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Problem description

An increasing part of the information available on the Internet is non-textual.
Examples are sound archives such as recorded lectures, net radio and archived
radio transmissions, and videos such as YouTube and Internet TV. This
makes a need for a tool that can search in other information sources than
the text based. There is a desire to develop a tool for information search by
means of sound tracks in audio databases. As a first step in this process, one
needs to make an event log through audio segmentation. The segmentation
includes classification of sound segments as speech or non-speech, detection
of speech quality on basis of bandwidth and identification of speech segments
from the same speaker. In this thesis, one wants to start creating an event
log of news broadcasts, by regarding detection of long pauses and detection
of speaker changes. The work will be based on a corpus from The Norwegian
Broadcasting Corporation (NRK) radio.
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Supervisor: Torbjgrn Svendsen, IET.
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Summary

The amount of non-textual media on the Internet is increasing, which creates
a greater need of being able to search in this type of media. The goal with
this thesis is to be able to do information search by use of soundtracks in
audio databases. To get to know the content in an audio file, one wants
a system that can automatically extract necessary information. The first
step in making this system is to record what is happening at which time
in an event log. This thesis treats the beginning of such a process. The
experiments performed dealt with detection of pauses lasting longer than 1
second and detection of speaker changes. The corpus used in experiments
consists of news broadcasts from The Norwegian Broadcasting Corporation
(NRK) radio. Each broadcast had a transcription, which was used as a
reference when evaluating the results. Another corpus, the HUB-4 1997
evaluation data, was used for comparative tests.

A lot of work treating indexing of audio databases has already been con-
ducted. As corpora are different, there may be varying results obtained from
the same methods. In this thesis, common segmentation methods have been
used with the parameters adapted to give as good results as possible with the
given corpus. In the pause detection, model-based segmentation was used. A
Gaussian mixture model was implemented for each of the two events: sound
and long pause. For the speaker segmentation, experiments with different
metric-based segmentation techniques were performed. The Bayesian infor-
mation criterion (BIC) and a modified version of this criterionl| were tested
with different options and parameter values. A false alarm compensation
based on the symmetric Kullback-Leibler distance was implemented as an
attempt to reduce the number of false change points.

The pause detection was not successful. By using the manual transcrip-
tion as reference, an F-score of 38.1 % was obtained when the settings were
adjusted to result in about the same numbers for false alarms and false re-
jections. However, further investigation showed that the transcription had
flaws with respect to labeling of pauses. An evaluation of the wrongly in-

Ipresented by Ajmera, McCowan, and Bourlard [I]
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serted pauses showed that most of these segments actually contained silence
or noise. However, the number of pauses missed was unknown, and it was
not possible to get a reliable F-score. An attempt on labeling all pauses in
the HUB-4 1997 data was done. With the modified transcription, an F-score
of 81.7 % was obtained. However, it is possible that unlabeled pauses still
exist in the transcription, as the labeling was performed by only looking at
the audio signal. From classification experiments it became clear that using
1st and 2nd order delta coefficients in the feature vectors gave an improve-
ment over just using static MFCCs. An F-score of 98.8 % was obtained
from these experiments, which implies that the models are good when the
segment boundaries are known. In order to get trustworthy results from the
recognition task, a review of the transcription must be done.

When using the modified version of BIC and false alarm compensation for
speaker change detection, an F-score of 77.1 % were obtained. The average
mismatch between correctly detected change points and reference transcrip-
tion was 339 milliseconds. As a measure of how good the algorithm is, an
F-score of 72.8 % was obtained with the HUB-4 1997 data. Ajmera et al. [I]
obtained an F-score of 67 % with the same data. It became clear that full
covariance matrices gave an improvement over diagonal covariance matrices,
and that static MFCCs as feature vectors gave better results than MFCCs
including delta coefficients. Inclusion of pitch as another feature did not
contribute to any improvement of the results.
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Chapter 1

Introduction

This chapter is an introduction to the report. Section presents the moti-
vation and background for the work that has been done. Section|1.2|describes
the chosen approach to the work, and gives some examples of previous work.
Finally, section presents the structure of the report.

1.1 Motivation and background

Non-textual media are more and more common on the Internet. Conse-
quently there is a greater need for being able to search in this kind of infor-
mation sources, in the same way as one can do with stored text. A tool for
doing this can be used to search in and for e.g. answering machine messages,
recorded lectures, YouTube videos, archived radio broadcast, Internet TV
shows and so on. An example of previous work is the MIT lecture browser
[2], which makes it possible to do searches in the recorded lectures at MIT.
A screen shot of this application is shown in figure [I.1], when a search for the
phrase "speech recognition" has been done. On the left hand side, all lectures
that contain the phrase are listed and one can choose to listen to the specific
sections where the phrase was found. On the right hand side, there is a video
recording of the lecture with the spoken words displayed as text underneath.
By reading one can more quickly get the context of the section containing
the desired phrase.

This thesis makes the start of the development of a tool for information
search by means of sound tracks in audio databases. The first step in cre-
ating this tool is to make an event log by performing audio segmentation.
The goal is to obtain homogeneous acoustic audio segments consisting of
events such as music, speech or silence. One also wants to add necessary
notes about speaker identity, type of recording and so on. The latter has
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| Lecture Browser
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 athe general runtime to about i think it's something that will be and it you take a isolated the simplest the case where there’s no
solved in years a hat the price in speech recognition is very go and context and no noise and a perfect microphone three great
it you take a isolated the simplest the case where there's no simplifications that event nice you it into computers not very
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() that than the divergence between a computer and that and this crummy microphones in always that than the divergence between

~ you um-hum and it’s quite substantial in of course human users of a computer and that and this you um-hum and it's quite

these things are very demanding because speech doesn't operate substantial in of course human users of these things are very
at a conscious level is it makes mistakes you just get irritated and demanding because speech doesn't operate at a conscious level

talk louder of course it's been trained it's learned you're speaking is it makes mistakes you just get irritated and talk louder of
in narmal fulsa inst asts wnrsa S course it's been trained it's learned you're speaking in normal <

Figure 1.1: The MIT lecture browser.

influence on what content one can expect. In telephone recordings there is
more noise than in studio recordings. In these recordings there is also mostly
spontaneous speech, which includes more disfluencies such as restarts and
hesitations than read text from a script in studio. By detecting the different
events one can structure the audio file into parts analogous to pages and para-
graphs in text files. There are several challenges in the work of making an
event log. Problems include detection of rapid changes, detection of speech
in noisy environments, how to handle cases where different kinds of audio
occur simultaneously, etc. In news broadcasts, such events are common. For
example, new topics are often presented with background music, field reports
often contain background sounds such as traffic noise or background speech
and debates contain rapid changes between speakers.

Manual transcribing and annotation of audio to learn the content of a file
will reduce the information search problem in audio to the problem one has
with text search. Yet, this is expensive and it might even be impossible due
to privacy concerns [3]. Automatic indexing is therefore desirable. A perfect
automatic speech recognition (ASR) system combined with the technology
used for text indexing would be the ideal system. Though, today’s ASR
systems are not robust enough. Another difficulty with this approach is how
to handle music and other non-speech sounds. A problem when searching
for audio files is to overcome the linearity [4]. When a relevant document is
found, one has to listen to the whole file to be sure nothing is missed. This is
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more time consuming than just skimming through a text file. Indexing can
be helpful for faster approving of the returned file.

This thesis concentrates on two tasks, namely long pause detection and
speaker change detection. Much research has already been done in the field
and different methods have been compared to each other. However, as cor-
pora have different content varying results may be obtained with the same
methods on different corpora. This thesis will use methods presented in oth-
ers’ work, but adapt them to make as good results as possible for the specific
corpus used, which contains news broadcasts from NRK (The Norwegian
Broadcasting Corporation) radio.

1.2 Work

The first task in this thesis is to segment the news broadcasts into two parts,
namely sound and long pauses. This step is meant as a preprocessing for
further segmentation such as speaker change detection, where one wants the
data to consist of as clean speech as possible. In fact, parts with music or
other non-speech sounds would also be desirable to remove before speaker
segmentation, but such a task has not been regarded in this master thesis.
Another reason to detect long pauses is that they often represent a change
of topic or speaker. Pauses shorter than 1 second occur naturally during
speech, and are not desirable to detect.

The most common methods that have been used for segmentation tasks
are model-based, metric-based and energy-based segmentation techniques.
In this thesis, model-based segmentation will be used for pause detection.
An advantage with this method is that when the models are trained on ex-
ample data, one often gets a better basis for succeeding in the decoding than
when using a method that does not need training. On the other side, training
is a time consuming process and one is dependent on enough representative
training data. [5] used hidden Markov models for speech/non-speech sepa-
ration and [6] used Gaussian mixture models for classifying into wide band
speech, pure narrow band speech, music and speech and only music. In this
thesis, a Gaussian mixture model will be implemented for each of the two
events: sound and long pause. Gaussian mixtures are capable of modeling ar-
bitrary densities [7], which is useful in audio segmentation. The experimental
results will be compared to a manual transcription, which has been carried
out by students at an earlier stage. The transcription denotes the start and
end times of the pauses and gives information about the appurtenant back-
ground conditions. Both classification and recognition will be performed.
In classification, the recognizer must decide whether defined segments are
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sound or long pauses, while in recognition, the recognizer must find the seg-
ment boundaries as well. Realistic results must be obtained from recognition,
but classification is useful for tuning of parameters and optimization of the
method.

The second task is to perform speaker segmentation, i.e. detect points
in time where speaker changes occur. As the number of speakers and their
identities are unknown, model-based segmentation is not applicable. An-
other possibility for speaker segmentation is to use an energy-based approach,
which assigns changes where periods of silences occur. However, this may not
be useful for news broadcasts, as these often contain rapid changes between
speakers [§]. A metric-based approach is therefore chosen. In this method,
the similarity between to adjacent windows moving over the audio signal is
measured. [9] used a distance measure called the Bayesian information cri-
terion (BIC), while [I] presented a modified version of this criterion. Both
methods will be implemented in this thesis and different parameter values
and options will be tested. [10] used another distance measure called the
symmetric Kullback-Leibler (KL2) distance. The KL2 distance will in this
thesis be used as a post-processing step with the purpose of reducing the
number of false change points introduced by the BIC algorithm.

In order to be able to compare the obtained results with results achieved
by others, the algorithms used must have been applied on the same data.
Several authors have published results obtained on a corpus called the HUB-4
1997 evaluation data. This corpus will therefore be used to make comparative
tests.

1.3 Outline of the report

The report is structured in the following way:

Chapter [2| contains the theory behind parameterization of audio, hidden
Markov models, Gaussian mixture models, Bayesian information cri-
terion, symmetric Kullback-Leibler distance and different evaluation
measures. This chapter will make a foundation for understanding the
rest of the report.

Chapter [3] contains information about the corpora that have been worked
on. This includes information about the audio, and the accompanying
transcriptions.

Chapter [4], [5] and [6] presents the experiments that have been performed.
Chapter [4] gives the detailed approaches to each problem and chapter
presents the results of them. Chapter [6] presents the discussion of
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the results, in addition to mentioning special difficulties and problems.
Chapter |p| also gives a suggestion to further work.

