
Master i elektronikk

Robotlæring for slangeroboter

Christian Monzo Brandvold

Norges teknisk-naturvitenskapelige universitet
Institutt for teknisk kybernetikk

Oppgaven levert:
Hovedveileder:
Biveileder(e):

Januar 2011
Geir Mathisen, ITK
Aksel A. Transeth, SINTEF IKT
Sigurd A. Fjerdingen, SINTEF IKT

Oppgavetekst
Roboter utformet som slanger - slangeroboter - har et stort potensial innen områder som søk og
redning, og inspeksjon og vedlikehold.

Slangeroboter med aktive hjul er en spesialisert form for slangeroboter. De aktive hjulene er
fordelaktig i menneskeskapte miljøer som kontorgulv, fabrikker og ventilasjonssystemer. De aktive
hjulene og den artikulerte kroppen som robotene består av robotene tilbyr en effektiv plattform for
forflytning både horisontalt og vertikalt.

En slangerobot må være i stand til å utføre avanserte bevegelser for å navigere komplekse
menneskeskapte miljøer som rørkonstruksjoner. Temaet for denne masteroppgaven er å utvikle
kontrollstrategier for bevegelser av en slangerobot på flate plan og i rørstrukturer. En preliminær
versjon av en tidligere utviklet simulator for simulering av hjulbasert fremdrift med en slangerobot
kalt Piko vil være tilgjengelig.

Forslag til arbeid
Bli kjent med simulatoren og lag en kort veiledning, for eksempel: installere simulator for
utvikling, lese sensor signaler, kontrollere de ulike grader av frihet, og utføre simuleringer
uten visualisering.
1. Utvikle og implementer nødvendige forbedringer i simulatoren.
2. Utfør en kort litteraturstudie innen følgende emner relevante for oppgaven:
a. Reinforcement Learning (RL)
b. Funksjonsapproksimatorer for RL
c. Nåværende rørinspeksjonsroboter og deres egenskaper (grad av autonomi, design,
etc)
3. Formuler én eller flere bevegelse primitiver (kontrollere), og undersøk hvordan optimalisere
kontrollestrategien basert på bevegelsesprimitiver ved bruk av robotlæring.
a. Utforske spesielt et bevegelsesprimitiv som tillater en slangerobot med hjul å løfte
hodet så høyt som mulig ved implementering i simulatoren.

Kommentarer
- Robotens læringsstrategier kan være basert på resultater fra [2].
- Hvis en annen type læringsstrategi enn Reinforcement Learning er brukt (f.eks evolusjonære
algoritmer), bør litteraturstudien reflektere dette.

1. Fjerdingen, S.A., Liljebäck, P. and Transeth, A.A., A snake-like robot for internal inspection
of complex pipe structures (PIKo), in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems , St. Louis, USA, Oct 11-15, 2009, pp. 5665-5671.
2. Fjerdingen, S.A., Kyrkjebø, E., Transeth, A.A., AUV Pipeline Following using Reinforcement
Learning, in Proc. Int. Symp. on Robotics , München, Germany, June 8-11, 2010, to appear.

Oppgaven gitt: 30. august 2010
Hovedveileder: Geir Mathisen, ITK

Robot learning for snake robots

Christian Monzó Brandvold

January 30, 2011

2

Abstract

Developing a control strategy for a wheeled snake robot can be difficult given
the number of parameters involved. In this thesis we have studied the use of
a reinforcement learning framework to develop a control strategy that allows
a wheeled snake to lift its head as much as possible. The learning process has
been done using a simulator developed for SINTEF’s pipe inspection robot
PIKo.

The reinforcement learning methodology used has been CACLA with an
RBF network as function approximator. Various alternatives have been pro-
posed and used for the action space in simulations showing positive results.

Issues with the simulator have been detected and workarounds proposed
for them.

2

Contents

List of Figures 5

1 Introduction 7
1.1 Motivation . 7
1.2 Background . 7
1.3 Contribution . 8

2 Background 9
2.1 State of the art . 10

2.1.1 Commercial products 10
2.1.2 Research prototypes 12

2.2 PIKO . 16
2.3 Control strategies . 18

2.3.1 Function approximators 19
2.3.2 The Markov Property 23
2.3.3 Reinforcement Learning Methods 24
2.3.4 Sarsa . 24
2.3.5 Actor-Critic . 24
2.3.6 Actor-Critic Learning Automaton (Acla) 24
2.3.7 Cacla . 25

3 The PIKo simulator 27
3.1 Initial state of the simulator 27
3.2 Tutorial . 27

3.2.1 Installation . 27
3.2.2 Reading of sensors . 30
3.2.3 Control . 31
3.2.4 Performing simulations without visualizations 32

3.3 Modifications . 33
3.3.1 The Artificial Neural Network (ANN) class 33
3.3.2 The Reinforcement Learning class 36

3

3.3.3 Resetting the robot . 39
3.3.4 Simulation without visualization 40
3.3.5 Unstability . 41
3.3.6 ”External” forces . 41
3.3.7 Stabilizing the actions 41
3.3.8 Simulation setup . 42

4 Implementation 45
4.1 Initial setup . 45

4.1.1 State representation 45
4.1.2 Reinforcement Learning Method 46
4.1.3 Function Approximator 47

4.2 First approach . 49
4.3 Second approach . 50
4.4 Third approach . 52

5 Simulation results 53
5.1 First approach . 53
5.2 Second approach . 55
5.3 Third approach . 58

6 Discussion and further work 63
6.1 Discussion of results . 63
6.2 Further work . 64

7 Conclussions 65

8 References 67

A Simulator 69
A.1 Installation . 69

4

List of Figures

2.1 Example of a smart pipeline inspection gauge (PIG) and dia-
gram of its components . 11

2.2 Versatrax 300. Crawler with supplementary cart 11

2.3 LISY. Lateral Launch System 12

2.4 MFI5-48 . 12

2.5 Junxing XP-W series . 13

2.6 MAKRO1.1 . 14

2.7 MRINSPECT V . 15

2.8 Explorer . 15

2.9 The snake robot PiKO . 16

2.10 Illustration of a module of the robot PIKo 16

2.11 Scheme for vertical climbing showing the push-points used on
each side of the pipe. 17

2.12 Diagram of single-layer artificial neural network 19

2.13 Actor-Critic architecture . 25

3.1 Diagram of the implemented RBFN. Notice that N designates
the sum of the values of the nodes of the hidden layer 34

3.2 Plot of the benchmark function from equation 3.3 37

3.3 Screen captures showing how the model rises from the ground
instead of being positioned over it as expected 40

3.4 Screen captures showing random behaviour. 43

3.5 Diagram of the observed behaviour when a joint is subject to
gravity . 44

3.6 Diagram of how the settings of an action are sustained. 44

4.1 Representation of the PIKo robot in the state-space 46

4.2 Diagram of the proposed RBFN 48

4.3 Mapping of the RBFN to the workspace 48

4.4 Sequence of steps oriented to achieve an S-shape 51

5

5.1 Diagram showing how using the value of the hypotenuse of a
a triangle . 54

5.2 Height in metres achieved at the end of each episode with only
the first joint active. X-axis denotes the number of episodes
simulated. 56

5.3 Height in metres achieved at the end of each episode with only
the first joint active and increasing the number of episodes
simulated. X-axis denotes the number of episodes simulated. . 57

5.4 Height in metres achieved at the end of each episode with
the 2 first joints active and increasing the number of episodes
simulated. X-axis denotes the number of episodes simulated. . 58

5.5 Height in metres achieved at the end of each episode with
the 3 first joints active and increasing the number of episodes
simulated. X-axis denotes the number of episodes simulated. . 59

5.6 Height in metres achieved at the end of each episode with
the 2 first joints active and increasing the number of episodes
simulated. X-axis denotes the number of episodes simulated. . 60

5.7 Height of the robots head during 5 episodes of 100 steps . . . 60
5.8 Height of the robots head during 2 episodes of 500 steps . . . 61

6

Chapter 1

Introduction

This master’s thesis is a collaboration between SINTEF and NTNU. The
background is a SINTEF project aimed to develop a wheeled snake robot for
inspection of pipelines which resulted in the robot PIKo. The simulator used
throughout this thesis is a development part of this project to facilitate the
development of control strategies for it.

1.1 Motivation

Wheeled snake robots, or serpentine robots, are a type of robots suitable
for inspection of pipelines. Their snake-like design allow them navigation
through narrow pipelines and sort out obstacles such as L-bends and T-
joints. However, their redundancy of actuators increase the complexity of
steering and control. Robot learning is proposed as an alternative to develop
control strategies by allowing a model of the robot to learn which is the best
way to perform a given task.

1.2 Background

The inspection of pipelines is currently done by Pipeline Inspection Gauges
(PIG) or by robotic crawlers which are typically controlled remotely and lack
the capability to perform autonomous inspection.

Research projects have developed different kinds of articulated robots for
pipe inspection being some of them of the ”snake-like” variant. However, the
accent has been put on the design of the robot rather than control strategies
being usually controlled remotely and having a set of limited commands to

7

sort possible obstacles.

