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Abstract

The optimization of piezoelectric ultrasonic transducers has tradisionally
been done through trial and error, somewhat guided by one-dimentional si-
mulations. This can often be a very time-consuming and expensive process,
hence a more extensive simulation method is desired.

A series of �nite element models of piezoelectric ultrasonic transducer has
been made in COMSOL Multiphysics. The initial models were designed to
emulate the conditions assumed in a one-dimentional transducer model, and
their validity could thus be con�rmed by said model. Later models did not
emulate these conditions, and a lossless model of a spherical disc with backing
and a single matching layer was successfully implemented. Attemps had been
made to include mechanical loss in the initial models, but was only partially
achieved. All loss was thus excluded from later models. A �nal model with a
piezoelectric layer poled in the radial direction was not successfully designed,
as the varying poling direction proved to be di�cult to implement.
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Chapter 1

Introduction

Ultrasound is the collective name of all soundwaves above the range of human
hearing, i.e. above 20 kHz. Such waves were in the thirties the foundation
of the invention of SONAR, which operates at frequencies from 20kHz to
100kHz. The variety of applications for ultrasound increased signi�cantly
with the discovery of piezoelectric ceramics[2], allowing for frequencies in the
range of MHz. These high frequencies gave rise to non-intrusive analysis
of solid material, such as in welding seams. It was soon realized that the
non-intrusive nature of ultrasound would make it an exellent tool in medical
diagnostic, and successful studies of the human body was conducted in the
U.S.[27], Japan[24] and Sweden[7] in the late forties and early �fthies.

The development of ultrasound in medicine over the last sixty years has
been phenomenal, giving rise to, for example, real time three-dimentional
ultrasound[21]. A large part of this development was made possible by the
advances in computer technology, allowing for processing of vast amounts of
data in a short period of time. However, the development of new ultrasonic
transducers is also of great importance, as the signal processing is ultimately
limited by the quality of the input data. The method of designing new
transducer has tradisionally been based on trial and error, supplemented by
one-dimentional simulations. This can however be very expensive and time-
comsuming, as several transducers may have to be constructed in order to
optimize a design. A computer simulation of complete transducer designs
is therefore desired, and for this is the �nite element method a very good
candidate.

The basis of the �nite element method was developed seperately by
mathematicians, physicists and engineers, as a way of decomposing com-
plex problems into simple well known parts. The initial use of the method in
engineering was to replace plates with simple struts[9], but it has later devel-
oped into covering a wide variety of applications, including acoustics[11] and
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piezoelectricity[13].
The work in this thesis will employ these two branches of physics in a

series of �nite element models of ultrasonic piezoelectric transducers. The
�rst models will be designed to emulate a one-dimentional problem, thus
allowing their validity to be veri�ed by known one-dimentional models. The
�nal model will be of a transducer in the shape of a spherical cap, where
the piezoelectric layer is a deposited thick �lm. For all simulations will two
parameters be obtained, namely the inductance, Y, and the average velocity
on the transducer surface relative to the applied voltage, Htt.

2



Chapter 2

Theory

2.1 Acoustic propagation

2.1.1 Stress and strain

An accoustic wave, ultrasonic or otherwise, is essentially a mechanical defor-
mation propagating through a material, and can for this reason be described
by the relation between stress and strain. Within a body subjected to ex-
ternal forces is a unit cube as seen in �gure 2.1. Stress is, as seen in the

Figure 2.1: Directions of normal and shear stresses.

�gure, de�ned as the force per unit area in direction i acting on the surface
of the unit cube whose normal is direction j. The components where i = j
are the normal or longitudinal stresses, while those where i 6= j are the shear
stresses. The stresses acting on the three opposite faces that can not be seen
in the �gure of the cube are all of the same magnitude but opposite direc-
tion as those that are seen, consequently the net force acting on the cube is
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zero. Furthermore, any stress component Tij will be equal to Tji for i 6= j
to prevent the cube from rotating. The six independent stress components
are often represented as a vector with the following index convention:

T11 = T1 T23 = T32 = T4

T22 = T2 T13 = T31 = T5

T33 = T3 T12 = T21 = T6

Strain is a quanti�cation of the deformation of the unit cube. It is di-
vided into normal strains, as seen in �gure 2.2(a), and shear strain which
is illustrated in 2.2(b). The index notation of the strains is similar to that
of the stresses, with i indicating the direction of the deformation and j the
suface which is deformed. All the strains are de�ned as follows:

Sij =
1

2

∂Ψi

∂xj
+
∂Ψj

∂xi
(2.1)

Strains are also often represented as a vector, following the same index con-
vention as the stresses.

(a) Normal or longitudinal strain (b) Shear strain

Figure 2.2: The de�nition of normal and shear strain

The relation between stress and strain in a material is linear, assuming
that the strains are small and the material follows Hooke's law (i.e. is ela-
stic). This relation for an arbitrary material will then be expressed by the
generalized Hooke's law which is show in its matrix form in eq 2.2.

T1

T2

T3

T4

T5

T6

 =


c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66




S1

S2

S3

S4

S5

S6

 (2.2)
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Where c is the (elastic) sti�ness matrix of the material. However, the sti�ness
matrix can be simpli�ed by considering the symmetries in a given material,
such as in a isotropic material, where eq 2.2 will be modi�ed as follows.

T1

T2

T3

T4

T5

T6

 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ




S1

S2

S3

S4

S5

S6

 (2.3)

Here is λ and µ the �rst and second Lamé-constants. This equation gives a
complete description of the mechanical properties of a linear-elastic, lossless
and isotropic material.

2.1.2 Wave equation

An expression for motion of the unit cube in �g 2.1 can be described by
calculating the net force to which it is subjected. In other words, by ap-
plying Newton's second law. A situation where there is only motion in the
3-direction will then be expressed as follows:

∂T3

∂x3

+
∂T4

∂x2

+
∂T5

∂x1

= ρ
∂2Ψ3

∂t2
(2.4)

Where ρ is the mass density of the material, t is time and Ψ3 is the dis-
placement of the unit cube in the 3-direction. In a solid there can exist both
longitudinal, or pressure, waves and transversal, or shear, waves. They dif-
fer in the direction of displacement relative to the propagation direction of
the wave, as seen in �gures 2.3 and 2.4. If a shear wave propagating in the
1-direction is causing the motion in eq 2.4, then S5 will be the only non-zero
strain component. Consequently will the only non-zero stress compont be T5

and eq 2.4 can be reduced to:

∂T5

∂x1

= ρ
∂2Ψ3

∂t2
(2.5)

Furthermore can eqs 2.3 and 2.1 be used to express the stress as a displace-
ment resulting in:

∂2Ψ3

∂x2
1

= ρ
∂2Ψ3

∂t2
(2.6)

This is recognized as the wave equation, which has a sinusodial solution:

Ψ∓3 (x3, t) = Ψ3,0e
j(ωt±kx3) (2.7)
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Where Ψ−3 and Ψ+
3 represent the positive- and negative-traveling wave, re-

spectively, while ω = 2πf is the angular frequency and k = ω
c
is the wave-

number. Eqs 2.6 and 2.7 will also show that the propagation speed of a shear
wave is:

cs =

√
µ

ρ
(2.8)

It must be noted that a shear wave can only propagate in a solid, as µ = 0
in both liquids and gases. This is however not the case for a pressure wave.

Figure 2.3: The propagation of a plane shear wave

Figure 2.4: The propagation of a plane pressure/longitudinal wave

The propagation of a plane longitudinal wave will be without any shear
strain, and normal strain only in the direction the wave is propagating, as
seen in �gure 2.4. This will cause eq 2.4 to be reduced to:

∂T3

∂x3

= ρ
∂2Ψ3

∂t2
(2.9)

The same assumption will, when applied to eq 2.3 show that the relation
between T3 and S3 in this case becomes:

T3 = (λ+ 2µ)S3 = (λ+ 2µ)
∂Ψ3

∂x3

(2.10)
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Here the de�nition of strain is used to show the relation between stress and
displacement. Eq 2.10 is then substituted into eq 2.9:

∂2Ψ3

∂x2
3

=
ρ

λ+ 2µ

∂2Ψ3

∂t2
(2.11)

This is identi�ed as the wave equation, with the sinusodial solution:

Ψ∓3 (x3, t) = Ψ3,0e
j(ωt±kx3) (2.12)

Eqs 2.11 and 2.12 can, in a similar way as with the shear wave, show that
the propagation speed of a longitudinal wave in a solid is:

cl =

√
λ+ 2µ

ρ
=

√
M

ρ
(2.13)

Where M is the p-wave, or longitudinal, modulus. But if the wave is propa-
gating through a liquid or gas is µ = 0 and eq 2.13 will be altered to:

cl =

√
λ

ρ
=

√
B

ρ
(2.14)

Where B is the bulk modulus of the material, representing is resistance to
compression.

