
Master of Science in Electronics
June 2011
Per Gunnar Kjeldsberg, IET
Øystein Gjermundnes, ARM Norway AS

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Design of a fractal generator for on-
the-fly generation of textures for Mali
GPU

Per Christian Corneliussen

Problem Description
Abstract
This proposal describes a possible subject for a master thesis for students with
background in microelectronics and computer graphics. The main part of the work
related to this thesis will go into the design of a fractal generator for on-the-fly
generation of textures for a Mali GPU. The fractal generator will be realized in an
FPGA. When the fractal generator is finished, the student may participate in one of
the regular demo competitions at ARM Norway.

Introduction
A fractal is “a rough or fragmented geometric shape that can be split into parts, each
of which is (at least approximately) a reduced-size copy of the whole,”(1) a property
called self-similarity. A mathematical fractal is based on an equation that undergoes
iteration, a form of feedback based on recursion(2).

One such mathematical fractal is the fractal defined by the Mandelbrot set. The
Mandelbrot set is a mathematical set of points in the complex plane, the boundary of
which forms a fractal (3). The point c belongs to the Mandelbrot set if and only if
|Zn| = 2, for all n = 0, where Zn+1 = Z2

n + c and Z0 = 0 (Eq. 1)
An image can be created from the Mandelbrot set by mapping the (x,y)

coordinates of the pixels in the image to the real and imaginary parts of a complex
number. For each pixel it is computed how many iterations that is necessary of Eq.
1 before the absolute value of the complex number Zn exceeds 2. The number of
iterations is then used as an index into a colour palette which finally determines the
colour of the pixel.

A globe is made by wrapping a map around a sphere. This process is known
as texture mapping in the field of computer graphics, and is used for drawing or
wrapping an image on to a 3D object. Textures are in many cases generated in
advance to running a computer game, but they could also be generated on the fly.

Thesis statement
Give an overview of different fractals with the focus on fractals generated by the
Mandelbrot set. Also explain briefly relevant computer graphics terms such as
texturing.

Create a OpenGL ES 2.0 program that creates a animated 3D landscape where the
height and the colour of the landscape at any given point is determined by the colour
of a Texel in a texture.

Design a fractal generator for later implementation in an FPGA. Do computations
to find out what kind of frame rate you would expect as well as some coarse size
estimates that can tell you early on whether or not the architecture will fit into the
provided FPGA.

The fractal generator must have an AXI read interface. The read address should
identify the (x,y) coordinates of a pixel in a Mandelbrot fractal and the read data
returned should be the colour of that pixel. Library functions for multiplication,
addition, division and square root should be used and can be provided by ARM.

Finally implement the fractal generator using Verilog, integrate the fractal

i

generator into a system together with a Mali-GPU, synthesize the fractal generator for
FPGA, set the fractal generator up to feed the OpenGLES application with textures
and participate in a demo competition held at ARM Norway.

References
(1) Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W.H. Freeman and
Company.. ISBN 0-7167-1186-9.
(2) Briggs, John (1992). Fractals:The Patterns of Chaos. London : Thames and
Hudson, 1992.. p. 148. ISBN 0500276935, 0500276935.
(3) Mandelbrot set http://en.wikipedia.org/wiki/Mandelbrot_set

Supervisors:
Per Gunnar Kjeldsberg, NTNU
Øystein Gjermundnes, ARM Norway AS

ii

Abstract

The Mandelbrot set, shown on the front page of this report, is perhaps the most
well-known example of a fractal. Fractals is a certain family of shapes with a very
distinctive, interesting shape. The term was coined by Benoit B. Mandelbrot, for
whom the Mandelbrot set is named after. The Mandelbrot set and other fractals
are traditionally used for aesthetic purposes, such as in art, clothing, computer
games, etc. However, there are also several practical applications for fractals, such
as image compression[3].

The Mandelbrot set is infinitely complex[9], making it desirable to generate
images of arbitrary sections of the set. Several software programs that generate
such images exists, but due to the computationally expensive nature of this
task, these implementations are typically very slow, even on modern computers.
However, the problem can be shown to be highly parallelizable, suggesting that a
hardware implementation of such as generator should be able to generate smooth
real-time zoom animations, unlike existing software implementations.

A hardware fractal generator for the Mandelbrot set has been designed and
implemented in Verilog-2001. The design is very scalable, having a parameter
specifying the number of fractal point generators (cores) the synthesis tool should
implement. Furthermore, it is designed so that the floating point units in the
cores are utilized nearly 100% of the time under normal operation. The design
was tested on a Xilinx Virtex-6 FPGA with up to 16 cores, and it was shown that
the design was faster than a reference software solution running on a desktop
computer when the number of cores was set to 2 or more.

Additionally, a simplified Mandelbrot set algorithm is proposed and studied
experimentally. In the simplified algorithm, the break condition in the
algorithm loop is (|zre| > 2)||(|zim| > 2) as opposed to the standard |z| >
2. The images produced using the simplified algorithm was judged to be
nearly indistinguishable from those produced with the standard algorithm, and
therefore preferred as it is easier to implement.

Finally some future work is proposed. The integration of the fractal generator
with the Mali-400 GPU originally planned as part of this thesis is left as future
work. It is also suggested to consider designing a custom fixed-point format
for use internally in the fractal generator, as the standard binary32 floating-point
format (FP32) is shown to be badly suited for this application.

iii

Preface

The original goal for the work that was carried out as part of this thesis was
to integrate the designed hardware fractal generator with the Mali-400 graphics
processor from ARM and assemble a working demo on an embedded platform. This
demo was to use the designed fractal demo software (presented in Chapter 6) to
demonstrate the system.

However, it was decided that this was a complex task, requiring insight in the
inner workings of parts of the Mali-400 core, and that time was insufficient. The
designed hardware fractal generator is still synthesized for the FPGA planned for
this aforementioned demo, and its performance is evaluated and compared with a
software implementation. The final integration with the Mali-400 is left for future
work.

Per Gunnar Kjeldsberg (Department of Electronics and Telecommunications,
NTNU, Trondheim) and Øystein Gjermundnes (ARM Norway AS, Trondheim)
supervised the project. Their feedback throughout the semester has been greatly
appreciated.

iv

Contents

Preface iv

1 Introduction 1

2 Fractals 3
2.1 The Mandelbrot set . 3

2.1.1 Computing the Mandelbrot set . 5
2.1.2 Low-level implementation . 6
2.1.3 Adding color . 6

3 Landscape generation in OpenGL ES 2.0 9
3.1 Introduction to 3D computer graphics . 9
3.2 Specifying vertices . 10
3.3 Generating landscapes . 11

4 Representing numbers 13
4.1 Fixed-point representation . 13
4.2 Floating-point representation . 13
4.3 Comparing fixed-point and floating-point formats 14

4.3.1 Linear precision of floating-point formats 14
4.4 IEEE 754 . 15

5 Fractal generator 17
5.1 Overview . 17
5.2 Configuration parameters . 18
5.3 Vertex array format, vertex and fractal coordinates 19
5.4 Storing z-coordinates . 19

6 Fractal demo and software implementation 23
6.1 Overview . 23
6.2 Fractal demo design . 23

6.2.1 Coloring . 26
6.3 Software fractal generator . 27

6.3.1 Fractal point generator (FPG) . 27
6.3.2 Vertex array generator (VAG) . 27
6.3.3 Performance . 28

6.4 Discussion . 29

7 Representation of fractal coordinates 31
7.1 Rounding errors . 31
7.2 Discussion . 32

8 Boundary checking in the Mandelbrot algorithm 35
8.1 Comparison of boundary check methods 36
8.2 Discussion . 36

v

9 Hardware implementation 39
9.1 Floating point arithmetic . 39
9.2 Fractal point generator (FPG) . 39

9.2.1 Design exploration . 40
9.2.2 Implementation and verification 41

9.3 Vertex array generator (VAG) . 43
9.3.1 Implementation . 43

9.4 Synthesis . 46
9.5 Verification and performance analysis . 47

9.5.1 Comparable performance . 49
9.6 Discussion . 50

10 Conclusion and future work 51

A Source code, fractal demo 53

B Source code, fractal generator, software model 57

C Source code, fractal point generator, hardware 58

D Source code, vertex array generator, hardware 63

vi

1 Introduction

The procedures involved in the generation of fractal images such as the one on
the front page of this report are typically complex and computationally expensive.
Several platforms for doing this exists, such as the Windows software Ultra Fractal by
Frederik Slijkerman, which can be used to create fractal zoom animations. However,
it is slow and far from able to generate real-time animations. To ease this limitation,
this particular software has a feature for distributing the fractal calculations over
several computers to accelerate rendering of animations and stills.[20]

Evidently, it would be desirable to speed up the process by doing the fractal
calculations in hardware as opposed to in software. It so happens that the pixels
in renderings of the Mandelbrot set are independent and processed separately[23],
implying that the process of generating these renderings is easily parallelizable and
therefore a strong candidate for hardware implementation[25].

Although the traditional use of fractal images are non-practical (i.e., used for
aesthetic purposes like art and fashion), recent advances have uncovered several
useful applications for fractals. For example, there is a lossy image compression
method known as fractal compression which is based on fractals.[3] Another example is
the generation of patterns for camouflage clothing, such as the MARPAT pattern used
by the United States Marine Corps, which was produced using fractal equations[24].

This first part of this thesis is background. Chapter 2 introduces fractals and
the Mandelbrot set, Chapter 3 gives an introduction of 3D computer graphics and
the OpenGL ES API, then finally Chapter 4 talks about fixed and floating-point
representation of real numbers.

The remaining part of the thesis is own work. Chapter 5 introduces the fractal
generator. It gives and overview of how it should work, how it is configured, and
some high-level decisions and ideas that have been considered and applied. It will
build on the background from Chapter 2 and 3.

Chapter 6 will present the OpenGL ES 2.0 demo and software fractal generator
that was developed to gain some insight in design decisions for the hardware
implementation and eventually demonstrate the function of the hardware fractal
generator. A performance analysis of the software implementation is presented.

Then, Chapter 7 will discuss how to represent coordinates in the Mandelbrot set,
the implications of using a floating-point format and some propositions for future
work. This chapter builds on the number representation theory from Chapter 4.

Chapter 8 suggests an optimization of the Mandelbrot algorithm presented in
Chapter 2, and investigates the implications of this technique. The fractal demo from
Chapter 6 is used as part of this investigation.

Finally Chapter 9 will present the implementation of the hardware fractal
generator and the design process leading to it. Synthesis results and performance
analysis is presented and compared with the software implementation.

The final chapter will present a conclusion of the whole project and suggest some
future work on the topic.

The main contribution from this thesis is the design of the hardware fractal
generator, which is an elegant and highly scalable design shown to be superior
to a reference software model when implemented on an Xilinx Virtex-6 FPGA.

1

Additionally, a simplified algorithm for generating Mandelbrot set renderings is
proposed and shown to produce results nearly indistinguishable from those of the
original algorithm. Ideas for future work is also proposed and discussed.

2

2 Fractals

A fractal is a family of shapes that have an “irregular” and “fractured” appearance.
The term was first coined by Benoit B. Mandelbrot (1924-2010) in 1975.[11] There is
no precise definition of the word. In his book The Fractal Geometry of Nature [17],
Mandelbrot writes:

I coined fractal from the Latin adjective fractus. The corresponding Latin
verb frangere means “to break:” to create irregular fragments. It is
therefore sensible—and how appropriate for our needs!—that, in addition
to “fragmented” (as in fraction or refraction), fractus should also mean
“irregular,” both meanings being preserved in fragment.

Many sources state that fractals are structures with a property known as self-similarity
[23, 12] (A self-similar object is an object where one or more parts of the object has
the same shape as the object as a whole, as illustrated in Figure 1.) However, this
definition is inprecise at best. Although some fractals do have this property, there are
fractals that are not self-similar.[11, p.113] Even the Mandelbrot set is not strictly self-
similar.[4]. Furthermore, there are self-similar objects that are not considered fractals,
such as a line segment.

Figure 1: An illustration of the concept of self-similarity.

Although there exists more technical definitions that are somewhat more precise
[11, p.ix], we will leave this discussion and focus on established shapes (fractal sets)
that are considered part of the fractal-family, and do have precise, mathematical
definitions. Specifically, the Mandelbrot set.

2.1 The Mandelbrot set

The Mandelbrot set, M, is a fractal set named after Benoit B. Mandelbrot by A. Douady
and J. H. Hubbard in 1984.[2] It is formally defined as the set of complex numbers
c ∈ C for which the iterative function z0 = 0, zn+1 = z2

n + c remains bounded as

3

n → ∞.[4] The set is connected [2] (there are no “islands”), its boundary is generally
considered a fractal. The Mandelbrot set is plotted in Figure 2, where the black points
are in the set and the white are not.

Figure 2: The Mandelbrot set (dark area), plotted in the complex plane.

Despite its simple definition, the Mandelbrot set has a very complex appearance.
Zooming in on the edges of the black portion of Figure 2 will reveal some highly
unusual graphical structures, two of which are depicted in Figure 3 and 4. The
nature of the different colors will be explained shortly.

Figure 3: Colored section of the Mandelbrot set, centered at (0.743644786,
0.1318252536) with a diameter of 0.0000029336 . Copyright c©Wolfgang Beyer.

4

Figure 4: Colored section of the Mandelbrot set, centered at (0.743643887037151,
0.131825904205330) with a diameter of 0.000000000051299. Copyright c©Wolfgang
Beyer.

2.1.1 Computing the Mandelbrot set

The task of generating the Mandelbrot set comes down to creating an algorithm that
determines whether a complex number, c, is in the Mandelbrot set or not. To generate
an image like shown in Figure 2, boundaries of the coordinate system are chosen (in
the example, (-2, -1) and (1, 1)) and a resolution (i.e., number of pixels in the image.)
The algorithm will then be executed for every pixel in the image.

The definition of the Mandelbrot set suggests the algorithm depicted in Listing
1. If the procedure returns N_ITERATIONS, c is in the Mandelbrot set. Note that
this is pseudocode and assumes a programming language with a data type capable
of representing complex numbers.

1 i n t mbrot ()
2 {
3 z = 0 ;
4 for (n = 0 ; n < N_ITERATIONS ; n++) {
5 z = z^2 + c ;
6 i f (abs (z) > BREAK_VAL)
7 break ; / / c i s not in t h e Mande lbro t s e t .
8 }
9 return n ;

10 }

Listing 1: Pseudocode for determining whether a complex number, c, is in the
Mandelbrot set

According to the mathematical definition, both N_ITERATIONS and BREAK_VAL
will have to be set to infinity for this to work. The problem with doing this, of
course, is that then the algorithm would never finish. Some points can be determined

5

analytically (it can, for example, easily be shown that c = 1 will cause z to tend to
infinity), but no general method exists. Thus, numerical approximations must be
employed; more specifically the algorithm in Listing 1 must be used with the value
of N_ITERATIONS and BREAK_VAL restricted.

Fortunately, it can be shown that BREAK_VAL=2 is sufficient. If z at any point
exceeds 2, the series is guaranteed to diverge.[4, p. 81] Thus, this is not even an
approximation, and so the definition itself can be simplified. It follows that the
Mandelbrot set is contained entirely in the disk with radius 2 around the origin of
the complex coordinate system.

Unfortunately, there is no corresponding hard limit on the number of iterations
of the algorithm. (N_ITERATIONS in Listing 1.) Fractal generators typically zoom
in on specific points of interest (e.g., sections with aesthetic shapes), and these areas
are typically located somewhere on the border between the black and white area of
the graph visible in Figure 2. It can be said generally, from experiments done on the
software implementation presented later in this thesis, that the closer one gets to the
edge of the set, the more iterations are needed. While the set visible in Figure 2 could
be generated with just ≈ 10 iterations for each pixel, some images require thousands
of iterations.

2.1.2 Low-level implementation

Typical low-level programming languages (such as C) do not have data types capable
of representing complex numbers, although there are extensions/libraries that add
support for it. Either way, the hardware module will have to be designed in a
more low-level fashion, and so it is beneficial to design the software implementation
without utilizing any complex data type.

The heart of the Mandelbrot algorithm presented in Listing 1 on the preceding
page is the following equation:

zn+1 = z2
n + c (1a)

= (zn,re + izn,im)2 + cre + icim (1b)

To separate the real and imaginary parts, the exponentiation is expanded:

zn+1 = z2
n,re + i2 · zn,re · zn,im − z2

n,im + cre + icim (2)

and thus

zn+1,re = z2
n,re − z2

n,im + cre (3a)

zn+1,im = 2 · zn,re · zn,im + cim (3b)

Using this, a modified implementation is designed in Section 6.3. These calcula-
tions are relatively trivial and can be found elsewhere such as on Wikipedia[23].

