@ NTNU

Norwegian University of
Science and Technology

Defective Pixel Correction

Henrik Backe-Hansen

Master of Science in Electronics

Submission date: June 2010

Supervisor: Einar Johan Aas, IET

Co-supervisor: Christian Stephansen, Aptina Norway

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem Description

Implementing a system for detection and correction of defective pixels onto an FPGA

Assignment given: 05. January 2010
Supervisor: Einar Johan Aas, IET

@ NTNU

Norwegian University of
Science and Technology

Defect Pixel Correction
by

Henrik Backe-Hansen

Masters Thesis

A thesis submitted in partial fulfillment for the requirement for the degree of Master of
Technology

Supervisors: Prof. Einar Johan Aas and Christian Stephansen

June 23, 2010

Norwegian University of Science and Technology

Department of Electronics and Telecommunication

Assignment

This assignment specifies that the candidate must find a method of detecting defective
pixels in a data stream from an image sensor and correcting them. All the processing is
to take place in hardware and the system should be completed to such a degree that it
can function with the constraints imposed when operating in a real time environment.
This master’s thesis is a continuation of a project [22] with the goal of implementing
algorithms for detecting and correcting defective pixels in an image,with the processing
done in software. The median, conservative smoothing, gradient and adaptive algorithm
were programmed in software and then compared with each other based on their peak
signal to noise ratio, mean square error, mean absolute error, simulation time, and survey
results. The survey was issued by showing the resulting images from the various algorithms
with the same amount of noise added pre correction. The results show a correlation be-
tween the statistical values and what the survey showed to be the best image. In other
words, the image with the highest levels of the measured values was also the image most
participants thought was the best image. It was therefore concluded that the median
algorithm produced the best results in terms of measured values and visual inspection,
and as, such would be a good choice to implement as part of a master’s thesis project.
The median algorithm will be implemented in hardware using a development board with
an Xilinx virtex 5 fpga.Once the vhdl programming is complete, an embedded system
will store the values from the algorithm onto a flash memory. The data can then be in-
spected by measuring values and be subject to visual inspection. Assignment was given
05.January 2010.

Supervisors: Einar Johan Aas, NTNU
Christian Stephansen, Aptina Norway

i

il

Abstract

When using CMOS technology for image sensors, there is a possibility that any given
pixel is defective and will thus produce a value that does not correlate to the amount of
light it was subject to. As such, the processing unit will calculate a value that differs
from the value produced if the transistor was working correctly. Having a pixel with a
defective value can manifest itself as a light spot or a dark spot depending on whether the
transistor for that pixel is on or off. In some areas where the value of the defective pixel
does not differ greatly from its neighbors, the image will not appear as degraded in the
eyes of the viewer as if the defective value was in great contrast to its surroundings.The
ability to compensate for the defective pixels with an algorithm will result in a more
robust device that is not required to function perfectly in order to produce an image. It
also translates into profit as a company can sell image sensors that would otherwise have
been discarded by testing procedures.

This report is organized with chapter (1| providing the introduction to the assignment in
terms of the nature of defective pixels and also creating a context with explanation as
to why it is an important aspect of manufacturing image sensors .Chapter [2| describes
the development board that is utilized and how an embedded system can utilize a vhdl
peripheral. It also shows what components will go into making an embedded system with
the required functionality. The theory behind components and techniques used in this
project is in chapter [3] The vhdl files to be added to a peripheral so that they can be
accessed by the cpu, and the architectures of the vhdl files and microblaze are placed
in chapter Chapter [5| contains the simulations of the input images with different
noise levels and threshold levels in addition to tests designed to determine the embedded
systems functional ability. The vhdl files and the microblaze systems are synthesized with
the resulting numbers revealed in chapter [0l The tools used in this project are listed
in chapter [7| with their version number. Chapter [§] contains discussions regarding the
results and techniques in this project. The concluding remarks and the further work for
the project are in chapter [9and [L0] respectively. A list of terms will explain abbreviations
used in this report.

v

Preface

This report along with the system produced are the final products of a project that
aimed at implementing a defective pixel correction algorithm with all the processing
done in hardware. It also concludes the master’s degree with specialization in design of
digital systems from the Norwegian University of Science and Technology in Trondheim,
Norway. The project spans a wide area with designing both hardware and software to
communicate with the hardware. As such, it has been necessary to consult with a few
key persons in order to get the project completed, and they all deserve recognition for
their contributions. Christian Stephansen at Aptina Norway was instrumental in offering
in-depth information regarding the demands on an image sensor. He also gave input to
what the end goal of the thesis should be. Professor Einar Johan Aas was the supervisor
at the university who was also a part of determining the goal of the thesis along with
valuable input as to the organization of the report and serving as a technical consultant.
Jan Anders Mathisen was kind enough to lend me the Xilinx evaluation board and point
out places to learn about the board that facilitated getting into programming at an early
stage. He has also been a technical consultant for helping me problem solve building
the microblaze system at times where I was at a stand still. My American relatives Teri
Venker and Terry Jacobson graciously opened their home to me and allowed me to live
with them in Madison, Wisconsin for the duration of the thesis so I could experience
another culture while doing the research.

Madison, Wisconsin, U.S.A. June 23, 2010

Henrik Backe-Hansen
henrik.backe.hansen@gmail.com

vi

Vil

Contents

1__Introduction|
(1.1 Background|
[L1.1 Static Defect]
1.1.2 Pixel Defect]
(I.1.3 Programmable Threshold|.

(1.3 Objective] e

RI1 Xilinx MTSOT] o

[2.2.1 Creating an embedded system with platform studiof
[2.2.2 System Ace Controller|,

[2.2.4 Interrupts|
[2.2.5 Creating an intellectual property|
[2.2.6 Access Peripherals| 000,
[2.2.7 Adding c source file|o oL

[3 Supporting Theory|
BI1 Median Filterd
[3.2 Typesof Noise|
[3.2.1 Salt and pepper noise|.o

3.3 Images| L e
[3.3.1 Histogram|

[3.3.3 Bayer Color Filter,
[3.3.4 PGM Image Format|
[3.4 Number representation| L.

B.6 Measured Valued
3.6.1 Mean Square Error (MSE)[.
3.6.2 Mean absolute error(MAE)

viil

13.6.3 Peak signal to noise ratio (PSNR)|
B.6.4 Real time constraints 0L

(3.7 TextlO vhdl package| oo

4 Architecturel

[4.1.1 5Size Package Module|

[4.1.3 Image core Module]
414 Ctrl Modulel oo

4.2 Notel . . . o o

)

Matlab scripts|

[4.4.1 Reading Image| L oL
[4.4.2 Write Image|o oo
[4.4.3 Measuring Statistical Values|

B Simulation

5.1

VHDL module testing|

[5.1.1 Median Testing|,
[>.1.2 Tmage core Testing|.
p.1.3 Ctrl Testing|o oo

[>.3 Software algorithms|. oo o o

b.4 Microblaze simulationl L L

[b.4.1 System Ace write tocard|.
[5.4.2 Interrupt testing]
[5.4.3 Read value from peripheral register|

6 Synthesis|

6.1

VHDL Synthesis|

6.2

Microblaze Syntethization| L.

Real time operation|. oo

Comparison with 2009 fall project|

Interpreting images| Lo

Border pixels|

X

26
26
27
27
28
30
31
31
32
34
35
36
36
36

37
37
37
38
41
41
41
45
48
49
49
49
20

52
52
52

54

8.9 Appendix| 58

[9 Concluding remarks| 59
(10 Further Work 60
(Bibliography| 61
APP d 63
5 VA §) P 63
L1.1 VHDL Source Codel. oo oo 63

1.2 VHDI Test Benchesl 105

(2 Microblaze files| 115
2T msS. - o 115

22 mhd 118

23 ucll . . 122

[2.4 xparameters.h|.o 124

[3 Microblaze Synthesize] 0. 131
[[4 Matlab Scripts| 169
[4.1 Read Imagel 169

[4.2 Write Image|o oo oo 170

[[4.3 Measuring Values|o oL 171

[4.4 Median algorithm|. 172

(B CCadd . ..« 178
[b.1 Test Compact flash| 178

[.5.2 Test interrupt| oL 179

[0.3 'lest interrupt with read and write| 181

.6 MAZES| . . . o . e e e e e e 183
[6.1 Original Images| L. 183

[.6.2 Lena Images trom different noise levels| 186

[6.3 Lena Images from different threshold levels|. 197

[[6.4 Field Images from different noise levels| 205

[6.5 Field Images from different threshold levels[. 216

[6.6 Canyon Images from different noise levels|. 224

[.6.7 Canyon Images from different threshold levels) 235

[.6.8 Image from software simulation| 243

List of Figures

2.1 Xilinx ML501 development board| 4
2.2 Choosing a board| Lo 5)
(2.3 Choosing peripherals| 0oL 6
2.4 Applications| 7
[2.5 Base System Builder Complete, 8
[2.6 Create Custom Peripheral guide step 1] 12
[2.7 Peripheral interfacel oo 12
[2.8 Interupt service| 13
[2.9 Peripheral registers| oo Lo 13
[2.10 Peripheral Interconnect|. 0L 14
[2.11 Peripheral hierarchy] 14
[2.12 Tmport peripheral completel o000 15
[2.13 Microblaze address map| L. 16
[3.1 Truncated Original Image Values| 17
[3.2 Resulting lTruncated Image Values|. 18
[3.3 Impact of salt and pepper noise| 19
[3.4 Impact of Gaussian noise|. 20
[3.5 Image histogram| o o 20
[3.6 High and Low contrast histograms|. 21
B.7 Bayer Filter [5l| 21
[3.8 Example PGM file format| 22
[3.9 Hexadecimal number representation|. 23
[4.1 Vhdl file hierarchy| oo oo 26
[4.2 Size package|o 27
4.3 Median Modulel o oo 27
4.4 Median module state machinel o000 28
[4.5 Tmage core Module|. o oo 28
(4.6 Image core module state machine|.00 00000 30
M7 Ctrl Modulel 30
1.8 Ctrl module state machimelo o000 31
(4.9 Vhdl Peripheral hierarchy] 32
[4.10 Microblaze Block Diagram| 33
[4.11 Microprocessor hardware specification example|. 34
[4.12 User constraint file example| 34
[4.13 Microprocessor sottware specification| 35

xi

(5.1 Input Sequence| 38

5.2 Output Sequencel 38
[>.3 Image core input sequence| 39
[>.4 Image core end of execution|. 39
(5.5 Input Image with noise| L. 40
(5.6 Output image| 40
(5.7 Ctrl output sequence] 41
[5.8 Peak signal to noise ratio for different noise levels| 42
(5.9 Mean square error for different noise levels| 43
(0.10 Mean absolute error for different noise levels 43
.11 Simulation times for different noise leveld 44
[5.12 Simulation times per pixell oo 45
[5.13 Peak signal to noise ratio for different threshold levels| 46
[>.14 Mean square error for different threshold levels|. 47
[5.15 Mean absolute error for different threshold Tevels. 47
(.16 Simulation times for different threshold levels| 48
[5.17 Compact flash read and write simulation| 49
[5.18 File written by theisrt| oo oo 50
[>.19 Test Read from a Register| 50
[6.1 Synthesisdelayl 52
[6.2 Synthesis resource utilization|. 0oL 53
(1 Original noise free Lena image| 183
[2 Original noise free Canyon image| 184
[3 Original noise free Field image|. 185
[4 Lena 1mage with noise level 0.001|. 186
(5 Restored Lena image from noise level 0.001| 186
(6 Lena 1mage with noise level 0.002|. 187
[7 Restored Lena image from noise level 0.002| 187
(8 Lena image with noise level 0.004|. 188
[9 Restored Lena image from noise level 0.004 | 188
(10 Lena image with noise level 0.006|. 189
(L1 Restored image from noise level 0.006| 189
(12 Lena image with noise level 0.008 190
(13 Restored Lena image from noise level 0.008 | 190
(14 Lena image with noise level 0.01| 191
L5 Restored Lena image from noise level 0.01| 191
{16 Lena image with noise level 0.021| 192
(17 Restored Lena image from noise level 0.021| 192
(18 Lena image with noise level 0.04 | 193
(19 Restored Lena image from noise level 0.04| 193
20 Lena image with noise level 0.06 | 194
21 Restored Lena image from noise level 0.06| 194
[22 Lena image with noise level 0.08 | 195
23 Restored Lena image from noise level 0.08| 195
24 Lena image with noise level 0.1 196

xil

25 Restored Lena image from noise level 0.1 196
26 Lena image with noise level 0.021| 197
27 Restored Lena image from threshold level 1| 197
[28 Restored Lena image from threshold level 4| 198
[29 Restored Lena image from threshold level 8| 198
[30 Restored Lena image from threshold level 12| 199
[31 Restored image from threshold level 16|. 199
[32 Restored Lena image from threshold level 20| 200
[33 Restored Lena image from threshold level 22| 200
[34 Restored Lena image from threshold level 26| 201
[35 Restored Lena image from threshold level 30| 201
[36 Restored Lena image from threshold level 34| 202
[37 Restored Lena image from threshold level 38| 202
[38 Restored Lena image from threshold level 42| 203
39 Restored Lena image from threshold level 46| 203
[40 Restored Lena image from threshold level 50| 204
[41 Field image with noise level 0.001|. 205
[42 Restored Field image from noise level 0.001 | 205
[43 Field image with noise level 0.002|. 206
[44 Restored Field image from noise level 0.002 | 206
[45 Field image with noise level 0.004|. 207
[46 Restored Field image from noise level 0.004 | 207
47 Field image with noise level 0.006 208
48 Restored Field image from noise level 0.006 | 208
49 Field image with noise level 0.008 209
[0 Restored Field image from noise level 0.008 | 209
[b1 Field image with noise level 0.01| 210
[52 Restored Field image from noise level 0.01|. 210
b3 Field image with noise level 0.021| 211
[p4 Restored Field image from noise level 0.02 1. 211
[b5 Field image with noise level 0.04| 212
[56 Restored Field image from noise level 0.04|. 212
[b7 Field image with noise level 0.06 | 213
58 Restored Field image from noise level 0.06 213
b9 Field image with noise level 0.08 | 214
[60 Restored Field image from noise level 0.08|. 214
61 Field image with noise level 0.1 215
[62 Restored Field image from noise level 0.1 215
63 Field image with noise level 0.021| 216
[64 Restored Field image from threshold level 1| 216
[65 Restored Field image from threshold level 4| 217
66 Restored Field image from threshold level 81| 217
[67 Restored Field image from threshold level 12| 218
68 Restored Field image from threshold level 16| 218
69 Restored Field image from threshold level 20 219
{70 Restored Field image from threshold level 22| 219

xiil

[f1 Restored Field image from threshold level 26| 220
{72 Restored Field image from threshold level 30| 220
(73 Restored Field image from threshold level 34| 221
{74 Restored Field image from threshold level 38| 221
[75 Restored Field image from threshold level 42 222
[/6 Restored Field image from threshold level 46| 222
[77 Restored Field image from threshold level 50| 223
(78 Canyon image with noise level 0.001| 224
[79 Restored Canyon image trom noise level 0.001|. 224
[0 Canyon image with noise level 0.002| 225
81 Restored Canyon image from noise level 0.002{. 225
(82 Canyon image with noise level 0.004 | 226
83 Restored Canyon image from noise level 0.004|. 226
84 Canyon image with noise level 0.006| 227
85 Restored Canyon image ifrom noise level 0.006|. 227
86 Canyon image with noise level 0.008| 228
(87 Restored Canyon image ifrom noise level 0.008 228
88 Canyon image with noise level 0.01 229
89 Restored Canyon image from noise level 0.01| 229
90 Canyon image with noise level 0.027| 230
[91 Restored Canyon image from noise level 0.02| 230
[92 Canyon image with noise level 0.04 231
93 Restored Canyon image from noise level 0.04| 231
94 Canyon image with noise level 0.06 232
95 Restored Field image from noise level 0.06 | 232
96 Canyon image with noise level 0.08 233
97 Restored Canyon image ifrom noise level 0.08| 233
98 Canyon image with noise level 0.1 234
99 Restored Canyon image from noise level 0.1 234
(100 Canyon image with noise level 0.02|. 235
({101 Restored Canyon image ifrom threshold level 1. 235
({102 Restored Canyon image from threshold level 4. 236
{103 Restored Canyon image ifrom threshold level 8. 236
(104 Restored Canyon image from threshold level 127 237
{105 Restored Canyon image trom threshold level 16| 237
(106 Restored Canyon image from threshold level 20| 238
({107 Restored Canyon image from threshold level 22 238
({108 Restored Canyon image ifrom threshold level 26| 239
(109 Restored Canyon image from threshold level 30| 239
(110 Restored Canyon image trom threshold level 34| 240
(11T Restored Canyon image from threshold level 38| 240
[L112 Restored Canyon image from threshold level 42 241
[L13 Restored Canyon image irom threshold level 46| 241
(114 Restored Canyon image from threshold level 50| 242
(115 Restored Lena image when using the software algorithm designed in the |

2009 fall project |o 243

xXiv

[L16 Restored field image when using the software algorithm designed in the

2009 fall project | 244
(117 Restored canyon image when using the sottware algorithm designed in the |
2009 fall project |o 245

XV

List of Tables

XVi

List of Terms

FPGA Field Programmable Gate Array

FLASH Memory that can retain data even when not powered
CPU Central Processing Unit i.e. processor

NTNU Norwegian University of Science and Technology
CMOS Complimentary Metal Oxide Semiconductor
MATLAB Mathematical tool for technical computing

I/O UNIT Input and Output unit

VHDL Hardware Descriptive Language

INTERRUPT Signal to the cpu that an IO unit needs attention
TEXTIO Vhdl package that enables write to file and read from file
BAYER SENSOR A way of representing colors from an image sensor
MICROBLAZE Xilinx soft core cpu on the fpga

BSB Base system builder to help make embedded design
XPS Xilinx platform studio, a tool for working with the cpu
RS232 Serial communication protocol

LCD Liquid Crystal Display

LED Light Emitting Diode

HARVARD ARCHITECTURE Separate storage for instruction and data

DDR2 MEMORY Double Data Rata Synchronous Memory

DSLR Digital Single Lens Reflex

FPS Frames per Second

BSB Base System Builder

PLB Processor Local Bus

ILMB Instruction Local Memory Bus

DLMB Data Local Memory Bus

BRAM,BRAM Storage elements inside the fpga

DSP Digital Signal Processing

NETLIST Physical description of the system

BITFILE A filetype used to program the fpga

BITSTREAM The information inside a Bit file

ISR Interrupt Service Routine

BAUDRATE Rate at which new symbols arrive on a serial line
PARITY Error checking mechanism for serial communication
START BIT Bit that starts a serial communication

STOP BIT Bit that signifies stop of data

UART Universal Asynchronous Receive Transmit

FIFO First in First out stack memory

IP Intellectual Property

IPIC Intellectual Property Interconnect

IPIF Intellectual Property Interface

HEADER FILE File that contains the method of a c file with the same name
WRAPPER FILE Vhdl representation of a system component

MS Milli Second

NS Nano Second

xvii

MHZ Mega Hertz

HZ Hertz

KHZ Kilo Hertz

LUT Look Up Table

SLICE Programmable fpga elements that contains LUTs
KB Kilo Byte

GB Giga Byte

PGM Portable Gray Map

CF Compact Flash

HEXADECIMAL Number representation with base 16

MHS Microprocessor Hardware Specification

MSS Microprocessor Software Specification

UCF User Constraint File

dB Decibel

GB Giga Byte (10° byte)

F-stop 1 f-stops is Decreasing / Increasing the amount of light by a factor of two

.vhd VHDL FILE POSTFIX

XVI1il

Chapter 1

Introduction

This thesis is the continuation of a project that was aimed at creating, comparing and
evaluating different methods for correcting defective pixels in an image with all the pro-
cessing done in software. The projects aims at implementing the best method from the
software project into hardware. The assignment is specified by Aptina Norway in con-
junction with the Norwegian University of Science and Technology.

1.1 Background

Defective pixels are caused by an error in the fabrication of the image sensor that trans-
lates into a transistor being either static on or static off and will thus translate into the
cpu interpreting false value from the pixel. The next sections will describe how defective
pixels can manifest themselves on an image and variables involved in the detecting and
correcting algorithm.

1.1.1 Static Defect

Static defective pixels in an image are types of defects that will contribute towards de-
grading the image on every exposure and in the same way every time.That means that
a defective pixel in position (a,b) in the image will show the same value on every image
regardless of the amount of light it is subjected to. Static defective pixels can further
be divided into two categories of "always-on" and "always-off" where an always off tran-
sistor never has any current flowing through it and with an always on transistor having
current flowing through it at all times. In a correctly working pixel, the current that
flows through a transistor is correlated with the exposure time of the image. A transistor
with no current flowing through it will always be interpreted by the cpu as the value 0,
corresponding the white color using an 8- bit gray scale color representation. Having a
transistor that has current flowing through it at all times will be interpreted by the cpu
as the value 255 using the same 8-bit gray scale color representation and it will result in a
black color. The idea behind defective pixel correction is to replace defective pixels with

the median of the neighboring pixels of the same color according to the Bayer image filter
pattern found in section The end result will have new pixels in the positions of
the defective pixels going into the algorithm. The different correcting algorithms mostly
differ in the way they calculate the value of the pixel that was defective. The median
algorithm utilizes the value of the nine neighboring pixels and replaces the defective pixel
with the median of the neighboring pixels.The task becomes even more complex as it is
advantageous to have a new pixel value not being based on values that are themselves
defective. An even more complex issue is the demands put on an image senor from a
camera application when operating in real time and making sure that the system can
cope with the demands.

1.1.2 Pixel Defect

Single defective pixels in an image are situations where the surrounding neighboring pixels
are giving off the correct value. Multiple defective pixels, however, can have defective
pixels as neighbors, thus complicating the search for working pixels on which to base the
new values.

Individual Pixel Defect

With only a single defective pixel in an area, the corrective measure is to assign a new
value to the position of the defective pixel based on the nine neighboring pixels of the
same color. The algorithm designed adds a two pixel border of the value 127 (for 8
bit image). The border will enable searching for defective pixels at edges and corners
all with the same algorithm. The downside to using a border with fixed values is that
defective pixels towards corners and edges gets a value that is not based on the values in
the vicinity but rather a fixed value, which can lead to a somewhat strange color for that
pixel.

Multiple Pixel Defects

An image exposed to high levels of noise is prone to have situations where a defective
pixel has a defective pixel as its neighbor of the same color. The adaptiveness of the
proposed algorithm will detect this and treat it accordingly by ensuring that no defective
values are used in the calculation of a pixel. That is accomplished by having the detection
and correction done in separate steps by searching through the image and marking all the
positions that are defective. The correction algorithm can then correct values based for
every position that is defective while still not utilizing values that are flagged as defective.
In the case of a defective value being a target for calculation of another defective pixel,
the first defective is replaced by the number 127, which is the middle value for 8-bit
values.

1.1.3 Programmable Threshold

In order to classify any pixel as defective they need to be compared with their neighbors
of the same color.The detection algorithm, therefore, needs to know the highest and
lowest value of the neighboring pixels, excluding the value of the pixel in question, in
order to ascertain whether or not the position should be classified as defective. The
threshold [30] is the value that is added to the highest value and subtracted from the
lowest value in order to produce an acceptance range of values that are considered to be
not defective. Having a value falling outside this range will require the pixels position
to be classified as defective. Different images may require different threshold in order to
produce the best result. That is why the threshold variable can be altered in the vhdl file
package. An image with high contrast has large differences between closely related pixels
without the pixels being defective while a low contrasting image does not have such large
differences. The programmable threshold is designed to account for different images being
processed with different thresholds.

1.2 Motivation

Being able to correct defective pixels from an image sensor with defective values has the
benefit of being able to sell image sensors with defective values that would otherwise have
been rejected by test procedures. It will also enable the correction of defects that occur
only after some time and so make a more robust device as far as errors are concerned.

1.3 Objective

This project aims at producing a system that can detect and correct defective pixel values
from an image with all the signal processing is done in hardware. A software system is
required to read values produced by the processing unit. The resulting image will have
to be interpreted visually by a human eye and by the means of statistical values in order
to ascertain the algorithm’s ability to correct pixels. The resulting image will be a more
esthetically pleasing version of the noise degraded input image with fewer visual pixel
defects.

Chapter 2

System

2.1 Xilinx ML501

RS, s .)
EXILNX,

Figure 2.1: Xilinx ML501 development board

Xilinx ML501 is an evaluation board with a vertex 5 fpga and a soft core microblaze pro-
cessor. It has built in DDR2 memory and system-ace to communicate with the compact
flash card, and serial communication using the rs232 protocol. It has an L.CD display
and pushbuttons and LED lights as general purpose 1/0. It also has input and output
capabilities as far as audio and video are concerned. This project merely utilized a few
of its features. The name of the physical pins on the board are specified in [26].

2.2 Microblaze

Microblaze is a soft core cpu using Harvard Architecture on the evaluation board. Tt
contains separate data local memory bus (dlmb) and instruction local memory bus (ilmb)
in addition to a processor local bus (plb) for connecting the cpu to peripheral components.
The system can be customized by adding peripheral units with different functionality in
order to tailor a system to specific needs. The cpu model used in the system includes some
peripheral units like the system ace controller, vhdl design, rs232 and interrupt controller.
The system ace controller is an interface for communication with the compact flash card
using read and write commands.The vhdl peripheral contains the vhdl files that actually
do the correction processing of defective pixels. Those values are then stored in a register
that is accessible by software functions.The next section will explain the methods in the
system ace interface and the storing of values from the vhdl peripheral. The interrupt
controller relays any interrupt from a peripheral to the cpu so it can execute its interrupt
service routine. The rs232 is the default standard input and output for the processor,
but it will not be utilized in this project as a debugging tool.

2.2.1 Creating an embedded system with platform studio

The Xilinx platform studio has a feature called the base system builder wizard that greatly
simplifies the task of creating an embedded system to interact with the fpga as it asks
for the different parameters in the system and then produces templates and drivers for
the system |31 [32]. The wizard will ask where the project is to be placed on the disk and
the name of the system. Based on those inputs it creates a folder with all the necessary
files for the project.The various postfixes for the files in project directory can be found
in [20]. The wizard then asks if the designer would like to specify a custom board or to
use an already made development board in the list. The project used a Xilinx ml501 as

is evident in figure 2.2

Welcome Board System Processor Peripheral Cache Application Summary|

Board Selection

Select a target development board.

Board
@ Iwould like to create a system for the following development board

Board Vender | Xilinx |Z|
Board Name bex 5 ML501 Evaluation Platform n
Board Revision |1 |Z|

~) Iwould like to create a system for & custom board

Board Information

Package Speed Grade

576

Architecture

]
AT

=
n
= |m
(]

virtex5
|:| Use Stepping

Reset Polarity |Active Low

Figure 2.2: Choosing a board

The wizard will offer the option to make the processor as a stand alone system or as

one of many processors in a system. The next step in the wizard is specifying the clock
frequency at which the cpu is to operate.There may be some limitation for the frequency
for certain peripherals as they may need a certain frequency. Here, the option to add
some memory to the processor is also available that can be turned into cache memory
for the processor.This project will stay with the default 125 MHz frequency and 8 KB of
local memory for instructions and data.

Welcome Board System Processor Peripheral Cache Application Summary

Peripheral Configuration

To add a peripheral, drag it from the "Available Peripherals™ to the processor peripheral list. To change a core parameter, dick on the peripheral.

Available Peripherals

Peripheral Names Processor 1 (MicroBlaze) Peripherals Select all
=110 Devices . Core Parameter
LEDs_&Bit
R5232_Uart

LEDs_Positions
Push_Buttons_SBit
DIP_Switches_8Bit

Core: xps_uartlite, Baud Rate: 9600, Data ...
SysACE_CompactFlash

IC EEPROM Core: xps_sysace

SR_._QM dimb_cntlr

FLASH Core: Imb_bram_if_cntlr
Ethernet_MAC ilrb_cntlr _

Soft TEMAC Core: Imb_bram_if_cntlr
DDR2_SDRAM

=) Internal Peripherals
wps_bram_if_cntlr
xps_sysmon_adc
xps_timebase_wdt
xps_timer = Remove

Figure 2.3: Choosing peripherals

Figure shows how different I/O units can be added to the plb bus and also internal
peripherals can be added to the cpu.The external I/O devices communicate with recourses
on the board like the LED and the push buttons, in addition to resources off the chip like
ethernet, and rs232. The application screen shown in figure lets the designer choose
what memory to run the built in tests off of and also the standard input and output for
the system. This project does not have any external memory, so all instructions for the
cpu are stored in local block ram inside the fpga.The RS232 serial connection is default
as the standard input and output. It will remain in the system to fulfill its duties but
it will not be used for printing status messages as the computer used does not have an
RS232 serial port.

Welcome Board System Processor Peripheral Cache Application Summary

Application Configuration

Configure the example applications.

Example Applications

Application Option Value
()i Test microblaze 0
Standard 10 RS232_Uart [~]
Boot Memory ilmb_cntlr
= Memory Test TestApp_Memory_microblaze 0
Instructions ilmb_cntlr
Data dimb_cntlr
=) Peripheral Test TestApp_Peripheral_microblaze_ (1
Instructions ilmb_cntlr
Data dimb_cntlr
Interrupt Vector ilmb_cnitlr

Figure 2.4: Applications

The wizard is now done with all the information it needed to set up the system and
after some waiting time the screen will show what is in figure [2.5] which is the home
screen of the system with information on the hardware connection as well as the soft-
ware files. The applications tab shows the two default projects TestApp Memory and
Test App_ Perppherial that were created by the wizard. These two projects can be used
to run a test on the system so to ensure that it the hardware can communicate with the
software correctly for both the memory and the connected peripheral units. The "Ports"
tab in the figure shows all the internal and external ports associated with the cpu’s ad-
dress space while the "Addresses" tab shows the address range of all the peripherals
connected plb bus.

@File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help

D2E & BBEYE (B0 oM RrIBOIRG AR Pec AR B HX B £|i® g
Applications +0 & X L L J Bus Interfaces | Ports I Addresses |
Software Projects I'él'l I'él'l MName Bus Name 1P Type 1P Version IP Classification
(c] Add Software Application Project... - +)- microblaze 0 ¢ microblaze 7.20.d Processor
Default: microblaze 0_bootloop o dlmb ﬁ Imb_v10 1.00.a LME Bus
Default: microblaze_0_xmdstub ilmb j:r Imb_v10 1.00.a LME Bus
= %! Project: TestApp_Memory_microblaze_0 - mb_plb 1t plb_vd6 1.04.a PLBV46 Bus
+- Processor: microblaze 0 o Yx- +- dimb_cntlr 1 Imb_bram_i... 210.b Memory Controller
Executable: ChUsers\Magician\Desktop\BSB\test\ TestApp_N F'__o_ +)- ilmb_cntlr T Imb_bram_i.. 210.b Memory Controller
+)- Compiler Options - +)- Imb_bram ¢ bram_block 1.00.a Memaory
+- Sources > +- mdm_0 1r mdm 1.00.g Debug
Headers @ +- SysACE_Co... 77 xps_sysace 1.0la Peripheral
= m Project: TestApp_Peripheral_microblaze_0 @ +- R5232 Uart T xps_vartlite 1.01a Peripheral
+- Processor: microblaze 0 clock_gener... 1r clock_gene.. 3.02.a P
Executable: C\Users\Magician\Desktop\BSB\test\ TestApp_R Proc_sys_re... 7 proc_sys_re.. 2.00.a Peripheral
+)- Compiler Options
+- Sources
+- Headers
< I ¢
Project | Applications IP Catalog = Design Summary] @ Block Diagram @ System Assembly View

Figure 2.5: Base System Builder Complete

It is now time to download the two created test projects to the fpga, one by one, to make
sure that the cpu can access the connected peripherals. The first step is to go to the
software tab in the main window to "generate libraries and dsp”. That will create the
libraries with functions that are associated with the peripherals in the system. It is then
time to make this project the default project for initializing the bram on the fpga, which
means that the data in this project will be placed in the block ram for instructions so
that the cpu will execute those instruction when it is turned on. The software source
code has to be compiled with the "build project" command.The result of compiling the
source is an executable file. The "generate netlist" command reads the executable file and
generates an vhdl description of the components in the system and then runs synthesis
on those files while the "generate bitstream" takes the netlist files and creates a bit-file
that contains the entire embedded system.The bit file is the same format that is used to
program an fpga.The software source files needs to be injected into the bitstream in order
to get the cpu to execute those instructions. The bit file is complete when the software
has been injected into the bit file, and can be downloaded to the fpga with the Impact
tool. The Impact tool can program the fpga by creating an ace file or by using a cable to
the fpga. For this project it will create an ace file from the bit file which in turn is copied
into the compact flash card at address 6. All that is left is to insert the compact flash
card into the card reader on the board, power it up, and select the ace file at position
6 as the source file for the cpu. Running the TestApp peripheral will do a test of the
connected peripherals e.g. printing strings to a computer connected to the rs232 serial
port or flash the LEDs if they are connected.

2.2.2 System Ace Controller

The system ace controller is an interface between the compact flash card and the processor
local bus. It makes sure that the plb bus and the cf card can communicate and that the
timing is correct.The controller and all its specifications are given in [29]. The library
generated for the system ace controller contains functions to read from the device and
write to the device. There is, however, a library called xilinx xilfatfs [28] that further
simplifies the interaction with the cf card by the means of functions to open, read, write
and close a file. The functions available using the Xilfatfs library, for interacting with the
compact flash card, are:

sysace_fopen (file, mode)
sysace_fread (buffer,size,count,file)
sysace_fwrite (buffer, size, count,file)
sysace_fclose (file)

sysace_mkdir (path)

sysace_chdir (path)

Interaction with the cf card requires that certain steps are done in the correct order.
The first step is to make a directory where the file should be located and then open the
file in read or write mode, depending on what is the desired operation. The directory is
specified using the sysace mkdir command while opening a file in write mode is done
with the sysace fopen(file, *w’) function. It is now ready for communication with the cf
card using the sysace fwrite function (assuming that the file was opened in write mode).
Upon completion of writing the data, the file has to be closed using the sysace fclose
function. The function sysace fread is used when the target file is opened in read mode,
and the sysace chdir is a function to change a working directory.

2.2.3 RS232

The rs232 protocol is a communication protocol for serial communication with one trans-
mitter and one receiver. The signals used in the communication can be seen in [24] along
with the parameters used to setup communication between two participants. Platform
studio offers a version of the rs232 called uart lite that only contains the receive and
transmit pin as external pins from the chip.This has the added benefit of not requiring
knowledge of the entire rs-232 protocol in order to initiate communication. Uart lite is
also the default std in and std out for the cpu. This module can be used for printing
status messages to a connected computer so it is in fact a debugging tool for the software
platform.A serial communication contains several parameters that must have the same
values on the transmitter and the receiver side for the receiver to decode the message
correctly. Parameters that need to be specified are the stop bit, start bit, baud rate and
parity. The start bit is a message to the receiver that the first bit of the message is being
transfered.This is based on the protocol being asynchronous and therefore used the start
bit to synchronize with the transmitter. The start bit will therefore synchronize receiver

and transmitter. The stop bit denotes the end of the message and acts as a resynchroniza-
tions tool if the receiver, for whatever reason, did not receive the start bit and therefore
not the message. The parity bit is an error checking tool where the transmitter generates
a bit value that the receiver can use to determine whether it received the same message
that was sent.