2.1.3 Acoustic Impedance

The displacement Ψ3, as described in eq 2.12 can be di�erentiated with re-
spect to time in order to obtain the rate of change in displacement, u3, also
known as the particle velocity:

u3 =
∂Ψ3

∂t
= jωΨ3 (2.15)

When viewing the de�nition of stress in section 2.1.1 it is apparent that
normal stress on a surface is equal to pressure in magnitude. It is however
positive in the opposite direction, since a positive normal stress will cause
tension, while a positive pressure will cause compression. Inserting this rela-
tion into eq 2.10 gives:

p = −(λ+ 2µ)
∂Ψ3

∂x3

(2.16)

Φ3 is given in eq 2.12 and can with eqs 2.13 and 2.15 be used to change eq
2.16 into:

p± = ±jk(λ+ 2µ)Ψ±3 = ±jωρclΨ±3 = ±ρclu±3 (2.17)
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Rearranging this equation will give the characteristic acoustic impedance for
a longitudinal wave:

Z±l =
p±

u±3
= ±ρcl (2.18)

2.2 The piezoelectric e�ect

2.2.1 Mechanism

Certain materials will generate an electric charge when subjected to a me-
chanical stress, and change its dimentions when an electric �eld is applied
across the material. These are known respectively as the direct and the in-
verse piezoelectric e�ect[4]. The e�ect is observed in a variety of materials,
such as quartz, dry bone, polyvinylindene �uoride (−(C2H2F2)n−) and lead
zirconate titanate (Pb[ZrxTi1−x]O3, 0 < x < 1). The latter of these, also
known by the abbreviation PZT, is a man-made ceramic with a perovskite
structure, and one of the most commonly used piezoelectric ceramics today.
It is also the piezoelectric material used in the simulations in this thesis.

The piezoelectric e�ect can only occur in anisotropic materials[1], which
implies that a crystalline piezoelectric material must have a noncentrosym-
metric structure. An example of this is the previously mentioned PZT where
the positive Ti/Zr ion is positioned a bit o� center in the lattice, causing
a polarization in the same direction, as seen to the right in �gure 2.5. An
external mechanical strain will deform the lattice, thus move the Ti/Zr ion
and change the magnitude of the polarization. While an applied electric �eld
will move the Ti/Zr ion and as a consequence the lattice, and thus the mate-
rial, will be deformed. However, an isotropic material can have a change in
dimentions when an electric �eld is applied, but there will be no generated
charge when the material is subjected to mechanical pressure. This is cau-
sed by a small nonlinear e�ect known as the electrostrictive e�ect, while the
piezoelectric e�ect is linear[28]. Initially, the dipoles in PZT are polarized
in random directions resulting little or no polarization of the material as a
whole, and thus little or no piezoelectric e�ect. This problem can in some
piezoelectric materials, PZT included, be addressed by poling. In the poling
process will the material be heated to above its Curie temperature, causing
the PZT to assume centrosymmetric lattice structure and loose all polariza-
tion, as seen to the left in �gure 2.5. Then a strong electric �eld is applied
across the material and the temperatures is lowered while the �eld is still
applied. This forces the polarization in the unit cells to align to the exterior
�eld, resulting in a strong polarization of the bulk material.
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Figure 2.5: Crystal structure of PZT, above and below its Curie temperature
(TC) [20].

2.2.2 Mathematical description

A piezoelectric material is described by both the laws of mechanics and those
of electromagnetics, for this reason it is prudent to get an overview of the
relevant laws of both domains before attempting to combine them.

The mechanical properties of a piezoelectric material can, assuming only
small deformation, be described as a linear-elastic material. Consequently it
follows the generalized Hooke's law, as seen in eq 2.2. Electrically, a piezo-
electric material is a polarizable dielectric. Hence, the electrical behaviour
of the material is as described in eq 2.19.D1

D2

D3

 = ε0

E1

E2

E3

P1

P2

P3

 , ∇ ·D = 0 (2.19)

Where D is the electric displacement �eld, ε0 is the vacuum permittivity,
E is the electric �eld and P is the polarization density. While the second
equation de�nes the material as a dieelectric, i.e. no free charges. The index
convention is the same as with the �rst three values in the stress and strain
vectors.

The piezoelectric e�ect is, as previously mentioned, a linear e�ect. This
implies that eqs 2.2 and 2.19 can be expanded with a linear term to include
said e�ect. For instance will the stress in a piezoelectric material expressed
by the strain and electric �eld be as seen in eq 2.20, while the electric dis-
placement �eld expressed by the strain and the electric �eld will be as seen
in eq 2.21. These equations give a mathematical expression for the inverse

9



and direct piezoelectric e�ect, respectively.
T1

T2

T3

T4

T5

T6

 =


cE11 cE12 cE13 cE14 cE15 cE16

cE21 cE22 cE23 cE24 cE25 cE26

cE31 cE32 cE33 cE34 cE35 cE36

cE41 cE42 cE43 cE44 cE45 cE46

cE51 cE52 cE53 cE54 cE55 cE56

cE61 cE62 cE63 cE64 cE65 cE66




S1

S2

S3

S4

S5

S6

−

e11 e21 e31

e12 e22 e32

e13 e23 e33

e14 e24 e34

e15 e25 e35

e16 e26 e36


E1

E2

E3

 (2.20)

D1

D2

D3

 =

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36



S1

S2

S3

S4

S5

S6

−
εS11 εS12 εS13

εS21 εS22 εS23

εS31 εS32 εS33

E1

E2

E3

 (2.21)

The superscripted E's in eq 2.20 indicate that the values of the sti�ness
matrix were measured while the electric �eld across the material was con-
stant. Similar superscripts exist to indicate constant electric displacement
�eld, stress or strain. A permittivity matrix, ε, has also been introduced to
replace the vacuum permittivity and the polarization vector. And it has been
necessary to include the e-coe�cients. These are one of four sets of piezo-
electric coe�cients used to relate the mechanical (S and T ) and the electrical
variables (E and D). All these relations are listed in their abbreviated form
in eq 2.22 giving four di�erent sets of piezoelectric parameters.

D = eS + εSE (2.22a)

T = cES − etE (2.22b)

D = dT + εTE (2.22c)

S = sET + dtE (2.22d)

E = −gT + (εT )−1D (2.22e)

S = sDT + gtD (2.22f)

E = −hS + (εS)−1D (2.22g)

T = cDS − htD (2.22h)

The superscripted t in some of these equations indicate that the matrix
is transposed, while the s-matrix is the compliance matrix of the material,
which is the inverse of the sti�ness matrix. Each of these sets of parameters
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gives a mathematical description of the direct and the inverse piezoelectric
e�ect in the upper and lower equation respectively, and is su�cent to descibe
the material. Each of the four sets are also related to each other, hence it is
possible to change from one set of parameters to another if it should become
necessary.

2.2.3 Symmetries in PZT

Eqs 2.20 and 2.21 contains a large number of independent variables, 63 in
total. However, this number is signi�cantly reduced when including the sym-
metry in PZT. The poling process will turn PZT into a transversely isotropic
material with a rotational symmetry around the direction of polarization,
usually de�ned as the x3-direction[28]. One of the parametric sets for such
a material can be written as seen in eqs 2.23 and 2.24, showing that the
number of independant variables has been reduced to 10.
T1

T2

T3

T4

T5

T6

 =


cE11 cE12 cE13 0 0 0
cE12 cE11 cE13 0 0 0
cE13 cE13 cE33 0 0 0
0 0 0 cE44 0 0
0 0 0 0 cE44 0
0 0 0 0 0 cE66




S1

S2

S3

S4

S5

S6

−


0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0


E1

E2

E3

 (2.23)

Where cE66 = 1
2
(cE11 − cE12).

D1

D2

D3

 =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0



S1

S2

S3

S4

S5

S6

−
εS11 0 0

0 εS11 0
0 0 εS33

E1

E2

E3

 (2.24)

2.3 Loss

All materials are in some way lossy, this includes piezoelectric materials where
three di�erent types of losses occur, namely dielectric, mechanical and pie-
zoelectric loss[26]. These can all be included into calculations through the
use of complex permittivity, sti�ness matrix and piezoelectric coe�cient, re-
spectively. However, in this thesis is only mechanical loss implemented in
the simulations.

The attenuation of a mechanical wave is caused by a combination of power
absorpsion and and scattering, however the former is most prominent [22].
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This attenuation is usually included into the system as a complex elastic
sti�ness:

c∗ = c′ − jc′′ = c′(1− j · tanδm) = c′(1− j

Qm

) (2.25)

Where c′ and c′′ are the real and imaginary sti�ness, respectively. While
tanδm is the mechanical loss tangent and the invers of the mechanical Q-
factor, Qm.

2.4 Finte element method

The behavior of a physical system is usually governed by some boundary
conditions and a set of equations, some of them partial di�erential (PDE).
Direct analysis of such a system can be very di�cult, especially if the struc-
ture is complicated. However, the �nite element method (FEM) can solve
physical systems of imense complexity through approximations of the PDEs
and dicretization of the system geometry.

