
Master of Science in Electronics
June 2011
Kjetil Svarstad, IET

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Network on Chip for FPGA
Development of a test system for Network on Chip

Magnus Krokum Namork

Problem Description

This assignment is a continuation of the project-assignment of fall 2010, where
it was looked into the development of reactive modules for application-test and
profiling of the Network on Chip realization. It will especially be focused on the
further development of:

• The programmability of the system by developing functionality for more
advanced surveillance of the communication between modules and routers

• Framework that will be used to test and profile entire applications on the
Network on Chip

The work will primarily be directed towards testing and running the system in a
way that resembles a real system at run time. The work is to be compared with
relevant research within similar work.

Assignment given: January 2011
Supervisor: Kjetil Svarstad, IET

i

Abstract

Testing and verification of digital systems is an essential part of product develop-
ment. The Network on Chip (NoC), as a new paradigm within interconnections;
has a specific need for testing. This is to determine how performance and prop-
erties of the NoC are compared to the requirements of different systems such as
processors or media applications.

A NoC has been developed within the AHEAD project to form a basis for a
reconfigurable platform used in the AHEAD system. This report gives an outline
of the project to develop testing and benchmarking systems for a NoC. The specific
work has been regarding the development of a generic module connected to the
NoC and capability of testing the NoCs’ properties. The test system was initiated
by Ivar Ersland in 2009 and developed further by Andreas Hepsø, and Magnus
Namork in the fall of 2010. The functionality and systems that are implemented
are the following:

• Fully functional Hardware/Software interface which defines communication
between NoC and the user

• Reactive system which responds to interaction based on package information

• MPEG example system that mimics an MPEG data stream

• Software reconfiguration of the traffic tables by sending specific packages to
the system

• Cell processor example application to test simple computation and commu-
nicating modules on the network

The systems have been tested successfully, verified and implemented on a Xilinx
Spartan FPGA. It has also been developed a software system written in C to
read and interpret data from the Network in on-chip tests. In total these imple-
mentations have been the foundation of building a benchmarking platform for the
NoC.

ii

Preface

This assignment is written at the Institute of Electronics and Telecommunications
(IET), NTNU in the spring of 2011. It has been done under the guidance of
Professor Kjetil Svarstad and as a continuation of the AHEAD Network on Chip
project. The assignment was chosen based on its practical and experimental nature,
which has also been the main challenge for this project. I wish to thank Kjetil
Svarstad for supervision and help during the entire process.

iii

iv

Contents

1 The AHEAD project 1
1.1 Reconfigurable systems . 1
1.2 Concept . 2
1.3 Areas of focus . 3
1.4 Network on Chip(NoC) . 4

1.4.1 Basic concept . 4
1.4.2 Network on Chip in reconfigurable systems 5
1.4.3 Testing of digital circuits . 5
1.4.4 Profiling of applications . 6

1.5 Testing the NoC . 6
1.5.1 Experimental working method 7

2 Theory and research 9
2.1 Design for test . 9
2.2 Benchmarking . 10

2.2.1 System properties . 11
2.2.2 Benchmarking protocol . 12
2.2.3 NoC benchmarking research 12

2.3 Deadlocks . 12
2.4 Clustering . 13
2.5 System platforms . 14

3 Previous work 17
3.1 Functionality . 17
3.2 Design of the AHEAD Network on Chip 19

3.2.1 Test system . 20
3.2.2 Reactive test modules . 21

3.3 Initial status of the system . 21
3.3.1 System properties . 22

3.4 Test system motivation . 22

4 Development of the system 25
4.1 Structural development . 25

4.1.1 Generic code development 25
4.1.2 Hardware software interfacing (HW/SW) 26
4.1.3 Other structural changes . 27

4.2 Functional development . 28
4.2.1 Specifications . 28

4.3 Application example:MPEG decoder 30
4.3.1 Real time requirements . 31

4.4 Application example:PS3 ring bus system 31
4.5 Other possible application examples 33

4.5.1 RSA encryption . 33

5 Requirements and design 35
5.1 Design goals . 35

5.1.1 Area . 35
5.1.2 Flexible Design . 36

5.2 Hardware/Software interface . 37
5.2.1 Software accessible registers 37
5.2.2 Hardware interfacing . 39

5.3 Traffic generator . 39
5.3.1 Sending and receiving packages with traffic tables 40

5.4 Traffic pattern in the NoC . 40
5.4.1 Motivation . 40
5.4.2 Sendback pattern . 41
5.4.3 MPEG pattern . 42
5.4.4 Internal Design . 44

vi

5.5 Multitasking test generator; Cell application 44
5.5.1 Operating modes . 44
5.5.2 Data Manipulation . 47

5.6 Software based test program . 48
5.6.1 Redefining behaviour through software 50

5.7 Surveillance and monitoring of traffic 50
5.7.1 Measuring throughput . 51

6 Verification and testing 53
6.1 Simulation . 53

6.1.1 Simulation of basic functionality 54
6.1.2 Simple traffic pattern simulation 54
6.1.3 Patterns with crossing traffic and deadlocks 55

6.2 Synthesis of the circuits . 56
6.2.1 Synthesis challenges . 56
6.2.2 Synthesis of the circuit . 57

6.3 FPGA implementation . 58
6.3.1 Initial testing . 58
6.3.2 Testing patterns, initial MPEG test 58
6.3.3 Higher packet rate . 60

6.4 Cell processor application . 60
6.4.1 Streaming test of the application 67

6.5 Summary of testing . 67

7 Discussion 71
7.1 Evaluation of the system . 71

7.1.1 MPEG example . 72
7.1.2 Cell example . 72
7.1.3 Interface as bottleneck . 73

7.2 Throughput results . 73
7.2.1 MPEG . 74
7.2.2 Cell application . 75
7.2.3 Stream test . 76

vii

7.3 Application module placement . 77
7.4 Further use of the test system . 78

8 Conclusion 81

9 Further work 83

A Illustrations of the systems 89

B Code 95
B.1 VHDL code . 95
B.2 C-code . 114

C AHEAD Network on Chip-Initial words 127
C.1 Equipment list for this project . 128

D Tutorial:How to implement the Network on Chip on the Suzaku-S
platform 129
D.1 Installing Xilinx in debian(Atmark Development environment(Atde3)

or Ubuntu) . 129
D.2 VHDL code for the Suzaku Image(Peripheral or IP) 130

D.2.1 Using AHDL for development 130
D.2.2 Setting up the project in Xilinx EDK 130
D.2.3 Synthesis . 132
D.2.4 Exporting project from EDK to ISE 132
D.2.5 Interfacing HW/SW . 134

D.3 Downloading the generated bit file to the suzaku board 134
D.3.1 With serial interface . 134
D.3.2 With Ethernet . 135

D.4 Compiling and creating the uCLinux image 136
D.4.1 Known errors and solutions 136
D.4.2 NFS . 137
D.4.3 Setting static IP . 137

D.5 Sources of error . 138
D.6 File list NoC . 138

viii

List of Abbreviations

AHEAD Ambient Hardware, Embedded Architectures on Demand, page 2
ASIC Application Specific Integrated Circuit, page 1
CLB Configurable Logic Block, page 14
EIB Element Interconnect Bus, page 31
FPGA Field Programmable Gate Array, page 1
FSM Finite State Machine, page 39
GPP General Purpose Processor, page 1
HW Hardware, page 1
LUT Look up table, page 14
MIC Memory Interface Controller, page 31
MISD Multiple Input Single Destination, page 48
NFS Network File System, page 27
NoC Network on Chip, page 4
PE Processing Element, page 48
PPE Power Processing Element, page 31
SPE Synergistic Processing Element, page 31
SW Software, page 1
TG Test Generator, page 19
USB Universal Serial Bus, page 3

ix

Router table

The routers are an essential part of the Network on Chip, but their names vary due
to previous version implementation and practical use of signal names. Provided is
a table of the equivalent names of the routers used in this assignment both in the
text and the code:

Router Decimal Binary Hexadecimal
00 0 0000 0
01 1 0001 1
02 2 0010 2
03 3 0011 3
10 4 0100 4
11 5 0101 5
12 6 0110 6
13 7 0111 7
20 8 1000 8
21 9 1001 9
22 10 1010 A
23 11 1011 B
30 12 1100 C
31 13 1101 D
32 14 1110 E
33 15 1111 F

x

List of Figures

1.1 AHEAD illustration . 2
1.2 AHEAD concept . 3
1.3 Network on Chip . 4
1.4 Design and working methodology. 8

2.1 Deadlock situation . 13
2.2 Suzaku boards . 15

3.1 Network on Chip structure . 18
3.2 Illustration of handshaking. 20

4.1 HW/SW interface vector handling. 28
4.2 MPEG traffic pattern . 30
4.3 Cell processor . 32
4.4 Cell processor in NoC . 32

5.1 Input state machine of the Traffic generator, MPEG configuration. . 43
5.2 Input state machine of the Traffic generator, Cell example application. 45
5.3 Table reconfiguring through packages 47
5.4 ALternatives FPGA test . 49

6.1 Basic simulation . 54
6.2 MPEG simulation . 55
6.3 Structural test of the FPGA . 59
6.4 Structural test FPGA . 59
6.5 Simple MPEG FPGA . 60
6.6 MPEG 100 packages simulation . 61

xi

6.7 Software program test MPEG pattern 61
6.8 Traffic Cell example, FPGA test . 62
6.9 Simulation table reconfiguration . 62
6.10 Simulation average, one package . 63
6.11 Calculation average FPGA Cell . 63
6.12 Graph of latency . 64
6.13 Graph of latency, second table configuration 65
6.14 Stream tests . 69

7.1 Two interface modules . 74

A.1 Modules presented in hierarchy. 90
A.2 Test generator block. 91
A.3 Floorplan NoC . 92
A.4 Floorplan NoC description . 93

D.1 Library creation AHDL . 131
D.2 System Assembly EDK . 133

xii

List of Tables

2.1 FPGA data . 14

4.1 Properties Cell . 31

5.1 Address listing . 38
5.2 Register numbers and functionality. 38
5.3 Traffic table . 41
5.4 MPEG protocol . 42
5.5 Multi functional protocol . 46
5.6 change_data . 47
5.7 Average value input . 48
5.8 Cell application example table. 49

6.1 Synthesis MPEG system . 57
6.2 Synthesis TG Cell-example . 58
6.3 Test load . 66
6.4 Cell application example table. 66

xiii

xiv

Chapter 1

The AHEAD project

This chapter is an introduction to the AHEAD project and gives a description
of some important terms associated with it. It also describes how this report is
structured and how the work has been performed.

1.1 Reconfigurable systems

Development of electronic systems is in constant change and new and improved
systems and algorithms are developed at a high rate. There are several ways of
implementing these types of systems; one is the Application Specific Integrated
Circuit (ASIC). ASICs are hard wired circuits that performs a given task, but
with no or limited possibility to perform a different task after production. The
second one is the general purpose processor (GPP) which performs software (SW)
tasks by dividing it into predefined operations which are run on the processor. The
first instance gives high speed and one efficient solution, the latter gives flexibility
and the ability to do various different tasks.

Reconfigurable systems falls into the category that is between the two men-
tioned platforms. In these systems hardware descriptions are loaded into a plat-
form i.e. an FPGA and the tasks are solved in hardware (HW). However; in
contrast to the ASIC, Field Programmable Gate Array (FPGA) systems are com-
pletely reconfigurable,hence, it achieves flexibility not provided by any ASIC. In
addition, it provides more speed to a system than what is the case with the proces-

1

2 CHAPTER 1. THE AHEAD PROJECT

sor. The FPGA is the foundation of the AHEAD project and adds the possibility
of having extra computational power in order to serve any requirements of the
system user.

1.2 Concept

Ambient Hardware, Embedded Architectures on Demand (AHEAD) [9] is a project
which was started in 2006 by Professor Kjetil Svarstad at NTNU, Department of
Electronics and Telecommunications. It is based on Ambient Intelligence which is
a concept describing an environment of devices which is sensitive to people. The
idea is based on portable modules, i.e. PDAs or cell phones, and tags with extra
computational power located within the environment of the modules [31]. This
could, for instance, be an airport or a bus stop where a tag is located, as illustrated
in Figure 1.1AHEAD illustrationfigure.caption.9, that detects and interacts with
the portable device carried by the user when entering the environment of the tag.

Figure 1.1: General outline of the AHEAD concept; Tag and user with PDA [31].

This way of operation is intended to provide extra computational power for
small mobile devices with limited standalone processing capabilities. It is achieved
by having HW architecture descriptions located on the portable device. A wireless
protocol like Bluetooth is used for communication between the portable device and

1.3. AREAS OF FOCUS 3

Figure 1.2: General outline of the AHEAD concept; Connection between user and tag,
and tag and internet.

the tag on the wall. Then the portable device instantiates the architecture specific
for the task on a reconfigurable co-processor, for instance an FPGA, within the
tag as illustrated in Figure 1.2AHEAD conceptfigure.caption.10. The task is then
run on the FPGA instead of the small processor of the user’s mobile device.

1.3 Areas of focus

The AHEAD project has several different areas of focus. Initially external com-
munication was investigated with assignments on USB, Bluetooth and serial com-
munication. For the past two years there has been a focus on the Network on
Chip and the self-reconfiguration and run time reconfiguration of the system. The
Network on Chip provides a framework and platform for the reconfiguration and
simplifies this operation while the reconfiguration provides an adaptive approach
for the AHEAD system.

4 CHAPTER 1. THE AHEAD PROJECT

1.4 Network on Chip(NoC)

Interconnections in System on Chip(SoC)1 systems have traditionally been bus
based or point to point communication architectures. Some examples includes,
cross bar buses and ring buses [28].However, a new paradigm within this topic is
emerging and this is called Network on Chip [24]. NoC has as its goal to be a a
scalable interconnection between modules, and separate the communication from
computation in SoCs.

Figure 1.3: Network on Chip illustration [23].Shows a system with IP cores, interface
modules and processor connected with an NoC and its routers.

1.4.1 Basic concept

Different definitions have been used to describe Networks on Chip. Predominantly,
it is an interconnection system to handle communication between elements on a
chip, with the usage of routers organized in i.e. a mesh topology. Its has a large
resemblance to regular telecommunications systems. The concept is simply to use
switching techniques to send digital packages between routers and connect modules
to these routers [15]. This improves the scalability of the system and the possibility
to use the system in reconfiguration because it is possible to change subparts of
the system without having to change the entire system and its interconnection.
This is especially interesting when partial reconfiguration is a highly demanded
property.

1All parts of a system integrated on one chip

1.4. NETWORK ON CHIP(NOC) 5

1.4.2 Network on Chip in reconfigurable systems

As mentioned, the self reconfigurable part of the AHEAD project and the Network
on Chip might work together in the future. There has already been some research
in the area regarding Network on Chip systems. For instance, Bobda et al. in
[11], describes a system where modules are placed and connected to an NoC in
different sized areas on an FPGA. Since the routers of the NoC already defines
the communication between the modules it only has to adapt to the protocol
used in the network to start operating. Hence, no new interconnection between
the existing modules and the new module has to be added. This also provides a
good platform for partial reconfiguration. If one has a method to locate a specific
module connected to the network, and then in turn change only that module,
the rest of the system can remain untouched. This is desirable for instance when
optimizing a SoC or the new requirement of the SoC is only partially different
from the previously implemented one.

1.4.3 Testing of digital circuits

In production of modern electronic systems, testing is a vital part of the develop-
ment process. The formal definition of testing i

A test is feasible if a known set of input vectors can be applied to a
circuit in a known state resulting in a response that may be compared
to an expected known response

Knowing that all the modules are in place and function as intended is critical when
completing a design process. This is to verify that the system will exhibit desired
behaviour. Several test-methodologies exists in order to obtain this goal.

For ASICs the verification of signals and registers by using physical tests and
fault models are applied. To a post fabrication FPGA test, functional tests and
structural tests are more relevant. The formal definition of functional test is;

Testing that the circuit is functioning correctly using functional vectors

and the definition of structural test is;

6 CHAPTER 1. THE AHEAD PROJECT

Testing that all the components and connections are present using spe-
cial test vectors. [8]

These two test models give the relevant information when designing FPGA sys-
tems, namely is the system complete and will the output be as expected.

1.4.4 Profiling of applications

A connected part to the testing of a system is the profiling of applications. If
one wants to use a platform in a practical setting it is important to know what
applications that are possible to implement on it. The ability to run a simple
test that provides the information about how a more complex system will behave
is then beneficial. Hence, profiling is merely concentrated around the possible
placement of the application in for instance an NoC. This profiling could be done
by mimicking its communication and use of the same resources within the system.

1.5 Testing the NoC

For this project it has been a primary goal to develop a system that can be used to
mimic, test and profile an NoC implemented system. It has been a main focus to
develop examples that mimics a streaming application and a small processor. In
addition the environment around with communication with the NoC and surveil-
lance of package data has been emphasized. These elements assembled forms a
platform for a benchmark that is capable of measuring the performance of the
network. The system also provides information about efficient placement of an
implemented system on the NoC.

The assignment is connected to the NoC system developed for the AHEAD
project by several participants since 2006. In this paper there will first be a brief
description of some background and theory behind NoC testing and benchmarking
in Chapter 2Theory and researchchapter.2. In Chapter 3Previous workchapter.3 a
brief description and outline of the system status before commencing is presented.
Then it moves over to how the system development is performed in Chapter 4De-
velopment of the systemchapter.4. Further it describes how this is implemented

1.5. TESTING THE NOC 7

in general. And then what requirements are connected to the developed sys-
tem in Chapter 5Requirements and designchapter.5. In Chapter 6Verification
and testingchapter.6 the verification of the system is described along with de-
tails on simulation, synthesis and on-chip test-results. Finally the system and its
results from testing are discussed, and important results are evaluated in Chap-
ter 7Discussionchapter.7, before these discussions are concluded with in Chap-
ter 8Conclusionchapter.8.

1.5.1 Experimental working method

When developing an implementation of a system without any algorithms or spec-
ification, it is necessary with an experimental approach to complete the work. In
this assignment, development has been conducted by brainstorming, experimen-
tation followed by testing to verify how new elements have applied to the existing
system. The system not has been out of the box to use, hence, adding new func-
tionality has been followed both by extensive pre implementation simulation and
testing. Both to develop new functionality, but also to understand how the system
works. Adapting the contribution one step at a time in the implementation stage
has been a critical factor.

The challenges and solutions have been separated into different parts: Ana-
lyzation of the system and its functionality. Under the analysis, detecting problem
areas and the possibility of implementing new ideas and removing redundant func-
tionality correct. Based on this analysis, new functionality and ideas for the system
has been planned. Then testing and verification in simulation, and on chip, fol-
lowed by documentation of the results has been performed. When one iteration
has been run, the next iteration begins based on the previous one. In this way the
previous iteration forms the platform for the next one and so forth. This method-
ology is depicted in Figure 1.4Design and working methodology.figure.caption.12

8 CHAPTER 1. THE AHEAD PROJECT

SYSTEM ANALYSISstart
NEW FUNCTIONALITY

IDEAS DEVELOPMENT

SIMULATION
FPGA IMPLEMENTAION

VERIFICATIONDOCUMENTATION

Figure 1.4: Design and working methodology.

Chapter 2

Theory and research

The Network on chip (NoC) is a rather new paradigm within the world of electronic
systems. Hence little practical test-cases are commonly known, and those known
to exist are mainly academic. The research done by manufacturing companies are
to some extent confidential and thus not publicly available. In this chapter there
will be a presentation of the theory used to compare the effect of the testing in our
network on chip. Some important terms and their use for the AHEAD NoC are
also included.

2.1 Design for test

The main theme of this project has initially been to create a design eligible for
on-chip testing. Design For Test (DFT) is one well known method to complete
this task. The basis is to create a test written in for instance VHDL or C and
apply it to see if the system responds as expected. In the project mentioned this
forms the basis for the structural testing of the system. It is applied to verify that
the circuit is correctly assembled by controlling that it gives output, when applied
a known input. The other form of testing is the functional testing which aims
towards verification of the functionality of the implemented system. An example
of a DFT applied to a NoC is described in depth in [32].

9

10 CHAPTER 2. THEORY AND RESEARCH

2.2 Benchmarking

The ability to measure the performance of a system is essential. Benchmarking of
general purpose processors has been a well-known area for many years, and has also
been introduced as a way of measuring the performance of NoCs. Benchmarks are
models or programs of known input that resembles or simulates a real application
behaviour and measures its performance [14]. The problem with NoC architectures
is that they are not, compared to general purpose processors, fixed architectures.
This implies that in order to test the network it is necessary not only to specify the
program code to run on the platform, but also the platform itself in order to test
the network. The benchmarking of NoCs is in that way a more complex operation
than benchmarking a general purpose processor. There exists a research group
which has this as its main focus. The NoC Benchmarking Work group with Grecu
et al. has described the benchmarking of NoCs and some proposed parameters
of this process. They lists some properties a NoC benchmark should test in an
attempt to reach an open standard for Network on chip benchmarks [14, p.6].

• Network size (small,medium,large)

• IP core composition (amount of processing, memory cores,other)

• Topology(regular,irregular)

• Traffic characteristics(spatial and temporal)

• QoS requirements(best effort,guaranteed bandwidth,guaranteed latency)

These are properties that directly relates to the AHEAD NoC project. However,
the main focus of the testing is related to the traffic characterization and Quality of
Service requirements, as initiated by Ersland in [18]. Under this area, the latency
of packages and actual throughput in testing are main areas since they in many
cases are the most interesting metrics [14, p.5]. When only one or few of these
properties are tested, the benchmark is called a micro-benchmark [14, p.2].

2.2. BENCHMARKING 11

2.2.1 System properties

There are some metrics that will be of particular importance, to get an impression
of the performance. Following is a description and definition of some of the most
important for the benchmarking of the AHEAD NoC.

Latency Latency is defined as the delay time from one point to another within
a computer system. The end-to-end latency is the time it takes for a package to
enter the NoC until an output arrives. In a typical microprocessing system like
i.e. Cell [10, p.9], latency is defined as:

Latency = sending overhead+time of flight+transmission time+receiver overhead
(2.1)

The latency could be given in either seconds or to measure it in number of clock
cycles. The Cell microprocessor will be described in further detail in Chapter 4De-
velopment of the systemchapter.4

Throughput Throughput is a metric used to define the amount of data passing
through a communication channel such as a bus. The throughput is given in bits
per second (bps). The definition of the throughput in [10] defines the throughput
as the amount of information being transferred over a time interval. When relating
this to a package based system, the throughput would be practical to define as
the amount of packages being successfully transferred. This is the definition that
will be used in this assignment. Throughput is highly frequency dependent as it
is measured over a given timespan.

Bandwidth The bandwidth of a system is given as the amount of data transmit-
ted over a given time through a system. It is very similar to the term throughput,
but refers often to the maximum information-carrying capacity of a line or a net-
work [21]. The bandwidth is also denoted by bits per second. The relation between
the throughput and bandwidth is that bandwidth is the maximum and throughput
is the actual speed of the transferred data [26]. In this aspect the bandwidth is gen-
erally the theoretically achievable bit per second transfer rate, while throughput

12 CHAPTER 2. THEORY AND RESEARCH

is what is actually being transmitted. Bandwidth is, similar to the throughput,
highly dependent of the frequency.

2.2.2 Benchmarking protocol

Any benchmark or test system applied to the NoC must have a defined communi-
cation protocol. The word protocol means "codes of correct conduct" and this is
what it is for the modules connected in the system. Each module has to comply
with the protocol to perform its task of communicating with the other parts of
the system. An example of a suitable protocol for NoCs is the Open Core Proto-
col [14, p.10]. This is an open source core-centric protocol applicable to the NoC
and defines a set of functionality in point to point communication between mod-
ules in a system on chip. The advantage of this protocol is the open nature of it
that enables high re-usability of intellectual property by having an open interface
description available for designers [1].

2.2.3 NoC benchmarking research

Several research groups have investigated NoCs and benchmarking of them. Salmi-
nen et al describes some of the requirements connected to benchmarking in [30].
In this paper it is a focus on the open nature of benchmarking to enable com-
parison between different types of NoCs. As previously mentioned, a group has
been formed, NoC Benchmarking Workgroup, with special emphasis on this open
nature of the benchmarking and has taken the ideas further. This work group and
their milestones is presented in further details in [16].

2.3 Deadlocks

One major problem with shared resource1 systems such as the NoC is deadlocks [3,
p.66]. This is a state where two or more applications wants to use the same
resource and are unable to proceed because all awaits the others to move on. For
the AHEAD-NoC this situation occurs when to packages arrive from three or four

1Shared resources in this aspect are elements such as buses,memory or input/output pins

2.4. CLUSTERING 13

direction at specific router at the same time. The system stalls and has to be
reset to function properly. Hence, to have a running system it is essential to avoid
deadlocks or make the system able to solve this problem. The situation is depicted
in Figure 2.1Deadlock situationfigure.caption.16 where the router is only able to
hold two packages and route one through itself at the same time. When the third
package from the local module arrives at the same time as the two others, the
router is locked and unable to perform its routing operation. When this situation
occurs for the AHEAD NoC is described in [25].

Deadlocked router Router 1Router 2

Router 3

Local Module

packet 1
packet 2

packet 3

packet 4

Figure 2.1: Deadlock situation with three routers and one local module sending package
to the router at the same time.

2.4 Clustering

Clustering was introduced in the pre-project report [27] as a way of grouping
elements with large communication needs together. In a system with the risk of
deadlocks, to cluster objects with large communications need is essential. By using
this methodology, the modules connected to the NoC avoids generating crossing
traffic and the risk of deadlocks is reduced. With low crossing traffic and shorter

14 CHAPTER 2. THEORY AND RESEARCH

distance for packages to travel, latency will also be reduced.

2.5 System platforms

The platform for this assignment has been the Suzaku-S platform. This platform
includes a Spartan 3 XC3S1000 FPGA for the SZ030 version and a Spartan 3E
XC3S1200 for the SZ130 version. The assignment started out with the 030 version,
but changed to the 130 to have more resources in the development. The Spartan
3E is based on the Spartan 3 and is quite similar to it but has more Configurable
Logic Blocks (CLB) available and more Digital Clock Managers (DCM).