Chapter [7] summarizes the most important results and aspects with this
report.






Chapter 2

Theory

This chapter presents the theory behind the tasks that have been performed
in this thesis. The different segmentation techniques require a parameter-
ization of the audio. In this process the most important features of the
audio are extracted. The features used, mel frequency cepstral coefficients,
are explained in section [2.1 The aim of the first task was to detect long
pauses. A Gaussian mixture model was fitted to each of the two events, long
pause and sound, in order to describe them as good as possible. The models
were implemented in the hidden Markov model toolkit as one-state hidden
Markov models. The two model types and their connection are presented in
section 2.2} In the second task, different metric-based algorithms for speaker
segmentation were implemented. These are presented in section [2.3] Finally,
the evaluation criteria used are explained in section [2.4]

2.1 Feature extraction

In audio segmentation, the sound wave is not used directly, but it is pa-
rameterized beforehand. This parameterization should extract features that
are good at distinguishing between the different classes of interest. Features
within the same class should be as similar as possible. The desired features
will vary for different applications. In speech recognition for example, one
wants to recognize the speech, but the speaker identity is irrelevant. In
speaker segmentation on the other hand, the goal is to separate the differ-
ent speakers. One alternative of acoustic features for representing audio is
mel frequency cepstral coefficients (MFCC). MFCCs are commonly used in
speech recognition, but they have also been used in audio classification due to
good discrimination abilities [I1]. How to obtain the MFCCs are explained
below. The steps are displayed graphically in figure
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Feature extraction

. Divide the audio signal into overlapping frames.
. Weigh each frame with a window function.

. Take the fast Fourier transform (FFT) of the magnitude spectrum of

the windowed data.

. Perform mel-filtering. This is done by using triangular filters uniformly

spaced at the mel scale. The mel scale is defined as

f

Mel =2 1 1+ =
€ (f) 595 Oglo( + 700

) (2.1)
where f is the frequency in Hz. Using the mel scale will result in a
better model of the hearing. The filter bank is shown in figure 2.1} As
seen, the total response of the filter bank equals 1 in all bands except
the first and the last.

N\
TR IR N,

] B [y Encrey in
! _ "] Each Band

Figure 2.1: Mel-scale filter bank [12].

5. Compute the log-energy at each filter output.

6. Perform a discrete cosine transform (DCT) of the log energies of each

filter output. This results in the MFCCs.

It is assumed that the content in each frame is stationary. Speech is not

stationary, but the assumption will be approximately true if a short enough
window length is chosen. Typically, the window is a Hamming window of 25
ms applied on overlapping frames shifted by 10 ms [I4]. A longer shift will
give a lower time resolution, and one can miss important information. On
the other hand, there will be less need for storing and computation. With a

8
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input
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Figure 2.2: Steps for calculating MFCCs [13].

longer window, one risk that the assumption of stationary frame content is
not valid. By contrast, a shorter window gives poorer frequency resolution.
A common choice is to calculate 12 MFCCs for each window, with the
Oth cepstral parameter, C, appended as the energy component. Another
possibility is to perform cepstral mean normalization (CMN). Channel vari-
ations, like different microphones and room acoustics, may be a problem in
recognition and segmentation tasks. CMN of the MFCCs can give increased
robustness as it handles convolutional distortions [I4]. The CMN can be
performed as follows.
Given a set of T' cepstral vectors X = {xg,x1,---,%;—1}. The sample
mean X is given by
17

T

|
—

X =

Xt (2.2)

Il
o

The sample mean is then subtracted from each vector x;, which results in
the normalized cepstrum vector x;

)/C\t =X — X (23)

Denote y[n| as the output of passing x[n] through a filter h[n]. In the
cepstral domain, the filter h is given by

h = C (In |[H(wo)* - In | H(wp) ) (2.4)

where C is the DCT matrix. Since convolution in the time domain corre-
sponds to summation in the cepstral domain one has

yi=x:+h (2.5)

This results in the sample mean y

1T—1 1T—1
Y=Y yvi=- (xx+h)=x+h (2.6)
7= T =
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and the normalized cepstrum is given by

Vi=Yi—Y
=x;+h—-X—h (2.7)
=X,

From equation it is clear that the normalized cepstrum is not affected
by linear filtering operations. For the CMN to be useful, the content in a
specific environment must last longer then 2-4 seconds [14].

Delta coefficients can be used to measure temporal changes in the MFCCs
[T4, p. 425], and is also often desirable as speech is not stationary. The 1st
order delta coefficient at time ¢ can be computed as

_ 269:1 0 (Ct+9 - Ct—@)
259 62

Agy (2.8)

where ¢, is the static MFCC at time ¢. A typical value for the window size
O, is 2. The same formula can be applied on the 1st order delta coefficients
to obtain 2nd order delta coefficients.

2.2 Model-based segmentation

Model-based segmentation techniques are often used when the set of events
to detect is known. In these methods, a set of models are trained on example
data of the different events, prior to the segmentation. In the following sec-
tion, hidden Markov models (HMM) and Gaussian mixture models (GMM)
will be presented. GMMs have been used in this thesis for detection of long
pauses. It will be shown that these models can be implemented as HMMs,
and thus the hidden Markov model toolkit (HTK) can be used for implemen-
tation of the models.

2.2.1 Hidden Markov models

A hidden Markov model (HMM) is a statistical model that can be used to
model time varying processes, such as the vector sequences obtained from
parameterization of an audio signal. The following description is inspired
by [I5, p. 8-20], where a more detailed description can be found. A HMM
generates a discrete time signal from a series of connected states. An example
of a HMM with (N — 2) emitting states is shown in figure 2.3

For each frame or time step, the model changes state according to a set
of transition probabilities {a;;}, which denotes the probability for going from

10
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Exit
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Figure 2.3: Example of a hidden Markov model [15].

Observations

state 7 to state j. This can be mathematically expressed as
=P(z(t+ 1) =jlz(t) =1) (2.9)

where x(t) is the state at time ¢. The entered state then generates an ob-
servation according to the output probability distribution b;(o;). The entry
and exit states only denote the start and end of the model and do not result
in an output. For continuous output distributions, as is used in this thesis,
b;(o;) is the likelihood of state j generating the observation vector o,. This
can be expressed mathematically as

bi(0r) = Ploa(t) = j) (2.10)

The output distribution may e.g. be a Gaussian distribution as will be pre-
sented in section [2.2.2] The observations are assumed to be independent of
each other. Another assumption is that the probability of being in state z(t)
only depends on the previous state z(t — 1).

The model parameters are estimated by using example observation se-
quences of a known class. This is called training, and can be done using the
Baum-Welch algorithm. The algorithm is complex and will not be described
here, but it is presented in [14, p. 389-393]. The models are named hidden
Markov models, because it is normally only the signal and model parameters
that is known, while the state sequence is hidden. Finding the state sequence

11
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is called The Decoding Problem and can be solved using the Viterbi algo-
rithm. This algorithm chooses the most likely state sequence up to state ¢
for each time ¢, and remembers it. The best sequence can then be decided
by an induction procedure, given as

ay;jbj(o1) ift=12<j<N-1
6,(t) = zg,]‘é%"il[@(t —Daglbjor) f2<t<T;2<j<N-1 (211
. . 3 — T+, 5 —
29%%1[@@)%] ift=T+% j=N

where ¢;(t), is the likelihood of the most likely state sequence up to state
j at time t, which has generated the observation sequence o1, 0o, ..., 0;. State
1 and state N are non-emitting. The model always starts in state 1 at time
17, and ends in state N at time 7. A back pointer must be saved for each
time step, to recover the best state sequence.

Argmax{xi(t—l)aij} if2<t<T;2<j<N-1
2<i<N-1

Xi(t) = . | (2.12)
Argmazx {Xi(T)aiN} ift=T"%, j=N

2<i<N-1

The most likely state sequence X = x(1), ..., z(T) is then recovered as

xn(TF) ift =T+
#(t) = (2.13)
Xern(t+1) f1<t<T—1

The likelihoods in the Viterbi algorithm will in the end decrease to a very
small number. To avoid underflow when using computers for calculation, the
Viterbi algorithm is implemented in the logarithmic (log) domain. An audio
segment is acoustically closer to a HMM, the higher log likelihood it has.

2.2.2 Gaussian mixture models

A Gaussian mixture model (GMM) is a classic parametric model often used in
pattern recognition techniques [16]. In a GMM, the probability distribution
for the observed parameters is given by

p(o) = aN(o; pi, %) (2.14)

12
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where o = {04} are independent observation vectors, a; are normalized pos-
itive scalar weights, M is the number of mixtures and N (o; p, X) is the p-
dimensional normal distribution with mean vector g and covariance matrix

3} defined by

1 1
N(o;p, %) = s P 50— )3 o —p) (2.15)

Figure 2.4 shows the depiction of an M component Gaussian mixture density.

px)

Figure 2.4: Depiction of an M component Gaussian mixture density [7].

The performance of a system depends on the number of chosen mixtures.
This number can vary from task to task, and the best solution is to deter-
mine it experimentally. Too few mixture components can result in inaccurate
models. Larger corpuses of training data therefore normally need more mix-
tures in order to get accurate models. At the same time, choosing too many
mixtures can give reduced performance if the number of model parameters
becomes large relative to the available training data [7]. The computational
cost increases with an increasing number of mixtures. Figure [2.5]is a plot
from MATLAB of a bivariate Gaussian distribution with two mixture com-
ponents. The plot has two peaks because of the two mixture components.

The GMM can be thought of as a hidden Markov model with only one
emitting state and with the output probability distribution, b;(o;), given as

13



2.3. Metric-based segmentation

Figure 2.5: Plot of a bivariate Gaussian distribution with two mixture
components.

the Gaussian distribution in equation (2.14). Thus, the same methods for
training and testing can be used for the GMMs as for HMMs.

2.3 Metric-based segmentation

Metric-based segmentation techniques are often used in change detection
tasks. In these methods, two neighboring windows are moved over the audio
signal, and a similarity measure is used to compute the resemblance between
the two windows. Different similarity measures can be used, and some of
them have been investigated in this thesis. For the initial change point
detection the Bayesian information criterion (BIC) and a modified version of
this measure presented in [I], were tested. For reduction of false alarms, a
method called the symmetric Kullback-Leibler (KL2) divergence, presented
in [8], was used. The methods will be explained in the following sections.

2.3.1 Bayesian information criterion

In BIC, two relatively small adjacent windows are moved over the audio
signal, as shown in figure |2.6|
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Chapter 2. Theory
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Figure 2.6: a) Two neighboring windows with data D1 and D2 around time
t, where a distance measure is used to find out if there exists a change point
or not [I]. b) If no change point is found, the window size is increased with
an amount ¢nc. The distance measure in calculated at each time instance ¢
that assures a minimum length of the two windows. c¢) If a change point, ¢,
is found, the window is shifted to start next to this change point.

The similarity between the two windows with data D1 and D2 is measured
to decide if there is a change point at time ¢ or not. BIC uses hypothesis
testing for this. It is assumed that the data can be modeled by Gaussian
probability density functions (PDF). The two hypothesizes are

Hy: A change point occur at time t. The data sets D1 and D2 are modeled
by two Gaussian mixture models.