The PIKo simulator offers realistic simulations based on the serpentine
robot PIKo.

1.3 Contribution

In this paper we confront the problem of lifting the head of the robot PIKo
as much as possible by developing a reinforcement learning framework in the
PIKo simulator.

The classes and data structures necessary to work with CACLA-based
reinforcement learning have been added to the simulator code including the
implementation of an RBF network.

A reference tutorial for the simulator has been written with indications
for how to use it for development and simulation.

During the work on this paper, various issues with the simulator were
detected. As improving of the simulator is not in the scope of the topic only
workarounds were proposed and implemented so the work on reinforcement
learning could be done.

8

Chapter 2

Background

In this chapter we first present the State of the art in pipeline inspection
both in the commercial sector and projects in research. In the second part
we explain the characteristics of the pipeline inspection robot PIKo designed
at SINTEF. The last part of this chapter is dedicated to control strategies
and related concepts.

9

2.1 State of the art

All over the world, pipelines are used for transport of liquids and gases. Al-
though pipelines suppose a low maintenance alternative compared to e.g.
road transport or shipping they are subject to corrosion, cracking, natu-
ral disasters and other phenomena which can cause leaks and even major
environmental disasters making inspection of pipelines crucial. Although
inspection of surface-placed pipelines can be relatively easy the inspection
of buried down pipelines, or unreachable for other reasons can be tricky or
very expensive. To solve this scenario there has been developed solutions to
perform the inspection from inside the pipelines. In this section we present
commercially available solutions as well as research prototypes.

2.1.1 Commercial products

The necessity to inspect otherwise unreachable pipelines has driven the de-
velopment of special purpose devices. There are basically two branches of
such devices depending of the size, length and complexity of the pipeline
network they are used at. The most common for large-scale operations are
the ”PIGS”s. A PIG (Pipeline Inspection Gauge, Figure 2.1) is a device
of roughly the diameter of the pipeline which it is sent through. They use
the pressure of the liquid or gas transported by the pipeline to advance let-
ting them travel large distances (over 450 Km [1]) with the advantage of
not having to cut the service. Pigs were first used for inside cleaning of the
pipelines but nowadays they can be equipped with an array of sensors for
magnetic flux leakage or ultrasound. However, one specific pig is limited to
a narrow range of diameters and cannot sort butterfly valves and although
they can record data while travelling they may not be always the best option.

For smaller constructions or for inspection that requires a more inter-
active approach we find push cameras (which are little more than cameras
mounted on more or less rigid rods) and robotic ”crawlers”. The typical
crawler is composed of a single module although some products can carry a
passive trailer for sensors and use a tether cable for direct control and power
supply and their range is therefore limited by its length (although it can pro-
vide ranges up to 1.6 Km 1 as is the case for the Versatrax 300 from figure 2.2).

In comparison to pigs which are pretty much uncontrollable, crawlers can

1http://inuktun.com

10

http://inuktun.com

Figure 2.1: Example of a smart pipeline inspection gauge (PIG) and diagram
of its components

be operated on-site and provide more manoeuvrability. As is the case with
pigs, crawlers are heavily conditioned by pipe-diameter and have problems
sorting T-bends. At this point no existing solution is able to start climbing
through a branch although they are able to climb through a vertical elbow. As
a patch to solve these shortcomings, some vendors 2 offer dedicated features
like the mounting of an extra probe for lateral inspection without diverging
from the classic one-unit configuration. This probe is launched from the main
body of the crawler and into a lateral pipeline as seen in figure 2.3. Usually
their means for inspection are limited to the use of cameras.

2http://www.atlas-inspection.com/ibak-lateral.html

Figure 2.2: Versatrax 300. Crawler with supplementary cart

11

http://www.atlas-inspection.com/ibak-lateral.html

Figure 2.3: LISY. Lateral Launch System

Although the previous constitute the more common alternatives, more
advanced crawlers get rid of the tether cable in favour of wireless communi-
cation and extended range. Models such as the articulated snake-like robot
like the MFI5-48 shown in figure 2.4 from itRobotics3 provide autonomous
detection of corrosion and wall thinning using Magnetic Flux Leakage (MFL)
sensors and can sort bends of 90 and 180 degrees. It records data during the
inspection that can later be transferred and analysed.

Figure 2.4: MFI5-48

Another example is the Junxing XP-W 4(Figure 2.5) series which offers
a range of up to 10Km, infrared cameras and the use of X-rays for welding
line testing.

2.1.2 Research prototypes

Research on inspection robots is an active field and oriented to search and
rescue missions in ruins and debris and inspection of otherwise unreachable

3http://www.itrobotics.com/product_mfi.html
4http://www.alibaba.com/product-gs/309210804/X_ray_pipeline_crawler_

detecting_system.html

12

http://www.itrobotics.com/product_mfi.html
http://www.alibaba.com/product-gs/309210804/X_ray_pipeline_crawler_detecting_system.html
http://www.alibaba.com/product-gs/309210804/X_ray_pipeline_crawler_detecting_system.html

Figure 2.5: Junxing XP-W series

infrastructures where articulated, ”snake-shaped”, robots for inspection is
one of the desing alternatives that have received much attention. Snake-
shaped robots designate two different types differentiated by their locomotion
model:

• ”Snake robots” are articulated, multi-segmented, robots which are bi-
ologically inspired by snakes. They achieve propulsion by the move-
ments of their joints. This means they are more efficient on surfaces
that present obstacles they can use as supporting points or high friction
coating on the robot itself.

• ”Serpentine robots” are articulated, multi-segmented, robots that rely
on the use of wheels or other propulsion mechanism such as caterpillar
traction.

Existing projects put the accent on design of these robots putting weight
on power consumption, increased manoeuvrability and autonomy. However,
as they are mostly concept models, their control strategies are usually lim-
ited to remote control or capability-oriented strategies as e.g. climb a specific
obstacle. The research of more advanced control strategies for them has been
relegated as background matter for further work.

In this section we describe the following projects.

• MAKRO

• MRINSPECT

• Explorer

13

MAKRO

The MAKRO-PLUS project is an articulated, ”serpentine”, robot designed
for autonomous navigation through pipes of varying diameter using wheels
for propulsion. It’s able to simultaneously climb a step and turning [2] [3].
The task of inspection is divided in two: a planner and an action controller.
Given a model of the sewer system with pipes and manholes, the planner
decides the intermediate points of the route and the action controller decides
how to get there. Figure 2.6 shows one the MAKRO1.1 robot.

Figure 2.6: MAKRO1.1

As MAKRO relies on a model of the pipe structure when it confronts an
obstacle such as a step, the action controller is able to calculate the necessary
steps to overcome it using backtracking.

MRINSPECT

The MRINSPECT project has developed a series of robots capable of free
movement in all types of pipes [4]. For its fifth version, MRINSPECT V,
it was developed selective drive mechanism that uncouples unneeded wheels
when possible lowering the power consumption.

14

Figure 2.7: MRINSPECT V

Explorer

Explorer is a large, long-range, untethered, modular inspection robot devel-
oped at Carnegie Mellon University [5] (figure 2.8).

Figure 2.8: Explorer

The navigation is based on a set of commands sent by an operator in
real-time through a wireless 802.11b communication.

15

2.2 PIKO

PIKO [6] (Fig. 2.9) is a snake-like robot designed to navigate through com-
plex pipe structures of varying diameters. These ”complex pipe strutures”
are comprised by vertical and horizontal straight segments joined by L- or
T-joints and obstacles such as valves.

Figure 2.9: The snake robot PiKO

PiKO is composed by 5 modules interconnected by rotational joints allow-
ing both vertical and horizontal movement through a servo motor for each
direction. This servos allow the ability to lift three modules on it’s own.
See [6] for in-depht information.

Figure 2.10: Illustration of a module of the robot PIKo

The locomotion is achieved by 4 wheels at each module, one couple of
wheels below the module and the other one on top of it as seen in figure 2.10.
One servo at each module drives synchronously all the modules wheels.

Horizontal movement is performed similarly to a train with distributed
distributed traction like the ICE 3. Vertical climbing relies on an opposing-
push strategy where the joints are used to create a pushing force against the

16

Figure 2.11: Scheme for vertical climbing showing the push-points used on
each side of the pipe.

opposite sides of the pipe as seen in figure 2.11.

Table 2.1 shows the parameters of each module.

Weight of module 1.252
Length between joint axes 0.150 m
Max joint travel ±75◦

Max continuous joint torque 11.5 Nm
Max joint speed 28◦/s
Module width 0.130 m
Module height 0.140 m

Table 2.1: Parameters for a module

17

2.3 Control strategies

In this section we present different control strategy approaches

”Hard coded” . This category comprises control strategies which are cus-
tom developed for the specific robot. It requires comprehensive understand-
ing of the robot’s capabilities and dynamic behaviour. The before-mentioned
factors added to the necessity of knowledge of the possible scenarios makes
this alternative inflexible.