2.1.3 Adding color

Benoit B. Mandelbrot’s original renderings of the Mandelbrot set were in black and
white like in Figure 2.[4, p. 82] Like described so far in this chapter, he colored points

6

that belonged in the Mandelbrot set (the interior) black, and others (the exterior)
white.

More recent renderings are more colorful. This is achieved by coloring points in
the exterior based on the number of iterations needed for z to exceed some fixed
value ≥ 2 (Usually, 2). Typically, some arbitrary palette that maps the iteration count
(n) to a color is chosen. To make renderings more aesthetically pleasing, this color
palette should be a gradient. This concept is illustrated in Figure 5. Note that the
points in the interior are still colored black (typically.)

n=0 n=89n=45

Figure 5: An example of a color palette, where each color is assigned to an iteration
count (n). The maximum iteration count is here set to 90.

Why it makes sense to do this goes beyond the scope of this thesis. However,
based on experiments, this method works well aesthetically — it produces smooth
height curves in the fractal demo presented later. For the mathematics behind, see
[4].

7

8

3 Landscape generation in OpenGL ES 2.0

OpenGL ES is a subset of the well-known OpenGL graphics library, designed for
embedded systems. This chapter will give a general introduction to computer
graphics rendering with OpenGL, and more specifically, landscape generation.

3.1 Introduction to 3D computer graphics

The basic idea of traditional 3D computer graphics is to take a number of points in
a virtual three-dimensional space and project them onto a two-dimensional space,
for viewing on two-dimensional surfaces such as a computer screen. This process
is called orthographic projection. (See Figure 6.) The points in space are in computer
graphics terms called vertices (singular vertex).[19, chap. 2]

Figure 6: An orthographic projection of a cube onto a two-dimensional surface.

OpenGL handles this task using simple API-calls1. Furthermore, it allows for a
number of transformations to be performed on the vertices prior to projection. For
example, the OpenGL glRotate() API-call will rotate all the vertices that have been
specified with prior API-calls around some specified point in space. (In the abstract
three-dimensional space.) This particular transformation involves multiplying each
vertex with a rotation matrix [19, chap. 3], which can be a very computational
expensive task. Therefore, most modern implementations of OpenGL are accelerated
by hardware designed specifically for performing these matrix multiplications; a
graphics processing unit (GPU).

The vertices can be considered the “corners” of the geometric figures one desires
to model. By drawing lines between the vertices after projecting them on the two-

1An API-call (application programming interface) is the calling of a function in a software library
that performs some specific task.

9

dimensional screen (a task OpenGL can perform as well), so-called wireframe models
appear. Figure 7 shows an example of a wireframe model. Further processing such
as coloring, texturing2 and lightning is possible, consider the OpenGL Programming
Guide by Dave Shreider [19] for more information.

Figure 7: A wireframe model of a landscape.

3.2 Specifying vertices

In OpenGL ES, vertices must be specified (drawn) with the glDrawArrays() API-call.
(Standard OpenGL has additional ways of drawing vertices.) As the name suggests,
the coordinates of all the vertices must be packed into a C array, which are then
drawn with glDrawArrays(). Figure 8 illustrates an example of such an array.

int vertices[n]

x0 y0 z0 x1 y1 z1 xn-1 yn-1 zn-1

Figure 8: Illustration of a vertex array.

glDrawArrays() accepts a mode parameter that determines how the vertices in the
array will be rendered. It can take the following [19, chap. 2] values:

• GL_POINTS

• GL_LINE_STRIP

• GL_LINE_LOOP

• GL_LINES

• GL_TRIANGLE_STRIP

• GL_TRIANGLE_FAN
2Applying images to the surface of geometric objects.

10

• GL_TRIANGLES

For what simple wireframe models are concerned, this parameter will determine how
lines are drawn between the vertices after any tranformations and the 2D projection
are done. For example, GL_TRIANGLES will cause every set of three vertices to be
connected together, while GL_LINE_LOOP will cause every vertex to be connected
to the previous one. The final vertex will be connected to the first so that the vertices
form a loop, hence the name. This is illustrated with an example in Figure 9.

v0

v1

v2 v3

v4v5

v0

v1

v2 v3

v4v5

GL_TRIANGLES GL_LINE_LOOP

Figure 9: Example rendering of six vertices using two different modes.

Going beyond wireframe models, the mode-parameter also has to do with how
models are colored or textured. GL_TRIANGLES will for example define every set of
three vertices as a triangle primitive, whose interior can be colored, etc.

3.3 Generating landscapes

For various reasons, most objects are in OpenGL modelled with triangles, including
landscapes.[18, sec. 3.1] The problem with generating a landscape with triangle
primitives is that all the triangles will share some of their vertices with other triangles.
In fact, most will share each vertex with as many as five other triangles. This is
evident from Figure 7, which was modelled with triangles.

To avoid increasing the amount of vertex data sent to the GPU fivefold, which
would happen if GL_TRIANGLES were used, OpenGL/OpenGL ES provides the
GL_TRIANGLE_STRIP render mode. This mode is well suited for drawing triangles
where each new triangle shares one of the three edges of the previous triangle. To
reduce the amount of vertex data, it allows for drawing only one vertex per triangle,
except the first one which needs all three.

The concept of triangle strips is illustrated in Figure 10. Here, two triangle strips
are drawn; consider it a very coarse-grained landscape. (The height-dimension is not
visible.) The orange numbers in circles show the vertex draw order for the lower
strip, while the green numbers indicate the order of the upper strip. Note how the
middle row of vertices still has to be drawn twice. However, this is a good as it gets
without losing the concept of primitives and thus losing the ability to add color to
the landscape later. Note that each triangle strip is drawn with a separate call to
glDrawArrays().

11

triangle
strip 0

triangle
strip 1

1

0 2

3

4

5

1

0 2

3

4

5

Figure 10: The order in which vertices must be drawn when using
GL_TRIANGLE_STRIP. Viewed from above.

12

4 Representing numbers

In computing, there are generally two main techniques for representing numbers,
fixed point and floating point representation. Both techniques are widely used and
have different applications. This chapter will quickly introduce and compare these.

4.1 Fixed-point representation

Fixed point formats are typically used to represent integers. However, by defining
some fixed decimal point, they can be used to represent decimals3 as well.

Consider the example of a fixed point data type in Figure 11. In this 8-bit type,
four bits are used for representing an integral part, and the other four represent a
fractional part. For example, the bitstring 01110011 (as shown in the figure) represents
the decimal number 22 + 21 + 20 + 2−3 + 2−4 = 7.1875.

0 1 1 01 10 1

integer fractional

23 22 21 20 2-1 2-2 2-3 2-4

Figure 11: An example of a fixed-point data type representing the number 7.1875

Fixed-point formats can represent negative numbers using a sign bit, or more
commonly, using two’s complement.

4.2 Floating-point representation

The other main technique, floating-point representation, is the one more typically
used for representing decimals. In the C programming language, the data types float
and double are both used to store floating point numbers.[6]

Unlike fixed-point formats, floating point formats do not have a fixed decimal
point; instead some bits are reserved for specifying its location. Hence, floating-point
representation can be said to be analogous to normalized scientific notation. Figure 12
shows an example of a floating point data type and Equation 4 loosely describes how
to interpret the format. Note the implicit 1 to the left of the decimal point. The IEEE
754 standard presented in Section 4.4 uses this convention. The implicit 1 is only
used when the exponent is non-zero, however.

(−1)signbit × 1.fractionbits× 2exponentbits−3 (4)

Using this, the bitstring 01011101 shown in the figure represents the decimal
number (−1)0 × 25−3 × (1 + 2−1 + 2−2 + 2−4) = 7.25. The reason for the exponent
offset (here −3) is that it would otherwise be impossible to represent numbers smaller
than 1.

3A decimal is here defined as a real number composed of both an integral and a fractional part.

13

0 1 0 11 01 1
exponent fraction

2-1 2-2 2-3 2-4

sign

Figure 12: An example of a floating-point data type representing the number 7.25

4.3 Comparing fixed-point and floating-point formats

Generally, fixed-point formats have better precision than floating-point formats, but
lower range. This is certainly true for the formats introduced in the last two sections.
The bitstring in Figure 12 was chosen to give the best possible approximation of the
number represented by the fixed-point format example of Figure 11, and as seen
this approximation is not especially good. However, the floating point format can
represent a wider range of numbers, as illustrated in Figure 13. The difference would
be more radical if the number of exponent bits in the floating-point format were
increased, like in more commonly used formats.

10-3 10210-2 10-1 100 101

Figure 13: Positive range of the example fixed-point (green) and floating-point (blue)
formats

4.3.1 Linear precision of floating-point formats

On a linear scale, the precision of floating-point formats will increase at small
magnitudes. Figure 14 illustrates the precision of the simple floating point format
presented in this chapter. The bars are the distinct values the format can represent,
on a linear scale. Notice the large gap between 0.130 and 0.250; this happens because
the implicit 1 is not used anymore when the exponent is at its minimum.

1.1251.0000.5000.2500.000 0.130

Figure 14: Lower range of the example floating-point format

This is usually a good thing, because the high precision desired at low magnitudes
usually is unnecessary at high magnitudes. However, it can cause problems when
there is some sort of offset involved — like when doing high precision operations
around some large number. (I.e., adding small numbers to larger numbers, which
causes rounding errors corresponding to the precision at the magnitude of the largest
number.) This is a problem that is encountered in this project, as discussed in detail
in Section 7.

14

4.4 IEEE 754

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) [13] is a widely used
standard for floating-point formats. For example, the Intel Corporation follows the
IEEE 754 standard in all their x86 series of microprocessors.[7]

IEEE 754 defines a number of floating-point formats that occupy different number
of bytes, most notably the binary32 (32-bits, “single precision”) and binary64 (64-bits,
“double precision”) formats. These normally correspond to the float and double data
types in the C programming language.[6]

Table 1 summarizes the number of bits used for the sign, exponent and fractional
parts in binary32 and binary64, respectively.

binary32 binary64
Sign 1 1

Exponent 8 11
Fractional 23 52

Total 32 64

Table 1: Summary of the most frequently used floating-point formats of IEEE 754.

15

16

5 Fractal generator

The main task in this thesis is the development of a Mandelbrot fractal generator
in hardware. A typical approach when designing a hardware module like this is to
design a software model first, to be regarded as the specification for the hardware
module.[10]

This chapter will present an overview of the fractal generator that was designed,
including high-level decisions leading to the final software and hardware designs.
The software and hardware implementation will then be presented in Chapter 6
and 9, respectively. Both implementations both perform the same task, although
the hardware implementation is designed to be much faster than the software model.

There were some iterations in the design process of the system. First a very basic
software implementation of the fractal generator was designed with the fractal demo
(presented in Chapter 6), then later during the hardware design process the software
model was modified gradually to investigate techniques desired for the hardware
module.

5.1 Overview

It was decided early in the process that the fractal generator should generate the
vertex arrays for landscape generation directly. An alternative would be to just
generate some sort of heightmap (a texture) and assemble the vertex arrays in software
or in the vertex shader in the GPU. However, even the latter would yield higher
bandwidth usage between the GPU and graphics memory than when generating the
whole arrays directly in the fractal generator. The precise reasons for this goes beyond
the scope of this thesis; the decision was taken in collaboration with ARM-employees
with technical insight in the Mali GPU.

It is a natural approach to divide the design into a module (or C function)
that runs the actual Mandelbrot algorithm (i.e., calculates iteration counts from
fractal coordinates) and a surrounding module that generates the vertex array. This
approach is similar to other (software) implementations.[5] The latter will then
interface the aforementioned Mandelbrot module (or call the C function.) From here
on, these two modules will be referred to as the fractal point generator (FPG) and the
vertex array generator (VAG).

The basic function of the fractal generator is illustrated in Figure 15. As discussed
in Chapter 6 the landscape is drawn with a number of triangle strips, each in the form
of a vertex array. Note that the hardware implementation will be able to interface
several FPGs, while the software implementation can only implement one, provided
that the software is written for a single-core CPU.

17

Fractal generator

area in
Mandelbrot set

start

next strip

vertex array

Vertex array generator (VAG)

FPG FPG FPG FPG FPG

Figure 15: Basic function of the fractal generator. An area in the Mandelbrot set is
specified using some parameters, then each triangle strip vertex array is retrieved in
order.

5.2 Configuration parameters

The idea is that the fractal generator is configured once for each frame, to render a
different section of the Mandelbrot set. The configuration parameters must uniquely
specify this section. For example, one might want to render the section within the
green square in Figure 16.

Figure 16: Parameters (in red) for rendering the section of the Mandelbrot set within
the green square

The chosen setup is to use three configuration parameters. They are the two fractal
coordinates of the bottom left corner of the section, as well as the distance (in fractal
coordinates) between vertices (heightpoints) in the landscape — the step size. Thus
the parameters determine the location in the Mandelbrot set and the zoom-level of
the fractal to be rendered.

18

The parameters were chosen to simplify the hardware implementation. More
specifically, simplify the calculation of the sequence of fractal points sent to the fractal
point generator by the vertex array generator. An alternative would be to send the
center coordinates and width of the coordinate system, but this would be less efficient.
In fact, these are the parameters used by the fractal demo, which converts these to
the bottom left coordinates and step size when configuring the fractal generator.

A final, static parameter is the number of vertices in the landscape. This parameter
cannot be modified at run-time; it is implemented as the C macro definition
NUMPOINTS in the fractal demo. The number of vertices in the landscape will
always be NUMPOINTS2, forming a static grid of (x, y) vertex coordinates. The z
coordinates are the only coordinates that vary between frames, each representing the
number of Mandelbrot iterations for the corresponding fractal point. See Section
6.3.2.

The interpretation of the parameters are indicated in red on Figure 16.

5.3 Vertex array format, vertex and fractal coordinates

The vertex arrays use fixed-point integers only. All coordinates are represented with
the GLshort data type, which is a 16-bit signed integer format.[19, chap. 1] This
decision was made to reduce the size of the vertex arrays; the alternative would be to
use the 32-bit floating-point format GLfloat, spending twice the bandwidth between
the CPU and GPU.

To make this work, the fractal generator must translate x and y vertex coordinates
(which are integers) into floating-point fractal coordinates, based on how the fractal
generator is configured. For example, the (x, y) coordinates (1, 2) are translated into
(left+step_size, bottom+2step_size)4 and the iteration count for this fractal point is
then used as the z-coordinate of the vertex. Thus, if this iteration count is 10, the
vertex coordinates are (1, 2, 10).

From here on, the terms vertex coordinates and fractal coordinates will be used to
refer to the integer coordinates of the vertex arrays and the floating-point coordinates
in the Mandelbrot set, respectively.

5.4 Storing z-coordinates

An important issue in the design of the fractal generator is how the z vertex
coordinates are stored between triangle strips. As discussed in Section 3.3, each
triangle strip in the landscape share half their vertices with the adjacent strips. It
would be very expensive to calculate all the z-coordinates (Mandelbrot iteration
counts) of the vertices twice, which is what would happen in a naively designed
implementation.

To avoid generating the same fractal points twice, the z-coordinates of the lower
vertex points can be reused from the previous strip. Due to the nature of the triangle
strip method of drawing landscapes, one method of achieving this is by storing all the
z coordinates each strip, and then shift all the values to the left before the next strip,

4See Section 5.2 for an explanation of what left, bottom and step_size represent.

19

as illustrated in Figure 17. Every second value, namely those corresponding to the
upper vertices of the strip, are then updated with new Mandelbrot iteration counts.
See Figure 10 on page 12 for insight in why this works. For the first (bottommost)
triangle strip, all the values must be generated.

short stripmem[2*NUMPOINTS]

z0 z1 zn-1z2 z3 z4 z5strip 0

strip 1 z0 z1 zn-1z2 z3 z4 z5

strip 2 z0 z1 zn-1z2 z3 z4 z5

new new new

new new new

new new newnew new new

Figure 17: Updating strip memory between triangle strips

Another method that accomplishes the same thing is to have two buffers, each
with the capacity to hold one row of z-coordinates (half a strip.) For the first strip
both buffers are filled with the lower and upper coordinates, respectively. For the
second strip only the first buffer is filled with the upper coordinates of that strip, for
the third strip only the second buffer is filled with the upper coordinates, and so on.
This is illustrated in Figure 18. Green indicates the buffer that holds the lower row
for the corresponding strip, yellow the upper row.

The second method is probably the better one for the hardware implementation,
and the method of choice for this project. When a strip is calculated and ready to be
sent out of the module serially, it is easy to make a design that alternates between the
two buffers. The first method is a strong candidate as well, because it is probably easy
to implement the aforementioned shifting operation in hardware. However, it might
be desirable to use a type of memory where this is not the case (such as SDRAM.)