H,: There is no change point at time t. The data sets D1 and D2 are
modeled by a single Gaussian mixture model.

In the case of Hy, the data in the adjacent windows are believed to come
from different sources. Thus, the two data sets should be modeled by two
individual Gaussian mixture models with parameters #; and 60, respectively.
In the case of H; the data in the adjacent windows are believed to come
from the same source, and the data sets should be modeled by one Gaussian
mixture model with parameters 6. For each time ¢, the LL of the data in
both hypotheses are compared. The log likelihood (LL) of the observation
vectors o is given by

LL(o) = logpa (0}8) = 3 log p (0/6) (2.16)
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2.3. Metric-based segmentation

where p(o) is the multivariate Gaussian PDF with M mixture components
described in equation (2.14) and n is the number of observation vectors in o.
The BIC is defined as

AK
BIC(t) = LL(D1|6h) + LL(Da|fy) — LL(D|f) = A=~ log N (2.17)

where A is a penalty factor, AK is the difference in the number of parameters
used in the two hypothesizes and NN is the numbers of data points in window
D. If BIC(t) > 0, a change point is considered.

In the original version of BIC, one mixture component is used for each
model. In the modified version presented in [I], the data sets in the case of H;
are modeled by a GMM with two mixture components. This model can be
obtained by using the Expectation-Maximization (EM) algorithm, described
in [14, p. 170-172]. Using a two mixture model in the case of H; and single
mixture models in the case of Hy, gives AK = 0 in equation (2.17). The
last term will therefore be eliminated and the decision of whether there is a
change or not now depends on the differences in likelihoods given by

AL =log L(D;|60;) + log L(D5|6) — log L(D|0) (2.18)

If AL > 0, a change point is considered.

Parameters that must be chosen are minimum window size, window in-
crease and maximum window size. In addition one can choose to define a
change point for the first time instance ¢ where AL > 0, or find all time
instances within a window where AL > 0 and select the one with the highest
value. The algorithm for both BIC and the modified version goes as follows.

1. initialize the window D € [a,b] with a = 1 and
b = minimum window size of D (in frames).
2. measure the BIC value for each t in the window that
assures a minimum length, min_window, of D1 and D2.
3. if(no change in [a+min_window,b-min_window])
b = b + frame increment;
else(t is the change point)
a=t+1, b=a+ min window*2 - 1;
4., if (b-a > maximum window size)
a = b - max_window;
5. go to (2)

2.3.2 Symmetric Kullback-Leibler

The symmetric Kullback-Leibler (KL2) distance, is another distance measure
between data in two neighboring windows. A segmentation algorithm based
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Chapter 2. Theory

on this measure is presented in [8]. In this thesis, the measure has been
used in a post-processing algorithm for trying to reduce the number of false
alarms.

The KL2 distance between two neighboring windows having feature vector
sequences D1 and D2 is given by

KL2(D1, D2) = / [p1 (0) — ps (0)] log z : 8 do (2.19)

If assuming that D1 and D2 can be modeled by a multivariate Gaussian
distribution, such that p; ~ N (e, X1) and py ~ N (py, o), where N (u, X)
was defined in equation ([2.15)), the KL2 distance can be written as

KL2(D1,D2) = iTr {(gl — %) (232—1 . El_lﬂ

+%Tr {(21_1 - 22_1) (g — o) (o — IJJ2)T} (220)

A change point is accepted if the KL2 distance exceeds a given threshold.
This threshold can be set automatically, as the mean of KL2 distances mea-
sured at all time steps ¢, shifted with an amount [s, in a distance +Tmax
around the proposed change point ¢.:

1
threshold, = @ + ————— > KL24 2.21
resnoldcgp « 2Tma$ 1 ; h+ ( )

where —Tax/ls < 7 < Thax/ls, and « is a pre-defined scaling factor that
must be set experimentally.

2.4 Evaluation criteria

In evaluation of segmentation experiments, one often divides the result into
four groups, depending on the result of the classification. Say one want to
separate an event X, from other events Y. The four possible results of the
segmentation are:

o Correct acceptances (CA): number of segments classified as X and
belonging to X

o False alarms (FA): number of segments classified as X, but belonging
toY

o Correct rejections (CR): number of segments classified as Y and be-
longing to Y

17



2.4. Evaluation criteria

« False rejections (FR): number of segments classified as Y, but belonging
to X

It is often easier to evaluate the result if it is given in percents or rates.
The two error types can be presented as false alarm rate (FAR) or false
rejection rate (FRR)

FR
FRR = bR+ oA (222
FA

Other evaluation scores commonly used are precision, recall and F-score.
In a general case, these can be defined as

. number of correctly returned results
Precision = (2.24)
number of alleged correct results

number of correctly returned results

Recall = (2.25)

number of possible correct results

Precision - Recall
F- =2 - 2.2
seore Precision + Recall (2.26)
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Chapter 3

Databases

This chapter describes the two databases used in this thesis. RUNDKAST,
described in section [3.I) has been used in experiments in order to adapt
the algorithms to give optimal performance on this corpus. The HUB-4
1997 evaluation data, presented in section [3.2] has been used to compare the
results obtained in this thesis with results obtained by others.

3.1 RUNDKAST

The data used for experiments in this thesis, is from a corpus containing news
broadcasts from the Norwegian Broadcasting Corporation (NRK). NRK is
Norway’s major broadcasting institution, with several TV channels as well
as radio channels. The corpus consists of different radio news programs with
varying content: read texts, spontaneous speech, dialogs, music, speech in
various Norwegian dialects and speech in other languages. There are also
variations of speakers, recording type and quality, background noises, etc.
Programs with focus on sports, culture, or economics were excluded from
the corpus. NRK does not have commercials. The corpus contains about 77
hours of audio and it was produced by the RUNDKAST project [17] at the
Norwegian University of Science and Technology (NTNU). The audio files
have a sampling frequency of 16000 Hz.

Each audio file has an accompanying transcription, containing manually
segmented, labeledE] and transcribedﬂ audio. The transcription files were
given in a XML-based format defined by version 1.5.1 of the Transcriber tool
[18]. Each audio file is split into 3 hierarchical annotation levels.

Tadding notes to different events
2speech sounds represented as text
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3.1. RUNDKAST

1. Sections: registration of whether the file part is a report (regular news
items), filler (headlines, small talk etc) or a portion not to be tran-
scribed (music, jingles, speech not relevant for the program, etc.)

2. Speaker turns: registration of points in time for speaker changes and
identification of the speakers. For each speaker turn, the speaker mode
(spontaneous or planned) and the type and fidelity of the recording
are also denoted. The recording type can either be studio recording or
telephone recording, and the fidelity can be high, medium or low.

3. Segments: defining smaller parts of the file, to make the transcrip-
tion easier. There is a new segment for every section, every change of
speaker and every lasting change in background conditions. There is
also often a new segment at breathing pauses. The segments should
ideally have duration of 2-5 seconds. Pauses of one second or longer
were also asked to be separated out as segments and these segments
will naturally be shorter.

For each level the start- and end times are given. In addition there is a
level for lasting background conditions. The background boundaries must
coincide with segment boundaries, but may span several segments, speaker
turns or sections. The transcription files also include labeling of different
events. These events can be music, pauses, inhalations, background noise of
short duration, overlapping speech etc.

Figure displays a screen shot of the transcription tool Transcriber,
where the hierarchical structure is shown. From the bottom, the time bound-
aries of the chosen segment and the time axis are displayed. Next the seg-
ments are listed, then the speakers and the sections. Closest to the signal
are the background conditions, if any, displayed. The four levels are assigned
with different colors.

o nm i N2_010510_NRK_HON_NO
‘
|
|
\ music |
filler
Kari Serba (no speaker) Kari Sorbo
[s] [i] sann at[e] en... | pa| vil nok.| [i] [b-Jog det[-b] sa.. [b-]og fra[-b] tilhevet.| [iJforLO ...[ som har vist at
... okonomiske L.?] | rpariet. _.. Opheim. et .0 ..ein kongress ... ar for ar.
T

T T
&:55 7:00 T:05 7:10 =15 T:20 7:25

Cursor - 07:00.96 Selection - 07:00.96 - 07:06.121 {5.161)

Figure 3.1: Screen shot of the transcription tool Transcriber [18].
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Chapter 3. Databases

3.2 HUB-4 1997

The HUB-4 1997 evaluation data is administered by the NIST Spoken Natu-
ral Language Processing Group [19]. The database consists of nearly 3 hours
of concatenated radio and television broadcast news stories. The news con-
tains variations similar to those found in RUNDKAST; variations of speakers,
different quality of recordings, different backgrounds conditions, planned or
spontaneous speech, etc. Commercials and sports results are excluded in the
transcription as the syntax and semantics differ from the rest of the data.
The data is monophonic with a sampling frequency of 16000 Hz.

The accompanying transcription contains information similar to what is
found in RUNDKAST. This includes division into sections, speaker changes
and segments, and labeling of speaker mode, fidelity and significant back-
ground conditions. Other information that is included in the transcription
is overlapping speech, non-speech sounds such as mispronunciations, inhala-
tions and coughing, and segments not to be transcribed (including the reason,
i.e. foreign language, commercials, etc.).
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Chapter 4
Method

This chapter describes the approaches to the different experiments performed.
Section describes the pause detection, including details around the fea-
ture extraction, the training and testing of Gaussian mixture models and the
evaluation criterions used. Section describes the speaker segmentation,
including details around the feature extraction, the different experiments
performed and how the results were evaluated.

4.1 Pause detection

4.1.1 Feature extraction

MFCCs were used as feature vectors for pause detection. The vectors were
extracted with the function HCopy from HTK. Detailed information about
this toolkit and its functions can be found in [12]. 12 static MFCCs were
used with the Oth coefficient appended as the energy coefficient. In some
experiments, delta coefficients were also included. CMN was performed in
order to try to reduce the influence of channel noise. Experiments were done
with different window lengths and window shifts. The combinations 30/15
ms and 40/20 ms for length/shift were tested.

4.1.2 Implementation of methods and experiments

The aim of the first task was to separate the audio into two parts; sound
and long pauses. A long pause has been defined as a period of silence or
background noise (grating or car noise), preferably with a duration of 1
second or longer. Filled pauses, i.e. pauses containing background speech,
laughter, coughing or similar, were considered as sound. The pause detection
was performed by modeling each of the two events with a GMM. The GMMs
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4.1. Pause detection

were implemented in HTK as HMMs with one emitting state. The functions
HInit and HRest were used for training, and HVite and HResult were used
for testing. The training set was taken from RUNDKAST and consisted of
about five hours of audio. Of this were almost 10 minutes or 332 segments,
long pauses. The pauses were chosen from segments that were labeled as
long pause by the transcribers and that contained silence or background
noise. A few segments had unknown content as they were not transcribed
and labeled with background level 'off. These were listened to and re-labeled
as long pauses if the conditions were met. The different segments chosen for
training were picked by creating virtual files in HTK [12], p.51], which linked
to different segments in the real file. The data used for training and the data
used for testing were chosen such that they contained material from different
news programs and from different parts of each program. The training and
test sets did not consist of data from the same files. Figure[d.1]shows a simple
overview of the system.