CLBs are the basic building block in Xilinx Spartan FPGAs and contains four
Slices that contains two Look Up Tables (LUT) and two flip flops. DCMs assist
the clock distribution on the FPGA and provides control over clock frequency,
clock skew and phase shifts. The main motivation to use the 130 instead of the
030 in this project is the higher number of available CLBs. More details about the
Xilinx Spartan FPGAs and their content are given in their data sheets [4, 5] and
in the Xilinx dictionary [33]. List of other equipment used in this project is given
in Appendix C.1Equipment list for this projectsection.C.1

FPGA CLBs Slices LUTs Slice Flip Flops Block RAM bits
XC3S1000 1920 7680 17280 17280 432K
XC3S1200E 2168 8672 19512 19512 504K

Table 2.1: Data for the two FPGAs used in the project.

2.5. SYSTEM PLATFORMS 15

(a) Suzaku-S 030

(b) Suzaku-S 130

Figure 2.2: The suzaku boards in operation [27].

16 CHAPTER 2. THEORY AND RESEARCH

Chapter 3

Previous work

The assignment is based on the work performed by Ivar Ersland (2009),Andreas
Hepsø (2010) and the project by Magnus Namork in the fall of 2010. Ersland more
or less finished the router design while Hepsø started the creation of an application
test of the network. In the pre-project of this thesis this system was developed
further and new table driven functionality was added. It is the foundation of the
development of a full system test with reactive functionality. This chapter describes
the previous work done with the NoC and the test system

3.1 Functionality

The system consists of 16 routers with a test generator connected, as depicted
in Figure 3.1Network on Chip structurefigure.caption.19. It operates using the
XY routing algorithm which is a simple algorithm that sends packages first in the
correct horizontal (X) direction before it sends the package in vertical (Y) direction
[17]. The NoC routers are connected through an interface module, via the on chip
bus of the FPGA to a microprocessor called MicroBlaze. This microprocessor is a
soft core processor implemented on the FPGA [34]. It runs the operating system
uClinux which is a small variant of the Linux operating system. The uClinux adds
the possibility of software communication with the network on the FPGA in run
time. It is accomplished by cross compiling C programs with a specific compiler
called mb-gcc which adapts the program to the MicroBlaze processor.

17

18 CHAPTER 3. PREVIOUS WORK

0 1 2 3

4 5 6 7

8 9 A/10 B/11

C/12 D/13 E/14 F/15

TG0 TG1 TG2 TG3

TG4 TG5 TG6 TG7

TG8 TG9 TGA/10 TGB/11

TGC/12 TGD/13 TGE/14 INTERFACE

MICROBLAZE
PROCESSOR

Y

X

Y

X

Y

X

Y

X

Y Y

X

Y

X

Y

Y

X

Y

X

Y

X

Y

X X X

Figure 3.1: The Network on Chip in a basic mesh configuration with test generator
connected to each router.

3.2. DESIGN OF THE AHEAD NETWORK ON CHIP 19

3.2 Design of the AHEAD Network on Chip

The system created by Ersland in [17] is the main foundation of the current sys-
tem with some smaller adjustments. The system consists of a mesh of routers
with buffers that routes packages based on information in the package. It uses
packet-switching as transmission topology. The packages are 64 bit wide divided
into eight flits1 sent over an eight bit bus between each router. The routers and
connected modules have a handshaking protocol that controls the sending and re-
ceiving of data between routers and from routers to modules. This protocol has
the signals CTS (Cleared to send), RTS (request to send), request and grant. The
latter signals are the signals on the senders side. This handshaking is used by the
interface module and the test generators (TG) to be able to interact with their
corresponding routers.

Sending of packages between TG and router is performed in the following op-
erations:

• The router has a package it wants to send

• It sends its request signal to the TG

• The TG sends the CTS signal back and the transmission commences.

• After the TG is finished and ready to send back to the router the TG sets
its RTS signal high

• The router sends a grant back in response

• Transmission from TG to router is completed

This operation is illustrated in Figure 3.2Illustration of handshaking.figure.caption.20.
AHEAD NoC previously had a system to handle prioritization of packages, but
this was later removed in [25] because the behaviour did not function as intended.

One thing worth mentioning is the static nature of the design. The modules in
the NoC are all defined as single entities several times in the HDL code. They are

1Flit is a part of the package transferred at the same time [18]

20 CHAPTER 3. PREVIOUS WORK

Figure 3.2: Illustration of handshaking.

not generic entities that could easily be added or removed by changing the system
parameters. I.e. specifying in the top module that this system has eight TGs and
eight routers instead of sixteen. This way of describing the NoC gives low degree
of flexibility in modifying the system size and properties.

For more detailed information about the structure of the routing system and
the routers, refer to Ersland [17].

3.2.1 Test system

The test-system work was initially started by Ersland, however he did not manage
to complete the entire work of this system. Hepsø took this part further and intro-
duced in [25] a more complete test system with a test generator and a system for
monitoring traffic with traffic monitors. These monitors and a multiplexer module
counted packages and stamped the packages with a global time based on clock
cycles. In his work he also tested limitations within the system by testing different
loads applied to the routers, including crossing traffic similar to Figure 2.1Deadlock
situationfigure.caption.16.

3.3. INITIAL STATUS OF THE SYSTEM 21

3.2.2 Reactive test modules

The project completed in the fall of 2010, Namork [27] developed reactive func-
tionality within the test system developed by Hepsø. The difference between these
modules and the ones from previous versions was the ability to generate specified
traffic and give the modules an independent set of operations to perform based on
input. Based on a table that defined the behaviour of the test generator, the test
generator sent traffic out on the network. It is mainly this work which is developed
further and tested in this assignment.

3.3 Initial status of the system

When looking at the system after the project performed in 2010 one could map
some areas to be looked at in further development. In brevity these were the
properties of the system prior to the work on this assignment began.

• The hardware/software interface defined in the user_logic was not func-
tional, the readout from the circuit was incorrect

• The previous C-code program developed for the system was not up to date
with regards to the current version of the NoC system

• The area consumption was above 100% for the entire system of 16 test gen-
erators

• Reactive test generators exist, but not tested in a system

• The routing works as intended

• The routing is not deadlock free

These properties has been the foundation for detecting different areas where it
is possible to achieve improvements. Especially the hardware/software interface
was an area with great interest because a functional interface would mean on-
chip-testing of the network would be possible. This would also open the door for
developing more complex programs that could use the network on the FPGA.

22 CHAPTER 3. PREVIOUS WORK

3.3.1 System properties

The system bandwidth was determined by Ivar Ersland [18] as

8 × 8bit 123MHz
12 Clock cycles × 2 = 1312Mbit/s = 1, 3Gbit/s (3.1)

This is given a frequency of 123 MHz for the system without any loads i.e. test
generators.In [27], a lower frequency of 50 MHz with was found to be more feasible.
Due to the proportional relationship between frequency and bandwidth, this leads
to the following bandwidth.

8 × 8bit 50MHz
12 Clock cycles × 2 = 533Mbit/s (3.2)

The number 12 comes from eight cycles to transfer a package four cycles in hand-
shaking between routers and between routers and test generators. For this reason,
533 Mbit/s from Equation 3.2System propertiesequation.3.3.2 is the reference value
used for the bandwidth in this assignment.

Frequency Theoretical
Bandwidth

Bus Width
flit size
router<->router

Package Size

123 MHz 1,3 Gbps [18] 8 bit 64 bit
50 MHz 533 Mbps 8 bit 64 bit

3.4 Test system motivation

The initial status of the system gives the backdrop and motivation for the further
development of the system. Since the system is not deadlock-free, the ability to use
it for specific purposes and applications requires knowledge of how modules func-
tionally could be placed in the network. To get this information it is essential to
test the properties of the NoC and compare it with the applications’ requirements.
When knowledge of the the properties has been gained, limitations and possibil-
ities with the NoC provides the information about what is feasible to implement
in the AHEAD NoC system. In addition this provides information about what is

3.4. TEST SYSTEM MOTIVATION 23

necessary to do to extend functionality. Some interesting factors to investigate, is
how large traffic of packages the system can handle, and how long time it will use
to handle the traffic in the system. These factors corresponds to the avoidance of
deadlocks and the latter to the throughput and latency of the system.

24 CHAPTER 3. PREVIOUS WORK

Chapter 4

Development of the system

The development of the system has been divided into two different areas. Since the
system did not function properly from the beginning of the project, some effort had
to be put into the development of a functioning system. The goal was then to run
it on the FPGA in a proper manner and receive a response when testing. This
is the structural development of the system. The second part considers the func-
tionality of the test system and in particular the test generators in the system and
their behaviour. This is defined as functional development. This chapter presents
some of the main features connected to these to areas. Chapter 5Requirements and
designchapter.5 will describe the features from this chapter in further detail.

4.1 Structural development

4.1.1 Generic code development

Having a system which is built for communication between modules proposes a
challenge when it comes to how the design is organized. This is because everything
has to be linked properly together and several instances of the same modules has to
be added to the system. By having a focus on a generic design it is possible to both
achieve flexibility in the system and improve the ability to alter the functionality
and testability. The implementation of this concept is described in details in
Chapter 5Requirements and designchapter.5 as a backdrop to the development of
the test generator functionality.

25

26 CHAPTER 4. DEVELOPMENT OF THE SYSTEM

4.1.2 Hardware software interfacing (HW/SW)

The HW/SW interface has been an issue in previous NoC projects, as described
in the report of Ersland in [17]. It is a critical component to run proper tests of
the NoC when implemented on the FPGA. This part describes the investigations
made and the solutions implemented that makes the interface functional.

Interfacing from software

The user-interface to the circuit is described in software with an application written
in C. The application, in this case the NoC, is assigned a memory space divided
into registers when instantiating the peripheral in the Embedded Development
Kit(EDK). In the current version of the system, nine registers are connected to
the hardware, each of 32 bit . This requires a memory of 32 × 9 = 288bit =
0x120(hexadecimal) which entails a memory range of 512 bits and an address
range from 000 to 1FF. To use these in a simple and easily understandable manor
has been one of the main focus’ of the development. The C coded program has,
based on this motivation, been adapted to use the registers as variables to simplify
read and write operations.

Memory organization

A step down in the hierarchy of the design is the hardware/software interface.
This is the communications channel between the FPGA hardware implementation
and the software executing on the MicroBlaze processor. When communicating
between these two domains there are some considerations that has to be taken
into account. An area with great impact is the memory space. Spartan FPGAs
comes without a Memory Management Unit(MMU) and memory read-and-write
has to be done in a direct manner. Hence, none of the default C methods for han-
dling memory read and write works. The first problem to arise with the memory
space was the location of the registers in the memory block of the FPGA. The ini-
tial memory area was defined between 0x81000000 and 0x810001FF. This was not
functioning properly either due to defect memory (SDRAM) or proximity/overlap
of other modules’ assigned memory. The SDRAM controller of the Suzaku FPGA
system is located just up to 0x80FFFFFF in Spartan 3 and 0x81FFFFFF for the

4.1. STRUCTURAL DEVELOPMENT 27

Spartan 3E and this might be the root of the problems with the mentioned mem-
ory space.

To remove these problems, the memory space designated for the Network on
Chip was moved. The solution to this problem, was found using a simple adder
module with simple output from [20]. The adder module was moved around to
several memory ranges and tested before concluding with an area suitable for the
AHEAD NoC. The NoC entity was placed in the area [0x84000000->0x8400001FF]
and managed to run properly with this memory space. Hence providing a work-
ing solution for the NoC module. For further details about memory and how to
organize the system, please refer to Appendix DTutorial:How to implement the
Network on Chip on the Suzaku-S platformappendix.D and Figure D.2System
Assembly EDKfigure.caption.81.

Interfacing from Hardware

When developing and implementing the HW/SW interface, another challenge sur-
faced. It was located a difference between the way the Microblaze processor writes
to the memory registers and how the FPGA module reads from these registers.
The cause was found in the Microblaze reference guide [34, p.21] that the registers
are written 0:31 with the Least significant bit(LSB) at 31. However, the hard-
ware interface and the NoC uses the common 31 downto 0 notation for VHDL,
and this causes a SW input of hexadecimal x"ABCDEF00" would give an input
x"00FEDCBA" to the NoC on the FPGA. This incorrect input gave no useful in-
formation to the circuit as described in [17].

The solution was adding a function to reverse the incoming vectors. This en-
abled the use of the common ”31 downto 0” notation without having to write the
vectors inversely in the C coded program. The vectors added from the C-code are
in this way directly compatible with the data entering the network through the
interface module. This method is illustrated in Figure 4.1HW/SW interface vector
handling.figure.caption.25.

28 CHAPTER 4. DEVELOPMENT OF THE SYSTEM

Microblaze
Processor

C-coded program

Software Register
LSB-MSB(0 to 31)

Rotate Vector
EDCBA=>ABCDE

Hardware Slave Registers
MSB-LSB(31 downto 0)

NoC

Write
to SW registers

Input SW

Input NoC

Input
registers
NoC

Figure 4.1: HW/SW interface vector handling.

4.1.3 Other structural changes

There has also been done work improving the easiness of communicating with the
NoC on FPGA. In general this is connected to using the Ethernet connection of
the Suzaku-S together with tools such as Network File System(NFS) [12]. Having
these parts in place simplifies the development of the system and the time from new
functionality is developed to its FPGA implementation is reduced. The different
ways of setting up and reconfiguring the NoC system on the FPGA is described
in details in Appendix DTutorial:How to implement the Network on Chip on the
Suzaku-S platformappendix.D.

4.2 Functional development

This part of the project development is based on desired properties to test on the
AHEAD NoC. It gives an idea of the direction the test-system is developed.

4.2.1 Specifications

To create a more generic design and to full-fill the testing motivation of the project,
a set of different design implementations was developed. The motivation for these
features was to improve the benchmarking of the AHEAD Network on Chip. Func-

4.2. FUNCTIONAL DEVELOPMENT 29

tionality introduced for the NoC test system included:

1. Completely reactive system which reacts to the information in the package

2. Use information in packages and tables to generate specific traffic patterns

3. Ability to change traffic tables from software

4. Manipulation of data in each packet

5. Calculate the bandwidth and latency of the system

6. Ability to run software programs and interact with the system when execut-
ing on the FPGA

What properties to measure

To get a precise measurement of the network it was necessary to have some prop-
erties to measure. The system already has functionality counting packages and
stamping them with current number of clock cycles. It has been used further
and connected to important metrics for the NoC. These metrics are useful to
get an idea of the properties of the system, as introduced in Section 2.2.1System
propertiessubsection.2.2.1:

• Throughput

• Latency

• Bandwidth

How to create the tests

To perform a test strategy that measures the given properties, it has been looked
at the number of active components in the system and how they communicate.
Secondly, the idea has been to develop a system with the ability to generate larger
amount of data to get a test system that resembles the application one wants to
evaluate. The focus was to get a good understanding of how the traffic behaves in

30 CHAPTER 4. DEVELOPMENT OF THE SYSTEM

the circuit, therefore the modules are deterministic1 in their behaviour. This was
in contrast to the previous version that included a pseudo random functionality.

The functionality of the test generators are Finite State Machines(FSM) all
together. This provides a good platform for performing different tasks based on
different information in packages. The development of the functionality is in that
matter only a question of altering the states within the modules. In the de-
velopment the concept was to have one module that could fill all the roles in a
benchmark or test and therefore the generic structure of each module was essential.
The specific functionality of the modules was based upon two different application
examples. These are:

• An MPEG pattern simulated and run on the FPGA

• A Cell processor like system with computation and communication

4.3 Application example:MPEG decoder

Andreas Hepsø introduced in his Master thesis, an MPEG decoder and scaler as
an application applicable to the NoC [25]. This system consists of 11 different
modules performing the MPEG decoding and scaling of a movie stream. In a
mobile application it will is desired to be able to downscale the video in real
time without delays. The MPEG decoder is fixed in its structure in the way that
one sends packages in the same direction through all the steps without sending
packages backwards or to several different test generators.

4.3.1 Real time requirements

If used as an on-the-fly scaler2, as described by Hepsø in [25], some system require-
ments will apply. The packet stream has to be continuous and little delay will be
accepted as it will lead to a reduced quality of the movie for the user. This means
that such a system has soft real time requirements3. Because the system has these

1Deterministic behaviour means that the behaviour is predictable
2On the fly scaler means that the scaling is done in real time
3Soft real time requirements means that the output/result of the system has a deadline,but

a missed deadline is not critical to the system

4.4. APPLICATION EXAMPLE:PS3 RING BUS SYSTEM 31

0 1 2 3

4 5 6 7

8 9 A/10 B/11

C/12 D/13 E/14 F/15/Interface
X100

Figure 4.2: MPEG traffic pattern, X defines a (possible) generation of packages.

requirements it is necessary to have a high degree of determinism in the system
and a highly controlled data and package flow.

4.4 Application example:PS3 ring bus system

Another application example is the Cell processor of the Playstation 3 [10]. The
system consists of eight so called synergistic processing elements(SPE), one Power
processing element(PPE) and one memory interface controller(MIC). The PPE is
in control of running the operating system and coordinating data flow through
SPEs. The Cell processor has the Element Interconnect Bus(EIB) as its main in-
terconnect between elements in the processor. This system has a ring bus topology
with a centralized arbiter which decides which processing element has access to the
bus. The system is then capable of routing packages to and from the processing
element either in a clockwise or a counter-clockwise manor. This is illustrated in
Figure 4.3Cell processorfigure.caption.30. The Cell system parameters are not the

32 CHAPTER 4. DEVELOPMENT OF THE SYSTEM

Figure 4.3: Illustration of the Cell processor.

main focus of the use of this as a test example. It is not a goal to achieve the same
performance from the AHEAD NoC, but to show one way of using the NoC and
to visualize the essential parameters and properties that is measured by referring
to a real application.

Frequency Theoretical
Bandwidth

Effective Bandwidth Bus Width Package Size

3.2 GHz 204.8 GB/s 78GB/s - 197GB/s 16 bytes 256 bytes

Table 4.1: Properties of the Cell processor [13].

With this system as a test case example, a relevant question would be; what if
the PS3 system was implemented on a Network on Chip? What would the prop-
erties of the system be and would the network handle the data communication
between modules? These are questions that forms the foundation for the devel-
opment of a similar system for the NoC. This system is not able to do as many
operations as the cell processor, but the communication and way of operating is
similar [13]. The concept is to replace the EIB with NoC and see how the be-
haviour of the system is like. It is in this case worth noticing that the Cell EIB
uses centralized arbitration4 as shown in Figure 4.3Cell processorfigure.caption.30
while the NoC uses distributed arbitration in each router [18]. The packages in
Cell and in the NoC are similar with regards to dimension. The Cell EIB has
a width of 16 bytes and a pacakge size of 128 bytes while the NoC has a data
width out of each router of 8 bits and a package size of 64. This means that both

4Arbiter is a component using certain criteria to determine which module allowed to access
the resource i.e a bus [28, p.26]

4.4. APPLICATION EXAMPLE:PS3 RING BUS SYSTEM 33

0 1 2 3

4 5 6 7

8 9 A/10 B/11

C/12 D/13 E/14 F/15

TG8:"SPE0" TG9:"SPE2" TGA/10:"SPE4" TGB/11:"SPE6"

TGC/12:"SPE1" TGD/13:"SPE3" TGE/14:"SPE5" INTERFACE:"PPE"

Figure 4.4: Cell processor with NoC instead of ring bus, White is deactivated area.

34 CHAPTER 4. DEVELOPMENT OF THE SYSTEM

needs 8 cycles in receiving and 8 cycles in sending data out on both networks. The
implementation of this example is described further in the next chapter.

4.5 Other possible application examples

4.5.1 RSA encryption

A common example well-applicable to benchmarking and testing of processors and
other systems is the RSA encryption algorithm [29]. This algorithm encrypts and
decrypts a message of various size. This has been used as benchmark for several
applications such as the already mentioned cell processor [19]. An RSA system
from a previous project at NTNU, Realization and test of digital components, was
synthesized and used 10% of the area of the Spartan 3E FPGA. The implemen-
tation has, however, not been developed further since the RSA circuit is quite
complex and has to be modularized and distributed in a correct way on the Net-
work on Chip to be used as a benchmarking and test system. This would take
a lot of effort and not necessarily provides more information about the systems’
properties than a simpler system such as the Cell example does. However, it is
a possibility that would be interesting if one wants to develop a specific practical
application for later use.

Chapter 5

Requirements and design

This chapter describes implementation details about the systems described in Chap-
ter 4Development of the systemchapter.4. It describes the code behind the solution,
from development of the hardware/software interface to the specifications of the
traffic system on the network.

5.1 Design goals

5.1.1 Area

The conclusions made in [25] [17] and [27] said that the circuit-area containing the
test modules is close to 100%. Due to this,the design is primarily concentrated
around optimization and reduction of the circuit area. Optimization of the fre-
quency is outside the scope for the circuit. Mainly because the focus is to see how
NoC routing behaves with a certain load of data packages, and not how fast it will
perform. The original code has been inspected and some areas of improvements
has been detected, to optimize the design for a minimum area of the circuit.

Area improvements attempts

1. Reducing the size of large global vectors including

Time-stamp-vector

Package counter vector

35

36 CHAPTER 5. REQUIREMENTS AND DESIGN

2. Changing the structure of the FSMs from variables to signals in next state
control logic

3. Changing from asynchronous reset to synchronous reset

4. Removing pseudo-random test functionality

The only factor contributed towards reducing the area substantially was the re-
moval of the pseudo-random functionality. This gave a reduction of the area for
the test generator of approximately 10%. The rewrite of the test generators’ FSM
caused a timing problem in communication with the router, hence it was not de-
veloped further. Changing the reset from asynchronous to synchronous reset, as
suggested by Xilinx in [22], gave some issues with the previous implemented func-
tionality and was not investigated further. None of the other attempts proved
to give a substantial contribution of available area. This is possibly due to the
structure of the FPGA.

Succeeding with the other improvements, a more thorough investigation of the
design, including floor planning, would be required and has not been pursued. A
simpler approach has been chosen due to the efficient use of time. The way of
testing and implementing added functionality is therefore primarily based upon
creating a design that is easy to alter the size when testing different properties
and versions of the system.

5.1.2 Flexible Design

When changing the system functionality it is advantageous that minor changes of
code may result in a substantial change in behaviour and size. The existing de-
sign lacked a good framework for maintainability and flexibility. It has therefore
been made some improvements in the direction of creating a flexible design. This
is beneficial since the area of the design is close to 100% of the FPGA, and to
include more functionality in the test system requires this property. In addition,
to develop it to fit different FPGA platforms might be a desired feature in future
projects. For instance, it might be desired to use the NoC on a smaller platform
and then it must be simple to include and exclude modules in the system.
In HW designs using VHDL this is solved by using generic mapping and generate

5.1. DESIGN GOALS 37

statements as displayed in the code in Listing 5.1Example of how the generate
statement is used to make it easier to add and remove parts of the system; the
generic variable:deactivated_tm defines the number of modules deactivatedlstlisting.5.1.
From before, in [27], a test- and type library was developed. These libraries include
types, functions and signals to be added and withdrawn from the system based on
the current requirements. In that way they provide a system to maintain, develop
and optimize the NoC system in an easy way in both this project and further
development.

One area that has been evaluated, but not improved, is the router design. As
mentioned in Section 3.2Design of the AHEAD Network on Chipsection.3.2 it was
designed in a very static way, and no easy way of changing the number of routers
in the system exists. The possibility of changing this in the same way as with the
test generators has been looked into, but this would require an entire rewrite of the
system. For testing purposes it does not provide an improvement, and will require
more time to do. Therefore, the possibility to remove and add test generators and
traffic monitors is present, but not to remove the connected and then redundant
router connected to it. However, in later optimization of the NoC this could be
a beneficial improvement of the system. Supplied code of the test generator and
interface is supplied in Appendix BCodeappendix.B.

1 NoC_TM: f o r n i n deactivated_tm to number_of_routers −1 g e n e r a t e
2 TM: e n t i t y noc_v1_00_a .TM(b e h a v i o r a l)
3 g e n e r i c map(tm_number=>n)−−g i v e s the c o r r e c t index to the t r a f f i c monitor
4 port map(
5 c l k => ungated_clk ,
6 r e s e t => r e s e t ,
7 CTS => p a c k e t _ t r i g g e r (n) ,
8 r e a d o u t _ f i n i s h e d => r e a d o u t _ f i n i s h e d ,
9 packet_counter => packet_cnt (n)

10) ;
11 end g e n e r a t e ;

Listing 5.1: Example of how the generate statement is used to make it easier to add
and remove parts of the system; the generic variable:deactivated_tm defines the number
of modules deactivated.

38 CHAPTER 5. REQUIREMENTS AND DESIGN

5.2 Hardware/Software interface

5.2.1 Software accessible registers

The communication between hardware and software is done with registers in mem-
ory defined in the synthesis tool. There are in total nine HW/SW registers
currently in use and they are organized like in Table 5.2Register numbers and
functionality.table.caption.34.

A specifically important register is register 4. This register is the control-
register and it is used to determine transmission of the packages to the network.
It also contains the reset functionality. This register and its bit values are de-
picted in Table 5.1Address listingtable.caption.33 In total there are 20 registers in
the AHEAD NoC, but as mentioned only nine of them are connected to the it. The
remaining ones are added to have registers available when extending functionality,
i.e. with a second interface module. Another potential use of these registers is to
use them as a platform for readout of the monitoring of data on the FPGA in real
time. These ideas have not been developed further in this assignment due to the
focus on the functionality of the test system and that it requires more time.

Bit values 31....28 27 26 25....8 7 3 2...0

Signal names: M
ux

_
se
le
ct

se
nd

re
ad

ou
t_

fin
ish

ed

no
t
in

us
e

BR
A
M
_
en
ab

le

re
se
t

no
t
in

us
e

Table 5.1: List of different bit values and their use in the control register.