20

buffer 0 buffer 1

strip 0

strip 1

strip 2

upper row,
new

lower row,
new

lower row,
kept from last strip

lower row,
kept from last strip

upper row,
new

upper row,
new

Figure 18: Second method of updating strip memory between triangle strips

21

22

6 Fractal demo and software implementation

A software implementation of the fractal generator and an OpenGL ES 2.0 demo
application was designed first to gain insight in design matters such as what kind of
data structure the hardware module should produce. The end purpose of the demo
application was to demonstrate the hardware implementation of the fractal generator,
but this will have to be reserved for future work. The designed demo will use the
software fractal generator only. This chapter will introduce and describe the fractal
demo and the software implementation of the fractal generator.

6.1 Overview

The thesis description states to create an OpenGL ES 2.0 program that creates a animated
3D landscape where the height and the color of the landscape at any given point is determined
by the color of a texel in a texture. The idea is that this texture is a fractal image that
was produced beforehand, by a fractal generator.

The fractal generator is described in Chapter 5, a quick recap is provided here. The
generator will not produce a texture, but rather a set of vertex arrays that represent
the landscape as triangle strips. See Chapter 3. The x and y coordinates of all the
vertices are constant between frames. The z coordinates are the iteration counts of
the Mandelbrot algorithm. The generator is configurable to specify what section/area
of the Mandelbrot set to render, as well as the number of vertices (triangles) in the
landscape. The number of vertices is not configurable at run-time.

Animated 3D landscape is interpreted as drawing the Mandelbrot set as a 3D-
landscape, then create an animation that zooms into the fractal.

6.2 Fractal demo design

The fractal demo was written in the C programming language with the OpenGL ES
2.0 Emulator from ARM.[14] This is essentially a library that translates OpenGL ES
2.0 API calls to desktop OpenGL API calls, allowing applications destined for Mali-
accelerated platforms to be written and run on a normal desktop computer running
Microsoft Windows or Linux. The emulator also provides an EGL library, which is
an interface between the OpenGL ES 2.0 API and the underlying platform window
system. That is, it provides an easy way to open a window in the operating system
and have the result of OpenGL ES draw calls appear in it.

Some of the code in the demo was taken from the cube-example that comes with
the OpenGL ES 2.0 Emulator. In particular, those portions that are concerned with
opening the window and setting up the drawing surface. The full source code of
the fractal demo can be found in Appendix A, where the portions of code that was
borrowed from the cube example are clearly marked. The screenshot in Figure 19
shows the demo in action.

23

Figure 19: A screenshot of the fractal demo application in action

The demo draws a landscape using the vertex arrays produced by the fractal
generator directly, using one draw call per vertex array/triangle strip. The vertices
are rotated so that the landscape is viewed from an angle rather than from a bird’s-
eye perspective. The vertices are then scaled so that the edges of the landscape fall
outside the edges of the drawing surface/window. Figure 20 shows a screenshot of
the demo without this final scaling.

24

Figure 20: Fractal demo application without final scaling

The demo as it is in the source code in Appendix A is not interactive, although it
could easily be modified to be. Instead it will simply zoom in on a predefined point
in the Mandelbrot set (the fractal center), and then at some point return to the original
zoom level and repeat.

In the shown screenshots the landscape is drawn using 400 by 400 fractal
points/vertices. This corresponds to 399 · 2 · 399 = 318, 402 triangles. A new set
of vertex arrays are generated for each frame, where the step size is reduced and the
bottom left coordinates are adjusted to keep the desired fractal center in the center of
the rendering. This creates a zoom-animation.

A video of the demo in action is attached with this report. The video was
created by recording the demo application real-time using the VLC media player
from VideoLAN.[21] The video shows the application operating somewhat slower
than normally, because the recording process uses resources that would otherwise be
available to the fractal demo process.

25

6.2.1 Coloring

As discussed in Section 2.1.3, coloring of the landscape is done with a color gradient,
where the iteration count decides what color (i.e., what position in the gradient) that
fractal point will be given. In OpenGL, coloring of pixels is done by a fragment shader,
which is a small program that is executed for each pixel in the finished rendering.
The fragment shader for the fractal demo is reproduced in Listing 2.

1 p r e c i s i o n lowp f l o a t ;
2 varying f l o a t v _ i t e r a t i o n s ;
3
4 void main ()
5 {
6 vec3 v_color ;
7
8 const vec3 c1 = vec3 (0 . 1 6 5 , 0 . 2 4 4 , 0 . 5 1 8) ; / / L i g h t b l u e .
9 const vec3 c2 = vec3 (1 . 0 , 1 . 0 , 1 . 0) ; / / White .

10
11 / / Assuming max i t e r a t i o n count o f 8 0 .
12 i f (v _ i t e r a t i o n s > 7 9 . 5)
13 v_color = vec3 (0 . 0 , 0 . 0 , 0 . 0) ;
14 e lse
15 v_color = mix (c1 , c2 , v _ i t e r a t i o n s / 8 0 . 0) ;
16
17 gl_FragColor = vec4 (v_color , 1 . 0) ;
18 }

Listing 2: Fragment shader for fractal demo

A fragment shader takes one or more type of parameters called varyings, which
are interpolated versions of vertex parameters. (Weighted averages of the vertices
nearest to the current pixel.) In this case, the only varying is v_iterations, which is
the number of iterations in the Mandelbrot algorithm for each vertex. For example, a
pixel halfway between two vertices with iteration counts 50 and 60 will have the value
of the v_iterations varying set to 55. This is discussed extensively in the OpenGL ES
2.0 Programming Guide [1].

In this case, pixels near vertices corresponding to fractal coordinates with iteration
counts of 80 are colored black. Other pixels are colored using a simple blue to white
gradient, realized using the mix() function in the shader language.

26

6.3 Software fractal generator

The software implementation of the fractal generator was written to function as
similar as possible to the hardware implementation; each C function corresponds to
the functionality of a hardware module. As stated earlier there were some iterations
between the design of the software and hardware module. The final software model
is contained entirely in fractal.c, which can be found in Listing 7 in Appendix B.

6.3.1 Fractal point generator (FPG)

The fractal point generator is a low-level implementation based on Equation 3 on
page 6. This function is reproduced below, in Listing 3. The boundary condition
check used here (line 11-12) is the simplified method, which will be introduced in
Chapter 8.

1 i n t g e t F r a c t P o i n t (f l o a t re , f l o a t im)
2 / / Get t h e number o f i t e r a t i o n s (n) b e f o r e |z| e x c e e d s 2 .
3 {
4 i n t n ;
5 f l o a t z_re = 0 . 0 f , z_im = 0 . 0 f ;
6 for (n = 1 ; n < 8 0 ; n++) {
7 f l o a t z_re_old = z_re ;
8 z_re = z_re ∗ z_re − z_im∗z_im + re ;
9 z_im = 2 . 0 f ∗ z_re_old ∗ z_im + im ;

10
11 i f ((z_re >= 2 . 0 f) || (z_re <= −2.0 f) || (z_im >= 2 . 0 f) || (z_im

<= −2.0 f))
12 break ;
13 }
14 return n ;
15 }

Listing 3: C model of fractal generator

6.3.2 Vertex array generator (VAG)

Although the fractal point generator is the actual workhorse in the fractal generator,
the fractal points must be assembled into an array structure that can be sent directly to
the graphics processor for drawing. This is what the /textttgetNextLandscapeStrip()
function does, corresponding to a vertex array generator hardware module.

The vertex array generator produces a vertex array containing a single triangle
strip of the landscape. After initLandscape() is called with configuration
parameters, getNextLandscapeStrip() will return the bottommost triangle strip of
the landscape. Subsequent calls will return the whole landscape strip by strip,
upwards from the bottommost strip.

The getNextLandscapeStrip()-function consists of two loops. The first loop fills
an array with iteration counts by calling getFractPoint() repeatedly. Since there are
only two different y-coordinates per strip and as a result only two different imaginary

27

parts of the fractal coordinates, these two are calculated before the loop is started. The
first real part (re) is always the left configuration parameter because all triangle strips
start on the left side of the grid. Subsequent real parts are calculated by adding step
to re once for every loop iteration. This way a single floating point adder should be
sufficient when the hardware module is designed.

The second loop constructs the actual vertex array using values from the array
generated by the first loop. The purpose of splitting up these tasks is that it more
closely resembles how it will be done in hardware.

6.3.3 Performance

To be able to compare the software solution to the hardware solution presented
later, some performance investigations were performed. The execution time required
to generate one fractal landscape varies greatly, depending on the section of the
Mandelbrot set. However, the worst-case scenario is when all the fractal points in
the section are in the Mandelbrot set. (i.e., have an iteration count of 80.) Thus this is
the situation that will be considered.

The measurements were carried out using the clock() function of time.h on a
desktop computer with a Pentium 4 3.4 GHz CPU. The used method is shown below
in Listing 4, as described in the Microsoft MSDN function reference.[8].

1 # include <time . h>
2
3 void display ()
4 {
5 c l o c k _ t s t a r t ;
6 double durat ion ;
7 s t a t i c i n t framec = 0 ;
8
9 / / . . .

10
11 s t a r t = c lock () ;
12 / / . . . (G e n e r a t e f r a c t a l)
13 duration = (double) (c lock () − s t a r t) / CLOCKS_PER_SEC ;
14 p r i n t f (" Frame %d took %2.3 f seconds to generate .\n" , framec ++ ,

durat ion) ;
15
16 / / . . .
17 }

Listing 4: Performance measurement method

Experimental results show that the execution time for a worst-case scenario fractal
is between 0.297 and 0.313 seconds on the used computer. This corresponds to a
frames-per-second (FPS) rate of around 3.2 - 3.3.

28

6.4 Discussion

There are a few issues with the fractal demo, related to shortcomings of the fractal
generator. The main issue is that the zoom animation appears very “noisy” between
frames. For example, some of the spikes in the landscape (See examples in Figure
20) will suddenly disappear in one frame and reappear in the next. This is not very
aesthetically pleasing. The reason why it is happening is that there are lots of very
narrow black areas in the Mandelbrot set, and it will be somewhat random whether
the vertex points will hit these spots, forming a spike in the landscape, or not.

The noise issue can be fixed using certain blending and anti-aliasing techniques.[5]
However, these are computationally expensive methods and hard to implement in
hardware. Due to limited time it was therefore decided not to do this.

Another issue is that the frame rate of the animation is very varying throughout
the animation, and overall not good enough. Typically, the frame rate will be high at
first, when most of the fractal points in the landscape have a low iteration count. (I.e.,
more blue and less white and black.) Later on most of the fractal points will have a
high iteration count (when zooming in on the boundary between points that are in
the Mandelbrot set and not.) This simply happens because calculation the iteration
counts is a computationally expensive task; this problem should go away as soon as
the task of generating the fractals is moved to hardware.

29

30

7 Representation of fractal coordinates

Choosing the data formats in which fractal coordinates are represented is a very
significant decision for this project. Several issues will arise when rendering smaller
areas5 of the Mandelbrot set if the range of the format is too low.

The range and precision of the format is therefore the limiting factor of how far
into the Mandelbrot set the system can zoom. This section will present and discuss
the background for this and give an overview of the available options.

7.1 Rounding errors

The way in which the fractal generator is implemented is not optimal with regards
to utilization of the available range in the floating point format. What will eventually
happen is that the step size parameter (step) will become zero (or sufficiently smaller
than the coordinates of the fractal center, see next two paragraphs), resulting in that
the whole landscape will have the same color and height, namely that of the bottom
left point.

Before this breaks the system completely, however, another effect will compromise
the aesthetic appearance of the zoom animation. When the step size becomes very
low, the animation will appear “shaking” — the center of the landscape (the fractal
center, the point being zoomed in on) will shift between subsequent frames.

The reason for this effect and other related irregularities is that the coordinates of
the bottom left corner generally will be several magnitudes larger than the step size
at some point. (The only exception would be if the fractal center was near the origin,
but that would not make much sense, as all the points around the origin are part of
the Mandelbrot set.) Adding a low-magnitude number to a high-magnitude number
will lead to severe rounding errors with floating point numbers. This is exactly what
happens when fractal points are calculated in the software fractal generator. At some
point the step size will become so small that adding it to either of the bottom left
coordinates makes no difference, and thus the whole landscape will have the same
height and color. For insight in why this is happens, see Section 4.3.1.

There is a way to reduce the rounding problem, but it is not a perfect solution.
Instead of adding step to bottom for each strip and to left for each column of each strip,
the fractal coordinates can be calculated each time using the following equations:

im = bottom + (y · step) (5a)
re = left + (x · step) (5b)

where (re, im) is the fractal coordinate corresponding to vertex coordinates (x, y).
This will help because the rounding error from adding (y · step) to im is not as bad
as adding step directly. This will fix the shaking problem, but it will lead to another
undesired effect, apparent in Figure 21. It is also a more computationally expensive
solution.

5I.e., fractals with a small step size. See Section 5.2.

31

Figure 21: The effect at low step sizes with the alternative fractal coordinate
calculation method

This interesting effect occurs because many of the calculations of Equation 5 will
yield the same answer due to rounding errors at this step size. What you are looking
at is really the resolution/precision of the used floating point format at the magnitude
of the fractal center. (The bottom left point, to be precise.) However, this effect
becomes appearent quite a bit later than the shaking. In fact, it happens at about the
same time as the animation starts to shake due to rounding errors when calculating
the bottom left coordinates from the fractal center.

Interestingly, the step size value is nowhere near the smallest value that the
floating point format can represent when these rounding errors break the animation.
The demo uses the float C datatype for fractal coordinates, which is the binary32
format of IEEE 754 on the used computer and most other systems that implement the
C programming language. In Figure 21, the step size is around 4E-9, or close to 2−28.
The smallest value that the binary32 format can represent is 1.4E-45, less than 2−127.

7.2 Discussion

It may be desirable to design a custom fixed-point format for representing fractal
coordinates for this project. When designing software that needs to do calculations
on real numbers (decimals), one typically has to choose between the float and double
data types, both floating-point units, corresponding to binary32 and binary64 in IEEE
754. This is related to how computers are designed. However, as suggested in
the previous section, floating-point formats may be a bad choice for this project,
because the precision of the neccessary calculations will be limited by the precision

32

of the format around the fractal center anyway. Furthermore, there is no need to
represent large numbers in this project; in fact it is sufficient to be able to represent
numbers up to 2.0, because the whole Mandelbrot set is located inside a disc of radius
2.0 in the complex coordinate system. Operations on fixed-point formats (such as
multiplication and addition) are also simpler to realize in hardware.

However, this will have to be reserved for future work; the binary32 format will be
used throughout this project. This is because it is much more convenient to design
with floating-point units in software, and thus verify the hardware implementation.
Also, units for performing addition and multiplication on the binary32 format are
already available from ARM; these are introduced later in Section 9.1.

33

34

8 Boundary checking in the Mandelbrot algorithm

As presented in Section 2.1.1, 2 is a sufficient size of the BREAK_VAL-parameter in
the Mandelbrot algorithm (Listing 1); when the absolute value of z exceeds 2 it is
guaranteed that c is not part of the Mandelbrot set.[4, p. 81] However, any value of
BREAK_VAL larger than 2 will work.

This opens for a simplication of the Mandelbrot algorithm that will be presented

here. As an alternative to calculating
√

z2
re + z2

im > 2, or equivalently z2
re + z2

im > 4,
one can simply check whether either |zim| or |zre| exceeds 2. This will certainly be
much faster — which is important as this check is performed for each iteration of
every pixel in the finished image.

The disadvantage with this method is that it might require more iterations of the
algorithm to determine that a point is not in the set. If zn falls within the blue area in
the complex coordinate system in Figure 22, the precise method would catch that the
point is not in the set and finish, while the simplifed method would need to continue
iterating until z escapes the outer rectangle in Figure 22. In the example in the figure,
the precise method will break at n = 2, while the simplified method will break at
n = 3.

Im

Re

2

2

zo=c

z1

z2

z3

Figure 22: Illustration of the overhead (blue area) from using the simplified boundary
check.

Another problem with the simplified boundary checking method is that is could
cause problems with the coloring scheme presented in Section 2.1.3. Even though it
will work fine for detecting whether a point is in the interior or not, the number of
iterations for points in the exterior will sometimes be altered slightly. The effect of

35

this is investigated in the next section.

8.1 Comparison of boundary check methods

The simplified boundary check method proposed earlier might cause the colored
exterior of the set to appear different than with the precise boundary check. This is
because the simplified method may report a slightly higher iteration count than the
precise method for a given fractal point.