, |
'IE?MFW __. |Feature |__ | Training
i extraction

Acoustic models:
GMMs=

1 I ",

{ .}W W Feature . Recognition
(R . — | Testing

i extraction network

Audio for testing l

Audio for training

Transcription —= | Evaluation

l

Result

Figure 4.1: Model-based segmentation system using GMMs.

Classification was performed to investigate how well the GMMs could
separate sound and pauses when the segment boundariesE] were known. The

'Point in time where one segment ends and another starts. A segment is here a con-
tinuous part of the audio that is labeled as either long pause or sound
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Chapter 4. Method

testing was carried out by making virtual files of all segments that should
be classified. The chosen segments coincided with the segments defined in
the transcription. The recognition network was specified to choose either the
label sound or the label long pause for each segment. The test set for clas-
sification included 84 segments of long pauses and 1190 segments of sound,
chosen from RUNDKAST. Classification experiments were also used to find
the optimum audio parameterization and the ideal number of mixture com-
ponents in the GMMs.

To get realistic results, recognition had to be performed. In this task the
system must detect both the correct events and the correct boundaries. Ex-
periments were performed with different values of an insertion penalty, which
was set with the option -p in HVite. This option adds a penalty to the calcu-
lated LL score, for each transition from one model to another. Consequently
the number of inserted pauses will be reduced. After the recognition with
HVite, segments of 0.9 seconds or shorter were removed from the results,
as these segments are too short to be in the target group. The test set for
recognition consisted of nearly 18 hours of continuous audio from 26 different
files in RUNDKAST. The set included 100 long pauses.

The models were also tested with the HUB-4 1997 data. A new labeling of
long pauses in this database was done to use in the evaluation, as the original
transcription contained many flaws. The pauses were found by looking for
segments with low or stable energy in the audio signal. Only pauses with
duration of 1 second or longer were labeled.

An investigation of the performance of the acoustic models was done by
running two rounds with recognition; one with only the GMM for pause and
one with only the GMM for sound. The recognition network was made so
that the probability for leaving the emitting state was 1, and the probability
for going from the end state to the start state was 1. In this way one gets the
LL scores for both models for each frame. The results were plotted against
the frame number, to investigate if it was really possible to decide between
sound and pause. The model that fits the data best should have the highest
LL score. An ideal plot for the case of a pause between two segments of
sound is shown in figure 4.2 The scores for the two models are plotted in
different colors. One will not obtain an equally good plot in reality, but with
applicable models it should be possible to separate the two graphs.

As an attempt to improve the results, a new training set was chosen. In
this set, it was tried to exclude sound segments that contained longer periods
of silence. This was done by excluding the start and end of each segment,
where silence often exists. In addition, segments with a short pause followed
by another non-speech element like inhalation or exhalation were excluded.
Only pause segments longer than 0.95 seconds were included in this set. The
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4.1. Pause detection

LL score
A
sound pause sound

Frames

Figure 4.2: The ideal scenario when the LL scores per frame are plotted
for the two models. The green plot shows the scores for the pause model,
and the blue plot shows the scores for the sound model.

training set included 400 pause segments and almost 6.5 hours of sound. A
better routine for choosing the training set made more pauses available than
in the last set.

4.1.3 Evaluation

The numbers of false alarms and false rejections were used as evaluation
measures for pause detection. Using the definitions in section class X
gives the long pauses and class Y gives the sound segments. F-score, precision
(PRC) and recall (RCL) were also used. The F-score was defined in equation
@, while the precision and recall in this case can be defined as in equations

4.1)) and ([1.2) respectively.

PRC — # of segments correctly labeled as long pause

4.1
number of segments labeled as long pause (4.1)

# of segments correctly labeled as long pause

RCL = (4.2)

total number of long pauses

A proposed pause has been accepted as correct if the mismatch from the
reference transcription was less than 0.7 seconds.
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4.2 Speaker segmentation

4.2.1 Feature extraction

MFCCs were used as feature vectors in the speaker segmentation as well.
The features were extracted with HCopy in HTK. In experiments with static
MFCCs, 24 coefficients were used, as chosen by [I]. In experiments with 1st
and 2nd order delta coefficients, 12 static coefficients were used in addition
to 12 coefficients for each of the delta orders. The window size of the delta
windows, denoted as © in equation (2.8)), are by default 2 in HTK and these
values were kept. CMN was not performed, as changes in the environment
often happen simultaneously with speaker changes. For example, people may
talk with different distance to the microphone. Further, the energy coefficient
was not added, since the energy may vary within one speaker segment. This
is in contrast to the pause detection, where energy plays an important role.
In all experiments, 10 ms window shift and 30 ms window size were used.

4.2.2 Implementation of algorithms and experiments

The algorithms for both BIC and the modified version of BIC were imple-
mented in MATLAB. The scripts can be found in appendix [D.I Several
experiments were performed with variations of the window increase and the
maximum and minimum window lengths. The difference in the performance
between using full or diagonal covariance matrices and between using feature
vectors with or without delta coefficients were also investigated. In addition,
different thresholds used for deciding whether there is a change point or not
at a given time were tested. A list over all the experiments performed can
be found in appendix |[B| The experiment that gave the best result was also
tested with the HUB-4 1997 data and compared with the results obtained
by [I] with the same data. A MATLAB function from Voicebox [20], called
gaussmix, was used for training the two mixture Gaussian model in the
modified version of BIC. This function uses the EM-algorithm for training.
K-harmonic means with K randomly selected data points was used for ini-
tialization of the EM-algorithm. Information about K-harmonic means can
be found in [21].

A false alarm compensation (FAC) was implemented to try to reduce the
number of incorrectly detected speaker changes. The symmetric Kullback-
Leibler (KL2) distance was measured between the data D1 and D2 centered
around each proposed change point, t.,, returned from the initial speaker
segmentation. This is shown in figure 4.3l As pointed out by [8], the model
of a data set will contain data from two speakers if a change point is missed
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in the first place. Therefore a maximum window length, T'maz was used as
a restriction. Tmax is chosen as the smallest value of a given length T'm and
the distance to the next change point.

t——— Tmax Tmax ——

D1 D2

teh

Figure 4.3: Two neighboring windows of length T'max around a proposed
change point t.,. The KL2 distance is used to accept the change point or
not.

The threshold was set as in equation . Figure displays graphi-
cally the process of finding the threshold. The MATLAB script for the FAC
can be found in appendix

An additional experiment was performed to investigate the effect of in-
cluding pitch as an acoustic feature. Pitch is a perceptual property of sound,
which is closely related to the fundamental frequency, f0. A high funda-
mental frequency makes us perceive a higher pitch. Pitch is also affected by
intensity, but intensity is already included in the feature set by using the mel-
scale in the calculation of MFCCs. As f0 varies from person to person, pitch
may be a useful feature in speaker change detection. The pitch values were
extracted with a function called pda from Edinburgh Speech Tools Library
[22]. A description of this algorithm can be found in [23]. The maximum and
minimum values of f0 were set with the options -fmin and -fmax. Exper-
iments were done with different values of ~fmin/-fmin. The combinations
50/600 Hz, 60/500 Hz and 70/400 Hz were tested. Low-pass filtering was
performed with the option -L. The window length and window shift were set
with the options -shift and -length to the same values that were used to
extract the MFCCs. Then, one pitch value per MFCC vector was obtained.
A pitch detection algorithm from PraatP] was also considered. A description
of this algorithm can be found in [24]. The only option set, was the maximum
value of f0, and it was kept as the default value of 600 Hz. The minimum
value had to be set to 100 Hz in order to get one pitch value per MFCC
vector. This is because the window length used for extraction depended on

2www.praat.org
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Iw
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Figure 4.4: Routine for setting a threshold automatically. KL2 distances
between to neighboring windows of length [, around time steps ¢ are mea-
sured. The windows are shifted with length [, and the threshold is set as a

factor multiplied with the mean of all t-values in the range t., £ T'max.
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the minimum value of f0. As a male voice can have an f0 as low as 60 Hz
[14], it may be difficult to get pitch values from some male voices with this
algorithm. The pitch values were modeled with a Gaussian distribution, and
the LL scores were calculated from equation The LL scores from the
pitch values were combined with the LL score from the MFCCs according to
the formula

LLipt = aLLyyfee + (1 — @) LLpien (4.3)

where the parameter a was set by experimenting. Since unvoiced sounds
have no periodicity, they have no defined pitch values. This resulted in less
data in the analysis windows with pitch values than in the windows with
MFCCs. This again made the LL scores for the pitch values less negative
than the LL scores for the MFCCs. To compensate for this, a normalization
of the likelihood for pitch was performed according to

length( Dy, fec)

LLyiteh norm = itc 44
pitch,_ pit hlength(Dpitch) .

where D, ¢ is the analysis window for MFCCs, Dy, is the analysis window
for pitch values and LL,.s, is the original LL score obtained. Because of the
short analysis windows needed for speaker change detection, the windows
occasionally contained no defined pitch values. In those cases, only the LL
score obtained with MFCCs were used. The code added or changed in the
original algorithm for doing this experiment, can be found in appendix [D.2]

Differences in the running time of the algorithms between using full co-
variance matrices and diagonal covariance matrices were measured with the
MATLAB functions tic and toc. In order to get comparable values of the
experiments, no other programs were run in the background. The mean of
thousand experiments were taken with the maximum and minimum values
removed.

The selected test set from RUNDKAST consisted of about 2.75 hours
of audio, taken from 11 different files. File parts with a limited number
of longer pauses and music segments were evaluated. However, most files
included music segments, especially between different topics. Segments with
different kind of noise were also present in the test set. How such non-speech
segments were treated is explained in the following section. A total of 587
changes were considered after the modifications explained in the following
section were performed.

4.2.3 Evaluation
Precision, recall and F-score, defined in equations (2.24)), (2.25) and (22.26)

respectively, were used for evaluation. More specific for this task, precision
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and recall can be defined as in equations (4.5)) and (4.6)) respectively.

PRO — Number of correctly found change points

4.5
Number of change points found (45)

ROL — Number of correctly found change points

4.6
Number of true change points (46)

Only change points with a mismatch with respect to the true change
point of less than 1.5 seconds were considered as correct. The test set from
RUNDKAST consisted of audio from several different files. The presented
results on this test set will be given as the average of the precisions, recalls and
F-scores obtained on each file. The HUB-4 data was already concatenated
into one file, so the scores presented on this data has been obtained from the
whole file.

How to evaluate non-speech events and other irregularities can be dis-
cussed. The chosen approach in this thesis is listed below.

Several people talking When several people were talking at once, it was
defined to be a speaker change point when the people started talking
simultaneously, and a change point when this ended. In cases where
it was only a very shortﬂ contribution by another person such as ’yes’,
'mm’ or 'but’, the duet was ignored.

Music, noise, etc. Segments containing pure music, noise or other non-
human sounds, often contributed to a lot of false alarms. Proposed
change points within these segments were not included in the evalu-
ation. The change points from speech to non-speech and from non-
speech to speech, however, did contribute. Non-speech sounds made
by humans, as laughing or coughing were treated as it if they were
speech.