The method is generally performed as in the following steps:

1. Governing equations of the system are identi�ed, and an approximation
is derived.

2. The system is discretized into a �nite number of elements.

3. An approximation of the dependent variable is introduced in each ele-
ment.

4. The integral form equation is evaluated for each element.

5. The solution in each element is assembled as a global matrix equation.

6. Said matrix equation is solved.

7. Values of interest can be calcuated from the solution of the matrix.

2.4.1 Elements and nodes

Each domain in a physics model will in the �nite element method be divided
into elements [14]. These elements are usually polygons with three or four
corners, but elements with curved sides can be introduced in order to follow
curved domain boundaries. There is always a node at each corner of the
element, and often one or more nodes equally spaced along the sides. For the
simulations in this thesis was a triangular element with a midside node, also
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(a) Mesh. (b) Nodal placements in a quadratic
triangular element.

Figure 2.6: Triangluar element

known as a quadratic triangular element, consistently used. For this reason
is it depicted in �gure 2.6 and used as an example in this section. For each of
the six nodes in this element, will there be de�ned a shape function Ni that
is unity at node i, but zero at all other nodes and de�ned as zero outside of
the element. In addition will the sum of all the shape functions be at unity
anywhere within an element. These conditions will in this element cause the
shape functions to be quadratic functions of the coordinates, giving rise to the
name quadratic triangular element. These functions are then, along with the
nodal values of the dependent variable ũa, used to obtain the approximate
value of the dependent variable, û, anywhere within the element:

u ≈ û =
n∑
a=1

Naũa (2.26)

With n being the number of nodes in the element (in this case 6) and u being
the exact value of the dependent variable. It must be noted that ũi is a vector
only if there is more than one dependant variable. For example as in solid
mechanics, where the dependent variables are the displacements in x, y and z-
direction. This interpolation is a good approximation for variables as long as
said variable is constantly increasing or decreasing inside an element. Which
implies that the sinusoidal variations associated with a wave will require
several elements per wavelength to obtain a good approximation. In this
thesis has six elements per wavelength been set as the lowest acceptable
resolution.
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2.4.2 Integral form of partial di�erential equations

The derivation of integral forms of partial di�erential equations is an exten-
sive topic, and will not be presented in detail here. However, a brief outline
will be given [18].

In a physics problem governed by di�erential equations is the function u
sought after. This function will satisfy a set of di�erential equations, A(u),
anywhere within the system or domain, Ω, and a set of conditions, B(u)
on the boundary, Γ, of said domain. The equations and conditions can be
expressed as:

A(u) =


A1(u)
A2(u)
...

 = 0 B(u) =


B1(u)
B2(u)
...

 = 0 (2.27)

In the �nite element method is however the system discrete, so the approxi-
mate value of u is only de�ned in a �nite number of nodes. And as all the
shape functions are zero outside of its respective element, it indicates that
eq 2.26 is valid across the entire domain, when n is set as the total number
of nodes, instead of that of just one element. Some of the nodal values, ũa,
might be known through the boundary conditions, but the absolute majority
is unknown. The objective is then to �nd functions or operators Gb and gb
so that: ∫

Ω

Gb(û)dΩ +

∫
Γ

gb(û)dΓ = 0, b = 1, 2, 3, ..., n (2.28)

This equation can, due to the nature of �nite integral, also be written as:

Figure 2.7: The domain Ω with an element Ωe, boundary Γ and element
boundary Γe.

m∑
e=1

(∫
Ωe
Gb(û)dΩ +

∫
Γe
gb(û)dΓ

)
= 0, e = 1, 2, 3, ...,m (2.29)
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Here is Ωe the area of a single element and Γe is the boundary of that same
element. It is also assumed that the m elements cover the entire domain Ω.
This implies that the integral can be calculated in every element, and then
summed up to yield an approximate solution for the entire domain. Thus
giving the the value of û in every node.

Given the de�nition of A(u) in eq 2.27 it is clear that:∫
Ω

vTA(u)dΩ = 0 (2.30)

Where v is a set of n arbitrary test functions. The same conclusion can be
made for the boundary condition with the test functions v̄ that are de�ned on
the boundary. This equation is however, not valid when u is approximated.
Still, if the test functions are replaced by weighting functions, then eq 2.30
and its boundary counterpart will become valid once more. In the Galerkin
method, which is the one used by COMSOL, are these weighting functions
identical to the shape functions. Thus yielding:∫

Ω

NT
b A(û)dΩ +

∫
Γ

NbB(û)dΓ = 0, b = 0, 1, 2, 3, ..., n (2.31)

This equation is on the same form as eq 2.28, and can be applied for the
evaluation in each element.
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Chapter 3

Equipment

3.1 Xtrans

Xtrans is a MATLAB program employing the Mason model[15] to preform
a one-dimentional analysis of piezoelectric transducers. It has in this thesis
been used to con�rm the validity of the simulations in COMSOL through a
direct comparison of results.

The program can handle a large stack of piezoelectric and matching layers,
however only one of each were necessary in the in the models that were used
in this thesis. Each layer is de�ned as a certain material by stating the
characteristic acoustic impedance, longitudinal wave speed and mechanical
Q-factor. Any piezoelectric layer will in addition to these parameters require
the piezoelectric coe�cient, h33, and the relative clamped permittivity, εS33/ε0,
assuming that the piezoelectric material is poled in the 3-direction. Finally
must the thickness of each layer be set, exept for the backing and load as
these are assumed to be in�nitely thick.

For the model used in this thesis (one piezoelectric and one matching
layer) will the program compile a three dimentional matrix of the size 2×2×n,
with n being the number of frequencies the analysis was performed for. The
standard settings will do this for frequencies from 1kHz to 20MHz with a
stepsize of 1kHz, resulting in a n of 20000. This matrix can also be described
as a 2×2 that will vary as a function of frequency, and has a form as follows:[

Y Htt

Htt YM

]
(3.1)

Where Y is the electrical admittance per area of the transducer, Htt is the
average surface velocity divided by the voltage and YM is the mechanical
admittance[25].
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Xtrans has been developed at the Department of circulation and medical
imaging at NTNU.

3.2 COMSOL Multiphysics

COMSOL Multiphysics 4.0a, from here on refered to as COMSOL, is a si-
mulation program that employs the �nite element method to solve complex
physics problems governed by PDEs. The program is designed to o�er all
the customization desired by an advanced user, while being relatively easy
to get started with for an inexperienced user. This in mainly due to the pre-
set physics interfaces, which can be used to include the governing equations
from a wide variety of physics problems into a model. However, an advanced
user is at liberty to mathematically de�ne a custom physics interface from
scratch. A single model can include and couple several physics interfaces
to allow for interactions that are often observed in the real world. Some of
these coupled situations also exist as prede�ned physics interfaces, such as
the Piezoelectric Devices interface, which is a combination of solid mechanics
and electrostatics.

A full description of COMSOL in this thesis would be impractical and
highly unneccesary. However, a short description of the applied features is
included, to give an insight to the modelling procedures. The usual construc-
tion of a model includes the following steps:

1. Select the number of space dimentions in the model, chose one or more
physics interfaces and decide the study type. This is done in a built-in
wizard at the start of every new model. In this thesis were the pressure
acoustics and piezoelectric devices interfaces and a frequency domain
study type used for all simulations.

2. Import the geometry of the model, or draw it with the built-in CAD
tools.

3. Set which of the domains that are governed by each of the physics
interfaces. A single domain might be governed by several interfaces in
a multiphysics model.

4. Apply correct conditions to domains and boundaries in the model. Each
physics interface has a series of standard conditions that are automati-
cally applied to the domains governed by it, and any manually applied
conditions will replace these.
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5. Assign materials to the domains in the model. Many materials are
included in COMSOL, but custom materials can also be implemented
and saved for later use.

6. Mesh the model. Distribution, size and type of elements can be set.
Alternatively can the standard free triangular mesh can be applied with
prede�ned element sizes ranging from extremely coarse to extremely
�ne.

7. Study settings are decided, such as what range of frequencies a fre-
quency domain model should be solved for.

8. COMSOL solves the problem, and the user can study the solution
through a selection of post-processing and/or visualization techniques.

3.2.1 Geometry

The shape of the model and its domains can be built from a selection of basic
geometric shapes with the included CAD features. This allows for practically
any geometric shape to be designed through transformations and boolean
operations. All the steps in the drawing process is kept as a sequence, thus
making it easy to go back and do changes. In addition can the use of global
parameters during drawing give a �nal model with dimentions that are easy
to change. An example of such a parameter is be the thickness of the various
layers in a piezoelectric transducer.