5.2.2 Hardware interfacing

The registers are all instantiated in the user logic file of the system which serves
as a high level hardware part of the HW/SW interface. The interface module is
in this case the low-level interface part which is connected directly to the NoC.
The registers are all 32 bit wide. The read-and-write to these are controlled by

5.3. TRAFFIC GENERATOR 39

Register Info Address range Name
0 Data_in_33 0x84000000+0 slv_reg0
1 Data_in_33 0x84000000+4 slv_reg1
2 Data_out_33 0x84000000+8 slv_reg2
3 Data_out_33 0x84000000+C slv_reg3
4 Status bits/Control bits 0x84000000+10 slv_reg4
5 BRAM address register 0x84000000+14 slv_reg5
6 Feedback register 0x84000000+18 slv_reg6
7 Counter 0x84000000+1C slv_reg7
8 Timer 0x84000000+22 slv_reg8

9..19 Available 0x84000000.. slv_reg9..19

Table 5.2: Register numbers and functionality.

three different processes; read, write and a specific process to specify how these
operations are connected to the NoC. By dividing these processes it is much easier
to change a specific part of the NoC interface. The processes uses a vector with a
"one hot" bit to determine which register to be read and written from. These are
all default values when creating the peripheral in the Xilinx EDK tool but they
have been altered to get a more readable and maintainable code. An important
property already mentioned in Chapter 4Development of the systemchapter.4 is
the rotation of the input vector from the software registers. This is implemented
with a simple function to enable a simplistic read and write to the NoC.

5.3 Traffic generator

The traffic generator is the core of the test and benchmarking system and is the
component that produces traffic in the system. The original generator designed by
Hepsø [25] provided limited functionality for producing data to the system. It was
based on three Finite State Machines (FSMs) handling the receiving, throughput
of the generator and sending procedures. The designed structure of the routers,
interface module and test generators was the same. To remain compatible with
the rest of the system it is reasonable to keep the test generators in this way. The
use of FSMs is also proposed as a good way of designing test generators, this as
described in [14, p.7].

40 CHAPTER 5. REQUIREMENTS AND DESIGN

The functionality has been modified and is now capable of generating traffic to
the network based on a table of a defined traffic patterns. This means that the test
generators operate and communicate based on information stored in each module
instead of being given this information in packages. To illustrate this, in the previ-
ous version, the package contained where to send the generated package. With the
new functionality, the test generators determines where to send the package based
on knowing which generator it has received a package from, and the type of the
package. This is the concept of the reactive functionality. The modification has
been based on the work done in the fall of 2010 by Namork [27] with table driven
communication and implemented in a full system. In the mentioned work, tables
proved to be an efficient way of determining behaviour of the generator. However,
increasing the size of the tables or adding more tables, causes area overhead. This
fact will be illustrated with the Cell example implementation.

5.3.1 Sending and receiving packages with traffic tables

The traffic tables contains an array of 4X16 with the information the test generator
needs to send packages. This information defines behaviour based on the address
of the sending test generator. In Table 5.3Traffic tabletable.caption.35 this is the
"SenderID" and the traffic generator then uses the corresponding "DestinationID"
field to determine where to generate packages. There is a possibility of generating
a continuous stream of packages from the network with this table by defining the
"number of packets" column.

5.4 Traffic pattern in the NoC

5.4.1 Motivation

The motivation for looking into possible traffic patterns has been in the non-
deadlock free network. There has been an acceptance that there is not possible to
implement a network that can handle large crossing communication in a router.
As described in Section 5.1.1Areasubsection.5.1.1 this is due to area constraints
with the current FPGA. This means that the routers will not be able to function

5.4. TRAFFIC PATTERN IN THE NOC 41

TG# SenderID DestinationID Counter Number of Packets VHDL
NA 0 15 1 4 (0,5,1,4)
NA 1 15 2 3 (1,4,2,3)
3 2 7 3 1 (2,7,3,1)
7 3 11 4 2 (3,11,4,2)
NA 4 9 5 4 (4,9,5,4)
NA 5 10 6 3 (5,10,6,3)
2 6 3 7 1 (6,3,7,1)
11 7 15 8 2 (7,15,8,2)
9 8 10 9 4 (8,5,9,4)
10 9 6 10 3 (9,6,10,3)
6 10 2 11 1 (10,2,11,1)
NA 11 14 12 2 (11,14,12,2)
8 12 9 13 4 (12,4,13,4)
12 13 8 14 3 (13,8,14,3)
13 14 12 15 2 (14,12,15,2)
14 15 13 16 2 (15,13,16,2))

Table 5.3: Traffic tables and how they are implemented, in this case a MPEG decoder
pattern. NA means the testgenerator is not in use.

properly if there is traffic entering from several directions at the same time as
described in Section 2.3Deadlockssection.2.3. The idea is then to develop a test
system in order to map where the different modules of the network would be
placed for the system to be functional in run-time. To use modules that generates
a traffic-pattern it is possible in an easy way to simulate a real system without
having to implement all the modules of that system.

5.4.2 Sendback pattern

This pattern consists of a table that defines the case where a test generator re-
ceives a package from the interface. When the package is received, the test gener-
ator returns a package to the interface. This is a simple configuration where the
network gives a response to a simple input from the user. The way this is con-
figured is simply to change all the "Destination ID" fields in the Table 5.3Traffic
tabletable.caption.35 to 15. This test is in practice similar to the network admin-

42 CHAPTER 5. REQUIREMENTS AND DESIGN

istration tool "ping", used in IP1 networks. [7] The intention of this test is to verify
the functionality of the interface and the connections within the circuit, and this
works as the Design for test for the NoC.

5.4.3 MPEG pattern

The MPEG example and pattern was described in the assignment by Hepsø. It
defines 11 steps of an MPEG decoder that decoded and downscaled an MPEG
video stream. This pattern with a slight modification of module placement is
shown in Figure 4.2MPEG traffic patternfigure.caption.28.

With this as a background, the development of the traffic-pattern was built
on the reactive traffic generators’ table. The values in the table was set to mimic
the traffic pattern of the MPEG decoding. To mimic a stream, the values for test
generator 14/E was set to send 100 packages. This was to mimic a data stream
similar to an MPEG stream. The reason why the entire MPEG decoding algorithm
is not implemented instead is due to area constraints. In addition, the intention
behind the testing is to test the network, not to test how the MPEG algorithm
works. When this system proved to be successful, it was then used as a reference
design in further development of the test system.

Communications protocol MPEG

A communications protocol for the MPEG system was developed so that it defines
the packages and the different operations to perform. This basic protocol is shown
in Table 5.4MPEG protocoltable.caption.37. Adapting to a more advanced proto-
col such as the OCP-IP protocol has been looked into, but has been considered to
require large structural changes of the test generator and NoC design and require
too much time.

5.4.4 Internal Design

There are two parts of the test generator that forms its functionality when test-
ing the MPEG pattern. First of all it is the protocol as in Table 5.4MPEG

1Internet Protocol

5.4. TRAFFIC PATTERN IN THE NOC 43

Bit values 63....60 59....40 39....36 35....16 15....0

Signal name: A
dd

re
ss

no
t
in

us
e

se
nd

in
g_

ro
ut
er

no
t
in

us
e

gl
ob

al
_
tim

e

Table 5.4: Communication protocol in the MPEG like system.

RST_BRAMstart

IDLE

SY NC

RECEIV E

REC_SEND

cnt=31

cnt<31

request=1

request=0

Figure 5.1: Input state machine of the Traffic generator, MPEG configuration.

44 CHAPTER 5. REQUIREMENTS AND DESIGN

protocoltable.caption.37, and secondly it is the interpretation of this protocol in
the state called REC_SEND. This state contains the receiving part, interpretation
and definition of the next package to be sent. It uses a table like in Table 5.3Traffic
tabletable.caption.35 that defines sender ID and number of packages. The ”send”
state machine handles the rest of the operation with the transfer to the local router.

5.5 Multitasking test generator; Cell application

Based on the traffic generator with the MPEG pattern defined, further develop-
ment was performed. In the new test generator, the essential is to perform different
tasks based on the type of package. This generator is built up by the same state
machine as the MPEG pattern, but has three operating modes to choose from in-
stead of only one. It is developed on the larger Spartan 3E instead of the Spartan
3 which was used for the MPEG pattern. Although it is a larger platform, the
system employs only eight test generators instead of the sixteen from the MPEG
pattern. This is because of the higher area overhead with the extra functionality.
Even though full functionality of the SPE in the Cell processor is not feasible to
implement on a Spartan FPGA, it is possible to mimic its behaviour with data
communication. This is done by dividing an operation into parts and have a need
for communication with other elements to perform the operation. Calculations in
the system can be done simple by sending a package to any of the seven modules,
like in Figure 4.4Cell processor in NoCfigure.caption.31, in the system and the
computation will be produced. By sending packages to different test generators,
the latency and throughput will vary, but more than one calculation of packages
can be performed simultaneously.

5.5.1 Operating modes

The test generator is created to perform different operations based on what tasks
the specific generator is given. Information about the task is provided in the pack-
age and three modes exist. These modes are intended to provide the functionality
needed to get good results with regards to the properties that are measured. The
three different modes are listed below and described further in this section.

5.5. MULTITASKING TEST GENERATOR; CELL APPLICATION 45

Operating Modes Package type
Basic traffic 0
Data Manipulation 4
Table configuration 8

RST_BRAMstart IDLE

SY NC

RECEIV E

TABLE_CONFIG

DATA_MANIPULATION

TABLE_GETREC_SEND

cnt=31

request=1

request=0

config_table=1

config_data=1

config_data = 0
config_table =0

Figure 5.2: Input state machine of the Traffic generator, Cell example application.

Basic traffic

For the new test generator, the "Basic traffic" mode is the same as the MPEG pat-
tern described in Section 5.4.3MPEG patternsubsection.5.4.3. Packages traverse
the test system from F to E and in a clockwise circle back to the interface.

46 CHAPTER 5. REQUIREMENTS AND DESIGN

Bit values: 63....60 59....56 55....40 39....36 39....36 35....16 15.. 0

Signal names: se
nd

_
to

pa
ck
ag
e_

ty
pe

no
t
in

us
e

tg
_
he
x_

nu
m
be

r

ne
xt
_
op

er
at
io
n

pa
ck
ag
e_

da
ta

gl
ob

al
_
tim

e

Table 5.5: Multi functional protocol.

Software based traffic table

In the initial MPEG test generator the table was statically defined. The table was
made dynamic in an attempt to improve the possibility to change the behaviour
of each generator from software. It made it possible to send a package with a
given data load and change how the test generator performs its sending. This
enables the possibility to alter traffic tests in software and in a fast way, test
several different patterns without FPGA reconfiguration. When it is desired to
change the contents of the table, the package type, as in Table 5.5Multi functional
protocoltable.caption.42, is set to 8. Having a dynamic table provided an ability
to implement a table configuration mode within the test generator, as described
in the next paragraph.

Table configuration mode

The ability to alter functionality of the table without reconfiguring the system on
the FPGA is interesting. With this feature it creates the opportunity to reconfigure
the systems traffic and functionality in run time. To test how this behaviour could
be implemented, a second state in the state machine was implemented. In this
mode a package is sent to a specific test generator and tells it to change a specified
row in its table. This procedure is shown in Figure 5.3Table reconfiguring through
packagesfigure.caption.45. When the table is configured the test generator sends
a package back to the requiring module to confirm the reconfiguration. Next time
the generator receives a traffic package, it has a new defined pattern within its
table.

5.5. MULTITASKING TEST GENERATOR; CELL APPLICATION 47

35..32 31..28 27..24 23..20 19..16

ch
an

ge
_
va
lu
e

D
es
tin

at
io
nI
D

Se
nd

er
ID

C
ou

nt
er

N
um

be
r
of

pa
ck
ag
es

Table 5.6: Data to configure testgenerators internal table.

Figure 5.3: Reconfiguring of the traffic table through software data packages.

5.5.2 Data Manipulation

To create a Cell processor-like system, another state called ”Data manipulation”
is created. This is the core of the Cell functionality and takes data input and com-
putes a new output. The initial configuration of this system takes two hexadecimal
numbers and their difference and computes the mean value of the two numbers.
The operations used in each traffic generator is either increment or decrement of
the input hexadecimal values. The operation designated to each generator is based
on its unique number in the test system, odd numbered generators perform incre-
ment, even numbered perform decrement. Every generator contains an additional
table that gives information about which test generator that has the next oper-
ation to be performed. An internal counter is used to choose a different module

48 CHAPTER 5. REQUIREMENTS AND DESIGN

Difference Unused High value Low value

Table 5.7: Values on input to the data manipulation mode.

each time. A limitation associated with this way of doing operations with two
implemented tables was that the available resources of the FPGA. In synthesis it
was not possible to implement two dynamic tables that could be read from in each
test generator. Therefore the table connected to the ”Data Manipulation” state
was made static and thus not possible to alter with packages sent to the network.

Design of the state

The design of the Cell example application is based on the MPEG traffic example.
By adding computation, it is possible to mimic behaviour based on several com-
municating modules relative placement in the NoC. Hence, the alteration is the
creation of the new package and the steps that does computation in the receiving
state machine. In addition the modules are clustered together instead of forming
a specific path like the MPEG pattern. Input of the data manipulation state is
simple and is shown in Table 5.7Average value inputtable.caption.47.

Generation of the packages is based on Table 5.8Cell application example
table.table.caption.48. Each even numbered test generator has listed three odd
numbered test generators to connect to in different order. The connection deter-
mines the next operation of the system. One decrement operation on the largest
input value is then followed by an increment operation on the smallest value. The
test generators are, due to the number of modules they communicate with, classi-
fied as a Multiple Input Single Destination(MISD) processing elements (PE) type
as described in [14, p.8].

5.6 Software based test program

A test program or micro-benchmark was created in C and compiled for the Mi-
croblaze processor. It was based on the program developed by Ersland in [17] and
Hepsø in [25]. It consists of different methods that enables functionality to test the
network. One of the methods writes the type of package the user wants to send

5.6. SOFTWARE BASED TEST PROGRAM 49

Test Generator Next operation TG Number of packages VHDL table
8 9, 11,13 1 (8,9,11,13,1)
9 8,12,14 1 (9,8,12,14,1)
A 11,9,13 1 (10,11,9,13,1)
B 12,8,14 1 (11,12,8,14,1)
C 13,9,11 1 (12,13,9,11,1)
D 14,8,12 1 (13,14,8,12,1)
E 9,13,11 1 (14,9,13,11,1)

Table 5.8: Cell application example table.

to a specific test generator to the network and receives and interprets the output
and delay. It also reads out the time stamp of each package and converts it to
decimal values to get a good estimation of how long each package uses through the
network. Latency values are then used to give an indication of the throughput of
the test. This communication goes through the software accessible registers in the
SDRAM. The interaction between the microprocessor and the FPGA is write and
read operations of these registers as described in Section 5.2.1Software accessible
registerssubsection.5.2.1. The code for the test is found in the Appendix B.5C
program for on chip test of the Network on chiplstlisting.B.5. In addition to the
test program written in C, a Java graphing program was created to illustrate the
data from the circuit. A text file was used to store the data from the C tests, and
the Java program reads from this file and graph the values. It is beneficial as a
tool to develop a user friendly benchmark in the future. This program will not be
discussed further but is available in the supplied digital attachments.

5.6.1 Redefining behaviour through software

To quickly modify the test without having to reconfigure the FPGA is an interest-
ing feature when benchmarking the Network. The idea is to change the data of traf-
fic tables, and by that create larger and more advanced tests written in software.
By providing this functionality, the testing will in later editions of the system use
less time and give more and better data for analyzation. One attempted solution
to this problem is the implementation within the designed test generator described
in Section 5.5.1Table configuration modesection*.43 and in the test program. The

50 CHAPTER 5. REQUIREMENTS AND DESIGN

Figure 5.4: The different methods listed in the program run on the FPGA.

test generator reads the value which is sent from software consisting of five hex-
adecimal values within the package and writes this value to its internal traffic table.
In this way it changes the way it sends packages in the network. The data sent as
a load to the test generator is listed in Table 5.6change_datatable.caption.44.

5.7 Surveillance and monitoring of traffic

In the system the surveillance and monitoring of traffic has been handled by a
packet counter and a time stamp module. These two were described in [25] but
not used for testing on the FPGA. The intention behind having these modules
was to get traffic information from the circuit. Some issues with these modules
have been addressed. The time-stamp-module used originally 32 bit vectors that
were to large for the system, as mentioned in Section 5.1.1Areasubsection.5.1.1.
Package counter vector was equally large. Those were then reduced to 16 bits
which should be more than enough to monitor the traffic.

It is easy to take this module in and out of the system and this has been done
in development to reduce area overhead when there is no specific need for time
stamp information. There is in addition a packet counter which has proven a
handy tool to monitor traffic in the circuit. The practical use of this module is
that it can write out data of package traffic from anywhere in the network through
the interface. An example of this use is illustrated in Figure 5.3Table reconfiguring
through packagesfigure.caption.45 with the signals in_32 and in_33. They are the

5.7. SURVEILLANCE AND MONITORING OF TRAFFIC 51

packet counters connected to router E and F.
As an example, in the MPEG pattern, using the counter on router F verifies

that the correct number of packages has passed through. This is used both in
simulation and on-chip testing on the FPGA. Which router to read data from
can be determined both in software by setting the control register to the desired
value or by setting it statically in the interface in the user_logic module. This
determines both the time stamp one want to read out and the package counter.
It could have been implemented more functionality to monitor the packages from
within the network, but this is considered to be both time consuming and complex.
Thus, it has been chosen not to look further on this functionality since the current
implementation provides sufficient data. It has instead been a focus to develop
the interpretation of the data especially in the software program.

5.7.1 Measuring throughput

To get a good measurement of the throughput in the circuit, the mentioned surveil-
lance and monitoring systems are essential. The global counter implemented in
the circuit is used widely to get useful data of latency from operations within the
network. By stamping each packet and then reading out this time value it is pos-
sible to calculate the throughput of the system. This system is however not as
precise as desired since the sending-and-receiving overhead involving the interface
is not added to the measured value. A solution that has been investigated, but
not implemented, is to have measurement in the interface. The reason for this is
that the current time stamping gives a good approximation of the latency as it is.
To change and remove this functionality would require more time to complete.

52 CHAPTER 5. REQUIREMENTS AND DESIGN

Chapter 6

Verification and testing

The system has been tested in depth to verify functionality. This chapter describes
the simulation,synthesis and on chip verification. The simulation has been per-
formed with Active HDL(AHDL) 7.2 SE, the synthesis with Xilinx EDK and ISE
10.1.3 and the on chip tests are written in C and cross-compiled for the Microb-
laze processor on an Ubuntu PC. First the simulation of the structural development
is described. Then a presentation of the MPEG and Cell examples synthesis re-
sults before the functional development testing will be presented. No manual floor
planning of the design, either pre- or post synthesis have been performed.

6.1 Simulation

The circuit was simulated to verify its behaviour in AHDL. The initial testing was
done with a frequency of 50 MHz and with the interface module as top module.
This was chosen instead of low level testing of each module since the interesting
property to simulate was the behaviour of the entire system. Basic functionality of
the table driven test generator was also simulated in [27]. The simulations based
on this approach proved to give good results. In simulation the effects of the clock
buffer is important. This clock buffer is previously introduced to reduce clock skew
in the circuit. Because of this a second simulation clock is added in the circuit
with 50 MHz. This was necessary as long as the Xilinx clock buffer libraries are
not available in the simulator. More about the clock buffer module is described in

53

54 CHAPTER 6. VERIFICATION AND TESTING

the FPGA manual [4].

6.1.1 Simulation of basic functionality

A basic test based on the traffic table was performed, to verify that the interface be-
tween hardware and software was functional. This initial test was based on a traffic
pattern where all the test generators would send a package back to the interface
module and the test would end when this was performed. The packages were sent
in accordance with the XY routing scheme and simulated as expected. Simulation
results from this test is illustrated in Figure 6.1Basic simulationfigure.caption.50.
The framework for this test is a test bench similar to the one described in [27]
with packages with specific data sent to different test generators. The system was
post simulation, synthesized and implemented on the FPGA.

Figure 6.1: Simple test of the system, one package sent to every router which in order
responds to the interface.

6.1.2 Simple traffic pattern simulation

In the assignment of Hepsø the application of an MPEG decoder was introduced.
This serves as a practical implementation applicable to the NoC. The MPEG de-
coder consists of 11 different modules performing the decoding. For the simulation
of the traffic behaviour, the traffic table was configured to be able to send pack-
ages in the same fashion as the MPEG decoder would send packages. This was
the pattern given in Figure 4.2MPEG traffic patternfigure.caption.28 and provides

6.1. SIMULATION 55

Figure 6.2: Mpeg pattern in simulation, one package from each test generator.

a simple platform for the simulation and testing.
In this simulation sending was performed like the MPEG decoder described

by Hepsø in [25]. The test was performed by sending an initial package to test
generator E/14. When this was done this generator used its table to interpret
its action when a package was sent and marked by generator F, in this case the
interface. This was to send a package to test generator D and the operation
continued around the MPEG pattern until the package arrives back at the inter-
face again. Results from this simulated pattern is depicted in Figure 6.2MPEG
simulationfigure.caption.51.

6.1.3 Patterns with crossing traffic and deadlocks

A large focus on deadlocks has previously given a focus on testing crossing traffic.
This part is not given to much attention since it is already verified with the testing
described in [25] what causes deadlocks. Because of this the system tests has
mainly focused on the development and testing of applications which simulates
"real" behaviour instead of knowingly trying to trigger deadlocks in the system.

56 CHAPTER 6. VERIFICATION AND TESTING

6.2 Synthesis of the circuits

As mentioned in Section 5.1.1Areasubsection.5.1.1, the main limitation of the cir-
cuit relates to the area of the Spartan 3. For this reason it has been chosen area
optimization high in synthesis of the circuit. It appears, however, that this choice
of optimization has resulted in issues with regards to timing constraints. Espe-
cially for the Spartan 3E this was a problem. However, Xilinx includes an Xplore
script which tries to run several iterations with different configurations and thus
achieves the best timing performance for the circuit. This appears to solve the
problem of the timing constraints. The Spartan 3 and 3E are also quite similar
when it comes to implementation details so the the NoC is easy to move from one
of the platforms to the other.

6.2.1 Synthesis challenges

When synthesizing the test generator for the Cell application, a problem with
the tables arose. As described in Section 5.5.2Data Manipulationsubsection.5.5.2
There was a resource problem on the chip that made it impossible to have two
different reconfigurable tables within the circuit. This made it necessary to go
back in the design and have one of them as a static table and one as a dynamic
table. Due to this problem, only the traffic table is possible to change. The table
with the next operation test generator as described in Section 5.5.2Design of the
statesection*.46 is thus not possible to alter with software-generated packages.

In the test generators, arithmetic operations are performed within the cir-
cuit. When creating the IP in Xilinx EDK, the default library is a package called
”std_arith”. However this is not the standardized library for synthesis given by the
IEEE, with ”numeric_std” package as the standard [6]. For this reason, the ”nu-
meric_std” is chosen in implementation, but the arith package was used in some
modules from previous projects. The use of both will result in problems in syn-
thesis and must be avoided. Refer to Appendix DTutorial:How to implement the
Network on Chip on the Suzaku-S platformappendix.D for further details about
the synthesis and tools.

6.2. SYNTHESIS OF THE CIRCUITS 57

6.2.2 Synthesis of the circuit

By removing some elements of the test generator such as the pseudo random
functionality used in Hepsø’s [25] assignment it has been possible to add the func-
tionality for the two example systems, and fit the area on the FPGA. It is worth
to mention that the systems usage of flip flops and LUTs are lower than the slice
number, and this is possibly due to inefficient use of the slices. This could be solved
by floor planning, but has not been investigated in the synthesis process due to its
requirement of more time. An illustration of the floor-planned design made by the
synthesis tool is provided in Appendix AIllustrations of the systemsappendix.A.
In addition hierarchical system view and the test generator module with input and
output is provided.

MPEG system(Spartan 3)

In Table 6.1Synthesis MPEG systemtable.caption.53, the synthesis results of the
entire 16 TG system is listed.

Logic Utilization Used Available Utilization
Number of Slices 185 7680 2%

Number of Slice Flip Flops 225 15360 1%
Number of 4 input LUTs 305 15360 1%
Number of bonded IOB 66 173 38%
Number of BRAMs 1 24 4%
Number of GCLKs 2 8 25%

Values for 16 TG
Number of Slices 2960 7680 38%

Entire system
Slices 7,141 92% 7,680

Flip-Flops 7,889 50% 15,360
4-input LUTS 11,399 74% 15,360
Max Frequency 53,387%

Table 6.1: Synthesis results test generator MPEG pattern;from supplied digital attach-
ment: ../sz030-20090319/xps_ proj.log.

58 CHAPTER 6. VERIFICATION AND TESTING

Cell application(Spartan 3E)

Table 6.2Synthesis TG Cell-exampletable.caption.55 shows the synthesis results of
the Cell example. It shows that with the new functionality, eight test generators
take up approximately the same space as sixteen MPEG generators.

Logic Utilization Used Available Utilization
Number of Slices 386 8672 4%

Number of Slice flip flops 402 17344 2%
Number of 4-Input Luts 542 17344 3%
Number of bonded IOBs 66 190 34%

Number of BRAMS 1 28 3%
Number of GCLKs 2 24 8%

Values for 8 Test generators
Number of Slices 8 Tg 3088 8762 35%

Entire system
Slices 8308 95% 8672

Flip-Flops 8765 50% 17344
4-input LUTS 12750 73% 17344

Maximum Frequency 58,928%

Table 6.2: Synthesis of the test generator for cell example;from supplied digital attach-
ment: ../sz130-20090319/xps_ proj.log.

6.3 FPGA implementation

6.3.1 Initial testing

A simple module to verify the hardware/software interface was developed to check
how input from c-code was responded to by the circuit. This is displayed in
Figure 6.3Structural test of the FPGAfigure.caption.56 and shows a sending of
a package to router E and it then returns a package to back to the interface.
Running this test verified the functionality of the interface.

6.3. FPGA IMPLEMENTATION 59

Figure 6.3: Structural test of the FPGA, package sent to test generator E that responds
to the interface.

Figure 6.4: Structural test of the FPGA, package sent to test generator 0 that responds
to the interface.