Speech in other languages Speech in other languages than Norwegian
has not been manually transcribed. Sometimes there was music, sev-
eral people talking or other interruptions in these segments. They were
therefore listened to, and additional change points were marked if nec-
essary.

Pauses Pauses or inhalations sounds were ignored when the duration was
around 1 second or shorter.

3typically less than 0.5 sec
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Chapter 5

Results

This chapter includes the results from the conducted experiments. For the
related discussion, see chapter [6] The results from the pause detection are
given in section [5.1} This includes the classification results, the recognition
results on both RUNDKAST and HUB-4 1997 and the evaluation of the
GMMs. In section [5.2] the results from the speaker segmentation are given.
This includes results obtained with both BIC and the modified version of
BIC. The section also presents a comparison with results obtained by [I].

5.1 Pause detection

5.1.1 Classification

Table[5.I| presents the results from the classification of sound and long pauses,
with varying parameterizations and numbers of mixture components. For
each parameterization, only the best combination of mixtures is presented.
Note that in some experiments, several mixture combinations gave the same
results. Table displays the combination with the lowest mixture numbers.
The complete table can be found in appendix [C]

In the rest of the experiments, 1st and 2nd order delta MFCCs, 40 ms
window length, 20 ms frame shift, 32 mixtures in the sound model and 16
mixtures in the pause model were chosen. Appendix displays the con-
figuration file used. Table shows the results obtained with the chosen
parameters in percents.

5.1.2 Recognition

Table displays the results from the recognition of long pauses with the
test set from RUNDKAST. An insertion penalty of -145 was chosen. The
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5.1. Pause detection

Table 5.1: Evaluation of the sound/pause classification for different num-
bers of mixtures components, dynamic parameters, window lengths and
frame shifts. WL is window length, FS is frame shift. D is 1st order delta
coefficients, A is 2nd order delta coefficients. The notation z/y mir means
that x mixtures were used for sound and y mixtures were used for pause.

Experiment FA FR
D and A, WL = 40ms, FS = 20ms

32/16 mix 1 1

16/16 mix 2 0
Only D, WL = 40ms, FS = 20ms

64/32 mix 1 1
D and A, WL = 30ms, FS = 15 ms

16/16 mix 2 0
Static MFCCs, WL = 40ms, FS = 20

4/32 mix 1 4

Table 5.2: Results of the sound/pause classification when using the chosen
parameters

Experiment FAR FRR F-score
D and A, WL = 40ms, FS = 20ms, 32/16 mix 0.1 % 1.2% 98.8 %
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Chapter 5. Results

mismatch denotes the difference between the recognized segment boundaries
and the segment boundaries marked in the transcription. It is given in mil-
liseconds as differences in start/end boundaries.

Table 5.3: Evaluation of the pause recognition with an insertion penalty of
-145.

CA FA FR F-score Mismatch
45 74 72 38.1 % 109/100 ms

A further investigation of the results was done by listening to the false
alarms. It turned out that many of the false alarms contained silence or noise
and therefore met the criterion for long pauses. Despite that, these segments
had not been marked as long pauses in the reference transcription. Reducing
the insertion penalty to -40 resulted in a big increase of false alarms. This
is shown in table |5.4. The modified transcription is obtained after all the
false alarms were listened to and re-classified as either correct or false alarm.
Recall and F-score are not shown for this test as the number of missed pauses
was unknown.

Table 5.4: Evaluation of the pause recognition with both the transcription
from RUNDKAST and the modified transcription. An insertion penalty of
-40 was used.

CA FA FR PRC RCL  F-score

RUNDKAST 85 428 32 166 % 726 % 27.0%
Modified 478 41 32 921 % - -

The models were also tested with the HUB-4 1997 data to investigate if
it was possible to get better results on another corpus. However, it turned
out that also the transcription in this corpus was not accurate with respect
to pauses. This corpus seemed to contain fewer long pauses than the test
set used from RUNDKAST, so it was a manageable task to go through the
data and label all pauses. The results are displayed in table 5.5 showing the
scores when the HUB-4 1997 transcription was used and when the modified
transcription was used. The results can only be a indication of what is
possible to obtain, as the labeling not was carefully done and pauses may
have been missed. An insertion penalty of -20 was used. Note that these
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5.2. Speaker segmentation

results include pauses longer than 1 second, while in the other experiments
pauses longer than 0.9 seconds were included.

Table 5.5: Evaluation of the pause recognition on HUB-4 1997 using an
insertion penalty of -20. The results are evaluated with both the transcription
from HUB-4 and the modified transcription.

CA FA FR PRC RCL  F-score Mismatch

HUB-4 12 108 3 10.0% 80.0% 17.3 % 292/210
Modified 103 19 27 84.4% 792 % 81.7% 102/79

As the results from the recognition were poor compared to the results
from the classification, an investigation of the performance of the acoustics
models was done. Figure [5.1] shows the result from this evaluation. The LL
scores per frame obtain from each of the two models are plotted.

The results obtained with the models trained on the new data set, are
displayed in table 5.6l An insertion penalty of -195 had to be used to get
comparable results to the first training set. The same mixture combination
was used. As the new set contained more data, the mixture combination
64/32 for the sound/pause models was also tested. However, there was not
any significant change from the displayed results.

Table 5.6: Evaluation of the pause recognition with models from a new
training set. An insertion penalty of -195 was used.

CA FA FR F-score Mismatch
New GMMs 45 78 72 375 % 117/88

5.2 Speaker segmentation

The best results from the speaker segmentation performed on RUNDKAST
are displayed in table 5.7 These were obtained with the modified version of
BIC using a threshold of zero, a minimum window of 2 seconds, a maximum
window of 8 seconds and a window increment of 1 second. The change points
were chosen as the points in time with the highest BIC score larger than zero
within a window. The thresholds in the FAC algorithm were multiplied with
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(b) Part of a audio file. There are three pauses with centers around frame 1520,
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Figure 5.1: LL scores per frame for both the sound and pause model. Green
graph shows the scores using the pause GMM, and the blue graph shows the

scores when using the sound GMM.
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5.2. Speaker segmentation

a = 0.45. The table displays the results both before and after FAC was
applied. Static MFCCs were used as acoustic features. The configuration
file used to obtain the feature vectors can be found in appendix [A.2] Full
covariance matrices were used in both the BIC and FAC algorithm. Note
that the results from the modified version of BIC will vary slightly for each
experiment, as the function gaussmix.m did not always return the same log
likelihood score for the same data.

Table 5.7: Evaluation of speaker segmentation using modified BIC on
RUNDKAST. Mismatch is the average mismatch between the change points
accepted as correct and the true change points. Both the results before and
after FAC are shown.

Criterion PRC RCL  F-score Mismatch

Mod BIC: 682 % 827% 744 % 341 ms
Mod BIC FAC: 753 % 79.6 % 77.1 % 339 ms

The results from using the modified BIC algorithm with the HUB-4 1997
data are displayed in table 5.8, The results are compared to the results
obtained by [I] with the same data. When using the evaluation criterions
mentioned in section it was considered to be 594 change points in the
database. [I] considered 515.

Table 5.8: Evaluation of speaker segmentation on HUB-4 1997. Results
from proposed method are compared with results obtained by [I] with the
same data.

Criterion PRC RCL  F-score

Mod BIC 654 % 784 % T71.3%
Mod BIC FAC 703 % 755% 728 %
Ajmera 68 % 65 % 67 %

The results from the original BIC algorithm are presented in table [5.9]
Different values of A, in equation , are displayed to show the effect on
the precision and recall. The results were obtained with a minimum window
of 2 seconds, maximum window of 8 seconds, window increment of 1 second
and full covariance matrices. Static MFCCs were used, and FAC was not
applied.
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Table 5.9: Evaluation of speaker segmentation with original BIC on RUND-
KAST.

Criterion PRC RCL  F-score Mismatch

BICA=145 68.7% 829% 745 % 401 ms
BICA=15 T733% 778% 748 % 367 ms
BICA=155 769 % 74.0% 748 % 342 ms
BICA=16 799% 723% 75.1% 318 ms
BICA=165 81.6% 69.1% 741% 314 ms

The best results obtained when using diagonal covariance matrices are
displayed in table .10} In the modified version of BIC, the results were
obtained using a minimum window of 1 second, a maximum window of 7
seconds and an increment of 0.5 seconds. In the original BIC, the results
were obtained with a minimum window of 2 seconds, maximum window of 8
seconds and an increment of 1 second. A\ was set to be 5.5. Static MFCCs
were used, and FAC was not applied.

Table 5.10: Evaluation of speaker segmentation when using diagonal co-
variance matrices.

Criterion PRC RCL  F-score Mismatch

Mod BIC, diag ¥ 1.1% 60.8% 652 % 275 ms
BIC A =5.5,diag¥ 763 % 69.7% 71.9% 381 ms

The results when including pitch in the feature set are shown in table
.11l The table displays the results when using both normalized and not
normalized LL scores for the pitch features, for each of the two pitch ex-
traction algorithms used. For the pitch algorithm from Edinburgh speech
tools, the minimum and maximum fundamental frequency were set to re-
spectively 50 Hz and 600 Hz. The « in equation (4.3|) was set to 0.8. The
modified version of BIC method was applied with a minimum window of 2
seconds, maximum window of 8 seconds, window increment of 1 second and
full covariance matrices.

Adding delta coefficient turned out to worsen the results and changing
the threshold for acceptance of change points in the modified version of BIC
did not improve the results either. Both an automatic updated threshold
and a static threshold were tested.
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5.2. Speaker segmentation

Table 5.11: Evaluation of speaker segmentation with inclusion of pitch in
the feature set. The results when using normalized and not normalized LL
scores for the pitch features are shown, for each of the two pitch extraction

algorithms used.

Criterion PRC RCL  F-score Mismatch
Praat FAC 3% 793% 6.8 % 326 ms
Praat norm FAC 71 % T80% 769 % 330 ms
Edinburgh FAC 762 % TT% 6.6 % 338 ms

Edinburgh norm FAC 79.0 % 756 % 76.7 % 324 ms
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Chapter 6

Discussion

This chapter includes a discussion of the results presented in chapter [5 Sec-
tion treats the results from the pause detection and the accompanying
problems. Section discusses the results from speaker segmentation. This
section also includes a presentation of the additional cost it takes to use full
covariance matrices instead of diagonal covariance matrices. Finally, section
[6.3] gives a suggestion to further work.

6.1 Pause detection

6.1.1 Experiments

As can be seen from table the number of errors gotten from the different
parameterizations was quite similar for the best mixture combinations. Still,
the inclusion of delta coefficients in the MFCC vectors gave an improvement
over using static MFCCs. The sound model was believed to need a higher
number of mixture components than the pause model, as there was much
more training data available for sound. However, this was not the case for
the static MFCCs. In an application where it is important to minimize the
risk of loosing sound when removing pauses, settings that allow more false
rejections than false alarms should be chosen. If a low computational cost
is desired, one should choose the lowest number of mixtures and the highest
values of window length and window shift that gives adequate results. Based
on this, the parameters evaluated in table were chosen. The obtained
results were promising, which implied that the acoustic models should be
applicable.