3.2.2 Pressure acoustics

In the pressure acoustics physics interface is the pressure, p, the only depen-
dent variable. And the governing PDE is:

∇ ·

(
− 1

ρ0

(∇p− q)

)
− ω2p

ρ0c2
= Q (3.2)

Where p(x, t) = p(x)eiωt, ρ0 is the density, c is the speed of sound and q
and Q are dipole and monopole sources, respectively[5]. These sources are
not present in the models in this thesis, thus allowing for the PDE to be
simpli�ed. The various features and conditions applied to the interface are
brie�y described in the following list.

Pressure Acoustics Model must be applied to all domains governed by
the interface. Here can the �uid model be set, for example viscous or
linear elastic, the latter being used in the models in this thesis unless
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explicitly mentioned. Temperature and absolute pressure is also set
here, the standard being room temperature and one atmosphere. Based
on these settings will the model give the governing equations for the
domains. Models with di�erent settings can be used for the di�erent
domains if necessary.

Sound Hard Boundary (Wall) is the standard condition for all bounda-
ries governed by the pressure acoustics interface. It sets the normal
acceleration on the boundary to zero, thus emulating a wall.

Inital Values allows for initial pressure and pressure time derivative to be
set in the domains. In this thesis were all initial values set to 0.

Axial Symmetry is a default boundary condition for axisymmetrical simu-
lations, where it is used to de�ne said symmetry. It is automatically
set as a condition on all boundaries that lie along the line where R = 0.

Normal Acceleration overides the standard condition on the boundaries
where it is applied, by setting an acceleration that can be de�ned as
directed inwards normal to the boundary or in terms of the coordi-
nates x and y. This condition is used to couple acoustic domains to
adjacent mechanical domains through a preset (pzd/pzm1) that sets
the acceleration on the boundary of the latter as the condition.

3.2.3 Piezoelectric devices

The piezoelectric devices interface is, as previously mentioned, a combination
of the solid mechanics and electrostatics interfaces. Consequently are the
dependent variables the electric potential, V , and the three components of
the displacement, x, y and z. And the governing equations are as seen in
2.22, where the relation between strain and displacement is given by eq 2.1
while the electric potential is related to the electric �eld as:

E = −∇Φ (3.3)

Where Φ is the electric potential[5]. The equations are adapted to a fre-
quency domain study by converting the dependent variable to harmonic com-
plex variables [17]:

u(x, t) = u(x)ejωt Φ(x, t) = Φ(x)ejωt (3.4)

Here is u a vector consisting of the three displacement components. All
features and conditions that are applied to this interface are described in the
following list.
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Piezoelectric material model must, in the same way as in the acoustic
interface, be applied to all domains governed by the piezoelectric inter-
face. Also here is the temperature and absolute pressure set, with the
same standard values as in the acoustics. A feature in this model is the
possibility to align the model with an other coordinate system than
the global cartesian system. This is often necessary, as piezoelectric
materials are generally de�ned to be poled in the 3-direction, which
coincide with the z-direction in the global system. A two-dimentional
model is however set in the x-y plane, causing the piezoelectric to be
poled in the out-of-plane direction.

Free is the standard mechanical boundary condition, and therefore initially
applied to all boundaries in domains governed by the piezoelectric in-
terface. It de�nes the boundary as free to move in any direction, and
without any loads acting on in.

Zero charge is the default electrostatic boundary condition. It de�nes, as
the name implies, that there is no electric charge on the boundary.

Initial values gives the option of setting an initial displacement �eld, velocity
�eld, electric potential or time derivative of said potential in any of the
domains governed by the piezoelectric interface. All intital values were
set as zero in this thesis.

Axial symmetry is only available in the axisymmetrical models, where it
de�nes the axis of symmetry. It is set as a standard condition on all
boundaries that lie along the line where R = 0.

Electric potential sets the electrical potential to a given value on the boun-
dary the condition is applied to.

Ground sets the electrical potential to zero at the boundary it applies to.

Symmetry indicates that the model is a part of a larger structure that
is mirror symmetrical around the boundary where this condition is
applied, and thus overrides the free boundary condition. In this thesis
is the symmetry conditions used on both sides of a 2D model to emulate
a theoretical transducer that is in�nite in the directions perpendicular
to the symmetry plane.

Roller suppresses the standard mechanical condition, and de�nes that there
can be no displacement perpendicular to the boundary, but tangential
displacement is still allowed.
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Damping and Loss allows for the inclusion of dielectric, mechanical and
piezoelectric damping in the various domains. The loss factors can be
set in this feature, and thus apply to all domains with loss. Alter-
natively can they be set in each material as a property that is only
included when required.

Boundary load is also a condition that replaces the standard free con-
dition. It states that a given mechanical load is applied on the boun-
dary. This can be used to couple a mechanical domain to a bordering
acoustic domain by setting the pressure in the acoustic domain as a
force per unit area on the boundary of the mechanical domain. A
preset exists to simplify the application.

3.2.4 Materials

COMSOL includes, as previously mentioned, a large library of pre-de�ned
materials, and additional ones can be made with any of these materials as a
basis or from the ground up. When a material is applied to a domain will
COMSOL perform a check to see if the selected material includes all the
speci�cations that are required by the physics models governing the domain.
If this is not the case, will a noti�cation be given, and the user must add
the requested speci�cations to the model or change the material. For the
pressure acoustics model model with a linear elastic �uid model can the
required material speci�cations be set as either speed of sound and density,
or impedance and wavenumber. The former is used for all simulations in
this thesis. While the piezoelectric material model will, for the stress-charge
form of the equations, require the elasticity matrix cE, e-coe�cients, relative
permittivity εS/ε0 and density ρ. Alternatively can the strain-charge form
be used, but this was not done in any of the simulations in this thesis. All
necessary speci�cations for the materials used in this thesis can be found in
appendix A.

3.2.5 Perfectly matched layer

In many physics problem involving waves will the aforementioned waves be
generated in or enter an area of interest and later disappear out of said area
toward in�nity. In contrast, is the size of a �nite element model de�nitely
not in�nite, resulting in waves being re�ected on the outer boundaries of the
model. However, this problem can be adequately solved with the use of a
perfectly matched layer[3], from here on referred to as a PML. This layer
introduces a coordinate transformation, causing the resulting coordinate to
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be complex, see �gure 3.1 (a) and (b) for a illustration. This transform
will cause the PML to act as a material where the loss factor increases as
a function of the position. It will therefore dampen the wave, eikx, at an
exponential rate, while not causing any re�ections on the boundary of the
PML. It can from �gure 3.1 be concluded that an increase in the growth

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real part of x

im
ag

in
ar

y 
pa

rt
 o

f x

(a) Real and imaginary part of x in
regular space
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(b) Real and imaginary part of x
when entering the PML.
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(c) The wave eikx in regular space.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

real part of x

am
pl

itu
de

 o
f w

av
e

(d) The wave eikx when entering the
PML

Figure 3.1: General consept of a PML, shown with x as coordinate and the
red dashed line indicating the boundary between regular space and the PML.

rate of the imaginary part of x will cause the wave to be absorbed over
a shorter distance. Thus allowing for thinner PMLs, eventually resulting
in a in�nitesimal thickness. This is however not the case in FEM, where
approximations are used in stead of the actual wave equation[12]. It should
also be noted that the transformation in only performed for one coordinate,
and as a consequence will the attenuation rate be dependent on the direction
of the wave.

The PMLs in the acoustic and piezoelectric interfaces of COMSOL are
implemented in two di�erent ways. As a result is the acoustic PML capable
of adapting to to the current wavelength in the medium during a frequency
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domain simulation, while the piezoelectric PML must be given a constant
wavelength for it to match, making it less suited for a frequency sweep over
a large range. However, this problem can be circuvented by setting the
matched wavelength to: pzd.cp/freq, which is the speed of a pressure wave
in the PML as calulated by COMSOL, divided by the current frequency. It
should also be noted that in the piezoelectric interface is the domain of the
PML automatically set to be isotropic, and will thus require values to be set
for Young's modulus and Poisson's ratio in the material model.

3.2.6 Meshing and solving

The free triangular mesh was used in all simulations, with all parameters
exept the element size kept at the values decided by the program. The order
of the shape functions can be set in each physics interface, ranging from linear
to quintic. They were however intially set as quadratic for all the dependent
variables in this thesis, and kept as such troughout the simulations. All
simulations were solved with standard settings for the solvers, and frequencies
ranging from 100kHz to 20Mhz with a step of 100kHz, this will from here on
be referred to as the standard frequency range.

3.2.7 Post-processing

Data was extracted from the solved models with the help of average opera-
tors in the two-dimentional models, and through line integrals in the two-
dimentional axisymmetric models. An average operator is used to obtain the
average value of any available physical quantity in a domain or at boundary
for each step in a simulation with a parametric sweep. After the simulation
can the value be used to calculate derived values, which can then be displayed
along with the parameter values in a spreadsheet, or plotted as a function of
said parameter value in a global plot.