2.2.4 Interrupts

There are two basic methods for a peripheral to let the processor know that it needs
attention;polling and interrupts. Polling is a method where the processor will ask the
various peripherals if they have any data for the processor. It will ask each peripheral
every time period. This method can work great for systems that only operate on data
from peripherals, but will not be such a great choice if the data from the peripherals is
not essential for the processing at all times.This system will only act on the data from
the interrupts, but it was chosen to use an interrupt controller in order to gain experience
with setting up and handling interrupts. Xps offers an interrupt controller that relays
interrupts from the peripherals to the cpu. It is connected to the cpu’s interrupt port,
on one side, and the interrupt signal from the peripheral on the other side. Interrupt
based systems are methods where the peripherals will tell the processor when it needs
attention and thus only take up processing time when it needs to communicate with the
cpu. Good tutorials for creating interrupt based systems can be found in |14l 27].

The system implemented for this project utilizes an interrupt based processor so that it
receives an interrupt from the vhdl peripheral that it wants attention, and the processor
will go into its interrupt service routine (isr) to execute the instructions for that inter-
rupt.When an interrupt "fires", the processor will store its current values and go into
its isr. When the processor completes its isr, it will load the values it had prior to the
interrupt as to continue execution where it left off before the interrupt.

Interrupt Controller

The vhdl peripheral will set the interrupt flag of the interrupt controller when it needs
to communicate with the processor. One interrupt line can be directly connected to the
processor’s interrupt port, but having multiple interrupt lines requires the implementation
of an interrupt controller that can act as an arbiter to make sure every interrupt gets
serviced. It will act as a decoder for interrupt lines for various peripherals as the processor
has only one interrupt port.The interrupt controller can relay information to the cpu of
the peripheral that triggered an interrupt so the correct isr is executed. When a peripheral
sets the interrupt flag high, that will signal to the interrupt controller that it wants to
communicate with the processor and the interrupt controller in turn sets the processor’s
interrupt line high.This is the message to the cpu to go into the isr of the source of the
interrupt. The specifications of the interrupt controller can be found in [33].

10

Interrupt enabling

When setting up interrupts on a processor it is essential that they are set up correctly
on all devices that set, handle and relay the interrupt. It needs to be enabled on the
peripheral, interrupt controller and in microblaze in this situation. It is also important
that the interrupts are acknowledged on the peripheral and the interrupt controller before
de asserting the processor interrupt line to low.This is to avoid a situation where an
interrupt is never acknowledged and is therefore blocking all other instruction to the cpu
as the cpu will think the peripheral is asking for a new interrupt and go into its isr again.

Interrupt service routine

Isris the instructions that are executed every time a given peripheral triggers an interrupt.
Different peripherals have different isr that are executed. It is therefore imperative that
the source of the interrupt is found so as to ensure the correct isr is being executed. On
this project the vhdl peripheral will assert the interrupt signal on the bus and then it is
sent to the interrupt controller that will relay the interrupt to the processor.

2.2.5 Creating an intellectual property

Xps has a wizard for creating peripherals that can be connected to the cpu in such a
manner that the designer does not need to know the specifics of the bus protocol in
order to access data on a peripheral but can rather communicate on the bus using a few
signals. Tutorials on how to create an custom IP and utilize its features can be found at
[T, 25]. Figure shows the start of the guide where the designer can choose to create
a template for a custom peripheral or import an already-made peripheral. Choosing
to create a template results in the wizard creating the vhdl wrapper files that enable
communication between the custom ip functionality and the plb bus. Once a peripheral
is created and the default vhdl files created by the wizard altered, the peripheral has to
be imported back into xps with the new changes in order to get a custom ip with the
desired functionality.

11

Peripheral Flow
Indicate if you want to create a new peripheral or import an existing peripheral. \Y

This tool will help you create templates for a new EDK CoreConnect peripheral, or help you import an existing EDK CoreConnect peripheral into an XPS
project or EDK repository. The interface files and directory structures required by EDK will be generated.

)l Select flow

Create Teﬂ'lplm @ Create templates for a new peripheral

l Import existing peripheral
=HLVETY : Flow description

l This tool will create HOL templates that have the EDK compliant port/parameter interface. You
will need to implement the body of the peripheral.

Figure 2.6: Create Custom Peripheral guide step 1

The ipif screen shown in figure is where the designer will choose what modules to
be implemented into the peripheral. The ability to have read and write fifo, interrupts,
memory space or register space can all be specified in the ipif section.This project will
utilize an interrupt mechanism for the peripheral to communicate to the cpu that it needs
attention and it will include the default checked boxes in the "user logic software register"
and "include data phase timer".

TPIF (IP Interface) Services
Indicate the IPIF services required by your peripheral.

%

‘four peripheral will be connected to the PLB (w4.6) interconnect through corresponding PLB IP Interface (IPIF) modules, which provide you with & quick
way to implement the interface between the PLB interconnect and the user logic, Besides the standard functions like address decoding provided by the
slave IPIF module, the wizard tool also offers other commonly used services and configurations to simplify the implementation of the design.

Slave service and configuration
Processor Local Bus (version 4.6) Typically required by most peripherals for operations like logic control,
status report, data buffering, multiple memory faddress space access,
E E and etc. (PLE siave interface wil ahvays be included).

Software reset 7] User logic software register
PLB v4.6 Read/Wirite FIFQ User logic memory space
Slave V| mterrupt contral V| Indlude data phase timer

Master service and configuration
Typically required by complex peripherals like Ethernet and PCI for

commanding data transfers between regions (PLE master interface
will be included if master service selected).

User logic master
User Logic Master Cntr

- [z
S =
i H
K
o
g

Write LocalLink

Figure 2.7: Peripheral interface

The user logic software register was chosen by the designer so a determination has to
be made as to how many software accessible registers the peripheral should contain.
These registers are named slv_regO-slv_reg(N-1) for N specified registers. It can been

seen from the vhdl file user logic that it specifies how to read and write to any of the
accessible registers.

12

Interrupt Service

Configure interrupt handiing.

The interrupt control service provides interrupt capture support which captures and coalesces various interrupts generated from IPIF, other design
blocks and user logic into a single interrupt output,

[User Logic
4 & 4 & L]
7 7 01112131 - [N
& =
IP ISC
A
[
Y ¥ ¥ ¥ ‘ Device ISC
o[-+] - felslefzfe]
Device Interrupt Source Priori
Control and Registers - EI::;";;
X
1
¥

Datasheet

User S/W Register

Device ISC

Device ISC (Interrupt Source Controller) coalesces all captured
internal interrupts into a single output signal. You may eliminate
Device ISC if all interrupts come from the user logic.

| Use Device ISC (interrupt source controller)

Priority Encoder
Device ISC Priority Encoder (Interrupt ID register) indicates which
interrupt source has a pending interrupt. Itis useful in aiding the

user interrupt service routine to resolve the source of an interrupt,

| Use Device ISC Priority Encoder service

User logic interrrupt

Mumber of interrupts generated by user-ogic: i |Z|
Capture mode: |Level Pass Through (non-nverted) |Z|

The input interrupt from the user logic has no additional capture
processing applied to it. It is immediately sent to the IP ISC
Interrupt Enable gating logic.

Figure 2.8: Interupt service

Configure the software accessible registers in your peripheral.

R

The next step is specifying the number of interrupts needed in the system and also if
the interrupts should be captured as inverted, low level or high level. The wizard will
create signals in the user logic file that is connected to the interrupt signal on the plb
bus. The interrupt mechanism can therefore be accessed by assigning a signal within the
vhdl module. By opting for the user logic register in figure the number of registers
is specified in figure [2.9 The number of registers chosen can be seen in the user logic
module with each register having a signal assigned, in order for functions in software to
read from the registers and write to the registers.

%

The user specific software accessible registers will be implemented in the user-ogic module of your peripheral. Such registers are typically provided for
software programs to control and to monitor the status of your user logic. These registers are addressable on the byte, half-word, word, double word
or quad word boundaries depending on your design. An example logic for register readfwrite will be included in the user-logic module generated by the
wizard tool for your reference.

BLEZIP_WWReq
Bus2IP_RACE

Bus2IP Dafa

P2Bus_Daka

IP2Bus_RdAck
IP2Bus_Wr.ﬁck
IPzBus_Er‘ror

EusZIP_RdReqg
—_— ™~

User logic software registers may take full advantage of the slave IPIF address-

decoding service to generate CE decodes for all of the individual register of

Feg 0 interest. The diagram on the left shows the simplest set of IPIC slave signals to
readfwrite the registers.

Regl

Reg2 MNumber of software accessible registers: | 1 = (1 to 4096)

Reg 3

Regn

User Logic

Figure 2.9: Peripheral registers

The ipic is the tab where all the signals from the ipif module to the user logic module
are specified, also with the option of checking a new signal that the designer may opt to
use. The signals in the tab are shown in figure [2.10| These signals represent a simplified
version of the plb bus signals. The signals will be utilized in the peripheral in order to
communicate with the ipif that in turn communicates with the plb bus.

1P Interconnect (IPIC) (/}
Select the interface between the logic to be implemented in your peripheral and the IPIF. "bﬂ?

Yfour peripheral will be connected to the PLE (v4.6) interconnect through suitable IPIF master /slave module(s). Your custom logic from the user-ogic
module interfaces to the IPIF module(s) and other sub-blocks through a set of signals called the IP interconnect (IPIC) interface. Some of the ports are
always present, some are pre-selected based on the IPIF services you required, and you can choose other optional ports to be induded in the design
based on your needs.

Mote: all IPIC ports are active high. Port description

V| Bus2IP_Clk
Peripheral V| Bus2IP_Reset
Bus2IP_Addr
PLB ».b Other PLB vib Bus2IP_CS
Slave Blodks Master Bus2IP RMW
Bus2IP_Data
Bus2IP_BE
Bus2IP_RdCE
Bus2IP_WrCE
IP2Bus_Data
IP2Bus_RdAck
IP2Bus_Wrhck
IP2Bus_Error

£
L

=
2
-
=
o
=]

IPIC for slave
IPIC for master
b e e e e e

User Logic

Figure 2.10: Peripheral Interconnect

The hierarchy of the custom peripheral is shown in figure with the peripheral being
the top level module with the ipif module on the level below and the user logic module
on the lowest level. There are options for the wizard to create ISE project files for the
peripheral and also to make templates for the driver of the peripheral. The created ISE
project facilitates easier importation into platform studio as the files can be synthesized
prior to being imported.

(OPTIONAL) Peripheral Implementation Support R
Generate optional fles for hardware/software implementation \¥s

Upon completion, this tool will create synthesizable HOL files that implement the IPIF services you requested. A stub ‘user_logic' module will be created.
‘ou will need to complete the implementation of this module using standard HOL design flows. The toal will also generate EDK interface files (mpd/pao)
for the synthesizable templates, so that you can hook up the generated peripheral to & processor system,

Note

(R (RArDL) Should the peripheral interface (ports/parameters) or fil st change, you will need to
regenerate the EDK interface files using the impert functionality of this toal.

IPIF (YHDL) Generate stub 'user_logic' template in Verilog instead of VHDL

V| Generate 15E and XST project fles to help you implement the peripheral using ¥ST fiow

7] Generate template driver files to help you implement software interface
User Logic
(VHDL)

Figure 2.11: Peripheral hierarchy

The custom peripheral wizard has now created the two vhdl files as a wrapper for the
peripheral. The files are called my custom ip register.vhd and user logic.vhd where

14

my custom ip register.vhd is the wrapper for the ipif while the user logic is the file
where the designer can add functionality given the set of signals shown in figure [2.10}
These files are located in the pcores folder in the working directory. The folder contains
all custom ip modules created by the wizard.

@ File Edit View Project Hardware Software Device Configuration Debug Simulation Window Help
DAEF . B 4DOX®| 0| RHBORO A% FecAR i X Brl e BB
Applications +08 x L L J Bus Interfaces | Forts | Addresses |
Software Projects I;' I;' MName Bus Mame IP Type IP Version IP Classificatio
|£] Add Software Application Project... h microblaze 0 1r microblaze 7.20.d Processor
Default: microblaze_0_bootloop dimb 11 Imb_v10 1.00.a LME Bus
Default: microblaze_0_xmdstub ilmhb 11 Imb_v10 1.00.a LME Bus
=[] Project: TestApp_Memory_microblaze_0 . ‘ mb_plb Tr plb_wi6 1.04.a PLEV4E Bus
Processor: microblaze_0 © Y- dlimb_cntir 1r Imb_bram_i... 2.10.b Mermaory Conti
Executable: C:h\Users\Magician'\Desktop'\B5B'\bsb_project\Tg f_'__“} ilmb_cntlr 17 Imb_bram_i... 210.b Memory Cont
Compiler Options . Imb_bram ¢ bram_block 1.00.a Memory
Sources e mdm_0 1r mdm 1.00.g Debug
Headers e my_custom_ip_register % my_custom... 1.00.a Peripheral
= m‘ Project: TestApp_Peripheral_microblaze_0 @ xps_intc 0 Tr xps_intc 2.00.a Interrupt Conti
Processor: microblaze_0 @ SysACE_CompactFilosh 1r xps_sysace 1.0l.a Peripheral
Executable: C:h\Users\Magician'\Desktop'\B5B'\bsb_project\Tg @ RS232 Uart 1r xps_uartlite 1.01.a Peripheral
Compiler Options clock_generator 0 1r clock_gene.. 3.02.a P
Sources proc_sys_reset 0 11 proc_sys re.. 2.00.a Peripheral
Headers
. o c] n b
Project | Applications | IP Catalog = Design Summary] @ Block Diagram @ System Assembly View

Figure 2.12: Import peripheral complete

The newly created custom ip is located in the IP catalog under user cores and must
now be added to the project and have a connection to the plb bus established. The
only step left then is to go to the address tab in order to assign an address range for
the peripheral so that the processor can communicate with it. The hardware part of
connecting the peripheral is now complete but the designer still needs to run the "generate
libraries and dsp" command from the software tab in order to create the new libraries
with the functions that are associated with the custom peripheral. When the libraries
are generated the software will recognize the functions associated with the peripheral.

2.2.6 Access Peripherals

The cpu has a memory map that indicates which addresses belong to which peripheral.
The memory map is a division of the total memory of the cpu divided by the different
peripherals and their memory needs so that every unit can be accessed by using those ad-
dresses.The various peripherals may need different space allocated in the memory so they
will thus have narrower address ranges. The Xilinx Platform Studio makes this memory
map an automated feature so the user does not need to specify anything other than the

15

memory needed for each peripheral. There are two variables that are important when a
peripheral is to be accessed; the base address and the high address. The base address
is the starting address for the peripheral and the high address is the end address of the
peripheral. Both addresses are given in hexadecimal numbers.The example given in figure
illustrates the different peripherals in the system along with their base address, high
address, memory size and connection to the bus. The modules all have header files that
describe the methods that are associated with that peripheral and also the offset to the
different registers within a peripheral. Within the custom peripheral there are methods
for reading from a register, writing to a register and setting up interrupts.

= microblaze_0's Address Map
dimb_cntlr C_BASEADDR 00000000 Dx0001FFFF 128K [«] SLME dimb
ilmb_cntlr C_BASEADDR x0I000000 0x0001FFFF 128K [w| SLME ilmb
ups_intc_0 C_BASEADDR Ix&1 800000 0xB1B0FFFF 64K [=| SPLE mb_plb
SysACE_CompactFlash C_BASEADDR IxBIE00000 0x8360FFFF 64K [=] SPLE mb_plb
R5232_Uart C_BASEADDR x@$000000 DxB8400FFFF 64K [=] SPLB mb_plb
mdm_0 C_BASEADDR Ix@4400000 DxB440FFFF 64K [=] SPLE mb_plb
my_custern_ip_register_{ C_BASEADDR ICOCoI000 0xCCCOFFFF 64K [=| SPLE mb_plb

Figure 2.13: Microblaze address map

The cpu can access the system ace controller using the address range from base address
to high address. The size of the address space can be determined by subtracting the
base address from the high address. As an example the high address of the system ace
controller is 0x8360FFFF and the base address is 0x83600000. Subtracting the base
address from the high address leaves us with the address space in bytes. The address
space of the system ace controller is 65536 or 64k.The amount of memory is also shown in
the address map in order to simplify the calculation of the amount of memory for a given
peripheral. The header file of a given peripheral specifies what the different addresses of
the peripheral will accomplish.

2.2.7 Adding c source file

Creating a new c source file for a project is done by clicking on the sources tab and the
select "add existing file or add new file". This will create a new file to one of the two
processes created by the wizard. The ¢ code will be executed by the cpu if the process
it belongs to is set to initialize the block ram.The file is accessible from the "sources"
menu in that process. Utilizing functions from a peripheral requires that its header file
is included at the start of the ¢ file and also added to the "header" menu in the process.

16

Chapter 3

Supporting Theory

This chapter will contain the information needed to understand the techniques used in the
project, and evaluate the results of the algorithm for detecting and correcting defective
pixels in an image.

3.1 Median Filter

This thesis employs a median algorithm for correcting pixels that are classified as defec-
tive. The algorithm will then gather the values of the eight neighbors of the same color,
and assign the median of those values as the new value at that position. Figure shows
some values that will be used to explain the operating procedure of the median filter.
Let’s assume that the threshold for detection is 10. That means that any value higher
than threshold + the highest value, or lower than threshold - lowest value is classified as
defective.

114 115 102 92 72
140 115 128 111 121
100 101 127 103 113
141 201 90 131 61
117 119 99 97 120

Figure 3.1: Truncated Original Image Values

The first step with this algorithm is to calculate the maximum and minimum values not
including the pixel in question.The values chosen for the middle pixel in ascending order
are {72 99 100 102 113 114 117 120 127}. The extreme values, not including the mid-
dle pixel, are 72 and 120. The middle pixel will be classified as defective when using a
threshold larger than 7 and classified as a working pixel with a threshold lower than 7. In
this instance it is assumed that the threshold is such that the middle pixel is classified as

17

defective. Next step in to replace the defective value with the median of the neighboring
pixels of the same color. In this example the median is 113.

114 115 102 92 72
140 115 128 111 121
100 101 113 103 113
141 201 90 131 61
117 119 99 97 120

Figure 3.2: Resulting Truncated Image Values

3.2 Types of Noise

In the previous sections the main focus has been on detecting and correcting defective
pixels. The appearance of a defect pixel can be seen as noise when put under scrutiny
from an observer. It is therefore possible to model a defective pixel as noise on a test-
image in order to conclude which algorithm produces the most esthetically pleasing image
when removing the noise. There are two dominating sources of noise in an image; salt
and pepper noise and Gaussian noise. The next section will describe them in detail.

3.2.1 Salt and pepper noise

Salt and pepper noise is a somewhat typical noise seen on images with defective pixels. Tt
manifests itself as white spots (salt) or black spots (pepper) on the image [19]. A white
spot is caused by a false saturation on the image sensor while the black spot is caused
by a failed response of the same image sensor. These defects are usually the result of
an error on the fabrication of the image sensor. It can be modeled in matlab were a
value (typically 0.01)will determine the probability that a given pixel is corrupted with
noise and so interpreted as either a black or white pixel. Statistically this kind of noise
has zero mean value and is, thus, described completely by its variance. This kind of
noise can be successfully removed based on the understanding that the corrupted pixels
will have a very high or very low value. As such it will stand out in comparison to its
neighboring pixels, assuming that they work correctly, and the removing filter does not
need to be very complex, although a very good reconstruction of an image still requires a
degree of complexity in the algorithm to deal with different contrast in the same image.
Figure [1]shows an original Lena image [I5] and shows the same image corrupted
with salt and pepper noise. The algorithm presented in this thesis will start with an
image corrupted by noise and then manipulate it to get as close to the original images as
possible.

18

(a) Lena (b) Lena corrupted by salt and pepper
noise

Figure 3.3: Impact of salt and pepper noise

3.2.2 Gaussian Noise

(Gaussian noise is a noise type that can corrupt pixels with any value within the range of
values [11]. Some pixels may be slightly altered while others may be severely altered, thus
making the job of detecting and correcting them far more difficult. This type of noise can
be added to an image when it is transferred over a noisy information channel. As it is not
the scope of this project to remove Gaussian noise, it is only serves the purpose of adding
to the understanding of how different noise sources corrupt an image. Gaussian noise has
a probability density function (pdf) that describes the probability of a value being within
a certain range (see equation (3.1])).The Gaussian noise also has a zero mean value and
is described by its variance.

F(ﬂf) — 1 e_(w—H)Q/ZUQ (31)
oV 2w

In equation w4 is the mean value and o is the standard deviation. For a normal
distribution the p is zero and o is 1.The fact that pixels corrupted by Gaussian noise
can have any value makes them harder to detect and correct in the time domain. They
may not stand apart from the neighboring pixels, like with the salt and pepper noise,
but rather be assigned random values to random pixels.Figure shows the impact of
Gaussian noise on an image alongside the original image.

19

(a) Lena (b) Lena corrupted by Gaussian noise

Figure 3.4: Impact of Gaussian noise

3.3 Images

3.3.1 Histogram

Most modern digital cameras have the option of displaying the histogram of the image
along with the image itself on the screen of the camera. The histogram is a graphical
representation of the exposure with regards to the balance of highlights, mid-tones and
shadows [I3]. Having few components in the shadow-or-highlights will result in an image
that is over exposed or under exposed. A perfect exposure will have components in all
the three regions in a histogram. Using an 8-bit image will result in a histogram in the
range of 0-255(sometimes expressed as 8 F-stops). Figure shows the different tones
of an image with its corresponding grey-level range. Looking at the histogram it can be
concluded that the image has all its components within the mid-tone and shadows area
and as such does not have any highlight components. The rectangular bar at the bottom
represents the grey scale with color level and corresponding pixel count.

Shadows Midtones Highlights

0

Figure 3.5: Image histogram

3.3.2 Contrast

A histogram contains several important aspects that will tell a photographer how the
different components within the image relate to one another. There are, however, other
measures that can be read from the histogram such as the overall contrast of an image and
exposure. The contrast is the ratio of the largest component and the smallest component
of the histogram. A small ratio, corresponding to a narrow set of values on a histogram,
will cause the image to have a low contrast. Having a large ratio will result in a high
contrast image.

(a) High Contrast (b) Low Contrast

Figure 3.6: High and Low contrast histograms

3.3.3 Bayer Color Filter

The Bayer color filter [4] is used for arranging colors on a square image sensor. It consists
of 50% green, 25 % blue and 25% red.The green color is usually divided into green for
red and green for blue so that it really is composed of four different colors. Since it has
more than twice as much green values as red and blue combined, it is sometimes called
RGBG or RGGB. The correction algorithms need to evaluate only pixels with the same
color for any given position which is done by looking at pixel (i£ 2, j&+ 2) assuming that
the middle pixel is at position (i,j). The Bayer values are light intensities of red, green,

Figure 3.7: Bayer Filter [5]

and blue from the image sensor. It is the job of the processor to convert these light
intensities into pixel values in order to obtain a RGB image, which is done by looking at
the intensity of the neighboring pixels. Each intensity can range from 0 to 255 in an 8
bit image thus resulting in 16.7 million possible combinations. It can be observed that
the next neighbor of the same color is two pixels up, down, left and right so that will
dictate how the search for neighbors will go on.This pattern will be utilized in the vhdl
part in order to find the next neighbors of the same color to be able to classify a pixel as
defective.

21

3.3.4 PGM Image Format

PGM image formats [I8] is an abbreviation for Portable Gray Map where the pixel
values indicate a light intensity. An image with 8 bits per pixel will result in 256 different
levels from black to white. The interesting aspect of PGM image format is that there is
no data compression so the pixel values can be read directly from the image. The file
format consists of a file header and the image data. The header consists of a number P1-
P5, the size of the image in the x and y direction, and the maximum value. An example
PGM file showing the number eight looks like figure

P2

5 7

15

0O 0 0 0 0
0 15 15 15 0
0 15 0 15 0
0 15 15 15 0
0 15 0 15 0
0 15 15 15 0
0O 0 0 0 0

Figure 3.8: Example PGM file format

3.4 Number representation

There are several ways of representing a number with the decimal system begin the
predominant system. In scientific research there are situations where using the decimal
system would be inefficient, e.g representing large memory spaces.The hexadecimal scale
is used when dealing with cpu address spaces while the logarithmic scale is used in
measuring decibel in an audio visual system.

3.4.1 Hexadecimal scale with base 16

The hexadecimal number system [12] is a positional system with a radix or base of 16.
There are then sixteen distinct values in the hexadecimal system where 0 — 9 is the same
as the decimal 0 — 9 and A — F represents decimal 10 — 15. The hexadecimal number
3CB is equal, in decimal, to (3 * 16%) + (12 % 16') + (11 * 16°) = 971. A hexadecimal
number is often denoted by a 0x number as a prefix or as a postfix numberg. The use
of an identifier is to avoid ambiguity with the number as the decimal number 1404, is
not equal to the hexadecimal number 1406. Figure [3.9shows the different hexadecimal
numbers along with their decimal value and its binary value.

22

Hex | Decimal | Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5t 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Figure 3.9: Hexadecimal number representation

Hexadecimal numbers can be broken down to a binary representation by replacing each
number by its binary representation according to figure [3.9 Hexadecimal numbers are
used in this project for representing addresses in the address space of the cpu. An address
can have the value 0x2F, where the prefix denotes that it is a hexadecimal number. The
number 2 is replaced by the binary representation of 2 (0010) and the F is replaced by the
binary representation of F (1111).The binary representation of 0x2F is therefore 00101111
but the leading zeros in a binary representation can be skipped so the resulting number
is 101111.The hexadecimal representation can be used to represent large numbers with
fewer digits than its binary and decimal representation.

3.4.2 Decibel scale with base 10

The logarithmic scale [I6], 9] used the logarithm of a value instead of the value itself. The
value 100 is replaced by 3, as 3 % logyo is 100. There are different bases, or radix for the
logarithmic scale but for measuring decibel (dB) the base 10 is used for the calculations.
Large values become more manageable when using the logarithmic scale. Humans hear
in a logarithmic scale, so that is why it is extensively used to measure the quality of
an audio systems. The decibel values will be used when measuring the peak signal to
noise ratio in the simulation chapter. The formula for calculating a decibel value is in
equation , where py and p; are the measured values from inp ut to output.

(H]dB = 10 % loglo(%) (3.2)

1

An increase in decibel from 4 dB to 5 dB represents an increase from 2.51 to 3.16 in real
value. Having zero decibel from a system means that the output and the input have the

23

same physical value. If the fraction Fy/P; is larger than one, the resulting decibel value
is positive while it is negative if the fraction is less than one [§].

3.5 Text representation using ascii

Ascii is the abbreviation for American standard code for information interchange |3, 2] and
is a numerical representation of the alphabet.This is useful as a computer cannot interpret
a character but rather the ascii value of the character.The initial ascii setup contained 127
characters and thus required seven bits in order to represent all possible combinations.
Most of these characters are printable characters like letters and numbers while some
characters are non-printable but these are mostly now being considered obsolete. An upper
case letter and a lower case letter do have different representation in the ascii coding
scheme. Having more bits available introduces more possible symbols to be represented
in order to include special letters from different languages. [3] shows the 256 symbols
that are represented by 8 bits.The word t-e-s-t is interpreted by a computer as 116-101-
115-116 using an 8 bit ascii table.

3.6 Measured Values

When comparing two images, there are several values that describes the image. The next
section will show the measures used in this project.

3.6.1 Mean Square Error (MSE)

—_
—_

3

n—

MSE = =3 37 (16,9) - Lii.)? (3.3)

7

I
=)
<.

I
o

Equation , used for images, measures the squared difference between the recon-
structed image and the original image. The reconstructed image will not be pixel wise
identical to the original image and this method measures how far they are apart in
squared value [21]. I(i,j) is the value of the reconstructed image while L(i,j) is the value
of the original image. Lower values of mse will translate into a better quality image (see

equation .

3.6.2 Mean absolute error(MAE)

The mean absolute error [I7] shows how the values of the reconstructed image compare
to the values of the same pixel in the original image and averages that value. Equation

24

(3.4) shows the formula for calculating the mean absolute error.

m—1n—1
1

MAEZ%ZZII(@}J’)—L(M)\ (3.4)

3.6.3 Peak signal to noise ratio (PSNR)

Peak signal to noise ratio indicates how the maximum signal power compares with the
maximum noise power for two images. It is a measure to tell how much an image is pixel
wise altered from its original. It is therefore a good measure to determine the quality of
the reconstructed image compared to the noise free image [34]. The higher value of psnr
translates into a better image quality when comparing two images.

ok
Vi S S 16, 5) — L)

In the equation above the m and n are the size of the image matrix, I and J are the two
images to be inspected and k is the number of bits used to represent the image.

MAX?
MSE

(3.5)

3.6.4 Real time constraints

Modern DSLR cameras have the ability to expose multiple frames in a sequence within a
short time frame, and those cameras are said to have high frames per second (fps) rate.
The task of correcting defective pixel’s from those types of camera introduces a time
constraint criteria in order to keep up with the new frames shot. Exposing 30 frames
per second means that each frame takes 33 milliseconds to complete. The correction
algorithm should therefore utilize a fraction of the time of the frame itself in order to be
efficient. Utilizing a correction algorithm will inevitably lead to a slower fps rate but that
may be a tradeoff worth doing if the images come out with a noticeable lower noise level.

3.7 TextlO vhdl package

The textIO is a vhdl package that enables reading from a file and writing to a file when
running a test bench in simulation in software. Values from the simulation can be stored
in a file in a pre-determined location and the simulation can get its values from a file and
then use them in a test bench. This is a useful tool in order to specify multiple input
values without the hassle of having to write every value in a vhdl file.The package reads
one line with the "readline" command. The line is then stored in a variable that has to
be split up if there are multiple values in a line.The "writeline" command writes a value
from a variable to a line. That line is written to the file with the "write" command. The
directory of the pre and post fix of the file are specified using the "FILE" command along
with the operating mode (read / write).

25

Chapter 4

Architecture

This chapter will introduce the modules that makes up the system for correcting defective
pixels in a vhdl peripheral and also the modules used in conjunction with the cpu. The
top level module is microblaze with the vhdl files that does the processing as a peripheral
to that cpu. The cpu will read a value from the register inside the vhdl peripheral each
time an interrupt fires and store the value on the cf card.

4.1 VHDL Architecture

Figure shows the hierarchy of the vhdl files that does the processing with the ctrl
module as the top level module but it should be noted that the user logic.vhd is on
a higher hierarchical level than the ctrl module and the my custom ip register.vhd
as the top level vhdl file for the entire peripheral. The my custom ip register.vhd is
the interface from the bus to the user logic.vhd where the signal mapping of the ctrl,
image core, median and size modules takes place.

ctrl package

size

image core

J

Figure 4.1: Vhdl file hierarchy

26

4.1.1 Size Package Module

The size package contains variables that are used by the various modules of the system.
The reason for using a package is to avoid having to declare the same variables in all the
modules, in addition to making it easier to change a value as it only needs to be changed
one place. The values are accessible for the modules that implement the package. These
values are shown in figure [4.2] where the "size x" and the "size_y" are the size of the
image to be corrected with the "th" being the threshold value used in the classification
of a defective value. The "bits" variable is the number of bits per pixel. Eight bits per
pixel is equivalent to 256 levels. "Bit_depth" is merely two to the power of bits. (2% =
256). The "data" is an array that contains the values of the image and those values are
converted from the image to an array of the values of the image in such a way that vhdl
will recognize the array of values and be able to read those values.

bits
bit _depth

4+

size x
B I

Size package size_y
_

th
|dafa_array

—_ N

Figure 4.2: Size package

4.1.2 Median module

clk

s done
rst median

enable |
data in Median
— module

Figure 4.3: Median Module

The median module is the module that calculates the median of any given array, with
its input and output signals are given in figure The enable signal will cause the
state machine to make a transition from "idle" state to the "read values" state and the

27

signal also denotes that a new input value is present at the input. That value is stored in
an array called "data" at the position indicated by the "packet counter" variable. The
next state is the "idle" state where the state machine will wait for more values. When
all the values have been stored in the "data" array, indicated by the "packet counter" —
8, there will be a state transition to the "start" state. This state is the starting state for
the double for-loop that will go through all the values in the array and swap two values if
the value at "index" is larger than the value at ("index" +1).The "count" variable is that
is incremented by one each time a value at "index" is smaller than the value at "index
+1 and so does not need to swap place. When the for loop can go through the entire
array without swapping any values, that is an indication that the array is in ascending
order.This happens when the "count" variable is equal to 8. At that point the next
state is "three" where the done flag is set high and the median value set to the value of
position 4 in the nine value array. Figure [4.4] shows a graphical representation of the
state machine built for this median module along with the signals that will cause a state
change.The actual vhdl code for the median module can be found in section

ena 0’
Nt

et counter /=

dex — 8 packet counter = 9

P

Figure 4.4: Median module state machine

count—=_8
index />

4.1.3 Image core Module

ek | core out
] ,
rst do
_— | — N
mod _en
—_—
core_in Image core
——— module
di
P

Figure 4.5: Image core Module

28

The image core is the module where all the processing on the image is done. Its input and
output signals are shown in figure [£.5] The state machine for the image core is starting
in the "idle" state where it will assign the data out (do) flag to low while waiting for the
mod _en signal to be high. Then the next state is "read values" where the values are
inputted serially and stored in an array called bayer array. The values are stored as if
they where from an image sensor in order to duplicate the reading pattern [23]. These
are the values from an image so the size of the bayer array is the same as the size of
the pixels within the image. The values are stored in such a manner that it corresponds
to the way data are read from a bayer image sensor.The transition to the next state
happens when all the values are in their correct place in the array, and the next state is
"padding127". This is a state where a new array is created, with the sizes in the x and
y direction being four pixels larger than the bayer array. All the positions are assigned
with the value 127. The next state is the data mapping state where the original values
in the bayer array are mapped into the new array in such a way that the values in
the bayer array are surrounded by a two-pixel border of the value 127. The reason for
adding this border is to be able to use a single algorithm to go through the entire image
including edges and corners as corners and edges are lacking some neighboring pixels of
the same color. The next step is to find the defective values in the image one-by-one,
and that is done in the "find defects" state. The way a pixel is classified as defective
is that its value is higher than the threshold value plus the highest of its neighbors or
lower than the threshold value minus the lowest of its neighboring values. A defective
pixel will be assigned a ’1’ on that position in the pixel map, which is an array with
the same size as the img array but where all the positions have the value 0 or 1.The
reasoning for doing detection and correction in two different steps is to avoid using the
value of a pixel at a defective position as a basic for a new value. The correction takes
place in the "correct" state by going through the pixel map and selecting the positions
that have a ’1” entry. Then an array is composed with the values of the neighboring pixels
of the same color. If one of those values are at a position that is classified as defective,
the value 127 is assigned in the array instead of the defective value.The array of the
neighboring values are sent to the median module serially by assigning the enable signal
to high and assigning values of the array to the data_in port of the median module. The
above mentioned procedure is done on all the locations that are classified as defective.
The last step in the "correct" state is to wait for the median module to produce its result
and assign the new value to the correct location in the array. Since the two pixel border
is there just for aiding the algorithm with searching for defective values in corners and
edges, the border values are removed in the "de mapping" state. The corrected values
are mapped into the bayer array where they will be assigned to the output of the module
in the "read out" state. The values are assigned to the core out port along with the
data out (do) signal set high when a new value is assigned. Upon completion of assigning
all the values to the output the state machine is done with the image in question and set
into the "idle" state.The graphical representation of the state machine can be found in
figure [.6]and the vhdl code is in section

29

d en =0
d en =
. — X _cor = size x -1
X _cor — size x-1 - -

ﬁ \@ e M
a = size_ X 42

Figure 4.6: Image core module state machine

4.1.4 Ctrl Module

ok [datia_out
rst

Ctrl module

Figure 4.7: Ctrl Module

The crtl module is the top level module in the processing part of the peripheral with its
ports being shown in figure It only needs the clock signal to start it’s instruction
and its responsible for assigning the correct flags in order to read and write values to and
from the image core. It consists of a process that assigns values to the image core and a
process that reads the values from the image core and outputs them to the output of the
ctrl module. The process that reads values from the array within the size package contains
a small state machine. The "idle" state of the state machine assigns the mod en flag
high and then makes the transition into the "start" state which is nothing more than a
delay state to get the timing right. The variable sent count keeps track of the number
of values sent to the image core, and this value is checked in the state "one" so it can be
ascertained when all the values are sent. The mod en flag is de asserted in the "one" state
and then it makes a transition to the state "two" where the various values are assigned
to the core in port of the image core.The state machine described here can be found in

30

figure [4.8 The second process of the ctrl module reads the values from the image_core
and assigns them to its output.This is triggered when the data out (do) signal from the
image core is assigned to "1’. The vhdl code for the ctrl module can be found in section

LTI

sent count — size x * size y
sent count /= size x * size y

Figure 4.8: Ctrl module state machine

4.2 Note

Even though the vhdl files, shown in figure showed correct behavior when simulated it
seems impossible to run synthesis on the files as the ISE synthesis tool runs out of memory
before completing the synthesis. The decision was therefore made, in accordance with
the supervisor, to proceed without running synthesis on the vhdl files. This will make
it impossible to test the system on the fpga so the simulation of the vhdl files will serve
as an indications of the system’s ability to detect and correct defective pixel values. The
custom ip module is still implemented in the system but with limited functionality. It will
contain a process for generating interrupts and test the ability to write to a peripheral
register and read from a peripheral register.