The results from the recognition of pauses, presented in table [5.3] did
not seem good at first sight. The insertion penalty was set such that there
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6.1. Pause detection

was about as many false alarms as false rejections. However, when listening
to the false alarms, it was clear that about 90 % of these segments actually
were periods of silence, noise or silence followed by a breathing sound. By
listening to the false rejections, it was estimated that half of them should be
fairly easy to detect. The other half were believed to be harder to detect as
these contained loud or unstable noise. Yet, similar segments were recognized
correctly.

The insertion penalty was changed to -40 in order to reduce the number
of false rejections. The number of false alarms was consequently increased,
but it was expected that many of these segments were pauses. Table [5.4
shows the scores before and after re-labeling of the false alarms. It should be
noted that some transcribers used the label for breathing sound together with
the label for short pause for the same type of segments that other labeled
as a long pause. Such segments were accepted as correct detected pauses
in the modified transcription. The high precision implied that the models
were capable of detecting many pauses and that the biggest problem laid in
the transcription. Yet, the number of missed pauses was unknown. Most of
the false alarms that were left after the re-labeling contained fading music
followed by a period of silence. Some also contained only music and some
were filled pauses with content like ringing phones or background speech.
The latter has been defined as sound in this thesis.

Proposed pauses of duration longer than 0.9 seconds were kept in the
results. A long pause should, according to the transcription rules, be longer
than 1 second since shorter pauses more often occurs as natural breaks in
speech. In spite of that, some of the transcribed pauses in RUNDKAST
were shorter. The minimum length of 0.9 seconds was therefore set. This
also allows some mismatch in the recognized segment boundaries of pauses
close to 1 second. With the insertion penalty of -40 there were 95 pauses
in the results with duration between 0.9 and 1 second. Nine of these were
labeled pauses, the rest were false alarms. By only allowing pauses longer
than 1 second, one could have reduced the number of proposed false alarms
considerably.

The new labeling of pauses in the HUB-4 1997 transcription gave promis-
ing results. However, since the labeling was performed by looking at the
audio signal, pauses may have been missed. Especially pauses containing
noises were hard to find. No reported results of pause detection on this cor-
pus, which can be used for comparison, have been found. This may be due
to the fact that labeling of pauses missed in the transcription.

Figure presented the investigation of whether the models were ap-
plicable. With satisfying models it should be possible to separate the LL
scores obtained with the sound model from the LL scores obtained with the
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Chapter 6. Discussion

pause model. The plot showed, on the other hand, that the sound models
were modeling pauses almost as well as the pause models. The reason may
be that the training data for sound contained a good deal of longer pauses.
The new training set therefore tried to reduce the risk of having long pauses
in the training data for sound. As an example it was discovered that there
was often a pause after music segments. The ends of music segments were
therefore excluded. A few more pauses were included in the training set.
More representative data was believed to give an improvement of the pause
model. From table[5.6] it was clear that the numbers of false alarms and false
rejections were about the same as with the first training set. When listening
to the false alarms obtained with the new models, it turned out that the
results had become poorer as several long segments of music were recognized
as pauses. The reason for this is not known.

Training of models with a lot of data is time consuming. To reduce the
amount of elapsed time, quite long window lengths and frame shifts were used
for parameterization. Important information may have been missed because
of this, and there might have been non-stationary content in the frames. In
case of the latter, the assumption when calculating MFCCs is not valid.

6.1.2 Problems with the transcriptions

Because of the large amount of long pauses that not were labeled in the tran-
scription for RUNDKAST, the evaluation of the recognition was problematic.
In addition to getting unreliable results, not knowing the real number of false
rejections made it hard to set the value of the insertion penalty in HVite.
This parameter is useful to control the number of false alarms versus false
rejections. As mentioned earlier, it is sometimes preferred with more false
rejections than false alarms. The transcription may also have contributed to
errors in the models if a lot of silence was included in the training set for
sound. The reason for the poor transcription of pauses may be that the tran-
scribers concentrated on labeling of speech, and therefore were inconsistent
in their labeling of other events. As several people contributed to the tran-
scription, things may have been handled differently. Some aspects with the
transcription that caused problems in the pause detection are listed below.

o According to the transcription rules, a long pause should have a dura-
tion longer than 1 second. However, segments down to 0.615 seconds
were marked as a long pause. The segment length therefore had to be
registered, and if a labeled pause was shorter than 0.9 seconds it was
not treated.
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6.2. Speaker segmentation

« Long pauses should have been separated out as segments in the tran-
scription, but this was not always done. Segments containing both
sound and a long pause were not included in the training set. This
made fewer pauses in the set than it could have been. Enough repre-
sentative training data is necessary to obtain accurate models.

o Many instances of the false rejections had similar content as found
among the false alarms and the correct accepted pauses. This may be
due to inconsistency in the labeling. For example, segments with a
short pause followed by an inhalation sound did often have a duration
longer than one second. Sometimes these segments were labeled as a
long pause and other times they were labeled as exactly a short pause
and inhalation.

Also in the transcription of the HUB-4 1997 data, the information about
pauses was insufficient. Some pauses were marked as inter segment gap,
but many unmarked pauses longer than 1 second were discovered. Some
of the pauses that had been labeled were marked with incorrect segment
boundaries. No rules for labeling pauses were found in the description of
transcribing routines, so this might not have been a prioritized task in the
transcription of the database.

6.2 Speaker segmentation

6.2.1 Experiments

The length of the speaker segments in the evaluated broadcast news varied
from less than a second to several minutes. Short segments are often found
in debates, while longer segments are common in for example read news.
Because of the short segments, the minimum window size in the metric-based
algorithms must be quite small. This makes it hard to get reliable models of
the data. Despite that, satisfactory results were obtained as shown in table
5.7 The false alarm compensation increased the F-score with a few percents,
and made the precision and recall more even. The average mismatch between
segment boundaries accepted as correct and the boundaries in the reference
transcription was 339 ms. As there often is a period of silence between
two speaker segments, a change point can correctly be assigned in both the
beginning and the end of this silence. Consequently, the mismatch obtained
from the evaluation might sometimes have been a little larger than what
could have been defined as correct. Experiments on adding delta coefficients
to the MFCCs resulted in a worsening of the results. This may not be a
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surprise as speech from the same speaker also contains temporal changes.
It was also found out that the threshold of zero was the best choice in the
modified version of BIC.

The modified version of BIC was first presented by Ajmera et al. [1].
In this thesis different parameters were chosen. Among other factors, full
covariance matrices were used in this theses, while [I] used diagonal matrices.
From table it was clear that the method implemented in this thesis gave
about 5 % increase in the F-score compared to [I]. In the evaluation of
the results, all speaker changes with a mismatch less than 1.5 seconds were
accepted. If this boundary is reduced, the F-score will be poorer, and the
mismatch will be better. Ajmera et al. did not report any value of the
mismatch, and it is therefore not known whether they were stricter with the
acceptance of change points or not.

Table [5.9] shows that the original BIC method was better than the mod-
ified BIC when FAC not was used. With the original method, it was easier
to control the number of false alarms versus false rejections. Therefore the
FAC algorithm did not have to be applied. From table [5.10] one can see
that in the modified version of BIC, full covariance matrix gave a significant
improvement over diagonal covariance matrices. There was also an improve-
ment in the original BIC, although this was smaller. The improved results
indicate that there was some correlation between the MFCC vectors.

By comparing the results in table [5.11] with the results in table[5.7] it was
clear that the inclusion of pitch in the feature set gave almost unchanged
results. The reason may be that the estimates were not good enough or that
the pitch varied too much for the same speakers. All four experiments gave
about the same results. An investigation of the change points showed that
the inclusion of pitch occasionally changed the BIC scores from below zero
to above zero, and vice versa. It is believed that when this happened, often
another BIC score in the same window was chosen as a change point. This
would not affect the resulting F-score, but only contribute to a small change
in the mismatch. In the experiment with normalized LL scores for the pitch
values extracted with Praat, the F-score was lower than both the precision
and recall. This was because of the evaluation method used where the average
of the scores from each file was taken. The performance of the pitch detection
depends on the maximum and minimum value of the fundamental frequency.
This could be more accurate if one knew the gender of the person talking. An
idea could be to do a gender classification before the speaker segmentation.

It turned out that a maximum window size of 8 seconds gave the best
results. If the window length was increased, the results became poorer and
the processing time increased. The window length was well suited for these
experiments, but it was short compared to e.g. [25], which used 20 seconds.
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Duets often contributed to false rejections, as these speaker segments were
very short, typically less than a second. In the test set from RUNDKAST,
9.7 % of all segments had a duration shorter than 2 seconds. When using a
window length of 2 seconds, these were hard to detect. False rejections did
also occur in cases with a sequence of the speakers [a, b, a], where speaker
b only contributed with a short interruption. The change to speaker b will
most likely be missed because of the short duration of the speaker segment,
and therefore speaker a, talking for the second time, will probably be missed
as well. False alarms are likely to occur when the window is too short to give
a reliable model of the data. Many false alarms were also introduced by the
non-speech elements, but these were not included in the evaluation. Non-
speech sounds will occur frequently in broadcast news, but they were chosen
not to be considered as it will be easier to compare with others’ results when
only speech is treated. However, changes from speech to non-speech and vice
versa were included. Most of these change points were successfully detected.

The test set consisted of parts from several different files. From file seg-
ment to file segment the F-score varied from 68.4 % to 88.6 %, after the
FAC routine. The performance was therefore dependent on the speakers
and/or background conditions. In the file with the lowest score, 25.7 % of
the segments were shorter than 2 seconds and therefore hard to detect.

6.2.2 Full versus diagonal covariance matrices

When using diagonal covariance matrices for modeling the Gaussian distri-
bution, it is assumed that the elements in the acoustic feature vectors are
independent. This is approximately true when using MFCCs. Full covariance
matrices are necessary to model correlated feature vectors, but the complex-
ity of the algorithm increases when using full instead of diagonal covariance
matrices. For d-dimensional feature vectors, a full covariance matrix requires
d? parameters, while a diagonal matrix only requires d parameters. The dif-
ference in running time between using full and diagonal covariance matrix
for modeling data with a single mixture GMM is displayed in figure[6.1} The
plot shows the running time of the calculation of a LL score. Both the num-
ber of frames in the data window and the dimension of the feature vectors
have been varied.

As seen from figure [6.1) the use of full covariance matrices was more
costly than the use of diagonal matrices, and the time gap increased with
the dimension of the data. In the modified version of BIC, LL scores of
two data windows modeled by single mixture model were calculated for each
time step. In addition a GMM with two mixtures was calculated for time
each step. In the original BIC, LL scores of three data windows modeled by
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Figure 6.1: Running time for calculation of the LL score of data modeled
by a single mixture model, varying window size and feature vector dimen-
sion. Green and blue graph shows the running times using diagonal and full
covariance matrices respectively.

47



6.3. Further work

a single mixture model were calculated per time step. The number of BIC
measurements in a file depends on the number of change points. A rough
estimate is that in 15 minutes of audio, there are 150 000 points in time, ,
where the BIC distance is calculated. The running time of the function used
for the two mixture model, gaussmix.m, is shown in figure [6.2]

The scaling in figures and shows that the calculation of the LL
score for the two mixture GMM dominated the running time. Thus, the cost
of using full covariance matrices was larger for the modified version of BIC.