This was investigated with a modified version of the fractal demo. The demo was
modified to display the fractal as a flat surface viewed directly from above. A version
of the fractal point generator that uses the precise method was then implemented
with the hypotf() C library function. A specific fractal point and zoom level were
then chosen and a screenshot was taken for each boundary check method.

Figure 23 shows the screenshots of the modified demo using the precise and
simplified boundary check method, respectively.

(a) Precise method (b) Simplified method

Figure 23: The modified demo application with different boundary check methods

The two screenshots were finally compared pixel for pixel. They were stored in a
lossless format and compared using the ImageMagick suite of raster image tools.[15].
Figure 24a shows the output of the ’compare’-tool, where red indicates that the
corresponding pixel differs between the two images. Figure 24b shows the output
of ’composite -compose difference’, which is the first image substracted from the
second.

8.2 Discussion

It is relatively difficult to see the difference between the two screenshots in Figure 23.
Looking closely, the height-curves in the upper half of Figure 23a are more smooth
than those of Figure 23b, however. Furthermore, it can be seen from Figure 24b that
some of the pixels colored black (it. count 80) when the simplified algorithm is used,
should have been white (it. count 79.)

The simplified method is probably the better choice. It is hard to settle on
whether these differences are critical or not, but judging by this simple quantitative

36

(a) Differing pixels (b) Relative difference

Figure 24: Outputs from ImageMagick-tools

investigation, the difference is hardly noticable to the naked eye. Furthermore, the
precise method is much more complex, requiring two additional multiplications
and one additional addition operation per iteration of the Mandelbrot algorithm.
This would likely prove to be a huge performance penalty when the system is
implemented in hardware. The simplified method is therefore arguably best and
is the method of choice for the fractal generator that was developed as part of this
thesis.

37

38

9 Hardware implementation

The hardware implementation of the Mandelbrot set generator consists of two parts
that were designed separately:

• A fractal point generator unit (FPG)

• A vertex array generator that interfaces the fractal point generator(s) (VAG)

9.1 Floating point arithmetic

Library modules from ARM are used for floating point addition and multiplication,
respectively. These are confidential and thus not reproduced in this thesis. However,
the following information is provided:

• Both units are purely combinatorial

• The units are balanced to have about the same critical path length

• The adder is more complex than the multiplicator, and should thus be used
sparingly

The modules use the single-precision format (binary32 of IEEE 754).

9.2 Fractal point generator (FPG)

The core data flow of the fractal point generator (FPG) is depicted in Figure 25, arising
from Equation 3 on page 6. The x2-operator is multiplication with 2, which can be
easily implemented as an 11-bit incrementor for FP32. Negating Z2

im is also a simple
operation.

Zim Zre

××

Zre Zre Zim Zim

×

cre

+
zre

+

+
zim

cim

1

2

3

4 5

6

-

x2

Figure 25: The dataflow graph of one iteration of the Mandelbrot set algorithm.

Even though this design is not especially area-critical, it has to be designed
with area in mind. Generating the whole heightmap requires several thousands of

39

iterations of the data flow graph in Figure 25, and implementing thousands of FP32-
adders and multipliers is certainly not viable. It must be assured that all adders and
multipliers are utilized as much as possible.

9.2.1 Design exploration

For each vertex point in the height map, the data flow graph in Figure 25 will have
to be iterated a number of times. That is, the outputs at the bottom must be fed back
to the inputs at the top until one of them exceeds a certain number (such as 2,) or
until a counter reaches the iteration limit (such as 80.) For every new vertex point,
zeros must be injected at the top instead, and the counter must be reset. The simplest
possible design would consist of a number of elements that implement this graph
directly. However, this would yield inefficient utilization of the processing elements,
regardless of whether the design is pipelined or not.

To ensure that all the functional units are being utilized constantly, consider the
option of pipelining the graph in Figure 25 and replicate it downwards as many times
as the iteration limit, connecting the outputs of the first circuit to the inputs on the
next and so on. This system would be able to accept a new vertex point every clock
cycle, and thus utilize all the functional units all the time. This solution would also
be very simple to implement. However, most of the vertex points in a single frame
will normally not be in the Mandelbrot set, meaning that it would be unnecessary
to iterate most points all the way to the iteration limit. Put differently, this design
would perform a lot of unnecessary calculations under normal operating conditions.
Furthermore, it would not be especially flexible and scalable. For example, what if
the iteration limit was 80 and the then minimum of 240 multipliers required more
area than what was available in the target?

Many compromises between these two architectures could have been proposed,
such as having three vertices share pipelined processing units. However, one
additional strategy should be investigated first. The fact that there are exactly
three multiplication operations and three addition operations in this particular data
flow graph suggests that a processing unit consisting of just two constantly utilized
functional units (one adder and one multiplicator) might be a possibility. This would
be advantageous; not only is this solution very easily scalable as each unit is very
small — it is also relatively simple to design, contrary to the aforementioned system
where several vertices share the same pipeline at every given time.

Experiments with the data flow graph reveals that a processing unit with just
two functional units can in fact perform the algorithm while utilizing the functional
units constantly. Figure 26 illustrates the experimentally obtained high-level synthesis
schedule of a single iteration of the algorithm. Note how operation 2 and 3 are
switched (relative to Figure 25) to allow this to work out. The iteration is started with
n = 1, where Zn,re = cre and Zn−1,re · Zn−1, im = 0. A counter must be implemented
to keep track of the value of n, as well as comparators that halts the iteration process
whenever Zre, Zim or n exceeds their thresholds.

40

Zn,im

cre

cim

× 1

+ 3

+ 2

×4

×5

+6

Zn,re Zn-1,re x Zn-1,im

Zn,im

Zn,re

Zn,re x Zn,imZn+1,re

-

x2

Figure 26: The experimentally obtained maximal utilization schedule of a single
iteration of the Mandelbrot set algorithm.

9.2.2 Implementation and verification

The fractal point generator was implemented in Verilog-2001. It was tested with a
simple, dynamic test bench written in SystemVerilog-2005. The design was simulated
with Synopsys VCS/DVE.

The design is basically a four-state state machine. Its state diagram is shown in
Figure 27. The three S_IT-states correspond to the three stages of the data flow graph
in Figure 26.

41

S_IDLE

S_IT0

en
ab
le
=0

en
ab
le=
1

S_IT1

S_IT2 bo
un
d.
co
nd
./v
ali
d=
1

!b
ou
nd
.co
nd
./n
++

Figure 27: State diagram for the fractal point generator.

The two functional units have their input data selected with multiplexers
controlled by the state register. This is illustrated in Figure 28. Additionally a
counter keeps track of the iteration count, and logic is added for detecting whether
the counter has exceeded the iteration limit or whether |zre| or |zim| has exceeded 2.
The full source code of the fractal point generator is enclosed in Listing 8 in Appendix
C.

FP32
MUL

FP32
ADD

cre zre zimcre

st st

st 10 cim

st st

cre

st

x2 neg

Figure 28: The core data flow of the fractal point generator (FPG). The green boxes
are registers, where the arrows entering on the right edges are enable-signals.

42

The test bench defines an array of test vectors that were generated using the
software implementation of the design. The DUT is stimulated with each vector,
and the n-output (number of iterations) is compared with the correct answer. The
test bench makes use of the clocking block functionality in SystemVerilog, as well as
(dynamic) assertions and the struct data type. The full source code of the test bench
for the fractal point generator is enclosed in Listing 9 in Appendix C.

9.3 Vertex array generator (VAG)

A circuit for generating the vertex array representing the fractal landscape was
developed as part of the fractal generator design. This design is mostly concerned
with fixed-point arithmetic, but it also has to generate floating point coordinates for
the fractal point generators. It interfaces one or more fractal point generators (FPGs).

The vertex array generator (VAG) should have the following two important
features:

• It should be area-efficient. This means that the number of floating-point units
should be minimized and any storage memory should be as small as possible.

• It should be scalable, i.e., the number of interfaced FPGs should be easily
configurable, as well as the number of vertices in the landscape.

The generator should be scalable because factors like the number of vertices in the
heightmap and the desired frame rate may require faster fractal generation. There
is thus a tradeoff between vertex count/frame rate and area. This tradeoff will be
investigated later.

9.3.1 Implementation

The vertex array generator was like the fractal point generator designed in Verilog-
2001. The design uses the double-buffer method for storing z coordinates as
opposed to the shifting method, as discussed in Section 5.4. Apart from this
feature no alternative design solutions have been evaluated. However, the chosen
implementation is very compact and simple, easily scalable and have no identified
weaknesses.

The vertex array generator implements one floating-point adder only, and no
multipliers. (Not counting adders and multipliers in the fractal point generators.)
The source code of the vertex array generator can be found in Listing 10 in Appendix
D.

This being the top-level module for this project, it was not verified separately. The
system-level verifications are presented in Section 9.5.

The system was split into three parts, a control state machine, an FPG arbiter and
finally a Z memory. Figure 29 shows the structure of the whole design. The rest of
this section will present these three parts.

43

arrout[47:16]
Control state machine

start

bottomleft step

next strip

FPG arbiter

FPG0

en

busy
n

addr_out

addr_in
c_re
c_im

FPG1

en

busy
n

addr_out

addr_in
c_re
c_im

FPGn

en

busy
n

addr_out

addr_in
c_re
c_im

flushed
ready

Z memory

Vertex array generator

ready

arrout[15:0]

enable

w
_en

w
addr

w
data

raddr

rdata

bufno

Figure 29: The structure of the vertex array generator hardware design

44

Control state machine The control state machine (CSM) is a state machine that
calculates fractal coordinates and feeds them to the FPGs. The state diagram of this
state machine is shown in Figure 30. The term fractal point refers to one set of fractal
coordinates.

S_IDLE

S_FILL

S_FLUSH

S_READOUT

started
with start
- fill upper row

started with
next or upper
row filled

wait for arbiter
to flush

- generate
next fractal
point to FPGs
/ wait for a
free FPG

whole
row
filled

- generate next
(x, y) coords. and
request z coord.
from z-memory.
send to arrout

start || next
- generate new
triangle strip

whole triangle
strip transmitted

Figure 30: State diagram of the control state machine of the vertex array generator

The CSM has a single floating point (FP32) adder. The fractal coordinates are
calculated by adding step to bottom or left and fed to all the FPGs in the system. It
is the FPG arbiters task to decide which FPG that is to start calculating the iteration
count for the applied coordinates and tell the CSM when to send a new fractal point
to the FPGs.

When all the iteration counts in the current triangle strip has been calculated and
stored in the Z memory, the CSM will start sending the assembled vertex array out
of the module. The X and Y coordinates will be generated by the CSM using two
incrementors, while the Z coordinates come from the Z memory. The CSM will keep
track of the memory addresses, however.

FPG arbiter The FPG arbiter is responsible for keeping track of which FPGs are
busy and which are free. When one or more FPGs are done with a fractal point,

45

the arbiter will transmit the result from one of them (the iteration count, n) to the Z
memory. The address to write the result to is generated by the CSM and stored in
the FPG while working. (Through addr_in and addr_out.) Then, any pending fractal
point generated by the CSM is accepted by asserting en on the free FPG. Finally ready
is asserted to let the CSM know that the current fractal point has been accepted and
consumed.

When all the fractal points in the current vertex row have been accepted, the CSM
will wait for flushed, indicating that all the FPGs are free (i.e., that all the results are
in the Z memory.)

Z memory As discussed in Section 5.4, the Z memory is made up of two identical
buffers each large enough to store NUMPOINTS z vertex coordinates (half a triangle
strip.) The CSM will keep track of what buffer to use. When the vertex array
generator is started with start, the bottommost vertex row is calculated and stored
in the first buffer. Then, bufno is toggled and the second row is calculated and stored
in the other buffer. For each strip, bufno is toggled so that the buffer containing the
upper row of the previous strip is preserved. When transmitting the vertex array out
of the module, the buffer number is toggled for each vertex so that the correct order
of vertices is achieved.

9.4 Synthesis

The design was synthesized using Xilinx ISE 12.4 for a Xilinx Virtex 6 FPGA. The
purpose of the synthesis was to get some numbers of the resource usage and speed of
the design; the design was not tested in an actual FPGA. Specifically, the design was
synthesized for the xc6vcx75t-1ff484 device. This particular device has 46,560 look-up
tables (LUTs) available.[26] The number of LUTs utilized by a design corresponds to
the complexity (area) of the design; for details the the Virtex-6 FPGA User Guide [27].
The synthesis tool was ran without configuring timing constraints for the design, and
with NUMPOINTS set to 400, corresponding to a full 400 by 400 point landscape as
used in the fractal demo.

The number of LUTs and estimated clock frequency as a function of number of
FPGs are shown in Table 2. The frequencies are calculated as the inverse of the clock
period, which is reported by the synthesis tool.

FPGs LUTs Clock period Clock frequency
1 3,637 13.350 ns 75 MHz
2 5,350 14.502 ns 69 MHz
4 9,042 13.883 ns 72 MHz
8 15,763 16.259 ns 62 MHz
16 29,577 15.618 ns 64 MHz

Table 2: Synthesis results

It can be observed that the number of LUTs approximately follows the formula

2000 + 1700 ·NUMUNITS (6)

46

where NUMUNITS is the number of FPGs in the design. This implies that the FPGs
spend about 1700 LUTs each, while the VAG spends about 2000 LUTs. Note that the
FPG arbiter (see Figure 29) is the only component of the VAG that changes when
the number of FPGs are increases or decreased. Evidently these changes to the FPG
arbiter does not affect the area of the VAG to any significant degree.

The estimated clock frequencies appear to be somewhat uncorrelated to the
number of FPGs in the design. There is no clear explanation for this effect — it
is assumed that the synthesis tool applies certain strategies on a sporadic basis when
routing the design on the FPGA. However, there is a slight tendency for that the
frequency decreases when the number of FPGs is increased. This would be expected
as more FPGs means larger, slower multiplexers in the FPG arbiter and higher fan-out
between the state machine and FPG inputs. (i.e., the state machine outputs have to
drive more gates.)

9.5 Verification and performance analysis

The hardware fractal generator was verified and analyzed using two dynamic test
benches written in SystemVerilog-2005, as when verifying the fractal point generator
(FPG) earlier. Simulations were done with Synopsys VCS/DVE.

The purpose of the first test bench is to verify the functionality of the complete
system, consisting of the vertex array generator and a number of fractal point
generators. The purpose of the second test bench is to assess the performance of
the system, and not be concerned about correct functionality.

To ease simulation, the first test bench tests the system with a single 20 by 20 point
fractal landscape test case. This differs from the 400 by 400 point fractals used in the
fractal demo (see Chapter 6). The test case was chosen to have a wide selection of
different iteration counts (heights) across the landscape; it is shown in Figure 31. The
software demo was modified to write the output of the fractal generator to a file that
was then used to compare the output of the hardware fractal generator in the test
bench. The source code of the first test bench can be found in Listing 11 in Appendix
D.

47

Figure 31: The 20 by 20 point fractal test case

The test bench will apply configuration parameters to the device under test (DUT),
then request the first triangle strip array and wait for the ready-signal. When the
ready-signal arrives, the data-output of the DUT is compared to the “golden” solution
from the software implementation, stored in the text file testcase.txt. This is done
using SystemVerilog assertions [16]. A short excerpt from a typical output of the first
test bench is shown in Listing 5 below. Each PASS correspond to one vertex in the
generated vertex array from the DUT.

1 Chronologic VCS simulator copyright 1991−2011
2 Contains Synopsys p r o p r i e t a r y information .
3 Compiler vers ion E−2011 . 03 ; Runtime vers ion E−2011 . 03 ; Jun 16 14 : 47

2011
4 Requesting s t r i p 0 .
5 Waiting f o r ready−s i g n a l . . .
6 PASS 0 , 0
7 PASS 0 , 1
8 PASS 0 , 2
9 PASS 0 , 3

10 PASS 0 , 4
11 PASS 0 , 5
12 (. . .)

Listing 5: Sample output from simulation

It is believed that this test bench proves correct behavior of the fractal generator to
a satisfying degree. It revealed some design mistakes that were fixed and now runs
without any failing assertions. The test case was chosen to provide a wide range of
test vectors with different outcomes. It has additionally been verified that the test
case runs successfully with several different numbers of FPGs in the system. See next
paragraph.

48

Effect from increasing the number of FPGs The number of clock cycles spent
during generation of the fractal arrays were recorded; the results are in Table 3,
as a function of the number of fractal point generators the vertex array generator
implements. (The NUMUNITS parameter.)