6.3.2 Testing patterns, initial MPEG test

In Section 4.3Application example:MPEG decodersection.4.3 and Figure 4.2MPEG
traffic patternfigure.caption.28 MPEG pattern was introduced. This system was
tested on the FPGA with a simple test. Testing the system was performed by send-
ing one package through the network from test generator F to E and through eleven
test generators back to F like in Figure 4.2MPEG traffic patternfigure.caption.28.
It proved that the time a package used to travel from interface through 11 router-
s/generators was a somewhat higher time than in the simulation. The differ-
ence was however not significantly large with a number of cycles of 435 for the
FPGA and 434 for the simulation, a difference of 1 clock cycles. Figure 6.5Sim-
ple MPEG FPGAfigure.caption.58 shows the results from the on-chip test while
Figure 6.2MPEG simulationfigure.caption.51 shows the corresponding simulation
results. This test was mainly performed to get a verification of the table defined
traffic and to see which improvements that could be made.

With this test one had to take in to consideration the fact mentioned in Sec-
tion 5.7.1Measuring throughputsubsection.5.7.1 that the stamping of packages oc-
curs when leaving each test generator. This means that the number of cycles from

60 CHAPTER 6. VERIFICATION AND TESTING

Figure 6.5: Simple MPEG run on the FPGA.

the package leaves the interface, until it arrives back to the interface is a larger
number than the number given here. An estimation based on the basic test in
Figure 6.3Structural test of the FPGAfigure.caption.56 is about 45 cycles. Since
each packet transfer takes about 12 cycles through each router and the last test
generator B has to send its package through two routers before reaching the in-
terface. That is the same number as in the mentioned basic test. This number is
found by looking at the initial time stamping of the global time in the closest test
generator, as seen in Figure 6.3Structural test of the FPGAfigure.caption.56. It
is however not a fixed number for all cases since it may increase if there is cross-
ing traffic through the specific routers. Approximation of the latency is, however,
found to be good enough.

6.3.3 Higher packet rate

To see how the circuit performs when applying a higher rate of packages, a table
configuration that generated multiple packages in router E was enabled. That gave
the opportunity to see how the system performed when sending several data pack-
ages at the same time. The procedure was as follows; a package was sent to test
generator E from the interface and this test generator generated one hundred pack-
ages that followed the MPEG pattern to see if performance was affected. This test
is similar to sending one hundred packages from the software to the network and

6.4. CELL PROCESSOR APPLICATION 61

works as a test of how a data stream i.e. a video stream would behave. The test
proved that the performance on the FPGA, as seen in Figure 6.6MPEG 100 pack-
ages simulationfigure.caption.59, was similar to the simulation in Figure 6.6MPEG
100 packages simulationfigure.caption.59. Almost the same latency of 2751 clock
cycles measured, one more on the FPGA test than in the simulation. No deadlocks
or other issues occurred in this test.

Figure 6.6: Mpeg pattern in simulation, one hundred packages from test generator E
through the system. NOTE last for digits in data_out ABE.

6.4 Cell processor application

After completing the MPEG pattern test and verification, the Cell example was
developed based on the MPEG design. This system contains the same functionality
as the MPEG system. As mentioned there are three operating modes. In addition
to the basic traffic functionality verified in Figure 6.8Traffic Cell example, FPGA
testfigure.caption.61 there is a table reconfiguration and data manipulation mode.

Table reconfiguration Testing the table reconfiguration mode proved to be a
larger challenge than expected. Initially, the on-chip test was intended to be a

62 CHAPTER 6. VERIFICATION AND TESTING

Figure 6.7: Mpeg pattern run on the FPGA, one hundred packages from test generator
E through the system NOTE data_out last four digits ABF.

Figure 6.8: FPGA test of simple traffic in the cell example system; Pattern F->E->D-
>C->8->9->A->B->F.

test with changing traffic from one circle through the Cell system to a continuous
circle with counting of the packages. The test did not function as intended due to
its requirement of continuous surveillance of the NoC and this functionality is not
developed in the test system. However, the functionality was verified in simulation
as shown in Figure 6.9Simulation table reconfigurationfigure.caption.63. It shows
that the functionality is correct, but needs a better measuring tool to run a full
scale test on-chip.

6.4. CELL PROCESSOR APPLICATION 63

Figure 6.9: Simulation table reconfiguration; Package sent to generator E, table posi-
tion 10 changed with new values, package returned to the interface.

Data manipulation test In addition to the two mentioned modes, the Cell
example contains a small computer that computes the average value of two hex-
adecimal numbers. In this way this example works much like a co-processor that
does one specific operation for the Microblaze processor. Testing was performed
by sending a package with two hexadecimal values and their difference to any test
generator from 8 to F, as in Figure 4.4Cell processor in NoCfigure.caption.31. The
package was then forwarded to the next operation test generator and followed
a path defined by the test generators internal tables. When the calculation, as
described in Section 5.5.2Data Manipulationsubsection.5.5.2 was performed, the
package was returned with the average value of the two input values to the inter-
face and software. Global time was added to indicate latency of each package and
then read out and interpreted by the software.

Figure 6.10: Simulation of the calculation of one average value by using the network
and test generators, here; the number E+4

2 = 18
2 = 9.

64 CHAPTER 6. VERIFICATION AND TESTING

Figure 6.11: Calculation of one average value on the FPGA, same values as in Fig-
ure 6.10Simulation average, one packagefigure.caption.65.

A large scale test was developed to thoroughly test the application on-chip.
The test consisted of sending packages with hexadecimal numbers to each module.
First, one table configuration was used with the table configured as in Table 5.8Cell
application example table.table.caption.48. In this table, test generator A was not
used in the table, to see how this had an impact on the system. This one was cho-
sen because of its central position in the system. The vectors applied as load to the
circuit is listed in Table 6.3Test loadtable.caption.69. The results from this test is
displayed in the graph in Figure 6.12Graph of latencyfigure.caption.67, based on
all the latency values from the circuit. For this test, the worst case scenario with
a large difference creates at the most 991 clock cycles of latency when sending to
test generator A, while the best case is when there is sent a package to the test
generator D. Latency for initial sending to generator D was considerably lower for
the two first loads than for the rest of the loads. Differences in latency between
modules are based on differences in the traffic table of the test generators. This
configuration is not optimized and the distance to the next test generator might
be in some cases be large. This is probably the case when sending to test gener-
ator A,B and E in this test. However, it indicates well the best- and worst case
throughput of the Network on Chip with type of system.

To compare this result, a second table configuration was tested with a table
configuration with minor changes. Table values for the second test is found in
Table 6.4Cell application example table.table.caption.70 and the results are illus-
trated in Figure 6.13Graph of latency, second table configurationfigure.caption.68.
Two test generators table values were changed and test generator A was added to

6.4. CELL PROCESSOR APPLICATION 65

Figure 6.12: Data from first test run on FPGA, 8 packages with data val-
ues(Table 6.3Test loadtable.caption.69) sent to each test generator; Hexadecimal number
indicates router, Number indicates Latency in clock cycles.

the tables. This gave a more even result for all the generators. In this test the
maximum throughput is higher than for the first test with a maximum value for
initial test generator A of 1005. Best case was, in this test, found when sending the
initial package to test generator A. When sending the initial package to generator
C the difference is largest, this indicates that the path the package follows is more
optimal for the first test case. When the computation is small, the differences are
smaller for all the test generators since the test generator just sends the package

66 CHAPTER 6. VERIFICATION AND TESTING

Figure 6.13: Data from second test run on FPGA, 8 packages with data val-
ues(Table 6.3Test loadtable.caption.69) sent to each test generator; Hexadecimal number
indicates router, Number indicates Latency in clock cycles.

in return.

Similar experiments have been performed in testing of the EIB on the cell
processor with sending of packages from SPE to SPE [13, p.2].

6.4. CELL PROCESSOR APPLICATION 67

Vector(Hexadecimal values) Difference(Decimal values)
F1 14
E2 12
D3 10
C4 8
B5 6
A6 4
97 2
88 0

Table 6.3: Test loads for the cell application, on chip test.

Test Generator Next
operation TG

Number
of packages

VHDL table Change

8 9, 11,13 1 (8,9,11,13,1)
9 8,10,14 1 (9,8,10,14,1) X
A 11,9,13 1 (10,11,9,13,1)
B 12,10,14 1 (11,12,10,14,1) X
C 13,9,11 1 (12,13,9,11,1)
D 14,8,12 1 (13,14,8,12,1)
E 9,13,11 1 (14,9,13,11,1)

Table 6.4: Cell application example table.

6.4.1 Streaming test of the application

To evaluate the ability to handle more than one package at the same time into
the system, a stream test simulation has been performed. The stream test consist
of applying a continuous stream of packages to the system in a manner similar to
the full system test on the FPGA. Values to compute average from was the same
as the highest difference values in Table 6.3Test loadtable.caption.69. Sending
procedure was to test generator 8, then 9, A and so forth. With this test it is
interesting to see whether there are any lost packages from deadlocks or not. This
test forces the system to work on multiple data at the same time and to handle
potentially colliding data into the routers. Hence, the test was performed with the
expectation that loss of packages would occur when any router received more than
three packages.

That also proved to be the case, when testing data streams with different

68 CHAPTER 6. VERIFICATION AND TESTING

sending interval. It proved to be a matter of how small the interval between each
package was, when the system deadlocked or not. In the Figures 6.14(b)Subfigure
6 6.14(b)subfigure.6.14.2 and Figure 6.14(b)Subfigure 6 6.14(b)subfigure.6.14.2 dif-
ferent intervals was chosen. In the first situation 200 clock cycles went between
sending while in the latter only 20 cycles went between sending. This states the
fact described previously that three packages to a single router will deadlock the
system. This also proves one of the areas where this system might be a good
tool. By setting parameters to correct values like in Figure 6.14(a)Subfigure 6
6.14(a)subfigure.6.14.1 one could also know what values the real system has to
have in implementation. In addition the stream test shows what routers has the
highest traffic flow. In the test in Figure 6.14Stream testsfigure.caption.71 the
router A(in_22) has almost twice the amount of packages routed than router
9(in_21).

There is not found a good way to perform this test with the C program. A
possible solution is introducing interruption mechanisms in to the system or orga-
nizing the sending procedure in a different way than is implemented at the moment.
Both would require changes to the interface, possibly an additional interface.

6.5 Summary of testing

Three different systems have been tested. Initially the testing focused on structural
testing verifying the interface communication. When this testing was completed,
the functional testing proved how the table driven test generators mimic traffic
of a real application with the MPEG and Cell example. Finally the full system
tests were presented with sending to all generators and measuring of latency. The
streaming test concluded the testing and illustrated some of the limitations, but
also an important aspect in the test system use. Testing of the table reconfiguration
mode was not fulfilled on the FPGA, but verified in simulation.

6.5. SUMMARY OF TESTING 69

(a) Streaming test of cell example,
successful run 7 packages sent and
received; with 200 cycles sending
interval

(b) Streaming test of cell example,
deadlocked system;7 sent none re-
ceived 20 cycles sending interval

Figure 6.14: Stream test of the Cell application example.

70 CHAPTER 6. VERIFICATION AND TESTING

Chapter 7

Discussion

7.1 Evaluation of the system

The ambition of this project has been to develop a platform for better testing
and evaluation of the NoC and applications for the NoC. By defining measurable
parameters such as throughput and latency, a test system with the ability to run
like a normal system has been produced. With the development of the system,
two examples has been introduced to illustrate the use of the system. However,
the main focus has not been to use the system to compare it with another system,
but to illustrate how the system applies in testing to the NoC.

Development of the table driven test generator has proved that with the current
system it is possible to imitate the behaviour and traffic pattern of several appli-
cations. By simply changing the table values, the system has been used to both
mimic an MPEG decoder and a small simple processor application. This gives a
new dimension to automation of the profiling of applications on the NoC. System
structure and performance, and functionality has been verified in different tests.
Basic functionality and traffic between modules are now in place. Programmability
has been a focus of the development, new interface and enhanced use of software
programs to read data from the chip, has provided increased possibility of testing
the NoC. Having this in place, a framework for extensive testing of the NoC has
now been in place capable of benchmarking different implementation alternatives
for the NoC. Although there has been made improvements to the interface and

71

72 CHAPTER 7. DISCUSSION

readout from the FPGA, the failed attempt to run a full table reconfiguration test
in Section 6.4Cell processor applicationsection.6.4 indicates that it needs more de-
velopment. A possibility is, as mentioned in Section 6.4.1Streaming test of the
applicationsubsection.6.4.1, to implement interruption mechanisms and a second
interface.

Two examples of how the test system could be used to profile applications
are the MPEG example and the Cell example. Both are based on table driven
functionality, but focus on different areas.

7.1.1 MPEG example

Results from simulation and FPGA implementation of the MPEG system proves
that the NoC is capable of running a streamed application. In this aspect it is
very important to emphasize the placement of modules. Using a placement like in
Figure 4.2MPEG traffic patternfigure.caption.28 avoided deadlocks and managed
to handle a continuous stream of data. Even though this test system did not
contain any computation the test is sufficient to prove that the AHEAD NoC can
handle this type of application.

7.1.2 Cell example

With the Cell example, introducing computation in addition to communication is
the big difference from the MPEG example. Having this dimension in the test
and profiling tool enables the ability to mimic a wide range of applications. Its
importance became clear both in the FPGA test and the streaming simulation. By
setting the parameters of the system to correct values, one could evaluate whether
or not deadlock in the system will occur. In addition different table configurations,
and in this aspect traffic pattern, provided information about the most efficient
solution with regards to latency and throughput. To improve the details of the
results, such as the latency, optimization of the tables could have been performed,
but this will require more time. In any case, the possibilities of the system as a
profiling tool has been illustrated with the performed tests.

7.2. THROUGHPUT RESULTS 73

Resources

With the extension of the functionality of the test generators the area used on
the FPGA was 95%. This means that the system has little or no room for more
functionality. By changing the number of routers in the system this problem might
have been overcome, but this improvement requires more time to investigate. An
alternative of adding more functionality could be to have submodules for the oper-
ating modes, and change to a different module when testing different functionality.
A final and obvious alternative is to use a FPGA platform with more resources.
The test system is now scalable and with a scalable NoC, to fully exploit a new
platform in a simple manner will be possible.

7.1.3 Interface as bottleneck

The system connections to software with only one interface has been detected as
an obvious bottleneck of the system, since all data has to go through one eight bit
channel. To improve and further develop the functionality of the test system it is
advantageous to add one or more interfaces to the system. This will contribute to
the overall bandwidth of the system since the maximum amount of data entering
the NoC will be sixteen bits instead of eight. Hence potentially doubling the
bandwidth for the NoC. In addition it could provide possibility of more advanced
test cases. As an example, if a second interface, as in Figure 7.1Two interface
modulesfigure.caption.73 two Cell systems could be implemented at the same time.
The implementation could simply be done by adding a second interface module
to the user logic file of the NoC project. This is not pursued further due to the
focus on the test system, but will be possible to do by duplicating the interface
and exchange one of the test generators with this module. Such a system will,
however, complicate the communication between the MicroBlaze processor and
the NoC, but with efficient organization, this will still be an improvement.

7.2 Throughput results

To illustrate how a desired implementation can be profiled and optimized with the
test system, throughput results are essential. They give a numeric value of how the

74 CHAPTER 7. DISCUSSION

0 1 2 3

4 5 6 7

8 9 A/10 B/11

C/12 D/13 E/14 F/15

TG0 TG1 TG2

INTERFACE

TG4 TG5 TG6 TG7

TG8 TG9 TGA/10 TGB/11

TGC/12 TGD/13 TGE/14

INTERFACE

MICROBLAZE
PROCESSOR

Figure 7.1: Two interface modules connected to the NoC.

performance of the system is compared to its optimal potential. An illustration of
this is provided in the following calculations of throughput of the MPEG system,
and the worst case throughputs of the Cell example.

7.2.1 MPEG

Ersland [17] concluded in his Masters Thesis and preliminary project, that the
system would theoretically have a bandwidth of 1,3 GB/s. The results depended
on a higher frequency than what was able to achieve with the test generator sys-
tem. Hence, given Equation 3.2System propertiesequation.3.3.2, a more probable
bandwidth was given for the loaded case of the routers. A property of the circuit
which is important to evaluate is the throughput of the circuit. When sending
100 packages through the circuit the latency was found to be 2751 clock cycles.
If using a frequency of 50 MHz, with a period of 20 ns per cycle, this gives the

7.2. THROUGHPUT RESULTS 75

following calculations of the throughput:

2751 × 20ns = 55, 02 × 10−6s => 100
(55, 02 × 10−6) = 1817520 pkg

second (7.1)

With a package size of 64 bits, the throughput of this configuration will be

1817520 × 64 = 116Mbps (7.2)

which is equivalent to
116
533 = 21% (7.3)

of the total bandwidth.
Comparing this best unloaded case with the defined bit rate defined for HD

MPEG 2 decoding at 18 Mbps for the Cell processor [13], indicates that the nec-
essary throughput of such an application is achievable. The question is however in
the loaded case how the development of the worst case throughput will be. To get
an exact number for this case the same test has to be run on an MPEG decoder
and scaler, but this is not feasible at the moment due to area constraints on the
Spartan FPGAs.

7.2.2 Cell application

As shown in the loaded case for the Cell application, the worst case latency for
the circuit is with a frequency of 50 MHz and a period of 20 ns:

991 ∗ 20ns = 1, 98 × 10−5s => 1
(1, 98 ∗ 10−5) = 50454 pkg

second (7.4)

This gives a throughput of the system of:

50454 × 64 = 3, 2Mbps (7.5)

Which is, as expected, considerably lower than the throughput of the MPEG
system. This is then

3, 2
533 = 0, 6% (7.6)

76 CHAPTER 7. DISCUSSION

of the total bandwidth. It is a low utilization of the NoC system, but could be
enhanced if one sends several packages at the same time into the network, or
optimize the sending of packages. To illustrate this fact, considering the best
case scenario given for the largest difference to compute in Figure 6.12Graph of
latencyfigure.caption.67. Sending to test generator D gave a latency of 682 cycles
which would mean, given same computations as in Equation 7.4Cell applicationequation.7.2.4,
a throughput of 4,7 Mbps which is the same as 0,9% of the total bandwidth of the
system.

7.2.3 Stream test

The stream test shows this implementation for the cell example, it shows that it
is possible to send more than one package into the system like in a stream manor.
The MPEG example proved that the throughput of the system is considerably
higher when there is a stream of data instead of one and one package1. The
problem with the cell example when considering streams of data is the deadlock
problem. The loss of packages due to deadlocks should be avoided. A method to
counter counter this problem with the current routing in the NoC is to adapt the
incoming rate of packages. Another method is to place modules and their con-
nected test generators in an optimized way. That means using the tables actively,
defining a placement that will avoid three modules sending packages to one router
at the same time.

Throughput of the streaming test is another case, as described in Section 7.2.2Cell
applicationsubsection.7.2.2 the throughput percentage of the total bandwidth is
low. The stream test forms a way of increasing the throughput for the as seen in
Figure 6.14Stream testsfigure.caption.71 eight packages is completely calculated
with a load in 43 µs. With this number of packages we get the following:

8
43µs = 0, 18µs = 180000pkg

second
(7.7)

1A package is sent only after one has been received at the interface

7.2. THROUGHPUT RESULTS 77

=> 64bit× 180000pkg = 12, 8Mbps => 11, 5Mbps

533Mbps
= 2, 1% (7.8)

more than three times the consumed bandwidth as when only sending one package
at a time. This is an approximation since this configuration has not been imple-
mented on the FPGA. However, previous tests have shown that there is large
consistence between simulation results and on-chip tests.

The stream test indicates a good way of using the test generators to pro-
file a system desired to implement on the NoC both with regards to through-
put and of system traffic. As described in Section 6.4.1Streaming test of the
applicationsubsection.6.4.1 the test system can be applied to see what routers
that have a heavy load and those that have little. By analyzing this data, system
traffic could be redirected in a way that it is more evenly distributed than is the
case in the provided test in Figure 6.14Stream testsfigure.caption.71.

Best case vs Worst case Throughput

With the cell application run on the FPGA, a loaded test case was introduced.
This case is interesting since there is a significant difference between best and
worst case throughput based on module placement. With the streaming test it also
proved that the speed can be increased, without deadlocks, with correct system
parameters i.e. sending interval. These tests show that there is a gain from
optimization for the overall throughput of the system. It is something to bear in
mind when using the system to determine desired properties and corresponding
placement. A relevant question is also if is it desired with a best case latency
or a low average case. It is not a given that a high throughput system for large
computations is the globally optimal solution for a given system. Especially when
the implemented system handles more than one package at the same time, this is
very important with regards to the deadlock problem.

78 CHAPTER 7. DISCUSSION

7.3 Application module placement

The basic question when implementing a distributed system on a NoC is ”Which
placement of the modules in the network on chip is optimal and feasible?” Based
on the results from testing the MPEG decoder pattern and the mimicked version
of the Cell processor, there are some interesting aspects to consider. The system
has proven to function when used as a processor or co-processor by placing the
modules in a cluster or close to each other as in the Cell case. Computation exe-
cuted on the FPGA will in most cases outperform the processor when it comes to
one single operation. The need to communicate with more than one module also
strengthens the gain by having modules closely connected to each other. This clus-
tering technique was a concept that was introduced for the AHEAD NoC in [27]
and has proven to some extent valid in the cell application example test.

However, if the system is to be used for different purposes and real time appli-
cations, i.e. video decoding, a more "snake" like placement is better to consider, as
proven with the MPEG decoder example. The system will not be able to handle
to high crossing data traffic if there is a continuous stream of data into the system
due to deadlocks. On the other hand, as shown with the stream example, it is
possible to avoid the problem by streaming data with a specific interval or better
distribution of traffic.

For the AHEAD system, the motivation is to provide an extra computational
power to assist small devices with limited resources. In this aspect, a distributed
computational resource such as a Cell processing elements is a good idea. It could
assist in computing advanced functions by using several modules connected with a
NoC. It could also assist the reconfiguration operation with a proper reconfiguring
tool based on the NoC properties as a scalable and efficient interconnect. With a
proper profiling of the system, the reconfiguration knows exactly what module to
replace and where its optimal placement is.

7.4 Further use of the test system

The test system is, as mentioned, able to mimic and profile applications. The usage
of this could be quite clear. By changing the table values of the test generator it

7.4. FURTHER USE OF THE TEST SYSTEM 79

is be possible to test a various number of applications without having to change
the design in more than one module. If it is desired to implement a specific
functionality it is done by simply change the state machine and the containing
states of it as described in Chapter 5Requirements and designchapter.5. Then one
can implement the operating modes or operations required for a given application
test. This testing also opens a new possibility with regards to the development
of the NoC itself. The discussion in previous work of changing the routing itself
could be taken further when a proper testing tool is at hand. By using the test
generators as a benchmark, a new version of the NoC could easily be compared to
the old one by simply connecting it to the test system and measure the latency.

80 CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

The primary motivation for conducting the work with the NoC was to take the
project from a semi finished test system to a functional platform for NoC testing.
The use of table driven modules to develop full scale tests for the NoC has proven
successful and given answers about module placement and ideas for further devel-
opment of both the test system and the NoC itself. With a simple and flexible
design that is easy to use, the ability as a development platform for further use is
also in place. Programmability has been taken one step further and the surveil-
lance of the on chip traffic is possible with a functional interface.

With the MPEG pattern and the Cell example it has been shown that there
is a significant connection between type of system and optimal module placement
in the NoC. The MPEG test system illustrated that streaming of data is possible
and that it favours a sequential placement with no possibility of crossing traffic
to avoid deadlocks. With the Cell system it was illustrated that a system with
communicating modules favours closeness between modules due to communication
overhead. The test system is in this way a good tool to profile these different types
of systems and their optimal placement.

In addition, the project has illustrated the need for further development with
regards to monitoring traffic into and out of the network. The communication
between the processor and the NoC has been also been detected as a bottleneck
and possible improvement.

81

82 CHAPTER 8. CONCLUSION

Chapter 9

Further work

As discussed in this report, some work is necessary to improve and to develop for
the test system and the NoC. After the work on this assignment these are the most
relevant improvements suggested;

• A second interface to the circuit for readout and increased bandwidth

• Enable interruption mechanism to improve readout from the FPGA

• Stream data from processor to NoC

• Extend the table to create more complex traffic possibilities

• Use test generators to profile and implement a real application

• Create a generic and flexible NoC

• Reduce the number of routers in the network

If proceeding with the two last improvements, it is possible to develop and test a
router design with more advanced routing and arbitration.

83

84 CHAPTER 9. FURTHER WORK

Bibliography

[1] Open Core Protocol Datasheet v3.0.

[2] Xilinx forum. http://forums.xilinx.com/t5/EDK-and-Platform-Studio/
using-simple-EDK-project-in-the-ISE/td-p/45632.

[3] Operating systems: Design and principles. Prentice Hall, 2008.

[4] Xilinx spartan-3 fpga family data sheet. 2008.

[5] Xilinx spartan-3e fpga family data sheet. 08 2009.

[6] Description of numeric_std package, June 2011. {http:
//www.doulos.com/knowhow/vhdl_designers_guide/numeric\
_std/}.\bibitem{wikiping}Descriptionofpingonwikipedia,
2011.\newblock\urlhttp://en.wikipedia.org/wiki/ping.

[7] Einar Aas. Testing of digital circuits, 08 2009. Lecture in the course 4175
Realization and Test of Digital Component.

[8] AHEAD. Ambienthardware. WEB, 2006. http://www.ambienthardware.
com.

[9] Thomas William Ainsworth and Timothy Mark Pinkston. Characterizing the
cell eib on-chip network. IEEE Micro, 27:6–14, September 2007.

[10] Christophe Bobda, Ali Ahmadinia, Mateusz Majer, Jürgen Teich, Sándor P.
Fekete, and Jan van der Veen. Dynoc: A dynamic infrastructure for com-
munication in dynamically reconfigurable devices. In FPL, pages 153–158,
2005.

85

86 BIBLIOGRAPHY

[11] B. Callaghan. NFS illustrated. Addison-Wesley professional computing series.
Addison-Wesley, 2000.

[12] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine
architecture and its first implementation;a performance view. IBM Journal
of Research and Development, 51(5):559 –572, sept. 2007.

[13] Partha Pande Axel Jantsch Erno Salminen Umit Ogras Radu Marculescu
Cristian Grecu, Andrè Ivanov. An initiative towards open network-on-chip
benchmarks. 2007.

[14] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. pages 684–689, 2001.

[15] Zhonghai Lu Erno Salminen, Krishnan Srinivasan. Ocp-ip network-on-chip
benchmarking workgroup. 2010.