The difference between using full and diagonal covariance matrices when
calculating a KL2 distance is displayed in figure [6.3] Both the number of
frames in the window, and the dimension of the feature vectors have been
varied. As seen in the figure, the difference in running time was constant with
respect to the number of frames in the window, but it was increased with
an increasing dimension of feature vectors. In the false alarm compensation,
a maximum of 400 KL2-distances were calculated for each proposed change
point, so this algorithm will contribute less to the total running time.

6.2.3 Comments to the transcriptions

The transcriptions of the two corpora were believed to be good when it came
to labeling of speaker changes. Even so, a few comments can be made. In
the transcriptions belonging to RUNDKAST there was by coincidence found
unlabeled occurrences of people talking simultaneously. Some errors may
have occurred because of this, but since the examples found had quite short
duration it is not believed to be a significant problem.

In both RUNDKAST and the HUB-4 1997 data, segments containing
foreign speech were not transcribed. As these segments sometimes contained
several people talking, music segments or similar, they had to be listened to
in order to get a correct evaluation. This led to some more work with the
evaluation, but the results were not affected.

6.3 Further work

More work remains in order to have a tool that can extract a complete
event log of broadcast news. First of all, the transcription of the database
used, RUNDKAST, must be quality checked. Especially pauses are poorly
documented. To able to find a properly working method for pause detection,
the reference transcription must be correct.

False alarms that arose from segments with music or other non-human
sounds in the speaker segmentation were not considered in this task. A

48



Chapter 6. Discussion

Calculation time of LLIDY, having 2 mixtures. D has N frames with dimension 24
0s T T T T T T T T T

—=—Full
07k Diagonal |4

i i 1 1 1 1 1 1 1
0 200 400 BOD 8OO 1000 1200 1400 1600 1800 2000
Frames in window, M

(a) Varying the number of frames in a window. The dimension
of the feature vectors is 24.

Calculation time of LL{D], having 2 mixtures. D has 400 frames with dimension d
0.4 T T T T T T T

—=—Full
035k Diagonal 4

03 B

D 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
Dimension of the feature vectors, d

(b) Varying the dimension of feature vectors. The number of
frames in the window is 400.

Figure 6.2: Running time for calculation of the LL score of data modeled
by a two mixture model, varying window size and feature vector dimension.
Green and blue graph shows the running times using a diagonal and full
covariance matrices respectively.
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solution to the problem is to perform speech /non-speech segmentation before
the speaker segmentation. It is in this case important not to loose any
speech segments, something that may be difficult when dealing with segments
containing overlapping music and speech. In other tasks one may want to
find all parts in a file that contain music, and then such overlapping segments
should be classified as music.

A follow-up to the speaker segmentation is to perform speaker clustering,
where segments spoken by the same speaker are grouped together. This can
later be used for adaption of acoustic models, which can improve the speech
recognition rate. It can also be used for identification of speaker roles, which
can make it easier to determine different topics and parts in a story [26].
The clustering can be done by first detecting changes in an audio stream,
and secondly cluster the similar speaker segments together.

Other information that may be useful in an event log is the type of record-
ing. Bandwidth measurements can be used to find out whether one has a
studio recording, telephone recording or radio link.
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Chapter 7

Conclusion

This thesis has started the process of making an event log of broadcast news.
Experiments on detection of long pauses and speaker changes have been
performed. The corpus RUNDKAST has been used for experimenting, and
the HUB-4 1997 data has been used for comparative tests.

In the pause detection, the recognizer first got defined segments with
the task to decide whether they contained a long pause or sound. Experi-
ments were performed with different audio parameterizations and numbers of
mixture components in the GMMs. It became clear that including delta coef-
ficients in the feature vectors gave an improvement over using static MFCCs.
A number of different mixture combinations gave about the same results, but
32 mixtures for the sound model and 16 mixtures for the pause model were
used in further experiments. The classification showed promising results,
with an F-score of 98.8 %.

When performing recognition instead of classification, it became clear
that several pauses in both RUNDKAST and HUB-4 1997 were not labeled in
the transcriptions. With an insertion penalty of -40, a precision of 16.6 % and
a recall of 72.6 % were obtained with the test set from RUNDKAST. However,
the false alarms were listened to and re-classified as correct detected pauses if
they contained noise or silence. Consequently, the precision increased to 92.1
%. It was not known how many long pauses that were really missed, resulting
in an unknown recall. An attempt on labeling all pauses in the HUB-4 1997
data was done. With the modified transcription, an F-score of 81.7 % was
obtained. This is a promising result, but it is possible that unlabeled pauses
still exist in the transcription, as the labeling was performed by only looking
at the audio signal.

In the speaker segmentation, experiments were done with different algo-
rithms and parameters. The modified version of BIC resulted in an F-score
of 77.1 % after the false alarm compensation was run. The average mis-
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match between accepted change points and the boundaries in the reference
transcription was 339 milliseconds. The algorithm was also tested with the
HUB-4 1997 data and an F-score of 72.8 % was obtained. For comparison,
[1] reported an F-score of 67 % with the same data. The original BIC algo-
rithm gave the best results without use of FAC, with an F-score of 75.1 %.
From experiments it became clear that delta coefficients in the MFCC vectors
gave a worsening of the results. Full covariance matrices gave an improve-
ment over diagonal covariance matrices and the improvement was largest in
the modified version of BIC. However, full covariance matrices also lead to
increased computational complexity. Including pitch did not contribute to
any improvement of the results.

In further work, a review of the transcription of RUNDKAST must be
performed in order to be able to get trustworthy results from the pause detec-
tion. How to treat the non-speech elements so they do not affect the speaker
segmentation should also be investigated. To complete the event log one
should collect all speech from the same speakers by doing speaker clustering.
Later one can also do speaker identification as many of the speakers in broad-
cast news occur frequently such as announcers and well known politicians.
Detection of the recording type should also be done by bandwidth measures.
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Appendix A

Parametrization

A.1 Configuration file for pause detection

The configuration file used for parameterization of the audio waveforms into
MFCCs, for the pause detection is shown below.

# Acoustic parameterization

# Input waveform file format (16 kHz 16 bit wav format)

SOURCEKIND = WAVEFORM

SOURCEFORMAT = WAV

SOURCERATE = 625

ZMEANSOURCE = TRUE # To avoid DC offset

# Parameterization (20 msec frame shift, 40 msec frame window)
TARGETKIND = MFCC_ 0 D A Z

TARGETFORMAT = HTK
TARGETRATE = 200000
WINDOWSIZE = 400000
USEHAMMING = TRUE
PREEMCOEF = 0.97
USEPOWER = FALSE
NUMCHANS = 26
LPCORDER = 12
CEPLIFTER = 22
NUMCEPS = 12
SAVECOMPRESSED = FALSE
SAVEWITHCRC = FALSE
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A.2. Configuration file for speaker change detection

A.2 Configuration file for speaker change de-
tection

The configuration file used for parameterization of the audio waveforms into
MFCCs, for the speaker change detection is shown below.

# Acoustic parameterization

# Input waveform file format (16 kHz 16 bit wav format)

SOURCEKIND = WAVEFORM

SOURCEFORMAT = WAV

SOURCERATE = 625

ZMEANSOURCE = TRUE # To avoid DC offset

# Parameterization (10 msec frame shift, 30 msec frame window)
TARGETKIND = MFCC

TARGETFORMAT = HTK
TARGETRATE = 100000
WINDOWSIZE = 300000
USEHAMMING = TRUE
PREEMCOEF = 0.97
USEPOWER = FALSE
NUMCHANS = 26
LPCORDER = 12
CEPLIFTER = 22
NUMCEPS = 24
SAVECOMPRESSED = FALSE
SAVEWITHCRC = FALSE
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Appendix B

Experiments on Speaker
Segmentation

Below is the experiments performed when doing speaker segmentation listed.

In the modified version of BIC, the following experiments were done:
o Testing the effect of full versus diagonal covariance matrices.

o Testing the effect of different thresholds when using full covariance
matrices; the original threshold of zero, a static threshold different
from zero, and an automatic adjusted threshold that depended on the
mean of the BIC scores around a possible change point. This was
implemented as

meankl = sum(all delta(times(i)-199:times(i)+200))/...
length(all_delta(times(i)-199:times(i)+200));

if meankl1>0
thresh = alphal*meankl;

else
thresh = alpha2*meankl;

end

o Testing the effect of 1st order delta coefficients when using full covari-
ance matrices and different types of thresholds.

o Testing the effect of 1st and 2nd order delta coefficients when using full
covariance matrices and a threshold of zero.

o Testing the effect of different values of the parameters min_window, inc
and max_window.
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» Testing the effect of choosing the best proposed change point per win-
dow, versus choosing the first.

o Testing the effect of pitch as an acoustic feature in addition to the

MFCCs.
In the original BIC algorithm, the following experiments were done:
o Testing the effect of full versus diagonal covariance matrices.

» Testing the effect of 1st order delta coefficients when using full covari-
ance matrices.

o Testing the effect of different values of the parameters min_window,
inc, max_window and lambda.

In the experiments for false alarm compensation, the following experiments
were done:

o Testing the effect of different values of BIC versus KL2 as the distance
metric.

o Testing the effect of full versus diagonal covariance matrices.

o Testing the effect of different values of the parameters Tm, alpha_fac
and minimum window.
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Appendix C

Classification Results

Table presents the results from the classification between sound and long
pauses. All the mixture combinations that gave the best results are included.

Table C.1: Evaluation of the sound/pause classification for different num-
bers of mixtures components, dynamic parameters, window lengths and
frame shifts. All mixture combination that gave the best results are included

Experiment FA FR

D and A, WL = 40ms, FS = 20ms
64/32 mix
32/32 mix
32/16 mix
16/32 mix
16/16 mix

Only D, WL = 40ms, FS = 20ms
64/32 mix 1

D and A, WL = 30ms, FS = 15 ms
64/32 mix
64/16 mix
32/32 mix
16/32 mix
16/16 mix

Static MFCCs, WL = 40ms, FS = 20 4/32 mix

N DN~ N =
OO = O =

—_

=N NN NN
=~ o O O o O
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Appendix D
MATLAB Code

This appendix includes the MATLAB scripts used for speaker segmentation.
The MATLAB script Readmfcc from [29], has been used for reading the
MFCCs extracted with HTK into MATLAB. Section [D.I] presents the code
used for the modified version of BIC. The code used for the original BIC
method and for calculations with diagonal covariance matrices, has been
included and commented out. Section[D.2|presents the code that was changed
when pitch was included in the feature set. Section presents the script
used for false alarm compensation.

D.1 BIC

function BIC(fileName, start, stop)

modified BIC method

written by Ida Onshus, 03.2011.