Evolutionary Methods EA uses some mechanisms inspired by biological
evolution: reproduction, mutation, recombination, and selection. Candidate
solutions to the optimization problem play the role of individuals in a pop-
ulation, and the fitness function determines the environment within which
the solutions ”live”. Evolution of the population then takes place after the
repeated application of the above operators.

Because you only need to encode the success or failure of the controller,
these method provide ”natural solutions” and they explore all the policy-
space. On the backside, they require a very long training phase and the
future transfer of the resulting controllers evolved in simulation to the phys-
ical robot can be very difficult.

Reinforcement Learning In Reinforcement Learning, RL, an agent must
solve a task and has a set of actions available from which it chooses an action
(or set of actions) it believes can solve the task. The agent receives feedback
information from the environment about its performance and uses it to mod-
ify its behaviour.

This means Reinforcement Learning is appropriate for situation where
the agent can interact with the environment and receive feedback from it.
Since the agent can interact with the environment it is not necessary to have
a complete knowledge of it.

This method requires well-defined value functions and function approxi-
mators.

18

2.3.1 Function approximators

Function approximators reduce the dimensionality of a space. Some function
approximators are artificial neural networks and connectionist structures.

Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a mathematical model or computa-
tional model that is inspired by the structure and/or functional aspects of
biological neural networks. A neural network consists of an interconnected
group of artificial neurons, and it processes information using a connectionist
approach to computation. In most cases an ANN is an adaptive system that
changes its structure based on external or internal information that flows
through the network during the learning phase. Modern neural networks are
non-linear statistical data modeling tools. They are usually used to model
complex relationships between inputs and outputs or to find patterns in data.

Figure 2.12: Diagram of single-layer artificial neural network

The word network in the term ’artificial neural network’ is given by the
inter-connections between the neurons in the different layers of each system.
A basic ann has three layers. The first layer act as input and send data via
connections to the second layer of neurons and then via more connections
to the third layer of output neurons. More complex systems will have more
layers of neurons with some having increased layers of input neurons and
output neurons. Some networks can even be adaptative, varying the number
if necessary. The connections store parameters called ”weights” which are
used to manipulate the data in the calculations. Figure 2.12 shows an arti-
ficial neural network with one hidden layer.

19

The network function f(x) is defined as a composition of other functions
gi(x) , which can further be defined as a composition of other functions. This
can be conveniently represented as a network structure, with arrows depict-
ing the dependencies between variables. A widely used type of composition is
the non-linear weighted sum, where f(x) = K(

∑
iwigi(x)) , where K (com-

monly referred to as the activation function) is some predefined function,
such as the hyperbolic tangent. It will be convenient for the following to
refer to a collection of functions gi as simply a vector g = (g1, g2, ..., gn) .

Two topologies are most common, feed-forward and recurrent networks.
In recurrent neural networks (RNNs), connections between neurons may form
directed cycles. These cycles allow the network to have internal states in-
stead of being a static input-output transformation. The resulting behaviour
is a temporally dynamic behaviour.

Learning What has attracted the most interest in neural networks is the
possibility of learning. There are three major learning paradigms, each corre-
sponding to a particular abstract learning task. These are supervised learn-
ing, unsupervised learning and reinforcement learning.

For applications where the solution is dependent on some data, the cost
must necessarily be a function of the observations, otherwise we would not be
modelling anything related to the data. It is frequently defined as a statistic
to which only approximations can be made. As a simple example, consider
the problem of finding the model f which minimizes C = Eb(f(x) − y)2c,
for data pairs (x, y) drawn from some distribution D. In practical situations
we would only have samples from and thus, for the above example, we would

only minimize Ĉ =
1

N

∑N
i=1(f(hi)− yi)2. Thus, the cost is minimized over a

sample of the data rather than the entire data set.

When N →∞ some form of online machine learning must be used, where
the cost is partially minimized as each new example is seen and is often used
when N is fixed. However, it is most useful in the case where the distribution
changes slowly over time.

Supervised learning In supervised learning, we are given a set of ex-
ample pairs (x, y), x ∈ X, y ∈ Y and the aim is to find a function f : X → Y
in the allowed class of functions that matches the examples. In other words,

20

we wish to infer the mapping implied by the data. Tasks that fall within
the paradigm of supervised learning are pattern recognition (also known as
classification) and regression (also known as function approximation). The
supervised learning paradigm is also applicable to sequential data (e.g., for
speech and gesture recognition). This can be thought of as learning with a
”teacher,” in the form of a function that provides continuous feedback on the
quality of solutions obtained thus far.

Unsupervised learning In unsupervised learning, some data x is given
and the cost function to be minimized, that can be any function of the data
x and the network’s output, f .

The cost function is dependent on the task (what we are trying to model)
and our a priori assumptions (the implicit properties of our model, its pa-
rameters and the observed variables).

As a trivial example, consider the model f(x) = a , where a is a constant
and the cost C = Eb(f(x)−y)2c. Minimizing this cost will give us a value of
a that is equal to the mean of the data. The cost function can be much more
complicated. Its form depends on the application: for example, in compres-
sion it could be related to the mutual information between x and y, whereas
in statistical modelling, it could be related to the posterior probability of the
model given the data. (Note that in both of those examples those quantities
would be maximized rather than minimized).

Unsupervised learning oftn used estimation problems such as the estima-
tion of statistical distributions, compression and filtering.

Reinforcement learning In reinforcement learning, data x are usually
not given, but generated by an agent’s interactions with the environment. At
each point in time t , the agent performs an action yt and the environment
generates an observation xt and an instantaneous cost ct, according to some
(usually unknown) dynamics. The aim is to discover a policy for selecting
actions that minimizes some measure of a long-term cost; i.e., the expected
cumulative cost. The environment’s dynamics and the long-term cost for
each policy are usually unknown, but can be estimated.

More formally, the environment is modeled as a Markov decision process

21

(MDP) with states s1, ..., sn ∈ S and actions a1, ..., am ∈ A with the follow-
ing probability distributions: the instantaneous cost distribution P (ct|st) ,
the observation distribution and the transition , while a policy is defined as
conditional distribution over actions given the observations. Taken together,
the two define a Markov chain (MC). The aim is to discover the policy that
minimizes the cost; i.e., the MC for which the cost is minimal.

ANNs are frequently used in reinforcement learning as part of the overall
algorithm. Tasks that fall within the paradigm of reinforcement learning are
control problems, games and other sequential decision making tasks.

Local Function Approximation with Connectionist Structures

ANNs as previously described are referred to as global function approxima-
tors. For use in robotics, a different type of function approximator referred
to as local function approximator have recently become more popular. The
main difference between a global and a local function approximator is that
changing the weights of a global approximator may have global consequences,
whereas changing the weights of a local approximator only have have conse-
quences for a local area in the state-space surrounding the changed neuron
(for connectionist approximators). The problem with global approximations
is that a change with global effects is both uncontrollable and possibly un-
safe, as the result of an experiment in one part of the state-space may lead
to changes in a completely separate part of the state-space.

A typical example of local connectionist approximator is the Radial Basis
Function Network (RBFN). An RBFN has typically one hidden layer, where
each neuron in the hidden layer has its own centroid. For each input, the
distance to each centroid is computed. The output of the hidden neurons
is some non-linear function of the distance, e.g. the Gaussian. Thus, each
kernel neuron in an RBFN computes an output that depends on a radially
symmetric function. The output of the network is a weighted sum of the
result of each neuron. For instance:

y(t) =
∑
i

wiK

(
x(t)− zi

σi

)
=
∑
i

wig

(
‖x(t)− zi‖

σi

)
, (2.1)

where w are tunable weights, K is the kernel function - in this instance the
Gaussian g , x is the current input, z the centroid locations (mean of the
Gaussian), and σ the width of the kernel (variance of the Gaussian). (Refer-

22

ence)

The Cerebellar Model articulation Controller (CMAC), also known as
the Cerebellar Model Arithmetic Computer or tile coding, is a type of neural
network popularized for RL by Sutton and Barto (reference) in their seminal
book in reinforcement learning. A CMAC is computed as a weighted sum of
kernel functions, but the kernel functions in this case are somewhat different
than with ordinary ANNs or RBFNs. The kernels are buil from multiple lay-
ers of overlapping grids (discretizations) of the state-space, where each grid
may be discretized in one to any number of sub-dimensions of the complete
state-space dimensions. As such, it is a hierarchical build of discretizers of
the state-space as opposed to the aforementioned single-layer networks.

2.3.2 The Markov Property

In a reinforcement learning context, an agent receives information from the
environment which it uses to define a state. This state is then used by the
agent to make decisions. If this state is a compact expression of all relevant
information it is said to have the Markov property. For example, in a chess-
game, the position of all the pieces define the state without the need to know
the history of movements that led to it. If a state has the state signal has
the Markov Property, [8] gives the next definition the states’ probability
distribution:

Pr{st+1 = s′, rt+1 = r|st, at|, }. (2.2)

for all s′, r, st and at.

If a reinforcement learning task satisfies the Markov property it is called a
Markov decision process, MDP, or finite MDP if the state and action spaces
are finite. Given any state a and action s, the probability of each possible
next state, s′, is

Pass′ = Pr{st+1 = s′|st = s, at = a}. (2.3)

Similarly, from [8], given any current state and action, s and action am
together with any next state, s, the expected value of the newxt reward is

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′}. (2.4)

Together, (2.3) and (2.4), specify the dynamics of a finite MDP.