FPGs CCs
1 31,251
2 16,541
4 9,297
8 5,883
16 4,240

Table 3: Number of clock cycles spent generating the fractal arrays as a function of
number of fractal point generators. 20 by 20 point test case.

Note how the number of clock cycles per FPG decreases as more FPGs are added.
This happens because there are only 20 new fractal points per triangle strip, and
so at the end of each triangle strip most of the FPGs will typically be unused. For
example, if the number of FPGs are 16 and all the fractal points in a strip have the
same iteration count, the first 16 fractal points will complete at the same time, leaving
12 FPGs unused when the final 4 fractal points are being calculated.

9.5.1 Comparable performance

To be able to compare the performance of the hardware fractal generator with
the software fractal generator, the same (all black) landscape as in Section 6.3.3 is
requested by the second test bench. Unlike the first test bench, no solution text file
is imported; it is simply checked whether the z coordinates in the generated vertex
arrays are set to the iteration limit (80). Thus this test bench hardly checks for correct
behavior, its purpose is to investigate the performance of the design by recording the
number of clock cycles required to generate this worst-case scenario landscape.

Combined with the synthesis results from Section 9.4, generation times in time
units can be obtained and compared with the software implementation. The results
can be found in Table 4.

FPGs CCs Est. exec. time Est. frame rate
1 38,560,397 0.515 s 2 FPS
2 19,440,797 0.282 s 4 FPS
4 9,881,597 0.137 s 7 FPS
8 5,103,197 0.083 s 12 FPS
16 2,716,397 0.042 s 24 FPS

Table 4: Number of clock cycles spent generating the fractal arrays as a function of
number of fractal point generators. 400 by 400 point worst-case scenario.

The estimated execution times were calculated by multiplying the number of clock
cycles with the clock period from the synthesis. The frame rates are calculated by

49

rounding the inverse of the execution times.

9.6 Discussion

Comparing the obtainable frame rates from the software and hardware implemen-
tation of the fractal generator, the hardware implementation is faster as soon as the
number of fractal point generators (FPGs) is increased to 2 or more. However, the
estimated frame rate of 4 FPS with 2 FPGs is hardly impressive — 4 FPS will provide
a very “choppy” animation. To obtain a good frame rate of 24 FPS, which is a well
established standard in the TV and movie-making business[22], 16 FPGs are needed.

Even with 16 FPGs, the resource usage (area) of the fractal generator is relatively
modest. With 16 FPGs it spent 29,577 LUTs during synthesis, which is 64% of the
smallest available FPGA in the Virtex 6 family of FPGAs from Xilinx (LX75T) and
only 6% of the largest available FPGA in the same family (LX760).[26, tab.1]

The worst-case scenario test case arguably does not represent a typical use of the
fractal generator. The fractal demo will mostly have a frame rate of more than 3
FPS (the worst-case scenario frame rate), because most of the points in the fractal
landscape typically have iteration counts of less than the maximum (80). However,
when zooming in on the edge of the Mandelbrot set, the average iteration count will
increase with the zoom level, slowing the demo animation. In fact, the maximum
zoom level is limited by the iteration count limit; further zooming would require a
higher limit, making the animation even slower than the studied worst-case scenario
test case.

As a final comment, the computer used to obtain the estimated frame rate for
the software implementation of the fractal generator is much more powerful than the
CPU in embedded systems targeted by the Mali family of graphic processors. Thus is
would arguably be fairer to compare the performance of the software implementation
to an ASIC implementation rather than an FPGA implementation of the hardware
fractal generator. Alternatively, the software implementation should have been tested
on an embedded platform rather than on a desktop computer.

50

10 Conclusion and future work

Although the designed fractal generator was not tested on a hardware platform,
the work done in this thesis yielded several results. Future work should focus on
integrating the fractal generator with the Mali-400 graphics processor on an FPGA
and produce a working fractal demo that utilizes this hardware.

The most important contribution from this thesis is the design of an elegant,
scalable fractal generator which with few resources was shown to beat the
corresponding software implementation running on a desktop computer. With 16
FPGs (fractal point generator cores), the implementation was almost 10 times faster
than in software and spent 63 % of the resources in the smallest available Xilinx
Virtex-6 FPGA. A OpenGL ES 2.0 demo was written to demonstrate the software
fractal generator, planned to eventually be used for demonstrating the hardware
implementation as well.

A simplification of the Mandelbrot set algorithm was proposed in Chapter 8, and
judged to be superior to the original algorithm. The two algorithms were tested and
compared using the fractal demo (presented in Chapter 6). The simplified algorithm
is the one implemented in the hardware fractal point generator.

Another area that should be considered for future work is the development of a
custom fixed-point format for representing fractal coordinates. Chapter 7 identifies
problems with using floating-point formats for this task that in the end will limit how
far into the fractal the system can zoom. However, the iteration count limit (which
is related to the achievable frame rate, see the discussion in Section 9.6) will also
limit the maximum zoom level. This means that to gain any significant benefit from
changing to a fixed-point format for fractal coordinates, the number of FPGs in the
system must be increased as well, increasing the size of the design.

51

52

A Source code, fractal demo

1 # inc lude < s t d i o . h>
2 # inc lude < s t d l i b . h>
3 # inc lude <math . h>
4 # inc lude <time . h>
5
6 # inc lude "GLES2/gl2 . h"
7 # inc lude "EGL/egl . h"
8
9 # inc lude " f r a c t a l . h"

10 # inc lude "window . h"
11 # inc lude " shader . h"
12 # inc lude " e s U t i l . h"
13
14 s t a t i c i n t xrot = 25 , z r o t = −30 ;
15 s t a t i c f l o a t f r a c t c e n t e r [2] = {−1 . 786863383 ,−2 . 369371475 e−06 } ;
16 / / s t a t i c f l o a t f r a c t c e n t e r [2] = {−0 . 3912647562 f , 0 . 6785442331 f } ;
17 / / s t a t i c f l o a t f r a c t c e n t e r [2] = { 0 . 0 f , 0 . 0 f } ;
18
19 s t a t i c f l o a t minwidth = 4 . 775061513 e−09 ;
20 s t a t i c f l o a t f rac twidth = 50 . 0 ;
21
22 s t a t i c GLfloat l s _ s c a l e = 2 . 5 ;
23
24 s t a t i c const unsigned i n t uiWidth = 640 ;
25 s t a t i c const unsigned i n t uiHeight = 480 ;
26
27 # i f d e f _WIN32
28 s t a t i c HWND hWindow ;
29 s t a t i c HDC hDisplay ;
30 # else
31 s t a t i c Window hWindow ;
32 s t a t i c Display ∗hDisplay ;
33 # endi f
34
35 s t a t i c EGLDisplay sEGLDisplay ;
36 s t a t i c EGLContext sEGLContext ;
37 s t a t i c EGLSurface sEGLSurface ;
38 s t a t i c GLuint uiProgram , uiFragShader , uiVertShader ;
39 s t a t i c ESMatrix perspect ive , modelview , mvp ;
40
41 s t a t i c GLshort ∗ landscape ;
42
43 void i n i t ()
44 {
45 / / EGL c o n f i g u r a t i o n . Adopted from ’ cube ’ a p p l i c a t i o n .
46 EGLint aEGLAttributes [] = {
47 EGL_RED_SIZE , 8 ,
48 EGL_GREEN_SIZE , 8 ,
49 EGL_BLUE_SIZE , 8 ,
50 EGL_DEPTH_SIZE , 16 ,
51 EGL_RENDERABLE_TYPE , EGL_OPENGL_ES2_BIT ,
52 EGL_NONE
53 } ;
54
55 EGLint aEGLContextAttributes [] = {
56 EGL_CONTEXT_CLIENT_VERSION, 2 ,
57 EGL_NONE
58 } ;
59
60 EGLConfig aEGLConfigs [1] ;
61 EGLint cEGLConfigs ;
62
63 GLint i L o c P o s i t i o n = 0 ;
64
65 GLint iLocColour , iLocTexCoord , iLocNormal , iLocMVP ;
66 GLint iLocXangle , iLocYangle , iLocZangle ;
67 GLint iLocAspect , iLocLightPos , iLocSampler , iLocSampler2 ;

53

68
69 GLenum myTex , myTex2 ;
70
71 i n t i , l inked ;
72
73 / / EGL i n i t i a l i z a t i o n . Adopted from ’ cube ’ a p p l i c a t i o n .
74 # i f d e f _WIN32
75 hWindow = c r e a t e _window(uiWidth , uiHeight) ;
76 # else
77 hWindow = c r e a t e _window("OpenGL ES 2 . 0 Example on a Linux Desktop " , uiWidth ,
78 uiHeight , hDisplay , sEGLDisplay , aEGLConfigs [0] , &colormap , &pVisual) ;
79 # endi f
80
81 # i f d e f _WIN32
82 hDisplay = GetDC(hWindow) ;
83 # else
84 hDisplay = XOpenDisplay (NULL) ;
85 # endi f
86
87 i f (! hDisplay) {
88 p r i n t f (" Could not open display\n") ;
89 e x i t (−1) ;
90 }
91
92 sEGLDisplay = eglGetDisplay (hDisplay) ;
93
94 (e g l I n i t i a l i z e (sEGLDisplay , NULL, NULL)) ;
95 eglChooseConfig (sEGLDisplay , aEGLAttributes , aEGLConfigs , 1 , &cEGLConfigs) ;
96
97 i f (cEGLConfigs == 0) {
98 p r i n t f ("No EGL c o n f i g u r a t i o n s were returned . \n") ;
99 e x i t (−1) ;

100 }
101
102 sEGLSurface = eglCreateWindowSurface (sEGLDisplay , aEGLConfigs [0] , (EGLNativeWindowType)

hWindow, NULL) ;
103
104 i f (sEGLSurface == EGL_NO_SURFACE) {
105 p r i n t f (" Fa i l ed to c r e a t e EGL s u r f a c e . \n") ;
106 e x i t (−1) ;
107 }
108
109 sEGLContext = eglCreateContext (sEGLDisplay , aEGLConfigs [0] , EGL_NO_CONTEXT,

aEGLContextAttributes) ;
110
111 i f (sEGLContext == EGL_NO_CONTEXT) {
112 p r i n t f (" Fa i l ed to c r e a t e EGL contex t . \n") ;
113 e x i t (−1) ;
114 }
115
116 eglMakeCurrent (sEGLDisplay , sEGLSurface , sEGLSurface , sEGLContext) ;
117
118 / / Shader i n i t i a l i z a t i o n .
119 process _ shader (&uiVertShader , " shaders/shader . v e r t " , GL_VERTEX_SHADER) ;
120 process _ shader (&uiFragShader , " shaders/shader . f rag " , GL_FRAGMENT_SHADER) ;
121
122 uiProgram = glCreateProgram () ;
123
124 / / At ta ch s h a d e r s and l i n k uiProgram .
125 glAttachShader (uiProgram , uiVertShader) ;
126 glAttachShader (uiProgram , uiFragShader) ;
127 glLinkProgram (uiProgram) ;
128
129 / / Bind p o s i t i o n t o a t t r i b u t e 0 .
130 glB indAtt r ibLocat ion (uiProgram , 0 , " a_ p o s i t i o n ") ;
131
132 / / L ink t h e program .
133 glUseProgram (uiProgram) ;
134
135 / / Check t h e l i n k s t a t u s .

54

136 glGetProgramiv (uiProgram , GL_LINK_STATUS, &l inked) ;
137 i f (! l inked) {
138 p r i n t f (" Program not l inked . \n") ;
139 e x i t (−1) ;
140 }
141
142 / / Enab l e d e p t h t e s t i n g .
143 glEnable (GL_DEPTH_TEST) ;
144 }
145
146 void reshape (GLsizei w, GLsizei h)
147 {
148 / / Update p e r s p e c t i v e ma t r ix .
149 const f l o a t edge = NUMPOINTS / 2 ;
150 esMatr ixLoadIdent i ty (&p e r s p e c t i v e) ;
151 esFrustum (&perspect ive , −edge , edge , −edge , edge , NUMPOINTS ∗ 1 . 25 , 3 ∗ NUMPOINTS) ;
152 glViewport (0 , 0 , w, h) ;
153 }
154
155 void display ()
156 {
157 i n t s ;
158 GLint mvpLoc ;
159 f l o a t l e f t , bottom , step ;
160 unsigned i n t ∗ l e f t p , ∗bottomp , ∗ stepp ;
161 s t a t i c i n t framec = 0 ;
162 c lock _ t s t a r t ;
163 double durat ion ;
164
165 / / Update mode lv i ew ma t r ix .
166 esMatr ixLoadIdent i ty (&modelview) ;
167 e s T r a n s l a t e (&modelview , 0 , 0 , −2 . 0 ∗ NUMPOINTS) ;
168 esRotate (&modelview , xrot , 1 , 0 , 0) ;
169 esRotate (&modelview , zrot , 0 , 0 , 1) ;
170 e s S c a l e (&modelview , l s _ sca le , l s _ sca le , 1) ;
171 e s T r a n s l a t e (&modelview , − (NUMPOINTS−1) / 2 , − (NUMPOINTS−1) / 2 , 0) ;
172
173 / / Update MVP ma tr ix by m u l t i p l y i n g t h e mode lv i ew m at r ix with t h e p e r s p e c t i v e m at r ix .
174 esMatrixMult iply (&mvp, &modelview , &p e r s p e c t i v e) ;
175
176 / / C l e a r b u f f e r s .
177 glClearColor (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
178 glClearDepthf (2 0 0) ;
179 g lClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) ;
180
181 / / Load t h e MVP ma tr ix :
182 mvpLoc = glGetUniformLocation (uiProgram , "u_mvpMatrix ") ;
183 glUniformMatrix4fv (mvpLoc , 1 , GL_FALSE , (GLfloat ∗) &mvp .m[0] [0]) ;
184
185 glEnableVertexAttr ibArray (0) ;
186
187 / / Draw t h e l a n d s c a p e .
188 l e f t = f r a c t c e n t e r [0] − f rac twidth / 2 ;
189 bottom = f r a c t c e n t e r [1] − f rac twidth / 2 ;
190 step = f rac twidth / (NUMPOINTS−1) ;
191 landscape = in i tLandscape (l e f t , bottom , step) ;
192 / / l a n d s c a p e = i n i t L a n d s c a p e (l e f t , bottom , f r a c t w i d t h) ;
193
194 l e f t p = (unsigned i n t ∗) &l e f t ;
195 bottomp = (unsigned i n t ∗) &bottom ;
196 stepp = (unsigned i n t ∗) &s tep ;
197 p r i n t f (" l e f t :%x , bottom :%x , step :%x\n" , ∗ l e f t p , ∗bottomp , ∗ stepp) ;
198
199 s t a r t = c lock () ;
200 for (s = 0 ; s < (NUMPOINTS−1) ; s ++) {
201 / / For e a c h t r i a n g l e s t r i p in t h e l a n d s c a p e .
202 getNextLandscapeStrip () ; / / G e n e r a t e t h e s t r i p .
203 g l V e r t e x A t t r i b P o i n t e r (0 , 3 , GL_SHORT, GL_FALSE , 0 , landscape) ;
204 glDrawArrays (GL_TRIANGLE_STRIP , 0 , NUMPOINTS∗2) ;
205 }

55

206 duration = (double) (c lock () − s t a r t) / CLOCKS_PER_SEC ;
207
208 p r i n t f (" Frame %d took %2 . 3 f seconds to generate . \n" , framec ++ , durat ion) ;
209
210 glFlush () ;
211 i f (! eglSwapBuffers (sEGLDisplay , sEGLSurface)) {
212 p r i n t f (" Fa i l ed to swap b u f f e r s . \n") ;
213 }
214 }
215
216 i n t main (i n t argc _ in , char ∗∗argv) {
217 i n t bDone = 0 ;
218 MSG sMessage ;
219
220 i n i t () ;
221 reshape (uiWidth , uiHeight) ;
222 display () ;
223
224 / / Ente r e v e n t l o o p .
225 while (! bDone) {
226 # i f d e f _WIN32
227 i f (PeekMessage (&sMessage , NULL, 0 , 0 , PM_REMOVE)) {
228 i f (sMessage . message == WM_QUIT) {
229 bDone = 1 ;
230 } e l se {
231 TranslateMessage (&sMessage) ;
232 DispatchMessage (&sMessage) ;
233 }
234 }
235 # else
236 while (XPending (hDisplay) > 0) {
237 XNextEvent (hDisplay , &e) ;
238
239 i f (e . type == ButtonPress) {
240 bDone = 1 ;
241 }
242 }
243 # endi f
244
245 /∗
246 i f ((l s _ s c a l e ∗= 1 . 02) >= 5 . 0) {
247 l s _ s c a l e = 2 . 5 ;
248 i f ((f r a c t w i d t h ∗= 0 . 5) < minwidth) {
249 f r a c t w i d t h = 50 . 0 ;
250 }
251 }
252 ∗ /
253
254 /∗
255 i f ((f r a c t w i d t h ∗= 0 . 98) < minwidth) {
256 f r a c t w i d t h = 50 . 0 ;
257 }
258 d i s p l a y () ;
259 ∗ /
260
261 f rac twidth ∗= 0 . 98 ;
262 display () ;
263
264 / / S l e e p (1 0 0 0) ;
265 }
266 return 0 ;
267 }

Listing 6: C source code for the fractal demo application. Other source files and
shaders are generally taken from the cube demo application (discussed earlier) and
delivered with the thesis.