It utilises the function 'gaussmix' from the toolbox Voicebox
by Mike Brooks copyright (c) 1997 (GNU General Public License)

o° o© o o° o° od° oo

fileName = file to be processed
start = sample number to start BIC calculation (optional)
stop = sample number to stop BIC calculation (optional)

o°

Read MFCCs

ifn = strcat('../mfcc/',fileName, '.mfc")

readmfcc;

if nargin == % if only fileName given, start from sample 1
start = 1;

elseif nargin == % if all inputs given, include samples 1l:stop
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D.1. BIC

Y = Y(:,1:stop);
end

% Set initial parameters
)

a=start; % window D start
b=start + 400 -1; % window D end

min_window = 200; S%$minimum window size of D1, D2 in frames
inc = 100; % window increment in frames

max_window = 800; % max window size of D (8 sec)

changes = []; %save change points

% If original BIC method used
$deltaK = nC+nCx* (nC+1)/2; %for full cov-matrices
$lambda = 1.4;

%array containing likelihoods of window D1

yl = zeros(l,length(Y));

%array containing all BIC values used for automatic threshold
all_delta = zeros(l,length(Y));

while b < length(Y(1l,:)) % while b < number of frames in Y

D= Y(:,a:b)'; % Window D

addpath voicebox

% 2 mixture gaussian model remove v if diagonal cov matrix
[m,v,w,qg,f,pp,g9]l=gaussmix (D, [],[]1,2, "hfv');

rmpath voicebox

)

y =sum(pp); % log likelihood

% If original BIC method used

$D = Y (:,a:b)";

$mu = mean(D,1);

$sigma = cov(D,1);

$N = size(D,1);

%$invers = inv(sigma) ;

sy = 0;

$for i=1:N

% =y +(D(i,:)-mu)+invers* (D (i, :)-mu)"';
$end

gy = —0.5%(y + N% log(det(sigma))+ NxnCxlog (2*xpi));

o

% initializing arrays

deltal. = zeros(l,b-a-2*min_window + 2); $%BIC values
times = zeros(l,b-a-2+min_window + 2); %time points
counter = 0;

[)

$ all t in window D that assures a minimum length of D1 and D2
for t=(a+tmin_window-1) : (b-min_window)
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Appendix D. MATLAB Code

counter = counter + 1; %count bic measures
% left window. Calculate if not exists
if yl(t) ==
Dl = Y(:,a:t)"';
mul = mean(D1l,1); % mean
sigmal = cov(D1l,1);% full covariance matrix
% Calculate log likelihoods
tmp = 0;
inversl = inv(sigmal);
for i=l:size(D1,1)
tmp = tmp +(D1(i,:)-mul)*inversl* (D1 (i, :)-mul)'
end
yl(t) = -0.5%(tmp + size(D1l,1l)~*log(det (sigmal))+...
size (D1, 1) *nCxlog(2*xpi));% nC=dim of MFCCs

if diagonal covariance matrix:

o\

inversl = 1./sigmal';
for i=l:size(D1,1)
tmp = tmp + (D1(i,:)-mul).*xinverslx (D1 (i, :)-mul)
end
yvl(t) = -0.5%(tmp + size(D1l,1)*log(prod(sigmal))+

size (D1, 1) *nCxlog(2*pi));
end
% right window. Calculate for each shift
D2 = Y (:, (t+1):b)"';
mu2 = mean(D2,1);

sigmaz = cov(D2,1);

% Calculate log likelihoods

y2 = 0;
invers = inv(sigma2);
for i=1l:size (D2,1)
y2 = y2 +(D2(i,:)-mu2)*invers+ (D2 (i, :)-mu2)"';
end
y2 = =0.5%x(y2 + size(D2,1)* log(det(sigmaZ2))+

size(D2,1)*nCxlog(2*pi));

4

1.
4

% sigmal = diag(cov(D1l,1));

% tmp = 0;

% inversl = 1./sigmal';

% for i=1:size(D1,1)

% tmp=tmp + (D1(i,:)-mul).xinversl* (D1 (i, :)-mul)
% end

% yl(t)=-0.5%x(tmp + size(D1l,1)*log(prod(sigmal))+...
% size(D1,1)*nCxlog(2xpi));

T .
4
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D.1. BIC

deltal (counter) = yl(t) + y2 - y; % modified BIC measure
all_delta(t) = y1(t) + yv2 - y;
times (counter) = t;

If original BIC method used
deltal (counter)=yl (t)+y2-y-0.5«1lambdaxdeltaK+«log(N) ;

o° o

if choosing the first possible changepoint:
if deltal (counter) > 0

break
end

o° o° oo o oe

end S$for

[v, 1] = max(deltal); %best candidate per window

[

% automatic calculations of thresholds

alphal = 50;

alpha?2 2/alphal;

meankl = sum(all delta(times(i)-199:times (i)+200)) /...
length(all_delta(times (i)-199:times (i) +200));

if meankl>0
thresh = alphalxmeankl;

else
thresh = alpha2Zsmeankl;

end

o0 o° o° o o° o° o° o° oP

thresh = 0; %threshold
if v <= thresh % if no change points

b = b + inc; % increment the window length
else

t = times (i) % print proposed change points

changes = [changes t]; %save change points

a = t+l; % move window boudaries

[o)

b= a + min_window*2 -1; % move window boudaries
end

if (b—a) > max_window % 1f window size exeeds maximum
a = b-max_window;
end
end %while

$print change points to file

fid = fopen('changes.txt', 'a');
fprintf (fid, 'mfcc/%s.mfc\n', fileName (1:20));
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Appendix D. MATLAB Code

fprintf (fid, '$f\n', changes);
fclose (fid);

D.2 Changes in the BIC-script for inclusion
of pitch

Additional code for the modified version
of BIC, when combining MFCCs with pitch.

o o° o° o°

written by Ida Onshus, 04.2011.

[

% read pitch values from file

fid = fopen(strcat ('festival _pitch/',fileName), 'r")
$fid = fopen(strcat ('pitch/', fileName, '.wav.txt'), '
C = textscan(fid, "%$s');

fclose (fid);

% Modelling Data. Only example of window D1 is shown

% Widow D1 - Mfcc
Dl = Y(:,a:t)";

mul = mean(D1,1);
sigmal = cov(D1l,1);
% Calculate likelihoods
tmp = 0;
invers = inv(sigmal) ;
for j=l:size(D1,1)
tmp = tmp +(D1(Jj,:)-mul)*invers* (D1 (j,:)-mul)"';
end
yl(t) = -0.5%(tmp + size(D1l,1)* log(det (sigmal))+...

size(D1,1)*nC*log(2xpi));
% Widow D1 -pitch
Dl_p = str2num(char (C{1l} (a+tl:t+1)));
Dl_p = D1_p(D1l_p#0); % don't include undefined pitch
if length(Dl_p) < 5 % must be minimum 5 pitch values
yvl_p(t) = 0; % set the pitch likelihood to zero
else
mul_p = mean(Dl_p,1);
sigmal_p = cov(Dl_p,1);
tmp = sum((Dl_p-mul_p)."2);
vl _p(t) = -0.5+ (tmp/sigmal_p + size(Dl_p,1)x*...
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D.3. False alarm compensation

log(2+xpi*sigmal_p));
$combine likelihoods
vyl _p(t) = alphaxyl(t) + (l-alpha)x*yl_p(t);
end

Calculation of BIC measure
if all windows have enough defined pitch

o° o oo

values, include pitch. If not, use only mfcc
if y_p#0 && yl_p(t) #0 && y2_p=#0
deltal(counter) = yl _p(t) + y2_.p - y_p...
— 0.5+«lambdaxdeltaKxlog(N);
else
deltal (counter) = yl(t) + y2 - y— 0.5«xlambdaxdeltaK«log(N);
end

D.3 False alarm compensation

False alarm compensation
written by Ida Onshus 03.2011

o° oo

$Initialize parameters

Tm = 200; % Maximum window length in frames (= 2sec) if not
% change points are closer
alpha_fac = 0.5; % adjustment parameter for threshold

% Read bic-change points from file
$fid = fopen('../BIC_changes','r');
fid = fopen('../thresh','r");

C = textscan(fid, '$s');

fclose (fid);

ch = 1; %counter for all change points

while ch < length(C{1})

% read MFCCs for the current file

ifn = strcat('../',char(C{1} (ch)))
readmfcc;
k = ch+l; % counter for change points in current file

values= [];

% read all changepoint in one file and add to values

% new file when line starts with 'mfcc'

while strncmp(C{1l} (k), 'mfcc', 4) == 0 && k<length(C{1l})
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Appendix D. MATLAB Code

values = [values str2num(char (C{1}(k)))];
k = k+1;

end

ch = k;

$array for KL2 distances for each proposed change points

KLdist = zeros(l,length(values));
changepoint = []; % array with the resulting change points

[

% for all changepoints in current file
for i=l:length (values)
Find if maximum window length must be <2 sec because

o° o

change points are closer, or if in start/end of file

if 1 == 1
Tmax = min([Tm values (i)-1 values (i+l)-values(i)-1]);
elseif 1 == length(values)
Tmax = min([Tm values (i)-values (i-1)-1
length (Y)-values (i)-11);
else
Tmax = min([Tm values (i)-values (i-1)-1
values (i+1)-values (i)-11);
end

’

% set windows with length Tmax, find mean and covariance

D1 = Y(:,values (i)-Tmax:values(i))"';
D2 = Y (:,values(i)+1l:values (i)+Tmax)"';
mul = mean(D1,1)"';

mu2 = mean(D2,1)"';
sigmal =cov(D1l,1);
sigma2 =cov(D2,1);

$KL2 distance between speaker seg 1 and speaker seg 2

KLdist (i) = 1/2xtrace((sigmal-sigma2) *...
(inv (sigma2)-inv(sigmal)))+ 1/2xtrace((inv(sigmal) .

+ inv(sigma2)) * (mul-mu2) » (mul-mu2) ') ;
$%%%5%%%%%%%%%%%%% Calculation of threshold %$%%%%%%%%%%%%%%%

1w=100; % minimum window length
% find boundaries for where window starts and stop
if values (i) -Tmax <= 1w
start = 1w + 1;
else
start = values (i)-Tmax;
end
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D.3. False alarm compensation

if values (i) +Tmax + lw > length (Y)
stop = values(i)+Tmax - 1lw;
else
stop = values (i)+Tmax;
end

[)

% calculate KLdistances for each time point t in window

ls = 1; % window shift
k_KLdist = zeros(l,floor((stop-start+l)/1s));
teller = 1;

Q

for t=start:ls:stop % for each window shift
windowl = Y (:,t-1lw:t)'; % left window
window2 = Y (:,(t + 1):(t + 1lw))'; % right window
k_mul = mean (windowl) ';

k_mu2 = mean (window2) ';

k_sigmal = cov(windowl,1);

k_sigma2 = cov(window2,1);

4

k_KLdist (teller) = 1/2+trace((k_sigmal-k_sigma2)*...
(inv (k_sigma2)-inv (k_sigmal))) + 1/2*...
trace((inv(k_sigmal) + inv(k_sigmaZ2))*...
(k_mul-k_mu2) * (k_mul-k_mu2)"');

teller = teller +1;
end

maxim = max (k_KLdist);

minim = min (k_KLdist);

threshold is the mean value of KL2 distances in the
window. mimimum and maximum value is removed.
threshold = alpha_fac/ (length (k_KLdist)-2)*...

)
°
)

°

% If the KL2 distance in proposed changepoint is larger
% than threshold, keep the changepoint
if KLdist (i) > threshold
changepoint = [changepoint; values(i)];
end

end

end
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