[16] Ivar Ersland. Quality of service for network on chip. Master’s thesis, NTNU,
2009.

[17] Ivar Ersland and Kjetil Svarstad. Quality of Service for Network on Chip.
Project report, NTNU, 2008.

[18] B. Flachs, S. Asano, S.H. Dhong, H.P. Hofstee, G. Gervais, Roy Kim, T. Le,
Peichun Liu, J. Leenstra, J. Liberty, B. Michael, Hwa-Joon Oh, S.M. Mueller,
O. Takahashi, A. Hatakeyama, Y. Watanabe, N. Yano, D.A. Brokenshire,
M. Peyravian, Vandung To, and E. Iwata. The microarchitecture of the syn-
ergistic processor for a cell processor. Solid-State Circuits, IEEE Journal of,
41(1):63 – 70, jan. 2006.

[19] Institutt for elektronikk og telekommunikasjon. TFE 4170 Enbrikkesystemer,
Laboratorieoppgave. NTNU, Trondheim.

[20] B.A. Forouzan and S.C. Fegan. Data Communications and Networking.
McGraw-Hill Forouzan Networking Series. McGraw-Hill, 2003.

[21] Philippe Garrault and Brian Philofsky. HDL Coding Practices to Accelerate
Design Performance. Xilinx, 1.1 edition, January 2006.

BIBLIOGRAPHY 87

[22] Jean-Christophe Glas and Kjetil Svarstad. A noc on xilinx spartan fpga.
Master’s thesis, NTNU, 2006.

[23] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny Öberg,
Mikael Millberg, and Dan Lindqvist. Network on a chip: An architecture for
billion transistor era. Proceedings of the IEEE, 2000.

[24] Andreas Hepsø. Utvikling av testmiljø for network on chip. Master’s thesis,
NTNU, 2010.

[25] Bob Larson. Bandwidth vs throughput, 2007. Note on Bandwidth and
Throughput.

[26] Magnus Namork. Reactive test generators for network on chip. 2010.

[27] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures: Sys-
tem on Chip Interconnect. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[28] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM, 21:120–126, February
1978.

[29] B. Salminen, T. Kangas, J. Riihimäki, and T. D. Hämäläinen. Requirements
for network-on-chip benchmarking. In 23rd NORCHIP Conference 2005, vol-
ume 2005, 2005.

[30] Kjetil Svarstad Stig Petersen, Dag R. Rognlien. Context tag technology. 2003.

[31] Xuan-Tu Tran, Yvain Thonnart, Jean Durupt, Vincent Beroulle, and Chantal
Robach. A design-for-test implementation of an asynchronous network-on-
chip architecture and its associated test pattern generation and application.
Networks-on-Chip, International Symposium on, 0:149–158, 2008.

[32] Xilinx. http://www.xilinx.com/itp/xilinx5/help/xpower/html/d_
definitions/d_clock_skew.htm. Definitions of terms for Xilinx FPGAs.

[33] Xilinx. MicroBlaze Processor Reference Guide, 9th edition, 2008.

88 BIBLIOGRAPHY

Appendix A

Illustrations of the systems

89

90 APPENDIX A. ILLUSTRATIONS OF THE SYSTEMS

Figure A.1: Modules presented in hierarchy.

91

Figure A.2: Test generator block.

92 APPENDIX A. ILLUSTRATIONS OF THE SYSTEMS

Figure A.3: Floorplan of the network on chip, from floorplanner in Xilinx ISE.

93

Figure A.4: Description of the floorplan with color codes, from floorplanner in Xilinx
ISE.

94 APPENDIX A. ILLUSTRATIONS OF THE SYSTEMS

Appendix B

Code

B.1 VHDL code
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . s t d _ l o g i c _ a r i t h . a l l ;
4 use i e e e . std_logic_unsigned . a l l ;
5
6 l i b r a r y proc_common_v2_00_a ;
7 use proc_common_v2_00_a . proc_common_pkg . a l l ;
8 e n t i t y u s e r _ l o g i c i s
9 g e n e r i c

10 (
11 −− ADD USER GENERICS BELOW THIS LINE −−−−−−−−−−−−−−−
12 −−USER g e n e r i c s added here
13 −− ADD USER GENERICS ABOVE THIS LINE −−−−−−−−−−−−−−−
14
15 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−
16 −− Bus p r o t o c o l parameters , do not add to or d e l e t e
17 C_DWIDTH : i n t e g e r := 3 2 ;
18 C_NUM_CE : i n t e g e r := 20
19 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−−
20) ;
21 port
22 (
23 −− ADD USER PORTS BELOW THIS LINE −−−−−−−−−−−−−−−−−−
24 −−USER p o r t s added here
25 −− ADD USER PORTS ABOVE THIS LINE −−−−−−−−−−−−−−−−−−
26
27 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−
28 −− Bus p r o t o c o l ports , do not add to or d e l e t e
29 Bus2IP_Clk : i n s t d _ l o g i c ;
30 Bus2IP_Reset : i n s t d _ l o g i c ;
31 Bus2IP_Data : i n s t d _ l o g i c _ v e c t o r (0 to C_DWIDTH−1) ;
32 Bus2IP_BE : i n s t d _ l o g i c _ v e c t o r (0 to C_DWIDTH/8−1) ;
33 Bus2IP_RdCE : i n s t d _ l o g i c _ v e c t o r (0 to C_NUM_CE−1) ;
34 Bus2IP_WrCE : i n s t d _ l o g i c _ v e c t o r (0 to C_NUM_CE−1) ;
35 IP2Bus_Data : out s t d _ l o g i c _ v e c t o r (0 to C_DWIDTH−1) ;
36 IP2Bus_Ack : out s t d _ l o g i c ;
37 IP2Bus_Retry : out s t d _ l o g i c ;
38 IP2Bus_Error : out s t d _ l o g i c ;
39 IP2Bus_ToutSup : out s t d _ l o g i c
40 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−−

95

96 APPENDIX B. CODE

41) ;
42
43 a t t r i b u t e SIGIS : s t r i n g ;
44 a t t r i b u t e SIGIS o f Bus2IP_Clk : s i g n a l i s "CLK" ;
45 a t t r i b u t e SIGIS o f Bus2IP_Reset : s i g n a l i s "RST" ;
46
47 end e n t i t y u s e r _ l o g i c ;
48
49 −−
50 −− A r c h i t e c t u r e s e c t i o n
51 −−
52
53 a r c h i t e c t u r e IMP o f u s e r _ l o g i c i s
54
55 −−USER s i g n a l d e c l a r a t i o n s added here , as needed f o r u s e r l o g i c
56 s i g n a l c lk , r e s e t : s t d _ l o g i c ;
57 s i g n a l data_in : s t d _ l o g i c _ v e c t o r (63 downto 0) ;
58 s i g n a l send_packet : s t d _ l o g i c ;
59 s i g n a l mux_select : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
60 s i g n a l BRAM_enable : s t d _ l o g i c ;
61 s i g n a l BRAM_addr : s t d _ l o g i c _ v e c t o r (8 downto 0) ;
62 s i g n a l r e a d o u t _ f i n i s h e d : s t d _ l o g i c ;
63 s i g n a l CLK_GATE_FREQ : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
64 s i g n a l s t a r t _ t e s t i n g : s t d _ l o g i c ;
65 s i g n a l data_out : s t d _ l o g i c _ v e c t o r (63 downto 0) ;
66 s i g n a l packet_received_33 : s t d _ l o g i c ;
67 s i g n a l packet_sent : s t d _ l o g i c ;
68 s i g n a l mux_o_packetcnt : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
69 s i g n a l mux_o_tstamp : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
70 s i g n a l readout_SW : s t d _ l o g i c ;
71 s i g n a l rece ived_time : s t d _ l o g i c _ v e c t o r (15 downto 0) ;
72 −−
73 −− S i g n a l s f o r u s e r l o g i c s l a v e model s /w a c c e s s i b l e r e g i s t e r example
74 −−
75 s i g n a l s lv_reg0 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
76 s i g n a l s lv_reg1 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
77 s i g n a l s lv_reg2 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
78 s i g n a l s lv_reg3 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
79 s i g n a l s lv_reg4 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
80 s i g n a l s lv_reg5 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
81 s i g n a l s lv_reg6 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
82 s i g n a l s lv_reg7 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
83 s i g n a l s lv_reg8 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
84 s i g n a l s lv_reg9 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
85 −−S i g n a l s f o r f u r t h e r development c u r r e n t l y not connected to the NOC
86 s i g n a l s lv_reg10 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
87 s i g n a l s lv_reg11 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
88 s i g n a l s lv_reg12 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
89 s i g n a l s lv_reg13 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
90 s i g n a l s lv_reg14 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
91 s i g n a l s lv_reg15 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
92 s i g n a l s lv_reg16 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
93 s i g n a l s lv_reg17 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
94 s i g n a l s lv_reg18 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
95 s i g n a l s lv_reg19 : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
96 s i g n a l s l v _ r e g _ w r i t e _ s e l e c t : s t d _ l o g i c _ v e c t o r (0 to 19) ;
97 s i g n a l s l v _ r e g _ r e a d _ s e l e c t : s t d _ l o g i c _ v e c t o r (0 to 19) ;
98 s i g n a l data_IP2BUS : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;
99 s i g n a l data_BUS2IP : s t d _ l o g i c _ v e c t o r (C_DWIDTH−1 downto 0) ;

100 s i g n a l slv_read_ack : s t d _ l o g i c ;
101 s i g n a l slv_write_ack : s t d _ l o g i c ;
102 −−r e v e r s i n g v e c t o r
103 f u n c t i o n r e v e r s e V e c t o r (input : i n s t d _ l o g i c _ v e c t o r) r e t u r n s t d _ l o g i c _ v e c t o r i s
104 v a r i a b l e output : s t d _ l o g i c _ v e c t o r (input ’ r e v e r s e _ r a n g e) ;
105 begin
106 f o r i i n input ’ range loop
107 output ((input ’ length −1)− i) := input (i) ;

B.1. VHDL CODE 97

108 end loop ;
109 r e t u r n output ;
110 end ;
111 begin
112
113 i n t e r f a c e : e n t i t y noc_v1_00_a . i n t e r f a c e (b e h a v i o r a l)
114 port map(
115 c l k => Bus2IP_Clk ,
116 r e s e t => slv_reg4 (3) ,
117 data_in => data_in ,
118 send_packet => slv_reg4 (2 7) ,
119 mux_select => mux_select ,
120 BRAM_enable => slv_reg4 (7) ,
121 BRAM_addr => slv_reg5 (31 downto 23) ,
122 r e a d o u t _ f i n i s h e d => slv_reg4 (2 3) ,
123 CLK_GATE_FREQ => slv_reg4 (11 downto 8) ,
124 s t a r t _ t e s t i n g => slv_reg4 (6) ,
125 data_out => data_out ,
126 packet_received_33 => packet_received_33 ,
127 packet_sent => packet_sent ,
128 mux_o_packetcnt => mux_o_packetcnt ,
129 mux_o_tstamp => mux_o_tstamp ,
130 readout_SW => readout_SW ,
131 rece ived_time =>received_time
132) ;
133
134
135 s l v _ r e g _ w r i t e _ s e l e c t <= Bus2IP_WrCE(0 to 19) ;
136 s l v _ r e g _ r e a d _ s e l e c t <= Bus2IP_RdCE(0 to 19) ;
137 −− Assume t h e r e w i l l never be a bus e r r o r
138 IP2Bus_Error <= ’ 0 ’ ;
139
140 −− Assume a r e t r y w i l l not be needed
141 IP2Bus_Retry <= ’ 0 ’ ;
142
143 −− No timout suspend r e q u i r e d
144 IP2Bus_ToutSup <= ’ 0 ’ ;
145
146 −− Always Acknowledge a l l r e a d s and w r i t e s
147 IP2Bus_Ack <= ’ 0 ’ when (Bus2IP_WrCE=" 000000000000000000 " and Bus2IP_RdCE=" 000000000000000000 "

) e l s e ’ 1 ’ ;
148 IP2Bus_Error <= ’ 0 ’ ;
149 IP2Bus_Retry <= ’ 0 ’ ;
150 IP2Bus_ToutSup <= ’ 0 ’ ;
151 −− Reverse the data d i r e c t i o n to and from the bus
152 −− This means we can work with the more s e n s i b l e (31 downto 0) MSB: 3 1 , LSB : 0
153 data_BUS2IP <= r e v e r s e V e c t o r (Bus2IP_Data) ;
154 IP2Bus_Data <= r e v e r s e V e c t o r (data_IP2BUS) ;
155
156 −−Write c o n t r o l p r o c e s s , a l l r e g i s t e r s from s o f t w a r e i s connected here
157 WriteControl : p r o c e s s (Bus2IP_Clk) i s
158 begin
159 i f (Bus2IP_Clk ’ event and Bus2IP_Clk = ’1 ’) then
160 i f Bus2IP_Reset = ’ 1 ’ then
161 s lv_reg0 <= (o t h e r s => ’ 0 ’) ;
162 s lv_reg1 <= (o t h e r s => ’ 0 ’) ;
163 −−s lv_reg2 <= (o t h e r s => ’ 0 ’) ;
164 −−s lv_reg3 <= (o t h e r s => ’ 0 ’) ;
165 s lv_reg4 <= (o t h e r s => ’ 0 ’) ;
166 s lv_reg5 <= (o t h e r s => ’ 0 ’) ;
167 −−s lv_reg6 <= (o t h e r s => ’ 0 ’) ;
168 −−s lv_reg7 <= (o t h e r s => ’ 0 ’) ;
169 −−s lv_reg8 <= (o t h e r s => ’ 0 ’) ;
170 e l s e
171 c a s e s l v _ r e g _ w r i t e _ s e l e c t i s
172 when " 10000000000000000000 " =>
173 slv_reg0<=data_BUS2IP ;

98 APPENDIX B. CODE

174 when " 01000000000000000000 " =>
175 slv_reg1<=data_BUS2IP ;
176 −−when "0010000000000000000" =>
177 −− slv_reg2<=data_BUS2IP ;
178 −−when "0001000000000000000" =>
179 −− slv_reg3<=data_BUS2IP ;
180 when " 00001000000000000000 " =>
181 slv_reg4<=data_BUS2IP ;
182 when " 00000100000000000000 " =>
183 slv_reg5<=data_BUS2IP ;
184 −−when "0000001000000000000" =>
185 −− slv_reg6<=data_BUS2IP ;
186 −− when "0000000100000000000" =>
187 −− slv_reg7<=data_BUS2IP ;
188 −− when "0000000010000000000" =>
189 −− s lv_reg8 <=data_BUS2IP ;
190 when o t h e r s =>
191 n u l l ;
192 end c a s e ;
193 end i f ;
194 end i f ;
195 end p r o c e s s WriteControl ;
196
197
198 −−P r o c e s s to determine the w r i t e and read from r e g i s t e r s to NOC
199 network_on_chip : p r o c e s s (Bus2IP_Clk) i s
200 begin
201 i f Bus2IP_Clk ’ event and Bus2IP_Clk = ’ 1 ’ then
202 i f (Bus2IP_Reset = ’ 1 ’) then
203 s lv_reg2 <=(o t h e r s = > ’0 ’) ;
204 s lv_reg3 <=(o t h e r s = > ’0 ’) ;
205 s lv_reg6 <=(o t h e r s = > ’0 ’) ;
206 s lv_reg7 <=(o t h e r s = > ’0 ’) ;
207 s lv_reg8 <=(o t h e r s = > ’0 ’) ;
208 e l s e
209 mux_select<= slv_reg4 (31 downto 28) ; −− g e t t i n g i n f o r m a t i o n from the SW program
210 data_in <= slv_reg0 & slv_reg1 ;−−A s s i g n i n g SLV_REG_1 & 2 Indata r e g i s t e r
211 s lv_reg7 <= x " 0000 " & mux_o_packetcnt ;−− r e g i s t e r number 8 counting number o f packages

through the mux
212 s lv_reg8 <=x "FFFFFFFF" ;−− x " 0 0 0 0 " & mux_o_tstamp ; −−r e g i s t e r number 9
213 slv_reg9<= received_time ; −−a c t u a l r e c e p t i o n time
214 −−when packet r e c e i v e d f l a g high read out from the output o f r o u t e r 33 to the r e g i s t e r s
215 i f packet_received_33 = ’ 1 ’ then
216 s lv_reg6 (2 7) <= ’ 1 ’ ;−−S i g n a l l i n g the SW that package has a r r i v e d
217 s lv_reg2 <= data_out (63 downto 32) ; −−w r i t i n g data out from 33 to r e g i s t e r
218 s lv_reg3 <= data_out (31 downto 0) ;
219 e l s e
220 s lv_reg6 (2 7) <= ’0 ’;
221 s lv_reg2 <=data_out (63 downto 32) ;
222 slv_reg3<=data_out (31 downto 0) ;
223 end i f ;
224 i f readout_SW = ’ 1 ’ then
225 s lv_reg6 (3 1) <= ’ 1 ’ ;
226 end i f ;
227 end i f ;
228 end i f ;
229 end p r o c e s s network_on_chip ;
230 −− implement s l a v e model r e g i s t e r read mux
231 ReadControl : p r o c e s s (s lv_reg_read_select , s lv_reg0 , slv_reg1 , slv_reg2 , slv_reg3 , slv_reg4 ,

slv_reg5 , slv_reg6 , slv_reg7 , slv_reg8 , slv_reg9 , slv_reg10 , slv_reg11 , slv_reg12 ,
slv_reg13 , slv_reg14 , slv_reg15 , slv_reg16 , slv_reg17 , slv_reg18 , s lv_reg19) i s

232 begin
233
234 c a s e s l v _ r e g _ r e a d _ s e l e c t i s
235 when " 10000000000000000000 " => data_IP2BUS <= slv_reg0 ;
236 when " 01000000000000000000 " => data_IP2BUS <= slv_reg1 ;
237 when " 00100000000000000000 " => data_IP2BUS <= slv_reg2 ;

B.1. VHDL CODE 99

238 when " 00010000000000000000 " => data_IP2BUS <= slv_reg3 ;
239 when " 00001000000000000000 " => data_IP2BUS <= slv_reg4 ;
240 when " 00000100000000000000 " => data_IP2BUS <= slv_reg5 ;
241 when " 00000010000000000000 " => data_IP2BUS <= slv_reg6 ;
242 when " 00000001000000000000 " => data_IP2BUS <= slv_reg7 ;
243 when " 00000000100000000000 " => data_IP2BUS <= slv_reg8 ;
244 when " 00000000010000000000 " => data_IP2BUS <= slv_reg9 ;
245 when " 00000000001000000000 " => data_IP2BUS <= slv_reg10 ;
246 when " 00000000000100000000 " => data_IP2BUS <= slv_reg11 ;
247 when " 00000000000010000000 " => data_IP2BUS <= slv_reg12 ;
248 when " 00000000000001000000 " => data_IP2BUS <= slv_reg13 ;
249 when " 00000000000000100000 " => data_IP2BUS <= slv_reg14 ;
250 when " 00000000000000010000 " => data_IP2BUS <= slv_reg15 ;
251 when " 00000000000000001000 " => data_IP2BUS <= slv_reg16 ;
252 when " 00000000000000000100 " => data_IP2BUS <= slv_reg17 ;
253 when " 00000000000000000010 " => data_IP2BUS <= slv_reg18 ;
254 when " 00000000000000000001 " => data_IP2BUS <= slv_reg19 ;
255 when o t h e r s => data_IP2BUS <= (o t h e r s => ’ 0 ’) ;
256 end c a s e ;
257
258 end p r o c e s s ReadControl ;
259 end IMP ;

Listing B.1: HW/SW interface module, user_logic.vhd

1
2 −−
3 −−T r a f f i c g e n e r a t o r module v2
4 −−By Magnus Namork
5 −−Based on d e s i g n by
6 −−Andreas Hepso and I v a r Ersland
7 −−Designed to be a b l e to d e t e c t where to put d i f f e r e n t modules i n the NOC
8 −−−
9 l i b r a r y i e e e ;

10 −−l i b r a r y noc_v1_00_a ;
11 use i e e e . std_logic_1164 . a l l ;
12 use i e e e . numeric_std . a l l ;
13 use i e e e . std_logic_unsigned . a l l ;
14 use work . type_lib_noc . a l l ; −−a l t e r to noc_v1_00_a . type_lib_noc . a l l i f implemented / used i n

X i l i n x EDK
15 −−use noc_v1_00_a . a l l ;
16
17 e n t i t y TG i s
18 g e n e r i c (tg_number : i n t e g e r :=0;
19 tstamp_vector : i n t e g e r :=15) ;−−d e f a u l t value i s 0 w i l l be o v e r w r i t t e n by i n t e r f a c e when

i n s t a n t i a t i o n
20 port (
21 ungated_clk : i n s t d _ l o g i c ; −−Necessary to read out from the BRAM when the r e s t o f the

l o g i c has stopped
22 c l k : i n s t d _ l o g i c ; −−g l o b a l c l k
23 r e s e t : i n s t d _ l o g i c ; −−g l o b a l r e s e t to c i r c u i t
24 s t a r t _ t e s t i n g : i n s t d _ l o g i c ; −− i n i t i a l s i g n a l to begin the t e s t g e n e r a t o r
25 x_in : i n s t d _ l o g i c _ v e c t o r (7 downto 0) ; −−package data
26 r e q u e s t : i n s t d _ l o g i c ; −−r e q u e s t from the r o u t e r
27 grant : i n s t d _ l o g i c ; −−grant from the l o c a l r o u t e r
28 SW_enable : i n s t d _ l o g i c ; −−A c t i v a t i n g readout from BRAM module
29 SW_addr : i n s t d _ l o g i c _ v e c t o r (8 downto 0) ;−−witch a d d r e s s i n BRAM module to be read
30 global_time : i n s t d _ l o g i c _ v e c t o r (15 downto 0) ;−−g l o b a l c l o c k used f o r timestamping the

packages
31 x_out : out s t d _ l o g i c _ v e c t o r (7 downto 0) ; −−package out data
32 RTS : out s t d _ l o g i c ; −−s y n c h r o n i z i n g s i g n a l s with the r o u t e r (r e q u e s t to send)
33 CTS : out s t d _ l o g i c ; −−s y n c h o r n i z i n g (c l e a r e d to send)
34 tstamp_out : out s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0)−−timestamp o f the packages
35) ;
36
37 end e n t i t y ;

100 APPENDIX B. CODE

38
39 a r c h i t e c t u r e b e h a v i o r a l o f TG i s
40 −−−−−−−−−−−−−−−−−−−−
41 −−TYPE DECLERATION−−
42 −−−−−−−−−−−−−−−−−−−−
43 −−Table s t r u c t u r e : SenderID ; D e s t i n a t i o n ID ; counter ; number o f packages ; ;
44
45 −−S t a t e s f o r the s t a t e m a c h i n e s
46 type t_RecvState i s (RST_BRAM, IDLE ,SYNC, RECEIVE,TABLE_CONFIG,TABLE_CONFIG2,TABLE_GET,REC_SEND,

DATA_MANIPULATION,DATA_MANIPULATION2) ; −−RST= Reset s i g n a l f o r Bram module , REC_SENDING,
s t a t e f o r sending a f t e r r e c e i v i n g when not i n configmode

47 type t_WatchState i s (IDLE , WATCHING) ;
48 type t_SendState i s (IDLE ,SYNC,SENDING) ;
49
50 −−D e f i n i t i o n o f d i f f e r e n t v a r i a b l e s to e a s e o f code maintenance
51 c o n s t a n t module_num : q u a r t i n t e g e r :=16;−−must be 4 , 8 , 1 6 , 3 2 e t c
52 −−−−−−−−−−−−−−−−−−−−−−
53 −−SIGNAL DECLARATION−−
54 −−−−−−−−−−−−−−−−−−−−−−
55 −−S i g n a l to a c c e s s the array
56 s i g n a l t a b l e 1 : i n s t r u c t _ t a b l e ; −−d e f i n e d i n type_lib_noc , dynamic t a b l e p o s s i b l e to r e c o n f i g u r e
57 s i g n a l t a b l e 2 : i n s t r u c t _ t a b l e _ l a r g e ;−−s t a t i c r o u t i n g t a b l e
58 −−S i g n a l s f o r s t o r i n g l a s t r e c e i v e d package and out−package
59 s i g n a l packet_in : s t d _ l o g i c _ v e c t o r (63 downto 0) ;
60 s i g n a l packet_out : s t d _ l o g i c _ v e c t o r (63 downto 0) ;
61
62 −−Counter s i g n a l s f o r use with the s t a t e m a c h i n e s
63 s i g n a l recv_counter :INTEGER range −1 to 8 ;
64 s i g n a l send_counter : n a t u r a l range 0 to 8 ; −−counting and c o n t r o l l i n g number o f packages

s e n t i n send s t a t e machine
65
66 −−Control s i g n a l s f o r c o n t r o l i n g the r e s p o n s e when r e c e i v i n g a packet
67 s i g n a l enable_timer : s t d _ l o g i c ;
68
69 −−S i g n a l s f o r c o n f i g u r a t i o n o f the t r a f f i c _ g e n e r a t o r
70 −−s i g n a l c o n f i g : s t d _ l o g i c ;
71 s i g n a l on_off : s t d _ l o g i c ; −−sending on or o f f
72 s i g n a l send_to : s t d _ l o g i c _ v e c t o r (3 downto 0) ; −−sending a d d r e s s
73 s i g n a l de lay : s t d _ l o g i c _ v e c t o r (11 downto 0) ; −−the delay o f the packet p r od uc t i o n
74 s i g n a l enable_process ing_time : s t d _ l o g i c ; −−f u n c t i o n a l i t y
75
76 −−S i g n a l s f o r LFSR_8 e n t i t y
77 s i g n a l enable_LFSR_8 : s t d _ l o g i c ;
78 s i g n a l random_8bit : s t d _ l o g i c _ v e c t o r (7 downto 0) ;
79
80 −−S i g n a l s f o r BRAM e n t i t y
81 s i g n a l enable_BRAM : s t d _ l o g i c ;
82 s i g n a l wenable_BRAM : s t d _ l o g i c ;
83 s i g n a l addr_BRAM : s t d _ l o g i c _ v e c t o r (8 downto 0) ;−−a d d r e s s o f BRAM
84 s i g n a l data_i_BRAM : s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0) ;−−data input to BRAM
85
86 −−S i g n a l s f o r package c o n t r o l
87 s i g n a l number_packets : n a t u r a l range 0 to 6 4 ;
88 s i g n a l send_package : n a t u r a l range 0 to 1 0 0 0 0 ;
89 s i g n a l send_counting : n a t u r a l range 0 to 1 2 ;
90 s i g n a l tg_hex_number : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
91 −−−−−−−−−−−−−−−−−−−−−−−−−
92 −− END OF DECLERATIONS −−
93 −−−−−−−−−−−−−−−−−−−−−−−−−
94
95 begin
96 −−Mapping o f Linear Feedback S h i f t R e g i s t e r
97 −−LFSR_8 : e n t i t y noc_v1_00_a . LFSR_8(b e h a v i o r a l)
98 −− port map(
99 −− c l k => clk ,