23

2.3.3 Reinforcement Learning Methods

Q-learning

Q-learning is well known off-policy reinforcement learning algorithm which
directly approximates the optimal action-value function. Its advantages is
that it can reach optimal solutions and an important use amount of research
behind it. Unfortunately, it cannot handle continuous action spaces and
sometimes lack convergence when used with function approximators. Its
equation is:

Qt+1(st, at)
αt←− tt + γmaxaQt(st+1, a) (2.5)

2.3.4 Sarsa

Sarsa is a version of Q-Learning where the update is determined by the value
of the last action taken instead of the one with highest value. Otherwise,
it can reach optimal solutions as long as the rate of exploration decreases
properly. Since it is a version of Q-learning, it cannot handle continuous
spaces. Sarsa requires to know the next action making it a bit more complex
to implement than Q-learning.

Qt+1(st, at)
αt←− tt + γQt(st+1, a) (2.6)

2.3.5 Actor-Critic

Actor-Critic methods use two splits the estimation of the value function
and the policy. It introduces two new structures, the actor, which involves
the policy selection, and the critic, which estimates the value function and
criticizes the actor’s actions. Figure 2.13 shows the signal flows. Instead
of focusing on the expected discounted rewards,Actor-Critic methods learn
preference values for the actions. It does not however, handle continuous
spaces.

The equation for the action values is:

Pt+1(st, at) = Pt(st, at) + α(rt + γVt(s+1 − Vtst)) (2.7)

2.3.6 Actor-Critic Learning Automaton (Acla)

Acla’s algorithm observes the updates resulting after each action and incre-
ments the preference for that action if the value of the state has increased

24

Figure 2.13: Actor-Critic architecture

and vice-versa. The update made to the actor if the action was good is:{
Pt+1(st, at)

αt←− 1 , if the action was good

Pt+1(st, at)
αt←− 0 , otherwise

Note that the updated value is always between 0 and 1.

As stated in section 2.3.5 it learns preference values rather than the sum
of expected rewards but its learning is faster due to the use of state values.

2.3.7 Cacla

Cacla can be considered as Acla for continuous spaces. The difference lies
in that it stores (either in a table or a function approximation) a value or
vector with an approximation to the optimal action.

Cacla is usually fast and easy to implement. Basically, you retrieve the
output from the actor, explore around this value and perform an action. If
the value of the state has increased you update the actor towards that action.
Schematically:

Vt+1(st)
βt←− rt + γVt(st+1)

If

δt > 0

25

then

At+1(st)
αt←− at

Where:

δt = rt + γVt(st+1)− Vt(st)

26

Chapter 3

The PIKo simulator

3.1 Initial state of the simulator

The PIKo simulator is part or a SINTEF research project on the development
of a pipe-inspection robot that has resulted in the snake robot PiKo. This
project was also the background for an EiT project in 2009 which resulted
in the PiKo simulator. In the spring of 2010 it was further improved with
more realistic simulations, new sensors and a new control strategy based the
Follow-the-Leader [9].

This chapter describes how to install the simulator for development, how
to control the modelled robot under simulations and how to read its sensors.

3.2 Tutorial

3.2.1 Installation

At this stage, PIKo is only available as source code but it can be built on
both Windows- and Linux-platforms. This section explains the steps nec-
essary to run it. PIKo relies on 2 external open source libraries: the Open
Dynamics Engine (ODE [10]) and the 3D engine irrlicht [11]. These libraries
are necessary to run the simulator. Provided with the source code there were
some short guidelines for the installation which are incomplete for the Mi-
crosoft Visual Studio environment. Following are the instructions for both
platforms for the version developed during this thesis-writing.

27

Preliminary This step is common for both platforms. Extract the content
of simulator.zip to a directory of your choosing. You will end up with the
following directory structure:

DIRECTORY/simulator/

---ea/

---media/

---simulator/

Linux

1. Install the packages libode-dev and libirrlicht-dev from your package-
manager or download the source code or prebuilt binaries from ODE1

and Irrlicht2 and follow their instructions respecting the following di-
rectory structure.

DIRECTORY/simulator/

---ea/

---irrlicht

---media

---ode

---simulator

2. Compile the simulator from simulator/simulator using the Makefile.

$cd simulator/simulator

$makefile

3. Run the simulator.

$./a.out

4. To compile and run the EA project follow the same steps but from
simulator/ea.

1http://www.ode.org
2http://irrlicht.sourceforge.net

28

http://www.ode.org
http://irrlicht.sourceforge.net

Windows

1. Download the Windows-version of the libraries ODE [10] and Irrlicht [11]
from their websites.

2. Install ODE

(a) Extract the content of the ODE package to DIRECTORY\simulator\ode.
If you get something like ”ode-VERSION” rename it to ”ode”.

(b) Open a console and move to DIRECTORY\ simulator\ode\build
and execute the command premake4 for your Visual Studio ver-
sion (at this moment it support versions 2002 to 2008). In this
case VS2008 is used. The with-demos-option is necessary because
PIKo needs the drawstuff library which is build through this op-
tion.

premake4 --with-demos vs2008

(c) The previous command will have created a new directory. Move
into this directory, open the VC++ solution file and build it.

(d) Add to the Windows PATH-variable the path to where the dll file
was created (probably ..ode\lib)

3. Install Irrlicht

(a) Extract the content of the Irrlicht package to DIRECTORY\simulator\ode.
If you get something like ”irrlicht-VERSION” rename it to ”ir-
rlicht”.

(b) Create a new directory inside irrlicht\include called irrlicht

and move all the header files to the new directory. This step is
necessary to allow the project to be compatible with both plat-
forms.

(c) Add to the Windows PATH-variable the path to where the dll file
is (probably ..irrlicht\bin\Win32-VisualStudio\bin)

4. To run the simulator open the project file in simulator\simulator,
build the project and select the menu item Debug->Start debugging
or press the F5 key.

Appendix A.1 refers other subject alien to the typical installation process.

29

3.2.2 Reading of sensors

Types of sensors:

1. Pressure sensors The pressure sensors implemented in the simulator
can be consulted through the function:

void Train::getJointForces(int jointNumber, double *up,

double *down, double *left, double *right)

For a given joint, this method returns the total force perceived by each
of the sensors of the joint.

2. Distance measurements. The PIKo simulator provides an extensive
array of sensor for measurement of different kinds of distances.

(a) The distance from the nose of the robot is consulted through the
function:

double Train::getDistanceNose(dGeomID space)

(b) The sonar distance measurement is provided by the function:

double Train::getSonar(dGeomID space, double openingAngle)

(c) IMU-data. ODE provides inertial measurements of the modeled
bodies. This information may be read with:

void Train::getIMU(double **position, double **direction,

double **linearVelocity, double **angularVelocity,

double **linearAcc, double **angularAcc)

At this moment, the linear and angular accelerations are not im-
plemented yet.

(d) Laser measurement. This function returns an array of distances
in a horizontal plane.

void Train::getLaserScanner1D(dGeomID space, int points,

double openingAngle, double* result)

The resulting array contains points measurements equi-distributed
in the given opening angle.

(e) The Time-of-flight camera modeled in the simulator works com-
bining 2 laser measurements. For each horizontal point it does a
vertical scan.

30

void Train::getTimeOfFlightCam(dGeomID space, int

verticalPoints, int horizontalPoints, double

verticalOpeningAngle, double horizontalOpeningAngle,

double **result)

(f) Travelled distance along the path of the first cart as the sum of
the distance of each step.

double Train::getTravelledDistance(void)

(g) Wheel distance. This value is calculated from the wheel rotation
which is more realistic than the travelled distance although it is
affected by wheel-spin. Only one of the wheels of the first cart is
used for this measurement.

double Train::getWheelDistance(double timestep)

3.2.3 Control

The simulator use a ”Follow the leader”-algorithm control strategy which
propagates backwards the settings from the first cart to the rest of them
when it’s moving. This means that given a point in the path, every cart will
do the same actuations when it passes over it.

It is possible to control the robot with using the following keys:

• W: forward

• S: backward

• Q: lift head

• E: lower head

• A: turn left

• D: turn right

• R: reset robot

It should be talen into account that the simulator will not prevent the user
from trying movements where the resultants forces are to big resulting in an
”exploding” robot.

To allow more complex and elaborate movements it is necessary to pro-
gram it giving inputs for each joint and motor. The functions available for

31

this are:

void Train::setJointAngle(int jointNumber, int direction, dReal angle)

void Train::setJointTorque(int jointNumber, int direction, dReal torque)

void Train::setJointVelocity(int jointNumber, int direction, dReal velocity)

To consult the current values for these settings. The simulator provides
the following functions:

double Train::getJointAngle(int jointNumber, int direction)

void Train::getIMU(double **position, double **direction,

double **linearVelocity, double **angularVelocity,

double **linearAcc, double **angularAcc)

void Train::getJointForces(int jointNumber, double *up,

double *down, double *left, double *right)

3.2.4 Performing simulations without visualizations

The visualization part of the simulator is independent of the dynamics sim-
ulation. When you want to test out a new strategy you will typically create
a new set of classes to implement it and you will have to create an instance
of the simulator somewhere using a call similar to

simulator = new Simulator(-1.5, 0, 0.2, 0.05, visual);

where visual is a boolean parameter which will be true if you wan graphic
visualization and false otherwise.