The peripheral will show how the ctrl.vhd module can be mapped in the user logic.vhd
file with its mapping of signals. A successful test will provide evidence that the embedded
system can handle reading a value from a register and store it on a cf card.

4.3 Microblaze

The microblaze system contains both hardware and software that enables communication
between the cpu and its peripherals. The next section deals with the hardware part of
the microblaze system while the preceding section deals with the software part of the
system.

31

4.3.1 Hardware Architecture

Vhdl Peripheral

IFIC

user_lagic.vhd

Figure 4.9: Vhdl Peripheral hierarchy

The xps wizard created the template for the peripheral to be connected to the cpu by
the plb bus. It also created the interface necessary for the peripheral to communicate
with the plb bus signals. The ipif communicates with the plb bus using the entire set
of plb bus signals. The ipic is the interface between the ipif and the user modules and
custom functionality can be added here or custom vhdl module can be mapped from this
module. The vhdl file user logic.vhd created by the wizard needs to be altered in order
to get the correct functionality where a value is read from a register and stored in a file
on the cf card. The user_logic file has been altered by adding a process that will generate
an enable signal and also the component mapping of the ctrl module. It should also be
mentioned that the user logic file has six software accessible registers, represented by the
signals slv_reg0O-slv_regh. The file also contains both a process for reading the values
of a register and a process for writing values to a register. The process that generates
the interrupt also has a reset signal that will reset the interrupt on the peripheral. The
reset signal reads its value from bit 0 in the slv_reg0 register so writing a 0 to that
position in slv_ reg0 resets the interrupt. The file also contains a component mapping for
the ctrl module where the clock and reset signals are mapped from the Bus2IP Clk and
Bus2IP _Reset that is a part of the plb bus signals. The output signal of the ctrl module
is mapped to a signal called output so the value of the output can be read by reading
slv_regl.

Connections

The Microblaze system is made up of the components described in section [2[that will
now be connected to the plb bus so their functions can be utilized by some software
on the cpu. The base system builder wizard and the create peripheral wizard described
in section [2] made a system with a block diagram that is given in figure [£.10] The
custom peripheral was given the address range from 0xCCC00000 to OxCCOFFFF when
the tool generated the addresses. Since there is an interrupt controller in the system it

32

is important that it is connected correctly from the vhdl peripheral all the way to the
processor. The peripheral’s interrupt signal is connected to the interrupt controllers Intr
port, and its Irq port is connected to the cpu’s interrupt port. The block diagram of the
hardware connections in Microblaze is seen in figure where it is apparent that the
interrupt controller, my custom ip register and the cpu share a common yellow mark
on the top right corner that indicates the handler, source and target, respectively, of the
interrupt mechanism.

TR
FORTFORTY

O WS
D Bl i et

PROCESSOR

microb 2 29
KK roblaze

mb_plb

R

SLAVES OF mb_plh

prg ™ i
Lo P LRSS R e sy A GRS COmasetFas

Hig O

Figure 4.10: Microblaze Block Diagram

The microprocessor hardware specification.mhs file for the system defines the hardware
components used along with the bus architecture, peripherals, processor ,system connec-

33

tivity and address space [20]. The file is located in the main program directory and can
be found in section

BEGIN xps_intc

FARAMETER INSTANCE = :{pi_'i ntc_0

PARAMETER HW_VER = 2.00.a

PARAMETER C_BASEADDR = 0xE1E00000

PARAMETER C_HIGHADDR = OxBlBOFfff

EUS_INTERFACE SPLE = mb_plb

PORT Irg = xps_intc_0_Irqg

PORT INntr = my_custom_ip_register_0_IPZINTC_Irpt
EMD

Figure 4.11: Microprocessor hardware specification example

Figure [4.11] shows the hardware settings for the interrupt controller with its name,
hardware version, high address, base address, bus interface and ports with the signals
connected to the ports. The user constraint file .ucf for the system specifies how the
signals inside the fpga are connected to external pins on the fpga. It can be specified
which clock on the chip that is used in a design with the ucf file. The file is stored in the
data folder in the program directory and can be found in section

Net tTpga_0_clk_1_sys_clk_pin LOC = ADE | IOSTANDARD=LVCMOS33;
Net fpga_0_rst_1_sys_rst_pin TIG;
Net fpga_0_rst_1_sys_rst_pin LOC = T23 | IOSTANDARD=LVCMOS33 |

Figure 4.12: User constraint file example

Figure show how the vhdl signals fpga 0 clk 1 sys clk pin is connected to the
external pin of the fpga called ADS.

4.3.2 Software Architecture

The hardware description and connections of the peripheral are now complete so the
designer can utilize the functions of the peripheral in order to achieve the desired result.
First, let’s look at the header files that are of interest for this project, starting with the
xparameters header file (section which is the file with the address ranges of all the
components connected to the cpu. The sysace stdio.h provides functions to read, write,
open and close the compact flash card in addition to specifying the directory of the file to
be interacted with. The my custom ip register.h contains functions for reading data
from the register in the peripheral and functions to write data to the register. The header
files mb _interface.h and xintc.h contains all the functionality to setup interrupts, handle
interrupts and acknowledge interrupts on the interrupt controller and on microblaze.
The functionality of the ¢ source file as based around interrupts so the file consists of an
interrupt service routine and the setup of the interrupts in addition to writing data to
the cf card and reading data from registers within the peripheral.

34

Setting up the interrupts requires that an interrupt handler is registered and the en-
abling of interrupts in all modules that process, send or receive interrupts. Regis-
tering an interrupt handler is done with the "XIntc RegisterHandler" function found
in the xintc_i.h file which is accessible through the xintc.h file. This is the connec-
tion between the interrupt signal from the peripheral and the interrupt service routine
for that peripheral. Interrupts needs to be enabled in the custom ip, interrupt con-
troller and microblaze so that it can function correctly. It is set up in the interrupt
controller by using "XIntc _mMasterEnable" function and the "XIntc mEnablelntr"
function found in the xintc.h file. The custom ip enables interrupt by using the "
MY CUSTOM IP_REGISTER Enablelnterrupt" command in the my custom ip register.h
file. The last step is to enable interrupts on the processor, and that is done with the "mi-

croblaze enable interrupts();" command found in the mb _interface.h file.

Every time there is an interrupt, the cpu will execute the same piece of code over and
over again. That code includes functions to setup a file directory, open the file, read the
data from a register and write that value to a file on the compact flash card, close the
file and acknowledge the interrupt on the peripheral and in the interrupt controller. The
specification of a directory is completed by using the "sysace mkdir" command from
the sysace stdio.h file. The same file contains the functions sysace fopen,sysace fclose,
sysace fwrite to open, close and write to the card, respectively. A data value is read from
a software accessible register by using the "MY CUSTOM IP REGISTER_mReadReg"
command. This is a general function to read from a register so it is important to get the
register offset value correct as not to read from another register. The offset for all the
five registers within the peripheral are defined in the my custom ip register.h header
file. The base address of the peripheral is defined in the "xparameters.h" file. The c source
files used to test the different aspects of the peripheral in this project can be found in
sections [5.1][5.2][5.3

The microprocessor software specification file .mss specifies the driver name, driver ver-
sion and the hardware instance to be used on. The .mss file for the system can be found
in section [2.11

BEGIN DRIVER

PARAMETER DRIVER_NAME = intc
PARAMETER DRIVER_VER = 1.11.a
PARAMETER HW_INSTANCE = xps_intc_0
END

Figure 4.13: Microprocessor software specification

Figure [4.13|shows the driver setup for the interrupt controller.Notice how the hardware
instance name is the same name as the instance name specified in the mhs file.

4.4 Matlab scripts

Matlab is a great tool for working with images in software as it has the ability to read an
array of values from an image and it can write an array of values to an image file. These

35

abilities will be utilized for this project in order to obtain the image data and to make an
image from the output values. The next subsections will go into how this is done. This is
a good way of evaluating the results of the simulation as the processing vhdl files cannot
be synthesized.

4.4.1 Reading Image

The vhdl modules would normally, in a camera environment, be fed data from an image
sensor. This will be duplicated with the aid of Matlab by writing a script, called im-
age in.m that reads an image from a file, adds noise and then stores the resulting array
as a format that vhdl can recognize as an array of values.The script can be found in sec-
tion [4.1] This script reads all the values in an image and stores them in a two-dimensional
array. The desired noise is then injected into the array of values and then it is written
in a format (valuel, value2) and stored in a text file. The content of the file can then be
pasted into the package vhdl file and read by the vhdl modules.

4.4.2 Write Image

A Matlab script is also required to read the values in the file written by the textIO
package and then convert it to an image. This is done in the image out.m file that can
be found in section [4.2]The script reads the values in the file produced by the textIO
package and then makes a two dimensional array that is written to a PGM image file
and stored. Upon completion the images needs to be inverted in a photo editing software
before receiving the results in the simulation chapter.

4.4.3 Measuring Statistical Values

The values used to make the graphs in chapter [5|were gathered using a Matlab script. It
reads the original image along with the restored images and stores them in two different
two dimensional arrays. A double for-loop searches through the two arrays in order

to calculate the mean absolute error, mean square error and the peak signal to noise
ratio.The script can be found in section

36

Chapter 5

Simulation

All the modules used in this system have been tested to ensure correct behavior on every
level of the hierarchy both in terms of vhdl files and software modules. The next sections
will show how the various modules have been tested and the results. All the testing has
been done at the clock frequency of 100MHz in Active HDL.

5.1 VHDL module testing

The vhdl files that makes up the vhdl peripheral have been tested using a test benches
created in activeHDL, in order to ensure that they will exhibit correct behavior. The
following sub sections will show results from simulation of the various modules and then
bring it all together with a simulation of all the processing files in the peripheral.

5.1.1 Median Testing

The median module was tested by inputting an array of values and then make sure that
the output median value was indeed the median of the input values. Figure [5.1| shows
an input sequence where all the values are inputed serially and then stored in an array,
called data, within the module.

37

wok o L INANNANNANNALALNAA AL A AN
gt 1] T

o zize

ar data_in 127 0 ¥ig B Yiz? Kt ¥iog Yiz?

(N Y N0 S e s Y Y Oy oy 0 o
L idle frezet fidle i idle W idle W idle W dle W dle W le W de W de WO
o done o

o median a 0

a0 dats 0 o o x
W= index 4 1 T
W= count 8 1 o

The input array for the median module is {115,113,127,127,127,127,141,105,127}. The
same array in ascending order is {105,113,115,127,127,127,127,127,141}, and that corre-
sponds to the data array in the median module. Thus, the module produced the correct
median value for that array. Figure [5.2] shows the end of the execution of the median
module, for these values, where the done signal is assigned high and the median value is

Figure 5.1: Input Sequence

assigned to the median port.

o ok o b LTI L L LT

o opst o

o zize

o odata in 113

o enable a

s idle

r done] |_|

r median 0 i
) nr data (0. JRrRrire)

W= index 0 G i Ve i e E i

W= count 1] 32 b hd s B b)3

Figure 5.2: Output Sequence

5.1.2 Image core Testing

The image core is on a higher hierarchical level than the median module. Its job is to
search through a two dimensional array of image values in order to determine the positions
of the defective pixels. It will input the correct neighboring pixels to the median module
and wait for it to produce the median value. The best way to test this module is to input
the values from an image with noise and then make an image of the output values in

order to visually confirm that the image does in fact have lower levels of noise.

38

mad UUULUUIUULUU TS UL UUUULUU TS UL UL
e b s values

Ve cor . 1]

Ve y_cor
> d 1 (LT LT L P L L L L LT
women
= dog i l

mocore_out [0 0

Figure 5.3: Image core input sequence

Figure [5.3| shows the input signals that are utilized in the image core module when
values from an image are inputed to the image core module. They are then stored in an
array called bayer array. Figure [5.4] shows that the state machine in the image core
module returns to idle state when it’s done with the processing of the input image.

ok 1

orce

W= cor

Wy cor

W= read_state

) (n]) - H

® do

o zore_out

Figure 5.4: Image core end of execution

The output values from the image core module are stored in a file using the textIO
package. Those values are then run through the Matlab script in order to get an image
from the values. The values that are sent into the image core module are from the
Lena [15] image that has been corrupted by noise with the probability of 0.01(1%). The
input image is shown in figure [5.5]

39

Figure 5.5: Input Image with noise

Figure [5.6] shows the resulting output image from the image core and stored in the
textIO based file. It is clear that the resulting image is a great improvement over the
noise corrupted input image.

Figure 5.6: Output image

40

5.1.3 Ctrl Testing

Testing the ctrl module is done by using the same input values as when testing the
image core, but this time the only output signals will be the new image values as that
is the only signal declared as output signal in the ctrl module.

ar gl 0

n dats ot 1107 fa(uau HE b b Y158 Yi54 ¥ige Yis7 b

Figure 5.7: Ctrl output sequence

Figure [5.7shows how the output values of the image are assigned to the output of the ctrl
module. This will occur until all the values have been assigned to the data out signal.
All the values are then stored in a file using the textIO package so the content of the file
can be made into an image with the image out.m matlab script. The image is identical
to figure which is only to be expected as there is no added processing happening in
the ctrl module. Testing these modules individually proved that they exhibit the correct
behavior as intended.

5.2 Test of the whole VHDL system

The whole system will now be simulated using the values obtained from the textIO vhdl
package in order to visually and statistically verify that the resulting image is an image
with less noise quantities than the image corrupted with noise. The Lena image(256x256)
[15], Field image(500x500) [10] and the canyon image(200x300) [7] will be used as
input images with different noise levels and threshold levels. These images have different
contrast levels and different numbers of pixels so it will be a test of the algorithm’s ability
to correct pixels from different contrast images and also the scalability of the algorithm.
In addition to putting the image under visual scrutiny, a few key values will be measured
that are relevant when comparing images. The next sections will show the resulting graphs
from the resulting images with different noise levels and different threshold values.

5.2.1 Different noise levels

The input images were simulated with different noise levels in the interval 0.001—0.1. The
mean square error, mean absolute error, peak signal to noise ratio and the simulation time
were recorded for every noise level and all the simulation took place with the threshold
value at 10. The resulting images can be found in sections [.6.2] [.6.4] |.6.6| along with
the input image corrupted by noise. It is therefore possible to view and compare the
input image and the output image in order to ascertain the algorithm’s ability to remove
defective pixels.

41

Peak Signal to Noise Ratio

The typical values for peak signal to noise ratio for an image with lossy compression is
between 30 — 50. That range can be a guideline to evaluate at which noise levels the
resulting image will be of sufficient quality. The starting value for the peak signal to
noise ratio for the Lena image is 38 at the noise level of 0.001 while the end value at the
noise level of 0.1 is 22. That means that the algorithm produces acceptable quality with
peak signal to noise ratios for noise levels from 0.001 — 0.02, as can be seen from figure
It shows the trajectory as a function of noise density, and it is evident that there
is an almost inverse exponential relationship between the two except from a few values
near the beginning of the graph. The field image does have a lower starting value for
the peak signal to noise ratio than the Lena image while it follows a similar trajectory.
It will have sufficient quality in the noise range 0.001 — —0.03. The canyon image has
its highest peak signal to noise ratio of 23 and will thus not qualify for comparison as it
never has a value over 30.

40

Lena

Peak signal to noise ratio(dB)

ot S S 1

15

1 1 1 1 1 1 1 1 1
001 002 003 004 005 005 007 008 009 04
Moise Density

Figure 5.8: Peak signal to noise ratio for different noise levels

Mean Square Error

Figure [5.9 shows how the mean square error relates to different noise densities. There
is an exponential growth, for the Lena image, in the mean square error with the starting
value of 0.043 at 0.001 noise level and ends at 1.33 at 0.1 noise level. The mean square
error relates to the peak signal to noise ratio (see section so that a lower mean
square error translates into a higher peak signal to noise ratio. As such, optimizing either
one of the values will result in a higher peak signal to noise ratio. The canyon image
has a similar trajectory with a higher peak than the trajectory for the Lena image. The
trajectory for the field image had a much lower peak signal to noise ratio and thus a
higher mean square error trajectory.

42

Lena
Field
Canyon

Mean Square Errar

T I 1 1 1 1 1 1 1
ool o002 o003 o004 005 006 007 005 009 041
MNoise Density

Figure 5.9: Mean square error for different noise levels

Mean Absolute Error

The mean absolute error for the three input images with different noise levels is shown in
figure [5.10] The trajectory of the Lena image follows an exponential path with a starting
point of 0.68 at 0.001 noise level and ends at 3.03 at 0.1 noise level. Comparing figure
(.9 and figure [5.10]shows a similar trajectory only with the mean absolute error having
a higher values than the graph of the mean square error. The canyon image has a similar
trajectory while the trajectory of the field image has a higher value at all noise levels.

Lena
Field
Canyaon

Mean Absolute Error

1 1 1 1 1 1 1 1 1
ool 002 003 004 005 006 007 008 009 04
Moise Density

Figure 5.10: Mean absolute error for different noise levels

43

Simulation times

As with any system required to operate in real time it does have certain demands as far as
time is concerned. These simulation times will, therefore, prove or disprove the systems
ability to meet those demands that would be imposed in a real time environment.

35

Lena
Field s
Ak Canyaon i

5t .
0r .

18+ A

Simulation time (ms)

10+ q

1 1 1 1 1 1 1 1 1
0ol 002 003 004 005 006 007 008 009 01
MNoise Density

Figure 5.11: Simulation times for different noise levels

Figure shows the time it took in order to complete a simulation at the different
noise levels for the three input images. All the values of time on the y axis are measured
in milliseconds. At low noise densities the simulation for the Lena image time is less than
4 milliseconds.That is equivalent is 250 times per second, which would be fast enough
for most camera applications. The highest simulation time comes, not surprisingly, at the
highest noise level, results in up to 7.5 milliseconds. That is the same as 133 times
per second. In terms of simulation time, this algorithm has sufficient capabilities to be
placed in a real time camera environment. The canyon image has a simulation time of
5 milliseconds for small quantities of noise and 9 milliseconds for high noise quantities.
Those numbers represents 200 and 111 times per second. The field image does have the
highest simulation times of the three images with 21 milliseconds for low noise quantities
and 34 which is equivalent to 47 times per second.The images uses 34 milliseconds for
high noise quantities which is 29 times per second. Another important aspect of the
algorithm is its scalability in terms of simulation time per pixel. An image with a higher
number of pixels will require a longer simulation time. It is therefore a trade off for the
designer as to how large pixel wise images are required and the time limitation imposed
by the environment.

44

Sirulation time per pixel in nanoseconds

mnt .

1 1 1 1 1 1 1 1 1
oo 002 003 o004 005 006 007 005 009 04
MNoise Density

Figure 5.12: Simulation times per pixel

Figure shows the simulation times per pixel for the different noise levels. The Lena
image causes the lowest simulation time despite containing more pixels than the canyon
image. The field image has many more pixels than the field image but still has about the
same simulation time. Given the values from the three images, it’s possible to interpolate
a trajectory in order to estimate the simulation time any image with a given number of
pixels.

5.2.2 Different threshold values

This section contains data that was gathered with a constant noise level of 0.02 while the
threshold value has been changed within the range 2 — 50 for all the images. The goal of
these simulations is to determine whether altering the threshold for an image will result
in higher peak signal to noise ratio. The resulting images from the simulation are placed

in sections [6.3] [.6.5] [6.7]

Peak Signal to Noise Ratio

Figure reveals that a threshold of 20 — 30 is the best level in order to obtain the
highest peak signal to noise ratio for the Lena image. Choosing to use the optimized
threshold level of 25 as opposed to the default level 10 does only increase the peak signal
to noise ratio from 34.5dB to 36dB. Some situations may have this as a trade off worth
doing, while others may opt for a shortened simulation time and a smaller peak signal
to noise ratio.The canyon image does have a spike in the peak signal to noise ratio in
the 10 — 15 range but it is otherwise pretty much has a constant decline at all threshold
levels. The value of the spike is so small that in most cases it will not amount to anything
but increased simulation time.

The field image does have the highest peak signal to noise ratio for the lowest possible

45

threshold levels. It is clear that this image will require a low threshold in order to produce
the highest peak signal to noise ratio. The higher threshold levels also means that areas
with low contrasts and defective pixel may not be corrected because th threshold level
is too high. As such, it is best to go for the lowest threshold that produces the desired
peak signal to noise ratio.

40

Lena
Field
Canyon

[¥5)
o

(o5}
o

[55)
B

[}
)

Peak signal to noise ratio(dB)
(=] [on] (5]
o [m} _

8]
iy

[l
ra

1 1
5 10 15 20 25 30 35 40 45 50
Threshald level

]
[

Figure 5.13: Peak signal to noise ratio for different threshold levels

Mean Square Error

Figure shows that mean square error for the three images. The Lena image does
have an optimum level that corresponds to the optimum level of the peak signal to noise
ratio in the range 20 — 30. The canyon image does have its lowest mean square error
in the range 10 — 15 and the field image has its lowest mean square error at low noise
quantities.

46

25

Lena
Field
Canyon

Mean Square Errar

0ar

D 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 a0

Threshold level

Figure 5.14: Mean square error for different threshold levels

Mean Absolute Error

Figure [5.14]shows the relationship between the mean square error and the noise density.
The Lena image still produces the least amount of mean absolute error with a low point
in the range 15 — 35. The canyon image has its low point in the range 15 — 30 and the
field image has its lowest values towards the lowest threshold value.

Lena
35t Field
Canyon
3 L
2 25
LE s
i)
5
B 4
-
=
E
z 1.4]
E ¥—/
L L/_
05 b
D 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 a0

Threshold level

Figure 5.15: Mean absolute error for different threshold levels

47

Simulation times

The simulation times are shown in figure The filed image has the highest simulation
time with 40 milliseconds for low threshold levels and 20 milliseconds for high threshold
levels. Both the canyon image and the Lena image have a simulation time of 10 mil-
liseconds for low noise levels and 5 milliseconds for high threshold levels. The simulation
time should, however, be considered of less importance when tailoring the algorithm to
produce best results for a given image as long as it meets the constraints imposed on it
by its real time environment.

.
[

Lena
Field
Canyon _

(5]
(g}

Simulation time (us)
— — J [yu] (5]
{um] (8] [o [}
T T

m
T

D 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 a0

Threshald

Figure 5.16: Simulation times for different threshold levels

5.3 Software algorithms

This section will show the results of the simulations of the median algorithm that were
designed in software in my last semester’s project with the three images as input. The
matlab script was used for the simulations with the threshold of 10 and with the
noise level of 0.02.The resulting images from the simulation can be found in section [.6.8

Lena | Field | Canyon
psnr(dB) | 35.1 | 31.6 | 32.75
time(s) | 3.03 | 6.5 1.28

Table 5.1: Software algorithm results

48

5.4 Microblaze simulation

The vhdl peripheral in the microblaze system is a module to test how values can be read
to and from the peripheral and how to use interrupts and interacting with the cf card.
Values are read from the compact flash card into the peripheral in the first test of the
system ace controller. The resulting output value from the peripheral is stored in a file
on the compact flash card by using interrupt. The testing will start with the interaction
with the cf card, followed by the interrupt mechanism and reading and writing values to
and from registers.

5.4.1 System Ace write to card

The simulation of the compact flash card will verify that files can be read from a file on
the cf card and stored back into another file on the card in the same directory. The input
file directory is in the root directory of the cf card with a file named "input.txt". The file
will contain five integer values, and the file opened in notepad is shown in figure .
The read data is stored in a character buffer called "readBuffer" before it is written to a
file called "output.txt". Figure [5.17] shows that the output file contains the same data
as the input file and thus verifying that the cf card can be written to and read from. The
¢ code used to test the read and write capabilities of the cf card can be found in section

(511

INPUT.TXT - Note... (s=nla=la{ S " OUTPUT.TKT - Not.. | a=laje S

File Edit Format View Help File Edit Format View Help
127 130 160 240 101

127 130 160 240 101

(a) Input file (b) Output file

Figure 5.17: Compact flash read and write simulation

5.4.2 Interrupt testing

Setting up an interrupt based system requires that the interrupts are enabled on all the
components that deal with an interrupt. It is also necessary to register a handler that is
invoked whenever the interrupt "fires". One interrupt handler is required for every device
that communicates with the cpu by the means of interrupts. The source file requires one
function to enable the setup the interrupt on microblaze, the interrupt controller and
the my custom ip register and a function to be executed when an interrupt fires. The
init() function in the source code(section contains all the required functions for

49

the interrupt mechanism to work correctly. It will register an interrupt handler, enable
interrupts on the interrupt controller my custom_ip register and microblaze. The init()
function only needs to be run once when the cpu is turned on. The function intr _handler()
is the interrupt service routine that is executed on every interrupt. A simple test of the
interrupts is to write some data to the cf card in the isr. Inspecting the output file will
determine if the correct data has been written to the card. For this test the data written
to a file on the cf card contains the characters "test", which means that it will be written
to the card if the isr is executed. Interaction with the cf card proves to work correctly
unless there is an absence of data, in a file with the correct name, written to the card.
Figure .18 shows the data written to the card by the isr, and it is the same data as the
isr was instructed to write. The file is therefore evidence that the interrupt was set up
correctly and that it was assigned by the custom ip module.

| QUTFILETXT - Natep...bﬁﬁ|
I| File Edit Format View Help

Test -

4 1L F

Figure 5.18: File written by the isr

5.4.3 Read value from peripheral register

This section was the last to be tested as it requires both the interrupt mechanism and
the read and write methods for the cf card to function correctly in addition to adding
functions to write data to a peripheral register and to read data from the register. A
hexadecimal value of A2 (162 in decimal value) is written to register 3 in the peripheral
unit before the init() function sets up the interrupts. The isr is altered so that it reads
the value of register 3 from the peripheral unit and stores it in a variable before writing
it to the predetermined file on the cf card. Having the file contain the same value as the
one written to the card will be evidence that interaction with the peripheral is working.

" OUTFILE TXT - Notep..(s=aisl=ls| e S

File Edit Format View Help
g LU »

Figure 5.19: Test Read from a Register

20

Figure [.19 shows the file produced by the isr and stored on the card. The output file
contains values that are coded in ascii so that it will not show A2 or 1627 but rather
the ascii symbol with the decimal value of 162. The resulting file produced by the isr, in
figure [5.19] shows the ascii symbol of the values it read from the register. Using the ascii
table at [3] reveals that the symbol written is at the 162nd position and thus confirming
that reading from the register and writing to the register works correctly.

o1

Chapter 6

Synthesis

6.1 VHDL Synthesis

The vhdl files that do the processing part of this project cannot be synthesized in the
vhdl hierarchy they are built as the Xilinx ise synthetization tool eventually runs out
of memory without giving any error message. In accordance with the supervisor at the
university, the vhdl files will not be synthesized as part of this project. The vhdl files
created by the wizard for the custom ip will, however, be synthesized as part of running
synthesis on microblaze. The area report will thus only be for the vhdl files created by
the wizard.

6.2 Microblaze Syntethization

The embedded system created in platform studio are synthesized by the "generate netlist"
command and the synthesis report is stored in the report folder in the project directory.
The synthesis report for the design can be found in section The maximum delay
through the system is 6.18 ns which gives a clock frequency of the system of 161.34 MHz.
The clock frequency and variable related to the clock are found in figure

Timing Summary:

Speed Grade: -1

Minimum period: 6.198ns (Maximum Freguency: 161.342MHZ)
Minimum input arrival time before clock: 2.750ns|
Maximum GutEut required time after clock: 6.964ns
Maximum combpinational path delay: 1.397ns

Figure 6.1: Synthesis delay

Figure shows a part from the synthesis report regarding the resources utilized for
the system. The design utilizes 9% of the available registers and 10% of the available
LUTs. These numbers shows that the design only utilizes a small amount of resources on

52

the chip as can be expected for a such a small system. Many systems of this kind will
have area limitations so that utilizing a small percentage of the resources is always great
news. The I/O utilization is at 7% and with 66% of ram/fifo utilized. The reason for
having such a large percentage of ram/fifo utilization is a combination of the requirement
of storing values within the peripheral that can be read by the cpu, in addition to only
having 64 kb of memory to begin with.

Device utilization summary:

selected Device : SvIx50ffere-1

5lice Logic utilization:

NMumber of S5lice Registers: 2746 out of 28800 9%
Number of slice LUTs: 2933 out of 2BB00O 108%
Mumber used as Logic: 2779 out of 28800 9%
Number used as Memory: 154 out of 7680 2%
! Number used as RAM: 64
Number used as SRL: ag

5lice Logic Distribution:
Number of LUT Flip Flop pairs used: 4530

Number with an unused Flip Flop: 1784 out of 4530 39%
Number with an unused LUT: 1597 out of 4530 35%
Number of fully used LUT-FF pairs: 1149 out of 4530 25%
Number of unique control sets: 301

I0 Utilization:

Number of IOs: 32

Number of bonded IOBs: 32 out of 440 7%
I0OB Flip Flops/Latches: 58

specific Feature utilization:

Number of Block RAM/FIFO: 32 out of 48 66%
Number using Block RaM only: 32

Number of BUFG/BUFGCTRLS: 6 out of 32 18%

Number of DSP4BEs: 5 out of 48 108%

Number of PLL_ADVSs: 1 out of 6 16%

Figure 6.2: Synthesis resource utilization

93

Chapter 7

Tools

This project has required a handful of tools in order to deal with the different aspects
of the design from converting an image in software to adding peripheral, to the cpu
to synthesizing the complete design. The computer used in this project has a 32 bit
Windows Vista Home Basic operating system with Service pack 2, dual processor where
each processor has a frequency of 2.26GHz, and the computer has 3.0 GB ram. Matlab
was the tool used to convert an image from a file to an array in the vhdl package file
and to convert values from the simulation to an image. The hardware programming and
simulation were done in Active HDL software, and when the simulation showed correct
behavior it was synthesized in ISE project navigator, which is part of the Xilinx web pack.
The creation of the embedded design took place in platform studio which also did the
synthezation of the embedded design. The design could then be implemented to the fpga
with the Impact tool which is a part of the webpack from Xilinx. The various software
and version number type can be seen from table [7.1]

Development board Xilinx ML501

Matlab

Active HDL
ISE

ISE

Platform studio
Platform studio
Impact

Impact

Matlab Version 7.4.0.287(R2007a) Copyright 1984-2007 The MathWorks, Inc

Active HDS version 7.2.1644 Student Edition, Copyright(c) ALDEC, Inc All rights reserved
Project Navigator version 11.5, Copyright (¢) 1995-2009

Project Navigator version 12.1, Copyright (¢) 1995-2009

Xilinx Platform Studio 11.5, Copyright (c) 1995-2009 Xilinx, Inc

Xilinx Platform Studio 12.1, Copyright (c) 1995-2009 Xilinx, Inc

ISE impact4 version 11.5, copyright (¢) 1995-2009, Inc

ISE impact4 version 12.1, copyright (¢) 1995-2009, Inc

Table 7.1: Software utilized

24

Chapter 8

Discussion

The discussion of the results from the hardware and software part of this project are
given separately in order to put the results into context.

8.1 Vhdl

The vhdl file median.vhd is the only file that will synthesize in the project navigator
tool because it is at the lowest level in the vhdl hierarchy. The other vhdl files cannot
be synthesized so the simulation of the files in conjunction with the textlO package and
Matlab scripts will serve as the bases for determining this design’s ability to operate in
a real time system. It is clearly not desirable not to be able to synthesize the vhdl files
as it introduces uncertainties as to whether the system will have the same behavior in
hardware as it exhibited in the simulation in software. It also introduces no evidence
as to the physical size of the vhdl files that will inevitably require a higher utilization
of resources as the majority of all the processing is done there. The only area values
that are given is the area of the two vhdl wrapper files created by the import custom ip
wizard in order to set up communication between the custom ip and the plb bus. It is
also assumed that adding the other vhdl files will introduce a longer delay path in the
design, which will lead to a lower clock frequency.

8.2 Microblaze

The embedded system was created and synthesized in the platform studio. The design
shows that it has a high clock frequency and a low resource utilization except for ram
usage. This can be explained by the fact that the system really does very little processing.
The other peripherals show higher clock frequencies than the processor so the cpu is the
weakest link when calculating the maximum clock frequency. The code written to interact
with the cf card, set up interrupts and reading from a register and writing to a register
are shown to work as desired. Testing the system by writing values to a file on a cf card
would prove to be a better way of testing the system if the output data were written in

95

decimal number as opposed to ascii code as the data could be written into matlab with
a simple script.

8.3 Simulation

The graphs based on the data from the simulations data shows that a high peak signal to
noise ratio leads to a low mean square error and mean absolute error. This is also obvious
from looking at equations (B.4), (3.3), that optimizing for one of the variables
will result in an optimization for all the variables.Simulating the images with different
thresholds introduced the concept of being able to optimize an image in order to achieve
higher peak signal to noise ratio and lower mean square error and mean absolute error
on an image-by-image basis. As an illustration, the peak signal to noise ratio for 0.02
noise level with the threshold at 10 is 34.59dB. The simulation of the different thresholds
revealed that the optimum threshold for the highest peak signal to noise ratio was 20— 30.
The peak signal to noise ratio for the threshold of 26 with 0.02 nose level is 36.04dB.
Those numbers show that there is something to gain by optimizing the threshold, but
that is at the expense of higher simulation times as the optimum threshold level has
to be determined based on simulations on different threshold levels. The simulation for
correcting the defective pixels can only be run after the threshold level has been found.
Having the threshold value at 10 seems to be a good general purpose value as the peak
signal to noise ratio is close to the peak signal to noise ratio at the optimized threshold
level.