56

B Source code, fractal generator, software model

1 / /
2 / / f r a c t a l . c , by Per C h r i s t i a n C o r n e l i u s s e n , March 2011
3 / /
4 / / Th i s i s t h e s o f t w a r e v e r s i o n o f t h e f r a c t a l g e n e r a t o r . I t i s l a y e d out so
5 / / t h a t e a c h C f u n c t i o n c o r r e s p o n d s t o a hardware module . The a l g o r i t h m s s h o u l d
6 / / a l s o be as s i m i l a r a s p o s s i b l e t o how i t i s p l anned done in hardware .
7 / /
8
9 # inc lude < s t d i o . h>

10 # inc lude < s t d l i b . h>
11 # inc lude <math . h> / / For h y p o t f ()
12 # inc lude "GLES2/gl2 . h" / / Emulator heade r , f o r GLshort .
13
14 # inc lude " f r a c t a l . h" / / D e f i n e s NUMPOINTS .
15
16 s t a t i c GLshort ∗stripmem = NULL ;
17 s t a t i c GLshort ∗vertexmem = NULL ;
18 s t a t i c f l o a t l e f t , bottom , step ;
19 s t a t i c i n t k ; / / Current s t r i p number .
20
21 i n t g e t F r a c t P o i n t (f l o a t re , f l o a t im)
22 / / Get t h e number o f i t e r a t i o n s (n) b e f o r e |z| e x c e e d s 2 . Thi s f u n c t i o n
23 / / c o r r e s p o n d s t o t h e f r a c t a l p o i n t g e n e r a t o r hardware module , mbrot . v .
24 {
25 i n t n ;
26 f l o a t z_ re = 0 . 0 f , z_im = 0 . 0 f ;
27 for (n = 1 ; n < 80 ; n++) {
28 f l o a t z_ re _ old = z_ re ;
29 z_ re = z_ re∗z_ re − z_im∗z_im + re ;
30 z_im = 2 . 0 f ∗ z_ re _ old ∗ z_im + im ;
31
32 / / S i m p l i f i e d boundary c h e c k .
33 i f ((z_ re >= 2 . 0 f) || (z_ re <= −2 . 0 f) || (z_im >= 2 . 0 f) || (z_im <= −2 . 0 f))
34 break ;
35
36 / / P r e c i c e boundary c h e c k . Thi s i s t h e one used f o r t h e " compar i s on o f
37 / / boundary c h e c k methods " c h a p t e r o f t h e r e p o r t .
38 /∗ i f (_ h y p o t f (z _ re , z _ im) >= 2 . 0 f)
39 b r e a k ; ∗ /
40 }
41 return n ;
42 }
43
44 GLshort ∗ in i tLandscape (f l o a t _ l e f t , f l o a t _bottom , f l o a t _ s tep)
45 / / A l l o c a t e memory f o r l a n d s c a p e g e n e r a t i o n .
46 {
47 / / A l l o c a t e memory f o r a s i n g l e t r i a n g l e s t r i p . I f i n i t L a n d s c a p e () has be en
48 / / c a l l e d p r e v i o u s l y , t h e o l d chunk o f a l l o c a t e d memory i s r e u s e d .
49 i f (vertexmem == NULL) {
50 vertexmem = malloc (NUMPOINTS ∗ 2 ∗ 3 ∗ s i ze of (GLshort)) ;
51 stripmem = malloc (NUMPOINTS ∗ 2 ∗ s i ze of (GLshort)) ;
52 i f (stripmem == NULL) {
53 f p r i n t f (s tderr , " Out of memory . \n") ;
54 e x i t (−1) ;
55 }
56 }
57
58 / / S t o r e c o n f i g u r a t i o n :
59 l e f t = _ l e f t ;
60 bottom = _bottom ;
61 step = _ s tep ;
62
63 / / S e t c u r r e n t s t r i p number t o 0 .
64 k = 0 ;
65
66 return vertexmem ;
67 }

57

68
69 void getNextLandscapeStrip ()
70 / / Update memory a r e a r e t u r n e d by i n i t L a n d s c a p e () wi th nex t t r i a n g l e s t r i p .
71 / / i n i t L a n d s c a p e () must be c a l l e d f i r s t f o r e a c h f rame . Thi s module c o r r e s p o n d s
72 / / t o t h e v e r t a r r a y . v hardware module .
73 {
74 i n t i = 0 , j = 0 ;
75 i n t x = 0 , y = k ;
76 f l o a t re = l e f t ;
77 f l o a t im_upper = bottom + step ; / / ∗ (y +1) ;
78 f l o a t im_ lower = bottom ; / / + s t e p ∗ y ;
79
80 / / p r i n t f (" S t r i p no . %d : \n " , k) ;
81
82 / / G e n e r a t e f r a c t a l p o i n t s f o r t h i s s t r i p . I f on t h e f i r s t s t r i p (k == 0) , a l l
83 / / t h e p o i n t s a r e g e n e r a t e d . Otherwise , on ly t h e upper row i s g e n e r a t e d , and
84 / / t h e l o w e r row i s r e u s e d from t h e p r e v i o u s (l o w e r) s t r i p .
85 while (i < (NUMPOINTS ∗ 2)) {
86 / / r e = l e f t + s t e p ∗ (i / 2) ;
87 / / Lower row :
88 i f (k == 0) stripmem [i ++] = g e t F r a c t P o i n t (re , im_ lower) ;
89 e lse stripmem [i ++] = stripmem [i +1] ;
90 / / Upper row :
91 stripmem [i ++] = g e t F r a c t P o i n t (re , im_upper) ;
92 re += s tep ;
93 }
94
95 / / F i n a l l y , t h e v e r t e x a r r a y i s g e n e r a t e d . (Th i s s h o u l d be e a s i l y impl emented
96 / / in hardware , a s e v e r y t h i n g i s c o n s t a n t e x c e p t str ipmem [] .)
97
98 for (i = 0 ; i < (NUMPOINTS∗2) ; i ++) {
99 / / For e a c h v e r t e x in t h e t r i a n g l e s t r i p .

100 vertexmem [j ++] = (y == k) ? x : x++ ;
101 vertexmem [j ++] = (y == k) ? y++ : y−−;
102 vertexmem [j ++] = stripmem [i] ;
103 / / p r i n t f ("%04x%04x%04x\n " , vertexmem [j−3] , vertexmem [j−2] , vertexmem [j−1]) ;
104 }
105
106 / / F i n a l l y , i n c r e m e n t ’ bo t tom ’ f o r nex t s t r i p . Note how t h i s whole t h i n g i s
107 / / made so t h a t s t r i p s must be r e t r e i v e d in o r d e r .
108 bottom += s tep ;
109 k++ ;
110 }

Listing 7: C source code for the fractal generator software model

C Source code, fractal point generator, hardware

1 / /
2 / / f p g . v , by Per C h r i s t i a n C o r n e l i u s s e n , March 2011 .
3 / /
4 / / F r a c t a l p o i n t g e n e r a t o r . Thi s module w i l l c a l c u l a t e t h e h e i g h t o f a s i n g l e
5 / / p o i n t in t h e Mande lbro t s e t , s p e c i f i e d wi th t h e (c _ re , c _ im) i n p u t s . I t w i l l
6 / / spend t h r e e c l o c k c y c l e s p e r i t e r a t i o n o f t h e a l g o r i t h m , and so t h e e x e c u t i o n
7 / / t ime i s not c o n s t a n t . The ’ v a l i d ’ ou t pu t w i l l go h igh f o r one c l o c k c y c l e
8 / / when t h e a l g o r i t h m i s f i n i s h e d . A new o p e r a t i o n may then be s t a r t e d
9 / / i m m e d i a t e l y .

10 / /
11 / / Ther e i s no s u p p o r t f o r subnormal numbers . c _ r e i s r e g i s t e r e d , but c _ im i s
12 / / no t . Thi s i s done t o a s s i s t t h e v e r t e x a r r a y g e n e r a t o r (VAG .)
13 / /
14
15 module fpg (
16 input clk , / / C l o c k .
17 input r e s e t _n , / / R e s e t .
18 input [31 : 0] c _ re , / / Rea l v a l u e o f p o i n t t o be c a l c u l a t e d . FP32 .

58

19 input [31 : 0] c _im , / / C o r r e s p o n d i n g imag inary v a l u e . FP32 .
20 input enable , / / Synchronous s t a r t .
21 input [15 : 0] addr_ in , / / Wi l l be moved t o addr _ out whenever s t a r t e d .
22 output reg [7 : 0] n , / / Number o f i t e r a t i o n s .
23 output reg busy , / / Excep t a f t e r r e s e t , busy= ’ 0 ’ means n i s v a l i d .
24 / / Note t h a t a f t e r r e s e t , n w i l l be 0 .
25 output reg [15 : 0] addr_ out
26) ;
27
28 / / C o n f i g u r a b l e p a r a m e t e r s :
29 parameter MAX_ITERATIONS = 80 ;
30
31 / / S t a t e e n c o d i n g :
32 parameter S_IDLE = 0 , S_ IT0 = 1 , S_ IT1 = 2 , S_ IT2 = 3 ;
33 parameter M_OFF = 0 , M_X2 = 1 , M_NEGATE = 2 ;
34
35 reg [2 : 0] s t a t e ; / / S t a t e r e g i s t e r .
36 reg [1 : 0] mulsel ; / / S p e c i f i e s m u l t i p l i c a t o r pos t−op .
37 reg [31 : 0] mul_a , mul_b , add_a , add_b ; / / F u n c t i o n a l u n i t i n p u t s .
38 wire [31 : 0] mul_ out _ t , add_ out ; / / F u n c t i o n a l u n i t o u t p u t s .
39 reg [31 : 0] mul_ out ; / / M u l t i p l i c a t o r pos t−op o utp ut .
40 wire [32 : 0] add_ out _ t ; / / Adder t emporary ou tp ut .
41 reg [31 : 0] z_ re , z_im , c _ re _ r ; / / Temporary s t o r a g e .
42
43 / / F u n c t i o n a l u n i t s . The FP32 a d d e r s u s e s a d e r i v e d 33− b i t f o r m a t i n t e r n a l l y
44 / / t h a t n e e d s t o be c o n v e r t e d t o and from FP32 . Even though t h e a d d e r
45 / / s u p p o r t s subnormal numbers , t h e m u l t i p l i c a t o r (and t h i s module) d o e s not ,
46 / / t hus t h e FP32<−>FP33 c o n v e r s i o n i s done in a s i m p l i f i e d way .
47 v i t h a r _ l i b _ fp32 _adder_main adder (
48 . a ({ add_a [31 : 23] , 1 ’ b1 , add_a [22 : 0] }) ,
49 . b ({ add_b [31 : 23] , 1 ’ b1 , add_b [22 : 0] }) ,
50 . r es (add_ out _ t)
51) ;
52 assign add_ out = { add_ out _ t [32 : 24] , add_ out _ t [22 : 0] } ;
53
54 v i t h a r _ l i b _ f32 _mul m u l t i p l i e r (
55 . c l k (c l k) , / / Note t h a t c l k and r e s e t _n a r e unused u n l e s s s p e c i f i c
56 . r e s e t _n (r e s e t _n) , / / p a r a m e t e r s a r e s e t . Otherwi s e t h e u n i t i s f u l l y
57 . enable (1 ’ b1) , / / c o m b i n a t o r i a l and v a l i d i s c o n n e c t e d t o e n a b l e .
58 . a (mul_a) ,
59 . b (mul_b) ,
60 . dout (mul_ out _ t) ,
61 . val id ()
62) ;
63
64 always @ (mulsel , mul_ out _ t)
65 begin
66 / / To s u p p o r t t h e d a t a f l o w graph o f t h e Mande lbro t a l g o r i t h m , t h e r e i s
67 / / l o g i c f o r pos t−p r o c e s s i n g t h e ou t pu t o f t h e m u l t i p l i c a t i o n u n i t . Note
68 / / t h a t t h e M_X2 (m u l t i p l i c a t i o n by 2) o p e r a t i o n i s made in t h e s i m p l e s t
69 / / p o s s i b l e way − i t d o e s not s u p p o r t NaN or subnormal numbers .
70 case (mulsel)
71 M_X2 : mul_ out = { mul_ out _ t [31] , mul_ out _ t [30 : 23] + 8 ’ b1 , mul_ out _ t [22 : 0] } ;
72 M_NEGATE : mul_ out = { ~mul_ out _ t [31] , mul_ out _ t [30 : 0] } ;
73 default : mul_ out = mul_ out _ t ;
74 endcase
75 end
76
77 always @ (posedge c l k or negedge r e s e t _n)
78 begin
79 i f (! r e s e t _n) begin
80 / / R e s e t e v e r y t h i n g .
81 mul_a <= 0 ;
82 mul_b <= 0 ;
83 add_a <= 0 ;
84 add_b <= 0 ;
85 z_ re <= 0 ;
86 z_im <= 0 ;
87 c _ re _ r <= 0 ;
88 addr_ out <= 0 ;

59

89 n <= 0 ;
90 busy <= 0 ;
91 s t a t e <= S_IDLE ;
92 mulsel <= M_OFF ;
93
94 end else begin
95 / / The Mande lbro t s e t i s d e s i g n e d as an FSM with t h r e e r e p e a t i n g s t a t e s
96 / / f o r e a c h i t e r a t i o n o f t h e a l g o r i t h m .
97
98 z_im <= add_ out ; / / z _ im n e e d s t o be s t o r e d be tween S_ IT1 and S_ IT2 ;
99 / / t h i s can be implemented as add _ out d e l a y e d .