The simulator will not provide you with sensor information by itself so you
will also have to consult them manually with the methods described earlier
in this chapter. To get the necessary train-instance you can use the function:

Train* Simulator::getTrain()

32

3.3 Modifications

Using the actual PIKo robot to study the use of reinforcement learning strate-
gies would prove very time-consuming. In part because it would require to
get to know in depth PIKo’s programming, partly because it would be harder
to systemize the learning process and partly because PIKo was not in work-
ing order in the beginning of this work. These factors, among others, made
that from the beginning this thesis’ work would be based on the existing
PIKo-simulator. However, in it’s original stage the simulator lacked features
necessary for the use of reinforcement learning. This section describes the
modifications introduced to the source code to achieve the desired function-
ality.

3.3.1 The Artificial Neural Network (ANN) class

To be able to use a Radial Basis Function network (RBFN) as our function
approximator it was necessary to implement it first. Based on the information
already described in subsection 2.3.1 we implemented an RBF network in the
simulator. The resulting RBF network class is composed by:

• An array with Ni elements for storing of the values of the nodes of the
input layer

• An array with Nh elements for storing of the values of the nodes of the
hidden layer

• An array with Nh elements for storing of the values of the nodes of the
normalization layer

• An array with No elements for storing of the values of the nodes of the
output layer

• An array with NhxNo elements for the weights of the edges between
the normalization layer and the output layer

Ni, Nh and No are parameters given to the construction method of the
class. At this point there are not provided any methods to change this values.

The motivation behind the introduction of the normalization layer is to
provide an implementation that can be used in a later development of this
work if necessary but is ignored in this stage.

33

The Radial Basis Function used is:

RBF (θ) = e−
‖
−→
θ −−→c ‖
2σ2 (3.1)

Where
−→
θ is a vector with the input parameters, −→c is a vector with the

components of the center of the node and σ is the width of the Gaussian
of the function and is defined in the header file. Because of the limitations
described in subsection 4.1.1, the function that computes this RBF function
is limited to an input vector with only 2 components.

The computation of the network follows the diagram in figure 3.1:

Figure 3.1: Diagram of the implemented RBFN. Notice that N designates
the sum of the values of the nodes of the hidden layer

For the training of the network we added a function, updateWeights that
updated the the weights according to:

• The output being trained, output

• The value towards it’s trained, expected

• The learning rate, rate

34

This function calculates the difference between the output value com-
puted by the network and the value that it is expected to compute and then
multiplies it by the desired learning rate. Then it calculates the amount by
which each weight should be modified and updates the weight.

Now, if we remember the expression that is computed by the network
(equation 2.1) we get that:

RBFN(t) =
∑
i

wiK

(
x(t)− zi

σi

)
=
∑
i

wig

(
‖x(t)− zi‖

σi

)
= w1g

(
‖x(t)− z1‖

σ1

)
+ w2g

(
‖x(t)− z2‖

σ2

)
+ · · ·+ wng

(
‖x(t)− zn‖

σn

)
(3.2)

As we can see in 3.2, the value of the node gives as this amount in which
the weight affects to the total result.

The resulting algorithm is:

error ← rate*(expected - outputLayer[output])
for all node ”i” in normalizedLayer do

update ← error*normalizedLayer[i]
weights[weighti,output] ← weights[weighti,output] + update

end for

where weighti,output is shorthand for the index of the weight going from node
i to the given output.

Other functions provided allow writing and reading weight values to/from
a file. These functions are:

• dumpWeights. Writes to the file ”weights.txt” the values of the weights
corresponding to the output given as parameter

• dumpWeightsAll. Writes to the file ”out.txt” the values of all the
weights of the newtwork.

• restoreWeights. Sets the values of the weights of the network to those
read from the file ”weights.txt”

35

The write functions do not add any metadata of the network such as the
number of weights. Correspondingly, the restore function does not check if
the file is suitable for the current network leaving the responsibility to the
user.

Other miscellaneous functions in the class are:

• horizontalDistance. Given a position it returns the module of the vector
from (0, 0) to (x, y) with sign. This function is used for the simplifica-
tion of the state-space described in chapter 4.

Testing the ANN

The ANN class is essential for the proper functioning of the learning. To
assure its correct behaviour it was trained to approximate a complex func-
tion. ”Complex” in this context means a differentiable function with frequent
monotony changes. The selected benchmark function was:

f(x) =
−2cos(1

x2
)

x
+ 2xsin(

1

x2
) (3.3)

The testing also turned positive to understand better how radial basis
functions and training is done. After distributing the centres along the x-axe
(giving them coordinates of the type (xi,0 and avoiding x=0) with different
separations and learning rates the plot of figure 3.2 was obtained.

The training process consisted of sweeping the x-axe indefinitely. The
training was aborted when the all the difference with the the model function
was less than 1% at each one the centres. This process was repeated 10 times.

3.3.2 The Reinforcement Learning class

The rl class implements the functions and data structures associated with
the reinforcement learning algorithm. If we remember how the reinforcement
algorithm is and particularly the CACLA version of it there are the following
main parts:

1. Selection of action that should be taken

2. Perform the action

3. Observe the results of the action and perform the corresponding up-
dates

36

Figure 3.2: Plot of the benchmark function from equation 3.3

In this section we will see how this functionality has been achieved by the
functions: preStep, nextAction and postStep.

The ”preStep” function

The preStep function addresses point 1 of the parts described in subsection
3.3.2. The involved actions are:

• Updating the variables that store the state previous to an action

• Fetch from the network the next action and the value of the current
state

• Invoke the the function responsible to perform the action

The information of the previous state are the position, height and value
of this state. The third point involves another function responsible for the
exploration of new actions. This task has been done in different approaches
as we will explain in chapter 4 but at this point of the report we will just
name the different versions.

37

nextActions This version uses Gaussian exploration. Gaussian explo-
ration involves retrieving a random generated number from a Gaussian distri-
bution centred on the greedy action retrieved from the function approximator
and with a variance which decreases over time for convergence of the policy.

nextActions6 This version uses an ε-greedy strategy for the exploration
problem. This strategy involves taking the greedy action (the one retrieved
from the function approximator) with probability 1-ε at each step. For con-
vergence reasons this, ε is gradually decreased over time.

actionAngle This version merges the exploration and the action controller
(to be seen in subsection 3.3.2). First it performs Gaussian exploration as
described earlier and then it sets the necessary variables for the action.

The ”actions” function

The actions function receives an index for the action it has to perform acting
as an action controller. These actions and indices are:

1. Decrease the angle of a joint by a fixed amount

2. Increase the angle of a joint by a fixed amount

3. Decrease the speed

4. Increase the speed

5. Reset the train to its original configuration. Used when at the end of
a simulation episode.

With ”original configuration” we mean repositioning it at the same point
as in the beginning of the simulation episode and reset its joint angles and
speed to 0.

Since this controller is a version of the FTLController already imple-
mented and because we aimed to use the FTL strategy in the learning pro-
cess, the controller also includes the code necessary for the use of this strategy.

38

The postStep function

The postStep function is responsible of point 3 of the parts described in sub-
section 3.3.2. This function calculates the value of the new state, the rewards
and the corresponding temporal difference error and update the RBFN ac-
cording to this error.

3.3.3 Resetting the robot

The learning process requires a variable number of iterations, or episodes.
In each episode the robot takes a certain number of actions which are then
evaluated to update (or train) the function approximator. Given this the-
sis’ objective (lifting the front module, or ”head”, as much as possible), the
starting point of each episode can theoretically be arbitrary wherever in the
modelled space. Under these circumstances the function approximator would
learn how to lift its head wherever in the scenario. However, this approach
would require large amounts of memory and time, the first because of the
need to map all the space to nodes and the latter because of the need to
train all these nodes. Chapter 4 describes the decisions taken to minimize
the requirements. In this section we address the consequence of one of this
decisions which involves resetting the robot to its initial state.

We consider as original state position (0,0,0), with all the joint angles at
0 degrees and speed 0 and an empty event queue (used by the FTL algo-
rithm). This is done by the new function resetTrain in the Train class which
also initialize more low-level variables such related to torques and the PID-
regulator implemented. To check its proper behaviour we made a version of
the FTL controller already implemented and added a new keyboard event
for the resetting. The tests were made at low speeds and looked favourable.

Later it was discovered that the model rises up from the ground (figure
3.3 when it is repositioned for each new simulation episode and it’s not solved
by positioning it above ground level.

