii —1));
yadd4 (:,ii) = errorMatrix(:,12+4+14x(ii —1));
yadd6 (:,ii) = errorMatrix (:,13+4+14x(ii —1));
yadd8(:,ii) = errorMatrix (:,14+4+14x(ii —1));

end

meanYadd0 = mean(yadd0,2);

meanYadd2 = mean(yadd2,2);

meanYadd4 = mean(yadd4,2);

meanYadd6 = mean(yadd6,2);

meanYadd8 = mean(yadd8,2);

%% Make a plot of the mean octaveband error — off—axis

figure (1);

plot ([0 10],[0 0],’k ——’,”’LineWidth’,3);

hold on;

plotH1 = plot (meanYadd0,”— o g’,’LineWidth’,4,’ MarkerSize’,8,
’MarkerFaceColor’,’g’);

hold on;

plotH2 = plot (meanYadd2,”— o c¢’,’LineWidth’,4,’ MarkerSize’,8,
>MarkerFaceColor’,’c’);

hold on;

plotH3 = plot (meanYadd4,”— o b’,’LineWidth’,4,’MarkerSize’,8,
>MarkerFaceColor’,’b’);

hold on;

plotH4 = plot (meanYadd6,”— o m’,’LineWidth’,4,’ MarkerSize’,8,
>MarkerFaceColor’,’m’);

hold on;

plotH5 = plot (meanYadd8,”— o r’,’LineWidth’,4,  MarkerSize’,8,
>MarkerFaceColor’,’r’);

hold off;

set (gca, FontSize ' ,14);

legend ([ plotH1 plotH2 plotH3 plotH4 plotH5], ..
’\ Deltay = 0 m’,’\ Deltay = 2 m’,’\ Deltay = 4 m’,’\ Deltay = 6 m’,
’\ Deltay = 8 m’,’ Location’,’SouthEast ’);

axis ([0 10 —30 10]);

text (1,7,’\ color{blue}63Hz’,’ FontSize ’,14, ...

’HorizontalAlignment ', ’center ’,’ BackgroundColor’ ,[.7 .9 .7]);
text (2,7, \ color{blue}125Hz’,’ FontSize ’,14, ...
>HorizontalAlignment ’, ’center ’,’ BackgroundColor’ ,[.7 .9 .7]);
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text (3,7, \ color{blue}250Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor
text (4,7, \ color{blue}500Hz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor
text (5,7, \ color{blue}lkHz’,’ FontSize’',14, ..
’HorizontalAlignment ', ’center ’,’ BackgroundColor
text (6,7, \ color{blue}2kHz’,’ FontSize ’',14,

’HorizontalAlignment ', ’center ’,’ BackgroundColor
text (7,7, \ color{blue}4kHz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’  BackgroundColor
text (8,7, \ color{blue}8kHz’,’ FontSize ’,14, ...
’HorizontalAlignment ', ’center ’,’ BackgroundColor
xlabel (’Octaveband ');
ylabel (’[dB] ’);
title ("Mean octaveband error: off y—axis’,
’FontWeight’,>bold’,’ Fontsize ' ,16);

grid omn;
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A file that was used to create the mean octaveband error plots in Figure [3.4] and

Figure

%% A script for Mean Octaveband Error Analyze
% by Anders Isebakke

%% Initialize the error matrix

numbOfFiles = 100;
errorMatrix = zeros(8,18*numbOfFiles);
errorCorrPMatrix = zeros (8,18 numbOfFiles);

for ii = l:numbOfFiles
errTemp = load ([’oBandErr’ ,num?2str(ii),’. mat’]);
errCorrPTemp = load ([ ’oBandErrCorrP’ ,num?2str(ii ), .mat’]);

errorMatrix (:,1+ (18 (ii —1)):18+4+(18%(ii —1))) = errTemp.oBandErr;

errorCorrPMatrix (:,14+(18*(ii —1)):184+(18x%(ii —1))) =
errCorrPTemp.oBandErrCorrP

%% Pick out the wanted near SZ receiver errors

SZmin2 = zeros (8 ,numbOfFiles);
SZminl = zeros (8 ,numbOfFiles);
SZadd0 = zeros (8 ,numbOfFiles);
SZaddl = zeros (8 ,numbOfFiles);
SZadd2 = zeros (8 ,numbOfFiles);
SZaddlcorrP zeros (8 ,numbOfFiles);

SZadd2corrP = zeros (8,numbOfFiles);
SZadd2 (:,1) = errorMatrix (:,18);

for ii = l:numbOfFiles
SZadd2 (:,ii) = errorMatrix (:,18+18x%(ii —1));
SZaddl (:,1ii) errorMatrix (:,164+18x*(ii —1));
SZaddO (:,ii) errorMatrix (:,144+18x(ii —1));
SZminl (:,ii) errorMatrix (:,12+4+18x(ii —1));
SZmin2 (:, ii) errorMatrix (:,10+18x(ii —1));

SZadd2corrP (:, i)
SZaddlcorrP (:,ii)

errorCorrPMatrix (:,184+18x%(ii —1));
errorCorrPMatrix (:,16+18x%(ii —1));

end

meanSZadd2 = mean(SZadd2,2);

meanSZaddl = mean(SZaddl,2);

meanSZadd0 = mean(SZadd0,2);

meanSZminl = mean(SZminl ,2);

meanSZmin2 = mean(SZmin2,2);

meanSZadd2corrP = mean(SZadd2corrP ,2);

meanSZaddlcorrP = mean(SZaddlcorrP ,2);