100
101 case (s t a t e)
102 S_IDLE : begin
103 / / Unit i d l e . Send s t a r t v a l u e s i n t o t h e f u n c t i o n a l u n i t s .
104 mul_a <= c _ re ;
105 mul_b <= c _ re ;
106 add_a <= 0 ;
107 add_b <= c _im ;
108 z_ re <= c _ re ;
109 c _ re _ r <= c _ re ;
110 mulsel <= M_OFF ;
111
112 i f (enable) begin
113 / / I f t h e r e i s a pending r e q u e s t , i n i t i a t e t h e a l g o r i t h m by
114 / / jumping t o t h e nex t s t a t e .
115 s t a t e <= S_ IT0 ;
116 busy <= 1 ’ b1 ;
117 n <= 0 ;
118 addr_ out <= addr_ in ;
119 end else begin
120 s t a t e <= S_IDLE ;
121 n <= n ;
122 busy <= 0 ;
123 end
124 end
125
126 S_ IT0 : begin
127 / / I t e r a t i o n c y c l e 0 .
128 mul_a <= add_ out ;
129 mul_b <= add_ out ;
130 add_a <= mul_ out ;
131 add_b <= c _ re _ r ;
132 mulsel <= M_NEGATE ;
133 n <= n + 8 ’ b1 ;
134
135 / / The boundary c h e c k i s done h e r e . Thi s i s done by c h e c k i n g whe the r
136 / / |z _ r e | or |z _ im| e x c e e d s 2 , o r whe the r n e x c e e d s max . i t . count .
137 / / $ d i s p l a y (" Boundary c h e c k a t n=%d : z=(%x , %x) " , n , z _ re , add _ out) ;
138 i f ((n == (MAX_ITERATIONS−1)) || (add_ out [30 : 23] > 127) || (z_ re [30 : 23] > 127))
139 begin
140 / / I t e r a t i o n count or z e x c e e d s b o u n d a r i e s . A s s e r t v a l i d−ou tp ut
141 / / and r e t u r n t o i d l e s t a t e .
142 busy <= 0 ;
143 s t a t e <= S_IDLE ;
144 end else begin
145 busy <= 1 ’ b1 ;
146 s t a t e <= S_ IT1 ;
147 end
148 end
149
150 S_ IT1 : begin
151 / / I t e r a t i o n c y c l e 1 .
152 mul_a <= z_ re ;
153 mul_b <= z_im ;
154 add_a <= mul_ out ;
155 add_b <= add_ out ;
156 z_ re <= z_ re ;
157 mulsel <= M_X2 ;
158 n <= n ;

60

159 busy <= 1 ’ b1 ;
160 s t a t e <= S_ IT2 ;
161 end
162
163 S_ IT2 : begin
164 / / I t e r a t i o n c y c l e 2 .
165 mul_a <= add_ out ;
166 mul_b <= add_ out ;
167 add_a <= mul_ out ;
168 add_b <= c _im ;
169 z_ re <= add_ out ;
170 mulsel <= M_OFF ;
171 n <= n ;
172 busy <= 1 ’ b1 ;
173 s t a t e <= S_ IT0 ;
174 end
175
176 default : begin
177 / / Unde f ined s t a t e .
178 mul_a <= 32 ’ bx ;
179 mul_b <= 32 ’ bx ;
180 add_a <= 32 ’ bx ;
181 add_b <= 32 ’ bx ;
182 z_ re <= 32 ’ bx ;
183 mulsel <= M_OFF ;
184 n <= 0 ;
185 busy <= 0 ;
186 s t a t e <= S_IDLE ;
187 end
188 endcase
189 end
190 end
191 endmodule

Listing 8: Verilog source code for the fractal point generator

61

1 / /
2 / / f p g _ t b . sv , by Per C h r i s t i a n C o r n e l i u s s e n , March 2011 .
3 / /
4 / / S y s t e m V e r i l o g t e s t bench f o r f p g . v . Thi s i s an i n f o r m a l t e s t bench , i t
5 / / s im p ly t e s t s a number o f Mande lbro t p o i n t s t h a t was c a l c u l a t e d b e f o r e h a n d
6 / / wi th t h e s o f t w a r e i m p l e m e n t a t i o n .
7 / /
8
9 module fpg _ tb () ;

10
11 / / DUT p o r t s :
12 l o g i c clk , r e s e t _n , enable , busy ;
13 l o g i c [31 : 0] c _ re , c _im ;
14 l o g i c [7 : 0] n ;
15 l o g i c [15 : 0] addr_ in , addr_ out ;
16
17 / / Connect DUT p o r t s :
18 fpg dut (. ∗) ;
19
20 typedef s t r u c t packed {
21 b i t [31 : 0] re ;
22 b i t [31 : 0] im ;
23 b i t [7 : 0] n ;
24 } t e s t _ vector _ t ;
25
26 / / T e s t v e c t o r s :
27 t e s t _ vector _ t t e s t _ vector [] = ’ {
28 { 32 ’ h40000000 , 32 ’ h40000000 , 8 ’ d1 } ,
29 { 32 ’ h3c23d70a , 32 ’ h3f851eb0 , 8 ’ d6 } ,
30 { 32 ’ h3ba3d70a , 32 ’ h3f80a3d7 , 8 ’ d8 } ,
31 { 32 ’ h3dcccccd , 32 ’ h3f266666 , 8 ’ d14 } ,
32 { 32 ’ h3dcccccd , 32 ’ h3f23d70a , 8 ’ d48 } ,
33 { 32 ’ h3dcccccd , 32 ’ h3f1aca58 , 8 ’ d65 } ,
34 { 32 ’ h3e0ea4a9 , 32 ’ h3f1aca9b , 8 ’ d78 } ,
35 { 32 ’ h0 , 32 ’ h0 , 8 ’ d80 }
36 } ;
37
38 assign addr_ in = 16 ’ b0 ;
39
40 / / C l o c k d r i v e r :
41 always #5 c l k = ! c l k ;
42
43 c lock ing cc @(posedge c l k) ;
44 default input #1 output negedge ;
45 output r e s e t _n ;
46 output enable , c _ re , c _im ;
47 input busy , n ;
48 endclocking
49
50 i n i t i a l begin
51 / / Enab l e dumping :
52 $vcdpluson (0 , dut) ;
53
54 / / I n i t i a t e c l o c k and r e s e t DUT :
55 c l k = 0 ;
56 r e s e t _n <= 0 ;
57 enable <= 0 ;
58
59 ##1 cc . r e s e t _n <= 1 ; / / Wi l l be a s s e r t e d on t h e n e g a t i v e edge .
60
61 foreach (t e s t _ vector [i]) begin
62 / / Send t e s t v e c t o r t o DUT :
63 cc . c _ re <= t e s t _ vector [i] . re ;
64 cc . c _im <= t e s t _ vector [i] . im ;
65 cc . enable <= 1 ’ b1 ;
66 ##1 cc . enable <= 1 ’ b0 ;
67 / / Wait f o r v a l i d−s i g n a l :
68 @(negedge cc . busy) ;
69 / / A s s e r t answer :

62

70 a s s e r t (cc . n == t e s t _ vector [i] . n) $display ("PASS %d" , i) ;
71 e lse $ e r r o r (" FAIL %d (Expected %d , got %d) " , i , t e s t _ vector [i] . n , cc . n) ;
72 end
73 $f inish ;
74 end
75 endmodule

Listing 9: SystemVerilog source code for the test bench of the fractal point generator

D Source code, vertex array generator, hardware

1 / /
2 / / vag . v , by Per C h r i s t i a n C o r n e l i u s s e n , May 2011 .
3 / /
4 / / Ve r t ex a r r a y g e n e r a t o r . Thi s module w i l l g e n e r a t e a v e r t e x a r r a y
5 / / r e p r e s e n t i n g one t r i a n g l e s t r i p o f t h e f r a c t a l l a n d s c a p e .
6 / / The g e n e r a t e d a r r a y i t s e l f c o n t a i n s f i x e d−p o i n t 16− b i t (GLshort) v a l u e s
7 / / on ly . However , FP32 c o o r d i n a t e s s p e c i f y i n g a l o c a t i o n in t h e Mande lbro t
8 / / s e t (bo t tom l e f t c o o r d i n a t e s) and a zoom l e v e l (g i v e n as a s t e p s i z e) must
9 / / b e p r o v i d e d . See p o r t l i s t .

10 / /
11
12 module vag (
13 input clk , / / C l o c k .
14 input r e s e t _n , / / R e s e t .
15 input [31 : 0] l e f t , / / Rea l v a l u e o f t h e bot tom l e f t f r a c t a l c o o r d .
16 input [31 : 0] bottom , / / C o r r e s p o n d i n g imag inary v a l u e .
17 input [31 : 0] step , / / D i s t a n c e be tween f r a c t a l p o i n t s .
18 input s t a r t , / / I n i t i a t e g e n e r a t i o n o f new l a n d s c a p e .
19 input next , / / I n i t i a t e g e n e r a t i o n o f nex t t r i a n g l e s t r i p .
20 output reg ready , / / Output d a t a r e a d y . A f t e r ’ ready ’ t o g g l e s , a new
21 output [47 : 0] arrout / / s e t o f v e r t e x c o o r d i n a t e s w i l l be a v a i l a b l e e a c h
22 / / c l o c k c y c l e on ’ a r r o u t ’ .
23) ;
24
25 / / C o n f i g u r a b l e p a r a m e t e r s :
26 parameter NUMPOINTS = 400 ; / / Number o f p o i n t s in e a c h d i r e c t i o n . The number o f
27 / / v e r t i c e s p e r t r i a n g l e s t r i p w i l l be 2∗NUMPOINTS .
28 parameter NUMUNITS = 2 ; / / Number o f f r a c t a l p o i n t g e n e r a t o r s .
29
30 / / S t a t e e n c o d i n g :
31 parameter S_IDLE = 0 , S_FILL = 1 , S_FLUSH = 2 , S_READOUT = 3 ;
32
33 / /−−−−−−−−−−−
34 / / V a r i a b l e s :
35 / /−−−−−−−−−−−
36
37 / / Adders :
38 reg [31 : 0] add_a ;
39 wire [31 : 0] add_b ;
40 wire [31 : 0] add_ out ;
41 wire [32 : 0] add_ out _ t ;
42 wire [15 : 0] x_ inc , y_ inc ;
43
44 / / C o n t r o l s t a t e machine (CSM) :
45 reg [31 : 0] re , im ; / / The c u r r e n t f r a c t a l c o o r d i n a t e s . Connected t o
46 / / c _ r e and c _ im i n p u t s on a l l FPGs .
47 reg [31 : 0] re _reg , im_ reg ; / / R e g i s t r e r e d f r a c t a l c o o r d i n a t e s .
48 reg [15 : 0] x , x_ reg ; / / The c u r r e n t column . (x v e r t e x c o o r d i n a t e)
49 reg [15 : 0] y , y_ reg ; / / The c u r r e n t row . (y v e r t e x c o o r d i n a t e)
50 reg f i r s t s t r i p ; / / Whether t h i s i s t h e f i r s t s t r i p or not .
51 reg upper ; / / Whether s e n d i n g t h e upper or l o w e r v e r t e x .
52 reg [1 : 0] s t a t e ; / / Current s t a t e .
53
54 / / FPGs :
55 reg [0 :NUMUNITS−1] fpg _en ;

63

56 wire [0 :NUMUNITS−1] fpg _busy ;
57 wire [7 : 0] fpg _n [0 :NUMUNITS−1] ;
58 wire [15 : 0] fpg _addr_ out [0 :NUMUNITS−1] ;
59
60 / / FPG a r b i t e r :
61 reg arb t _ enable ; / / Whether t o p r o c e s s t h e f r a c t a l p o i n t o r not .
62 reg arb t _ ready ; / / Wi l l go h igh f o r one c c when t h e f r a c t a l p o i n t s p e c i f i e d
63 / / by t h e a b o v e v a r i a b l e s i s r e c e i v e d and b e i n g p r o c e s s e d .
64 wire arb t _ f lushed ; / / Wi l l s t a y h igh when no f r a c t a l p o i n t s a r e b e i n g p r o c e s s e d .
65 reg [0 :NUMUNITS−1] arb t _ fpg _wb, arb t _ fpg _wb_ next ; / / Whether an FPG had i t s
66 / / r e s u l t s t o r e d y e t .
67 in teger i ; / / Loop c o u n t e r .
68
69 / / Z memory :
70 reg [7 : 0] zmem0 [0 :NUMPOINTS−1] ; / / Ram f o r one row o f z c o o r d i n a t e s .
71 reg [7 : 0] zmem1 [0 :NUMPOINTS−1] ; / / Ram f o r one row o f z c o o r d i n a t e s .
72 reg zmem_w_en ;
73 reg zmem_bufno ;
74 reg [15 : 0] zmem_waddr ;
75 reg [7 : 0] zmem_wdata ;
76 wire [15 : 0] zmem_ raddr ;
77 wire [7 : 0] zmem_ rdata ;
78
79 / /−−−−−−−−
80 / / Adders :
81 / /−−−−−−−−
82
83 / / F l o a t i n g p o i n t (FP32) a d d e r . The FP32<−>FP33 c o n v e r s i o n i s done in a
84 / / s i m p l i f i e d way as in t h e FPGs . (I . e . , d ropped s u p p o r t f o r subnormal numbers .)
85 v i t h a r _ l i b _ fp32 _adder_main adder (
86 . a ({ add_a [31 : 23] , 1 ’ b1 , add_a [22 : 0] }) ,
87 . b ({ add_b [31 : 23] , 1 ’ b1 , add_b [22 : 0] }) ,
88 . r es (add_ out _ t)
89) ;
90 assign add_ out = { add_ out _ t [32 : 24] , add_ out _ t [22 : 0] } ;
91
92 / / 16− b i t i n t e g e r i n c r e m e n t o r s .
93 assign x_ inc = x_ reg + 16 ’ b1 ;
94 assign y_ inc = y_ reg + 16 ’ b1 ;
95
96 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97 / / C o n t r o l s t a t e machine : (CSM)
98 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99

100 assign add_b = s tep ; / / The s e c o n d add operand i s a lways ’ s t e p ’ .
101 assign arrout [47 : 32] = x_ reg ; / / x c o o r d i n a t e .
102 assign arrout [31 : 16] = (upper ? y_ inc : y_ reg) ; / / y c o o r d i n a t e .
103 assign arrout [15 : 0] = zmem_ rdata ; / / z c o o r d i n a t e .
104 assign zmem_ raddr = x_ reg ;
105
106 always @ (∗)
107 / / C o m b i n a t o r i a l b l o c k f o r c o n t r o l l i n g f e e d i n g o f f r a c t a l p o i n t s t o FPGs .
108 begin
109 / / D e f a u l t v a l u e s :
110 x <= x_ reg ;
111 y <= y_ reg ;
112 add_a <= 32 ’ bx ;
113 re <= 32 ’ bx ;
114 im <= im_ reg ;
115 ar b t _ enable <= 0 ;
116
117 case (s t a t e)
118 S_IDLE : begin
119 x <= 0 ;
120 i f (s t a r t) begin
121 / / I f s t a r t i n g on a new frame , send bot tom l e f t c o o r d i n a t e s t o FPGs .
122 y <= 0 ;
123 re <= l e f t ;
124 im <= bottom ;
125 ar b t _ enable <= 1 ’ b1 ;

64

126 end else i f (next) begin
127 / / I f s t a r t i n g on a new s t r i p , i n c r e m e n t im with ’ s t e p ’ .
128 y <= y_ inc ;
129 add_a <= im_ reg ;
130 re <= l e f t ;
131 im <= add_ out ; / / im += s t e p
132 ar b t _ enable <= 1 ’ b1 ;
133 end
134 end
135 S_FILL : begin
136 x <= x_ inc ; / / x++
137 add_a <= re _ reg ;
138 im <= im_ reg ; / / Within a row , t h e imag inary v a l u e (im) w i l l remain c o n s t a n t .
139 ar b t _ enable <= 1 ’ b1 ;
140
141 i f (a rb t _ ready) begin
142 / / The p r e v i o u s f r a c t a l p o i n t s e n t t o t h e FPGs was consumed . C a l c u l a t e
143 / / n ex t f r a c t a l p o i n t .
144 x <= x_ inc ; / / x++
145 re <= add_ out ; / / r e += s t e p
146 end else begin
147 x <= x_ reg ;
148 re <= re _ reg ; / / Keep o l d va lue , w a i t i n g f o r a f r e e FPG .
149 end
150 end
151 S_FLUSH : begin
152 x <= 0 ;
153 i f (a rb t _ f lushed && f i r s t s t r i p) begin
154 / / I f t h e FPGs have been f l u s h e d and t h i s i s t h e f i r s t t r i a n g l e s t r i p ,
155 / / s t a r t c a l c u l a t i n g t h e upper row .
156 add_a <= im_ reg ;
157 re <= l e f t ;
158 im <= add_ out ;
159 ar b t _ enable <= 1 ’ b1 ;
160 end
161 end
162 endcase
163 end
164
165 always @ (posedge c l k or negedge r e s e t _n)
166 / / S t a t e c o n t r o l .
167 begin
168 i f (! r e s e t _n) begin
169 s t a t e <= S_IDLE ;
170 re _ reg <= 0 ;
171 im_ reg <= 0 ;
172 x_ reg <= 0 ;
173 y_ reg <= 0 ;
174 f i r s t s t r i p <= 0 ;
175 ready <= 0 ;
176 upper <= 0 ;
177 zmem_bufno <= 0 ;
178 end else begin
179 re _ reg <= re ;
180 im_ reg <= im ;
181 x_ reg <= x ;
182 y_ reg <= y ;
183
184 / / D e f a u l t v a l u e s :
185 ready <= 0 ;
186 upper <= 0 ;
187
188 case (s t a t e)
189 S_IDLE : begin
190 / / Wait f o r e i t h e r ’ s t a r t ’ o r ’ next ’ .
191 i f (s t a r t) begin
192 s t a t e <= S_FILL ;
193 f i r s t s t r i p <= 1 ’ b1 ;
194 zmem_bufno <= 0 ; / / Always s t a r t wi th t h e f i r s t b u f f e r .
195 end else i f (next) begin