Furthermore, later it was discovered that there are more factors involved
which is the case of stored inertia in the physics engine. This behaviour
had not been observed before because the physics engine has been treated as
black box. This stored inertia showed to be altering the initial state produc-
ing unwanted movements in the joints and linear speed of the model. The
workaround that has been used later consists of a ”stabilizing loop” which is

39

Figure 3.3: Screen captures showing how the model rises from the ground
instead of being positioned over it as expected

run when the model is reset. This loop performs simulation steps and reset-
ting of the aforementioned parameters as long as there still is movement or
the angles are different from 0. If the stable state is not reached in a certain
number of iterations the resetTrain function is invoked again.

3.3.4 Simulation without visualization

The simulator, or better said the simulator class, allows to perform simula-
tions without visualization as it was before this thesis started. The construc-
tor method for the simulator requires a parameter which indicates if it’s going
to allow visualization or not. The only issues was that if you use the any of
the controllers provided that rely on user interaction the interaction requires
the visualization to be active and that the updating of the ”head camera” of
the robot is made directly in the main loop. Now the selection of visualized
simulation is set by a constant, VISUAL, defined in the programs main file.
This constant is used in the call to the simulators construction method and
it protects the controllers the parts of code that requires visualization to be
active.

There has also been included functions that write data about the running
simulation to files allowing easier monitoring of the simulation. this functions
are:

• tracing. Writes to a file the position of the head and the values of the
vertical angles of the joints.

• heights. Writes to a file the to values intended to be the height and the
maximum height and the values of the vertical angles of the joints.

40

3.3.5 Unstability

It was observed early that the simulated model could suddenly start behav-
ing randomly starting to spin around the screen. The cause was traced to
the presence to strong forces in the simulated components. To minimize this
unwanted effects there was introduced limits to the values of speed and an-
gles which seemed to solve the problem. Figure 3.4 shows an example of the
aforementioned behaviour.

3.3.6 ”External” forces

Late in the development it was detected that a module in unstable balance,
e.g. positioned vertically facing upwards, received the signal to decrease or
increase slightly their angle this would make the joint travel all its range as
seen in figure 3.5.

This behaviour has been observed to be caused because the call to modify
an angle is given this only indicates to the joint that it has to move in a cer-
tain direction and then gets overridden by the physics of the model. In this
case, the workaround has been to introduce an array with the target angles
for the joints and setting them to these values before each simulation step.
This role is performed by the angles[] array and the refreshAngles in the RL
class.

3.3.7 Stabilizing the actions

In sections 3.3.3 and 3.3.6 we have seen that one simulator step is not enough
to complete an action. To allow the completion of an action, in particular
angle settings, more simulator steps are needed.

SIGNAL FREQ is a new constant added to the main program. Its role
is to define the frequency with which a new action is taken or, with other
words, for how many simulator steps we keep active the same action. This
translates to keep the same values for the angles of the joints and to keep the
set speed and is informed to the preStep function with boolean parameter
that informs if a new action should be tried during that cycle or if it should
continue with the old one. Figure 3.6 shows this scheme as a chronogram.

41

3.3.8 Simulation setup

The setup for a simulation session can be done through the following con-
stants:

• Number of episodes. Set through the constant EPISODES defined in
main.c

• Number of steps. Set through the constant STEPS defined in main.c

• Simulation with visualization. Set through the constant VISUAL in
main.c. Set to 0 if no visualization is wanted and t another value
otherwise.

• Timestep of the simulator. Set through the constant TIMESTEP de-
fined in main.c

• The number of nodes are defined through the constants V FEATURES
and H FEATURES in RL.h

• The distance between nodes is defined through the constant DIST in
RL.h

• The horizontal coordinate from which the horizontal nodes start is de-
fined through the constant START in ANN.h

42

Figure 3.4: Screen captures showing random behaviour.

43

Figure 3.5: Diagram of the observed behaviour when a joint is subject to
gravity

Figure 3.6: Diagram of how the settings of an action are sustained.

44

Chapter 4

Implementation

The objective of this study is to infer a motion primitive that will endow
the snake robot PIKo to lift it’s head (front module) as much as possible
using a reinforcement learning. This chapter presents the strategies followed
to attain this goal and the problems than surged during the process.

The development was following an incremental-evolutive cycle which made
that some problems or incidents appeared during testing and experiments.
This incremental identification of problems caused the re-orientation of the
approach causing that earlier approaches were abandoned before solving the
identified problems.

4.1 Initial setup

The experimental setup required the selection of:

• A state representation

• A reinforcement learning method

• A function approximator

4.1.1 State representation

The purpose of PIKo is the inspection of pipelines which means that the
realm which it interacts is composed of the 3 dimensional space it will be
inspecting. The original intention was to base the learning on the existing
Follow-the-Leader (FTL) algorithm already implemented in the simulator

45

and since this algorithm propagates backwards the settings for joint angles
and speed of the first module depending of the travelled distance, the state
is represented by the fist module’s coordinates (x0, y0, z0) in space. Fur-
thermore, since the action of lifting the ”head” only requires to components
(horizontal and vertical) the space of interaction was correspondingly reduced
leaving out the depth dimension. Control of speed is done throgh the high
level controls provided although the simulator gives the possibility of low
level adjustment of the speed of each module. However, this would increase
in a great degree the complexity of the learning process.

(x′, z) =

(
(x+ y)

‖(x+ y)‖
, z

)
(4.1)

Figure 4.1: Representation of the PIKo robot in the state-space

For flexibility, the horizontal component is a projection x′ of the x and
y components over a normalized vector with origin in the simulators point
(0, 0, 0) to the first module’s coordinates (x0, y0, z0).

4.1.2 Reinforcement Learning Method

Of the different reinforcement learning methods presented in chapter 2 it was
considered that the most suitable would be CACLA based on its capability
to handle continuous spaces (as well as discrete ones [12]).

The CACLA algorithm in pseudo-code is as follows:

46

Initialize all actions A0 for all states
Initialize values V0 for all states
Select state, s0
for each step t=1,2,3... do

Select at
Perform at, observe rt, st+1

if st+1 is terminal then

Vt+1(st)
βt←− rt

Select new st+1 (set the configuration for the next episode)
else
Vt+1(st)

βt←− rt + γVt(st+1)
end if
if δt > 0andtheactionwasexploratory then
At+1(st)

αt←− at
end if

end for

For this project, the actor, A, and critic, V , will be stored using a func-
tion approximator presented in the next section. The initial configuration
will be the same for each episode which is the initial position of the robot
when you start the simulator. γ is a discount factor while αt and βt are the
learning rates for the actor and the critic. The reward rt appears in the
Temporal Difference error, δt.

δt = rt + γVt(st+1)− Vt(st) (4.2)

For the selection of the action for each step, at, was made using an
exploration-exploitation balancing strategy depending on the experiment.
Then the internal data-structures of the simulator are set according to the
action the simulator advances. When finished, the evaluation of the new state
is made and the updates to the critic and the actor are performed if necessary.

4.1.3 Function Approximator

A Radial Basis Function Network (RBFN) was selected as function approx-
imator because it scalability and local approximation capabilities. The scal-
ability proved to be useful to reduce the simulation time depending on the
different scenarios.

47

Figure 4.2: Diagram of the proposed RBFN

The RBFN which was used consist of an input layer with 2 nodes cor-
responding to each of the coordinates of the first module, one hidden layer
with the centroids and an output layer with nodes for each policy and the
value function (figure 4.2).

Figure 4.3: Mapping of the RBFN to the workspace

The centroids are mapped to the workspace following a grid of equi-
distant points as seen in figure 4.3.

48

4.2 First approach

The first approach made use of the FTL-algorithm already implemented in
the simulator. Taking this as starting point the set of actions selected was:

• decrease the speed a fixed amount a1

• increase the speed a fixed amount a2

• decrease angle a fixed amount a3

• increase angle a fixed amount a4

This way a1 and a2 belong to one dimension and a3 and a4 to another
one. We define one policy for each one of these dimensions and alternate
between them when we decide an action.

Because of the use of a1, a2 the centroids had to cover a large area of space
which added to desirable high resolution of the state-space required a large
amounts of nodes (around 2500) penalizing the simulation time. Remember
that the implementation of the FTL-algorithm requires the robot to travel a
certain distance (the distance between to consecutive modules) to propagate
its settings to next module.

Besides, this incapability to directly control the rest of the joints of the
robot rests manoeuvrability in closed spaces as pipelines.

The strategy for exploratory actions was originally a Gaussian exploration
where de probability to perform action a in step t is:

πt(st, a) =
1

2πσ
e−(a−Act(st))

2/2σ (4.3)

where σ is the with of the Gaussian, πt(st, a) denotes the policy and π is
the constant.

This strategy did not seem to work as expected so it was later replaced
by an ε-strategy where ε denotes the probability of making an exploratory
action. This change in strategy required some changes in the code. In par-
ticular it was now necessary to store information about if the action was
exploratory or not.

49

The output was interpreted as follows:
At(st) > 0 increase speed/angle
At(st) = 0 nothing
At(st) < 0 decrease speed/angle

Different rewarding strategies where tested. One of the first ones was giving
an increasing reward each time the robot surpassed a milestone. This was
inspired by the labyrinth-problem presented in [8] where rewards only are
awarded if the agent finds its way to the exit. It was also awarded a big neg-
ative reward if it escaped the boundaries of the area covered by the centroids.