8.4 Real time operation

Modern cameras like the Canon 7d [6] have the ability to expose multiple images at a fast
rate of frames per second. The Canon 7d can shoot 8 frames per second at continuous
shooting. That introduces a limit as to how long a correction algorithm can use and still
keep up with new data arriving from the sensor. Shooting 8 frames per second translates
into 125 milliseconds per image. The simulation times for the 256x256 pixel test image
vary between 3.5 and 7.5 millisecond depending on the noise level. Assuming an average
simulation time of (3.5+7.5)/2 = 5.5 milliseconds the time frame for a single exposure
increased from 125 millisecond to 130.5 millisecond. This results in the frames per second
being reduced from 8 to 7.6. The time it takes to correct an image is a small fraction of
the time it takes to expose an image, which is what is desirable as the main function of
the system is to expose images. The field image used an average simulation time of 28
milliseconds and thus increased the time for each exposure to a total of 153 milliseconds,
which is equivalent to 6.5 exposures per second with the 8 fps initially. The canyon image
has an average simulation time of 6.5 milliseconds which makes the total exposure time
131.5 milliseconds. That enables the camera to have a fps rate of 7.6 which is the same
as for the Lena image.

o6

8.5 Comparison with 2009 fall project

The simulation of the algorithm designed in my 2009 fall project was re-simulated with
the Lena, field and canyon images in order to compare it with statistical values and
simulation times of the same algorithm designed in hardware. The comparison values
were both gathered during simulation using a threshold of 10 and a noise level of 0.02.
The simulation times and the peak signal to noise ratios for the software algorithms are
shown in figure [.6.8] The Lena image took 3.03 seconds to simulate in software and 4.46
milliseconds in hardware so a tremendous amount of execution time is saved when doing
the processing in hardware.The corresponding peak signal to noise ratio from the software
algorithm is 35.1 dB while it is 34.5 dB for the version where all the processing is done
in hardware. The field image took 6.5 seconds to simulate in hardware while it took
24.76 milliseconds. The peak signal to noise ratio was 31.6 dB for the software version
and 21.66 milliseconds for the hardware version.The canyon image took 1.28 seconds to
simulate in software with a corresponding peak signal to noise ratio of 32.74 dB while the
hardware version was simulated in 5.64 milliseconds with a peak signal to noise ratio of
31.33 dB. The above data shows that doing the processing in hardware for this algorithm
executes much faster with a somewhat lower peak signal to noise ratio.

8.6 Interpreting images

The values resulting from the vhdl simulation have been interpreted by a Matlab script in
order to get the values, stored by the textlO package, into a two dimensional array that
in turn can be written to an image. There is, however, a phenomena where an image may
be inverted when the Matlab script image out.m (|.4.2)) is done executing. These images
therefore needs to be entered into a photo editing software where the images have to be
inverted. T have found no clue to the nature of this phenomena in the PGM standards so
it is still an unsolved mystery.

8.7 Border pixels

Defective pixels near an edge or a corner will use the border-pixels in order to find the new
value for a pixel. As the border-pixels all have the value 127 it may replace a pixel with
a value that does not represent its neighbors. A better way of making a border might be
to create the border as a mirror of the values in the first two rows and columns in such a
way that the first border row will have the same values as the second row of the image,
looking at the upper edge. The new pixel values will then have a value corresponding to
the neighboring pixels.

57

8.8 Tools

Xilinx released the 12.1 version of the ise webpack and the platform studio as the project
are ongoing so that is the reason that both the 11.5 version and the 12.1 version was
listed in the tools chapter.

8.9 Appendix

The package vhdl file contains an array with all the values from the input images and it
was not possible to get Latex to add that file to the appendix as the pdflatex compiler kept
shutting down when attempting to compile. The file is therefore added to the appendix
without the array with the image values. The values in the array are specified in the
signal the data_array.

o8

Chapter 9

Concluding remarks

This project aimed at making an algorithm to detect and correct defective pixels in
images, and with all the processing done in hardware. The simulations show that the
algorithm is exhibiting correct behavior with the output values represented as an image
showing less quantity of noise than the input. The project has met the goals that were
associated with the assignment even though simulation had to take place in several steps
as opposed to if the vhdl file could have been synthesized.

29

Chapter 10

Further Work

The project has been simulated in software but has not been synthesized due to ISE
software is unable to synthesize the design as it runs out of memory. Further work for
the project can then be divided into getting the algorithm to a working stage in an fpga
and improving the design once it is working. The embedded system has a peripheral that
outputs values to a register in the same manner as the vhdl peripheral was intended to
do. The user logic.vhd file and the ctrl.vhd can be altered to accommodate the ability
to read values from a file into the ctrl module. The ctrl.vhd module needs to add in input
signal for data. Tt would then read the input signal, and relay them to the image core
module. The value can be read from a slv_reg in the peripheral. The output values
from the ctrl module can be mapped to the output signal of the user logic. The value
can now be read by software by reading slv_regl. The border pixels should be given
values that represents the values of the images as opposed to having a fixed value for all
images. This can be done by having the border rows mirror the value of the edges of the
image. The values on the border would then ensure that a better replacement value for
the pixel was used. That would make the system more functional as it can operate on
any set of values given that the size of the image is the same. The task of improving the
system once operational is about making tradeoffs between the variables in the design
like execution time and resource utilization. It is therefore imperative that the system is
operational and that the limitation of the target device is known before attempting to
optimize the system.

60

Bibliography

1]

2]
3]
4]
[5]
(6]

7]

8]
9]
[10]

[11]
[12]
[13]

[14]

[15]
[16]
[17]

18]
[19]

Adding a custom ip , http://www.youtube.com/watch?v=DkjVXeqRKjE&feature=
related.

Ascii table , http://en.wikipedia.org/wiki/ASCII.

Ascii table , http://www.web-source.net/symbols.htm.

Bayer filter, http://en.wikipedia.org/wiki/Bayer_filter.

Bayer image filter , http://en.wikipedia.org/wiki/Bayer_filter.

Canon 7d , http://shop.usa.canon.com/webapp/wcs/stores/servlet/product_
10051_10051_230851_-1.

Canyon image , http://bluemesaphotography.com/hye/wp-content/uploads/
2009/07/IMGP8596Crop6by9BW-200x300. jpg.

Decibel measuring , http://www.phys.unsw.edu.au/jw/dB.html.
Decibel scale , http://en.wikipedia.org/wiki/Decibel

Field image , http://www.thephotoargus.com/wp-content/uploads/2009/11/
bwd7 . jpg

Gaussian noise , http://en.wikipedia.org/wiki/Gaussian_noise.
Hexadecimal nubers , http://en.wikipedia.org/wiki/Hexadecimal.

Histogram , http://www.cambridgeincolour.com/tutorials/histogramsl.
htm..

Interrupt in microblaze tutorial, http://www.fpgadeveloper.com/2008/10/
timer-with-interrupts.html.

Lena image, http://www.cs.cmu.edu/"chuck/nsipg/nsi.html.
Logarithmic nubers , http://en.wikipedia.org/wiki/Logarithmic_scale.

Mean absolute error http://www.fmi.uni-sofia.bg/vesta/Virtual_Labs/freq/
freq6.html.

Pgm file format, http://netpbm.sourceforge.net/doc/pgm.html.

Salt and pepper noise , http://en.wikipedia.org/wiki/Salt_and_pepper_noise.

61

http://www.youtube.com/watch?v=DkjVXeqRKjE&feature=related
http://www.youtube.com/watch?v=DkjVXeqRKjE&feature=related
http://en.wikipedia.org/wiki/ASCII
http://www.web-source.net/symbols.htm
http://en.wikipedia.org/wiki/Bayer_filter
http://en.wikipedia.org/wiki/Bayer_filter
http://shop.usa.canon.com/webapp/wcs/stores/servlet/product_10051_10051_230851_-1
http://shop.usa.canon.com/webapp/wcs/stores/servlet/product_10051_10051_230851_-1
http://bluemesaphotography.com/hye/wp-content/uploads/2009/07/IMGP8596Crop6by9BW-200x300.jpg
http://bluemesaphotography.com/hye/wp-content/uploads/2009/07/IMGP8596Crop6by9BW-200x300.jpg
http://www.phys.unsw.edu.au/jw/dB.html
http://en.wikipedia.org/wiki/Decibel
http://www.thephotoargus.com/wp-content/uploads/2009/11/bw47.jpg
http://www.thephotoargus.com/wp-content/uploads/2009/11/bw47.jpg
http://en.wikipedia.org/wiki/Gaussian_noise
http://en.wikipedia.org/wiki/Hexadecimal
http://www.cambridgeincolour.com/tutorials/histograms1.htm.
http://www.cambridgeincolour.com/tutorials/histograms1.htm.
http://www.fpgadeveloper.com/2008/10/timer-with-interrupts.html
http://www.fpgadeveloper.com/2008/10/timer-with-interrupts.html
http://www.cs.cmu.edu/~chuck/nsipg/nsi.html
http://en.wikipedia.org/wiki/Logarithmic_scale
http://www.fmi.uni-sofia.bg/vesta/Virtual_Labs/freq/freq6.html
http://www.fmi.uni-sofia.bg/vesta/Virtual_Labs/freq/freq6.html
http://netpbm.sourceforge.net/doc/pgm.html
http://en.wikipedia.org/wiki/Salt_and_pepper_noise

[20] Xilinx file extensions, http://www.xilinx.com/itp/xilinx8/help/platform_
studio/html/ps_r_gst_project_files.htm.

[21] Mood A., F Graybill, and D Boes. Introduction to the Theory of Statistics. McGraw-
Hill, 3rd edition, 1974.

[22] Henrik Backe-Hansen. Defective pixel correction. Technical report, 2009.
[23] Nokia Coroporation. Smia 1.0 part 1:functional spesification. Technical report, 2004.
[24] Granite Island group. Rs232 interface. Technical report.

[25] Rod Jesman, Fernando Martinez Vanilla, and Jafar Saniie. Microblaze tutorial cre-
ating a simple embedded system and adding custom peripheral using xilinx edk
software tools. Technical report.

[26] Xilinx. MI501 evalutaion platform. Technical report.

[27] Xilinx. Using and creating interrupt-based systems. Technical report, 2005.
[28] Xilinx. Libxil fatfile system(fatfs). Technical report, 2006.

[29] Xilinx. System ace compactflash solution. Technical report, 2008.

[30] Xilinx. Defective pixel correction v1.0. Technical report, 2009.

[31] Xilinx. Edk concepts, tools, and techniques. Technical report, 2009.

[32] Xilinx. Embedded system tools reference guide. Technical report, 2009.

[33] Xilinx. Logicore ip xps interrupt controller (v2.01a). Technical report, 2010.

[34] Wang Yuanji, Li Jianhua, Lu Yi, Fu Yao, and Jiang Qinzhong. Image quality eval-
uation based on image weighted separating block peak signal to noise ratio, 2003.

62

http://www.xilinx.com/itp/xilinx8/help/platform_studio/html/ps_r_gst_project_files.htm
http://www.xilinx.com/itp/xilinx8/help/platform_studio/html/ps_r_gst_project_files.htm

.1 VHDL

.1.1 VHDL Source Code

Median Module

— Title : median . vhd

—— Design : defect pixel corr

—— Author : Henrik Backe—Hansen

—— Company : NINU / Aptina Norway

—— Description : this module will take the w_size, enable and data in

as the primary input signals.

——the enable signal will denote that a new value is ready at the
data _in port.

—the w_size will determine the size of the internal data array as
the size is w_sizexw size—l

—The values are first inputed into the data array and then sorted

——the median of the array is then put on the median output port and
the done flag is set to ’'17;

library IEEE;
use IEEE.std logic 1164.all;
use work.gsize. all;

entity median is

port (

clk : in std _logic; —clock

rst : in std logic; —reset signal from top level
module

data_in : in integer range 0 to bit depth; —integers from the
sliding window

enable : in std logic; —signal to enble the
median module

done : out std logic; —signal denotes the median
values is found

median : out integer range 0 to bit depth —the corresponding

median value
) ;

end entity;

architecture med arch of median is

——Signal declaration

63

type state type is(idle ,read values,start ,one,two,three , reset);
signal cs,ns:state type;

type data format is array (8 downto 0) of integer range 0 to
bit depth; —input data array size setup

signal data:data format:= (others => 0);

begin

—This process resets the module in case of the rst signal being
evaluated to ’'17.
—1It changes the value of the ns(Next State) signal to the cs(Current
State) signal if rst is 0’

sync_proc:process (clk ,rst)
begin
if(rst = ’17)then
cs <= reset;
elsif (rising edge(clk))then
cs <= mns;
end if;
end process;

—temp is a variable used when two values changes places

—index is used to loop through the array

—median _counter points to the position of the median in a sorted
array

——count counts the number of instruction that can be done on one pass
of the array

—packet counter is the number of values in the data array and if all
the packets are present

—it will start the median calculation by setting ns to start

—state idle will trigger on the enable signal and then set the ns
signal to read values

——the read values state will store the input in the location ,in the
data array ,denoted by packet counter

——state one will loop through all the values and swap values if the
higher value is at the higher position

——when all the values have been sorted count = w_dataxw _size—1, and
the ns signal is three

—In the state three the median is set on the output, the done flag
is set to ’1’ and ns is idle,

—and the median module is ready to read other values

—output signals are given default values in the begining of the

process

64

comb_proc :process(cs,enable data_in)

variable temp : natural range 0 to 255 := 0;
variable index : natural range 0 to 255 = 1;
variable count : natural range 0 to 255 := 0;
variable packet counter : natural range 0 to 255 := 0;
begin

done <= 07,

median <= 0;

ns <= idle;
case ¢S 18

when reset —
median <= 0;

packet counter := 0;
packet counter:=0;
count = 0;

index := 0;

ns <= idle;

when idle =>
if (enable = ’17)then
ns <= read_values;
else
ns <= cs;
end if;

when read values =>
data(packet counter) <= data_in;
packet counter := packet counter -+1;
if (packet counter = data’length)then
ns <= start;
else
ns <= idle;
end if;

when start —>

packet counter := 0;
count := 0;

ns <= one;

index := 1;

?

when one —>

if (data(9 — index) > data(8 — index))then

65

temp := data(9 — index);
data (9 — index)<= data(8
data(8 — index)<= temp;

t

count:= 0;

else
count := count +1;
temp := 0;

end if;

if (index = 8)then
ns <— start;

index := 0;
else
ns <= two;
end if;
index := index -+1;

if (count = 8)then
ns <= three;
else
ns <— two;

end if;

when two —>
ns <= one;

when three =>
ns <= idle;
done <= ’17;
median <= data(4);
when others =>
ns <= idle;
end case;

end process;

end architecture;

— index);

66

Image core Module

— Title : image core

— Design : defect pixel corr

—— Author : Henrik Backe—Hansen

— Company : NINU / Aptina Norway

— File : image core.vhd

— Generated : Mon Feb 1 14:09:23 2010

— From : interface description file

— By : Itf2Vhdl ver. 1.20

— Description : This image core is the top level unit of the

defective pixel correction algorithm.It uses

—the median module in order to calculate the median of the values at
its input.

—The image core is enabled by the mod en signal and will then read
in one pixel—value at the time untill all pixels have been read

—The data array will consist of the read pixel—values and a two
pixel border with the value 127. This is to make it

—easier to read and correct edge and corner pixels.

library IEEE;
use IEEE.STD LOGIC 1164. all;
use work.gsize. all;

entity image core 1is

port (

clk : in std_logic;

mod _en :in std logic;

rst : in std_ logic;

core_in : in integer range 0 to bit_depth;
di : in std_logic; —data in

do : out std logic; —data out
core_out : out integer range 0 to bit_ depth

) ;

end image core;
architecture image core arch of image core is
———Signals to the median mod

——These signals are the signals that communicates between the median
module and the image core

67

signal enable :std logic;

signal data in :integer range 0 to bit depth;
signal done :std _logic;

signal median :integer range 0 to bit_ depth;

type definitions ———
type pix_map is array (0 to size x+3,0 to size y+3)of bit;
—pixel map
type img array is array(0 to size x+3,0 to size y+3)of integer range

0 to bit depth; —image array with 2 pixel border
type bye array is array(0 to size x—1,0 to size y—1)of integer range
0 to bit depth; —bayer image array data
type median array is array(8 downto 0) of integer range 0 to
bit depth; —array with the array to the median mod
FSM
type state type is(idle ,read values,correct ,read out,paddingl27,
data mapping ,de mapping, find defects ,reset); —FSM
states
signal cs,ns:state type; —FSM signals

—Instansiation of the median module component and mapping signals to
the median module signals

begin
median_mod: entity work.median(med arch)
port map(
clk ,
rst ,
data in,
enable |
done ,
median

) ;

—process that is sensitive to the input values, clk, reset, and done
signal. The process will read the pixels into the
—bayer array, then add a border and map it to the data array.

sync_proc :process(clk ,rst,core_in,done)
variable bayer array :bye array;
variable pixel map (pix_map;

68

variable data :img array;

variable med array :median_array;
variable state rinteger:= 1;
variable a sinteger :=0;
variable b tinteger :=0;
variable high :integer range 0 to bit depth:= 0;
variable low :integer range 0 to bit_ depth:=bit_ depth;
variable timer :integer range 0 to 2 = 0;
variable x_ cor rinteger range 0 to size x—1:= 0;
variable y_cor :integer range 0 to size y—1:= 0;
variable read state rinteger range 0 to 3:= 1;
variable testing rinteger := th;
begin

if (rst = ’17)then

cs <= reset;
elsif (rising edge(clk))then
cs <= ns;

case ¢S 18

—The reset state will set default values to all the wvariables used

when reset —>

timer = 0;

a = 0;

b = 03

med array := (others = 0);

data := (others => (others => 0));
bayer array := (others => (others => 0));
pixel map :=(others =>(others = ’0’));
ns <= idle;

—The idle state will wait for the mod en signal to start its work

when idle =>
do<= ’07;

if (mod en — ’1’)then
core_out <= 0;
ns <= read_values;

else
ns <= cs;

end if;

69

——The values are read into the bayer array in this state.The values
come from the input integer in.

when read values =>
—read the image values and store them in the data array
case read state is

when 0 =
if (x _cor = size x—1)then
x_cor := 0;
read state := 2;
else
ns <= read_values;
X_cor := x_cor+1;
read state := 1;
end if;
when 1=>
if (di = ’17)then
bayer array(x_cor,y cor):= core_in;
if(y cor = size _y—1)then
read state := 0;
y_cor = 0;
else
y_cor = y_ cor +1;
end if;
else
read state := 1;
end if;
when 2—>
ns <= paddingl27;
read state:= 1;

when others =>
read state := 1;
end case;

——The paddingl27 state will fill the entire data array with the
values of 127. This is in order to make a two pixel border
——when the bayer array is mapped to the data array.The data array

hence have the size 4 greater than the bayer array

when paddingl27 => —filling the entire 2D array with
the value 127
for a in size x+3 downto 0 loop
for b in size y+3 downto 0 loop

70

data(a,b):= 127;
end loop;

end loop;

ns <= data_ mapping;

—Data_ mapping is where the bayer array is mapped onto the data array

——The result is when an array with the bayer array with a two pixel
border
—of the values 127(halv way between 0 and 255)

when data_ mapping =>
for a in size x—1 downto 0 loop —mapping the data from
the bayer array to the data array
for b in size y—1 downto 0 loop
data(a+2,b+2):= bayer array(a,b);
end loop;
end loop;
ns <=find defects;

—This state will go through the enitire image,exept the borders, and
place a 1’ entry into the pixe map at that possision

—1if the wvalue is classefied to be defective. For every pixel its
eight pixels of the same color are evaluated in order to

—determine if the pixel is defective. If the middle pixel have less
value than the smallest values — threshold or higher than

——the highest value + threshold, the pixel is classefied as defective
, denoted by a ’1’ entry in the pixel map at that position.

—The highest and lowest of the eight pixels have to be recalculated
for every pixel.That is done with two for loops.

—When done going through the image tha next state will be correct.

when find defects =>
for j in size_y+1 downto 2 loop
for i in size x+1 downto 2 loop
med _array(0) := data(i-2,j-2);
med array(l) := data(i,j—2);
med array(2) := data(i+2,j—-2);
med_array(3) := data(i—2,j+2);
med array(4) := data(i,j+2);
med _array(5) := data(i+2,j+2);
(6) := data(i
(7) := data(i
(8) := data(i

med _array -2 J)
med array +2.3);
med _array i,j);

71

high:= 0;
low:= 255;

for count in 0 to 7 loop —finding highest and
lowest value
if (med array(count)>high)then
high:= med array(count);
end if;
end loop;

for count in 0 to 7 loop —finding highest and
highest wvalue
if (med array(count)<low)then

low:= med array(count);
end if;
end loop;
if (data(i,j) > high+testing)then —defective pixel
with higher value
pixel map(i,j):= '17; —adding the location to the
pixel map
elsif (data(i,j) < low—testing)then —defective pixel
with lower wvalue
pixel map(i,j):= ’'17; —adding the location to the
pixel map
end if;
end loop;
end loop;

ns <— correct;

—The correct state consist of a state machine that is triggered by
the state variable.

—The 0 and 1 state acts as a double for loop in order to go through
the pixel map to search for ’1’ entries.

—If there is a ’1’ entry, denoteing a defective pixel, the median
array if filled.

——The value of the neigboring pixel is added to the median array as
long as that position does not contain a ’'l’ entry in

——the pixel map.

—State 2—10 will set the enable flag, set the data in value
according to the values in the median array, then reset the enable
flag

—When all the values in the median array have been sent the state
will be 11, and will be there until the median value

—1s not zero.

—At that point the median value will be placed in its proper
position in the data array, and then set the state wvariable to 1;

72

—Being in state 12 indicates that the entire image have been
corrected according to the ’1’ entries in the pixel map

when correct —>
case state 1s

when 0=> —outer for loop
if (a=size x+2)then
state:= 12;
a:=0;
else
a = a+l;
state:= 1;
b:=0;
end if;
when 1 => —inner for loop
if (b=size y-+3)then
state:= 0;
else
if (pixel map(a,b)= ’1’)then —a+2,b+2

if (pixel _map(a+2,b+2)="1")then
med _array(0):= 127;

else
med_array(0) := data(a+2,b+2);

end if;

if (pixel _map(a+2,b)="1")then —a+2.b
med _array(1l):= 127;

else
med array (1) := data(a+2,b);

end if;

if (pixel _map(a+2,b—2)="1")then —a+2,b-2
med array(2):= 127;

else
med array(2) := data(a+2,b—2);

end if;

if (pixel map(a,b+2)="1")then —a ,b+42
med array(3):= 127;

else
med _array(3) := data(a,b+2);

end if;
med array(4) := data(a,b); —a.,b

if (pixel map(a,b—2)="1")then —a,b—2

73

med _array(5):= 127;
else

med _array(5) := data(a,b—2);
end if;

if (pixel map(a—2,b+2)="1")then

med _array(6):= 127;
else

med array(6) := data(a—2,b+2);
end if;

if (pixel map(a—2,b)="1")then

med array(7):= 127;
else

med array(7) := data(a—2,b);
end if;

if (pixel map(a—2,b—2)="1")then
med array(8):— 127;
else
med _array(8) :=
end if;

data(a—2,b—2);

state = 2;
else
state:= 1;
end if;
b:= b+1;
end if;

when 2=>
enable <= ’17;
data_in <= med_array(0);
if (timer 2)then

ns <— correct;

state 3;

enable <= 707;

timer 0;
else

ns<— correct;

state = 2;

timer timer +1;
end if;

—start sending data

—1st value

when 3 —>

enable <= ’'17;

74

—a—2,b+2

—a-2b

——a-2,b-2

data_in <= med_array(l); —2nd value
if (timer = 2)then
ns <— correct;

state = 4;
enable <= 707;
timer := 0;
else
ns<— correct;
state = 3;
timer := timer +1;
end if;
when 4 =>
enable <= ’17;
data in <= med array(2); —3rd value

if (timer = 2)then
ns <= correct;

state = 5;
enable <= ’07;
timer := 0;
else
ns<= correct ;
state = 4;
timer := timer +1;
end if;
when 5 =>
enable <= ’17;
data_in <= med_array(3); —4th value

if (timer — 2)then
ns <= correct;

state = 6;
enable <= ’07;
timer := 0;
else
ns<— correct;
state = 5;
timer := timer +1;
end if;
when 6 =>
enable <= ’17;
data_in <= med_array(4); —>5th value

if (timer = 2)then
ns <— correct;

state = 7;

enable <= "07;

timer := 0;
else

75

ns<— correct;

state = 6;
timer := timer +1;
end if;
when 7 =>
enable <= ’17;
data_in <= med array(5); —6th value

if (timer = 2)then
ns <— correct;

state = 8§;
enable <= 707;
timer := 0;
else
ns<= correct ;
state = 7;
timer := timer +1;
end if;
when 8=>
enable <= ’17;
data in <= med array(6) ; —T7th value

if (timer = 2)then
ns <= correct;

state = 9;
enable <= ’07;
timer := 0;
else
ns<—= correct;
state = §;
timer := timer +1;
end if;
when 9 =>
enable <= ’17;
data_in <= med_array(7); —38th value

if (timer = 2)then
ns <— correct;

state := 10;
enable <= 707;
timer :—= 0;
else
ns<— correct;
state = 9;
timer := timer +1;
end if;
when 10 =>

enable <= ’'17;

76

data_in <= med_array(8); —9th value
if (timer = 2)then
ns <— correct;

state = 11;
enable <= 707;
timer := 0;
else
ns<— correct;
state := 10;
timer := timer +1;
end if;
when 11=>
if (done = ’17)then —waiting for the median module to
produce its output
data(a,b—1):= median; —replacing the defective value with
the median of its neigboring pixels
state = 1;
else
state = 11;
end if;

ns <= correct;

when 12 =>
ns <= de mapping;

when others =>
state:= 1;
end case;

—The two pixel border is removed in the de mapping state.
—The new bayer array has size of the original array, but with
corrected values.

when de mapping =>
for a in size x—1 downto 0 loop
for b in size y—1 downto 0 loop
bayer array(a,b):=data(a+2,b+2);
end loop;
end loop;
ns <= read out;

—Read out will read out the data array, one value at the time

when read out =>

7

case read state is

when 0=>
if (x_cor = size _x—1)then
read state:= 3;
x_cor := 0;
else
X _cor :=x_cor+1;
read state:= 1;
end if;
when 1=>
do <= ’"17; —X_cor,y_cor
core_out<= bayer array(x cor,y cor);
read state:= 2;
when 2=>
do <= 707;
if (y_cor = size _y—1)then
y_cor := 0;
read state:= 0;
else
read state := 1;
y_cor := y_cor+l1;
end if;
when 3=>
ns<= idle;

when others =>
read state := 1;
end case;

—Required state as to avioid c¢s signal with a wrong value(not a
defined state)

when others —
ns <= idle;

end case;
end if;
end process;
end image core arch;

78

Ctrl Module

— Title :octrl

— Design : defect pixel corr

—— Author : Henrik Backe—Hansen

— Company : NINU / Aptina Norway

— File : ctrl.vhd

— Generated : Fri Mar 5 13:51:13 2010

— From : interface description file

— By : Itf2Vhdl ver. 1.20

—— Description : Top level unit in the defective pixel correction

algorithm . Reads
—data from RAM and inputs them to image core, and reads the values
from image core

— back to RAM

library IEEE;

use IEEE.STD LOGIC 1164. all;
use work.size. all;

use IEEE.numeric_std. all;

entity ctrl is

port (

clk : in std logic;
data out : out integer;
rst : in std logic
)

end ctrl;

architecture ctrl arch of ctrl is

—The following signals are used to map to the image core
——signals to these signals in order to communicate with
—sub—modules

signal mod en :std _logic;

signal core_in :integer range 0 to bit_depth;
signal di :std _logic;

signal do :std _logic;

signal core out :integer range 0 to bit depth;

79

—State machine signals for the two state machines.
—The ¢s_r and ns r denotes the read operation from ram while
——cs_w and ns w denotes a write operation from ram

type state type is (idle ,one, two,start ,waitl,6 wait2);
signal cs _r,cs w,ns r,ns w:state type;

begin

—Initialize the image core module and mapping signals to the module

image core_ module:entity work.image core(image core arch)

port map(
clk
mod_en,
rst ,

core in,
di,

do,
core_out

) ;

—Synchrounes process that makes the state transistions on the rising
edge of the clock

sync_proc: process (clk)

begin
if (rising edge(clk))then
if(rst = ’17)then

cs_r<= idle;
cs_w <= idle;
else
cs r <= ns_r;
8 _W<= ns_w;
end if;
end if;
end process;

——This process will read all the vlaues of an image from ram into the
image core

——the ram module inputs and outputs only std logic vector so the
values (ram_out)

—needs to be converted from std logic vector to integer before
inputting

80

—them to the image core. The flags data in(di) also needs to be set
in order for the iamge core

—to know that its receiving data. The mod en signal also needs to be
set in order to enable the

—image core.

—The state machine is necesarry in order to get the right timing on
the input signals to the image core

—Read adr is a variable that needs to be converted to
std logic vector in order to get correct

——communication between ram and image core

write _to core from ram:process(cs_r, data_ array)
variable sent count:natural:= 0;

begin
case cs_r1 is

when idle —>

sent count := 0;
ns r <= start;
mod en <= '17;

when start —>
ns_r <= one;

when one =—>

if (sent _count = ((size_x=xsize_y)))then
ns r <= start;
else
ns_r <= two;
end if;
mod_en <= 07,
di <= 07,

when two —>

di <= 17;

core_in <= data_array(sent_ count);
sent count := sent_ count —+1;

ns T <= one;

when others =
ns_r <= idle;

end case;
end process;

81

——This process will write the output values from the image core back
to the ram module.

——There they will be stored in the ram block array.

—Data out from the image core is denoted by the data out(do) flag so
cheching the flag

—will ensure that all data out values are stored to ram.

—The ram module only accepts std logic vector so the write adr and
value will be converted from

—integer to eight bit std logic vector.

——The process will start writing values at position 0 and end with
position size x * size y -1

read from core to ram:process(do,cs w,mod en,core out)
variable recv_count:natural range 0 to ((size_ xxsize_ y)):= 0;
begin
case cs_w 1is
when idle =>
if(do = '1’ and mod en = ’07)then
data out <= core_ out;
recv_count := recv_count +1;

end if;

when others —
ns w <= idle;

end case;
end process;

end ctrl arch;

82

Size Package

— Title : size package

— Design : defect pixel corr

—— Author : Henrik Backe—Hansen

— Company : NINU / Aptina Norway

— File : size package.vhd

— Generated : Fri Feb 26 15:09:28 2010
— From : interface description file
— By : Itf2Vhdl ver. 1.20

— Description

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.numeric_std. all;

use IEEE.std logic unsigned. all;

package size is

constant size y :natural = 256; —size of the image in
the y direction

constant size x :natural = 256; —size of the image in
the x direction

constant th :natural := 50; —threshold for detecting
defective pixels

constant bits :natural :=8; —number of bits in the
pixelvalues (8=255)

constant bit depth :natural := 2*xbits; ——255 for 8 bits

type ram_type is array(0 to 65535)of integer;
signal data array:ram_type;
end size;

83

User logic

user logic.vhd — entity/architecture pair

ok o

% Copyright (c¢) 1995—-2010 Xilinx, Inc. All rights reserved.
**

kK

*%
% Xilinx , Inc.
* %
% XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
*%
x+% AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
*%
% SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
* %
xx OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
* %
xx APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
* %
xx THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF
INFRINGEMENT, * %
xx AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY
REQUIRE *%
x+% FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
* %
% WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
* %
s+ IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
*%
x+% REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
*%
s+ INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*%
x+% FOR A PARTICULAR PURPOSE.
*%
* %

*k
KoK 3k kR 3k Sk kR 3k sk ko Skosk sk ok Skosk sk ok skosk sk sk skosk ok sk sk sk sk skosk ok ok skosk ok ok

Filename : user logic.vhd
Version: 1.00.a
Description: User logic.

84

Date:
Peripheral Wizard)
VIIDL Standard:

Fri May 28 23:21:09 2010 (by Create and Import

VHDL’93

Naming Conventions:

— active low signals: "x n"

— clock signals: "elk", "clk div#", "clk #
XH

— reset signals: "rst", "rst_ n"

— generics: "C_x"

— user defined types: "« TYPE"

— state machine next state: "x ns"

— state machine current state: "k cs"

— combinatorial signals: "x com"

— pipelined or register delay signals: M A"

— counter signals: "xent "

— clock enable signals: "x ce"

— internal version of output port: AR

— device pins: "x pin"

— ports: "— Names begin with
Uppercase”

— processes: "x PROCESS"

— component instantiations: "<ENTITY >I <#|FUNC>"

— DO NOT EDIT BELOW THIS LINE

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned. all;

use IEEE .NUMERIC STD. all;

library proc_common_ v3 00 a;
use proc_common_v3 00 a.proc_common pkg. all;

— DO NOT EDIT ABOVE THIS LINE

—USER libraries added here

Entity section

Definition of Generics:

C_SLV_DWIDTH —— Slave interface data bus width

— C_NUM_RHEG —— Number of software accessible
registers
— C _NUM_INTR —— Number of interrupt event

Definition of Ports:

85

— Bus2IP Clk —
— Bus2IP _Reset —
— Bus2IP Data —
— DBus2IP_BE —
— DBus2IP_RdCE —
— Bus2IP. WrCE —
— [P2Bus Data —
— IP2Bus_RdAck —
acknowledgement
— IP2Bus_ WrAck —
acknowledgement
—_— IP2Bus FError —_—
— IP2Bus_IntrEvent —

Bus
Bus
Bus
Bus
Bus
Bus

IP to Bus

IP to Bus

IP to Bus
IP to Bus

to IP clock

to IP reset

to IP data bus

to IP byte enables

to IP read chip enable
to IP write chip enable
IP to Bus data bus

entity user logic is
generic

(

— ADD USER GENERICS BELOW THIS LINE ——

—USER generics added here

— ADD USER GENERICS ABOVE THIS LINE —

— DO NOT EDIT BELOW THIS LINE

— Bus protocol parameters, do not add to or delete

C_SLV_DWIDTH
C NUM_REG
C _NUM_INTR
— DO NOT EDIT ABOVE THIS LINE
)
port
(
— ADD USER PORTS BELOW THIS LINE
—USER ports added here
— ADD USER PORTS ABOVE THIS LINE

— DO NOT EDIT BELOW THIS LINE

integer
integer
integer

— Bus protocol ports, do not add
Bus2IP Clk :
Bus2IP Reset
Bus2IP Data
C _SLV_DWIDTH-1);
Bus2IP_BE
C SLV_DWIDTH/8-1);
Bus2IP_ RACE
C NUM REG-1);
Bus2IP_ WrCE
C NUM REG-1);
IP2Bus_Data
C _SLV_DWIDTH-1);

86

to
in
in
in
in
in
in

out

or delete

std logic;

std logic;

std _logic_vector (0
std _logic_vector (0
std _logic_vector (0
std _logic vector (0

std _logic_ vector (0

read transfer

write transfer

error response
interrupt event

to

to

to

to

to

I[P2Bus RdAck : out std_logic;

IP2Bus_ WrAck : out std_logic;
IP2Bus _Error : out std logic;
I[P2Bus_IntrEvent : out std _logic vector (0 to

C_NUM_INTR-1)
—— DO NOT EDIT ABOVE THIS LINE
)3

attribute SIGIS : string;
attribute SIGIS of Bus2IP_ Clk : signal is "CLK";
attribute SIGIS of Bus2IP Reset : signal is "RST";

end entity user logic;

— Architecture section

architecture IMP of user logic is

—USER signal declarations added here, as needed for user logic

— Signals for user logic slave model s/w accessible register

example

signal slv_reg0 . std_logic_vector (0
C SLV_DWIDTH-1);—vals read by cpu

signal slv_regl : std_logic_vector (0
C SLV_DWIDTH—-1);—reset write

signal slv_reg2 : std _logic_vector (0
C SLV_DWIDTH-1);—reset read

signal slv_reg3 : std_logic_vector (0
C SLV_DWIDTH-1);—di write

signal slv_reg4 : std_logic_vector (0
C SLV_DWIDTH-1);—di read

signal slv_regh : std_logic_vector (0
C SLV_DWIDTH-1);—value in

signal slv_reg write sel : std_logic_vector (0

signal slv_reg read sel : std_logic_vector (0

signal slv_ip2bus data : std_logic_vector (0
C SILV_DWIDTH-1) ;

signal slv_read ack : std _logic;

signal slv_write ack : std_logic;

— ©Signals for user logic interrupt example

signal intr counter : std logic;

87

to

to

to

to

to

to

to
to

signal reset wr : std _logic;

signal output : std_logic vector (31 downto 0);
signal clk :std _logic;
signal rst :std _logic;

component ctrl

port (
Bus2IP _Clk :in std_logic;
output cout std logic vector (31 downto 0);

Bus2IP Reset :in std logic
) ;

end component;
begin

reset wr <= slv_1eg0(0);

—USER logic implementation added here
read values:process (Bus2IP_Clk)is
variable i:integer:= 0;
begin

if (rising edge(Bus2IP_Clk))then

if (Bus2IP _Reset = ’17)then

intr _counter <= '0’;
else
intr counter <= ’'17;
if (reset _wr = ’1’)then
intr counter <= ’0’;
end if;
end if;
end if;

end process;

IP2Bus IntrEvent (0) <= intr_ counter;

— Example code to read/write user logic slave model s/w accessible
registers

—— Note:

— The example code presented here is to show you one way of
reading /writing

— software accessible registers implemented in the user logic
slave model.