100 −− r e s e t => r e s e t ,
101 −− e n a b l e => enable_LFSR_8 ,

B.1. VHDL CODE 101

102 −− c_out => random_8bit
103 −−) ;
104 −−Mapping o f Bram Module w i t h i n the T r a f f i c G e n e r a t o r
105 BRAM: e n t i t y work .BRAM(b e h a v i o r a l)
106 port map(
107 ungated_clk => ungated_clk ,
108 c l k => clk ,
109 e n a b l e => enable_BRAM ,
110 SW_enable => SW_enable ,
111 wenable => wenable_BRAM ,
112 addr => addr_BRAM,
113 SW_addr => SW_addr ,
114 data_i => data_i_BRAM ,
115 data_o => tstamp_out
116) ;
117
118 r e c v : p r o c e s s (c lk , r e s e t , on_off , send_to , global_time , packet_in , packet_out) i s
119
120 v a r i a b l e recv_state , nrecv_state : t_RecvState ; −−s t a t e f o r r e c e i v i n g data , one i n c a s e and

one i n c o n t r o l
121 v a r i a b l e send_state , nsend_state : t_SendState ; −−s t a t e f o r sending data , one i n c a s e and

one as c o n t r o l
122 v a r i a b l e watch_state , nwatch_state : t_WatchState ; −−s t a t e f o r monitor ing Throughput o f the

t e s t g e n e r a t o r
123 v a r i a b l e next_operation : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
124 v a r i a b l e t r i g g e r : n a t u r a l range 0 to 4 0 9 6 ;−−s p e c i f i c a t i o n o f v a r i a b l e i n use###
125
126 v a r i a b l e c o n f i g _ t a b l e , conf ig_data : s t d _ l o g i c ;−−v a r i a b l e which i f the package i s a

c o n f i g u r a t i o n package
127
128 v a r i a b l e packet_counter : n a t u r a l range 0 to 5 1 2 ;
129 v a r i a b l e package_type : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
130 v a r i a b l e cnt : n a t u r a l range 0 to 3 1 ;
131 v a r i a b l e table_counter : n a t u r a l range 0 to 4 ;
132 −−V a r i a b l e s to determine where to send package based on t a b l e
133 v a r i a b l e package_data : s t d _ l o g i c _ v e c t o r (15 downto 0) ;−−16 b i t s o f data to be c o n f i g u r e d
134 v a r i a b l e r e c e i v e d _ a d d r e s s : s t d _ l o g i c _ v e c t o r (module_num/4−1 downto 0) ;
135 v a r i a b l e sending_address : s t d _ l o g i c _ v e c t o r (module_num/4−1 downto 0) ;
136 v a r i a b l e t a b l e _ a d d r e s s : s t d _ l o g i c _ v e c t o r (module_num/4−1 downto 0) ; −−a d d r e s s f o r the

t r a f f i c t a b l e
137 v a r i a b l e table_num : n a t u r a l range 0 to 6 4 ; −−number d e f i n i n g the t a b l e number i n the

s t a t i c t a b l e
138 v a r i a b l e change_number : n a t u r a l range 0 to 6 4 ; −− number to be changed i n the t a b l e
139 v a r i a b l e sending_num : n a t u r a l range 0 to 1 5 ; −−number to d e f i n e next send to r o u t e r
140 v a r i a b l e number_of_packages : n a t u r a l range 0 to 6 4 ; −−v a r i a b l e to d e f i n e the number o f

packages to be s e n t from the TG
141 begin
142
143 t able 2 <=(
144 (0 , 5 , 0 , 1 , 1) ,
145 (1 , 4 , 0 , 2 , 1) ,
146 (2 , 7 , 0 , 3 , 1) ,
147 (3 , 1 1 , 0 , 4 , 1) ,
148 (4 , 6 , 0 , 5 , 1) ,
149 (5 , 7 , 0 , 6 , 1) ,
150 (6 , 1 1 , 0 , 7 , 1) ,
151 (7 , 1 5 , 0 , 8 , 1) ,
152 (8 , 9 , 1 1 , 1 3 , 1) ,
153 (9 , 8 , 1 2 , 1 4 , 1) ,
154 (1 0 , 1 1 , 9 , 1 3 , 1) ,
155 (1 1 , 1 2 , 8 , 1 4 , 1) ,
156 (1 2 , 1 3 , 9 , 1 1 , 1) ,
157 (1 3 , 1 4 , 8 , 1 2 , 1) ,
158 (1 4 , 9 , 1 3 , 1 1 , 1) ,
159 (1 5 , 8 , 1 4 , 1 2 , 1)
160) ; −−c e l l _ t e s t _ a r r a y ;−− s t a t i c data t a b l e
161

102 APPENDIX B. CODE

162 i f (r i s i n g _ e d g e (c l k)) then
163 −−r e s e t s t a t e , g l o b a l r e s e t
164 i f r e s e t = ’ 0 ’ then
165 c o n f i g _ t a b l e := ’ 0 ’ ;
166 conf ig_data := ’ 0 ’ ;
167 on_off <= ’ 0 ’ ;
168 send_to <= (o t h e r s = > ’0 ’) ;
169 delay <= (o t h e r s = > ’0 ’) ;
170 enable_process ing_time <= ’ 0 ’ ;
171 nrecv_state := RST_BRAM;
172 r e c v _ s t a t e := RST_BRAM;
173 send_state := IDLE ;
174 nsend_state := IDLE ;
175 watch_state := IDLE ;
176 nwatch_state := IDLE ;
177 package_data :=x " 0000 " ;
178 next_operation :=(o t h e r s = > ’0 ’) ;
179 CTS <= ’ 0 ’ ;
180 RTS <= ’ 0 ’ ;
181 package_type :=x " 0 " ;
182 x_out <= (o t h e r s = > ’0 ’) ;
183 recv_counter <= −1;
184 send_counter <= 0 ;
185 table_counter :=1;
186 t r i g g e r := 0 ;
187 enable_LFSR_8 <= ’ 1 ’ ;
188 enable_timer <= ’ 0 ’ ;
189 packet_in <= (o t h e r s = > ’0 ’) ;
190 packet_out <= (o t h e r s = > ’0 ’) ;
191 enable_BRAM <= ’ 0 ’ ;
192 wenable_BRAM <= ’ 0 ’ ;
193 data_i_BRAM <= (o t h e r s => ’ 0 ’) ;
194 cnt := 0 ;
195 send_package <= 0 ;
196 send_counting <= 0 ;
197 tg_hex_number<=s t d _ l o g i c _ v e c t o r (to_unsigned (tg_number , 4)) ;
198 ta ble1 <=(
199 (0 , 5 , 1 , 1) ,
200 (1 , 4 , 2 , 1) ,
201 (2 , 7 , 3 , 1) ,
202 (3 , 6 , 4 , 1) ,
203 (4 , 1 , 5 , 1) ,
204 (5 , 0 , 6 , 1) ,
205 (6 , 1 3 , 7 , 1) ,
206 (7 , 2 , 8 , 1) ,
207 (8 , 1 0 , 9 , 1) ,
208 (9 , 1 1 , 1 0 , 1) ,
209 (1 0 , 1 5 , 1 1 , 1) ,
210 (1 1 , 1 4 , 1 2 , 1) ,
211 (1 2 , 9 , 1 3 , 1) ,
212 (1 3 , 8 , 1 4 , 1) ,
213 (1 4 , 1 2 , 1 5 , 1) ,
214 (1 5 , 1 3 , 1 6 , 1)) ; −−c e l l _ r i n g _ a r r a y ;−−mpeg_array ;
215
216
217 e l s e
218
219 −−−−−−−−−−−−−−−−−−−
220 −−ThroughputState−−
221 −−−−−−−−−−−−−−−−−−−
222 −−statemachine that c o n t r o l s the throughput o f the TG
223 c a s e watch_state i s
224 when IDLE =>
225 i f on_off = ’ 1 ’ and s t a r t _ t e s t i n g = ’ 1 ’ then
226 enable_LFSR_8 <= ’ 0 ’ ;
227 enable_timer <= ’ 1 ’ ;
228 i f enable_process ing_time = ’ 1 ’ then

B.1. VHDL CODE 103

229 i f t r i g g e r = t o _ i n t e g e r (unsigned (random_8bit)) then
230 send_package <= send_package + 1 ;
231 nwatch_state := WATCHING;
232 enable_LFSR_8 <= ’ 1 ’ ; −−e n a b l e LFSR_8 pseudo_random counting
233 enable_timer <= ’ 0 ’ ;
234 end i f ;
235 e l s e
236 i f t r i g g e r = t o _ i n t e g e r (unsigned (de lay)) then
237 send_package <= send_package + 1 ;
238 enable_timer <= ’ 0 ’ ;
239 nwatch_state := WATCHING;
240 end i f ;
241 end i f ;
242 end i f ;
243
244 when WATCHING =>
245 i f send_counting = 10 then
246 nwatch_state := IDLE ;
247 send_counting <= 0 ;
248 e l s e
249 nwatch_state := WATCHING;
250 send_counting <= send_counting + 1 ;
251 end i f ;
252 end c a s e ;
253
254 −−−−−−−−−−−−−−−−−−−−−−−−
255 −− Input statemachine −−
256 −−−−−−−−−−−−−−−−−−−−−−−−
257
258 c a s e r e c v _ s t a t e i s
259 when RST_BRAM =>
260 enable_BRAM <= ’ 1 ’ ;
261 wenable_BRAM <= ’ 1 ’ ;
262 addr_BRAM <= s t d _ l o g i c _ v e c t o r (to_signed (cnt , 9)) ;
263 i f cnt = 31 then
264 nrecv_state := IDLE ;
265 e l s e
266 nrecv_state := RST_BRAM;
267 cnt := cnt + 1 ;
268 end i f ;
269
270 when IDLE =>
271 i f r e q u e s t = ’ 1 ’ then −−handshaking between r o u t e r and T r a f f i c g e n e r a t o r
272 nrecv_state := SYNC;
273 CTS <= ’ 1 ’ ;
274 recv_counter <= recv_counter + 1 ;−−r e c e p t i o n o f packages i n i t i a t e d
275 e l s e
276 nrecv_state := IDLE ;
277 CTS <= ’ 0 ’ ;
278 end i f ;
279
280 when SYNC => −−s y n c h r o n i z i n g s t a t e to adapt the handshaking
281 nrecv_state := RECEIVE;
282
283 when RECEIVE =>
284 CTS <= ’ 1 ’ ;
285
286 −−f i n i s h e d r e c e i v i n g packages 8 f l i t s i n t o t a l
287 i f recv_counter = 8 then
288 i f (packet_counter = 512) then−−counts i f the number o f packages i s the same as the space
289 packet_counter := 0 ;
290 end i f ;
291 i f (c o n f i g _ t a b l e= ’ 1 ’) then
292 nrecv_state :=TABLE_CONFIG;
293 enable_BRAM<= ’0 ’;
294 e l s i f (conf ig_data = ’ 1 ’) then
295 nrecv_state :=DATA_MANIPULATION;

104 APPENDIX B. CODE

296 enable_BRAM<= ’0 ’;
297 e l s e
298 addr_BRAM <= s t d _ l o g i c _ v e c t o r (to_unsigned (packet_counter , addr_BRAM’LENGTH)) ; −−Writing

tstamp to BRAM with packet_counter
299 enable_BRAM <= ’ 1 ’ ;−−e n a b l i n g the BRAM module
300 wenable_BRAM <= ’ 1 ’ ;
301 data_i_BRAM <= s t d _ l o g i c _ v e c t o r (to_unsigned ((t o _ i n t e g e r (UNSIGNED(global_time))−

t o _ i n t e g e r (UNSIGNED(packet_in (15 downto 0)))) ,data_i_BRAM ’LENGTH)) ;
302 packet_counter := packet_counter + 1 ;−−one more package added to the BRAM
303 nrecv_state := TABLE_GET;−−going to the d e f a u l t send s t a t e
304 end i f ;
305 CTS <= ’ 0 ’ ;
306 recv_counter <= −1;
307 e l s e
308 −−F l i t with o p e r a t i o n d e f i n i t i o n
309 i f recv_counter = 7 then
310 CTS <= ’ 0 ’ ;
311 −−d e t e c t s i f c o n f i g u r a t i o n b i t s e t i n f i r s t a r r i v i n g package
312 e l s i f recv_counter = 0 and x_in (3) = ’ 1 ’ then
313 c o n f i g _ t a b l e := ’ 1 ’ ; −−s e t t i n g c o n f i g u r a t i o n b i t to a c t i v e
314 e l s i f recv_counter = 0 and x_in (2) = ’ 1 ’ then
315 conf ig_data : = ’ 1 ’ ;
316 end i f ;
317 recv_counter <= recv_counter + 1 ;
318 packet_in <= packet_in (55 downto 0) & x_in ;
319 end i f ;
320
321
322 −−C o n f i g u r a t i o n o f i n t e r n a l t a b l e to a l t e r sending o f data
323 when TABLE_CONFIG=>
324 CTS<= ’0 ’;
325 t able 1<=t a b l e 1 ;
326 change_number:= t o _ i n t e g e r (unsigned (packet_in (35 downto 32))) ;−−t a k i n g i n f i r s t number to be

c o n f i g u r e d i n the t a b l e
327 sending_address := packet_in (39 downto 36) ;−−sends back a package to the r o u t e r t e l l i n g i t

to c o n f i g u r e
328 number_of_packages :=1; −−to conf irm the c o n f i g u r a t i o n has been done
329 package_data := x "AAAA" ;
330
331 nrecv_state :=TABLE_CONFIG2;
332
333 when TABLE_CONFIG2=>
334
335 t a b l e 1 (change_number , 0)<=t o _ i n t e g e r (unsigned (packet_in (31 downto 28))) ; −−c o n f i g u r i n g

f i r s t column i n t a b l e
336 t a b l e 1 (change_number , 1)<=t o _ i n t e g e r (unsigned (packet_in (27 downto 24))) ;
337 t a b l e 1 (change_number , 2)<=t o _ i n t e g e r (unsigned (packet_in (23 downto 20))) ;
338 t a b l e 1 (change_number , 3)<=t o _ i n t e g e r (unsigned (packet_in (19 downto 16))) ;
339
340 nrecv_state := REC_SEND;
341
342 −−This i s the s t a t e that c o l l e c t s data to c r e a t e the packages based on incoming package
343
344 when DATA_MANIPULATION=>
345
346 i f (packet_in (31 downto 28)=x " 0 ") then
347 sending_address :=x "F" ;
348 package_data := packet_in (31 downto 16) ;
349 nrecv_state :=REC_SEND;
350 number_of_packages :=1;
351 e l s e
352
353 sending_address := s t d _ l o g i c _ v e c t o r (to_unsigned (t a b l e 2 (tg_number , table_counter) ,

sending_address ’ l e n g t h)) ;
354 nrecv_state :=DATA_MANIPULATION2;
355 end i f ;
356

B.1. VHDL CODE 105

357 when DATA_MANIPULATION2=>
358 i f (table_counter =3) then
359 table_counter :=1;
360 e l s e
361 table_counter := table_counter +1;
362 end i f ;
363 −−even numbered t e s t g e n e r a t o r
364 i f tg_hex_number (0)= ’ 0 ’ then
365 package_data (7 downto 4) := packet_in (23 downto 20) −x " 1 " ;
366 package_data (15 downto 12) := packet_in (31 downto 28) −x " 1 " ;
367 package_data (3 downto 0) := packet_in (19 downto 16) ;
368 −−odd numbered t e s t g e n e r a t o r
369 e l s i f tg_hex_number (0)= ’ 1 ’ then
370 package_data (3 downto 0) := packet_in (19 downto 16)+x " 1 " ;
371 package_data (15 downto 12) := packet_in (31 downto 28)−x " 1 " ;
372 package_data (7 downto 4) := packet_in (23 downto 20) ;
373 end i f ;
374 −−sending_address := s t d _ l o g i c _ v e c t o r (to_unsigned (sending_num , sending_address ’LENGTH)) ;
375 package_type :=x " 4 " ;
376 number_of_packages :=1;
377 nrecv_state :=REC_SEND;
378
379 −−a q u i r i n g sending i n f o r m a t i o n based on package type
380 when TABLE_GET=>
381 r e c e i v e d _ a d d r e s s := packet_in (39 downto 36) ;−−t a k i n g the a d d r e s s from the sending TG
382 table_num := t o _ i n t e g e r (unsigned (r e c e i v e d _ a d d r e s s)) ;−−c o n v e r t i n g to i n t e g e r to a c c e s s

t a b l e
383 sending_num := t a b l e 1 (table_num , 1) ;−−g e t t i n g the number from the t a b l e
384 number_of_packages := t a b l e 1 (table_num , 3) ;−−g e t t i n g i n f o r m a t i o n o f the number o f packages

to be s e n t
385 sending_address := s t d _ l o g i c _ v e c t o r (to_unsigned (sending_num , sending_address ’LENGTH)) ;−−

s e t t i n g the send to a d d r e s s
386 nrecv_state :=REC_SEND;
387 when REC_SEND=>
388 number_packets <=number_of_packages ;
389 on_off <= ’1 ’;−−s i g n a l to determine the sending from the TG
390 enable_process ing_time <=packet_in (5 6) ;−−time e n a b l e s i g n a l
391 send_to <=sending_address ;−−s e t t i n g where to send the packet f o r the send to

statemachine
392 delay <= packet_in (51 downto 40) ; −−12 b i t s de lay
393 t r i g g e r := 0 ;
394 nrecv_state := IDLE ;
395 when OTHERS =>
396 nrecv_state := IDLE ;
397 end c a s e ;
398 −−−−−−−−−−−−−−−−−−−−−−−−−
399 −− Output statemachine −−
400 −−−−−−−−−−−−−−−−−−−−−−−−−
401
402 c a s e send_state i s
403 when IDLE =>
404 RTS <= ’ 0 ’ ;
405
406 i f send_package /= 0 and number_packets>0 then−− i n i t i a t i n g with number o f packages to be

s e n t
407 nsend_state := SYNC;
408 −−p r o t o c o l o f the c i r c u i t d e f i n e s the packet out
409 packet_out <= send_to & package_type & x " 0000 " & tg_hex_number & next_operation &

package_data & global_time ; −−c r e a t i n g the package to send
410 e l s e
411 nsend_state := IDLE ;
412 end i f ;
413
414 when SYNC =>
415 −−wait f o r s y n c h r o n i z a t i o n with the " send_to " r o u t e r .
416 RTS <= ’ 1 ’ ;
417 i f grant = ’ 1 ’ then

106 APPENDIX B. CODE

418 nsend_state := SENDING;
419 send_counter <= send_counter + 1 ;
420 packet_out <= packet_out (55 downto 0) & packet_out (63 downto 56) ;
421 end i f ;
422
423 when SENDING =>
424 −−send the g e n e r a t e d packet out on the network
425 i f send_counter = 7 then
426 i f grant = ’ 1 ’ then
427 nsend_state := IDLE ;
428 send_counter <= 0 ;
429 RTS <= ’ 0 ’ ;
430 number_packets<=number_packets −1;
431 end i f ;
432 e l s i f send_counter = 6 then
433 send_counter <= send_counter + 1 ;
434 send_package <= send_package − 1 ;
435 packet_out <= packet_out (55 downto 0) & packet_out (63 downto 56) ;
436 −−send _counter [0−>6]
437 e l s e
438 send_counter <= send_counter + 1 ;
439 packet_out <= packet_out (55 downto 0) & packet_out (63 downto 56) ;
440 end i f ;
441
442 when OTHERS =>
443 n u l l ;
444 end c a s e ;
445
446
447 −−Driving the next s t a t e s i g n a l
448 r e c v _ s t a t e := nrecv_state ;
449 send_state := nsend_state ;
450 watch_state := nwatch_state ;
451 −−Driving the x_out s i g n a l
452 x_out <= packet_out (63 downto 56) ;
453
454 end i f ;
455 end i f ;
456 end p r o c e s s ;
457
458 end a r c h i t e c t u r e ;

Listing B.2: New trafficgenerator with table

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Written by Andreas Heps−−
3 −−Modif ied by Magnus Namork−−
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5
6 l i b r a r y i e e e ;
7 l i b r a r y noc_v1_00_a ;
8 use i e e e . std_logic_1164 . a l l ;
9 use noc_v1_00_a . a l l ;

10
11 e n t i t y i n t e r f a c e i s
12 g e n e r i c (tstamp_vector : i n t e g e r :=15) ;
13 port (c l k : i n s t d _ l o g i c ;
14 r e s e t : i n s t d _ l o g i c ;
15 data_in : i n s t d _ l o g i c _ v e c t o r (63 downto 0) ; −−S i g n a l c o n t a i n i n g data from

slv_reg0 and slv_reg1
16 send_packet : i n s t d _ l o g i c ; −−S i g n a l which a c t i v a t e s sending o f i n f o r m a t i o n

l y i n g on data_in , a c c e s e d by slv_reg4 (1)
17 mux_select : i n s t d _ l o g i c _ v e c t o r (3 downto 0) ; −−s e l e c t s i g n a l f o r the mux .
18 BRAM_enable : i n s t d _ l o g i c ; −−Enable s i g n a l f o r the BRAM module i n the t e s t

g e n e r a t o r

B.1. VHDL CODE 107

19 BRAM_addr : i n s t d _ l o g i c _ v e c t o r (8 downto 0) ; −−Write a d d r e s s to the bram module i n t e s t
g e n e r a t o r

20 r e a d o u t _ f i n i s h e d : i n s t d _ l o g i c ; −−From SW, s t o r e d a l l v a l u e s
21 CLK_GATE_FREQ : i n s t d _ l o g i c _ v e c t o r (3 downto 0) ; −−Set from SW, d e c i d e s the c l o c k gate

f r e q u e n c y
22 s t a r t _ t e s t i n g : i n s t d _ l o g i c ; −−S t a r t s the TM_control module , and thus the data

c o l l e c t i n g .
23 data_out : out s t d _ l o g i c _ v e c t o r (63 downto 0) ; −−S i g n a l w r i t t e n to s lv_reg2 and

slv_reg3 .
24 packet_received_33 : out s t d _ l o g i c ; −−S i g n a l which i n f o r m s that a package have

a r r i v e d .
25 packet_sent : out s t d _ l o g i c ; −−S i g n a l which i n f o r m s that a package has been sendt .
26 mux_o_packetcnt : out s t d _ l o g i c _ v e c t o r (15 downto 0) ; −−(MUX output) − Packet c o u n t e r s
27 mux_o_tstamp : out s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0) ; −−MUX output from timestamp

mux
28 readout_SW : out s t d _ l o g i c ; −−readout to SW, to know the TM_control has stopped .
29 rece ived_time : out s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0)
30) ;
31 end e n t i t y ;
32
33 a r c h i t e c t u r e b e h a v i o r a l o f i n t e r f a c e i s
34
35 type SendState i s (IDLE , HOLD, SEND) ;
36 type RecvState i s (IDLE , RECEIVE) ;
37
38 −−d e c l a r i n g s i g n a l s f o r s t a t e m a c h i n e s
39 s i g n a l recv_counter :INTEGER range −1 to 8 ;
40 s i g n a l send_counter :INTEGER range 0 to 8 ;
41 s i g n a l packet_in , packet_out : s t d _ l o g i c _ v e c t o r (63 downto 0) ;−−packj
42
43 −−d e c l a r i n g s i g n a l s f o r 44 _interface_mesh
44 s i g n a l grant , r e q u e s t : s t d _ l o g i c ; −−handshaking s i g n a l s
45 s i g n a l RTS,CTS : s t d _ l o g i c ; −−handshaking s i g n a l s
46 s i g n a l x_in , x_out : s t d _ l o g i c _ v e c t o r (7 downto 0) ;−−ro uter −r o u t e r bus s i g n a l s
47 s i g n a l readout : s t d _ l o g i c ;
48 s i g n a l c lock_enable : s t d _ l o g i c ;
49 s i g n a l i _ c l k : s t d _ l o g i c ;
50
51 s i g n a l g l o b a l _ r e c e i v e _ t i m e : s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0) ; −−time to stamp packages

when r e c e i v i n g
52 s i g n a l prev_send_packet : s t d _ l o g i c ; −−Flank d e t e k t o r s i g n a l f o r send_packet
53
54 −−Component d e c l a r a t i o n o f c l o c k b u f f e r
55 component BUFGCE
56 port (
57 O : out STD_ULOGIC;
58 CE : i n STD_ULOGIC;
59 I : i n STD_ULOGIC) ;
60 end component ;
61
62 begin
63 −−I n s t a n t i a t i o n o f c l o c k b u f f e r
64 CLK_gater : BUFGCE
65 port map(
66 I =>clk ,
67 CE =>clock_enable ,
68 O =>i _ c l k
69) ;
70
71 −−t r a f f i c m o n i t o r c o n t r o l module
72 TM_control : e n t i t y noc_v1_00_a . TM_control (b e h a v i o r a l)
73 port map(
74 c l k => clk ,
75 r e s e t => r e s e t ,
76 CLK_GATE_FREQ => CLK_GATE_FREQ,
77 r e a d o u t _ f i n i s h e d => r e a d o u t _ f i n i s h e d ,
78 s t a r t _ t e s t i n g => s t a r t _ t e s t i n g ,