In the two-dimentional simulations in this thesis were two average opera-
tors used, one was connected to the boundary between the piezoelectric layer
and the matching layer (aveop1), while the other (aveop2) was connected
between the matching layer and the load. The values from these operators
were used to derive the admittance and Htt of the transducer relative to
the frequency in each simulations through the expressions listed in table 3.1.
In the two-dimentional axisymmetrical models could the average operators
however not be used, as they would not account for the rotational symmetry.
As previously mentioned were instead line integrals used on the appropriate
boundaries. An option for the line integral in an axisymmetrical model is to
automatically compute the surface integral of the rotated surface instead of
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Expression Derived value
aveop1(real(pzd.nJ))/(100[V]) Real part of admittance
aveop1(imag(pzd.nJ))/(100[V]) Imaginary part of admittance
aveop2(real(pzd.u_tY))/(100[V]) Real part of Htt
aveop2(imag(pzd.u_tY))/(100[V]) Imaginary part of Htt

Table 3.1: Expression used to extract admittance and Htt from COMSOL.
pzd.nJ is the current density normal to the boundary where aveop1 is ap-
plied, while pzdu_tY is the velocity in the y-direction of the boundary where
aveop2 is applied. 100[V] is the applied electric potential of 100V.

the line, this was employed in all axisymmetrical models in order to simplify
the integrals.

All resulting data was exported from COMSOL and added to an excel-
spreadsheet. This was then imported into Matlab, where a side by side
comparison could be made to the results from Xtrans.
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Chapter 4

Simulations

4.1 Plane water-loaded PZT-5H plate with epoxy

matching layer

4.1.1 Modeling

The �rst �nite element model of a piezoelectric transducer was designed to
familiarize with COMSOL Multiphysics, and to create a model with results
that could easily be compared with those of Xtrans. All basic knowledge
required to make this model was obtained by studying the built-in tutorial
of a piezoacoustic transducer [6]. The model consist, as seen in �gure 4.1,
of four domains where two are solved with the Piezoelectric device interface
(pzd) and the other two with the pressure acoustics interface (acpr). The
characteristics of each domain is listed in table 4.1. In addition was domain

Domain 1 2 3 4
Width 2.5mm 2.5mm 2.5mm 2.5mm
Thickness 0.125mm 0.08mm 2mm 2mm
Physics interface pzd pzd acpr acpr
Material PZT-5H epoxy water water

Table 4.1: Descriptions of the domains in the �rst simulation. Material data
for PZT-5H, epoxy and water is found in appendix A.

4 de�ned as a PML to prevent re�ections from the load, while a backing layer
with zero compressibility was achieved by applying a a roller condition to the
lower boundary of domain 1. This is also achieved in Xtrans by setting an
extremely high impedance in the backing layer (100000 MRayl was used in
this case). The material properties for PZT-5H de�nes the poled direction to
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Figure 4.1: Geometry of the model, w = width of model, tPZT = thickness
of piezoelectric layer, tmatch = thickness of matching layer, tload = thickness
of load layer, tPML = thickness of perfectly matched layer.

be in the 3-direction, which coresponds with the out of plane direction in the
global coordinate system for a two-dimentional model. This was corrected
by orienting the piezoelectric material after a di�erent coordinate system,
which is de�ned in table 4.2. The model was initially intended to describe a

Global coordinate system X Y Z
Base vector system x1 x3 x2

Table 4.2: Base vector system applied to align poling direction of PZT-5H
(x3) to global Y-axis.

single element transducer with a width of 2.5mm, but symmetry conditions
was later applied to the left and right boundaries of domains 1 and 2 to
emulate a transducer with in�nitely large lateral dimentions. Thus causing
the model behaviour to be very close to that of a 1-D model. Furthermore
were the electrical boundary conditions of ground and an electric potential
of 100V applied to the upper and lower boundaries of domain 1, respectively.
The connection between the acoustic and peizoelectric device interfaces was
made with a normal acceleration condition applied to the lower boundary of
domain 3, and a boundary load condition to the upper boundary of domain
2 as descibed in section 3.2. It is also important to notice that this model
is lossless, which can be implemented in Xtrans by setting very high values
of Q (10000 was used for this simulation). Finally, were average operators
attached to the boundaries between domains 1 and 2, and between 2 and 3.

The meshing of domains 3 and 4 was done with the standard free trian-
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gular mesh, and the element size was set to the prede�ned value of extremely
�ne. This resulted in a maximum and minimum element size limited to
42.1µm and 0.0841µm, respectively, and a total of 16435 elements. Domains
1 and 2 were meshed with the same type of mesh, but the size limits of the
elements were halved, giving a total of 2004 elements. This variation in mesh
sizes was done to increase the resolution in the thin piezoelectric domains,
while keeping the number of elements in the acoustic domains at a manageble
level.

After meshing was the model solved in the frequency domain for the
standard frequency range. This range gives the same maximum frequency as
the regular frequency range of Xtrans, but in the latter is both the starting
frequency and the step size 1kHz.

4.1.2 Results and discussion

The admittance of the piezoelectric layer and the average velocity on the
matching layer to load boundary was obtained from both COMSOL and
Xtrans as described in 3.2.7 and the corresponding variables were plotted
together as seen in �gure 4.2. These plots show that the results from the two
simulation programs are close to identical, and the minute di�erences are only
visible when observing a small sections of the plots (�g 4.3). Nonetheless is
this not a good model for a large portion of the frequency range. The cause of
this is the relatively large element size, which will be too big for frequencies
above 5.8Mhz in the water and 9.5MHz in the epoxy when enforcing the
minimum resolution of six elements per wavelength. This problem can be
seen in �gure 4.5 (a) where the pressure in the load is plotted at 20MHz.
Still the results obtained from the �nite element model are very similar to
those from Xtrans, which could lead to the erroneous conclusion that the
element size is not that important. The good results are however, probably
caused by the fact that the evaluated values are obtained by calculating the
mean value of all the nodes along a boundary. If the nodal values are assumed
to in some degree to vary randomly around the true value, then the mean
value will be close to the true mean value if there is a su�ciently high number
of nodes. This implies that the accuracy of the results can in this case be
attributed to the size of the model.
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Figure 4.2: Admittance and Htt found in COMSOL (blue line) and Xtrans
(red, dashed line) for the �rst model.
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Figure 4.3: A small section of �g 4.2 (a), showing the di�erence between the
results from COMSOL and Xtrans.
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4.2 Re�nement of model

4.2.1 Modeling

The model in the previous section proved to give results very similar to those
of the one-dimentional model in Xtrans, but it was a fairly large model with
many elements, despite their large size. It was therefore required to reduce
the size of the model, both to shorten calculation time and to reduce the
element size to less than one sixth of the smallest wavelength. This could
easily be done to the model with its current boundary conditions. Reducing
the width of the model would ideally have no e�ect because of the symmetry
conditions, and the load layer and PML could be reduced as long as the PML
continued to e�ectively absorb the pressure wave.

With these conditions in mind were the dimentions in the model gradually
reduced over several simulations, while the element size was kept constant.
Then the element size was reduced in the new and smaller model, until it was
less than one sixth of the smallest wavelength. The sequence of simulations
with the applied changes is listed in table 4.3, along with the resulting number
of elements and degrees of freedom. It should be noted that the �rst of these
simulations is very similar to the simulation is section 4.1.

S w tload m1,max m1,min m2,max m2,min El DOF
[µm] [µm] [µm] [µm] [µm] [µm]

1 2500 2000 20 0.04 40 0.08 21018 56282
2 1000 1000 20 0.04 40 0.08 5039 15861
3 500 500 20 0.04 40 0.08 1734 6416
4 200 200 20 0.04 40 0.08 485 2213
5 100 100 20 0.04 40 0.08 222 1120
6 50 50 20 0.04 40 0.08 161 879
7 50 50 10 0.02 20 0.04 382 2152
8 50 50 5 0.01 10 0.02 1317 7397
9 50 50 2 0.005 5 0.01 7405 41989
10 50 50 5 0.01 5 0.01 1638 8060

Table 4.3: Parameters that are varied in the simulations and their values. S
= simulation number, w = width of model, tload = tPML = thickness of load
layer or PML, m1,max & m1,min = maximum and minimum element sizes
for mesh in domain 1 and 2, m2,max & m2,min = maximum and minimum
element sizes for mesh in domain 3 and 4, El = number of elements, DOF =
degrees of freedom.
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4.2.2 Results and discussion

The results from each of the simulations listed in table 4.3 are compared with
those from Xtrans in order to obtain four values representing how much each
simulation di�er from the 1D-model. The comparison is performed by ta-
king the value from COMSOL for one of the four variables (real admittance,
imaginary admittance, magnitude of Htt or phase angle of Htt) at a given
frequency, and calculate the absolute di�erence between this and the value
of the same variable at the same frequency in Xtrans. These absolute di�e-
rences/errors are then summed up and divided by the number of frequencies
resulting in a mean absolute di�erence, which is mathematically described
in eq 4.1.