%% Make a plot of the mean octaveband error — near SZ

figure (1);

plot ([0 10],[0 0],’k ——’,’LineWidth’,3);

hold on;

plotH1 = plot (meanSZadd2,’: o b’,’LineWidth’,3,’MarkerSize’,8,
>MarkerFaceColor’,’b’);

hold on;

plotH2 = plot (meanSZaddl,’”—— o b’,’LineWidth’,3,’ MarkerSize’,8,
’MarkerFaceColor’,’b’);

hold onj;

plotH3 = plot (meanSZaddO0,’— o r’,’LineWidth’,5, MarkerSize’,10,
>MarkerFaceColor’,’r ’);

hold onj;

plotH4 = plot (meanSZminl,”—— o m’,’LineWidth’,3,’ MarkerSize’,8,
>MarkerFaceColor’,’m’);
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hold on;

plotH5 = plot (meanSZmin2,’: o m’,’LineWidth’,3,’>MarkerSize’,8,

>MarkerFaceColor’,’m’);

hold off;

set (gca, FontSize’ ,14);

legend([plotHl plotHZ plotH3 plotH4 plotH5],
'z = z_{SZ} +2 m’,’z = z_{SZ} +1 m’,’z =
'z =2z {SZ} —-1m’,’z =z {SZ} -2 m’, ’Locatlon ?

axis ([0 10 —20 15]);

text (1,12,’\ color{blue}63Hz’,’ FontSize’,14,

'{SZ} 40 m’,

’ SouthEast )s

5
’

‘HorizontalAlignment’,’center’ ’BackgroundColor’,[.? L9 LT

text(2,12,’\Color{blue}125Hz’,’FontSlze’ 14,
>HorizontalAlignment ', ’ center ’, BackgroundColor’ .7 0.9 .7

text (3,12,’\ color{blue}250Hz’,  FontSize’,14, ..
’HorizontalAlignment ', ’center ’, ’BackgroundColor’,[.? L9 .T71]);

text (4,12,’\ color{blue}500Hz’,  FontSize’,14, ..
’HorizontalAlignment ', ’ center ’, ’BackgroundColor’,[.? L9 7))

text(5,12,’\c010r{b1ue}1kHz’,’Fonthze’ 14,
’HorizontalAlignment’,’center’,’BackgroundColor’ .79 07]);

text (6,12,’\ color{blue}2kHz’,’ FontSize ’,14,
’HorizontalAlignment ', center ’,’ BackgroundColor’ ,[.7 .9 .7]);

text(7,12,’\color{blue}4kHz’,’FontSme’ 14, ..
>HorizontalAlignment ', center ’, ’BackgroundColor’,[.7 L9 .7]);

text(8,12,’\color{blue}8kHz’,’FontSme’ 14, ...
’HorizontalAlignment’,’center’,’BackgroundColor‘ .7 .9 7))

xlabel (’Octaveband ’);

ylabel ('[dB] ");

title (’Mean octaveband error: around the source—receiver sight line
’FontWeight ’, >bold’,’ Fontsize ' ,16);

grid on;

%% Make a plot of the mean octaveband error — near SZ

figure (2);

plot ([0 10],[0 O0],’k ——’,’LineWidth’,3);

hold on;

plotH6 = plot (meanSZadd2,’: o b’,’LineWidth’,3,’MarkerSize’,8,
>MarkerFaceColor’,’b’);

hold on;

plotH7 = plot (meanSZaddl,”—— o b’,’LineWidth’,3,’ MarkerSize’,8,
’MarkerFaceColor’,’b’);

hold on;

plotH8 = plot (meanSZadd2corrP,’: o g’, LineWidth’,4,’MarkerSize’,10,
’MarkerFaceColor’,’g’);

hold onj;

plotH9 = plot (meanSZaddlcorrP,”—— o g’,’ LineWidth’,4,’MarkerSize’,10,
>MarkerFaceColor’,’g’);

hold off;

set (gca, FontSize’ ,14);

legend ([ plotH6 plotH7 plotH8 plotH9], ..
’Polarity error: z = z_{SZ} +2 m’,
>Polarity error: z = z_{SZ} +1 m’,
>Polarity correction: =z = z_{SZ} +2 m’,
>Polarity correction: =z z_{SZ}

axis ([0 10 —20 15]);

text (1,12,’\ color{blue}63Hz’,’ FontSize’,14,
’HorizontalAlignment ', ’center’ ’BackgroundColor

text(2,12,’\Color{blue}l25Hz’,’FontSlze’ 14, ..
’HorizontalAlignment ', ' center’ ’BackgroundColor

text(3,12,’\color{b1ue}250Hz’,’FontSlze‘ 14,
’HorizontalAlignment ', ’center’ BackgroundColor

text (4,12,’\ color{blue}500Hz" ’FontSlze’ 14, ..
>HorizontalAlignment ', ’center ’ ’BackgroundColor

text(5,12,’\0010r{b1ue}1kHz’,’Fonthze’ 14, ...
’HorizontalAlignment ', ’center ’, ’BackgroundColor

text (6,12,’\ color{blue}2kHz’,’ FontSize ’,14,
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text (7,12,’\ color{blue}4kHz’,’ FontSize ’,14,
’HorizontalAlignment ', ’center ’,’ BackgroundColor

text(8,12,’\c010r{b1ue}8kHz’,’FontSme’ 14, ..
’HorizontalAlignment ', ’center’ ’BackgroundColor

xlabel (>Octaveband ’);

ylabel ('[dB] ");

+1 m’,’Location

s

oL

title (’Mean octaveband error: polarity correction

’FontWeight ’, >bold >, ’Fontsize ' ,16);
grid on;
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