108 APPENDIX B. CODE

79 clock_enable => clock_enable ,
80 readout => readout
81) ;
82 −−e n t i r e t e s t system and Network on chip
83 test_mesh : e n t i t y noc_v1_00_a . inter face_mesh (b e h a v i o r a l)
84 g e n e r i c map (number_of_routers =>16,
85 bus_width =>8,
86 tstamp_vector =>15,
87 d eac t i va ted _t g =>8,
88 deactivated_tm =>0)
89 port map(
90 ungated_clk => clk ,
91 c l k => i_clk ,
92 r e s e t => r e s e t ,
93 s t a r t _ t e s t i n g => s t a r t _ t e s t i n g ,
94 grant_l_33 => grant ,
95 x_in_l_33 => x_in ,
96 request_l_33 => r e q u e s t ,
97 mux_select => mux_select ,
98 readout => readout ,
99 r e a d o u t _ f i n i s h e d => r e a d o u t _ f i n i s h e d ,

100 BRAM_enable => BRAM_enable ,
101 BRAM_addr => BRAM_addr,
102 x_out_l_33 => x_out ,
103 RTS_l_33 => RTS,
104 CTS_l_33 => CTS,
105 mux_o_packetcnt => mux_o_packetcnt ,
106 mux_o_tstamp => mux_o_tstamp ,
107 g l o b a l _ r e c e i v e _ t i m e =>g l o b a l _ r e c e i v e _ t i m e
108) ;
109
110 HW_PROC: p r o c e s s (c lk , r e s e t) i s
111 v a r i a b l e recv_state , nrecv_state : RecvState ;
112 v a r i a b l e send_state , nsend_state : SendState ;
113
114 begin
115 i f r e s e t = ’ 0 ’ then
116
117 nrecv_state := IDLE ;
118 r e c v _ s t a t e := IDLE ;
119 nsend_state := IDLE ;
120 send_state := IDLE ;
121
122 x_in <= (o t h e r s = > ’0 ’) ;
123 packet_in <= (o t h e r s = > ’0 ’) ;
124 packet_out <= (o t h e r s = > ’0 ’) ;
125 data_out <= (o t h e r s => ’ 0 ’) ;
126
127 r e q u e s t <= ’ 0 ’ ;
128 grant <= ’ 0 ’ ;
129 packet_received_33 <= ’ 0 ’ ;
130 packet_sent <= ’ 0 ’ ;
131 prev_send_packet <= ’ 0 ’ ;
132
133 send_counter <= 0 ;
134
135 recv_counter <= −1;
136
137 e l s i f c lk ’ event and c l k = ’1 ’ then
138 −−−−−−−−−−−−−−−−−−−−−−−−−−−
139 −− Network Communication −−
140 −−−−−−−−−−−−−−−−−−−−−−−−−−−
141
142 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 −− R e c e i v i n g a packet to r o u t e r 33 −−
144 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145

B.1. VHDL CODE 109

146 c a s e r e c v _ s t a t e i s
147 when IDLE =>
148 packet_received_33 <= ’ 0 ’ ;
149 i f RTS = ’ 1 ’ then
150 nrecv_state := RECEIVE;
151 grant <= ’ 1 ’ ;
152 e l s e
153 nrecv_state := IDLE ;
154 grant <= ’ 0 ’ ;
155 end i f ;
156
157 when RECEIVE =>
158 i f recv_counter = 8 then
159 nrecv_state := IDLE ;
160 grant <= ’ 0 ’ ;
161 recv_counter <= −1;
162 data_out <= packet_out ;
163 packet_received_33 <= ’ 1 ’ ;
164 received_time<=g l o b a l _ r e c e i v e _ t i m e ;
165 e l s e
166 i f recv_counter = 6 or recv_counter = 7 then
167 grant <= ’ 0 ’ ;
168 end i f ;
169 recv_counter <= recv_counter + 1 ;
170 packet_out <= packet_out (55 downto 0) & x_out ;
171 end i f ;
172 end c a s e ;
173
174 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 −− Sending a packet i n on r o u t e r 33 −−
176 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
177
178 c a s e send_state i s
179 when IDLE =>
180 packet_sent <= ’ 0 ’ ;
181 i f send_packet = ’ 1 ’ and prev_send_packet = ’ 0 ’ then
182 packet_in <= data_in ; −−read package from data_in
183 nsend_state := HOLD;
184 r e q u e s t <= ’ 1 ’ ;
185 end i f ;
186
187 when HOLD =>
188 packet_sent <= ’ 0 ’ ;
189 r e q u e s t <= ’ 1 ’ ;
190 i f CTS = ’ 1 ’ then
191 nsend_state := SEND;
192 send_counter <= send_counter + 1 ;
193 packet_in <= packet_in (55 downto 0) & packet_in (63 downto 56) ;
194 end i f ;
195
196 when SEND =>
197 i f send_counter = 7 then
198 i f CTS = ’ 1 ’ then
199 packet_in <= packet_in (55 downto 0) & packet_in (63 downto 56) ;
200 nsend_state := IDLE ;
201 r e q u e s t <= ’ 0 ’ ;
202 packet_sent <= ’ 1 ’ ;
203 send_counter <= 0 ;
204 end i f ;
205 e l s e
206 packet_in <= packet_in (55 downto 0) & packet_in (63 downto 56) ;
207 send_counter <= send_counter + 1 ;
208 end i f ;
209
210 when o t h e r s =>
211 n u l l ;
212 end c a s e ;

110 APPENDIX B. CODE

213
214 −−C o n t r o l l i n g the next s t a t e l o g i c and input output to network
215 r e c v _ s t a t e := nrecv_state ;
216 send_state := nsend_state ;
217 x_in <= packet_in (63 downto 56) ;
218 prev_send_packet <= send_packet ;
219 readout_SW <= readout ;
220 end i f ;
221 end p r o c e s s ;
222 end a r c h i t e c t u r e ;

Listing B.3: The interface module with generic values defined

1 l i b r a r y i e e e ;
2 l i b r a r y noc_v1_00_a ;
3 use i e e e . std_logic_1164 . a l l ;
4 use noc_v1_00_a . type_lib_noc . a l l ;−−d e f i n e s d i f f e r e n t types and subtypes , when used f o r

s i m u l a t i o n i n i e AHDL, change to work d i r e c t o r y ,
5
6 use noc_v1_00_a . a l l ;−−l i b r a r y work ;
7
8 e n t i t y inter face_mesh i s
9 g e n e r i c (number_of_routers : i n t e g e r :=16;

10 bus_width : i n t e g e r := 8 ;
11 tstamp_vector : i n t e g e r :=15;
12 d ea ct iva te d_ tg : i n t e g e r :=0;
13 deactivated_tm : i n t e g e r :=0) ;
14 port (
15 ungated_clk : i n s t d _ l o g i c ;
16 c l k : i n s t d _ l o g i c ;
17 r e s e t : i n s t d _ l o g i c ;
18 s t a r t _ t e s t i n g : i n s t d _ l o g i c ;
19 grant_l_33 : i n s t d _ l o g i c ;
20 x_in_l_33 : i n s t d _ l o g i c _ v e c t o r (7 downto 0) ;
21 request_l_33 : i n s t d _ l o g i c ;
22 mux_select : i n s t d _ l o g i c _ v e c t o r (3 downto 0) ;
23 readout : i n s t d _ l o g i c ;
24 r e a d o u t _ f i n i s h e d : i n s t d _ l o g i c ;
25 BRAM_enable : i n s t d _ l o g i c ;
26 BRAM_addr : i n s t d _ l o g i c _ v e c t o r (8 downto 0) ;
27 x_out_l_33 : out s t d _ l o g i c _ v e c t o r (7 downto 0) ;
28 RTS_l_33 : out s t d _ l o g i c ;
29 CTS_l_33 : out s t d _ l o g i c ;
30 mux_o_packetcnt : out s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0) ;
31 mux_o_tstamp : out s t d _ l o g i c _ v e c t o r (tstamp_vector downto 0) ;
32 g l o b a l _ r e c e i v e _ t i m e : out s t d _ l o g i c _ v e c t o r (number_of_routers −1 downto 0)
33) ;
34 end e n t i t y ;
35
36 a r c h i t e c t u r e b e h a v i o r a l o f inter face_mesh i s
37 −−L i s t o f s i g n a l mat r ix es used to d e f i n e i n t e r f a c e between modules−−−−−−−−−−
38 −−The p o s i t i o n s i n the matrix f o r each r o u t e r :
39 −−00=0 , 01=1 ,02=2 ,03=3 , 10=4 , 11=5 ,12=6 ,13=7... .33=15 s e e i n s t a n t i a t i o n o f r o u t e r mesh f o r

d e t a i l s
40
41 −−s e e type l i b r a r y f o r d e f i n i t i o n o f a l l t h e s e s i g n a l s
42 s i g n a l grant_l : grant ;
43
44 s i g n a l x_in_l : x_in ;
45
46 s i g n a l r e q u e s t _ l : r e q u e s t ;
47
48 s i g n a l x_out_l : x_out ;
49
50 s i g n a l RTS_l :RTS;
51

B.1. VHDL CODE 111

52 s i g n a l CTS_l :CTS;
53
54 s i g n a l p a c k e t _ t r i g g e r : p a c k e t _ t r i g g e r ;
55
56 s i g n a l packet_cnt : packet_count ;
57
58 s i g n a l tstamp_out : tstamp_out ;
59
60 s i g n a l global_time : s t d _ l o g i c _ v e c t o r (number_of_routers −1 downto 0) ;−−g l o b a l time s i g n a l to be

used as time stamp i n the t e s t g e n e r a t o r
61 −−f o r a l l : TG use e n t i t y work .TG(b e h a v i o r a l) ;
62 begin
63
64 global_rece ive_time<=global_time ;
65 −−−−−−−−−−−−−−−
66 −−M u l t i p l e x e r −−
67 −−−−−−−−−−−−−−−
68
69 mux_packetcnt : e n t i t y noc_v1_00_a . mux(b e h a v i o r a l)
70 g e n e r i c map(packet_count_vect=>16)
71 port map(
72 in_00 => packet_cnt (0) ,
73 in_01 => packet_cnt (1) ,
74 in_02 => packet_cnt (2) ,
75 in_03 => packet_cnt (3) ,
76 in_10 => packet_cnt (4) ,
77 in_11 => packet_cnt (5) ,
78 in_12 => packet_cnt (6) ,
79 in_13 => packet_cnt (7) ,
80 in_20 => packet_cnt (8) ,
81 in_21 => packet_cnt (9) ,
82 in_22 => packet_cnt (1 0) ,
83 in_23 => packet_cnt (1 1) ,
84 in_30 => packet_cnt (1 2) ,
85 in_31 => packet_cnt (1 3) ,
86 in_32 => packet_cnt (1 4) ,
87 in_33 => packet_cnt (1 5) ,
88 s e l => mux_select ,
89 x_out => mux_o_packetcnt
90) ;
91
92 −−mux_tstamps : e n t i t y noc_v1_00_a . mux_tstamp (b e h a v i o r a l)
93 −− port map(
94 −− in_00 => tstamp_out (0) ,
95 −− in_01 => tstamp_out (1) ,
96 −− in_02 => tstamp_out (2) ,
97 −− in_03 => tstamp_out (3) ,
98 −− in_10 => tstamp_out (4) ,
99 −− in_11 => tstamp_out (5) ,

100 −− in_12 => tstamp_out (6) ,
101 −− in_13 => tstamp_out (7) ,
102 −− in_20 => tstamp_out (8) ,
103 −− in_21 => tstamp_out (9) ,
104 −− in_22 => tstamp_out (1 0) ,
105 −− in_23 => tstamp_out (1 1) ,
106 −− in_30 => tstamp_out (1 2) ,
107 −− in_31 => tstamp_out (1 3) ,
108 −− in_32 => tstamp_out (1 4) ,
109 −− s e l => mux_select ,
110 −− x_out => mux_o_tstamp
111 −−) ;
112 −−−−−−−−−−−−−−−−−−
113 −−GLOBAL COUNTER−−
114 −−−−−−−−−−−−−−−−−−
115 g l o b a l _ c o u n t e r : e n t i t y noc_v1_00_a . g l o b a l _ c o u n t e r (b e h a v i o r a l) −−work f o r s i m u l a t i o n ,

noc_v1_00_a or l i b r a r y f o r s y n t h e s i s
116 port map(

112 APPENDIX B. CODE

117 c l k => clk ,
118 r e s e t => r e s e t ,
119 s t a r t _ t e s t i n g => s t a r t _ t e s t i n g ,
120 global_time => global_time
121) ;
122 −−−−−−−−−−−−−−−−−
123 −−4x4 RUTERMESH−−
124 −−−−−−−−−−−−−−−−−
125 mesh : e n t i t y noc_v1_00_a . noc_44_mesh (b e h a v i o r a l)
126 port map(
127 c l k => clk ,
128 r e s e t => r e s e t ,
129 grant_l_00 => grant_l (0) ,
130 grant_l_01 => grant_l (1) ,
131 grant_l_02 => grant_l (2) ,
132 grant_l_03 => grant_l (3) ,
133 grant_l_10 => grant_l (4) ,
134 grant_l_11 => grant_l (5) ,
135 grant_l_12 => grant_l (6) ,
136 grant_l_13 => grant_l (7) ,
137 grant_l_20 => grant_l (8) ,
138 grant_l_21 => grant_l (9) ,
139 grant_l_22 => grant_l (1 0) ,
140 grant_l_23 => grant_l (1 1) ,
141 grant_l_30 => grant_l (1 2) ,
142 grant_l_31 => grant_l (1 3) ,
143 grant_l_32 => grant_l (1 4) ,
144 grant_l_33 => grant_l_33 ,
145 x_in_l_00 => x_in_l (0) ,
146 x_in_l_01 => x_in_l (1) ,
147 x_in_l_02 => x_in_l (2) ,
148 x_in_l_03 => x_in_l (3) ,
149 x_in_l_10 => x_in_l (4) ,
150 x_in_l_11 => x_in_l (5) ,
151 x_in_l_12 => x_in_l (6) ,
152 x_in_l_13 => x_in_l (7) ,
153 x_in_l_20 => x_in_l (8) ,
154 x_in_l_21 => x_in_l (9) ,
155 x_in_l_22 => x_in_l (1 0) ,
156 x_in_l_23 => x_in_l (1 1) ,
157 x_in_l_30 => x_in_l (1 2) ,
158 x_in_l_31 => x_in_l (1 3) ,
159 x_in_l_32 => x_in_l (1 4) ,
160 x_in_l_33 => x_in_l_33 ,
161 request_l_00 => r e q u e s t _ l (0) ,
162 request_l_01 => r e q u e s t _ l (1) ,
163 request_l_02 => r e q u e s t _ l (2) ,
164 request_l_03 => r e q u e s t _ l (3) ,
165 request_l_10 => r e q u e s t _ l (4) ,
166 request_l_11 => r e q u e s t _ l (5) ,
167 request_l_12 => r e q u e s t _ l (6) ,
168 request_l_13 => r e q u e s t _ l (7) ,
169 request_l_20 => r e q u e s t _ l (8) ,
170 request_l_21 => r e q u e s t _ l (9) ,
171 request_l_22 => r e q u e s t _ l (1 0) ,
172 request_l_23 => r e q u e s t _ l (1 1) ,
173 request_l_30 => r e q u e s t _ l (1 2) ,
174 request_l_31 => r e q u e s t _ l (1 3) ,
175 request_l_32 => r e q u e s t _ l (1 4) ,
176 request_l_33 => request_l_33 ,
177 x_out_l_00 => x_out_l (0) ,
178 x_out_l_01 => x_out_l (1) ,
179 x_out_l_02 => x_out_l (2) ,
180 x_out_l_03 => x_out_l (3) ,
181 x_out_l_10 => x_out_l (4) ,
182 x_out_l_11 => x_out_l (5) ,
183 x_out_l_12 => x_out_l (6) ,

B.1. VHDL CODE 113

184 x_out_l_13 => x_out_l (7) ,
185 x_out_l_20 => x_out_l (8) ,
186 x_out_l_21 => x_out_l (9) ,
187 x_out_l_22 => x_out_l (1 0) ,
188 x_out_l_23 => x_out_l (1 1) ,
189 x_out_l_30 => x_out_l (1 2) ,
190 x_out_l_31 => x_out_l (1 3) ,
191 x_out_l_32 => x_out_l (1 4) ,
192 x_out_l_33 => x_out_l_33 ,
193 RTS_l_00 => RTS_l (0) ,
194 RTS_l_01 => RTS_l (1) ,
195 RTS_l_02 => RTS_l (2) ,
196 RTS_l_03 => RTS_l (3) ,
197 RTS_l_10 => RTS_l (4) ,
198 RTS_l_11 => RTS_l (5) ,
199 RTS_l_12 => RTS_l (6) ,
200 RTS_l_13 => RTS_l (7) ,
201 RTS_l_20 => RTS_l (8) ,
202 RTS_l_21 => RTS_l (9) ,
203 RTS_l_22 => RTS_l (1 0) ,
204 RTS_l_23 => RTS_l (1 1) ,
205 RTS_l_30 => RTS_l (1 2) ,
206 RTS_l_31 => RTS_l (1 3) ,
207 RTS_l_32 => RTS_l (1 4) ,
208 RTS_l_33 => RTS_l_33 ,
209 CTS_l_00 => CTS_l (0) ,
210 CTS_l_01 => CTS_l (1) ,
211 CTS_l_02 => CTS_l (2) ,
212 CTS_l_03 => CTS_l (3) ,
213 CTS_l_10 => CTS_l (4) ,
214 CTS_l_11 => CTS_l (5) ,
215 CTS_l_12 => CTS_l (6) ,
216 CTS_l_13 => CTS_l (7) ,
217 CTS_l_20 => CTS_l (8) ,
218 CTS_l_21 => CTS_l (9) ,
219 CTS_l_22 => CTS_l (1 0) ,
220 CTS_l_23 => CTS_l (1 1) ,
221 CTS_l_30 => CTS_l (1 2) ,
222 CTS_l_31 => CTS_l (1 3) ,
223 CTS_l_32 => CTS_l (1 4) ,
224 CTS_l_33 => CTS_l_33 ,
225 PacketTrigger_00=>p a c k e t _ t r i g g e r (0) ,
226 PacketTrigger_01=>p a c k e t _ t r i g g e r (1) ,
227 PacketTrigger_02=>p a c k e t _ t r i g g e r (2) ,
228 PacketTrigger_03=>p a c k e t _ t r i g g e r (3) ,
229 PacketTrigger_10=>p a c k e t _ t r i g g e r (4) ,
230 PacketTrigger_11=>p a c k e t _ t r i g g e r (5) ,
231 PacketTrigger_12=>p a c k e t _ t r i g g e r (6) ,
232 PacketTrigger_13=>p a c k e t _ t r i g g e r (7) ,
233 PacketTrigger_20=>p a c k e t _ t r i g g e r (8) ,
234 PacketTrigger_21=>p a c k e t _ t r i g g e r (9) ,
235 PacketTrigger_22=>p a c k e t _ t r i g g e r (1 0) ,
236 PacketTrigger_23=>p a c k e t _ t r i g g e r (1 1) ,
237 PacketTrigger_30=>p a c k e t _ t r i g g e r (1 2) ,
238 PacketTrigger_31=>p a c k e t _ t r i g g e r (1 3) ,
239 PacketTrigger_32=>p a c k e t _ t r i g g e r (1 4) ,
240 PacketTrigger_33=>p a c k e t _ t r i g g e r (1 5)
241) ;
242
243 −−−−−−−−−−−−−−−−−−−−−−
244 −−T r a f f i c Generators−−
245 −−−−−−−−−−−−−−−−−−−−−−
246
247 TestGen : f o r i i n de ac t i vat ed _t g to number_of_routers −2 g e n e r a t e −−use the f o r l o o p to d e f i n e

how many TG to be added to the i n t e r f a c e
248 TG: e n t i t y noc_v1_00_a .TG(b e h a v i o r a l)−− i n s y n t h e s i s : noc_v1_00_a .TG(b e h v i o r a l) i s used , i n

s i m u l a t i o n eg AHDL work i s b e t t e r

114 APPENDIX B. CODE

249 g e n e r i c map(tg_number=>i) −−s p e c i f i e s i d e n t i f i c a t i o n o f each t e s t g e n e r a t o r
250 port map(
251 ungated_clk => ungated_clk ,
252 c l k => clk ,
253 r e s e t => r e s e t ,
254 s t a r t _ t e s t i n g => s t a r t _ t e s t i n g ,
255 x_in => x_out_l (i) ,
256 r e q u e s t => RTS_l(i) ,
257 grant => CTS_l(i) ,
258 SW_enable => BRAM_enable ,
259 SW_addr => BRAM_addr,
260 global_time => global_time ,
261 x_out => x_in_l (i) ,
262 RTS => r e q u e s t _ l (i) ,
263 CTS => grant_l (i) ,
264 tstamp_out => tstamp_out (i)
265) ;
266 end g e n e r a t e ;
267 −−−−−−−−−−−−−−−−−−−−
268 −−T r a f f i c Monitors−−
269 −−−−−−−−−−−−−−−−−−−−
270 NoC_TM: f o r n i n deactivated_tm to number_of_routers −1 g e n e r a t e
271 TM: e n t i t y noc_v1_00_a .TM(b e h a v i o r a l)−− i n s y n t h e s i s : noc_v1_00_a .TG(b e h v i o r a l) i s used or

c o r r e c t l i b r a r y , i n s i m u l a t i o n eg AHDL work i s b e t t e r
272 g e n e r i c map(tm_number=>n) −−ID o f each t r a f f i c monitor
273 port map(
274 c l k => ungated_clk ,
275 r e s e t => r e s e t ,
276 CTS => p a c k e t _ t r i g g e r (n) ,
277 r e a d o u t _ f i n i s h e d => r e a d o u t _ f i n i s h e d ,
278 packet_counter => packet_cnt (n)
279) ;
280 end g e n e r a t e ;
281 end a r c h i t e c t u r e ;

Listing B.4: The interface mesh module with generic modules

B.2 C-code

1 /∗
2 ∗ send.c
3 ∗
4 ∗ Created on: 1. mars 2011
5 ∗ Author: Magnus Namork
6 ∗/
7

8 #include <stdio.h>
9 #include <sys/types.h>

10 #include <sys/stat.h>
11 #include <fcntl.h>
12 #include <sys/mman.h>

B.2. C-CODE 115

13 #include <unistd.h>
14 #include <time.h>
15 #include <string.h>
16 #include <stdlib.h>
17 #include <ctype.h>
18

19 //#include "noc_methods.h"
20 //definition of addresspace according to the assigned space in Xilinx EDK
21

22

23 #define C_BASEADDR 0x84000000
24 #define C_HIGHADDR 0x840001FF
25 #define CHECK_BIT(var,pos) ((var) & (1<<(pos)))// macro to check if a single bit is

set
26 #define BUFFER_SIZE 50
27

28 volatile unsigned int ∗slave_register0 = (int ∗)(C_BASEADDR + 0x0);//data_in_33(63
downto 32)

29 volatile unsigned int ∗slave_register1 = (int ∗)(C_BASEADDR + 0x4);//data_in_33(31
downto 0)

30 volatile unsigned int ∗slave_register2 = (int ∗)(C_BASEADDR + 0x8);//data_out_33(63
downto 32)

31 volatile unsigned int ∗slave_register3 = (int ∗)(C_BASEADDR + 0xc);//data_out_33(63
downto 32)

32 volatile unsigned int ∗slave_register4 = (int ∗)(C_BASEADDR + 0x10);//configuration
register

33 volatile unsigned int ∗slave_register5 = (int ∗)(C_BASEADDR + 0x14);//Bram address
register

34 volatile unsigned int ∗slave_register6 = (int ∗)(C_BASEADDR + 0x18);//
35 volatile unsigned int ∗slave_register7= (int ∗)(C_BASEADDR + 0x1c);//mux tstamp

counter
36 volatile unsigned int ∗slave_register8 = (int ∗)(C_BASEADDR + 0x22);//mux timer
37

38

39

116 APPENDIX B. CODE

40

41

42

43 void reset_all(){ //Setting all registers to zero
44 ∗slave_register0= 0x00000000; //register 0 data_in(63 downto 32)
45 ∗slave_register1= 0x00000000;
46 ∗slave_register2= 0x00000000;
47 ∗slave_register3= 0x00000000;
48 ∗slave_register4= 0x00000000;
49 ∗slave_register5= 0x00000000;
50 ∗slave_register6= 0x00000000;
51 ∗slave_register7= 0x00000000;
52 ∗slave_register8= 0x00000000;
53

54 }
55 void print_registers(){//printing all registers until user pushes 0
56 while(getchar()!=’0’){
57 printf("slave register 0= %x\n",∗slave_register0);
58 printf("slave register 1= %x\n",∗slave_register1);
59 printf("slave register 2= %x\n",∗slave_register2);
60 printf("slave register 3= %x\n",∗slave_register3);
61 printf("slave register 4= %x\n",∗slave_register4);
62 printf("slave register 5= %x\n",∗slave_register5);
63 printf("slave register 6= %x\n",∗slave_register6);
64 printf("slave register 7= %x\n",∗slave_register7);
65 printf("slave register 8= %x\n",∗slave_register8);
66 printf("press 0 to exit\n");
67 }
68 }
69

70 int run_noc(int large,int small){//method that creates a load for the average value
calculation

71

72 int lg,sm,diff;
73 if(large>15 || small>large || small<0){

B.2. C-CODE 117

74 printf("integers to large");
75 exit(1);
76 }
77 int result= 0x0000;
78 int difference = large − small;
79 lg= (large << 4);
80 sm= (small<<0);
81 diff= (difference<<12);
82 result = (result | lg | sm |diff);
83 return result;
84

85

86

87

88

89 }
90 int filewrite(int ∗latency, const int length){//writes the values from the circuit to the

latency.txt file
91 int k=0;
92 FILE ∗fp;
93 //int f=latency;
94

95 if((fp=fopen("/var/suzaku_shared/latency.txt", "w"))==NULL) {//which text file is
opened w defines write operation