MAEv =
1

N

N∑
i=1

| cv,i − xv,i | (4.1)

Where MAEv is mean absolute error for variable v. While cv and xv are the
corresponding results from COMSOL and Xtrans respectively. Furthermore
is N the number of frequencies the model was solved for in COMSOL, with i
representing a certain frequency. For example would cY real,N be the obtained
real admittance from COMSOL when the model was solved for a frequency of
20MHz. The MAEs for each of the simulations are listed is table 4.4. The real

S MAEY real MAEY imag MAEHttabs MAEHttangle
[S/m2] [S/m2] [µm/(s*V)] [degrees/1000]

1 2.383 1.817 22.36 258.3
2 2.372 1.856 24.34 310.6
3 2.347 1.767 22.30 279.0
4 3.362 2.900 34.76 274.2
5 6.364 5.972 62.87 333.7
6 9.404 8.902 90.06 403.8
7 9.386 8.814 88.77 395.6
8 2.313 1.689 21.27 222.8
9 2.161 1.557 10.98 206.4
10 2.161 1.558 10.97 206.4

Table 4.4: Mean average errors for the simulations listed i 4.3.

and imaginary admittances in the simulations are on the scale of kS/m2, while
the magnitude and phase angle of Htt is in the order of cm/(s*V) and hundred
degrees, repectively. As a consequence are the MAEs very small, indicating
average errors on the scale of one thousandth of the measured values. The
error is however, more prominent at local maxima and minima, as can be
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seen in the plot of real admittance in �gure 4.4. A comparison of simulations
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Figure 4.4: The real admittance, plotted for a small section of the simulated
frequencies and a selection of the simulations listed in table 4.3. Solid blue
line is simulation 10, solid black line with circle-markers is simulation 6 and
dashed red line is from Xtrans.

1 and 10 shows that there is little di�erence in the results obtained from the
respective models. However, the former has seven times the DOFs than the
latter, and almost thirteen times the number of elements. Indeed the smaller
model is only marginally more accurate, but much easier to solve. The reason
for this is the small element size which gives a resolution of 11.5 elements
per wavelength in the epoxy for a shear wave with a frequency of 20MHz.
The improvement can also be seen when comparing the form of the pressure
wave in water, as seen in �gure 4.5. A further reduction of the element size
proved to have little or no e�ect e�ect on the result, as seen when comparing
the MAEs from simulations 9 and 10.

4.3 Plane water-loaded PZT-5H plate with epoxy

matching layer and air backing

4.3.1 Modeling

The natural succession in the development of the model was at this point
to eliminate the assumption of a incompressible backing layer and instead
include a more realistic one. The backing should, in the same way as the
load, be acting as a in�nitely thick layer to avoid re�ecting waves and thus
be similar to the model in Xtrans. This could, again in the same way as
in the load, be achieved with a PML. The existing model was extended by
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(a) Maximum element size: 40µm. (b) Maximum element size: 5µm,
upper part is the PML absorbing the
wave.

Figure 4.5: Surface plot of pressure variation in water, cause by the propa-
gation of a 20MHz longitudinal wave.

adding two domains, as seen in �gure 4.6. With the domains in order from
1 to 6 being: PML for backing, backing layer, piezoelectric layer, matching
layer, load layer, PML for load. The backing layer and its PML have the
same thickness as the load layer, i.e. 50µm. Domains 1 and 2 were set to
be solved by the pressure acoustics interface in order to simulate air back-
ing, and consequently the material in said domains was set to be air. All
boundary conditions for domains 3-6 were the same as in section 4.2, exept
from the roller condition, which was replaced by a boundary load condition
in order to couple to the new acoustic domains. In domain 2 was a normal
acceleration condition applied the upper boundary to couple with the pie-
zoelectric domains, and domain 1 was set to be, as previously mentioned, a
PML.

The model was meshed with the same conditions to element size as in
simulation 10 in section 4.2, which will from here on be refered to as the
standard meshing. This resulted in a total of 2172 elements and 9189 degrees
of freedom. Afterward was the model solved for the standard frequency range.

4.3.2 Results and discussion

Admittance and Htt was obtained as described in section 3.2.7 and plotted
as seen in �gure 4.7. These plots prove that the model still behaves very
much like the one-dimentional model in Xtrans. Despite the fact that the
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Figure 4.6: Geometry of the model, w = width of model, tPZT = thickness
of piezoelectric layer, tmatch = thickness of matching layer, tload = tback =
tPML,l = tPML,b = thickness of load layer, backing layer, and their PMLs,
respectively.
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Figure 4.7: Admittance and Htt found in COMSOL (blue line) and Xtrans
(red, dashed line) for the model with air backing.
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wavelength of a 20MHz pressure wave in air is 17.16µm, resulting in a reso-
lution of less than 3.5 elements per wavelength. This can be explained by
the low acoustic impedance of air compared to PZT-5H, resulting in almost
total wave re�ection at the boundary between domain 2 and 3[23].

4.4 Plane water-loaded PZT-5H plate with epoxy

matching layer and polystyren backing

4.4.1 Modeling

In this model was the air backing in the previous section replaced with that
of polystyren. This is a solid, so domains 1 and 2 were changed to be
governed by the piezoelectric interface, and symmetry conditions were set
on the left and right boundaries of these domains. Consequently was the
coupling between domains 2 and 3 removed, and a roller condition was ap-
plied to the lower boundary of domain 1. Furthermore was this domain set
to be a PML, and its thickness was increased to 100µm to ensure that any
wave would be su�ciently absorbed. The matching wavelength of this PML
was set to be inversely proportional to the frequency, as described in section
3.2.5. Finally was the model solved with the standard element size for the
standard frequency range.

4.4.2 Results and discussion

The resulting values for the admittance and Htt are, as seen in �gure 4.8,
indentical to the results from Xtrans. Thus proving that the PML success-
fully absorbs the waves. A consecutive test followed where the thickness of
the piezoelectric PML was halved, this however gave some deviations in the
phase angle at the lowest frequencies. As a result was the thickness kept at
100µm to keep a margin of safety.

4.5 Inclusion of mechanical loss

4.5.1 Modeling

As stated in section 2.3 are all materials lossy, and it would therefore be
highly advantageous to include losses into the model described in the pre-
vious section. The type of loss included was however limited to mechanical
attenuation, for the sake of simplicity. Furthermore was the loss assumed to
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Figure 4.8: Admittance and Htt found in COMSOL (blue line) and Xtrans
(red, dashed line) for the model with polystyren backing.
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be isotropic, and set to 5dB/cm/MHz for all the materials. With the rela-
tions in appendix B could then the loss factors, attenuation coe�cient and
Q-factors in table 4.5 be calculated. In the acoustics interface was the at-

Material Isotropic loss factor Attenuation coe�cient Q-factor
[unitless] [dB/λ] [unitless]

Water - 0.74050 36.8501
Epoxy 49.1329e-3 - 20.3529
PZT-5H, initial 84.6339e-3 - 11.8156
Polystyren 43.8013e-3 - 22.8304

Table 4.5: The parameters for inclusion of loss in COMSOL and Xtrans.

tenuation of water included by changing the �uid model from linear elastic to
linear elastic with attenuation, and adding the attenuation coe�ecient from
table 4.5. While the loss factors were added in the material parameters as
isotropic loss factors for the sti�ness matrix, cE, and included into the model
through the damping and loss condition. It must here be repeated that the
PMLs de�ne their own material model, and losses must be included in these
in the same way as in the regular domains. Failure to do so will result in
an abrupt change in material parameters at the boundary of the PML, and
negate the re�ectionless quality of the boundary. Finally were the Q-factors
set in Xtrans, thus replacing the previous values of 10000 that were set to
represent no loss.

The simulation was then performed with loss applied to all domains.
Followed by one with loss in all domains exept the piezoelectric layer (domain
3), and two with loss in only domain 3 where the loss factor was �rst set at
the initial isotropic value, then adjusted to be anisotropic.

4.5.2 Results and discussion

The initial simulation indicates, as seen in 4.9 (a) to (d), that the damping
in at least one of the layers in COMSOL is lower than in the corresponding
layers in Xtrans. An assumption was made that the layer in question was
the piezoelectric one, as it is the most complex layer. The second simulation,
4.9 (e) to (h), con�rm this, as the results from COMSOL are essentially
the same as in Xtrans. Some small deviation can however be seen in the
phase angle for the absolutely lowest frequencies. This look similar to the
deviations seen when the thickness of the piezoelectric PML was reduced in
the previous section, and it is therefore concluded that the PML has some
problems in absorbing the longest wavelengths when loss is implemented. A
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Figure 4.9: Admittance and Htt found in COMSOL (blue line) and Xtrans
(red, dashed line) for loss in all domains (a-d), and for loss in all domains
except the piezoelectric (e-h).
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simple solution to this is to increase the thickness of the piezoelectric PML,
but that will also give a longer computation time for the model.