This strategy seemed to work satisfactorily in the first stages of the train-
ing, reaching the physical maximum, but would not converge to this solution.

Results presented in chapter 5.1 inspired another reward strategy where
the reward received was the actual height of the ”head” but this showed to
be too ”generous” as it always was positive and would eclipse the temporal
difference error provided by the value function. The final strategy was to
use the height difference between the current step and the previous which
complies to the basic idea that increase the height is good.

During this stage, the actions made to reset the model of the robot for
each new episode comprised repositioning it to the original location, re-
initialize the angles of the joints to 0 radians and clear the queue of events
used by the FTL-algorithm and variables that kept the speed and the angle
of the front-most joint.

4.3 Second approach

After observing the results from the first approach presented in chapter 5 it
was decided to change the approach to the problem.

This time we turn away from the FTL strategy and focused on the indi-
vidual joints. The motivation for this was that just modifying the angles of
the joints it would be possible to reach maximum height by moving the cen-
tre of masses to achieve a balance point that let the snake achieve a greater
height by means of an S-shape. Figure 4.4 explains this reasoning.

50

Figure 4.4: Sequence of steps oriented to achieve an S-shape

The number of outputs of the network was increased to adapt to the new
learning goals which is training the different joints independently. Since ac-
tuating on all the joints at each step, i.e. having a vector of actions, would
make it hard to isolate which of these actions was the main contributor to
reaching a better state (reaching a greater height). For this reason it was de-
cided that at each step only one joint would be affected. The way to achieve
this functionality was by introducing a counter of steps. This counter would
then be the remainder of this counter divided by the number of joints being
trained, counter%|jointsTrained|.

It was also discovered that the actions were not deterministic, i.e. per-
forming an action did not really meant that this action would take place as
expected. A consequence of this is that were not studying a Markov state
either. The issue was observed while modifying the angle of a joint in a small
degree resulted in a movement far greater than expected and motivated the
modification addressed in subsection 3.3.6.

This issue motivated a more in-depth monitoring of the behaviour of the
model showing that the learning process started before the model was stabi-

51

lized at its initial position. This issue has been addressed in subsection 3.3.3.

A final issue observed and described in the results 5.2 involved the limit-
ing of the travelling range of the joints.

4.4 Third approach

Another final approach was used. This approach was more oriented to the
continuous action space the problem present and inspired by article [13]. In
this article the authors describe how to use reinforcement learning to improve
the walking behaviour of a 4 legged walking robot. The relevant part for this
thesis is the definition of the policies. Instead of defining the actions as fixed
increments or decrements and learn if the action should be to increase or
decrease the angle as we have been doing until now they define the policies
as the angle the joint should present.

Turning to our set-up, this meant changing the action controller (subsec-
tion 3.3.2). Since we were not going to use the FTL strategy any longer and
that we were not going to use the actions that affected the speed motivated
the implementation of a new function for the decision and performing of ac-
tions (function actionAngle described in subsection 3.3.2.

52

Chapter 5

Simulation results

In this chapter we describe the results of the simulations for each of the
approaches described in chapter 4. For each approach we describe the con-
figuration of the simulator in terms of action space and goal of the approach
and results of these.

5.1 First approach

The initial approach to the problem was using the follow-the-leader, or FTL,
strategy. In this strategy only the first joint is directly manipulable and the
values of its angles are transferred to the second joint when the travelled
distance of the robot surpasses the length of one module (15 cm). Each time
the robot surpass this distances, the settings are propagated backwards in a
queue-like fashion. An important remark is that the counter for travelled dis-
tance is incremental and never decreases even if the robot moves backwards.
A consequence of this is that the settings of a joint is never propagated back
to the previous joint.

Given the use of the FTL strategy which use only speed and angle settings,
the action-space used was:

1. Decrease the angle of a joint by a fixed amount

2. Increase the angle of a joint by a fixed amount

3. Decrease the speed

4. Increase the speed

53

Actions where selected alternatively between decrease/increase the angle
and decrease/increase the speed using Gaussian exploration with a decreas-
ing variance over time. According to this, the network was set to 3 outputs:
1 for the angle, 1 for the speed and 1 for the value function. If the policy
output was negative this was interpreted as an decrease of angle/speed and
an increase if it was positive. If the output was 0 no action was taken.

The RBF network was set to different spacings between centres ranging
from 0.15 (length of one of the PIKo modules) to 0.01. The variance of the
radial basis function of the centroids (nodes of the network) ranged from
1.42 times the spacing distance and 5 as a constant for all the centroids.
The factor 1.42, an approximation to the square root of 2, is the minimum
diameter of a centroid (or variance of its Gaussian) necessay to cover all the
state space as seen in figure 5.1.

Figure 5.1: Diagram showing how using the value of the hypotenuse of a a
triangle

The reward strategy used consisted of a series of ”milestones”, altitudes
at which it received a big reward. At the rest of the positions it did not
receive any reward.

The learning rates used where int the order of 0.0001 to 0.1 for both the
policies and the value function.

The simulations showed that the robot learned that in a first phase the
best action was to increase the angle of the first join, however, after a while

54

the FTL algorithm caused that this maximum opening angle was propagated
to the rest of the joints giving the snake an ”O”-shape where the head and
the tail kept touching each other. When in this position, it was not able to
straighten up its head.

A hypothesis for this behaviour is that once it have reached this ”O”-
shape the head is between two milestones and cannot infer that straightening
the head upwards is perceived as better.

Since observing that the head could be ”marooned” between two mile-
stones the reward strategy was changed to be the height at each step and it
was added another reward proportional to the ”verticality” that started after
achieving a certain height. This strategy proved to be quite bad showing no
convergence at all. This is easily explained since any action will give a posi-
tive reward. And since CACLA updates the policy every time the TD-error
is positive it would always update towards the last action taken.

The reward strategy was changed again to give a reward according to the
difference in height achieved by each actions. The verticality criteria was
kept. The learning converged to a state similar to the one achieved with the
first strategy based on milestones without reaching verticality.

Altering the learning parameters did not affect the overall results. This is
explained by the weight the rewards supposed and the low number of episodes
simulated. This number was around 100 and 1000 with about 200 steps for
each episode.

Another issue with the use of FTL is that the robot needs to advance
through the scenario to propagate the settings increasing the size of the net-
work needed to cover the space state and, as consequence, the time needed
for the learning process.

5.2 Second approach

In the second approach the FTL algorithm was cast aside to limit the action
space (and by that the number of nodes). Not using the FTL strategy means
we no longer require to modify the speed of the snake leaving to possible
actions to:

1. Decrease the angle of a joint by a fixed amount

55

2. Increase the angle of a joint by a fixed amount

The exploration strategy was changed to an ε-greedy strategy which
started with an ε of 0.5 at was decreased over time. The motivation was
that it seemed to make more sense to explore the opposite action when the
output of the policy is interpreted so binary.

As reward strategy we kept the height differences from the first approach
but stopped using the vertical criteria since the same goal should be achieved
by increasing the resolution of the network by decreasing the spacing between
centroids.

The simulations started with only the first joint active to check that ev-
erything worked as it should. It was detected that sometimes the learning
converged to the maximum possible but other times it would go the other
way around. The problem was traced to reset action after each episode pro-
voking that the learning started before the model was stabilized on top of
the ground. This problem has been addressed in subsection 3.3.3.

Another issue observed was that the servo in charge of the joint did not
manage to achieve de desired angle of the joint being subject to the gravity
of the modelled world. This issue motivated the modification described in
subsection 3.3.6.

Once these issues were worked around and increased the number of episodes
we started getting more consistent results as seen in figure 5.2.

Figure 5.2: Height in metres achieved at the end of each episode with only
the first joint active. X-axis denotes the number of episodes simulated.

56

However, if increased even more the number of episodes simulated we
detected a consequence seen in figure 5.3.

Figure 5.3: Height in metres achieved at the end of each episode with only
the first joint active and increasing the number of episodes simulated. X-axis
denotes the number of episodes simulated.

As we can see, the simulation converges to maximum possible height but
after 2500 simulated episodes some strange results start appearing. By study-
ing the path of movement of the head it was observed that after reaching the
maximum height the head bounced violently. The explanation for this phe-
nomenon is given to a too big speed of the head provoking a sudden bounce
when it reaches the maximum range of the joint.

After capping the maximum range of the joint this problem seemed to be
solved or at least not observed and simulations with 2 active joints were ran
showing a typical behaviour seen in figure 5.4.

First, we can see that the final position of each episode converges to 2
different heights and slowly decrease. Second, after about 20000 episodes
everything colapses. The first issue is traced to 1 of the joints being unable
to converge to one angle. The second issue is more difficult to explain. A
hypothesis is that it is related to the value function overriding the TD-error.
Decreasing the learning rate to solve it or slow it down.

57

Figure 5.4: Height in metres achieved at the end of each episode with the 2
first joints active and increasing the number of episodes simulated. X-axis
denotes the number of episodes simulated.