88

correspond

to one software accessible
For example,

if you have four 32 bit
user logic ,

re
softw

you are basically operating o
registers:

Bus2IP_WrCE/Bus2IP_RdCE
"1000"
"0100"
"0010"
"0001"

Each bit of the Bus2IP_ WrCE/Bus2IP RACE signals

is configured

gister by the top level template.

are accessible registers in the

n the following memory mapped

Memory Mapped Register

C_BASEADDR + 0x0
C_BASEADDR + 0x4
C_BASEADDR + 0x8
C_BASEADDR + 0xC

slv_reg write sel <= Bus2IP_ WrCE(0 to 5);

slv_reg read sel <= Bus2IP RdCE(0 to 5);

slv_write ack <— Bus2IP. WrCE(0) or Bus2IP. WrCE(1) or
Bus2IP. WrCE(2) or Bus2IP_ WrCE(3) or Bus2IP. WrCE(4) or
Bus2IP. WrCE(5) ;

slv_read ack <= Bus2IP_RACE(0) or Bus2IP_RdCE(1) or
Bus2IP_ RACE(2) or Bus2IlP_RACE(3) or Bus2IP_ RACE(4) or

Bus2IP_ RACE(5) ;

— implement slave model software accessible register(s)
SLAVE REG WRITE PROC : process(Bus2IP Clk)
begin

18

it Bus2IP Clk’event and

it Bus2IP Reset = ’'1°

slv_regh <= (others
else

Bus2IP Clk = ’1’ then
then
= 707);
case slv_reg write sel is
when "100000" =>
for byte index in 0 to (C_SLV_DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = ’1’) then
slv_reg0O(byte indexx8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte index*8+7);
end if;
end loop;
when "010000" =>
for byte_ index in 0 to (C_SLV_DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = ’1’) then
slv_regl(byte indexx8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte index*8+7);
end if;
end loop;
when "001000" =>

89

to

for byte index in 0 to (C_SLV_DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = ’1’) then
slv_reg2(byte indexx8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte index*8+7);
end if;
end loop;
when "000100" =>
for byte index in 0 to (C _SLV DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = ’1’) then
slv_reg3(byte indexx8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte index*8+7);
end if;
end loop;
when "000010" =>
for byte index in 0 to (C _SLV _DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = "1’) then
slv_reg4(byte index*8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte indexx8+7);
end if;
end loop;
when "000001" =>
for byte index in 0 to (C _SLV DWIDTH/8)—1 loop
if (Bus2IP_BE(byte index) = "1’) then
slv_regh(byte index*8 to byte index*8+7) <=
Bus2IP Data(byte index*8 to byte indexx8+7);
end if;
end loop;
when others => null;
end case;
end if;
end if;

end process SLAVE REG WRITE PROC;

— implement slave model software accessible register(s) read mux

SLAVE REG READ PROC : process(slv_reg read sel, slv_reg0, slv_regl
, slv_reg2, output, slv_regd, slv_regh) is

begin

case slv_reg read sel is

when "100000" slv_ip2bus data <= slv_reg0;

when "010000" => slv_ip2bus_data <= output;

when "001000" => slv_ip2bus_data <= slv_reg2;

when "000100" => slv_ip2bus_data <= slv_reg3;

when "000010" => slv_ip2bus_data <= slv_reg4;

when "000001" => slv_ip2bus_data <= slv_regh;

when others => slv_ip2bus_data <= (others = '07);
end case;

@

90

end process SLAVE REG READ PROC;

— Example code to drive IP to Bus signals

IP2Bus Data <= slv_ip2bus_data;
IP2Bus_ WrAck <= slv_write ack;
IP2Bus_ RdAck <= slv_read ack;
IP2Bus_Error <= ’07;

end IMP;

91

My custom ip register

my custom ip register.vhd — entity/architecture pair

IMPORTANT :
DO NOT MODIFY THIS FILE EXCEPT IN THE DESIGNATED SECTIONS.

SEARCH FOR —USER TO DETERMINE WHERE CHANGES ARE ALLOWED.
TYPICALLY, THE ONLY ACCEPTABLE CHANGES INVOLVE ADDING NEW

PORTS AND GENERICS THAT GET PASSED THROUGH TO THE INSTANTIATION
OF THE USER_LOGIC ENTITY .

sk sk ok 3 ok ok ok K ok KK K KK K R R KK R KK K R K KoK

% Copyright (c¢) 1995—2010 Xilinx, Inc. All rights reserved.
ok

* ok

*%
x% Xilinx , Inc.
*%
x+% XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
*%
x+% AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
*%
% SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
* %
xx OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
*%
xx APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
* %
xx THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF
INFRINGEMENT, * %
xx AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY
REQUIRE *%
% FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
* %
s+ WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
* %
s+ IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
*%
x+% REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
*%
s+ INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*%
x+% FOR A PARTICULAR PURPOSE.

* 3k

92

k k

k%

K3k 3k sk R sk sk skosk skosk sk sk sk sk sk sk sk sk sk sk sk skosk skosk sk sk sk sk sk ok sk ok osk

instantiates library

— Filename: my custom ip register.vhd

—— Version: 9.00.a

— Description: Top level design,
components and user logic.

— Date:

Peripheral Wizard)

VHDL Standard: VHDL’93

Naming Conventions:
active low signals:

clock signals:
n

X
— reset signals:
— generics:
— user defined types:
— state machine next state:
— state machine current state:
— combinatorial signals:
—_— pipelined or register delay signals:
— counter signals:
— clock enable signals:
— internal version of output port:
— device pins:
— ports:
Uppercase"
— processes :
— component instantiations:
library ieee;

use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std logic unsigned. all;

library proc_common v3 00 a;
use proc_common_ v3 00 a.proc _common pkg.

use proc_common_ v3_ 00 a.ipif pkg.all;

library interrupt control v2 01 a;

use interrupt control v2 01 a.interrupt

library plbv46 slave single vl 01 a;

Sat May 29 12:48:00 2010 (by Create and Import

" n

* N

Nelk ", "elk div#", "elk #

”I"St " , " I'St_Il n
HC >(<H

"s_TYPE"
H*_nsll

”*_CS”

"% com"

H*_d#ll

”*Cnt*”

”*_Ce”

H* i”

"x pin"

"— Names begin with

"+ PROCESS"
"ENTITY I < #[FUNC>"

all;

control;

use plbv46 slave single vl 01 a.plbv46 slave single;

93

library my custom ip register v9 00 a;
use my _custom ip register v9 00 a.user logic;

Entity section

Definition of Generics:
C_BASEADDR —_—
C_HIGHADDR —
C_SPLB_AWIDTH —
C_SPLB_DWIDTH —
C _SPLB_NUM MASTERS —
C_SPLB_MID WIDTH —

width
C_SPLB_NATIVE DWIDTH —

data bus width
C_SPLB_P2P —
interconnect scheme
C_SPLB_SUPPORT BURSTS —
C_SPLB_SMALLEST MASTER —
smallest master

C_SPLB_CLK_PERIOD_ PS —

picoseconds
C_INCLUDE_DPHASE TIMER —
configuration; 0 = exclude timer,
C_FAMILY —

Definition of Ports:
SPLB_Clk —
SPLB_Rst —
PLB_ABus —
PLB_ UABus —
PLB_PAValid —
indicator
PLB_SAValid —
indicator
PLB rdPrim —
request indicator
PLB wrPrim —
request indicator
PLB masterID —
PLB abort —
PLB_ busLock —
PLB RNW —
PLB_BE —
PLB_MSize —
PLB _size —
PLB type —_—

PLBv46 slave: base address
PLBv46 slave: high address
PLBv46 slave: address bus width
PLBv46 slave: data bus width
PLBv46 slave: Number of masters
PLBv46 slave: master ID bus

PLBv46 slave: internal native

PLBv46 slave: point to point

PLBv46 slave: support bursts
PLBv46 slave: width of the

PLBv46 slave: bus clock in

PLBv46 slave: Data Phase Timer

1 —

include timer

Xilinx FPGA family

PLB
PLB
PLB
PLB
PLB

PLB

PLB

PLB

PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB

main bus clock

main bus reset
address bus

upper address bus
primary address valid

secondary address valid
secondary to primary read
secondary to primary write

current master identifier
abort request indicator
bus lock

read /not write

byte enables

master data bus size
transfer size

transfer type

PLB lockErr

PLB_ wrDBus

PLB wrBurst
indicator

PLB_ rdBurst
indicator

PLB_ wrPendReq
indicator

PLB rdPendReq
indicator

PLB_ wrPendPri
priority

PLB rdPendPri
priority

PLB reqPri

PLB_TAttribute

Sl addrAck

Sl SSize

Sl walit

S1 rearbitrate

S _wrDAck

S1_wrComp
indicator

S1_wrBTerm
transfer

Sl _rdDBus

S rdWdAddr

S1 _rdDAck

Sl rdComp
indicator

SI_rdBTerm
transfer

SI MBusy

SI. MWrErr

SI_MRdErr

S MIRQ

IP2INTC Irpt

en

tity my custom ip register is
generic

(

—USER generics added here

— ADD USER GENERICS BELOW THIS LINE

— ADD USER GENERICS ABOVE THIS LINE

— DO NOT EDIT BELOW THIS LINE
do not add to or delete

— Bus protocol parameters,

PLB
PLB
PLB

lock error indicator
write data bus
burst write transfer

PLB burst read transfer

PLB write pending bus request

PLB read pending bus request

PLB write pending request

PLB read pending request
PLB
PLB
Slave
Slave
Slave
Slave
Slave
Slave

current request priority
transfer attribute
address acknowledge
data bus size
wait indicator
re—arbitrate bus
write data acknowledge
write transfer complete
write burst

Slave terminate

data bus

word address

data acknowledge
transfer complete

read
read
read
read

Slave
Slave
Slave
Slave
Slave terminate read burst

Slave
Slave

busy indicator

write error indicator
Slave read error indicator
Slave interrupt indicator
Interrupt output to processor

95

indicator

);

C_BASEADDR

FFFFFFFE" ;
C_HIGHADDR

00000000 " ;
C_SPLB_AWIDTH
C_SPLB_DWIDTH
C_SPLB_NUM_MASTERS
C_SPLB_MID WIDTH
C_SPLB_NATIVE DWIDTH
C_SPLB_P2P
C_SPLB_SUPPORT BURSTS
C_SPLB_SMALLEST MASTER
C_SPLB_CLK_PERIOD PS
C_INCLUDE_DPHASE_TIMER
C_FAMILY

n

— DO NOT EDIT ABOVE THIS LINE

port

(

— ADD USER PORTS BELOW THIS LINE
—USER ports added here
— ADD USER PORTS ABOVE THIS LINE

— DO NOT EDIT BELOW THIS LINE
do not add

— Bus protocol ports,
SPLB_Clk

SPLB_Rst

PLB ABus

PLB UABus

PLB_PAValid
PLB_SAValid

PLB_ rdPrim

PLB wrPrim

PLB_ masterID

C_SPLB MID WIDTH-1);

PLB_abort
PLB_ busLock
PLB RNW
PLB BE
C _SPLB DWIDTH/8—1);
PLB MSize
PLB _ size
PLB type
PLB lockErr
PLB_wrDBus
C_SPLB_DWIDTH-1);
PLB_ wrBurst
PLB rdBurst

std logic vector

std logic vector

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
string

96

to
in
in
in
in
in
in
in
in
in

in
in
in
in

in
in
in
in
in

in
in

or delete
std logic;
std logic;

std _logic_vector (0
std _logic vector (0

std logic;
std logic;
std logic;
std logic;

std _logic_ vector (0

std logic;
std logic;
std logic;

std _logic_ vector (0

std _logic_vector (0
std_logic_vector (0
std _logic_vector (0

std logic;

std _logic_ vector (0

std logic;
std logic;

32;
10000;
L;
"virtexh

to 31);
to 31);

to

PLB_wrPendReq
PLB rdPendReq
PLB wrPendPri
PLB_ rdPendPri
PLB reqPri
PLB_ TAttribute
Sl addrAck

Sl SSize

Sl walit

Sl rearbitrate
S1_wrDAck

Sl wrComp
S1_wrBTerm

Sl _rdDBus

C_SPLB_ DWIDTH-1);

SI rdWdAddr
S1 rdDAck

Sl rdComp

Sl rdBTerm
S1_ MBusy

C_SPLB_NUM_MASTERS-1) ;

SI MWrErr

C_SPLB_NUM_MASTERS-1) ;

SI_MRdErr

C_SPLB_NUM_MASTERS-1) ;

SI_MIRQ

C_SPLB_NUM_MASTERS-1) ;

IP2INTC _Irpt

— DO NOT EDIT ABOVE THIS LINE

) ;

attribute SIGIS
attribute
attribute
attribute

end entity my custom ip register;

string ;

SIGIS of SPLB_CIk
SIGIS of SPLB_Rst
SIGIS of TIP2INTC TIrpt

in
in
in
in
in
in
out
out
out
out
out
out
out
out

out
out
out
out
out
out
out

out

out

std logic;

std logic;

std logic vector
std logic vector
std logic vector
std logic vector
std logic;

std logic vector (0
std logic;

std logic;

std logic;

std logic;

std logic;
std_logic_vector (0

(0
(0
(0
(0

std _logic_ vector (0
std logic;
std logic;
std logic;
std _logic_vector (0
std _logic vector (0
std _logic_vector (0
std _logic_ vector (0

std logic

signal is
signal is
signal is

— Architecture

section

HCLKH ’
IIRSTII .

architecture IMP of my custom ip register is

— Array of base/high address pairs for each address range

constant ZERO ADDR PAD
= (others = 07);

97

to

to

to

to

to

to

— = = =
OV — — —

"INTR_LEVEL_HIGH" ;

std _logic vector (0 to

31)

constant USER SLV BASEADDR : std_logic_ vector =
C _BASEADDR or X"00000000";

constant USER SLV HIGHADDR : std_logic_ vector =
C BASEADDR or X"000000FF";

constant INTR BASEADDR : std_logic_vector =
C BASEADDR or X"00000100";

constant INTR HIGHADDR : std_logic_vector =

C BASEADDR or X"000001FF";

constant IPIF_ ARD ADDR RANGE ARRAY : SLV64 ARRAY TYPE =
(
ZFERO_ADDR, PAD & USER_SLV BASEADDR, —— user logic slave space
base address
ZERO_ADDR, PAD & USER._SLV HIGHADDR, —— user logic slave space
high address
ZERO_ADDR, PAD & INTR_BASEADDR, — interrupt control space
base address
ZERO_ADDR, PAD & INTR_HIGHADDR — interrupt control space

high address
)

— Array of desired number of chip enables for each address range

constant USER_SLV _NUM_ REG : integer =
6;
constant USER NUM REG : integer =
USER_SLV _NUM_REG;
constant INITR _NUM CE : integer =
16;
constant IPIF._ ARD NUM CE ARRAY : INTEGER_ARRAY TYPE =
(
0 => pad_power2(USER_SLV_NUM REG), — number of ce for user
logic slave space
1 => INTR_NUM CE — number of ce for

interrupt control space

);

— Ratio of bus clock to core clock (for use in dual clock systems)

— 1 = ratio is 1:1

— 2 ratio is 2:1

constant IPIF BUS2CORE CLK RATIO : integer =
1.

?

— Width of the slave data bus (32 only)

98

constant USER_SLV DWIDTH : integer
C_SPLB NATIVE DWIDTH;

constant IPIF SLV DWIDTH : integer
C_SPLB NATIVE DWIDTH;

— Number of device level interrupts

constant INTR_NUM IPIF IRPT SRC : integer
4;

— Capture mode for each IP interrupt (generated by user logic)

— 1 = pass through (non—inverting)

— 2 = pass through (inverting)

— 3 = registered level (non—inverting)

— 4 — registered level (inverting)

— b = positive edge detect

— 6 = negative edge detect

constant USER_NUM INTR : integer
L;

constant USER INTR CAPTURE MODE : integer
L;

constant INTR_IP_INTR_ MODE ARRAY . INTEGER_ARRAY TYPE

(
);

0 —> USER INTR_CAPTURE MODE

— Device priority encoder feature inclusion/omission

— true = include priority encoder

—— false = omit priority encoder

constant INITR INCLUDE DEV PENCODER : boolean
true;

— Device ISC feature inclusion/omission

— true — include device ISC

— false = omit device ISC

constant INTR INCLUDE DEV ISC : boolean
true;

99

— Index for CS/CE

constant USER_SLV_CS INDEX integer
0;
constant USER_SLV_ CE INDEX integer
calc_start ce index (IPIF_ ARD NUM CE ARRAY, USER SLV_CS INDEX)7
constant]NTR CS INDEX integer
L;
constant INTR_CE INDEX integer
calc start ce

constant USER_ CE INDEX
USER_SLV_CE INDEX;

integer

logic;
logic;
logic

_logic;
_logic;
logic;
logic
_logic

logic;
logic

_logic
logic
logic

_logic
_logic

logic

_logic;
_logic;
logic;
logic

— IP Interconnect (IPIC) signal declarations

signal ipif Bus2IP Clk std

signal ipif Bus2IP Reset std

signal ipif IP2Bus_ Data std _
IPIF _SLV_DWIDTH-1);

signal ipif TP2Bus_ WrAck std

signal ipif IP2Bus RdAck std

signal ipif IP2Bus_ Error std

signal ipif Bus2IP Addr std
C _SPLB_AWIDTH-1);

signal ipif Bus2IP Data std
IPIF_SLV_DWIDTH-1);

signal ipif Bus2IP RNW std

signal ipif Bus2IP BE std
IPIF_SLV_DWIDTH/8—-1);

signal ipif Bus2IP CS std
IPIF. ARD ADDR RANGE ARRAY’length) /2)—1);

signal ipif Bus2IP RdCE o ostd
calc_num _ce(IPIF_ARD NUM_CE ARRAY)—1);

signal ipif Bus2IP WrCE : ostd
calc_num _ce(IPIF_ARD NUM_CE ARRAY)—1);

signal intr IPIF Reg Interrupts std

signal intr IPIF Lvl Interrupts std
INTR_NUM_IPIF IRPT SRC-1);

signal intr IP2Bus Data std
IPIF_SLV_DWIDTH-1);

signal intr IP2Bus WrAck std

signal intr IP2Bus RdAck std

signal intr IP2Bus Error std

signal user Bus2IP RdCE std
USER_NUM_REG-1) ;

signal user Bus2IP WrCE std

USER, NUM_REG-1);

100

logic

vector (0

vector (0

vector (0

vector (0
vector (0
vector (0
vector (0

vector (0
vector (0

vector (0

vector (0

vector (0

index (IPIF_ARD NUM_CE_ARRAY, INTR_CS_INDEX) :

to

to

to

to

to

to

to

to

to

signal user IP2Bus_ Data
USER_SLV_DWIDTH-1);
signal user IP2Bus RdAck
signal user IP2Bus_ WrAck
signal user IP2Bus Error
signal user IP2Bus IntrEvent
USER_NUM_INTR-1);

begin

std_logic vector (0 to

std logic;
std logic;
std logic;

std _logic vector (0 to

— instantiate plbv46 slave single

PLBV46 SLAVE SINGLE 1 :
plbv46 slave single
generic map
(
C _ARD ADDR,_RANGE ARRAY

' ARD NUM CE ARRAY
_SPLB_P2P
~ BUS2CORE _CLK_ RATIO
~ SPLB_ MID WIDTH
~ SPLB_ NUM_MASTERS
~ SPLB_ AWIDTH
~ SPLB DWIDTH
_SIPIF DWIDTH
INCLUDE_DPHASE TIMER
~ FAMILY

ONONONONONONO)

Qaa

)

port map

(
SPLB_ Clk
SPLB_Rst
PLB ABus
PLB_ UABus
PLB_PAValid
PLB_ SAValid
PLB rdPrim
PLB_wrPrim
PLB masterID
PLB_abort
PLB_busLock
PLB RNW
PLB_ BE
PLB_MSize
PLB_size
PLB type
PLB_ lockErr
PLB wrDBus

101

entity plbv46 slave single vl 01 a.

IPIF_ARD ADDR_RANGE_ARRAY,
IPIF_ARD_NUM_CE ARRAY,
C_SPLB_P2P,
IPIF_BUS2CORE_CLK_RATIO,
C_SPLB_MID_ WIDTH,
C_SPLB_NUM_MASTERS,
C_SPLB_AWIDTH,
C_SPLB_DWIDTH,
IPIF_SLV_DWIDTH,
C_INCLUDE_DPHASE_TIMER,
C_FAMILY

SPLB_ Clk,
SPLB_Rst,
PLB_ABus,
PLB UABus,
PLB_PAValid,
PLB_ SAValid,
PLB rdPrim,
PLB_wrPrim,
PLB masterID ,
PLB_abort,
PLB_ busLock,
PLB_RNW,

PLB BE,
PLB_MSize,
PLB _size,
PLB type,
PLB lockErr,
PLB wrDBus,

PLB wrBurst
PLB_ rdBurst
PLB_wrPendReq
PLB_ rdPendReq
PLB wrPendPri

PLB wrBurst,
PLB rdBurst,
PLB_ wrPendReq,
PLB_ rdPendReq,
PLB_ wrPendPri,

PLB_ rdPendPri —> PLB_rdPendPri,
PLB reqPri => PLB reqPri,
PLB TAttribute —> PLB_TAttribute,
Sl addrAck => Sl addrAck,
S1_SSize => S1_SSize,

Sl wait => Sl wait,

Sl _rearbitrate => Sl rearbitrate ,
S1_ wrDAck => Sl wrDAck,

Sl wrComp => Sl wrComp,

S1 _wrBTerm => Sl wrBTerm,

Sl rdDBus => S] rdDBus,

S1 rdWdAddr => Sl rdWdAddr,
S1_rdDAck => Sl _rdDAck,

Sl rdComp => Sl rdComp,

SI rdBTerm => S1 rdBTerm,

S1_ MBusy => Sl MBusy,

SI MWrErr => SI MWrErr,

SI MRdErr => Sl MRdErr,

SI. MIRQ => Sl MIRQ,
Bus2IP_Clk => ipif Bus2IP_Clk,

Bus2IP Reset
IP2Bus_Data
IP2Bus_ WrAck
IP2Bus RdAck
IP2Bus_Error
Bus2IP _Addr
Bus2IP Data

ipif Bus2IP Reset ,
ipif IP2Bus Data,
ipif IP2Bus_ WrAck,
ipif IP2Bus_RdAck,
ipif IP2Bus_Error,
ipif Bus2IP Addr,
ipif Bus2IP Data,

Bus2IP_ RNW => ipif Bus2IP RNW,
Bus2IP_BE => ipif Bus2IP BE,
Bus2IP _CS => ipif Bus2IP_ CS,

Bus2IP RdCE
Bus2IP . WrCE

ipif _Bus2IP _RdCE,
ipif Bus2IP _ WrCE

);

— instantiate interrupt control

INTERRUPT CONTROL I : entity interrupt control v2 01 a.
interrupt control
generic map
(
C NUM _CE => INTR__NUM _CE,
C_NUM_IPIF IRPT SRC => INTR_NUM_IPIF IRPT SRC,
C _IP_INTR,_ MODE_ARRAY => INTR,_IP_INTR,_MODE ARRAY,

102

C_INCLUDE_DEV_PENCODER

C_INCLUDE_DEV_ISC

INTR_INCLUDE_DEV_PENCODER,
INTR_INCLUDE_DEV_ISC,

C_IPIF DWIDTH = [PIF_SLV_DWIDTH

)

port map

(
Bus2IP Clk => ipif Bus2IP Clk,
Bus2IP Reset —> ipif Bus2IP Reset,
Bus2IP _ Data => ipif Bus2IP_ Data,

Bus2IP BE
Interrupt RACE

ipif_Bus2IP BE,
ipif Bus2IP_ RdCE(

INTR,_ CE_INDEX to
Interrupt WrCE

INTR,_ CE_INDEX to
IPIF Reg Interrupts
IPIF Lvl Interrupts
IP2Bus_IntrEvent
Intr2Bus Devintr
Intr2Bus_ DBus
Intr2Bus WrAck

INTR_CE_INDEXHNTR NUM_ CE-1),

=> ipif Bus2IP_WrCE(
INTR_CE_INDEXHNTR NUM_CE-1),
intr IPIF Reg Interrupts,
intr IPIF Lvl Interrupts,
user IP2Bus_IntrEvent,
IP2INTC_Irpt,
intr IP2Bus_Data,
intr IP2Bus_ WrAck,

@

Intr2Bus_RdAck => intr IP2Bus_ RdAck,
Intr2Bus_Error => intr IP2Bus Error,
Intr2Bus_Retry => open,
Intr2Bus _ ToutSup => open

);

— feed registered and level—pass—through interrupts into Device

ISC if exists, otherwise ignored
intr IPIF Reg Interrupts(0) <= ’'07;
intr IPIF Reg Interrupts(l) <— ’07;
intr IPIF Lvl Interrupts(0) <= ’'07;
intr IPIF Lvl Interrupts(l) <= '07;
intr IPIF Lvl Interrupts(2) <= ’'07;
intr IPIF Lvl Interrupts(3) <= '07;

— 1instantiate User Logic

USER_LOGIC T :
generic map
(
— MAP USER GENERICS BELOW THIS LINE
—USER generics mapped here
— MAP USER GENERICS ABOVE THIS LINE

entity my custom ip register v9 00 a.user logic

C_SLV_DWIDTH —- USER_SLV_DWIDTH,
C_NUM_REG —- USER_NUM_REG,
C_NUM_INTR —- USER,_ NUM_INTR

103

port map

(

— MAP USER PORTS BELOW THIS LINE

—USER

ports mapped here

— MAP USER PORTS ABOVE THIS LINE

Bus2IP _Clk =
Bus2IP Reset -
Bus2IP _Data =
Bus2IP _BE =

Bus2IP_ RACE
Bus2IP WrCE
IP2Bus
IP2Bus RdAck
IP2Bus_ WrAck
IP2Bus FError
IP2Bus_IntrEvent

);

Data

ipift_ Bus2IP_Clk,
ipif Bus2IP Reset ,
ipif Bus2IP Data,
ipif Bus2IP_BE,
user Bus2IP RdCE,
user Bus2IP WrCE |,
user IP2Bus_Data,
user IP2Bus RdAck,
user IP2Bus WrAck,
user IP2Bus Error,
user IP2Bus IntrEvent

—— connect

internal signals

IP2BUS_DATA MUX_PROC :

intr TP2Bus_Data) is

begin
case ipif Bus2IP CS is
when "10"
when "01"

end case;

end process IP2BUS DATA MUX PROC;

ipif TP2Bus WrAck <= user IP2Bus WrAck
ipif IP2Bus RdAck <= user IP2Bus RdAck
ipif IP2Bus_ Error <= user IP2Bus_ Error

process (ipif Bus2IP CS, user IP2Bus_ Data,

=> ipif IP2Bus Data <= user IP2Bus_ Data;
=> ipif IP2Bus Data <= intr_ IP2Bus_Data;
when others => ipif IP2Bus Data <=

(others = ’07);

or
or
or

intr ITP2Bus_ WrAck;
intr IP2Bus RdAck;
intr IP2Bus_Error;

user Bus2IP_ RdCE <= ipif Bus2IP RdCE(USER_CE INDEX to USER CE INDEX
+USER_NUM_REG-1) ;
user Bus2IP WrCE <— ipif Bus2IP WrCE (USER_CE INDEX to USER CE INDEX
+USER_NUM_REG-1);

end IMP;

104

.1.2 VHDL Test Benches

Median

— Title : median_tb

— Design : defect pixel corr

— Author : Henrik Backe—Hansen

— Company : NINU / Aptina Norway

— File : median_mod tb.vhd

— Generated : Tue Jan 26 23:24:31 2010
— From : interface description file
— By : [tf2Vhdl ver. 1.20

— Description

—This testbench the input will be entered one—by—by and compared
with the data in a certain position in the data golden array

—The display will show ERROR if the input value does not match the
data golden value for that position.

—A FAILURE message will appear if the median value is different from
the median calculated for the data_ golden array (123)

——a FAILURE message will be shown saying "simulation completed
correctly without error" to indicate that the simulation has
completed

library IEEE;
use IEEE.std logic 1164.all;
use work.gsize. all;

entity median testbench is
end entity;

architecture struct of median testbench is

—Component declaration

component median mod

port (——component declaration
clk tin std _logic;

rst tin std logic;

data in tin integer;

enable tin std logic;

done :out std logic;

105

median cout integer
)

end component;

——Signal declaration

signal clk : std_logic (= ’07;
signal rst : std _logic := 7'07;
signal data_in : integer = 0 ;
signal enable : std logic = ’07;
signal done : std_logic = ’07;
signal median : integer = 0 ;

type data format is array (8 downto 0) of integer range 0 to
bit _depth; —input data array size setup

signal data golden:data format:=
(127,105,141,127,127,127,127,113,115) ;

—Device under test(DUT) instansiation

begin
DUT: median _mod
port map(
clk = clk,
rst = rst,
data_in —=> data_in,
enable => enable,
done => done,
median => median

) ;

—process to generate the clock for 100MHz

clk gen :process
begin

wait for bHns;
clk <= not(clk);
end process;

—Stimuli

test _bench : process
variable test:integer:= 0;
variable test2:integer:= 0;
begin

106

rst <= '17;
wait for 20ns;
rst <= '0’;

wait for 20ns;

—latching in input values

enable <= ’17;
data_in <= 115;
wait for 20ns;
enable <= '07;
wait for 20ns;
assert data_golden(0) =
report"data golden (0)
severity error;

differs

enable <= ’17;
data_in <= 113;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(1)
report"data golden(1) differs
severity error;

enable <= ’17;
data in <= 127;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data_golden(2)
report"data golden(2) differs
severity error;

enable <= ’17;
data_in <= 127;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(3)
report"data golden(3) differs
severity error;

enable <= "17;

107

data in

—data(0) <= 115

from input 0"

—data (1) <= 123
from input 1"
—data(2) <= 105

from input 2"

—data(3) <= 129

from input 3"

—data(4) <= 249

data_in <= 127;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(4)
report"data golden(4) differs
severity error;

enable <= ’17;
data in <= 127;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(5)
report"data golden(5) differs
severity error;

enable <= ’17;
data_in <= 141;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(6)
report"data golden(6) differs
severity error;

enable <= ’'17;
data in <= 105;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(7)
report"data golden(7) differs
severity error;

enable <= ’17;
data_in <= 127;
wait for 20ns;
enable <= ’07;
wait for 20ns;
assert data in = data golden(8)
report"data golden(8)
severity error;

108

from input 4"

—data(5) <= 135

from input 5"

—data(6) <= 102
from input 6"
—data(7) <= 136

from input 7"

—data(8) <= 117

differs from input 8"

—Comparing the output with the golden output

wait on done;
assert median = 127
report"wrong median value calculated™
severity failure;

wait for 50ns;
assert true;
report "simulation completed correctly without error"
severity failure;

wait ;
end process;

end architecture;

109

Image core

— Title : image core tb

— Design : defect pixel corr

— Author : Henrik Backe—Hansen

—— Company : NINU / Aptina Norway

— File : image core_ tb.vhd

— Generated : Mon Feb 22 17:01:01 2010
— From : interface description file
— By : Itf2Vhdl ver. 1.20

—Testbench to test the image core.vhd file. The stimuli is fed to
the image core file
—value by value, row by row until all values are read.

library IEEE;

use IEEE.STD LOGIC 1164. all;

use work.size. all;

use IEEE.numeric std. all;

use std.textio.all;

use IEEE.std logic unsigned. all;

entity image core tb is
end image core tb;

architecture arch of image core tb is

type in_array is array(0 to size x—1)of INTEGER;
type out_ array is array(0 to size y)of INTEGER;

component image core

port (——component declaration
clk tin std logic;

mod_en tin std logic;

rst tin std logic;

core in :in integer;

di tin std logic;

do :out std logic;

core_out :out integer

) ;

end component;

110

signal clk :std _logic
signal mod en :std logic =
signal rst :std _logic
signal core_in :integer := 0
signal core out :integer = 0
signal di :std logic :=
signal do :std _logic =
begin

DUT:image core

port map(

clk = clk,

mod_en => mod_en,

rst — rst,

core_in => core_in,

di = di,

do = do,

core_out —> core_out

);

clk gen:process
begin
wait for Hns;
clk <= not(clk);
end process;

read values:process
begin

mod en <= ’'17;
wait for 20ns;
mod en <= '07;
wait for 20mns;

—device under test

signal mapping

for 1 in 0 to ((size y=x*size x)—1) loop

di <= 17,

core in <— data_array(i);
integer in

wait for 10ns;

di<= 07,
wait for 10ns;
end loop;
wait ;

end process;

—setting the data in (di)flag

—inputing the values to

111

write file:process

FILE file out :TEXT open WRITE MODE IS "src'\data out th 50.pgm";
variable line out :LINE;

variable output:out array;

variable i :integer:=0;

begin
wait for 10ns;
if (do="1")then
output (i):=core_out;
write (line out ,output(i));

write (line _out, string (" "));
i:= i41;
if (i = size_y)then

i:= 0;

writeline (file out ,line out);
else
end if;
end if;

end process;

end arch;

112

Ctrl

— Title : ctrl _tb

— Design : defect pixel corr

— Author : Henrik Backe—Hansen

—— Company : NINU / Aptina Norway

— File : ctrl _tb.vhd

— Generated : Mon Mar 15 21:21:11 2010

— From : interface description file
— By : Itf2Vhdl ver. 1.20

— Description : Testbench for the ctrl module

library IEEE;

use IEEE.STD LOGIC 1164. all;
use IEEE.numeric_std. all;
use std.textio.all;

use work.size. all;

entity ctrl tb is
end ctrl_tb;

architecture ctrl _tb_arch of ctrl tb is
type out_ array is array(0 to size y)of INTEGER;

component ctrl

port (
clk :in std_logic;
rst :in std logic;

data out:out integer
)

end component ;

signal clk : std _logic = ’07;
signal rst : std_logic = '07;
signal data out : integer = 0;
begin