It was realized that the inital calculation of the loss factor for the piezo-
electric layer was erroneous. This is because the relations in appendix B yield
the loss factor for the sti�ness matrix under constant electric displacement
�eld, cD, while the loss factor in COMSOL is for the sti�ness matrix under
constant electric �eld, cE. The relation between these sti�ness matrices can
be derived from eqs 2.22 to be:

cE = cD − eth (4.2)

For the epoxy and polystyren are all the piezoelectric constant set at zero,
and consequently will the loss factors be the same in both sti�ness matrices.
This is however not the case for the piezoelectric, and the resulting loss factor
for cE will be anisotropic. This was calculated and inplemented in the model,
which resulted in a plot of the amplitude of Htt as seen in �gure 4.10. Here
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Figure 4.10: Amplitude of Htt for isotropic erroneous loss factor and aniso-
tropic loss factor, COMSOL (blue line) and Xtrans (red, dashed line).

it can be seen that the anisotropic loss factor also yields an erroneous result.
Due to time limitation was the implementation of loss thus abandoned, and
is not included in later models.

4.6 Circular disc

4.6.1 Modeling

Up until this point had the model, as previously mentioned, been designed
to emulated a plate of in�nite lateral dimentions, and thus been directly
comparable to Xtrans. This would however not be the situation for an actual
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Figure 4.11: Geometry of 2D-axisymmetrical model of a circular disc. Grey
areas are the piezoelectric domains, while the white are the acoustic domains.
The thick line to the left is the axis of symmetry.

transducer, hence should the lateral dimentions of the model be limited.
The new model was designed in a two-dimentional axisymmetrical system,
consequently it would emulate a circular disc. Furthermore were the thickness
and material of the matching, piezo and backing layer and the piezoelectric
PML set to be the same as in the two-dimentional model. While the width
of these layers, which in the axisymmetrical system becomes the radius of
the disc, was set as 1mm. The load was, as before, water. It was however
redesigned to the shape of a quadrant with a radius of 1.3mm, hence it
would have the form of a hemisphere when the model is rotated around its
axis of symmetry. Moreover was the acoustic PML designed as a 0.1mm
thick layer covering the load, and set to absorb wave in the radial direction.
The entire geometry is depicted in �gure 4.11 where grey areas indicate
piezoelectric domains, while white domains are acoustic. Unlike the two-
dimentional model is there no need for a second coordinate system, as axes
in the axisymmetrical system are R and Z. Hence the piezoelectric is poled
in the Z-direction. All conditions in the model was otherwise the same as in
the two-dimentional model, exept from the coupling between the piezoelectric
and acoustic interfaces, which was extended to also include the right side of
the matching, piezo and backing layer. And of course the symmetry condition
was replaced by the axial symmetry.

The mesh of this model was the same as previously for the piezoelectric
layers, but the maximum and minimum sizes of the elements were doubled
in the acoustic domains. This signi�cantly reduced the complexity of the
model, while the resolution in the domain was reduced to a minimum of 7.4
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elements per wavelenght, which is acceptable. The model was still solved for
the standard frequency range.

4.6.2 Results and discussion

The admittance and Htt of the transducer model was obtained through the
use of line integral as mentioned in section 3.2.7, and compared with results
from Xtrans as seen in �gure 4.12. These plots clearly show, as expected, that
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Figure 4.12: Admittance and Htt found in COMSOL (blue line) and Xtrans
(red, dashed line).

the model in COMSOL is no longer in accordance with the one-dimentional
model of Xtrans. The small peaks at lower frequencies indicate that lateral
modes are present. However the thickness mode is still clearly dominant,
though the resonant frequency is lower than in the one-dimentional. An
increase in the ratio between the radius and the thickness of the piezoelectric
layer should give the transducer a behaviour closer to the one-dimentional
case, and as the ratio increases towards in�nity will this model approximate
the behaviour of the model in section 4.4.
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4.7 Circular disc with spherical coordinate sys-

tem

4.7.1 Modeling

The �nal transducer model in this thesis will require a way of simulating
a piezoelectric material that is poled in the radial direction in a spherical
coordinate system in a model with a cylindrical coordinate system. The
derivation of such a coordinate system is given in appendix C, however it
would be wise to test the coordinate system before the �nal model is designed.
This was done by applying the new coordinate system to the model in the
previous section and setting r0 = 0 and z0 = −1000m, but keeping the
model otherwise unaltered. As the model is placed near origo of the global
coordinate system should the two systems be very close to identical within
the model, and the results of this simulation should be very similar to those
obtained in the previous section.

4.7.2 Results and discussion

The results from this simulation is plotted along with those from the previous
simulation in �gure 4.13. It can here be seen that the two results are identical,
thus indicating that the spherical coordinate system is correctly implemented.

4.8 Thick �lm PZT on a spherical cap

4.8.1 Modeling

The �nal model was a further development of the 2D-axisymmetrical model
in sections 4.6 and 4.7. But there were some changes in the geometry, as seen
in �gure 4.14. The gray areas are, as before, the domains governed by the
piezoelectric devices interface, while the white domains are governed by the
pressure acoustics interface. In addition is the piezoelectric layer marked with
a darker shade of grey, and its position shows that this transducer model has
no matching layer. The various domains in this model are, listing from top to
bottom along the axis of symmetry, acoustic PML, load, piezoelectric layer,
backing layer, piezoelectric PML. The load is in the shape of a quadrant with
a radius of 1.3mm, while the acoustic PML covers the the arc of the quadrant
with a constant layer thickness of 0.15mm. This increase in in thickness of
the PML was to improve the absorpsion of waves that does not perfectly
coincide with the direction of absorpsion, which was set to be in the radial
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Figure 4.13: Admittance and Htt found in with spherical coordinate system
(blue line) and with global coordinate system (red, dashed line).
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Figure 4.14: Geometry of the thick �lm transducer model, grey domains are
governed by the piezoelectric interface, while white domains are governed by
the acoustic interface. The thick line to the right is the axis of symmetry.

direction. The backing layer is in the shape of half a circle segment with
a radius of 1.7mm and a chord of 2.4mm, thus giving the width of of the
backing layer domain in the model as 1.2mm. Moreover is the piezoelectric
layer set to cover the backing layer with a constant thickness of 25 µm in
the radial direction, thus representing a thick �lm deposited on the surface
of the backing layer. It can be seen in the �gure that the backing layer is
somewhat extended in the z-direction. This extension if of the same thickness
as the piezoelectric layer in the z-direction at this position, approximately
35µm. Below the backing layer is the piezoelectric PML with a thickness of
0.1mm and the same width as the backing, 1.2mm. The boundary conditions
are much the same as before, with a electric potential of 100V on the lower
and ground on the upper boundary of the piezoelectric layer. The coupling
between the acustic and piezoelectric interfaces is set on all boundaries shared
by a grey and white domain. And a roller condition is, as usual, applied to the
lower boundary of the piezoelectric PML. Furthermore was the piezoelectric
model oriented after the spherical coordinate system in appendix C.

The material of the piezoelectric layer was set as a PZT/PGO piezo-
electric thick �lm [10] [19]. The available material data on this thick �lm,
although su�cent for a 1D model, was not complete for a full material speci-
�cation as required in COMSOL. Consequently a series of assumption had to
be made of the thick �lms behaviour in the directions perpendicular to the
poling direction. The �rst assumption was that the thick �lm still exhibits
the same material symmetry as bulk PZT, thus reducing the number of unk-
nown variables. Furthermore is it stated in the data sheet of the thick �lm
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that it is based on Pz26 from Ferroperm, for which a full material description
can be obtained [8]. A minimum of assumptions were made, based on the
properties of Pz26, and all other necessary values were derived from these,
yielding the thick �lm material listed in appendix A.

The backing material was a porous substrate of unpoled PZT [19], also
without complete material data available. However, in this case only two
assumptions had to be made. Firstly, that being unpoled, the material would
have an isotropic behaviour. And secondly, that the Poisson's ratio of the
material was 0.3 [16]. The porous PZT was also set as the material for the
piezoelectric PML, while water was set as material in the load and acoustic
PML.

The model was meshed with the same element size conditions as in section
4.6, and solved for the standard frequency range. Afterwards was a second
simulation carried out, where an additional material model was included and
applied to the backing layer. This was done to see if anything would change
if the backing layer no longer was oriented after the spherical coordinate
system.