65

196 s t a t e <= S_FILL ;
197 f i r s t s t r i p <= 0 ;
198 zmem_bufno <= ~zmem_bufno ; / / Change t o t h e o t h e r b u f f e r .
199 end else begin
200 s t a t e <= S_IDLE ;
201 end
202 end
203 S_FILL : begin
204 / / C a l c u l a t e t h e z c o o r d i n a t e s f o r t h e c u r r e n t v e r t e x row .
205 i f (x == (NUMPOINTS−1)) begin
206 / / I f a t t h e r i g h t end o f t h e row , jump t o f l u s h s t a t e .
207 s t a t e <= S_FLUSH ;
208 end else begin
209 s t a t e <= S_FILL ;
210 end
211 end
212 S_FLUSH : begin
213 / / Wait f o r f i n a l f r a c t a l p o i n t s t o be c a l c u l a t e d .
214 i f (a rb t _ f lushed) begin
215 / / Done . I f s t a r t e d with ’ next ’ , jump t o t h e r e a d o u t s t a t e .
216 / / Othe rwi s e i f s t a r t e d with ’ s t a r t ’ , change t h e memory b u f f e r
217 / / and c o n t i n u e with t h e upper row o f t h e t r i a n g l e s t r i p .
218 i f (f i r s t s t r i p) begin
219 s t a t e <= S_FILL ;
220 f i r s t s t r i p <= 0 ;
221 zmem_bufno <= ~zmem_bufno ;
222 end else begin
223 s t a t e <= S_READOUT;
224 ready <= 1 ’ b1 ;
225 end
226 end
227 end
228 S_READOUT: begin
229 / / Ve r t ex a r r a y g e n e r a t e d . Transmit v a l u e s out o f module .
230 x_ reg <= (upper ? x_ inc : x) ;
231 upper <= ~upper ;
232
233 i f (! upper && (x == (NUMPOINTS−1))) begin
234 / / I f t h e v e r t e x f o l l o w i n g t h i s c l o c k c y c l e i s t h e f i n a l one , jump
235 / / b a c k t o t h e i d l e s t a t e .
236 s t a t e <= S_IDLE ;
237 end
238 end
239 endcase
240 end
241 end
242
243 / /−−−−−−
244 / / FPGs :
245 / /−−−−−−
246 / / The f r a c t a l p o i n t g e n e r a t o r s (FPGs) c a l c u l a t e t h e i t e r a t i o n c o u n t s o f
247 / / incoming f r a c t a l p o i n t s . (I . e . , t h e z c o o r d i n a t e s o f t h e v e r t i c e s .)
248
249 generate
250 / / G e n e r a t e FPGs .
251 genvar gi ;
252 for (g i=0 ; gi < NUMUNITS ; gi=gi +1) begin : UNITS
253 fpg fpgi (
254 . c l k (c l k) , . r e s e t _n (r e s e t _n) ,
255 . c _ re (re) , . c _im (im) , . enable (fpg _en [gi]) , . addr_ in (x) ,
256 . n (fpg _n [gi]) , . busy (fpg _busy [gi]) , . addr_ out (fpg _addr_ out [gi])
257) ;
258 end
259 endgenerate
260
261 / /−−−−−−−−−−−−−
262 / / FPG a r b i t e r :
263 / /−−−−−−−−−−−−−
264 / / The p u r p o s e o f t h e FPG a r b i t e r i s t o k e e p t r a c k o f f r e e FPGs and s t o r e
265 / / r e s u l t s in t h e z memory . The v a r i a b l e s be low a r e used t o i n t e r f a c e t h e

66

266 / / a r b i t e r by t h e c o n t r o l s t a t e machine (CSM .)
267
268 reg arb t _ break1 , ar b t _ break2 ; / / Temporary v a r i a b l e s .
269
270 assign arb t _ f lushed = & arb t _ fpg _wb ;
271
272 always @ (∗)
273 begin
274 / / I f any o f t h e FPGs a r e done , w r i t e t h e r e s u l t t o t h e z memory . I f s e v e r a l
275 / / FPGs a r e done , on ly t h e f i r s t one w i l l have i t s r e s u l t w r i t t e n t h i s c c .
276 zmem_w_en <= 0 ;
277 zmem_waddr <= 0 ;
278 zmem_wdata <= 0 ;
279 ar b t _ ready <= 0 ;
280 ar b t _ fpg _wb_ next <= arb t _ fpg _wb ;
281 fpg _en <= 0 ;
282 ar b t _ break1 = 0 ;
283 ar b t _ break2 = 0 ;
284 for (i =0 ; i < NUMUNITS ; i = i +1) begin
285 / / For e a c h FPG .
286 i f (! fpg _busy [i]) begin
287 / / Th i s FPG i s f r e e .
288 i f (! arb t _ fpg _wb[i] && ! arb t _ break1) begin
289 / / The r e s u l t o f t h e p r e v i o u s o p e r a t i o n i s not y e t w r i t t e n t o t h e
290 / / z memory . Do i t .
291 zmem_w_en <= 1 ’ b1 ;
292 zmem_waddr <= fpg _addr_ out [i] ;
293 zmem_wdata <= fpg _n [i] ;
294 ar b t _ fpg _wb_ next [i] <= 1 ’ b1 ;
295 ar b t _ break1 = 1 ’ b1 ;
296 end
297 / / Also a s s i g n any pending r e q u e s t from t h e CSM t o t h i s FPG .
298 i f (a rb t _ enable && ! arb t _ break2) begin
299 ar b t _ ready <= 1 ’ b1 ;
300 fpg _en <= 0 ;
301 fpg _en [i] <= 1 ’ b1 ;
302 ar b t _ fpg _wb_ next [i] <= 0 ;
303 ar b t _ break2 = 1 ’ b1 ;
304 end
305 end
306 end
307 end
308
309 always @ (posedge c l k or negedge r e s e t _n)
310 begin
311 i f (! r e s e t _n) begin
312 ar b t _ fpg _wb <= {NUMUNITS{ 1 ’ b1 } } ;
313 end else begin
314 i f (a rb t _ fpg _wb ! = arb t _ fpg _wb_ next)
315 ar b t _ fpg _wb <= arb t _ fpg _wb_ next ;
316 end
317 end
318
319 / /−−−−−−−−−−
320 / / Z memory :
321 / /−−−−−−−−−−
322
323 / / Readout from t h e memories . ’ zmem_ bufno ’ i s t h e b u f f e r used f o r t h e upper row
324 / / o f v e r t i c e s . ’ upper ’ i s whe the r t o r e a d a l o w e r or upper row v e r t e x .
325 assign zmem_ rdata = upper ?
326 (zmem_bufno ? zmem1[zmem_ raddr] : zmem0[zmem_ raddr]) :
327 (zmem_bufno ? zmem0[zmem_ raddr] : zmem1[zmem_ raddr]) ;
328
329 always @ (posedge c l k)
330 begin
331 i f (zmem_w_en) begin
332 i f (zmem_bufno)
333 zmem1[zmem_waddr] <= zmem_wdata ;
334 e lse
335 zmem0[zmem_waddr] <= zmem_wdata ;

67

336 end
337 end
338 endmodule

Listing 10: Verilog source code for the vertex array generator

68

1 / /
2 / / vag _ t b . v , by Per C h r i s t i a n C o r n e l i u s s e n , May 2011
3 / /
4 / / S y s t e m V e r i l o g t e s t bench f o r vag . v . As f p g _ t b . sv , t h i s i s an i n f o r m a l t e s t
5 / / bench t h a t s im p ly r e q u e s t s a s i n g l e l a n d s c a p e from t h e v e r t e x a r r a y g e n e r a t o r
6 / / and c h e c k s t h e r e s u l t wi th a s o l u t i o n c a l c u l a t e d e a r l i e r wi th t h e s o f t w a r e
7 / / i m p l e m e n t a t i o n .
8 / /
9

10 module vag_ tb () ;
11
12 / / DUT p o r t s :
13 l o g i c clk , r e s e t _n , s t a r t , next , ready ;
14 l o g i c [31 : 0] l e f t , bottom , step ;
15 l o g i c [47 : 0] arrout ;
16
17 / / Connect DUT p o r t s :
18 vag dut (. ∗) ;
19
20 / / T e s t d a t a :
21 l o g i c [47 : 0] v e r t i c e s [0 : 759] ; / / 19 s t r i p s ∗ 40 v e r t i c e s = 760
22 assign l e f t = 32 ’ hbefb870e ;
23 assign bottom = 32 ’ h3f141b79 ;
24 assign s tep = 32 ’ h3c2c7692 ;
25 assign addr_ in = 16 ’ b0 ;
26
27 / / Loop c o u n t e r s :
28 in teger i , j ;
29
30 / / C l o c k c y c l e c o u n t e r :
31 in teger ccs ;
32 always @ (posedge c l k or negedge r e s e t _n)
33 i f (! r e s e t _n) ccs <= 0 ;
34 e lse ccs <= ccs + 1 ;
35
36 / / C l o c k d r i v e r :
37 always #5 c l k = ! c l k ;
38
39 default c lock ing cc @(posedge c l k) ;
40 default input #1 output negedge ;
41 output r e s e t _n ;
42 output s t a r t , next ;
43 input ready , arrout ;
44 endclocking
45
46 i n i t i a l begin
47 / / Enab l e dumping :
48 $vcdpluson (0 , dut) ;
49
50 / / Load g o l d e n s o l u t i o n from t e s t c a s e . t x t :
51 $readmemh (" t e s t c a s e . t x t " , v e r t i c e s) ;
52
53 / / I n i t i a t e c l o c k and r e s e t DUT :
54 c l k = 0 ;
55 r e s e t _n <= 0 ;
56 s t a r t <= 0 ;
57 next <= 0 ;
58
59 ##1 cc . r e s e t _n <= 1 ;
60
61 for (i =0 ; i < 19 ; i = i +1) begin
62 / / For e a c h s t r i p .
63 $display (" Requesting s t r i p %d . " , i) ;
64
65 i f (i == 0) begin
66 cc . s t a r t <= 1 ;
67 ##1 cc . s t a r t <= 0 ;
68 end else begin
69 cc . next <= 1 ;

69

70 ##1 cc . next <= 0 ;
71 end
72 / / Wait f o r ready−s i g n a l .
73 $display (" Waiting f o r ready−s i g n a l . . . ") ;
74 @(posedge cc . ready) ;
75 / / A s s e r t answer :
76 for (j =0 ; j < 40 ; j ++) begin
77 a s s e r t (cc . arrout == v e r t i c e s [i ∗ 40 + j]) $display ("PASS %d,%d" , i , j) ;
78 e lse $ e r r o r (" FAIL %d,%d (Expected %h , got %h) " , i , j ,
79 v e r t i c e s [i ∗ 40 + j] , cc . arrout) ;
80 ##1 ; / / Wait one c l o c k c y c l e .
81 end
82 end
83 $display (" Test bench completed a f t e r %d clock c y c l e s . " , ccs) ;
84 $f inish ;
85 end
86 endmodule

Listing 11: SystemVerilog source code for the first test bench of the vertex array
generator

70

1 / /
2 / / vag _ t b 2 . v , by Per C h r i s t i a n C o r n e l i u s s e n , June 2011
3 / /
4 / / S y s t e m V e r i l o g t e s t bench f o r vag . v . Thi s t e s t bench w i l l t e s t a 400 by 400
5 / / f r a c t a l l a n d s c a p e c o n s i s t i n g o f b l a c k p o i n t s on ly . The p o i n t i s t o measure
6 / / p e r f o r m a n c e .
7 / /
8
9 module vag_ tb () ;

10
11 / / DUT p o r t s :
12 l o g i c clk , r e s e t _n , s t a r t , next , ready ;
13 l o g i c [31 : 0] l e f t , bottom , step ;
14 l o g i c [47 : 0] arrout ;
15
16 / / Connect DUT p o r t s :
17 vag dut (. ∗) ;
18
19 / / T e s t d a t a :
20 assign l e f t = 32 ’ hbe67295c ;
21 assign bottom = 32 ’ hbe67295c ;
22 assign s tep = 32 ’ h3a94506e ;
23 assign addr_ in = 16 ’ b0 ;
24
25 / / Loop c o u n t e r s :
26 in teger i , j ;
27
28 / / C l o c k c y c l e c o u n t e r :
29 in teger ccs ;
30 always @ (posedge c l k or negedge r e s e t _n)
31 i f (! r e s e t _n) ccs <= 0 ;
32 e lse ccs <= ccs + 1 ;
33
34 / / C l o c k d r i v e r :
35 always #5 c l k = ! c l k ;
36
37 default c lock ing cc @(posedge c l k) ;
38 default input #1 output negedge ;
39 output r e s e t _n ;
40 output s t a r t , next ;
41 input ready , arrout ;
42 endclocking
43
44 i n i t i a l begin
45 / / I n i t i a t e c l o c k and r e s e t DUT :
46 c l k = 0 ;
47 r e s e t _n <= 0 ;
48 s t a r t <= 0 ;
49 next <= 0 ;
50
51 ##1 cc . r e s e t _n <= 1 ;
52
53 for (i =0 ; i < 399 ; i = i +1) begin
54 / / For e a c h s t r i p .
55 $display (" Requesting s t r i p %d . " , i) ;
56
57 i f (i == 0) begin
58 cc . s t a r t <= 1 ;
59 ##1 cc . s t a r t <= 0 ;
60 end else begin
61 cc . next <= 1 ;
62 ##1 cc . next <= 0 ;
63 end
64 / / Wait f o r ready−s i g n a l .
65 $display (" Waiting f o r ready−s i g n a l . . . ") ;
66 @(posedge cc . ready) ;
67 / / A s s e r t answer :
68 for (j =0 ; j < 800 ; j ++) begin
69 a s s e r t (cc . arrout [15 : 0] == 80) $display ("PASS %d,%d" , i , j) ;

71

70 e lse $ e r r o r (" FAIL %d,%d (Expected 80 , got %h) " , i , j ,
71 cc . arrout [15 : 0]) ;
72 ##1 ; / / Wait one c l o c k c y c l e .
73 end
74 end
75 $display (" Test bench completed a f t e r %d clock c y c l e s . " , ccs) ;
76 $f inish ;
77 end
78 endmodule

Listing 12: SystemVerilog source code for the second test bench of the vertex array
generator

72

References

[1] Dave Shreiner Aaftab Munshi, Dan Ginsburg. OpenGL R© ES 2.0 Programming
Guide. Addison-Wesley Professional; 1 edition, 2008.

[2] John H. Hubbard Adrien Douady. Étude dynamique des polynômes complexes.
Prépublications mathémathiques d’Orsay 2/4, 1984.

[3] M.F. Barnsley. Fractal image compression. Notices of the American Mathematical
Society, pages 657–662, June 1996.

[4] Bodil Branner. The mandelbrot set. In Proceedings of Symposia in Applied
Mathematics, volume 39, pages 75–105, 1989.

[5] Sean Brennan. Fractal zoom. http://www.zettix.com/Graphics/fractal/, 2008.

[6] Dennis M. Ritchie Brian W. Kernighan. The C Programming Language (2nd Edition).
Prentice Hall, 1988.

[7] Intel Corp. Intel and floating point. http://www.intel.com/standards/floatingpoint.pdf.

[8] Microsoft Corporation. Visual studio 2005 function reference: clock().
http://msdn.microsoft.com/en-us/library/4e2ess30(v=vs.80).aspx.

[9] David Dewey. Introduction to the mandelbrot set.
http://home.olympus.net/ dewey/mandelbrot.html.

[10] Daniel D. Gajski et al. Specification and design of embedded hardware-software
systems. Design & Test of Computers, IEEE, Spring 1995.

[11] K. J. Falconer. The geometry of fractal sets. Cambridge University Press, 1985.

[12] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,
1998.

[13] IEEE. Standard for floating-point arithmetic (754-2008), 2008.

[14] ARM Limited. Opengl es 2.0 emulator.
http://www.malideveloper.com/developer-resources/tools/opengl-es-20-
emulator.php.

[15] ImageMagick Studio LLC. http://www.imagemagick.org/.

[16] Doulos Ltd. Systemverilog assertions tutorial.
http://www.doulos.com/knowhow/sysverilog/tutorial/assertions/.

[17] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Co.,
1982.

[18] Tom McReynolds and David Blythe. Advanced graphics programming
techniques using opengl. SIGGRAPH ‘99 Course, 1999.

73

[19] Dave Shreiner. OpenGL Programming Guide: The Official Guide to Learning OpenGL.
Addison-Wesley Professional; 7 edition, 2009.

[20] Frederik Slijkerman. Ultra fractal 5 features.
http://www.ultrafractal.com/features.html.

[21] VideoLAN. Vlc media player. http://www.videolan.org/vlc/.

[22] Inc. Wikimedia Foundation. Frame rate - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Frame_rate.

[23] Inc. Wikimedia Foundation. Mandelbrot set - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Mandelbrot_set.

[24] Inc. Wikimedia Foundation. Marpat - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/MARPAT.

[25] Inc. Wikimedia Foundation. Parallel computing - wikipedia, the free encyclope-
dia. http://en.wikipedia.org/wiki/Parallel_computing.

[26] Inc. Xilinx. Ds150: Virtex-6 family overview.
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf,
March 2011.

[27] Inc. Xilinx. Ug364: Virtex-6 fpga configurable logic block user guide.
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf,
September 2009.

74

	Title Page
	masteroppgave.pdf