DUT: ctrl

port map(

113

clk = clk,
rst = rst,
data_out=> data_out

);

clk gen:process
begin

wait for 5Hns;
clk <= not(clk);
end process;

write to file:process
FILE file out ‘TEXT open WRITE MODE is "src\out ctrl.pgm";

variable line out :LINE;
variable output:out array;
variable i:integer:=0;

begin
wait for 100ns;

if (data_out /= —2147483648)then

output (1) :=data_out;
textio.write(line out ,output(i));
textio.write(line out ,string (" "));
i =1 +1;
if (i = size y)then
i:= 0;
writeline (file out ,line out);
end if;
end if;

end process;
end ctrl tb_arch;

114

.2 Microblaze files

2.1 mss

PARAMETER. VERSION = 2.2.0

BEGIN OS

PARAMETER OS NAME = standalone
PARAMETER OS_VER = 3.00.a

PARAMETER PROC INSTANCE = microblaze 0
PARAMETER stdin = RS232 Uart
PARAMETER stdout = RS232 Uart

END

BEGIN PROCESSOR
PARAMETER DRIVER NAME = cpu
PARAMETER DRIVER_VER = 1.12.b
PARAMETER HW INSTANCE = microblaze 0
PARAMETER xmdstub peripheral = RS232 Uart
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = dlmb_cntlr
END

BEGIN DRIVER
PARAMETER DRIVER NAME = bram
PARAMETER DRIVER_VER — 1.00.a
PARAMETER HW_ INSTANCE = ilmb _cntlr
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_ INSTANCE = Imb_bram
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = uartlite
PARAMETER DRIVER_VER = 1.14.a
PARAMETER HW_INSTANCE = RS232 Uart
END

115

BEGIN DRIVER

PARAMETER DRIVER, NAME = sysace

PARAMETER DRIVER_VER = 1.12.a

PARAMETER, HW_ INSTANCE = SysACE _CompactFlash
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = clock generator 0
END

BEGIN DRIVER
PARAMETER DRIVER NAME = uartlite
PARAMETER DRIVER_VER = 1.14.a
PARAMETER HW_INSTANCE = mdm 0
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = proc_sys_ reset 0
END

BEGIN DRIVER
PARAMETER DRIVER NAME = intc
PARAMETER DRIVER VER — 1.11.a
PARAMETER HW INSTANCE = xps_intc_0
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = mb_plb
END

BEGIN DRIVER
PARAMETER DRIVER, NAME = my custom ip register
PARAMETER DRIVER_VER = 9.00.a
PARAMETER HW_ INSTANCE = my custom ip register 0
END

BEGIN LIBRARY
PARAMETER LIBRARY NAME = xilfatfs
PARAMETER LIBRARY VER = 1.00.a
PARAMETER PROC INSTANCE = microblaze 0
PARAMETER CONFIG_WRITE = true

116

PARAMETER CONFIG DIR,_SUPPORT = true
PARAMETER CONFIG FATI2 = true
END

117

.2.2 mbhs

i

I 4])]
7

/ /]
7

Created by Base System Builder Wizard for Xilinx EDK 11.5 Build
EDK 1.S5.70

Sat Apr 17 13:59:14 2010

Target Board: Xilinx Virtex 5 ML501 Evaluation Platform Rev 1
Family : virtexh

Device: xchvlx5s0

Package: ff676

Speed Grade: -1

Processor number: 1

Processor 1: microblaze 0

System clock frequency: 125.0

Debug Interface: On—Chip HW Debug Module

7

Fk R de AR 3

1 141 IEIEIRIEY 141

/
17

PARAMETER, VERSION = 2.1.0

PORT fpga 0 RS232 Uart RX pin = fpga 0 RS232 Uart RX pin, DIR =1
PORT fpga 0 RS232 Uart TX pin = fpga 0 RS232 Uart TX pin, DIR = O
PORT fpga 0 SysACE CompactFlash SysACE MPA pin =
fpga 0 SysACE_ CompactFlash SysACE_MPA pin, DIR = O, VEC = [6:0]
PORT fpga 0 SysACE_CompactFlash SysACE CLK pin =
fpga 0 SysACE_ CompactFlash SysACE CLK pin, DIR = I
PORT fpga 0 SysACE_CompactFlash SysACE MPIRQ pin =
fpga 0 SysACE CompactFlash SysACE MPIRQ pin, DIR = I
PORT fpga 0 SysACE_ CompactFlash SysACE CEN_ pin =
fpga 0 SysACE CompactFlash SysACE CEN_ pin, DIR = O
PORT fpga 0 SysACE_ CompactFlash SysACE_ OEN_ pin =
fpga 0 SysACE_ CompactFlash SysACE OEN pin, DIR = O
PORT fpga 0 SysACE CompactFlash SysACE_WEN pin =
fpga 0 _SysACE CompactFlash SysACE WEN pin, DIR = O
PORT fpga 0 SysACE CompactFlash SysACE MPD pin =
fpga 0 SysACE_CompactFlash SysACE_MPD _ pin, DIR = 10, VEC = [15:0]
PORT fpga 0 clk 1 sys_clk pin = decm_clk s, DIR = I, SIGIS = CLK,
CLK_FREQ = 100000000
PORT fpga 0 rst 1 sys rst pin = sys_rst_s, DIR = I, SIGIS = RST,
RST POLARITY = 0

BEGIN xps_intc
PARAMETER, INSTANCE = xps_intc_ 0
PARAMETER HW VER = 2.01.a

118

14 1]
7 s
77

PARAMETER C_BASEADDR = 0x81800000

PARAMETER C HIGHADDR = 0x8180ffff

BUS_INTERFACE SPLB = mb_plb

PORT Irq = microblaze 0 INTERRUPT

PORT Intr = my_ custom ip register 0 IP2INTC Irpt
END

BEGIN proc sys reset

PARAMETER, INSTANCE = proc_sys reset 0
PARAMETER C_EXT RESET HIGH = 0
PARAMETER HW VER = 2.00.a

PORT Slowest sync_clk = clk 125 0000MHz
PORT Ext Reset In = sys rst_s

PORT MB_ Debug Sys Rst = Debug SYS Rst
PORT Dcm_locked = Dem all locked
PORT MB_Reset = mb _reset

PORT Bus_ Struct Reset = sys_ bus_ reset
END

BEGIN microblaze
PARAMETER INSTANCE = microblaze 0
PARAMETER C_INTERCONNECT = 1
PARAMETER C USE FPU = 1
PARAMETER C DEBUG ENABLED = 1
PARAMETER HW VER = 7.30.a
BUS INTERFACE DIMB = dlmb
BUS INTERFACE ILMB = ilmb
BUS INTERFACE DPLB = mb_plb
BUS INTERFACE IPLB = mb_ plb
BUS INTERFACE DEBUG = microblaze 0 mdm bus
PORT MB_RESET = mb_reset
PORT INTERRUPT = microblaze 0 INTERRUPT
END

BEGIN mdm
PARAMETER INSTANCE = mdm 0
PARAMETER C MB DBG PORIS = 1
PARAMETER C_USE UART = 1
PARAMETER C UART WIDTH = 8
PARAMETER HW VER = 1.00.g
PARAMETER C BASEADDR = 0x84400000
PARAMETER, C_HIGHADDR = 0x8440ffff
BUS INTERFACE SPLB = mb_plb
BUS INTERFACE MBDEBUG 0 = microblaze 0 mdm _bus
PORT Debug SYS Rst = Debug SYS Rst
END

BEGIN plb_v46
PARAMETER INSTANCE = mb_plb

119

PARAMETER HW VER = 1.04.a
PORT PLB_Clk = clk 125 0000MHz
PORT SYS Rst = sys_bus_reset
END

BEGIN bram block
PARAMETER INSTANCE = lmb_bram
PARAMETER HW VER = 1.00.a
BUS INTERFACE PORTA = ilmb_port
BUS INTERFACE PORTB = dlmb_port
END

BEGIN Imb_ bram if cntlr
PARAMETER INSTANCE = ilmb cntlr
PARAMETER HW VER = 2.10.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0001ffff
BUS INTERFACE SLMB = ilmb
BUS INTERFACE BRAM PORT = ilmb port
END

BEGIN Imb_v10

PARAMETER INSTANCE = ilmb
PARAMETER HW_VER = 1.00.a
PORT LMB Clk = clk 125 0000MHz
PORT SYS Rst = sys bus_ reset
END

BEGIN Imb_ bram if cntlr
PARAMETER INSTANCE = dlmb _cntlr
PARAMETER HW VER = 2.10.b
PARAMETER C_BASEADDR = 0x00000000
PARAMETER C_HIGHADDR = 0x0001ffff
BUS INTERFACE SLMB = dlmb
BUS INTERFACE BRAM PORT = dlmb_port
END

BEGIN Imb_v10

PARAMETER INSTANCE = dlmb
PARAMETER HW VER = 1.00.a
PORT LMB Clk = clk 125 0000MHz
PORT SYS Rst = sys bus_ reset
END

BEGIN clock generator

PARAMETER, INSTANCE = clock generator 0
PARAMETER C EXT RESET HIGH = 0
PARAMETER C_CLKIN FREQ = 100000000
PARAMETER C_CLKOUTO FREQ = 125000000

120

PARAMETER C_CLKOUTO PHASE = 0
PARAMETER C CLKOUTO GROUP = NONE
PARAMETER C_CLKOUTO BUF = TRUE
PARAMETER HW VER = 3.02.a
PORT CLKIN = dcm_clk s
PORT CLKOUTO = clk 125 0000MHz
PORT RST = sys_rst_s
PORT LOCKED = Dcm all locked

END

BEGIN xps sysace

PARAMETER, INSTANCE = SysACE CompactFlash

PARAMETER C MEM WIDTH = 16

PARAMETER HW VER = 1.01.a

PARAMETER C BASEADDR = 0x83600000

PARAMETER C HIGHADDR = 0x8360ffff

BUS INTERFACE SPLB = mb_plb

PORT SysACE MPA = fpga 0 SysACE CompactFlash SysACE MPA pin
PORT SysACE CLK = fpga 0 SysACE CompactFlash SysACE CLK pin
PORT SysACE_MPIRQ = fpga 0 SysACE_ CompactFlash SysACE MPIRQ pin
PORT SysACE CEN = fpga 0 SysACE_ CompactFlash SysACE CEN pin
PORT SysACE_OEN = fpga 0 SysACE_ CompactFlash SysACE_ OEN pin
PORT SysACE_WEN = fpga 0 SysACE CompactFlash SysACE WEN pin
PORT SysACE_MPD = fpga 0 SysACE_CompactFlash SysACE_MPD pin
END

BEGIN xps_uartlite
PARAMETER INSTANCE = RS232 Uart
PARAMETER C_BAUDRATE = 9600
PARAMETER C_DATA BITS = 8
PARAMETER C_USE_PARITY
PARAMETER C_ODD_PARITY
PARAMETER HW_VER = 1.01.a
PARAMETER C_BASEADDR = 0x84000000
PARAMETER C_HIGHADDR = 0x8400ffff
BUS INTERFACE SPLB = mb_ plb
PORT RX = fpga 0 RS232 Uart RX pin
PORT TX = fpga 0 RS232 Uart TX pin

END

0
0

BEGIN my custom ip register

PARAMETER, INSTANCE = my custom ip register 0

PARAMETER HW_VER = 9.00.a

PARAMETER C BASEADDR = 0xccc00000

PARAMETER C HIGHADDR = OxcccOffff

BUS INTERFACE SPLB = mb_plb

PORT IP2INTC Irpt = my_ custom ip_ register 0 IP2INTC Irpt
END

121

2.3 ucf

Virtex 5 ML501 Evaluation Platform

Net fpga 0 RS232 Uart RX pin LOC = AC7 | IOSTANDARD-LVCMOS33;
Net fpga 0 RS232 Uart TX pin LOC = AD14 | IOSTANDARD=LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<0>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<l>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<2>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<3>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<4>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPA pin<5>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE MPA pin<6>
IOSTANDARD = LVCMOS33;

LOC=N6

LOC=Eb5

LOC=F5

LOC=F4

LOC=J5

LOC=ET

LOC=G7

Net fpga 0 SysACE CompactFlash SysACE CLK pin LOC=ABI12

= LVCMOS33 | PERIOD = 30000 ps;

Net fpga 0 SysACE_ CompactFlash SysACE MPIRQ pin LOC=G6

= LVCMOS33 | TIG;

Net fpga 0 SysACE CompactFlash SysACE_ CEN_pin LOC=F7 |

LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE OEN_pin LOC=E6 |

LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE_WEN pin LOC-M5 |

LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE MPD pin<(0>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<l>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<2>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<3>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<4>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE MPD _pin<5>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE MPD _pin<6>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE_ CompactFlash SysACE_ MPD _pin<7>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE_ MPD _ pin<8>
IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD _pin<9>
IOSTANDARD = LVCMOS33;

122

LOC-M6

LOC=K5

LOC=L3

LOC=L4

LOC=L7

LOC=L5

LOC=H6

LOC=G5

LOC=MT7

LOC=H7

| IOSTANDARD
| IOSTANDARD
TOSTANDARD —
TOSTANDARD —

IOSTANDARD =

Net fpga 0 SysACE CompactFlash SysACE MPD pin<10> LOC=J6 |

IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<1l> LOC=G4 |

IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<12> LOC=K7 |

IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE CompactFlash SysACE MPD pin<13> LOC=J4 |

IOSTANDARD — LVCMOS33;

Net fpga 0 SysACE_CompactFlash SysACE MPD pin<14> LOC=H4 |

IOSTANDARD = LVCMOS33;

Net fpga 0 SysACE_CompactFlash SysACE MPD pin<15> LOC=K6 |

IOSTANDARD = LVCMOS33;

Net fpga 0 clk 1 sys clk pin TNM NET = sys clk pin;
TIMESPEC TS sys_clk pin = PERIOD sys_clk pin 100000 kHz;

Net fpga 0 clk 1 sys clk pin LOC = ADS8

Net fpga 0 rst 1 sys_rst_ pin TIG;

Net fpga O rst 1 sys rst pin LOC = T23
PULLUP;

IOSTANDARD=LVCMOS33;

IOSTANDARD-LVCMOS33

123

.2.4 xparameters.h

/***

* K X X K ¥

*

CAUTION: This file is automatically generated by libgen.
Version: Xilinx EDK 12.1 EDK MS1.53d
DO NOT EDIT.

Copyright (c¢) 1995-2010 Xilinx, Inc. All rights reserved.

* Description: Driver parameters

*

***/

#define
#define

[3k 3k >k 3k sk sk sk sk sk sk osk skoskosk sk skosk ok skosk sk ok sk sk sk sk sk sk sk skosk sk sk Skosk sk sk skok ok skosk sk ok sk sk sk sk sk sk ok skosk sk ok Skosk sk sk skok ok skosk ok ok /

STDIN BASEADDRESS 0x84000000
STDOUT BASEADDRESS 0x84000000

/* Definitions for driver UARTLITE x/

#define

XPAR_XUARTLITE NUM_INSTANCES 2

/* Definitions for peripheral MDM 0 x/

#define
#define
#define
#define
#define
#define
#define

XPAR_MDM _0_BASEADDR 0x84400000
XPAR_MDM_0_HIGHADDR 0x8440FFFF
XPAR_MDM_0_DEVICE ID 0
XPAR_MDM_(0 BAUDRATE 0
XPAR_MDM _0_USE_PARITY 0
XPAR_MDM _0_ODD_PARITY 0
XPAR_MDM_0_DATA_BITS 0

/* Definitions for peripheral RS232 UART x/

#define
#define
#define
#define
#define
#define
#define

’**

/* Canonical definitions for peripheral MDM 0 x/
XPAR UARTLITE 0 DEVICE ID XPAR MDM 0 DEVICE ID

#define

XPAR_RS232 UART BASEADDR 0x84000000
XPAR_RS232 UART HIGHADDR 0x8400FFFF
XPAR_RS232_UART_DEVICE ID 1

XPAR RS232 UART BAUDRATE 9600
XPAR_RS232 UART USE_PARITY 0
XPAR_RS232 UART_ODD_PARITY 0
XPAR_RS232 UART DATA BITS 8

124

#define XPAR UARTLITE 0 BASEADDR 0x84400000
#define XPAR UARTLITE 0 HIGHADDR 0x8440FFFF
#define XPAR UARTLITE 0 BAUDRATE 0

#define XPAR UARTLITE 0 USE PARITY 0
#define XPAR UARTLITE 0 ODD_PARITY 0
#define XPAR _UARTLITE 0 DATA BITS 0

#define XPAR UARTLITE 0 SIO_CHAN -1

/* Canonical definitions for peripheral RS232 UART x/
#define XPAR UARTLITE 1 DEVICE ID XPAR RS232 UART DEVICE ID
#define XPAR UARTLITE 1 BASEADDR 0x84000000

#define XPAR UARTLITE 1 HIGHADDR 0x8400FFFF

#define XPAR UARTLITE 1 BAUDRATE 9600

#define XPAR UARTLITE 1 USE PARITY 0

#define XPAR UARTLITE 1 ODD_PARITY 0

#define XPAR UARTLITE 1 DATA BITS 8

#define XPAR UARTLITE 1 SIO_CHAN -1

’**

#define XPAR XSYSACE MEM WIDTH 16
/* Definitions for driver SYSACE x/
#define XPAR_XSYSACE_NUM_INSTANCES 1

/* Definitions for peripheral SYSACE COMPACTFLASH x/
#define XPAR_SYSACE COMPACTFLASH DEVICE ID 0

#define XPAR SYSACE COMPACTFLASH BASEADDR 0x83600000
#define XPAR SYSACE COMPACTFLASH HIGHADDR 0x8360FFFF
#define XPAR_SYSACE COMPACTFLASH MEM WIDTH 16

’**

/* Canonical definitions for peripheral SYSACE COMPACTFLASH x/
#define XPAR SYSACE 0 DEVICE ID XPAR SYSACE COMPACTFLASH DEVICE ID
#define XPAR SYSACE 0 BASEADDR 0x83600000

#define XPAR SYSACE 0 HIGHADDR 0x8360FFFF

#define XPAR SYSACE 0 MEM WIDTH 16

/% Definitions for peripheral DLMB CNILR x/
#define XPAR DIMB CNTLR_BASEADDR 0x00000000
#define XPAR DIMB CNTLR HIGHADDR 0x0001FFFF

125

/% Definitions for peripheral ILMB CNTLR x/
#define XPAR ILMB_CNTLR_BASEADDR 0x00000000
#define XPAR ILMB_ CNTLR_ HIGHADDR 0x0001FFFF

/**/

/* Definitions for driver MY CUSTOM IP REGISTER x/
#define XPAR_MY CUSTOM IP_REGISTER NUM INSTANCES 1

/* Definitions for peripheral MY CUSTOM IP REGISTER 0 =/
#define XPAR MY CUSTOM IP REGISTER 0 DEVICE ID 0

#define XPAR MY CUSTOM IP REGISTER 0 BASEADDR 0xCCC00000
#define XPAR MY CUSTOM IP REGISTER 0 HIGHADDR 0xCCCOFFFF

/**/

#define XPAR INTC_MAX NUM_INTR INPUIS 1
#define XPAR XINTC HAS IPR 1

#define XPAR XINTC_USE DCR 0

/* Definitions for driver INTC x/
#define XPAR XINTC_NUM_INSTANCES 1

/% Definitions for peripheral XPS INTC 0 x*/
#define XPAR_XPS INTC 0 DEVICE ID 0

#define XPAR XPS INTC 0 BASEADDR 0x81800000
#define XPAR XPS INTC 0 HIGHADDR 0x8180FFFF
#define XPAR_XPS INTC 0 KIND OF INTR OxFFFFFFFE

’**

#define XPAR INTC SINGLE BASEADDR 0x81800000

#define XPAR INTC SINGLE HIGHADDR 0x8180FFFF

#define XPAR_INTC_SINGLE DEVICE ID XPAR_XPS INTC_ 0 DEVICE ID
#define XPAR_MY CUSTOM_IP REGISTER 0 IP2INTC_IRPT MASK 0X000001
#define XPAR_XPS INTC 0 MY CUSTOM IP REGISTER 0 IP2INTC_IRPT INTR 0

/3K 3k kSR K Sk R Sk sk ok sk sk Sk sk Sk sk Sk sk Skosk kosk skosk sk Sk sk Sk sk ok sk sk sk sk Sk sk Sk sk ok skokoskoskosk sk Sk sk Sk skook sk sk Sk sk Sk sk ok sk ok oskokoskokoskok ok /

/* Canonical definitions for peripheral XPS INTC 0 %/
#define XPAR_INTC_0_DEVICE_ID XPAR XPS_INTC_0_ DEVICE_ID
#define XPAR_INTC_ 0 BASEADDR 0x81800000

#define XPAR_INTC_0_HIGHADDR 0x8180FFFF

#define XPAR_INTC_0_KIND_OF INTR OxFFFFFFFE

126

#define XPAR_INTC_0 MY CUSTOM_IP_REGISTER_0_VEC_ID
XPAR_XPS_INTC_0_ MY CUSTOM_IP_REGISTER 0 IP2INTC_IRPT INTR

/* Definitions for bus frequencies x/
#define XPAR CPU_DPLB_FREQ HZ 125000000
#define XPAR CPU IPLB FREQ HZ 125000000

/* Canonical definitions for bus frequencies x/
#define XPAR_PROC_BUS_0_FREQ_HZ 125000000

#define XPAR CPU CORE CLOCK FREQ HZ 125000000
#define XPAR MICROBLAZE CORE CLOCK FREQ HZ 125000000

[5k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk kKRR R sk sk sk sk sk sk sk sk sk sk sk sk sk sk Rk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk kK sk ok sk sk sk sk sk sk sk /

/

/* Definitions for peripheral MICROBLAZE 0 x/
#define XPAR_MICROBLAZE 0 SCO 0

#define XPAR MICROBLAZE 0 FREQ 125000000
#define XPAR_MICROBLAZE 0 DATA SIZE 32

#define XPAR MICROBLAZE 0 DYNAMIC BUS_SIZING 1
#define XPAR MICROBLAZE 0 AREA OPTIMIZED 0
#define XPAR MICROBLAZE 0 OPTIMIZATION 0
#define XPAR MICROBLAZE 0 INTERCONNECT 1
#define XPAR MICROBLAZE 0 DPLB DWIDTH 32
#define XPAR MICROBLAZE 0 DPLB NATIVE DWIDTH 32
#define XPAR_MICROBLAZE 0 DPLB BURST EN 0
#define XPAR MICROBLAZE 0 DPLB P2P 0

#define XPAR MICROBLAZE (0 IPLB DWIDTH 32
#define XPAR MICROBLAZE 0 IPLB NATIVE DWIDTH 32
#define XPAR MICROBLAZE 0 IPLB BURST EN 0
#define XPAR MICROBLAZE 0_IPLB P2P 0

#define XPAR_ _MICROBLAZE 0 D PIB 1

#define XPAR MICROBLAZE 0 D IMB 1

#define XPAR MICROBLAZE 0 I PLB 1

#define XPAR MICROBLAZE 0 I LMB 1

#define XPAR MICROBLAZE 0 USE MSR INSTR 1
#define XPAR MICROBLAZE 0 USE PCMP_INSTR 1
#define XPAR MICROBLAZE (0 USE BARREL 0

#define XPAR_MICROBLAZE 0 USE DIV 0

#define XPAR MICROBLAZE 0 USE HW_MUL 1

#define XPAR MICROBLAZE 0 USE FPU 1

#define XPAR MICROBLAZE 0 UNALIGNED EXCEPTIONS 0
#define XPAR MICROBLAZE 0 IILLL OPCODE EXCEPTION 0
#define XPAR MICROBLAZE 0 IPLB BUS EXCEPTION 0

127

#define XPAR MICROBLAZE 0 DPLB_BUS EXCEPTION 0
#define XPAR MICROBLAZE 0 DIV _ZERO EXCEPTION 0
#define XPAR MICROBLAZE 0 FPU_EXCEPTION 0

#define XPAR MICROBLAZE 0 FSL EXCEPTION 0

#define XPAR MICROBLAZE 0 PVR 0

#define XPAR MICROBLAZE 0 PVR_USER1 0x00

#define XPAR MICROBLAZE 0 PVR_USER2 0x00000000
#define XPAR MICROBLAZE 0 DEBUG ENABLED 1

#define XPAR_MICROBLAZE 0 NUMBER OF PC BRK 1
#define XPAR_MICROBLAZE 0 NUMBER OF RD ADDR BRK 0
#define XPAR MICROBLAZE 0 NUMBER OF WR ADDR BRK 0
#define XPAR MICROBLAZE (0 INTERRUPT IS EDGE 0
#define XPAR_MICROBLAZE 0 EDGE IS POSITIVE 1
#define XPAR MICROBLAZE 0 RESET MSR 0x00000000
#define XPAR_MICROBLAZE 0 OPCODE 0X0 ILLEGAL 0
#define XPAR MICROBLAZE 0_FSL LINKS 0

#define XPAR MICROBLAZE (0 FSL DATA SIZE 32

#define XPAR MICROBLAZE 0 USE_ EXTENDED FSL INSTR 0
#define XPAR _MICROBLAZE 0 ICACHE BASEADDR 0x00000000
#define XPAR MICROBLAZE 0 ICACHE HIGHADDR Ox3FFFFFFF
#define XPAR MICROBLAZE 0 USE_ICACHE 0

#define XPAR MICROBLAZE (0 ALLOW ICACHE WR 1
#define XPAR MICROBLAZE 0 ADDR_TAG_BITS 0

#define XPAR MICROBLAZE 0 CACHE BYTE SIZE 8192
#define XPAR MICROBLAZE 0 ICACHE USE FSL 1

#define XPAR_MICROBLAZE 0 ICACHE LINE LEN 4
#define XPAR MICROBLAZE 0 ICACHE ALWAYS USED 0
#define XPAR MICROBLAZE (0 ICACHE INTERFACE 0
#define XPAR MICROBLAZE 0 ICACHE VICTIMS 0

#define XPAR MICROBLAZE 0 ICACHE STREAMS 0

#define XPAR_MICROBLAZE 0 DCACHE BASEADDR 0x00000000
#define XPAR_MICROBLAZE 0 DCACHE HIGHADDR Ox3FFFFFFF
#define XPAR_MICROBLAZE 0 USE DCACHE 0

#define XPAR MICROBLAZE 0 ALLOW_DCACHE WR 1
#define XPAR MICROBLAZE 0 DCACHE ADDR TAG 0
#define XPAR MICROBLAZE (0 DCACHE BYTE SIZE 8192
#define XPAR MICROBLAZE 0 DCACHE USE FSL 1

#define XPAR MICROBLAZE 0 DCACHE LINE LEN 4
#define XPAR MICROBLAZE 0 DCACHE ALWAYS USED 0
#define XPAR MICROBLAZE 0 DCACHE INTERFACE 0
#define XPAR MICROBLAZE (0 DCACHE USE WRITEBACK 0
#define XPAR MICROBLAZE 0 DCACHE_ VICTIMS 0

#define XPAR MICROBLAZE 0 _USE_MMU 0

#define XPAR_MICROBLAZE 0 MMU DTLB SIZE 4

#define XPAR MICROBLAZE 0 MMU_ITLB SIZE 2

#define XPAR MICROBLAZE 0 MMU TLB ACCESS 3

#define XPAR MICROBLAZE 0 MMU_ZONES 16

#define XPAR MICROBLAZE 0 USE INTERRUPT 1

#define XPAR MICROBLAZE 0 USE EXT BRK 1

128

#define XPAR MICROBLAZE (0 USE EXT NM BRK 1
#define XPAR MICROBLAZE 0 USE BRANCH TARGET CACHE 0
#define XPAR MICROBLAZE 0 BRANCH TARGET CACHE SIZE 0

#define XPAR CPU_ID 0

#define XPAR MICROBLAZE ID 0

#define XPAR_ MICROBLAZE SCO 0

#define XPAR_MICROBLAZE FREQ 125000000
#define XPAR MICROBLAZE DATA SIZE 32

#define XPAR_MICROBLAZE DYNAMIC BUS SIZING 1
#define XPAR MICROBLAZE AREA OPTIMIZED 0
#define XPAR MICROBLAZE OPTIMIZATION 0
#define XPAR_MICROBLAZE INTERCONNECT 1
#define XPAR MICROBLAZE DPLB DWIDTH 32
#define XPAR_MICROBLAZE DPLB NATIVE DWIDTH 32
#define XPAR MICROBLAZE DPLB BURST EN 0
#define XPAR MICROBLAZE DPLB P2P 0

#define XPAR MICROBLAZE IPLB DWIDTH 32
#define XPAR MICROBLAZE IPLB NATIVE DWIDTH 32
#define XPAR MICROBLAZE IPLB BURST EN 0
#define XPAR MICROBLAZE IPLB P2P 0

#define XPAR_MICROBLAZE D PIB 1

#define XPAR MICROBLAZE D IMB 1

#define XPAR MICROBLAZE 1 PLB 1

#define XPAR MICROBLAZE I LMB 1

#define XPAR MICROBLAZE USE MSR INSTR 1
#define XPAR MICROBLAZE USE PCMP_INSIR 1
#define XPAR MICROBLAZE USE BARREL 0

#define XPAR MICROBLAZE USE DIV 0

#define XPAR MICROBLAZE USE HW_ MUL 1

#define XPAR_MICROBLAZE USE FPU 1

#define XPAR MICROBLAZE UNALIGNED EXCEPTIONS 0
#define XPAR MICROBLAZE ILL OPCODE_ EXCEPTION 0
#define XPAR MICROBLAZE IPLB BUS EXCEPTION 0
#define XPAR MICROBLAZE DPLB BUS EXCEPTION 0
#define XPAR MICROBLAZE DIV ZERO_EXCEPTION 0
#define XPAR MICROBLAZE FPU EXCEPTION 0
#define XPAR MICROBLAZE FSL EXCEPTION 0
#define XPAR MICROBLAZE PVR 0

#define XPAR MICROBLAZE PVR USERI 0x00
#define XPAR MICROBLAZE PVR_USER2 0x00000000
#define XPAR MICROBLAZE DEBUG ENABLED 1
#define XPAR MICROBLAZE NUMBER OF PC BRK 1
#define XPAR MICROBLAZE NUMBER OF RD ADDR BRK 0
#define XPAR MICROBLAZE NUMBER OF WR_ADDR BRK 0
#define XPAR MICROBLAZE INTERRUPT IS EDGE 0
#define XPAR MICROBLAZE EDGE IS POSITIVE 1

129

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

XPAR_MICROBLAZE_RESET MSR 0x00000000
XPAR_MICROBLAZE OPCODE_0X0 ILLEGAL 0
XPAR_MICROBLAZE FSL_LINKS 0
XPAR_MICROBLAZE FSL_DATA_SIZE 32
XPAR_MICROBLAZE_USE_EXTENDED FSL_INSTR 0
XPAR_MICROBLAZE ICACHE BASEADDR 0x00000000
XPAR_MICROBLAZE_ICACHE HIGHADDR 0x3FFFFFFF
XPAR_MICROBLAZE_USE_ICACHE 0
XPAR_MICROBIAZE, ALLOW ICACHE WR 1
XPAR_MICROBLAZE_ADDR_TAG_BITS 0
XPAR_MICROBLAZE_CACHE BYTE SIZE 8192
XPAR_MICROBLAZE ICACHE USE_FSL 1
XPAR_MICROBLAZE ICACHE LINE LEN 4
XPAR_MICROBLAZE ICACHE ALWAYS_USED 0
XPAR_MICROBLAZE_ICACHE INTERFACE 0
XPAR_MICROBLAZE ICACHE VICTIMS 0

XPAR MICROBLAZE ICACHE STREAMS 0
XPAR_MICROBLAZE _DCACHE_BASEADDR 0x00000000
XPAR_MICROBLAZE_DCACHE_HIGHADDR 0x3FFFFFFF
XPAR_MICROBLAZE USE_DCACHE 0
XPAR_MICROBLAZE ALLOW DCACHE WR 1
XPAR_MICROBLAZE DCACHE ADDR_TAG 0
XPAR_MICROBLAZE_DCACHE BYTE_SIZE 8192

XPAR MICROBLAZE DCACHE_USE FSL 1
XPAR_MICROBLAZE DCACHE LINE_LEN 4
XPAR_MICROBLAZE DCACHE ALWAYS USED 0
XPAR_MICROBLAZE_DCACHE_INTERFACE 0
XPAR_MICROBLAZE DCACHE_USE_WRITEBACK 0
XPAR_MICROBLAZE_DCACHE_VICTIMS 0
XPAR_MICROBLAZE USE_MMU 0
XPAR_MICROBLAZE MMU DTLB_SIZE 4
XPAR_MICROBLAZE MMU_ITLB_SIZE 2
XPAR_MICROBLAZE MMU_TLB_ACCESS 3
XPAR_MICROBLAZE, MMU_ZONES 16

XPAR MICROBLAZE USE_INTERRUPT 1
XPAR_MICROBLAZE USE_EXT BRK 1
XPAR_MICROBLAZE USE EXT NM BRK 1
XPAR_MICROBLAZE,_USE_BRANCH_TARGET CACHE 0
XPAR MICROBLAZE BRANCH TARGET CACHE SIZE 0
XPAR_MICROBLAZE HW VER "7.30.a"

XILFATFS MAXFILES 5
XILFATFS BUFCACHE SIZE 10240

130

.3 Microblaze Synthesize

Release 12.1 — xst M.53d (nt)
Copyright (c) 1995—-2010 Xilinx, Inc. All rights reserved.
—>
TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation
Design Hierarchy Analysis
HDL Analysis
HDL Synthesis
5.1) HDL Synthesis Report
Advanced HDL Synthesis
6.1) Advanced HDL Synthesis Report
7) Low Level Synthesis
8) Partition Report
9) Final Report
9
9
9

QU = W
— e e e

(@)}
~—

.1) Device utilization summary
.2) Partition Resource Summary
.3) TIMING REPORT

* Synthesis Options Summary
*

——— Source Parameters

Input Format : MIXED
Input File Name : "system xst.prj"
Verilog Include Directory : {"C:\ Users\Magician\Desktop\

bsb project\pcores\" "C:\ Xilinx \12.1\ISE DS\EDK\hw
XilinxProcessorIPLib\pcores\" }

——— Target Parameters
Target Device : xchvlx50ff676 —1
Output File Name - "../implementation/system .ngc"

—— Source Options
Top Module Name : system

——— Target Options
Add TO Buffers : YES
Global Maximum Fanout : 10000

——— General Options

Optimization Goal : speed
Netlist Hierarchy : as_optimized

131

Optimization Effort |
Hierarchy Separator :

——— Other Options
Cores Search Directories : {../implementation }

WARNING: UtilitiesC — The message filter file "../_ _xps/ise/filter.
filter" specified with the —filter switch can’t be found.

WARNING: UtilitiesC — The message filter file "../ _xps/ise/filter.
filter" specified with the —filter switch can’t be found.

* HDL Compilation

*

Compiling vhdl file "C:/Users/Magician/Desktop/bsb _project/hdl/system
.vhd" in Library work.

Entity <system> compiled.

Entity <system> (Architecture <STRUCTURE>) compiled .

* Design Hierarchy Analysis
*

Analyzing hierarchy for entity <system> in library <work> (
architecture <STRUCTURE>).