4.8.2 Results and discussion

The results as seen in �gure 4.15 are not very promising. The imaginary
part of the admittance is approximately 50 times higher than the real part
and directly proportional to the frequency. This is a property of capacitors,
indicating that there is little piezoelectric coupling in the material. However,
the plots of Htt show that there is a piezoelectric e�ect present. Furthermore
can a negative real admittance, which is physically impossible, be seen at low
frequency. This can however be an e�ect of the approximative nature of the
�nite element method, considering the low value of the admittance. Nevert-
heless, there is clearly something wrong in the model. A second simulations
was, as mentioned, carried out with previously used materials. The results
from this is plotted along with the results of the initial simulation in �gure
4.16. It can be observed that the results of the second simulation is a lot less
chaotic than those of the initial, and it should especially be noted that Htt
is fairly stable for a large portion of the frequency range. Nevertheless, the
admittance is still almost completely imaginary, and there is still a negative
real admittance at low frequencies. But, the most important observation in
a comparison of these two simulations is that they yield di�erent results. In
fact, a isotropic material should have exactly the same behaviour in the two
simulations, assuming that the spherical coordinate system was implemented
correctly. Unfortunately was further work hindered by the time limitation of
the project, and the �nal model was left incomplete.
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Figure 4.15: Admittance and Htt found in the initial simulation (blue line)
of a cap transducer.
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Figure 4.16: Admittance and Htt found in second simulation (blue line), and
in initial simulation (red, dashed line).
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Chapter 5

Conclusion and further work

The use of COMSOL Multiphysics makes it easier for a person to start with
�nite element modeling, but the learning curve is still quite steep. It is
important have a good understanding of the physics in question, and a basic
knowledge of �nite element analysis, to be able to e�ectively utilize such a
comprehensive simulation program as COMSOL.

Finite element modeling has proven to be a useful way of simulating pie-
zoelectric ultrasonic transducers. The method is versatile as it can be used to
emulate both one-dimentional models and more realistic three-dimentional
transducer models. However, the suggested minimal requirement of 6 ele-
ments per wavelength would cause the solution of a complete three-dimentional
model to become practically unattainable. Thankfully can many models be
signi�cantly reduced in size, and sometimes also in dimentions, when mirror
and rotational symmetry is taken into consideration. Nevertheless, solving
a two-dimentional axisymmetrical model of an entire transducer is still very
time consuming, but not insurmountable.

Furthermore was mechanical loss successfully implemented in the acou-
stic interface, and in nonpiezoelectric materials in the piezoelectric devices
interface. Attempts were also made at including mechanical loss in the piezo-
electric material, but the correct method for inclusion of such a loss was not
reached. Further work should be done to correct this, and also to implement
dielectric and piezoelectric loss in the model.

The implementation of a piezoelectric material that was not poled in a
constant direction relative to the global coordinate system proved to be a
challenge in this thesis, and resulted in an �awed model of the thick �lm
transducer. Limitations in time did not allow for any further work on this
model, but it should de�nitely be an object of further work.

Finally, the importance of correct material data must be emphasized, as
a model can never be more correct than the conditions it is based on. For
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this reason should further work be done in the characterization of the PZT
thick �lm and porous substrate that was used in the �nal simulation.
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Appendix A

Material data

Epoxy

Isotropic material, hence not piezoelectric.

Density ρ = 1210 kg
m3

Sti�ness matrix cE11 = 8.7e9Pa
cE12 = 5.5e9Pa
cE44 = 1.6e9Pa

Relative permittivity εSr = 10
Speed of pressure wave vl = 2681.4329m

s

Acoustic impedance Z = 3.244533MRayl

Polystyren

Isotropic material, hence not piezoelectric.

Density ρ = 1050 kg
m3

Sti�ness matrix cE11 = 6e9Pa
cE12 = 5.3e9Pa
cE44 = 2.735e9Pa

Relative permittivity εSr = 10
Speed of pressure wave vl = 2390.4572m

s

Acoustic impedance Z = 2.509980MRayl
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PZT-5H

Transversely isotropic, piezoelectric.

Density ρ = 7500 kg
m3

Sti�ness matrix cE11 = 1.27205e11Pa
cE12 = 8.02122e10Pa
cE13 = 8.46702e10Pa
cE33 = 1.17436e11Pa
cE44 = 1.6e9Pa

Coupling matrix e31 = −6.62281 C
m2

e33 = 23.2403 C
m2

e15 = 17.0345 C
m2

Relative permittivity εSr11 = 1704.4
εSr33 = 1433.6

Speed of pressure wave vl = 4618.9008m
s

Acoustic impedance Z = 34.641756MRayl
h-coe�cient h33 = 18.3176e8 V

m

Thick �lm PZT

Available material parameters were only su�cent for a 1D model. A series
of assumptions were made based on the material properties of Ferrroperms
PZ26.

Density ρ = 5425 kg
m3

Sti�ness matrix cE11 = 5.42787e11Pa calculated from assumptions
cE12 = 1.72871e11Pa calculated from assumptions
cE13 = 1.44000e11Pa
cE33 = 4.51816e10Pa
cE44 = 1.59683e10Pa calculated from assumptions

Coupling matrix e31 = 0.213342 C
m2

e33 = 6.74731 C
m2

e15 = 2.05839 C
m2 calculated from assumptions

Relative permittivity εSr11 = 438 assumed
εSr33 = 370

Speed of pressure wave vl = 3300m
s

Acoustic impedance Z = 17.9MRayl
h-coe�cient h33 = 20.5959e8 V

m
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Substrate PZT

Assumed isotropic material, hence not piezoelectric. Assumed a Poisson's
ratio of 0.3 and relative permittivity equal to the other isotropic material.

Density ρ = 6660 kg
m3

Sti�ness matrix cE11 = 4.9636e10Pa
cE12 = 2.1272e10Pa
cE44 = 2.8363e10Pa

Relative permittivity εSr = 10
Speed of pressure wave vl = 2730m

s

Acoustic impedance Z = 18.2MRayl

Water

Density ρ = 999.6 kg
m3

Speed of pressure wave vl = 1481m
s

Acoustic impedance Z = 1.480871MRayl

Air

Density ρ = 1.204 kg
m3

Speed of pressure wave vl = 343.2m
s

Acoustic impedance Z = 0.004133MRayl
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Appendix B

Derivation of the di�erent

representations of mechanical loss

A wave with loss can be expressed as:

e−j
ω
c

(1−jα)z (B.1)

Where c is the wave velocity, ω is the angular frequency and α is the at-
tenuation factor. The wave velocity can also be written as the complex wave
velocity c∗ giving:

ω

c∗
=
ω

c
(1− jα) (B.2)

Which can, when assuming jα much smaller than 1, be written as:

c∗ ≈ c(1 + jα) (B.3)

Applying the relation between the sti�ness matrix in an isotropic material
and the wave velocity yields:

M∗ = c∗2ρ ≈ c2(1 + 2jα) (B.4)

Where M is the P-wave modulus. A similar calculation can aslo be made
for an anisotropic material. Loss factor damping in the piezoelectric devices
interface in COMSOL de�nes a complex modulus:

G∗ = (1 + jηS)G (B.5)

The relation between ηS and α is therefore:

ηS = 2α (B.6)

Which is also the relation between α and the loss tangent tanδ.
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In the pressure acoustics interface in COMSOL can the attenuation co-
e�cient be given as dB/λ. The relation between this coe�cient (α′) and α
is:

ω

c

(
1− jln(10)

α′

40π

)
=
ω

c
(1− jα)

α = ln(10)
α′

40π
(B.7)

Loss in Xtrans is implemented through a Q-factor de�ned as:

Q =
1

2α
(B.8)

In many material data sheets is the attenuation factor de�ned in dB/cm/MHz,
the relation between this (α′′) and α is:

10−
α′′
20
fz10−4

= e
−2πf
c

αz

α = ln(10)
c

4π105
α′′ (B.9)

These calculations yield a set of relations that can be used to implement
the same mechanical damping in COMSOL as in Xtrans.
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Appendix C

Derivation of a local spherical

coordinate system in a global

cylindrical coordinate system

The coordinate system is de�ned by three vectors: x1, x2 and x3. x2 is
however already correctly de�ned as perpendicular to the r-z plane, and will
not be discussed any further. x1 is de�ned as perpendicular to the outline
of a circle with radius R on any position on the outline. x3 is de�ned as
tangential to any point on the outline of the same circle, as seen in �gure
C.1. Both vectors are described by two components, one in the r-direction
and the other in the z-direction. In addition must both vectors always have a
length of unity. The center of the circle is set at (r0, z0), thus can the radius
be descibed as:

R =
√

(r − r0)2 + (z − z0)2 (C.1)

Based on these conditions can the components of x1 and x3 be decided, a
selection of values are listed in table C.1. From the values in this table can

Rads Position x1 x3

r z r z r z
0 R 0 0 −1 1 0
π
6

√
3R
2

R
2

1
2
−
√

3
2

√
3

2
1
2

π
4

R√
2

R√
2

1√
2
− 1√

2
1√
2

1√
2

π
3

R
2

√
3R
2

√
3

2
−1

2
1
2

√
3

2
π
2

0 R 1 0 0 1

Table C.1: Values of the base vectors for some angles on the circle, assuming
center of circle in (0,0)
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Figure C.1: De�nition of global (r, z) and local (x1, x3) coordinate system.

x1 andx3 be de�ned as:

x1

{
r = z−z0

R

z = − r−r0
R

(C.2)

x3

{
r = r−r0

R

z = z−z0
R

(C.3)
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