96 printf("Cannot open file.\n");
97 exit(1);
98 }
99 for(;k<length;k++){

100 fprintf(fp,"%d\n", latency[k]);
101 }
102 fclose(fp);
103

104 return 0;
105 }
106 void multi_package(){

118 APPENDIX B. CODE

107 int quit=1;
108 int tg;
109 int tab_pos, tab_val, alter_data,type,package_type, test_generator;
110 volatile unsigned int input_1= 0x00000000;
111 volatile unsigned int input_2= 0x00000000;
112 ∗slave_register4= 0x00000000;
113 char respons;
114 while(quit!=0){
115 ∗slave_register4= 0xE00001C8;
116 printf("Press a positive number to continue sending packages, press 0 to exit\n");
117 scanf("%x",&quit);
118 input_1 = (input_1 & 0x00FFFF00); //making input ready for packet configuration
119

120 printf("\n\nWhich test generator do you want to send a package to? (0 to E)\n");
121 scanf("%x",&test_generator);
122 tg = (test_generator << 28);//setting bits from 28 + 4 to the test_generator value
123 printf("Setting send to address to%x\n", test_generator);
124 input_1 = (input_1 | tg);//OR−ing the mask with the control to set the correct bits

high.
125

126 printf("\n\nWhat type of package do you want to send: (0,4 or 8)\n");
127 scanf("%x",&package_type);//getting the new package type from the user.
128 type = (package_type << 24); //setting the package type on the correct location
129 input_1 = (input_1 | type);
130 if(package_type == 8){
131 printf("define table position\n");
132 scanf("%x", &tab_pos);
133 input_1 = (input_1 | tab_pos);
134 input_1 = (input_1 | (0xF << 4));
135 input_2 = (input_2 & 0x0000FFFF);
136 printf("define table values\n");
137 scanf("%x", &tab_val);//which table value is to be reconfigured?
138 alter_data = (tab_val<<16);//defining the table reconfiguration of the test generator
139 input_2 = (input_2 | alter_data);
140 }

B.2. C-CODE 119

141 ∗slave_register0=input_1;
142 ∗slave_register1=input_2;
143 printf("\n\nToggeling send\n");
144 ∗slave_register4 = (∗slave_register4 ^ 0x08000000);
145 //Masking and toggling the send bit of the control register.
146

147 printf("Do you want to monitor traffic? y/n \n\n");
148 scanf("%s",&respons);
149

150 if(respons==’y’){
151 print_registers();
152 }
153

154

155 }
156

157

158

159 }
160

161 void test_generator_config(){
162 int tg,type,router,s,l = 0;//different masking values to be added to the input of the

network on chip
163 int test_generator,package_type,data_load,table_position,router_value,i,m;
164 int average_val_1,average_val_2;
165 volatile unsigned int input_1= 0x00000000;
166 volatile unsigned int input_2= 0x00000000;
167 volatile unsigned int latency;
168

169 printf("\n\nThis test tests functionality of the circuit with different user input\n");
170 input_1 = (input_1 & 0x00FFFF00); //making input ready for packet configuration
171 printf("\n\nWhich test generator do you want to send a package to? (0 to E)\n");
172 scanf("%x",&test_generator);
173

174 //Shifting the bits of the tg to the correct place

120 APPENDIX B. CODE

175 tg = (test_generator << 28);//setting bits from 28 + 4 to the test_generator value
176 printf("Setting send to address to%x\n", test_generator);
177 input_1 = (input_1 | tg);//OR−ing the mask with the control to set the correct bits

high.
178

179 printf("\n\nWhat type of package do you want to send: (0,4 or 8)\n");
180 scanf("%x",&package_type);//getting the new package type from the user.
181 type = (package_type << 24); //setting the package type on the correct location
182 printf("Setting type to:%x\n",package_type);
183

184 if(package_type== 0){//simple routing
185 }
186 else if(package_type==4){//defines that there is an averaging operation to be

performed
187 printf("Preparing averaging value:\n");
188 input_2 = (input_2 & 0x0000FFFF);
189 //scanf("%X%X",&averages_val_1,&average_val_2);
190

191 data_load = (0xA0E4<<16);//defining the load fixed value
192 input_2 = (input_2 | data_load);
193 }
194 else if (package_type==8){//defines a reconfiguring operation
195 printf("Preparing averaging value:\n");
196 input_1 = (input_1 | 0xA);
197 input_2 = (input_2 & 0x0000FFFF);
198 data_load = (0xBCDE<<16);//defining the table reconfiguration of the test generator
199 input_2 = (input_2 | data_load);
200

201 }
202

203 else{
204 printf("wrong value input\n");
205 exit(1);
206 }
207

B.2. C-CODE 121

208 input_1 = (input_1 | type);//adding type
209

210 s = (0xF << 4);//setting sending router, in this case interface module F
211 input_1 = (input_1 | s);
212

213 ∗slave_register4 = 0x00000000;
214 //Setting the control for the mux readout to zero to ensure that the mask works to it’s

intensions.
215

216 printf("package ready to be sent is %x%x\n", input_1,input_2);
217 printf("which router is to be read from?");
218 scanf("%x",&router_value);
219 router= (router_value << 28);
220

221 ∗slave_register4= (∗slave_register4 | router) ;//OR−ing the mask with the control to set
the correct bits high.

222 ∗slave_register0= input_1;
223 ∗slave_register1= input_2;
224 ∗slave_register4 =∗slave_register4 ^ 0x080001C8;//slv_reg_4 setting send packet high,

mux is set to 33
225 ∗slave_register5 = 0x0F000000; //determining the BRAM address which is (31 downto

23)
226

227 printf("Setting package value\n");
228

229

230 printf("Sending package\n");
231

232 printf("packet sent\n");
233

234 //checking if a package is received or not
235 if(∗slave_register2 == 0x00000000){
236 printf("no packet received\n");
237 }
238 else{

122 APPENDIX B. CODE

239 latency = ∗slave_register3 & 0x0000FFFF;//anding to keep last 16 bits of latency or
global time in circuit

240 printf("Number of packages sent through the specified router is %d\n",∗slave_register7);
241 printf("Latency of the received package is %d clock cycles\n", latency);
242 //filewrite(latencies, sizeof(latencies)/sizeof(latencies[0]));//Write operation to text file
243 printf("The data_out is now %x%x\n", ∗slave_register2,∗slave_register3);
244 printf("test finished\n");
245 }
246

247 }
248

249

250 void full_test(){//sending initial package to the network, defines a standard testing
procedure

251 int k,l,m,o = 0;
252 int tg_full,type_full, data_load_full;
253 int first_number,second_number,check_number;
254 int latency;
255 int latencies[100]={0};
256 volatile unsigned int input_1= 0x00000000;//default package first 32 bit
257 volatile unsigned int input_2= 0x00000000;//default package last 32 bit
258

259

260 for (k = 8 ; k<0xF;k++){//the tg to send to
261 for (l=0xF; l>7;l−−){//value to calculate from
262 m=0xF−l; //second number of the load of the package
263 input_1= 0x00000000;//default package first 32 bit
264 input_2= 0x00000000;//default package last 32 bit
265 ∗slave_register4 = 0x00000000;
266

267 input_1 = (input_1 & 0x00FFFF00); //making input ready for packet configuration
268 tg_full = (k << 28);//setting bits from 28 + 4 to the test_generator value
269 input_1 = (input_1 | tg_full);//OR−ing the mask with the control to set the

correct bits high.
270 type_full = (0x4 << 24); //setting the package type on the correct location

B.2. C-CODE 123

271 input_1 = (input_1 | type_full);//adding the type to the input
272 input_2 = (input_2 & 0x0000FFFF);
273 data_load_full = (run_noc(l,m)<<16);//defining the load
274 input_2 = (input_2 | data_load_full);
275

276 ∗slave_register0 = input_1; //input_1;//register 0 data_in(63 downto 32)
277 ∗slave_register1 = input_2;//input_2;
278 ∗slave_register5 = 0x0F000000;//determining the BRAM address which is (31

downto 23)
279 ∗slave_register4 = ∗slave_register4 ^ 0xF8001C8;//slv_reg_4 setting send packet

high, mux is set to 33
280

281 usleep(1);//wait to ensure readout ready
282 check_number=((∗slave_register3 & 0xF0000000) >> 28);//shifting to take out only

the number we want
283 first_number=((∗slave_register3 & 0x00F00000) >> 20);
284 second_number=((∗slave_register3 & 0x000F0000) >>16);
285 if(first_number!=second_number || check_number!=0){//controlling that the output

from the circuit is correct
286 printf("wrong value from output\n");
287 exit(1);
288 }
289 latency = ∗slave_register3 & 0x0000FFFF;//removing unnecessary information
290 latencies[o]=latency; //adding the latency to the latency table
291 o++;
292

293 }
294 }
295 filewrite(latencies, sizeof(latencies)/sizeof(latencies[0]));//Write operation to text file
296 printf("information written to file\n");
297

298 }
299 int main(int argc, char ∗ argv[]){
300 printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n");
301 printf("−− Testing of the 4x4 NoC router mesh −−\n");

124 APPENDIX B. CODE

302 printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n");
303 int i,j = 1;
304 reset_all();
305

306 while(j != 0){
307

308 printf("Remember that all leading zeros in output will not be displayed\n");
309 printf("Press 1 to run default full test\n");//defined in method
310 printf("Press 2 to run customized test\n");//defined in method
311 printf("Press 3 to read the mux output\n");//inline define
312 printf("Press 4 to read data_out\n");
313 printf("Press 5 to read the status register\n");
314 printf("Press 6 to display registervalues\n");
315 printf("Press 7 to display register \n");
316 printf("Press 8 to read the mux counter\n");
317 printf("Press 9 to read the mux timestamp\n");
318 printf("Press 10 to reset all registers\n");
319 printf("Press 11 to toggle reset\n");
320 printf("Press 12 to run multipackage test\n");
321 printf("Press 0 to terminate\n");
322 //reading input
323 scanf("%d",&j);
324 //press 1
325 if(j == 1){
326 full_test();
327 }
328 //press 2 runs customized test for the NOC
329 else if(j == 2){
330 test_generator_config();
331 }
332 //press 3 changes packet counter mux to a different value
333 else if(j == 3){
334 int k = 0;
335 printf("\n\nWhich packet counter do you want to read? (0 to E)\n");
336 scanf("%x",&i);

B.2. C-CODE 125

337 //Shifting the mask to the correct place
338 k = (i << 28);
339 printf("Router value is :%x\n",k);
340 //Setting the control for the mux readout to zero to ensure that the mask works to it’s

intensions.
341 ∗slave_register4 = (∗slave_register4 & 0x0FFFFFFF);
342 //OR−ing the mask with the control to set the correct bits high.
343 ∗slave_register4 = (∗slave_register4 | k);
344 printf("\n\nThe local packet counter of router %x has the value %x\n\n",i,∗

slave_register7);
345

346 }
347 //press 4 read data out
348 else if(j == 4){
349 printf("\n\ndata_out = %x%x\n\n",∗slave_register2,∗slave_register3);
350 }
351 //press 5 read status register
352 else if(j == 5){
353 printf("status = %x\n", ∗slave_register4);//reading out the register
354 }
355 //press 6 read out all registers
356 else if(j == 6){
357 print_registers();
358 }
359 else if(j == 7){
360 printf("status = %x\n", ∗slave_register4);//reading out the register
361 }
362 else if(j == 8){
363 printf("Mux counter = %x\n",∗slave_register7);
364 }
365 else if(j == 9){
366 if (∗slave_register8==0x00000000 || 0xFFFFFFFF){
367 printf("Mux timestamp not active\n");
368 }
369 printf("Mux timer = %x\n",∗slave_register8);

126 APPENDIX B. CODE

370 }
371 else if(j == 10){
372 reset_all();
373

374 }
375 else if(j==11){
376 printf("\n\nToggeling reset (active low)\n");
377 ∗slave_register4 = (∗slave_register4 ^ 0x00000008);//slv_reg_4
378 //Masking and toggling 1 bit of control register.
379 printf("Control register is now: %x\n\n", ∗slave_register4);
380

381 }
382 else if (j== 12){
383 multi_package();
384 }
385 else {
386 printf("incorrect value on input");
387 exit(1);
388 }
389 }
390 printf("Testing terminated\n");
391 return 0;
392 }

Listing B.5: C program for on chip test of the Network on chip

Appendix C

AHEAD Network on Chip-Initial
words

This tutorial is just a short summary of some of the necessary tools and abilities
connected to the AHEAD project and in particular the Network on Chip part of it.
It is based on the tutorial written in [27]. There are some initial literature which
is recommended. The most essential ones are listed here and should be read before
working on the project. This tutorial is only a short version of the ones found
below, but should provide answers to what works and what is not possible to do.
One final tip, if something works, try to stick with it then test every bits and piece
of the additional elements you put in. This will avoid getting unexplainable errors.

• Suzaku Software/Hardware manual

• TFE 4170 Enbrikkesystemer Laboratorie oppgave vår 2007

• Stian Reiersen Arnesens Master thesis-general info about the system

• Sverre Hamres Master thesis- tutorial of how to add an adder to the system

• Ivar Erslands Master thesis-assignment about the Network on Chip system

• Andreas Hepsøs Master thesis- initial development of the testenvironment

127

128 APPENDIX C. AHEAD NETWORK ON CHIP-INITIAL WORDS

C.1 Equipment list for this project

• ACER Aspire 5610 laptop(Ubuntu,ATDE3)

• Suzaku-S boards SZ130-U00(FPGA:Xilinx Spartan 3 XCSV1200) and SZ030-
U00(FPGA: Xilinx Spartan 3 XCSV1200)

• ATDE3 with VmWare player for building FPGA project files

• Ubuntu 10.10 32bit for connection with the FPGA

• Windows XP emulated in Windows 7 64 bit for simulation

• Dropbox 1.10 for file syncing between OSes(works in all systems even ATDE3)

• Linksys WRTG54 for connection between Suzaku board and Ubuntu-PC

• Xilinx ISE/EDK 10.1.3 for synthesis(Xilinx 11.* could be used with the sz130
system)

Appendix D

Tutorial:How to implement the
Network on Chip on the Suzaku-S
platform

D.1 Installing Xilinx in debian(Atmark Devel-
opment environment(Atde3) or Ubuntu)

• These steps describe the details with Xilinx EDK because it is most problems
with this installation. Both are necessary to run EDK

• Go to location of the file downloaded from http://www.xilinx.com and
write :Tar xvf edk_SFD.tar -C /folder/for/installation

• Do the same thing for the corresponding ISE install file located in the same
place as the EDK(ISE should be installed first)

• Change directory to the folder you extracted and move to /EDK/bin/lin/
write "sudo ./setup".(ISE is installed in the same way as EDK)

• Follow the directions

• EDK needs to know where ISE is installed, this is done by writing in the
/etc/profile file in ATDE3

129

130 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

• In the bottom of the file:

XILINX="path/to/ISE"

export PATH

export XILINX

• Go back to /EDK/bin/lin and write ./xps

• This should start the EDK program

D.2 VHDL code for the Suzaku Image(Peripheral
or IP)

D.2.1 Using AHDL for development

AHDL is an easy to use tool for simulation and to design the system. To be able
to use AHDL together with Xilinx it is necessary to create a similar library in
AHDL as the one existing in Xilinx EDK. This is done like in Figure D.1Library
creation AHDLfigure.caption.80 After this is done, add all the files from the xilinx
project to the folder (typically../sz030-20090319/pcores/noc_v1_00_a/hdl/vhdl)
to the project and the system is set up for dual simulation and implementation.

D.2.2 Setting up the project in Xilinx EDK

1. Start XILINX edk on the machine

2. In the introduction window choose ”Open recent project” and go to xps_proj
file from the folder you will use(in folder sz030-200.... which is downloaded
from
http://download.atmark-techno.com/suzaku/fpga_proj/10.1i/sz030/
)

It is recommended to use the last version of the projectfiles since they come
with an ISE file.

D.2. VHDL CODE FOR THE SUZAKU IMAGE(PERIPHERAL OR IP) 131

Figure D.1: How to create library similar to Xilinx library.

1. Under Hardware choose:”Create Import peripheral”

2. The name on the folder should be noc in the folder ”name and version”

3. The OPB bus must be enabled , and later connected to the system in the
system view

4. Choose to use 20 SW accessible registers.

5. remove User logic interrupt

6. step through the next steps

7. Select finish

8. If VHDL not included, select "IP Catalog"-> "USER"->(right)"noc"->"add
IP"

9. Choose "Bus Connection" for the added noc_0, then (right) "noc_0" browse
HDL sources. This is the folder where VHDL files must be added.

132 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

10. Change the pao file(in the data folder under pcores/noc_v1_00_a) so that
it contains synthesis line for all the files(supplied in appendix zip file, and
listed in Section D.6File list NoCsection.D.6)

11. Add(Exchange) all the VHDL files wanted/needed in the project, if an addi-
tional file is added then the PAO file will have to be edited also. This has to
be in order of synthesis (listing the files from lowest to highest in synthesis,
Figure A.1Modules presented in hierarchy.figure.caption.76)

12. One should then choose 1K in address space found under the "Addresses"
tab in the System Assembly view. The 20 registers needs 20x32 bits =>
640. If number of registers is edited one needs to change the amount of
space as well. Address space is recommended from 0x84000000 and upwards.
When the system is configured in EDK it should look something like in
Figure D.2System Assembly EDKfigure.caption.81.

This step for an adder module is also described in the mentioned tutorial by Sverre
Hamre.

D.2.3 Synthesis

Synthesis in EDK is performed by doing

• "Software"->"Generate Libraries and BSPs"

• "Software"->"Build all user applications"

• "Hardware"->"Generate Netlist"

• "Device Configuration"->"Update Bitstream"

D.2.4 Exporting project from EDK to ISE

• Open a new project in ISE.

• Then add .xps in ISE by clicking ADD SOURCE.

D.2. VHDL CODE FOR THE SUZAKU IMAGE(PERIPHERAL OR IP) 133

Figure D.2: System Assembly view in EDK, Spartan 3E XC3S1200.

134 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

• Then instantiate your XPS project in ISE by clicking View Instantiation
Template.

• After this give UCF in your ISE (and removed that in EDK).

• Then compile your design.

Refer to the Xilinx support forum [2] for further details.

D.2.5 Interfacing HW/SW

This part is found in the user_logic.vhd. It generally consists of the part with
writing and reading. It defines how the slave registers are written from HW. More
on this is found in the tutorial of Sverre Hamre, but as a comment it is mentionable
that the commenting which is done is to determine which registers are writable
and the ones who are only readable. It is possible to add registers here software
accessible registers here without having to create a new peripheral. This is done
by adding more slv_reg instances and changing the C_NUM_CE number in the
noc.vhd file. The vectors in the write and read processes also has to be changed.

D.3 Downloading the generated bit file to the
suzaku board

D.3.1 With serial interface

1. Ensure before the creation of the bit file one should set Applications->(right-
click project:boot)->Set Compiler options->
Debug and Optimization->Optimization level->Size Optimized.

2. After performing Generate Libraries and BSP, build all user applications ,
generate netlist and update bitstream in Xilinx EDK

3. go to implementation in the project folder ,
typically sz030-2008.../implementation,copy the file named download.bit, paste
it into the folder bit2flash, with the program bit2flash(see NOC package)

D.3. DOWNLOADING THE GENERATED BIT FILE TO THE SUZAKU BOARD 135

4. open the terminal and write user@stasjon$./bit2flash download.bit imple-
ment.bit, This creates the implementation file suitable for the flash memory
within the suzaku board. The name of the file is possible to change.

5. open gtkterm or minicom

6. Adapt the baud rate to 115200 under configuration

7. Turn on and off the power of the suzaku board and close gtkterm

8. Then use hermit via the terminal by writing ”hermit download -i imple-
ment.bit -r fpga –force-locked”(two lines(-) between fpga and force-locked)

9. Then something like serial: completed 0x00080000(524288) bytes in the ter-
minal window should be seen

10. Then enter terminal and open gtkterm

11. Turn power on and of the suzakuboard

12. write ”b” when it says hermit>

13. The system should now be running and you will have to log on to the system
with username:root and password:root

D.3.2 With Ethernet

• This method assumes that you are working with NFS. flashw or netflash has
to be enabled in the uClinux image(second menu, under flash tools).

• Open a terminal in ubuntu with the pc and Suzaku connected to a router(i.e
Linksys WRTG54)

• Write telnet "ip address" (i.e "telnet 192.168.1.101")

• go to var folder and mount the shared folder in NFS.

136 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

• Instruction with netflash: "netflash -kbniCH -r /dev/flash/image image.bin"
when reconfiguring fpga:netflash -kbniH -r /dev/flash/fpga fpga.bit (the b
option in -bn determines wether or not to boot after the writing to flash, it
could be excluded)

• If the card does not boot after reconfiguration, one must flash it with the
lab computer in circuit lab 1. In those cases the reason has usually been a
defect bit file.

• netflash help i located by writing netflash -h when on inside the fpga.

• it is also possible to use flashwWrite# flashw -f filetotransfer.bit /dev/flash/f-
pga

• The board will perform the reflashing and reboot, unless b option chosen
then just write "reboot" after startup

D.4 Compiling and creating the uCLinux image

Follow the manual inside of the lab appendix for TFE4170 System-on-Chip, how-
ever one has to skip the part concerning networking support since this is needed for
some applications with the Suzaku-S When configuring the image itself, there are
som things important to do: ”TFE 4170 Enbrikkesystemer Laboratorieoppgave
vår 2007” or Sverre Hamres tutorial explains some aspects about how this is done
To prepare the uClinux image for the networking necessary to use ethernet,router
and netflash follow these steps below:

• After selecting "Kernel/Library/Defaults Selection" choose "default all set-
tings" then run make dep;make

• This will ensure a working image, if one want to try to the implementation,
this is now uploadable to the suzaku board

• If one wants Ethernet connection it is possible to add TCP/IP support under
"Networking Options", IP Multicasting and IP kernel level autoconfiguration.
Note: Not sure if this is necessary, but does not seem to do any harm to the
creation of the system.

D.4. COMPILING AND CREATING THE UCLINUX IMAGE 137

D.4.1 Known errors and solutions

If make dep and/or make is not running properly(typically a lot of errors in final
text)
Write: echo $PATH
check if elf-tools is included.
If not, write export PATH=$PATH:/der/hvor/elftools er/bin
Example: export PATH=$PATH:/usr/local/microblaze-elf-tools/bin/
then try make dep;make and make image

D.4.2 NFS

NFS is a good tool to link a folder on your own computer and make it accessible
on the Suzaku and it is described how this is done in
http://no.wikipedia.org/wiki/Network_File_System
http://ubuntuforums.org/showthread.php?t=249889
http://www.linuxconfig.org/HowTo_configure_NFS The commands needed
to mount the folder when logged in to the Suzaku board(described below) is:
"mkdir /var/suzaku_shared" "mount -o nolock, rsize=4096,wsize=4096 -t
nfs ip.to.computer:/home/folder/where/shared_folder"
(i.e mount -o nolock, rsize=4096,wsize=4096 -t nfs 192.168.1.100:/home/user/-
suzaku_shared /var/suzaku_shared
If, when mounting the folder through NFS arrives permission denied, you can try
to edit the host.allow and host.deny files as done in this tutorial. This is although
the most thorough one with a large amount of information.
http://nfs.sourceforge.net/nfs-howto/ar01s03.html

additional, but more in detail info :http://tldp.org/HOWTO/NFS-HOWTO/index.
html

D.4.3 Setting static IP

This is described in the Software manual page 13(version.1.3.1), but in brief: edit
the Uclinux/vendor/AtmarkTechno/SUZAKU-S.SZXXX/etc/rc/ifonfig file and choose
the preferred IP address

138 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

C-Code

Step by step

• Compiled together with the uClinux image.Described in the tutorial written
by Sverre Hamre

• Also possible to run directly from NFS, remember however to alter read-
/write/execute permissions to the executable file.

• This is done by performing chmod 777 "folderwithexecutablefile".

• Seems like the address range 0x84000000 is working better on the lab com-
puter. Do not use the 0x81000000 which is specified in the tutorial because
this is to close to other address areas and might cause problems.

Java code

The java code is developed with Eclipse. Running the java program in a Linux
system is performed with the command "java -jar graphingprogram.jar"

D.5 Sources of error

In uClinux on the Spartan -S netflash as a reconfiguring method will not necessary
work. This is most likely due to failure in the bit file. To solve this generate a
new bit file after cleaning all generated files. This has been a problem with the
emulated windows XP Xilinx tools but not with the tools in the ATDE3 OS.
Windows 7 og ISE10.1 is not compatible, one should rather use XP or atmark
technos own system.
With Windows 7 it is easy to emulate XP, however this does not imply that the
connection to HW will be possible. Ubuntu is also possible to use with Xilinx 10.1,
but this is a bit more tricky and might cause more problems.

An installation key is needed to install the Xilinx tool, this is possible to get
from either supervisor or Department engineer.

D.6. FILE LIST NOC 139

D.6 File list NoC

(in compilation order for PAO file) updated pr 26.06.11:

• type_lib_noc vhdl

• arbiter_v2 vhdl

• readout vhdl

• control2 vhdl

• 64bit_buffer vhdl

• router vhdl

• mux_tstamp vhdl

• mux16to1 vhdl

• 44_mesh vhdl

• 44_interface_mesh vhdl

• global_counter vhdl

• BRAM vhdl

• LFSR_8 vhdl

• trafficgenerator_v2 vhdl

• TrafficMonitor vhdl

• TM_control vhdl

• interface vhdl

• user_logic vhdl

• noc vhdl

140 APPENDIX D. TUTORIAL:HOW TO IMPLEMENT THE NETWORK ON CHIP
ON THE SUZAKU-S PLATFORM

Comment with regards to the files: When using create import peripheral in EDK
a library called noc_v1_00_a is created. This is as shown for AHDL could cause
some problems. If using Modelsim SE it will not handle the common "work" library
where usually all the files in the same directory is found. ISE and AHDL should
be capable of handling the use of only work as the referred library. The current
code uses both, but following the specifications in this tutorial, it should work out
of the box.
C code to be used on the board for testing:

• helloworld.c (just to check if c code is possible to run on the OS)

• Send.c

• Makefile

• This tutorial is more or less a result of different experiences when setting up
tools to develop the NOC. Bare in mind that there might be differences be-
tween development systems and other factors so it is essential to understand
limitations regarding development tools. If there are any more questions or
anything not comprehend able please send an email with the question to
mnamork@gmail.com.

	Title Page
	masteroppgave.pdf