* HDL Analysis

*

Analyzing Entity <system> in library <work> (Architecture <STRUCTURE
>).
Set property "BUFFER TYPE = BUFGP" for signal <
fpga 0 SysACE CompactFlash SysACE CLK pin> in unit <system >.
WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1191: Unconnected output port ’'RstcPPCresetcore 0’ of
component ’'proc_ sys reset 0 wrapper’

132

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port ’RstcPPCresetchip 0’ of
component ’'proc_sys reset (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port 'RstcPPCresetsys 0’ of
component ’proc_ sys reset (0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port ’RstcPPCresetcore 1’ of
component ’'proc_ sys reset 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port ’RstcPPCresetchip 17 of
component ’'proc_sys reset (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port 'RstcPPCresetsys 1’ of
component ’'proc_ sys reset 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1191: Unconnected output port ’Peripheral Reset’ of
component ’proc_sys reset (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1215: Unconnected output port 'MB_Halted’ of component
microblaze 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1215: Unconnected output port ’'Trace Instruction’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1215: Unconnected output port ’Trace Valid Instr’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1215: Unconnected output port ’'Trace PC’ of component
microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1215: Unconnected output port ’Trace Reg Write’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Reg Addr’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace MSR Reg’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace PID Reg’ of
component ’microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’'Trace New Reg Value’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1215: Unconnected output port 'Trace Exception Taken’ of

component ’microblaze 0 wrapper’

133

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Exception Kind’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Jump Taken’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Delay Slot’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Data Address’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Data Access’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Data Read’ of
component ’microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Data Write’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’'Trace Data Write Value’
of component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Data Byte Enable’
of component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’'Trace DCache Req’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace DCache Hit’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace DCache Rdy’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace DCache Read’ of
component ’'microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace ICache Req’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace ICache Hit’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’'Trace ICache Rdy’ of
component ’'microblaze 0 wrapper .

134

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace OF PipeRun’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’'Trace EX PipeRun’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace MEM PipeRun’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace MB Halted’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’Trace Jump Hit’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSLO S CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’FSLO S READ’ of component

"microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLO M CLK’ of component
"microblaze (0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLO M WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLO M DATA’ of component

"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port °FSLO M CONIROL’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL1 S CLK’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL1I S READ’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSLI M CLK’ of component
"microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL1 M WRITE’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL1 M DATA’ of component

)

"microblaze 0 wrapper

135

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI M CONTROL’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’'FSL2 S CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL2 S READ’ of component

"microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSI2 M CLK’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL2 M WRIIE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL2 M DATA’ of component

"microblaze 0 _ wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL2 M CONTROL’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL3 S CLK’ of component
"microblaze (0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL3 S READ’ of component

"microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL3 M CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL3 M WRITE’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL3 M DATA’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSL3 M CONIROL’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSI4 S CLK’ of component
"microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSI4 S READ’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSI4 M CLK’ of component
"microblaze 0 wrapper’

136

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSI4 M WRITE’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL4 M DATA’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSI4 M CONIROL’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL5 S CLK’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL5 S READ’ of component

"microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL5 M CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL5 M WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL5 M DATA’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSL5 M CONTROL’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’'FSL6 S CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL6 S READ’ of component

"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL6 M CLK’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL6 M WRIIE’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL6 M DATA’ of component

"microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL6 M CONTROL’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL7 S CLK’ of component
"microblaze 0 wrapper’

137

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1215: Unconnected output port ’FSL7 S READ’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL7 M CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSL7 M WRITE’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL7 M DATA’ of component

"microblaze 0 _ wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSL7 M CONIROL’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL8 S CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL8 S READ’ of component

"microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL8 M CLK’ of component
"microblaze (0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL8 M WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL8 M DATA’ of component

"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSL8& M CONIROL’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL9 S CLK’ of component
"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL9 S READ’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL9 M CLK’ of component
"microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL9 M WRITE’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL9 M DATA’ of component

"microblaze 0 wrapper’

138

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSL9 M CONTROL’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL10 S CLK’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI0 S READ’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSLI0 M CLK’ of component

"microblaze 0 _ wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI0 M WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI0 M DATA’ of
component ’microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port °FSLI0. M CONTROL’ of

component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL11 S CLK’ of component
"microblaze 0 _ wrapper .
WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL11 S READ’ of

component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1215: Unconnected output port 'FSLI1 M CLK’ of component
"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSL11 M WRITE’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL11 M DATA’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSLII M CONTROL’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL12 S CLK’ of component

"microblaze 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL12 S READ’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI2Z M CLK’ of component

"microblaze 0 wrapper’

139

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI2 M WRITE’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL1I2 M DATA’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSLI2 M CONTROL’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSLI3 S CLK’ of component

"microblaze 0 _ wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL13 S READ’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL1I3 M CLK’ of component

"microblaze 0 _ wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI3 M WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL13 M DATA’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSLI3 M CONTROL’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL14 S CLK’ of component

"microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL14 S READ’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL14 M CLK’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSL14 M WRITE’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL14 M DATA’ of
component ’microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port °FSLI4 M CONTROL’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSL15 S CLK’ of component

)

"microblaze 0 wrapper

140

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’FSL15 S READ’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI5 M CLK’ of component

"microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI5 M WRITE’ of
component 'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'FSLI5 M DATA’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ‘FSLI5 M CONTROL’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'ICACHE FSL IN CLK’ of
component ’microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ‘ICACHE FSL IN READ’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ‘ICACHE FSL OUT CLK’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port ’ICACHE FSL. OUT WRITE’ of
component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ICACHE FSL OUT DATA’ of
component ’'microblaze 0 _ wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1215: Unconnected output port ’ICACHE FSL OUT CONTROL’
of component ’'microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL IN CLK’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL IN READ’ of
component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL OUT CLK’ of
component ’microblaze 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL OUT WRITE’ of
component ’‘microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL OUT DATA’ of

component ’'microblaze 0 wrapper’

141

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1215: Unconnected output port 'DCACHE FSL OUT CONTROL’
of component ’'microblaze 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Interrupt’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'MDM DBus’ of component °’
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port MDM errAck’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'MDM retry’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port MDM toutSup’ of component

'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1520: Unconnected output port 'MDM xferAck’ of component
'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Clk 1’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 1’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Reg En 17 of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Capture 1’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 1’ of component

'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Update 1’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Rst 1’ of component
mdm (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Clk 2’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 2’ of component
mdm_ 0 wrapper .

9

b

7

7

b

142

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Reg En 2’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Capture 2’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 2’ of component

'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Update 2’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Rst 2’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Clk 3’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 3’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Reg En 3’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Capture 3’ of
component ’‘mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 3’ of component

'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Update 3’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Rst 3’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Clk 4’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 4’ of component
mdm (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Reg En 4’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Capture 4’ of
component 'mdm 0 wrapper .

b

7

7

7

7

143

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1520: Unconnected output port ’'Dbg Shift 4’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Update 4’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Rst 4’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Clk 5’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 5’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Reg En 5’ of
component ’‘mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Capture 5’ of
component ’‘mdm_ 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 5’ of component

'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Update 5’ of
component ’‘mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Rst 5’ of component
mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Clk 6’ of component
mdm (0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg TDI 6’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Reg En 67 of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Capture 6’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 6’ of component

'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Update 6’ of
component 'mdm 0 wrapper .

b

b

7

b

7

144

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Rst 6’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Clk 7’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg TDI 7’ of component
mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Reg En 7’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Capture 7’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'Dbg Shift 7’ of component

'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’Dbg Update 7’ of
component ’‘mdm_ 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port 'Dbg Rst 7’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’bscan_ tdi’ of component
mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’'bscan reset’ of component

'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1520: Unconnected output port ’'bscan shift’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’bscan update’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’'bscan capture’ of
component ’mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’bscan sell’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’bscan_ drckl’ of component

'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'FSLO S CLK’ of component
'mdm_0_ wrapper .

7

7

3

7

145

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1520: Unconnected output port ’FSLO S READ’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port 'FSLO M CLK’ of component
'mdm_0_ wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port °FSLO M WRITE’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’FSLO M DATA’ of component

'mdm_0_wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ‘FSLO M CONIROL’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG DRCK’ of
component ’‘mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port 'Ext JTAG RESET’ of
component ’‘mdm_ 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG SEL’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG CAPTURE’ of
component ’‘mdm 0 wrapper ’.

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG SHIFT’ of
component 'mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG UPDATE’ of
component ’mdm_ 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1520: Unconnected output port ’Ext JTAG TDI’ of
component ’‘mdm 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB Rst’ of component ’
mb_plb_ wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'MPLB Rst’ of component ’
mb_plb_ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB_dcrAck’ of component
"mb_plb _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB dcrDBus’ of component

"mb_plb_wrapper’

146

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port *PLB_SaddrAck’ of
component ’'mb_ plb wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB SMRdErr’ of component

"mb_plb_ wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1673: Unconnected output port 'PLB SMWrEr’ of component
"mb_plb_wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB _SMBusy’ of component
"mb_plb wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB SrdBTerm’ of
component 'mb_plb wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB_ SrdComp’ of component

"mb_plb wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1673: Unconnected output port 'PLB_SrdDAck’ of component
"mb_plb_wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1673: Unconnected output port 'PLB SrdDBus’ of component
'mb_plb_ wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port PLB_SrdWdAddr’ of
component ’'mb_plb wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB Srearbitrate’ of
component 'mb_plb wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB_ Sssize’ of component
'mb_plb_ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB_Swait’ of component
mb_plb_ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB SwrBTerm’ of
component 'mb_plb wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port 'PLB SwrComp’ of component

"mb_plb_wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1673: Unconnected output port 'PLB_SwrDAck’ of component
"mb_plb_ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1673: Unconnected output port ’'Bus_ Error Det’ of
component 'mb_plb wrapper’

7

147

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT1’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUI2’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT3’ of component ’
clock generator 0 wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT4’ of component
clock generator 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT5’ of component ’
clock generator 0 wrapper’

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT6’ of component
clock generator 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT7’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUI8’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUT9’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUTI0’ of component
clock generator 0 wrapper .

7

WARNING: Xst:753 — "C:/Users/Magician /Desktop/bsb _project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUTI1’ of component
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port CLKOUTI12’ of component
clock generator 0 wrapper .

7

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUTIL3’ of component
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKOUTI4’ of component
clock generator 0 wrapper’

7

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port CLKOUT15’ of component
clock generator 0 _ wrapper’

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 1880: Unconnected output port 'CLKFBOUT’ of component
clock generator 0 wrapper’

148

7

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1880: Unconnected output port ’PSDONE’ of component ’
clock generator 0 wrapper .

WARNING: Xst:753 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1909: Unconnected output port ’SysACE IRQ’ of component
"sysace compactflash wrapper .

WARNING: Xst:753 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.
vhd" line 1965: Unconnected output port ’'Interrupt’ of component
rs232 uart_ wrapper’

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2061: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2069: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2077: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2085: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2093: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2101: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2109: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2117: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2125: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2133: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2141: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2149: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2157: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2165: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2173: Instantiating black box module <IOBUF>.

WARNING: Xst:2211 — "C:/ Users/Magician/Desktop/bsb_project/hdl/system.

vhd" line 2181: Instantiating black box module <IOBUF>.
Entity <system> analyzed. Unit <system> generated.

* HDL Synthesis

*

149

Performing bidirectional port resolution ...

Synthesizing Unit <system >.
Related source file is "C:/Users/Magician/Desktop/bsb_project/hdl
/system .vhd".
Unit <system> synthesized.

HDL Synthesis Report

Found no macro

* Advanced HDL Synthesis

*

Reading core
Reading core
Reading core
Reading core
Reading core
Reading core
Reading core
Reading core
Reading core
Reading core
Reading core

../implementation/xps_intc 0 wrapper.ngc >.
../implementation/proc_sys reset 0 wrapper.ngc>.
../implementation /microblaze 0 wrapper.ngc>.
../implementation/mdm 0 wrapper.ngc >.
../implementation /mb_plb_ wrapper.ngc>.
../implementation /lmb_bram wrapper.ngc >.
../implementation/ilmb_ cntlr wrapper.ngc>.
../implementation /ilmb wrapper.ngc>.
../implementation/dlmb_cntlr wrapper.ngc>.
../implementation/dlmb_ wrapper.ngc >.
../implementation/clock generator 0 wrapper.ngc>.
Reading core <../implementation/sysace compactflash wrapper.ngc >.
Reading core <../implementation/rs232 uart wrapper.ngc >.
Reading core <../implementation/my custom ip register 0 wrapper.ngc >.
Loading core <xps_intc 0 wrapper> for timing and area information for
instance <xps_intc_ 0>.
Loading core <proc_sys_reset (0 wrapper> for timing and area
information for instance <proc_ sys reset 0>.
Loading core <microblaze 0 wrapper> for timing and area information
for instance <microblaze 0 >.
Loading core <mdm 0 wrapper> for timing and area information for
instance <mdm_0>.

AN NN NANNANNANANNNANAA

150

Loading core <mb_ plb wrapper> for timing and area information for
instance <mb_plb>.

Loading core <lmb bram wrapper> for timing and area information for
instance <Imb_bram>.

Loading core <ilmb cntlr wrapper> for timing and area information for
instance <ilmb cntlr >.

Loading core <ilmb_ wrapper> for timing and area information for
instance <ilmb >.

Loading core <dlmb _cntlr wrapper> for timing and area information for
instance <dlmb_ cntlr >.

Loading core <dlmb_ wrapper> for timing and area information for
instance <dlmb>.

Loading core <clock generator 0 wrapper> for timing and area
information for instance <clock generator 0 >.

Loading core <sysace compactflash wrapper> for timing and area
information for instance <SysACE CompactFlash>.

Loading core <rs232 uart wrapper> for timing and area information for
instance <RS232 Uart>.

Loading core <my custom ip register 0 wrapper> for timing and area
information for instance <my custom ip register 0>.

Advanced HDL Synthesis Report

Found no macro

* Low Level Synthesis
*

Optimizing unit <system>

Mapping all equations...

Building and optimizing final netlist .

INFO:Xst:2260 — The FF/Latch <mb_ plb/GEN MPIB RST[1].I MPLB RST> in
Unit <mb_plb> is equivalent to the following 7 FFs/Latches : <
mb_plb/GEN MPLB RST|[0]|.I MPLB_ RST> <mb_ plb/GEN SPLB RST|[4].

I SPLB_RST> <mb_plb/GEN_SPLB RST'[3].I SPLB_RST> <mb_ plb/
GEN_SPLB RST[2].I SPLB_ RST> <mb_ plb/GEN_ SPLB RST[1].I SPLB RST> <
mb_plb/GEN_SPLB RST[0].I _SPLB_RST> <mb_ plb/I PLB RST>

INFO: Xst:2260 — The FF/Latch <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARBCONTROL_SM/arbSecRdInProgReg i> in Unit <mb_plb> is
equivalent to the following 2 FFs/Latches : <mb plb/GEN SHARED.

151

[PLB_ARBITER_ LOGIC/I_ARBCONTROL SM/arbSecRdInProgReg i 1> <mb plb
/GEN SHARED.I PLB_ ARBITER LOGIC/I ARBCONTROL SM/
arbSecRdInProgReg i 2>
INFO:Xst:2260 — The FF/Latch <mb_plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 1> in Unit <mb_ plb> is equivalent to
the following FF/Latch : <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 1 1>
INFO: Xst:2260 — The FF/Latch <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 0> in Unit <mb_plb> is equivalent to
the following FF/Latch : <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 0 1>
INFO: Xst:2260 — The FF/Latch <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARBCONTROL_SM/arbctrl sm_cs FSM_ FFd3> in Unit <mb_plb> is
equivalent to the following FF/Latch : <mb plb/GEN SHARED.
I PLB_ARBITER_LOGIC/I_ARBCONTROL_ SM/arbctrl sm c¢s FSM_ FFd3 1>
INFO: Xst:2260 — The FF/Latch <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARBCONTROL_SM/arbSecRdInProgReg i> in Unit <mb_plb> is
equivalent to the following 2 FFs/Latches : <mb plb/GEN SHARED.
I PLB ARBITER LOGIC/I ARBCONTROL SM/arbSecRdInProgReg i 1> <mb_ plb
/GEN SHARED.I PLB_ ARBITER_ LOGIC/I ARBCONTROL SM/
arbSecRdInProgReg i 2>
INFO:Xst:2260 — The FF/Latch <mb_plb/GEN SHARED.I PLB ARBITER_ LOGIC/
I ARB ENCODER/arbAddrSelReg i 0> in Unit <mb_ plb> is equivalent to
the following FF/Latch : <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 0 1>
INFO:Xst:2260 — The FF/Latch <mb_plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 1> in Unit <mb_ plb> is equivalent to
the following FF/Latch : <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARB ENCODER/arbAddrSelReg i 1 1>
INFO:Xst:2260 — The FF/Latch <mb_ plb/GEN SHARED.I PLB ARBITER LOGIC/
I ARBCONTROL_SM/arbctrl _sm_cs FSM_ FFd3> in Unit <mb_plb> is
equivalent to the following FF/Latch : <mb_ plb/GEN SHARED.
I PLB_ARBITER_ LOGIC/I_ARBCONTROL_SM/arbctrl sm c¢s FSM_FFd3 1>
INFO: Xst:2260 — The FF/Latch <mb plb/GEN MPLB RST[1].I MPLB RST> in
Unit <mb_plb> is equivalent to the following 7 FFs/Latches : <
mb_plb/GEN MPIB RST[0]|.I MPLB RST> <mb plb/GEN SPLB RST|[4].
I SPLB_RST> <mb_plb/GEN_SPLB RST'[3]|.I SPLB_RST> <mb_ plb/
GEN_SPLB RST[2].1 SPLB_ RST> <mb plb/GEN SPLB RST[1].I SPLB RST> <
mb_plb/GEN _SPLB RST[0].I SPLB_ RST> <mb_ plb/I PLB RST>

Final Macro Processing

Final Register Report

Found no macro

152

* Partition Report
*

Partition Implementation Status

No Partitions were found in this design.

* Final Report
*

Final Results

Top Level Output File Name : ../implementation/system.ngc
Output Format : ngc

Optimization Goal : speed

Keep Hierarchy : no

Design Statistics

10s 2 32
Cell Usage

BELS : 3937
GND : 16
INV ;b4
LUT1 ;128
LUT2 - 251
LUT3 : 519
LUT4 : 522
LUT5 : 506
LUT6 : 948
LUT6 2 ;31
MULT AND : 12
MUXCY : 266
MUXCY _L : 196
MUXF5 : 39
MUXFE7 ;123
MUXFT7_L 2 4

MUXFS L 22

VCC 212

153

XORCY 308

FlipFlops/Latches 3042

FD 240

FDC 63

FDC 1 5

FDCE 47

FDE 534

FDE 1 5

FDP 25

FDR 795

FDRE : 1184

FDRE 1 1

FDRS 2 20

FDRSE : 6

FDS : 59

FDSE : b8

RAMS : b

RAM32M ;21

RAM32X1D i 2

RAMB36_EXP ;32

Shift Registers : 90

SRL16 : 3

SRL16E 2 32

SRLC16E : 55

Clock Buffers : 6

BUFG : b

BUFGP : 1

10 Buffers ;31

IBUF 2 4

IOBUF : 16

OBUF 11

DSPs : b

DSP48FE : b

Others 12

BSCAN_VIRTEX5 : 1

PLL_ADV 1

Device utilization summary:

Selected Device 5vIx50ff676 —1

Slice Logic Utilization:

Number of Slice Registers: 2984 out of 28800 10%

Number of Slice LUTs: 3137 out of 28800 10%
Number used as Logic: 2959 out of 28800 10%

154

Number used as Memory:
Number used as RAM:
Number used as SRL:

Slice Logic Distribution:

Number of LUT Flip Flop pairs used:
Number with an unused Flip Flop:
Number with an unused LUT:

Number of fully used LUT-FF pairs:
Number of unique control sets:

10 Utilization :

Number of I0Os:

Number of bonded IOBs:
IOB Flip Flops/Latches:

Specific Feature Utilization :

Number of Block RAM/FIFO:
Number using Block RAM only:

Number of BUFG/BUFGCTRLs:

Number of DSP48Es:

Number of PLL ADVs:

Partition Resource Summary:

178
88
90

4892
1908
1755
1229

295

32
32
58

32
32

No Partitions were found in this design.

out

out
out
out

out

out

out
out
out

of

of
of
of

of

of

of
of
of

7680 2%

4892 39%
4892 35%
4892 25%
440 ™%
48 66%
32 18%
48 10%

6 16%

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE

REPORT

GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

Clock Signal
name) | Load |

Clock buffer (FF

155

clock generator 0/clock generator 0/PLLO CLK OUT<0>| BUFG

| 2858 |
mdm 0/mdm 0/drck i | BUFG
| 204 |
mdm_ 0/bscan_updatel | BUFG
| 35 |
fpga 0 SysACE CompactFlash SysACE CLK pin | BUFGP
| 95 |

Asynchronous Control Signals Information:

Control Signal
| Buffer (FF name)

| Load |

Imb_bram/lmb_bram/net gnd0(lmb bram /lmb bram/XST GND:G)
| NONE(lmb_bram/lmb_bram/ramb36 0)

128 |
mb_plb/SPLB_Rst<2>(mb_plb/mb_plb/GEN _SPLB_RST[2].1_SPLB_RST:Q)

| NONE(SysACE CompactFlash/SysACE CompactFlash /I SYSACE CONTROLLER
/MEM_STATE_MACHINE_I/Done) | 89 |

mdm 0/mdm 0/MDM _Core I1/Config Reg Acst inv(mdm 0/mdm 0/MDM Core I1/
Config_ Reg Acst_invl INV_ 0:0)

| NONE(mdm_0/mdm_0/MDM_Core I1/Config Reg 0)
| 23 |
mdm_0/mdm_0/MDM _Core I1/SEL_inv(mdm_ 0/mdm_ 0/MDM _Core I1/
SEL invl INV_0:0)

| NONE(mdm 0/mdm 0/MDM_Core I1/PORT _Selector 0)
12|
SysACE _CompactFlash /SysACE _CompactFlash /I_SYSACE CONTROLLER/
SYNC 2 CLOCKS I/done3(SysACE_CompactFlash/SysACE CompactFlash/
I SYSACE CONTROLLER/SYNC 2 CLOCKS I/DONE REG3:Q) | NONE(
SysACE _CompactFlash /SysACE CompactFlash /I SYSACE CONTROLLER/
SYNC 2 CLOCKS I/RDCE_REGI) | 6 |
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
Command Reg Rst(microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/Command Reg Rst:Q) | NONE(

156

microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
command reg 0) | 2 |
mdm 0/mdm 0/MDM _ Core I1/PLB Interconnect.JTAG CONTROL I/data cmd inv(
mdm_0/mdm_ 0/MDM _Core I1/PLB _Interconnect.JTAG CONTROL I/
data_cmd _invl INV_ 0:0) | NONE(mdm 0/mdm_0/
MDM Core I1/PLB _Interconnect.JTAG CONTROL I/execute)
I
mdm 0/mdm 0/MDM _ Core I1/PLB Interconnect.JTAG CONTROL I/local sel n3(
mdm_0/mdm_0/MDM_Core I1/PLB _Interconnect.JTAG CONTROL I/
Insert Delays[4].LUT_Delay:0O) | NONE(mdm_ 0/mdm_0/
MDM _Core I1/PLB _Interconnect.JTAG CONTROL I/FDC_TI)
1
mdm_0/mdm_0/MDM_Core I1/reset RX TFIFO (mdm 0/mdm_ 0/MDM _Core I1/
reset RX FIFO:Q)

| NONE(mdm_0/mdm_0/MDM_Core I1/PLB _Interconnect.JTAG CONTROL I/
Have UARTs.RX FIFO I/data Exists I)| 1 |

mdm_0/mdm_0/MDM_Core_I1/reset TX FIFO (mdm_0/mdm_0/MDM Core I1/
reset TX FIFO:Q)

| NONE(mdm_0/mdm_0/MDM_Core I1/PLB _Interconnect .JTAG CONTROL I/
Have UARTs.TX FIFO I/data Exists I)| 1 |

microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
continue from brk(microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/continue from brk:Q) | NONE(
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
continue from brk TClk) | 1 |

microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
force_stop CMD (microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/force stop CMD:Q) | NONE(
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
force stop_TClk) | 1 |

microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
normal stop cmd(microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/normal stop cmd:Q) | NONE(
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
normal stop TClk) | 1 |

microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
start _single step(microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug Il1/start single step:Q) | NONE(
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
single Step TClk) | 1 |

Timing Summary:

Speed Grade: —1

157

Minimum period: 6.198ns (Maximum Frequency: 161.342MHz)
Minimum input arrival time before clock: 2.750ns
Maximum output required time after clock: 7.206ns
Maximum combinational path delay: 1.397ns

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’

clock generator 0/clock generator 0/PLLO_CLK OUT<0>’
Clock period: 5.997ns (frequency: 166.750MHz)
Total number of paths / destination ports: 763463 / 9782

Delay : 5.997ns (Levels of Logic = 6)
Source: microblaze 0/microblaze 0/Performance.
Data Flow I/FPU I/mem MantA 2 31 (FF)
Destination: microblaze 0/microblaze 0/Performance.
Data_Flow I/FPU 1/Use FPU.FPU ADDSUB I/mem MantB 3 34 (FF)
Source Clock: clock generator 0/clock generator 0/PLLO CLK OUT

<0> rising
Destination Clock: clock generator 0/clock generator 0/PLLO CLK OUT
<0> rising

Data Path: microblaze 0/microblaze 0/Performance.Data Flow I/FPU I/
mem_ MantA 2 31 to microblaze 0/microblaze 0/Performance.
Data Flow I/FPU I/Use FPU.FPU ADDSUB I/mem MantB 3 34

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
FDRE: C—Q 3 0.471 1.080 microblaze 0/

Performance.Data Flow I/FPU I/mem MantA 2 31 (microblaze 0/
Performance.Data_ Flow I/FPU I/mem MantA 2<31>)

LUT6:10—0 4 0.094 0.726 microblaze 0/
Performance.Data_ Flow I/FPU _1/Use FPU.FPU ADDSUB I/
mem_rot mux1<31>1 (microblaze 0/Performance.Data Flow I/FPU I
/Use FPU.FPU ADDSUB I/mem rot muxl<31>)

LUT5:12—0 6 0.094 0.816 microblaze 0/
Performance.Data Flow I/FPU _I/Use FPU.FPU_ADDSUB I/
mem_rot _mux2<11>1 (microblaze 0/Performance.Data Flow I/FPU I
/Use_ FPU.FPU_ADDSUB_I/mem rot mux2<11>)

LUT6: 12—0 2 0.094 0.794 microblaze 0/
Performance.Data Flow I/FPU _I/Use FPU.FPU_ADDSUB I/
mem_rot mux3<27>1 (microblaze 0/Performance.Data Flow I/FPU 1
/Use FPU.FPU_ ADDSUB_I/mem rot mux3<27>)

158

LUT6: 12—0 1 0.094 0.000 microblaze 0/
Performance.Data Flow I/FPU _I/Use FPU.FPU_ADDSUB I/
mem mant_sticky 3 e¢mbl13 F (N535)

MUXEF7:10—0 1 0.251 0.480 microblaze 0/
Performance.Data_ Flow I/FPU _1/Use FPU.FPU ADDSUB I/
mem _mant_sticky 3 cmbl13 (microblaze 0/Performance.
Data_Flow I/FPU I/Use FPU.FPU ADDSUB. I/
mem _mant_sticky 3 cmbl113)

LUT5:14—0 1 0.094 0.336 microblaze 0/
Performance.Data_ Flow I/FPU_I/Use FPU.FPU ADDSUB I/
mem_mant_sticky 3 cmbl164 (microblaze 0/Performance.
Data_Flow I/FPU I/Use FPU.FPU ADDSUB I/
mem _mant_sticky 3 cmb164)

FDRS:S 0.573 microblaze 0/
Performance.Data Flow I/FPU I/Use FPU.FPU_ ADDSUB I/
mem MantB 3 34

Total 5.997ns (1.765ns logic, 4.232ns route)
(29.4% logic, 70.6% route)

Timing constraint: Default period analysis for Clock ’'mdm 0/mdm 0/
drck 1’
Clock period: 6.198ns (frequency: 161.342MHz)
Total number of paths / destination ports: 302 / 250

Delay : 3.099ns (Levels of Logic = 4)
Source: mdm 0/mdm 0/MDM _Core I1/PLB _ Interconnect.
JTAG CONTROL_I/SYNC FDRE (FF)
Destination: microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/shift Count 0 (FF)
Source Clock: mdm 0/mdm 0/drck i falling

Destination Clock: mdm 0/mdm 0/drck i rising

Data Path: mdm 0/mdm 0/MDM _ Core I1/PLB _Interconnect.JTAG CONTROL_ I/
SYNC FDRE to microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/shift Count 0

Gate Net
Cell :in—>out fanout Delay Delay Logical Name (Net Name)
FDRE 1:C—Q 1 0.467 0.973 PLB_ Interconmnect.
JTAG _CONTROL_I/SYNC FDRE (PLB _Interconnect.JTAG CONTROL I/
sync)
LUT6: 11—0 9 0.094 0.380 PLB_Interconnect.

JTAG _CONTROL I/shifting Data (Dbg Shift 7)
end scope: ’'mdm_0/MDM Core I’
end scope: ’'mdm 0’

159

begin scope: ’microblaze 0

INV:1—0 8 0.238 0.374 microblaze 0/
Performance.Use Debug Logic.Debug I1/Shift invl INV 0 (
microblaze 0/Performance.Use Debug Logic.Debug I1/Shift inv)

FDR:R 0.573 microblaze 0/
Performance.Use Debug Logic.Debug I1/shift Count 0

Total 3.099ns (1.372ns logic, 1.727ns route)
(44.3% logic, 55.7% route)

Timing constraint: Default period analysis for Clock ’mdm_ 0/
bscan updatel’
Clock period: 5.746ns (frequency: 174.034MHz)
Total number of paths / destination ports: 209 / 40

Delay : 2.873ns (Levels of Logic — 4)
Source: mdm_0/mdm_0/MDM_Core I1/PLB _Interconnect .
JTAG_CONTROL_I/FDC_I (FF)
Destination: microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug I1/force stop TClk (FF)
Source Clock: mdm_0/bscan_updatel falling

Destination Clock: mdm 0/bscan updatel rising

Data Path: mdm 0/mdm 0/MDM_ Core 11/PLB _ Interconnect.JTAG CONTROL I/
FDC I to microblaze 0/microblaze 0/Performance.Use Debug Logic.
Debug 11 /force stop TClk

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
FDC 1:C—Q 10 0.467 0.625 PLB Interconnect.
JTAG_CONTROL_I/FDC I (PLB_Interconnect.JTAG CONTROL I/
data_cmd)
LUT2:10—0 6 0.094 1.000 PLB _ Interconnect.

JTAG CONTROL_I/Dbg Reg En I<4>1 (Dbg Reg En 0<4>)

end scope: ’'mdm 0/MDM Core I1’

end scope: ’'mdm 0’

begin scope: ’microblaze 0

LUT5:10—0 9 0.094 0.380 microblaze 0/
Performance.Use Debug Logic.Debug 11/
Control Reg En_ cmp eq00001 (microblaze 0/Performance.
Use Debug Logic.Debug I1/Control Reg En)

FDCE:CE 0.213 microblaze 0/
Performance.Use Debug Logic.Debug I1/force stop TClk

Total 2.873ns (0.868ns logic, 2.005ns route)
(30.2% logic, 69.8% route)

160

7

Timing constraint: Default period analysis for Clock
fpga 0 SysACE CompactFlash SysACE CLK pin’

Clock period: 2.224ns (frequency: 449.640MHz)
Total number of paths / destination ports: 227 / 70

Delay : 2.224ns (Levels of Logic = 2)
Source: SysACE_CompactFlash/SysACE _CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/current State FSM FFd4 (
FF)
Destination : SysACE_CompactFlash /SysACE _CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/SYSACE WEN REG (FF)
Source Clock: fpga 0 SysACE CompactFlash SysACE CLK pin rising

Destination Clock: fpga 0 SysACE CompactFlash SysACE CLK pin rising

Data Path: SysACE CompactFlash/SysACE CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/current State FSM FFd4
to SysACE_CompactFlash /SysACE CompactFlash /I _SYSACE CONTROLLER/

MEM_STATE MACHINE I/SYSACE WEN REG

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
FDC:C—Q 3 0.471 1.080 SysACE_CompactFlash/

I SYSACE CONTROLLER/MEM STATE MACHINE 1/
current _State FSM_ FFd4 (SysACE_CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE 1/
current State FSM FFd4)
LUT6:10—0 2 0.094 0.485 SysACE_CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/sysace wen cmb2l (
SysACE_CompactFlash/I_SYSACE CONTROLLER/MEM_STATE MACHINE I/
N3)
LUT3:12—0 1 0.094 0.000 SysACE_ CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/sysace wen cmbl (
SysACE_CompactFlash/I_SYSACE CONTROLLER/MEM_STATE MACHINE I/
sysace__wen_cmb)
FDP:D —0.018 SysACE _CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHINE I/SYSACE WEN REG

Total 2.224ns (0.659ns logic, 1.565ns route)
(29.6% logic, 70.4% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’
clock generator 0/clock generator 0/PLLO_CLK OUT<0>’
Total number of paths / destination ports: 3 / 3

161

1.733ns (Levels of Logic = 3)

Offset:
Source: fpga 0 rst 1 sys rst pin (PAD)
Destination: proc_sys_ reset 0/proc_sys reset 0/EXT LPF/exr dl
(FF)
Destination Clock: clock generator 0/clock generator 0/PLLO CLK OUT

<0> rising

Data Path: fpga 0 rst_ 1 sys rst pin to proc_sys reset 0/
proc_sys reset 0/EXT LPF/exr dl
Gate Net

fanout Delay Delay Logical Name (Net Name)

Cell :in—>out

0.818 0.341

IBUF: 1—0 2
fpga 0 rst_ 1 sys rst pin IBUF (fpga 0 rst 1 sys rst pin IBUF)
begin scope: ’'proc_ sys reset 0’
1 0.238 0.336 proc_sys_reset 0/

INV:1—0
EXT LPF/exr dl or000011 INV 0 (proc_sys_ reset 0/EXT LPF/

exr_dl_or00001)

FDS:D
EXT LPF/exr dl

—0.018 proc_sys_ reset 0/

Total 1.733ns (1.056ns logic, 0.677ns route)
(60.9% logic, 39.1% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’'mdm 0/mdm 0/

drck 1’
Total number of paths / destination ports: 129 / 96

2.750ns (Levels of Logic = 4)

Offset:
Source: mdm_0/mdm_0/Use Virtex5 .BSCAN VIRTEX5 I:SHIFT (
PAD)
microblaze 0/microblaze 0/Performance.

Destination:
Use Debug Logic.Debug I1/shift Count 0 (FF)

Destination Clock: mdm 0/mdm 0/drck i rising

Data Path: mdm 0/mdm 0/Use Virtex5 .BSCAN VIRTEX5 I:SHIFT to
microblaze 0/microblaze 0/Performance.Use Debug Logic.Debug 11/
shift Count 0

Gate Net

fanout Delay Delay Logical Name (Net Name)

Cell :in—out

BSCAN_ VIRTEX5: SHIFT 5) 0.000 0.000 mdm 0/Use_ Virtex5s.