Simulations with 3 joints showed the following behaviour 5.5.

Here we see again how the model ”converges” to two different positions.
Again this was traced to one of the joints being unable to converge to a best
position.

5.3 Third approach

In the third approach the policies were changed to learn an optimal angle
instead of learning if it should increase or decrease the angle.

The exploration strategy was changed back to Gaussian exploration since
it now made more sense to explore around an angle.

In this approach the modification described in subsection 3.3.7 for stabi-
lizing actions was also introduced.

This alternative reached maximum possible height quickly and conver-

58

Figure 5.5: Height in metres achieved at the end of each episode with the 3
first joints active and increasing the number of episodes simulated. X-axis
denotes the number of episodes simulated.

gence inside the range defined by the variance of the Gaussian exploration
as seen in figure 5.6

However, if we check the path followed by the head we see that the max-
imum height is reached and then it starts loosing height as we can see in
figure 5.7.

By increasing the number of steps considerably it was possible to reach a
more stable result as seen in figure 5.8.

Most of these results where obtained using a network of 3 horizontal nodes
by 5 vertical nodes with a spacing of 0.05 m. Increasing the number of nodes
considerably slowed down an already long during learning process (using a
3x5 network for 7500 episodes of 2000 steps takes around 10 hours on the
computer used for development).

59

Figure 5.6: Height in metres achieved at the end of each episode with the 2
first joints active and increasing the number of episodes simulated. X-axis
denotes the number of episodes simulated.

Figure 5.7: Height of the robots head during 5 episodes of 100 steps

60

Figure 5.8: Height of the robots head during 2 episodes of 500 steps

61

62

Chapter 6

Discussion and further work

6.1 Discussion of results

Despite difficulties posed by at the moment unknown issues with simulator
being used, each of the different approaches has showed to learn how to lift
the head of the robot although the result is heavy influenced by the chosen
parameters.

In terms of time required the most important parameter is the number of
centroids used in the network. Not only because of the calculations that has
to be done for each step but also because increasing the state space implies
increasing the number of nodes that have to learn. In the simulations that
have been done a 3x5 network proved to be able to learn a ”good enough”
result taking into account the limitations of its resolution. Narrowing of the
number of nodes was done running simulations with many nodes and then
observe which were the extreme horizontal and vertical positions reached.

The learning rates, both of the value function and the policies affect di-
rectly the number of times a state has to be visited to learn the optimal policy.

The reward strategy used is the main tool we have to indicate how good
an action has been in the initial phase of the learning. This can be seen in
the case of using the height difference between two steps. In the initial phase
the value function’s output is close to 0 and the policy learning is guided by
the reward. Later, when the policy is being refined the height between two
actions is much smaller and the value function which has been increasing its
value gains importance in the compute of the TD-error.

63

The FTL strategy, because of its requirement of travelling a distance to
propagate changes seems unsuitable for vertical movements and especially in
confined spaces such as pipelines.

The earlier results are affected by the simulator issues discovered later
and by shorter simulation sessions. Without the issues and longer simulation
sessions the results might have been better.

The third approach which learn policies as specific angles learns faster
while the others are limited by their discrete action sets.

The type of exploration strategy affects the outcome of the learning pro-
cess and one strategy does not need to be good for every situation.

6.2 Further work

This thesis has focused on a basic reinforcement learning framework based
on CACLA leaving out optimizations such as eligibility traces, more refined
reward strategies.

Other optimizations of RBF networks such as adaptive number of nodes
and adaptive width of nodes have not been tied either and could improve the
time required for learning and the results (e.g. during the simulations there
were situations where a larger resolution would have allowed more refined
solutions).

The simulator need more refinement. During this thesis some problems
were detected and workarounds for them proposed. However, improving the
simulator was not in the scope of the topic and should be sorted out in better
ways. Without a more realistic simulation environment the control strategies
developed may turn unusable.

Other research lines are developing control strategies for more complex
situations such as climbing up an L-bend or T-bends.

64

Chapter 7

Conclussions

Using reinforcement learning with an RBF network as function approximator
for development of control strategies for serpentine robots is possible. Even
using a basic set-up without more advanced features have proved to be able
to learn a basic objective such as lifting the robot’s head as much as possible.

The learning process is heavily affected by the parameters involved. Con-
cepts such as the state and action space should be narrowed down from the
beginning to allow for a more efficient use of time.

Various issues with the PIKo simulator have been detected and workarounds
proposed. Better solutions for these issues would increase the quality of the
simulations and reduce simulation time.

65

66

Chapter 8

References

[1] B. Guo, S. Song, J. Chacko, and A. Ghalambor, Offshore Pipelines. Gulf
Professional Publishing, 2005.

[2] H. Streich and O. Adria, “Software approach for the autonomous in-
spection robot makro,” in Proceedings of the 2004 IEEE International
Conference on Robotics & Automation, 2004.

[3] B. Klaassen, H. Streich, E. Rome, and F. Kirchner, “Simulation and
control of the segmented inspection robot makro,” 2002.

[4] S.-g. Roh, D. Kim, J.-S. Lee, H. Moon, and H. Choi, “In-pipe robot
based on selective drive mechanism,” International Journal of Control,
Automation and Systems, vol. 7, pp. 105–112, 2009. 10.1007/s12555-
009-0113-z.

[5] H. Schempf, E. Mutschler, V. Goltsberg, G. Skoptsov, A. Gavaert, and
G. Vradis, “Explorer: Untethered real-time gas main assessment robot
system,” in 1st International Workshop on Advances in Service Robotics,
ASER03, March 2003.

[6] S. Fjerdingen, P. Liljebck, and A. Transeth, “A snake-like robot for
internal inspection of complex pipe structures (piko),” IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2009.

[7] S. Fjerdingen, E. Kyrkjeb, and A. Transeth, “AUV pipeline follow-
ing using reinforcement learning,” SR/ROBOTIK 2010 : Proceedings
for the joint conference of ISR 2010 (41st International Symposium on
Robotics) und ROBOTIK 2010 (6th German Conference on Robotics),
2010.

67

[8] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[9] T. Hegge, T. Ingebretsen, U. Myhre, and V. kland, “EiT 2010 SINTEF:
Piko, snakerobot.”.

[10] http://www.ode.org, “Open dynamics engine.”

[11] http://irrlicht.sourceforge.net/, “Irrlicht engine - a free open
source 3d engine.”

[12] H. van Hasselt and M. Wiering, “Using continuous action spaces to solve
discrete problems,” Proceedings of the International Joint Conference on
Neural Networks, 2009.

[13] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement learning
of walking behaviour for a four-legged robot,” Proceedings of the 40th
IEEE Conference on Decision and Control, 2001.

[14] “Wikipedia.”

68

http://www.ode.org
http://irrlicht.sourceforge.net/

Appendix A

Simulator

A.1 Installation

Although building the original simulator in Linux was quite painless this was
not the case on Windows. The following corrections had to be made:

• Correct the previous ”include”-paths of the project.

• Find out how to let the code be built on both platforms.

• Increase the reserved stack size. Windows and Linux handle programs
memory-requirements differently. While UNIX-like operating systems
allocate more memory when it’s needed this is different in Windows
and it’s necessary to adjust this in the project properties.

The 64 bits version of Windows 7 doesn’t like the dll library built using the
procedure described in chapter 3. A workaround is copying the dll to the
Debug directory of the project. There are better ways to solve this prob-
lem which imply using a specific SDK from Microsoft, tune the Windows
registry and more but this is not in the scope of this study. However, the
curious can consult e.g http://jenshuebel.wordpress.com/2009/02/12/

visual-c-2008-express-edition-and-64-bit-targets/ to get an idea.

Due to problems with dependencies on MSVC++, the quickest way to get
the EA-controller running is by creating an empty project and include all
the files of the EA project and the simulator.

69

http://jenshuebel.wordpress.com/2009/02/12/visual-c-2008-express-edition-and-64-bit-targets/
http://jenshuebel.wordpress.com/2009/02/12/visual-c-2008-express-edition-and-64-bit-targets/

	Tittelside
	Oppgavetekst
	List of Figures
	Introduction
	Motivation
	Background
	Contribution

	Background
	State of the art
	Commercial products
	Research prototypes

	PIKO
	Control strategies
	Function approximators
	The Markov Property
	Reinforcement Learning Methods
	Sarsa
	Actor-Critic
	Actor-Critic Learning Automaton (Acla)
	Cacla

	The PIKo simulator
	Initial state of the simulator
	Tutorial
	Installation
	Reading of sensors
	Control
	Performing simulations without visualizations

	Modifications
	The Artificial Neural Network (ANN) class
	The Reinforcement Learning class
	Resetting the robot
	Simulation without visualization
	Unstability
	"External" forces
	Stabilizing the actions
	Simulation setup

	Implementation
	Initial setup
	State representation
	Reinforcement Learning Method
	Function Approximator

	First approach
	Second approach
	Third approach

	Simulation results
	First approach
	Second approach
	Third approach

	Discussion and further work
	Discussion of results
	Further work

	Conclussions
	References
	Simulator
	Installation