BSCAN_VIRTEX5 I (bscan _shift)
begin scope: ’'mdm 0/MDM _ Core 11’

162

LUT6: 10—0 9 0.094 0.380 PLB_ Interconmnect.
JTAG _CONTROL_I/shifting Data (Dbg_Shift 7)

end scope: ’'mdm 0/MDM Core I1’

end scope: ’'mdm 0’

begin scope: ’microblaze 0

INV:1—0 8 0.238 0.374 microblaze 0/
Performance.Use Debug Logic.Debug I1/Shift invl INV 0 (
microblaze 0/Performance.Use Debug Logic.Debug I1/Shift inv)

FDR:R 0.573 microblaze 0/
Performance.Use Debug Logic.Debug I1/shift Count 0

Total 2.750ns (1.996ns logic, 0.754ns route)
(72.6% logic, 27.4% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’mdm 0/
bscan updatel’
Total number of paths / destination ports: 14 / 14

Offset : 1.670ns (Levels of Logic = 2)
Source: mdm 0/mdm 0/Use Virtex5.BSCAN VIRTEX5 I:SEL (PAD
)
Destination: mdm 0/mdm 0/MDM _ Core I1/PORT _Selector 1 0 (FF)

Destination Clock: mdm 0/bscan_ updatel rising

Data Path: mdm 0/mdm 0/Use Virtex5.BSCAN VIRTEX5 I:SEL to mdm 0/
mdm 0/MDM_Core I1/PORT _Selector 1 0

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
BSCAN VIRTEX5: SEL 8 0.000 0.000 mdm_0/Use Virtex5.

BSCAN_VIRTEX5 I (mdm_0/sel)
begin scope: ’mdm_ 0/MDM Core I1’

LUT5:10—0 4 0.094 0.352 MDM SEL1 (MDM SEL)
FDCE: CE 0.213 PORT _Selector 1 0
Total 1.670ns (1.318ns logic, 0.352ns route)

(78.9% logic, 21.1% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’
fpga 0 SysACE CompactFlash SysACE CLK pin’
Total number of paths / destination ports: 16 / 16

Offset: 1.154ns (Levels of Logic = 2)

163

Source: fpga 0 SysACE CompactFlash SysACE MPD pin<0> (

PAD)

Destination : SysACE _CompactFlash /SysACE _CompactFlash/
I SYSACE CONTROLLER/SYNC 2 CLOCKS I/MEM DQ I GEN|[7].MEM DQ I 1 (
FF)

Destination Clock: fpga 0 SysACE CompactFlash SysACE CLK pin rising

Data Path: fpga 0 SysACE CompactFlash SysACE MPD pin<0> to
SysACE_CompactFlash /SysACE _CompactFlash /I _SYSACE CONTROLLER/
SYNC_ 2 CLOCKS I/MEM DQ I GEN[7].MEM DQ I 1

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
IOBUF : 10—0 1 0.818 0.336 iobuf 15 (

fpga 0 SysACE_CompactFlash SysACE_MPD pin_1<0>)
begin scope: ’SysACE _ CompactFlash’

FDCE:D —0.018 SysACE _CompactFlash/
I SYSACE CONTROLLER/SYNC 2 CLOCKS I/MEM DQ I GEN|[7].
MEM DQ I 1

Total 1.154ns (0.818ns logic, 0.336ns route)

(70.9% logic, 29.1% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’
fpga 0 SysACE CompactFlash SysACE CLK pin’
Total number of paths / destination ports: 42 / 26

Offset : 3.259ns (Levels of Logic = 2)
Source: SysACE _CompactFlash /SysACE _CompactFlash/
I SYSACE CONTROLLER/MEM _ STATE MACHINE I/SYSACE CEN_REG (FF)
Destination: fpga 0 SysACE CompactFlash SysACE CEN pin (PAD)
Source Clock: fpga 0 SysACE _ CompactFlash SysACE CLK pin rising

Data Path: SysACE_ CompactFlash/SysACE CompactFlash/
I SYSACE CONTROLLER/MEM STATE MACHNE I/SYSACE CEN REG to
fpga 0 SysACE_ CompactFlash SysACE CEN pin

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
FDP:C—Q 1 0.471 0.336 SysACE_CompactFlash/

I SYSACE CONTROLLER/MEM STATE MACHINE I/SYSACE CEN REG (
SysACE_CEN)
end scope: ’SysACE_CompactFlash’
OBUF: I—0 2.452
fpga 0 SysACE_CompactFlash SysACE CEN_pin_ OBUF (
fpga 0 SysACE_CompactFlash SysACE CEN_pin)

164

Total 3.259ns (2.923ns logic, 0.336ns route)
(89.7% logic, 10.3% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’
clock generator 0/clock generator 0/PLLO CLK OUT<0>’
Total number of paths / destination ports: 1 / 1

Offset: 3.259ns (Levels of Logic = 2)
Source: RS232 Uart/RS232 Uart /UARTLITE CORE 1/
UARTLITE_TX_I/TX (FF)
Destination: fpga 0 RS232 Uart TX pin (PAD)
Source Clock: clock generator 0/clock generator 0/PLLO CLK OUT

<0> rising

Data Path: RS232 Uart/RS232 Uart /UARTLITE CORE I/UARTLITE TX I/TX
to fpga 0 RS232 Uart TX pin

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
FDS:C—Q 1 0.471 0.336 RS232 Uart/

UARTLITE CORE I/UARTLITE TX I/TX (TX)
end scope: 'RS232 Uart’
OBUF: 1—0 2.452
fpga 0 RS232 Uart TX pin OBUF (fpga 0 RS232 Uart TX pin)

Total 3.259ns (2.923ns logic, 0.336ns route)
(89.7% logic, 10.3% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’mdm_ 0/mdm 0/
drek i’
Total number of paths / destination ports: 119 / 1

Offset: 7.206ns (Levels of Logic = 8)
Source: microblaze 0/microblaze 0/Performance.
Use Debug Logic.Debug 11/Use SRL16.The Cache Addresses|[5].
SRL16E_Cache I (FF)
Destination: mdm_0/mdm_0/Use Virtex5 .BSCAN VIRTEX5 I:TDO (PAD

)
Source Clock: mdm_0/mdm_0/drck i rising

Data Path: microblaze 0/microblaze 0/Performance.Use Debug Logic.
Debug 11/Use SRL16.The Cache Addresses|5].SRL16E_ Cache I to

165

mdm_0/mdm_0/Use_ Virtex5.BSCAN VIRTEX5 I:TDO

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
SRLI16E : CLK—Q 1 1.889 0.973 microblaze 0/

Performance.Use Debug Logic.Debug I1/Use SRL16.
The Cache Addresses|5].SRL16E Cache I (microblaze 0/
Performance.Use Debug Logic.Debug I1/tdo config wordl<6>)

LUT6:11—0 1 0.094 0.973 microblaze 0/
Performance.Use Debug Logic.Debug I1/TDO42 (microblaze 0/
Performance.Use Debug Logic.Debug I1/TD042)

LUT6:11—0 1 0.094 0.000 microblaze 0/
Performance.Use Debug Logic.Debug I1/TDO387 SWO01 (
microblaze 0/Performance.Use Debug Logic.Debug 11/TDO387 SW0)

MUXFT7: 11 —0 1 0.254 0.789 microblaze 0/
Performance.Use Debug Logic.Debug I11/TDO387 SWO0 {7 (N463)

LUT6:12—0 1 0.094 1.069 microblaze 0/
Performance.Use Debug Logic.Debug 11/TDO387 (DBG TDO)

end scope: ’'microblaze 0’

begin scope: ’'mdm 0’

begin scope: ’'mdm 0/MDM _Core 11’

LUT6:10—0 1 0.094 0.789 TDO_i79 (TDO_i79)
LUT6:12—0 0 0.094 0.000 TDO _i225 (TDO)
end scope: ’'mdm_0/MDM Core I’

BSCAN VIRTEX5:TDO 0.000 mdm 0/Use Virtexh.

BSCAN VIRTEX5 I

Total 7.206ns (2.613ns logic, 4.593ns route)
(36.3% logic, 63.7% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’mdm_ 0/
bscan updatel’

Total number of paths / destination ports: 36 / 1

Offset: 4.996ns (Levels of Logic = 9)
Source: mdm_ 0/mdm 0/MDM_Core I1/PLB _Interconnect.
JTAG_CONTROL_I/FDC_I (FF)
Destination : mdm 0/mdm 0/Use Virtex5 .BSCAN VIRTEX5 I:TDO (PAD
)
Source Clock: mdm 0/bscan_updatel falling

Data Path: mdm 0/mdm 0/MDM _Core 11/PLB _Interconnect.JTAG CONTROL I/
FDC I to mdm 0/mdm_0/Use Virtex5.BSCAN VIRTEX5 I:TDO
Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)

166

FDC 1:C—Q 10 0.467 0.625 PLB_ Interconmnect.
JTAG _CONTROL_I/FDC 1 (PLB _Interconnect.JTAG CONTROL I/
data_cmd)

LUT2:10—0 6 0.094 1.096 PLB _Interconnect.
JTAG CONTROL I/Dbg Reg En I<4-1 (Dbg Reg En 0<4-)

end scope: ’'mdm_ 0/MDM Core I1’

end scope: ’'mdm 0’

begin scope: ’'microblaze 0’

LUT6:10—0 1 0.094 0.480 microblaze 0/
Performance.Use Debug Logic.Debug I1/TDO351 (microblaze 0/
Performance.Use Debug Logic.Debug I1/TDO351)

LUT6:15—0 1 0.094 1.069 microblaze 0/
Performance.Use Debug Logic.Debug I1/TDO387 (DBG_TDO)
end scope: ’'microblaze 0’

begin scope: ’'mdm 0’
begin scope: ’'mdm 0/MDM _ Core 11’

LUT6:10—0 1 0.094 0.789 TDO_i79 (TDO_i79)
LUT6:12—0 0 0.094 0.000 TDO _i225 (TDO)
end scope: ’'mdm 0/MDM Core I1’

BSCAN_VIRTEX5:TDO 0.000 mdm_0/Use Virtex5.

BSCAN _VIRTEX5 I

Total 4.996ns (0.937ns logic, 4.059ns route)
(18.8% logic, 81.2% route)

Timing constraint: Default path analysis
Total number of paths / destination ports: 2 / 2

Delay : 1.397ns (Levels of Logic = 3)
Source: fpga 0 rst 1 sys rst pin (PAD)
Destination: clock generator 0/clock generator 0/Using PLLO.

PLLO_INST/PLL_INST/Using PLL_ADV.PLL ADV inst:RST (PAD)

Data Path: fpga 0 rst 1 sys rst pin to clock generator 0/

clock generator 0/Using PLLO.PLLO INST/PLL INST/Using PLL ADV.
PLL ADV inst:RST

Gate Net
Cell :in—out fanout Delay Delay Logical Name (Net Name)
IBUF:1—0 2 0.818 0.341
fpga 0 rst_1 sys rst pin IBUF (fpga 0 rst 1 sys rst pin_ IBUF)
begin scope: ’clock generator 0’
INV:T—0 0 0.238 0.000 clock generator 0/

Using PLLO.PLLO INST/PLL INST/rstil INV 0 (clock generator 0/
Using PLLO.PLLO_INST/PLL INST/rsti)

167

PLL ADV:RST 0.000 clock generator 0/
Using PLLO.PLLO_INST/PLL INST/Using PLL ADV.PLL ADV inst

Total 1.397ns (1.056ns logic, 0.341ns route)
(75.6% logic, 24.4% route)

Total REAL time to Xst completion: 25.00 secs
Total CPU time to Xst completion: 25.75 secs

—>

Total memory usage is 257840 kilobytes

Number of errors : 0 (0 filtered)
Number of warnings : 278 (0 filtered)
Number of infos : 10 (0 filtered)

168

.4 Matlab Scripts

4.1 Read Image

a = imread(‘canyon. gif ’);
[y, x]= size(a);
size X = Xx;

size 'y = y;

b = imnoise(a, 'salt & pepper’ ;0.02);

string = "(7;
for j l:size x
J
for i = 1:size_y

if (j==size x && i=size y)
string = [string ,num2str(b(i,j))|;
else
string = [string ,num2str(b(i,j)),’ ., |;
end ;

end ;
end ;

string = [string,) |;

file in = fopen(’image in 0.02.pgm’, 'w’);
fprintf(file in ,string);

fclose (file in);

size X

size y

169

4.2 Write Image

a = textread(’one.pgm’);
b =a’;

[v,x]= size(b);

img = zeros(x,y—(y—x));

size (img)
imwrite (img, canyon noise 0.01.pgm’, encoding’, ascii’);

170

4.3 Measuring Values

img = imread (' field.gif’);

noisy = imread(’field output mnoise 0.001.png’);
img = im2double (img) ;

noisy = im2double(noisy);

[x,y]— size (img);

max_val = max(max(img));

[x,y] = size(img);
mse = 0;
mae = 0;
for i=2:x—1
for j=2:y-1
mse = mse + (img(i,j)—noisy(i,j)) 2;
mae = mae + abs(img(i,j)—noisy(i,]j));
end
end

mse = mse/(2*xxx*y);
mae = mae/(2%xxy);

psnr = 10xlogl0 ((max_val”~2)/mse);

mse = msex*x256;
mae = mae*x256;

mse
mae
psnr

171

4.4 Median algorithm

%image is the image to be noised then denoised

%m is the vindowsize

%th is the threshold in added value, a value of 0,2 will classefy any
pixel

%of +-0,2 as defect

%n is the noise percentage

function image median(image ,m,th n)

tic; %start time

I = imread(image) ; %reading image file

[x,y,z]= size(I); %calculating the size of
the input image

pixel map = zeros(x,y,z); %a matrix which stores
the positions of the pixels that have been corrected

img = im2double(I); %converting from unit8 to
double: scale from 0..1 in stead of 0——256

img noisy = imnoise (img, 'salt & pepper’ ,n); %adding noise to the
input image

noise= img _ noisy; %duplicating the noist

image in order to dispay both of them
% imwrite(noise ,’img two _ noisy salt.jpg’);%writing corrected image to
file

%The corners, edges and
mid image will have to

be done separately
due to

Y%how matlab indexes and m
*n*x3 matrix. It is
impossible to access a

position

%outside the matrix.The
image matrix will have

corners (1,1) (1,y),(x
,1) and

%(x,y)

%correcting the corners
of all the layers in
the image by replacing

a noisy

%pixel with the median of
the three neigboring
pixels . The z variable
will

%be 3 for an RGB image.

%left upper corner(1,1)
of all the layers(3
layers for an RGB
image)

172

for k=1:z

cl=[img _ mnoisy(2,1,k),img noisy(2,2,k),img mnoisy (1,2,k) |;
if (img mnoisy (1,1 ,k)>thtmax(cl) ||img noisy (1,1 ,k)<th4min(cl))
pixel map (1,1 ,k)=1;
img mnoisy (1,1 ,k)=median(cl); %left upper corner(1l,y)
of all layers
end
end
for k=1:z
c2=[img_mnoisy (1,y—1,k),img noisy(2,y,k),img noisy(2,y—1,k)];
if (img mnoisy(1,y,k)>thtmax(c2) ||img mnoisy(1l,y,k)<th4min(c2))
pixel map(1,y,k)=1;
img noisy(1,y,k)=median(c2); %right upper corner(1,y)
of all layers
end
end
for k=1:z
c¢3= [img noisy(x,2,k),img noisy(x—1,1,k),img mnoisy(x—1,2,k) |;
if (img mnoisy(x,1,k)>th+max(c3)||img_ noisy(x,1,k)<th+min(c3))
pixel map(x,1,k)=1;
img mnoisy(x,1,k)=median(c3); %left lower corner(x,l)
of all layers
end
end
for k=1:z

c4d=|img mnoisy(x,y,k),img noisy(x—1,y—1,k),img noisy(x—1,y,k) |;
if (img mnoisy(x,y,k)>th+max(c4)||img noisy(x,y,k)<th+min(c4))
pixel map (x,y,k)=1;
img noisy (x,y,k)=median(c4); %right lower corner(x,y)
of all layers
end
end

%correcting the edges of
the image is done by
storing the neigboring

%pixel values and
assigning the median
of those values to the
pisition of

%the defect pixel.The
windowsize is m, and
correcting from ((m—((
mi1)/2)))

%to ((m—((m—1)/2))) will
correct the edges that

173

the mid image

correction
%function can not reach

with its for loop.

for k=1:z Y%upper horizontal line
for i=2:((m—((m+1)/2)))
for j=2:((m—((m— 1)/2)))

el =[img mnoisy(i,j—1,k),img noisy(i,j+1,k),

)
img mnoisy (i +1,J 1,k) ,img mnoisy(i+1,j,k),
img_noisy (i+1,j+1,k) |
if (img_mnoisy(i,j,k)>th+max(el) ||img_noisy
(i,j,k)<th4min(el))
pixel map(i,j,k)=1;
img noisy(i,j,k)=median(el);
end
end
end
end
for k=1:z %lower horizontal line
for i=2:(x—(m—((m+1)/2)))
for joy: (y—@m—((m-1)/2)))
e2=[img_ moisy(i,j—1,k),img noisy(i,j+1,k),
img noisy(i+1,j—1,k),img mnoisy(i+1,j,k),
img noisy(i+1,j+1,k)|;
if (img_moisy(i,j,k)>tht+max(e2) ||img_mnoisy(i,]
,k)<th+min(e2))
pixel map(i,j,k)=1;
img noisy(i,j,k)=median(e2);
else
end
end
end
end
for k=1:z %left vertical line

for i=2:((m—((m+1)/2)
for j=2:((m—((m+1
e3=[img_mnoisy

img noisy (

(

(i

))

)/2)))
(i—1,j,k),img noisy (i +1,J k),
i+1,j+1,k),img noisy(i,j+1,k),
i—1,j4+1,k)];
(e
(i
(i

img noisy
if (img noisy
, k)<th+min
pixel map
img mnoisy

,j ,k)>th+max(e3) ||img_ noisy(i,]
3))
i,j, k) median(e?));

174

end
end
end
end

for k=1:z %right vertical line
for imy:(y—(m—((m+1)/2)))
for j=2:(x—(m—((m+1)/2)))
ed=[img_ moisy(i,j—1,k),img noisy(i,j+1,k),
img noisy(i+1,j—1,k),img mnoisy(i+1,j,k),
img noisy(i+1,j+1,k)|;
if (img_mnoisy(i,j,k)>th+max(e4)||img_noisy(i,]
,k)<th+min(e4))
pixel map(i,j,k)=1;
img mnoisy(i,j,k)=median(e4);

end
end
end
end
%Correcting mid image
from (m—(m—1)/2):x—(m
—(m+1)/2) to
%(m—(m—1)/2) :y—(m—(m+1) /2
will ensure that the
enitre image has been
%corrected when first
doing the coreners
then the edges and at
last the
%mid image .
for k=1:z

for i=(m(m—1)/2) :x—(m—(m+1)/2)
for j=(m—(m—1)/2) :y—(m—(m+1)/2)

val = 1; %counter for
the values array

count = 1;

values = zeros(1,m"2); %array to

store the neigboring pixel values
array zeros (1 ,m~"1-1);
for a——(m—((m+1)/2)) : (m—((m+1) /2))
for b=—(m—(m+1)/2) :(m—((m+1)/2))
if (a==0 && b==0)
else
array (count)=img mnoisy (ita, j+b,
k);

175

end

values(val)=img noisy(i+ta, j+b,k

val
end
end

if (img mnoisy(i,j,k)>th+max(array) |
img mnoisy(i,j,k)<th+min(array))

);

val+1;

img noisy (i,j,k)=median(values); %
replacing the defect pixel with
the median of the values array

pixel map(i,j,k)=1; %
storing the position of the defect

pixel
end
end
end
end

toc;

%stop time

imwrite (img_mnoisy, 'median res.jpg’); % write the

%restored image to
predetermined filename

%plotting the original ,
noisy and
reconstructed image

str=sprintf(’'Median filtered image with windowsize %d’, m);

subplot (2,2,1:2), imshow(I)

title (’Original image’);

subplot (2,2,3), imshow(noise)
title ("Noisy image’);

subplot (2,2,4) , imshow(img noisy)
title (str);

J = img noisy;
max_val = max(max(max(img)));
[x,y,2] = size(1);

mse = 0;
mae = 0;
for k=1:z

176

%When the image has been
corrected it is time
to measure the mse,
mae and

%psnr . This is done by
looping through the
entire image in order
to

%calculate these values.

for

end
end

mse = mse/(3xxxy);
mae = mae/(3%x*y)

i=2:x-1
for j=2:y-1
mse = mse + (img(i,j,k)-J(i,j,k))"2;
mae = mae + abs(img(i,j,k)=-J(i,j,k));
end

psnr = 10xlogl0 ((max_val"~2)/mse);
%defects = sum(sum(sum(pixel map)));
mse = 256xmse;
mae = 256xmae;

%displaying the measured values.

mse
mae
psnr
end

177

.5 C Code

.5.1 Test Compact flash

#include "sysace stdio.h"
#include "xparameters.h"
#include "xutil.h"
#include "xio.h"

#include "stdio.h"

int main(void){

unsigned char buffer [3];

charxfile out = "output.txt"; //input and output files name, type the
charxfile in = "input.txt"; //directory

int numread;

char readBuffer[2]; //the wvariable that stored charackters read

from the c¢f card

SYSACE_FILE * outfile; //input file handler

SYSACE FILE x infile; //output file handler

outfile sysace fopen (file out ,"w"); //open the putfile in
write mode

infile = sysace fopen(file in ,"r"); //open the input file in

read mode

numread = sysace fread (readBuffer ,1,19 infile); //reading 19
characters from the input file into the readBuffer

sysace fwrite(readBuffer ;1,19 ,outfile); //writing the characters
from the readBuffer into the file on the cf card

sysace fclose(outfile); //closing the output file
sysace fclose(infile); //closing the input file
return 0;

}

178

.5.2 Test interrupt

#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
#define

void intr handler (){
charxfile out = "outfile.txt";

"sysace stdio.h"

"xparameters.h"

"xutil .h"

"xio.h"

"stdio .h"

"my custom ip register.h"

"xintc.h"

"mb interface.h"
SLV_REGO 0x00000000
SLV_REG1 0x00000004
SLV_REG2 0x00000008
SLV_REG3 0x0000000C
SLV_REG4 0x00000010
BaseAddress 0xCCC00000
read 0x00000001
reset 0x00000000

type and directory

char readValue;

int numwrite;
SYSACE FILE % outfile;
unsigned char buffer[4]= "test";

//declaring the output file name,

//variable to store data

//output file handler

//data to be written to the file

status = MY CUSTOM IP REGISTER mReadReg(
XPAR_ MY CUSTOM IP REGISTER 0 BASEADDR,

MY _ CUSTOM IP_REGISTER INTR_IPISR_OFFSET) ;
the

interrupt

service

register

MY CUSTOM IP_ REGISTER_mWriteReg(
XPAR, MY CUSTOM_IP REGISTER (0 BASEADDR,

MY CUSTOM_IP_REGISTER INTR_IPISR_OFFSET, 0);

interrupt on peripheral
XIntc mAckIntr (XPAR_XPS INTC 0 BASEADDR,
XPAR_MY_ CUSTOM IP_REGISTER 0 TP2INTC IRPT MASK) ;

//Acknowledge interrupt on interrupt

outfile =

write mode

numwrite = sysace fwrite(buffer ,1,sizeof(buffer),outfile);

sysace fopen (file out ,"w'");

the data in buffer to the file
sysace fclose(outfile);

179

//read the status of

//Acknowledge

controller

//open file in
//write

//close file

void init (){
// Registering an Interrupt handler
XIntc RegisterHandler (XPAR_XPS INTC (0 BASEADDR,
XPAR XPS INTC 0 MY CUSTOM IP REGISTER 0 IP2INTC IRPT INTR,
intr _handler , (void x)XPAR_MY CUSTOM IP REGISTER 0 BASEADDR) ;

// enabling interrupts on the interrupt controller , my custom ip
and microblaze
XInte _mMasterEnable (XPAR, MY CUSTOM IP_REGISTER 0 BASEADDR) ;
XIntc _mEnablelntr (XPAR_MY CUSTOM IP REGISTER 0 BASEADDR,
XPAR MY CUSTOM_IP REGISTER 0 IP2INTC IRPT MASK) ;
MY CUSTOM IP REGISTER_Enablelnterrupt ((void)
XPAR MY CUSTOM_IP_ REGISTER 0 BASEADDR) ;
microblaze enable interrupts();

int main(void){
init (); //run the function to set up the interrupts
intr _handler () ; //the function run for every interrupt

while (1){

}

return 0;

180

.5.3 Test interrupt with read and write

#include "sysace stdio.h"

#include "xparameters.h"

#include "xutil.h"

#include "xio.h"

#include "stdio.h"

#include "my custom ip register.h"
#include "xintc.h"

#include "mb interface.h"

void intr handler (){

SYSACE FILE % outfile;

charx file out = "outfile.txt"; //output file name, type and
directory

Xuint32 readValue; //variable to store data read from the
register

Xuint32 status; //status of the interrupt register

char test [3]; //variable used to store char representation
of readValue

char data[30]; //variable that is written to the cf card

status = MY_ CUSTOM_IP REGISTER_mReadReg(
XPAR MY _ CUSTOM_IP REGISTER (0 BASEADDR,
MY CUSTOM_IP REGISTER INTR IPISR OFFSET) ; //read the status
of the interrupt service register
MY CUSTOM IP REGISTER mWriteReg(
XPAR_MY CUSTOM IP REGISTER (0 BASEADDR,
MY CUSTOM_IP REGISTER INTR_IPISR OFFSET, 0); //
Acknowledge interrupt on peripheral
XInte mAckIntr (XPAR_XPS INTC 0 BASEADDR,
XPAR_MY_ CUSTOM_IP_REGISTER_0 IP2INTC IRPT MASK) ;
//Acknowledge interrupt on interrupt controller

outfile = sysace fopen(file out 6 "w");
//open file in write mode
readValue = MY CUSTOM_IP REGISTER,_mReadReg(
XPAR MY CUSTOM IP REGISTER 0 BASEADDR,
MY _ CUSTOM_IP_ REGISTER _SLV_REG3 OFFSET) ; //read value from
register 3
test [0] = readValue;
//stores value in the test wvariable
strncat (data , test ,2) ; //stores
the test value into a char array
sysace fwrite((char x)data,l,sizeof(data),outfile);
//writes the value of data to the cf card
sysace fclose(outfile); //close
the file

181

}

int init(i){
// Registering an Interrupt handler
XIntc RegisterHandler (XPAR_XPS INTC (0 BASEADDR,
XPAR_XPS INTC 0 MY CUSTOM IP REGISTER 0 IP2INTC IRPT INTR,
intr _handler, (void *)XPAR MY CUSTOM IP REGISTER 0 BASEADDR) ;

// enabling interrupts on the interrupt controller , my custom ip

and microblaze
XInte mMasterEnable (XPAR, MY CUSTOM IP REGISTER 0 BASEADDR) ;

XIntc _mEnablelntr (XPAR_MY CUSTOM IP REGISTER 0 BASEADDR,
XPAR_MY CUSTOM IP REGISTER 0 IP2NTC IRPT MASK) :
MY _ CUSTOM IP REGISTER_EnableInterrupt ((void)
XPAR_ MY CUSTOM IP_REGISTER 0 BASEADDR) ;
microblaze enable interrupts();
i=0;
return 1ij;

int main(void){
MY CUSTOM_IP REGISTER mWriteReg(XPAR MY CUSTOM IP_REGISTER 0 BASEADDR

,MY CUSTOM I[P REGISTER SLV REG3 OFFSET,0xA2); //writing a test
value to register 3

init (); //function to set up the interrupts

intr _handler () ; //function that is invoked when there is an

interrupt.

while (1){

}

return 0;

}

182

.6 Images

.6.1 Original Images

Figure 1: Original noise free Lena image

183

Figure 2: Original noise free Canyon image

184

Figure 3: Original noise free Field image

185

.6.2 Lena Images from different noise levels

Figure 4: Lena image with noise level 0.001

Figure 5: Restored Lena image from noise level 0.001

186

Figure 6: Lena image with noise level 0.002

Figure 7: Restored Lena image from noise level 0.002

187

Figure 8: Lena image with noise level 0.004

Figure 9: Restored Lena image from noise level 0.004

188

Figure 10: Lena image with noise level 0.006

Figure 11: Restored image from noise level 0.006

189

Figure 12: Lena image with noise level 0.008

Figure 13: Restored Lena image from noise level 0.008

190

Figure 14: Lena image with noise level 0.01

Figure 15: Restored Lena image from noise level 0.01

191

Figure 16: Lena image with noise level 0.02

Figure 17: Restored Lena image from noise level 0.02

192

Figure 18: Lena image with noise level 0.04

Figure 19: Restored Lena image from noise level 0.04

193

Figure 20: Lena image with noise level 0.06

Figure 21: Restored Lena image from noise level 0.06

194

Figure 23: Restored Lena image from noise level 0.08

195

Figure 25: Restored Lena image from noise level 0.1

196

.6.3 Lena Images from different threshold levels

Figure 26: Lena image with noise level 0.02

Figure 27: Restored Lena image from threshold level 1

197

Figure 28: Restored Lena image from threshold level 4

Figure 29: Restored Lena image from threshold level 8

198

Figure 30: Restored Lena image from threshold level 12

Figure 31: Restored image from threshold level 16

199

Figure 32: Restored Lena image from threshold level 20

Figure 33: Restored Lena image from threshold level 22

200

Figure 34: Restored Lena image from threshold level 26

Figure 35: Restored Lena image from threshold level 30

201

Figure 36: Restored Lena image from threshold level 34

Figure 37: Restored Lena image from threshold level 38

202

Figure 38: Restored Lena image from threshold level 42

Figure 39: Restored Lena image from threshold level 46

203

Figure 40: Restored Lena image from threshold level 50

204

.6.4 Field Images from different noise levels

Figure 41: Field image with noise level 0.001

Figure 42: Restored Field image from noise level 0.001

205

Figure 43: Field image with noise level 0.002

Figure 44: Restored Field image from noise level 0.002

206

Figure 45: Field image with noise level 0.004

Figure 46: Restored Field image from noise level 0.004

207

Figure 47: Field image with noise level 0.006

Figure 48: Restored Field image from noise level 0.006

208

Figure 49: Field image with noise level 0.008

Figure 50: Restored Field image from noise level 0.008

209

Figure 51: Field image with noise level 0.01

Figure 52: Restored Field image from noise level 0.01

210

Figure 53: Field image with noise level 0.02

Figure 54: Restored Field image from noise level 0.02

211

Figure 55: Field image with noise level 0.04

Figure 56: Restored Field image from noise level 0.04

212

Figure 57: Field image with noise level 0.06

Figure 58: Restored Field image from noise level 0.06

213

Figure 59: Field image with noise level 0.08

Figure 60: Restored Field image from noise level 0.08

214

Figure 61: Field image with noise level 0.1

Figure 62: Restored Field image from noise level 0.1

215

.6.5 Field Images from different threshold levels

Figure 63: Field image with noise level 0.02

Figure 64: Restored Field image from threshold level 1

216

Figure 65: Restored Field image from threshold level 4

Figure 66: Restored Field image from threshold level 8

217

Figure 67: Restored Field image from threshold level 12

Figure 68: Restored Field image from threshold level 16

218

Figure 69: Restored Field image from threshold level 20

Figure 70: Restored Field image from threshold level 22

219

Figure 71: Restored Field image from threshold level 26

Figure 72: Restored Field image from threshold level 30

220

Figure 73: Restored Field image from threshold level 34

Figure 74: Restored Field image from threshold level 38

221

Figure 75: Restored Field image from threshold level 42

Figure 76: Restored Field image from threshold level 46

222

Figure 77: Restored Field image from threshold level 50

223

.6.6 Canyon Images from different noise levels

Figure 78: Canyon image with noise level 0.001

Figure 79: Restored Canyon image from noise level 0.001

224

Figure 80: Canyon image with noise level 0.002

Figure 81: Restored Canyon image from noise level 0.002

225

Figure 82: Canyon image with noise level 0.004

Figure 83: Restored Canyon image from noise level 0.004

226

Figure 84: Canyon image with noise level 0.006

Figure 85: Restored Canyon image from noise level 0.006

227

Figure 86: Canyon image with noise level 0.008

Figure 87: Restored Canyon image from noise level 0.008

228

Figure 88: Canyon image with noise level 0.01

Figure 89: Restored Canyon image from noise level 0.01

229

Figure 90: Canyon image with noise level 0.02

Figure 91: Restored Canyon image from noise level 0.02

230

Figure 92: Canyon image with noise level 0.04

Figure 93: Restored Canyon image from noise level 0.04

231

Figure 94: Canyon image with noise level 0.06

Figure 95: Restored Field image from noise level 0.06

232

Figure 97: Restored Canyon image from noise level 0.08

233

Figure 99: Restored Canyon image from noise level 0.1

234

.6.7 Canyon Images from different threshold levels

Figure 100: Canyon image with noise level 0.02

Figure 101: Restored Canyon image from threshold level 1

235

Figure 102: Restored Canyon image from threshold level 4

Figure 103: Restored Canyon image from threshold level 8

236

Figure 104: Restored Canyon image from threshold level 12

Figure 105: Restored Canyon image from threshold level 16

237

Figure 106: Restored Canyon image from threshold level 20

Figure 107: Restored Canyon image from threshold level 22

238

Figure 108: Restored Canyon image from threshold level 26

Figure 109: Restored Canyon image from threshold level 30

239

Figure 110: Restored Canyon image from threshold level 34

Figure 111: Restored Canyon image from threshold level 38

240

Figure 112: Restored Canyon image from threshold level 42

Figure 113: Restored Canyon image from threshold level 46

241

Figure 114: Restored Canyon image from threshold level 50

242

.6.8 Image from software simulation

Figure 115: Restored Lena image when using the software algorithm designed in the 2009 fall
project

243

Figure 116: Restored field image when using the software algorithm designed in the 2009 fall
project

244

Figure 117: Restored canyon image when using the software algorithm designed in the 2009
fall project

245

	Title Page
	Problem Description
	Introduction
	Background
	Static Defect
	Pixel Defect
	Programmable Threshold

	Motivation
	Objective

	System
	Xilinx ML501
	Microblaze
	Creating an embedded system with platform studio
	System Ace Controller
	RS232
	Interrupts
	Creating an intellectual property
	Access Peripherals
	Adding c source file

	Supporting Theory
	Median Filter
	Types of Noise
	Salt and pepper noise
	Gaussian Noise

	Images
	Histogram
	Contrast
	Bayer Color Filter
	PGM Image Format

	Number representation
	Hexadecimal scale with base 16
	Decibel scale with base 10

	Text representation using ascii
	Measured Values
	Mean Square Error (MSE)
	Mean absolute error(MAE)
	Peak signal to noise ratio (PSNR)
	Real time constraints

	TextIO vhdl package

	Architecture
	VHDL Architecture
	Size Package Module
	Median module
	Image_core Module
	Ctrl Module

	Note
	Microblaze
	Hardware Architecture
	Software Architecture

	Matlab scripts
	Reading Image
	Write Image
	Measuring Statistical Values

	Simulation
	VHDL module testing
	Median Testing
	Image_core Testing
	Ctrl Testing

	Test of the whole VHDL system
	Different noise levels
	Different threshold values

	Software algorithms
	Microblaze simulation
	System Ace write to card
	Interrupt testing
	Read value from peripheral register

	Synthesis
	VHDL Synthesis
	Microblaze Syntethization

	Tools
	Discussion
	Vhdl
	Microblaze
	Simulation
	Real time operation
	Comparison with 2009 fall project
	Interpreting images
	Border pixels
	Tools
	Appendix

	Concluding remarks
	Further Work
	Bibliography
	Appendices
	VHDL
	VHDL Source Code
	VHDL Test Benches

	Microblaze files
	mss
	mhs
	ucf
	xparameters.h

	Microblaze Synthesize
	Matlab Scripts
	Read Image
	Write Image
	Measuring Values
	Median algorithm

	C Code
	Test Compact flash
	Test interrupt
	Test interrupt with read and write

	Images
	Original Images
	Lena Images from different noise levels
	Lena Images from different threshold levels
	Field Images from different noise levels
	Field Images from different threshold levels
	Canyon Images from different noise levels
	Canyon Images from different threshold levels
	Image from software simulation

